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1. INTRODUCTION 

1.1. General introduction 
Environmental pollution (including air pollution) is a consequential global 
threat to overall biodiversity. Air pollution impacts on all levels of biological 
organization, from individuals to ecosystems (Grantz et al. 2003; Lovett et al. 
2009). For instance, changes induced by air pollution can disturb the com-
position, function and structure of ecosystems (Vitousek et al. 1997), triggering 
the loss of sensitive species or inducing the succession by pollutant-tolerant spe-
cies. Moreover, environmental pollution could influence the genes and genetic 
diversity of organisms from different species groups (DiBattista 2008; Hollo-
way et al. 2012). Therefore, there are multiple tasks for air pollution manage-
ment. In order to control, monitor and, consequently, mitigate damages caused 
by air pollution, the influence of air pollution on different levels of biodiversity 
should be estimated and the potential sources of pollution and their extension 
detected (Guerreiro et al. 2015). Additionally, it is required to improve the 
mitigation technologies and set the new possible methods for complementing 
the data from air monitoring stations. 

The total emission and concentrations of many air pollutants (e.g., SO2, CO, 
C6H6) have decreased and, generally, air quality has improved in Europe for 
now, while particulate matter (PM) is still an acute and problematic pollutant as 
EU limits for PM have continued to be exceeded in large parts of Europe 
(Guerreiro et al. 2015). PM is air pollutant, which represents the heterogeneous 
mixture of solid particles, differing in size (ca. 0.1−10 µm), origin and chemical 
composition, and has been suspended in the air (Grantz et al. 2003). PM 
pollution is usually defined by size fraction (Grantz et al. 2003). Coarse PM (or 
larger dust particles, hereafter dust pollution) is released to the environment 
e.g., through rock quarrying, combustion processes, kiln grinding, directly from 
surfaces of unpaved roads by intensive traffic or from biogenic sources e.g., 
from surfaces of deserts or from wildfires. Anthropogenic dust pollution usually 
disperses by the wind and, therefore, deposits generally in the vicinity of emis-
sion sources, e.g., power plants, cement industries, limestone quarries, and un-
paved roads (e.g., Farmer 1993; Mandre 1995; Paoli et al. 2014; Rai 2016). The 
chemical composition of dust pollution is variable, depending on properties of 
raw material and particular source of emission. In general, dust emission from 
aforementioned industrial pollution sources contains a high amount of CaCO3, 
MgO, K2O, small amount of SiO2, Al2O3, Fe2O3, and heavy metals like Mn, Zn, 
Cu (Mandre 2000; Reinsalu 2008), and is extremely alkaline. For instance, the 
pH of cement dust in water suspension is 12.3−12.6 (Mandre 2000). The 
alkaline dust pollution has always been essential environmental issue in Estonia 
since over the years the large part of industrial pollution was formed by alkaline 
dust, and remarkable changes of local environment have been detected in 
northern region of Estonia due to high presence of alkaline dust pollution (e.g., 
Laasimer 1958; Annuka 1995; Kask et al. 2008; Reintam et al. 2011). 
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The effects of alkaline PM on biodiversity have been less studied (Farmer 
1993; Zvereva et al. 2008; Rai 2016) in comparison with the effects of 
acidifying pollutants (i.e., SO2, NOx, NH3). Dust emission can effect vegetation 
directly, causing negative changes in physiology and biochemistry or indirectly, 
through the environment. Considerable dust pollution causes visible injuries of 
plant tissue (Farmer 1993) or necrotic disrupt of lichen thalli (Jóźwiak and Jóź-
wiak 2009), damages spruce needles (Mandre et al. 2002; Ots et al. 2009; 
Lukjanova et al. 2013), disturbs stomatal function (Siqueira-Silva et al. 2016), 
reduces transpiration and degrades photosynthetic pigments that results in 
inhibition of photosynthetic activity (Zaharopoulou et al. 1993; Lepeduš et al. 
2003; Maletsika et al. 2015), consequently causing cell plasmolysis and death of 
entire plants (Saha and Padhy 2011; Siqueira-Silva et al. 2016). Dust pollution 
can also change element concentration of vascular plants (Mandre and Kors-
jukov 2007; Kupcinskiene et al. 2008), mosses (Liiv and Kaasik 2004), and 
lichens (Kortesharju and Kortesharju 1989) or decrease the level of carbo-
hydrates leading to decrease of plant biomass (Mandre and Klõšeiko 2000; 
Klõšeiko 2005; Ade-Ademiula and Obalola 2008). Moreover, dust pollution can 
disturb the radial increment and height growth of conifers, and cause defoliation 
of trees (Mandre et al. 1998; Ots and Rauk, 2000; 2001; Ots et al. 2009). How-
ever, the negative effect of dust pollution on vegetation could be counter-
balanced to some extent through a fertilizing effect on plants (Annuka and Rauk 
1990; Kask et al. 2008; Rizvi and Khan 2009); for example, dust increases the 
graminoid biomass closer to the calcareous dusty roads (Auerbach et al. 1997). 

Indirect effects through the increasing pH and hypertrophication of habitats 
(changes in chemical properties of soil) provoke the alteration of nutrient 
cycling and, thus, imbalance nutrient uptake or cause deficiencies (Farmer 
1993; Nanos and Ilias 2007) and damage soil biota, e.g., mycorrhizal and 
bacterial communities involved in nutrient cycling of plants (Grantz et al. 2003; 
Bilen 2010). The response to dust pollution of individual species consequently 
leads to the changes at population, community and, finally, at ecosystem level. 
Those indirect impacts can alter the total species richness, abundance and com-
munity structure, changing species composition (e.g., Marmor et al. 2010; Stra-
vinskienė 2011; Vellak et al. 2014). For example, the soil long-term alkalization 
provokes the successional changes in forest communities (Brandt and Rhoades 
1972) or induces the disappearance of Sphagnum mosses from sensitive to 
alkaline dust bogs (Paal et al. 2010) and tundras (Auerbach et al. 1997). Several 
studies have shown the replacement of acidophytic lichens by basiphytic and 
neutrophytic lichenized taxa along a dust pollution gradient (e.g., Gilbert 1976; 
Loppi and Pirintsos 2000; Paoli et al. 2014). The impact intensity of dust 
pollution depends on the distance from pollution sources, frequency and 
continuation of emission, dominant wind direction, the amount of deposited 
dust particles, and particular responses of species groups (Farmer 2000; Grantz 
et al. 2003). Among other items, PM pollution poses a remarkable harm to 
human health, particularly in urban areas, provoking the respiratory and cardio-
vascular diseases and increasing risks of mortality (Brook et al. 2010; World 
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Health Organization 2013; Yorifuji et al. 2016). For instance, traffic-released 
PM can cause damage of airway epithelial cells that lead to the production of 
pro-inflammatory cytokines (Kumar et al. 2015) playing important role in 
pathogenesis of asthma (Barnes 2008). 

Air monitoring stations can provide the real-time information about pollutant 
concentrations in the surrounding area; however, such data collection is usually 
performed in a limited number of monitoring stations. Bioindication is a poten-
tial tool for complementing the data from air monitoring stations, supplying 
information about the pollution status and its cumulative impacts in areas that 
are not covered with direct measurements (Conti and Ceccheti 2001; Sujeto-
vienė 2015). Bryophytes and lichens are widely used as effective indicators for 
monitoring air quality and surrounding environment (e.g., Gilbert 1968; Hawk-
sworth and Rose 1970; Nimis et al. 2002) due to their particular physiology 
(e.g., lack of a root system and protective waxy cuticles), metabolic peculiarities 
(e.g., poikilohydry) and distinctive sensitivity to particular air pollutants (Bark-
man 1958; Nash 2008; Zvereva and Kozlov 2011). Several studies consider 
indicator values of lichens and bryophytes for monitoring the atmospheric 
deposition of different pollutants (e.g., Pakarinen and Hasanen 1983; Bran-
quinho et al. 2008; Sujetovienė 2015); however, simultaneous changes in abun-
dance and species richness or possibilities to use other organisms, for instance 
epiphytic algae, as bioindicators of dust pollution are poorly investigated. 

The majority of studies considering the effects of environmental pollution 
(including PM pollution) on vegetation have concentrated on responses of 
individual species or communities (Smith 1990; Farmer 1993; Ellenberg 2009; 
Rai 2016), while pollution impact on genetic diversity of species has received 
much less attention (van Straalen and Timmermans 2002). The genetic diversity 
within populations results from cumulative effects of both historical and present 
processes (Hewitt 2000; Frankman 2010). Present processes include changes in 
environmental conditions and, finally, in species habitat, which may influence 
growth, dispersal and vitality of species. The variation at the genetic level is 
important part of biodiversity as it initiates evolutionary processes, provides the 
raw material for adaptation to changing environments, and ensures healthy 
populations (Lacy 1997; Helm et al. 2009; Frankham et al. 2010). Therefore, the 
changes in genetic structure and loss of genetic diversity, caused by anthro-
pogenic disturbances, could be a serious threat to natural populations. More-
over, the knowledge of changes or declines in genetic diversity of populations 
may be used as a warning to vulnerability and sustainability of populations to 
environmental changes (Bickham et al. 2000). 
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1.2. Objectives of the thesis 
The main objective of the present thesis was to contribute to the knowledge 
about the response of pine forest ecosystems (I), epiphytic communities (algae, 
lichens, bryophytes) on pines (II, III), and genetic diversity of populations of a 
common lichen-forming fungus (IV) to changed environmental conditions 
induced by a long-term alkaline dust pollution. 
 
In summary, the aims of the current thesis were: 
 To investigate the successional response of the Vaccinium myrtillus site 

type Scots pine forest communities to changed pH conditions induced by 
long-term cement dust pollution (I). This study particularly aimed to 
investigate (1) how much the chemical properties of soil litter horizon have 
been changed by over century persisted alkaline dust pollution; (2) the niche 
breadth along the soil pH gradient; (3) how resilient the forest community 
was considering the responses of core species to the changed pH conditions. 

 To find out the potential bioindicators of air quality near sources of alkaline 
dust pollution (I, II, III), and, especially, to shed light on the possibilities to 
use Trentepohlia umbrina (Kützing) Bornet as an indicator of alkaline dust 
pollution (II). To our knowledge, no direct measurements of the abundance 
of T. umbrina or any other Trentepohlia species have been made in habitats 
with different level of alkaline dust pollution so far. 

 To evaluate the response of two cryptogamic groups, lichens and bryo-
phytes, including their diversity and cover, in relation to alkaline dust pollu-
tion emitted by the processes connected with limestone quarrying (III). To 
our knowledge, no direct measurements of the species richness and cover of 
epiphytic bryophytes on pine trees have been made so far in sites with diffe-
rent limestone dust pollution level. 

 To estimate the effects of limestone dust pollution from unpaved roads on 
the genetic diversity of Usnea subfloridana Stirt. populations using fungus-
specific microsatellite markers (IV). No previous study has considered the 
microsatellite variation of lichen-forming fungus populations under long-
term air pollution, particularly under alkaline dust pollution. 
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2. MATERIALS AND METHODS 

2.1. Study area and sample plots 
The studies were carried out in Estonia (Fig. 1), northern Europe. Estonia has 
temperate climate; the mean annual temperature is 5°C, and the total annual 
precipitation is 770 mm (Estonian Weather Service 2016). The vegetation of 
Estonia belongs to the hemiboreal subzone of the boreal forest zone, lying in the 
transitional area, where southern taiga forest subzone changes into spruce-hard-
wood subzone (Ahti et al. 1968; Laasimer and Masing 1995). 
 
 

 
 
Figure 1. Study areas and location of sample plots in the vicinity of different sources of 
alkaline dust pollution in Estonia (papers I−IV). 

 
 
The studies were carried out in the surroundings of three different sources of 
alkaline dust pollution; cement plant (I), limestone quarries (II, III), and lime-
stone unpaved road (IV; Fig. 1; Table 1). The extraction and using of limestone 
have a long tradition in Estonia, beginning already in the 13th century (Ministry 
of the Environment 2011). The study I was performed in the vicinity of Kunda 
cement factory (Fig. 1; Fig. 2; Fig. 1 in I). The Kunda cement factory was 
established in 1871, and since that time has emitted alkaline dust in substantial 
amount into the surrounding area. The emissions of cement kiln dust have been 
varying greatly during the years, reaching the level of about 100 000 tons per 
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year in the late 1980s and early 1990s (Estonian Environment 1995). For now, 
after the installation of powerful dust filters in 1996, the dust emission con-
siderably decreased – to 34 tons per year (Kunda Nordic Tsement 2016), and 
stayed within allowed permits (Environmental Board 2016). However, the dust 
pollution impact is still detectable, for example, in 2008 the Ca content in the 
snowmelt water exceeded the unpolluted measures by ten-fold in Mahu bog 
(about 4.5 km NE of Kunda cement plant; Paal et al. 2010). In papers II and III, 
the study sites were situated in the surroundings of four major limestone 
quarries in northern Estonia: Vasalemma, Harku, Väo, and Maardu (Fig. 1; Fig. 
1 in II; Fig. 1 in III). The mean quantity of quarried limestone in Estonia per 
year is 2.6 million m3, and about half of it is extracted from the aforementioned 
quarries, which have been functioning during last 50–60 years (Geoguide 
Baltoscandia 2012). The unpaved road, which is the source of dust pollution in 
paper IV, has been marked as a road on the map at least from the end of 19th 
century (earlier maps are not available), however, serious pollution started ca. 
60 years ago, in 1960s when motors vehicles, including agricultural machines, 
became widely used. 

The study sites were located in Pinus sylvestris-dominated boreal forests 
(I−IV) and forested parks (II, III). The studies were conducted in forests 
belonging to the Vaccinium myrtillus site type (I, IV), the Oxalis-Vaccinium 
myrtillus site type (IV), and the Vaccinium vitis-idaea site type (IV). Those 
forest site types are also widely distributed in other Baltic states (Kairiūkštis 
1966; Bušs 1997), in Fennoscandia (Dierßen 1996), and in northwest Russia 
(Fedorchuk et al. 2005). In undisturbed conditions, soil from those forest site 
types is naturally acidic; pHKCL of the litter and humus horizon ranges between 
2.5 and 5.5 (Paal 1999; Lõhmus 2004). The study sites were selected using the 
maps of Estonian State Forest Management Centre (I), Estonian Forest Public 
Registry (I−IV), and the soil maps of the Estonian Land Board (I). The sample 
plots were located at different distances from the pollution sources (Kunda 
cement plant in I and the nearest limestone quarry in II and III), representing 
thus the pollution gradient (Fig. 1; Fig. 2; Fig. 1 in II; Fig. 1 in III). Further-
more, the sample plots were situated in more than 100 m from the nearest paved 
or gravel road for minimizing the potential impact of traffic pollution (I, II, 
III). In IV, where genetic diversity of Usnea subfloridana populations was 
studied, eight sample plots were investigated: four of them were within polluted 
forest stands, which were located close to unpaved roads, and four within undis-
turbed forest stands, which were situated more than 180 meters from the source 
of dust pollution, as reference data (Table 1 in paper IV). Lichen populations 
were delimited according to the boundaries of forest sites having different 
average age of the lichen phorophyte (Forest Public Registry 2012). 
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2.2. Field methods and data collection 
Fieldworks were carried out between summer 2008 and summer 2014. To 
estimate the vegetation changes under long-term cement pollution, twenty 65–
90 years old pine stands were selected, and a circular sample plot of 0.1 ha was 
set in the centre of the each pine stand (I). We characterised the tree layer by 
crown closure, tree basal area, average height, and age of trees (I). The basal 
area was measured for each tree species as an average of three to five measure-
ments (I). The density of shrub layer species was the average stem count on five 
randomly placed 2 m radius subplots (I). Cover of vascular plant species in the 
herb layer and moss layer was registered in 12 randomly located 1 m × 1 m 
sample squares in a radius of 10 m within the centre plot (I). Species outside 
sample squares were also recorded and included in the analyses as cover 0.01% 
(I). The composite sample of the soil litter horizon was collected from three 
randomly selected pits around plot centre within a radius of 10 m (I). The 
pHH2O, Ca, Mg, N, P, K, and ash content of soil samples were estimated in 
laboratory (see methods in paper I). In papers II and III five random Scots pine 
(Pinus sylvestris L., hereafter ‘pine’) trees were examined in a 25-m radius 
circle of 32 sample plots; only trees with more than 50 cm circumference were 
included. The line cover method was used to estimate the cover of Trentepohlia 
umbrina (II), lichens (III), and bryophytes (III) on pine trunks. A measuring 
tape was attached round each sample tree trunk at the height of 120 cm; all the 
millimetres, where any species was crossing the lower edge of the tape, were 
recorded. Sample tree circumference was measured for later calculating of the 
cover of T. umbrina (II), the cover of lichens (III), and the cover of bryophytes 
(III). Additionally, the occurrence of all epiphytic lichen and bryophyte species 
was registered on trunk of every sample tree from 0.5 to 2 m above ground 
(III). In paper IV, shrubby Usnea thalli were randomly collected from Norway 
spruces (Picea abies (L.) Karst., hereafter ‘spruce’) in forest stands with diffe-
rent average age (between 70–114 years) of spruces from eight sample plots. 
The specimens (three specimens per tree on average) were sampled up to six 
meters from the ground using tree pruner. If there were less than three thalli, 
only one or two specimens were sampled while in other cases more than three 
(but not more than five) specimens were collected per tree to balance sampling. 
 
 

2.3. Bark pH measurement 
The pine bark pH was measured in situ at breast height (DBH of at least 90 cm) 
on three stems in three repeats at each sample plot in study I. In studies II, III, 
and IV, two bark pieces were collected at the height of 120 cm from the ground 
from every studied pine tree (II, III), and from five random spruces from 
polluted and unpolluted forest stands (IV). In studies II and III, one piece of 
pine bark was gathered from the side of the quarry and another from the 
opposite side of tree. In paper IV, in polluted forest sites one piece of bark was 
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taken from the northern side (N), which was adjacent to unpaved road, and 
second piece from the opposite, southern, side (S) of tree. In unpolluted forest 
sites (IV), bark pieces were analogously collected, keeping the same cardinal 
direction. Then bark pH of collected bark pieces was measured in laboratory (II, 
III, IV). The flathead pH meter Consort C532 was used for all bark pH mea-
surements (I−IV). To allow rapid solution of hydrogen ions, 0.5 mL of  
0.1 M KCl was dripped on the bark 1 min before the measurement following 
Schmidt et al. (2001). The mean bark pH of every tree was expressed as an 
arithmetic mean of two (II, III, IV) or three (I) measurements of bark pH 
values (all calculations of mean pH were based on mean hydrogen ion 
concentrations and then transformed back into pH value). 
 
 

2.4. Species identification 
The species that were difficult to identify in the field were collected for later 
determination (I, III). Additionally, in study II, at least one sample was taken 
for examination and confirming the identification under a light microscope from 
every sample plot, where epiphytic green alga Trentepohlia umbrina occurred. 
Thin layer chromatography (TLC) with solvent A (Orange et al. 2001) was 
performed for those lichen specimens that were difficult to identify by morpho-
logy or by chemical spots (III), and for confirming the identification of Usnea 
subfloridana (IV). In paper I, the bryophyte nomenclature follows Hill et al. 
(2006) and the nomenclature of vascular plants follows Tutin et al. (1964–
1980), in paper III, the bryophyte nomenclature follows Vellak et al. (2015), 
and in papers III and IV, the lichen nomenclature follows Randlane et al. 
(2013). 
 

2.5. Molecular analyses 
In study IV, the total DNA of Usnea subfloridana specimens was isolated using 
PowerPlant® Pro DNA Isolation Kit (MO BIO Laboratories, Inc., USA) 
according to the manufacturer’s protocol. Nine unlinked fungus-specific micro-
satellite loci (Tõrra et al. 2014) were analyzed and amplified in three different 
multiplex PCR following the protocol described in Tõrra et al. (2014) except the 
reverse primer sequences, which had erroneously been presented as direct 
sequences from the genome. Therefore, we used the modified set of the reverse 
primer sequences (Table 2 in paper IV). Additionally, the final primer con-
centration of Us01 (multiplex I) was increased to 0.05 μM to get PCR ampli-
fication (see Tõrra et al. 2014 for other primer concentrations). Fragment 
lengths of PCR products were determined on a 3730xl DNA Analyzer (Applied 
Biosystems, Zurich, Switzerland). The electropherograms were analyzed using 
GENEMAPPER ver. 5 (Applied Biosystems) using LIZ-500 (all multiplexes) as 
size standard. 
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2.6. Statistical analyses 
The collected data (e.g., bark pH values, soil chemical characteristics, abun-
dance and occurrence of species) were averaged per sample plot (I−IV), and 
statistical analyses were performed on the plot level (Table 1; I−IV). 

In paper I, the principal component analysis (PCA) with Varimax rotation 
was applied on variables describing the alkaline pollution; litter horizon pH, 
logCa, logK, logMg, and logAsh content were included. The first principal 
component was defined as the compound pollution factor (CF). The variation in 
soil chemistry and forest structure measures between pollution zones were 
estimated with a one-way ANOVA; Tukey post hoc test was used to test the 
significant difference between the pollution zones (I). The multiple response 
permutation procedure (MRPP) was used to estimate the difference on species 
composition between pollution zones (Bonferroni correction was applied for p-
values). Indicator species analysis (ISA; Dufrêne and Legrendre 1997) was 
applied to find out indicator species for each pollution zone (I). The statistical 
significance of the indicator values was estimated with a Monte Carlo 
permutation test. The indicator value pattern between pollution zones was used 
to outline niche width for species having indicator value >15 in at least one 
pollution zone (I). Species were classified into six groups: acidophilous, acido-
neutrophilous, neutrophilous, neutrophilous-calcicolous, and calcicolous. Spe-
cies with high indicator values through three zones or at least in the unpolluted 
and heavily polluted zones were classified as generalists. 

The two-way step-wise general regression model (GRM) analysis was 
applied to estimate plant species reaction to the alkaline pollution. Some species 
had sharply asymmetric abundance distribution (i.e., observation included of 
too many zeros), and the assumption of the normal error distribution could not 
be applied (I). Therefore, the generalized linear model (GLZ) with binominal 
distribution and ‘logit’ link function analysis was carried out on presence-
absence data of these species (I). The GRM analysis was also applied to test the 
effect of litter chemical properties on species richness and on the variables of 
tree layer structure (I). Spearman’s rank correlation analysis was used to find 
the relationships between the cover of Trentepohlia umbrina and distance from 
the quarry (II), between the cover of bryophytes and the cover of lichens (III), 
between the number of bryophytes and the number of lichens (III), between the 
mean tree circumference and the cover of lichens and bryophytes (III), between 
the mean tree circumference and the number of lichens and bryophytes (III), 
and between the mean tree circumference and the cover of Trentepohlia 
umbrina (II). Logistic regression was used for describing the occurrence pro-
bability of T. umbrina in relation to bark pH (II). Kruskal-Wallis test was 
applied for checking the differences in the cover of T. umbrina (II), and in the 
cover and species richness of bryophytes and lichens between the quarries (III, 
separately for lichens and bryophytes). One-way analysis of variance (ANOVA, 
type III) was used for estimating the effects of distance from the nearest quarry 
(distance groups 0–500, 501–1000, 1001–2000, >2000 m) on the cover of 
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bryophytes and lichens, on the bryophyte richness, and on pH value of pine bark 
(III). Two-way ANOVA (type III) was applied for checking the effects of 
distance on the lichen richness; the type of quarry was taken as additional 
categorical independent variable (III). Additionally, Tukey post hoc test was 
used to test the significant statistical differences between the distance groups 
(III). GLZ analysis with binominal distribution and ‘logit’ link function was 
used to describe the relationships between the presence of species and bark pH 
(taken as a continuous independent variable); species that were recorded in only 
one sample plot were excluded from this analysis, and species that were 
recorded on genus level were also excluded (III). PCA, ISA, and MRPP were 
performed in PC-ORD 5 (McCune and Mefford 1999). The Kruskal-Wallis test, 
ANOVA, Tukey test, t-test, Spearman’s rank correlation analyses, logistic 
regression, GRM, and GLZ analyses were performed in STATISTICA 7 (Stat-
soft 2004). 

In paper IV, the total number of alleles, the mean number of alleles, the 
maximum and the minimum number of alleles, the number of private alleles 
(P), heterozygosity, i.e., genetic diversity (H), allelic richness (A), and Shan-
non's information index (I) for eight Usnea subfloridana populations were 
estimated in the GenAlEx ver 6.5 software (Peakall and Smouse 2012) and the 
Microsatellite Analyzer (MSA) software (Dieringer and Schlötterer 2003). The 
number of multilocus genotypes (G), the percentage of multilocus genotypes, 
and the minimum number of colonisation events (C) per population were 
calculated in the R software (R Core Team 2012) using the script written by 
Werth et al. (2006). GLZ analysis with normal distribution and “identity” link 
function was applied to find an effect of dust pollution on the G, M, C, A, I, H, 
and P of U. subfloridana populations. To estimate genetic differentiation among 
populations from polluted and unpolluted habitats, hierarchical analyses of 
molecular variance (AMOVA) with 999 permutations was performed using the 
GenAlEx ver 6.5 software (Peakall and Smouse 2012). T-test was used for 
detecting the differences between polluted and unpolluted forest stands 
(according to bark pH value of spruces). To measure bottlenecks of population 
(to undergone the significant reductions in size or bottleneck effect), the 
Wilcoxon signed-rank test and the allele frequency distribution test (mode-shift 
test) were performed using the software BOTTLENECK (Piry et al. 1999). 
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3. RESULTS 

3.1. Environmental variables and pollution zones 
Three pollution zones around cement plant in Kunda were distinguished using 
primarily the pine bark pH, and refined considering CF scores: (1) unpolluted 
(bark pH≤3; CF<−0.5); (2) moderately polluted (bark pH=3−4; CF −0.5−0.2); 
(3) heavily polluted (bark pH>4; CF>0.2) zone (Fig. 2; I). The pH of the forest 
litter horizon around the cement plant gradually decreased with increasing 
distance form cement plant from 7.1−7.4 to 3.6−4.5 at 30 km distance (Table 1 
in paper I). The content of K, Ca, and Mg of soil samples followed a similar 
gradient (I). The absolute pH values on pines in the vicinity of limestone 
quarries varied between 2.9 and 6.6, and the mean values per sample plot 
between 3.2 and 6.3 (II, III). The bark pH depended significantly on the 
distance from quarries (F(3, 28)=19.5; p<0.000001; Fig. 2 in paper III) and also 
gradually decreased with increasing distance from the quarries (II, III). The 
bark pH gradually decreased with increasing distance from the limestone 
quarries, being ca. 3.5 at the distance of 1001–2000 m from the quarry, and 
reaching the mean minimum value, ca. 3.4, further than 2000 m from the quarry 
(Fig. 2 in paper III). The mean bark pH of spruces per forest site varied 
between 3.5 and 6.6 (Table 1 in paper IV) and significantly differed between 
polluted and unpolluted forest stands (t=14.6; df=6; p<0.00001; IV). 

The closure of tree stands and shrub layer density were highest in the mode-
rately polluted zone and lowest in the unpolluted zone in vicinity of Kunda 
cement plant (I). The average height of the tree layer and the basal area of pines 
and spruces were rather similar between zones (Table 1 in paper I). 

 

 
 
Figure 2. The grading of study area around the Kunda cement plant by three pollution 
zone: (1) unpolluted zone, marked with open (white) symbols; (2) moderately polluted 
zone, marked with partly filled (grey) symbols; (3) heavily polluted zone, marked with 
filled (black) symbols. 
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3.2. Species richness and cover 
Altogether, we recorded 86 species (including 25 epigeic bryophytes; Table 1; 
Appendix S1 in paper I) in the study concerning boreal forest communities in 
the vicinity of Kunda cement plant (I), and 34 epiphytic bryophytes and 84 
lichens on pines near limestone quarries (Table 1; Tables 1 and 2 in paper III). 
Comparing the three pollution zones near Kunda cement plant, the pooled 
species richness was lowest in unpolluted forests (average = 31, SD = 3 species 
in 0.1-ha sample plot), it increased considerably in the moderately polluted zone 
(44 ± 14) and was almost two times higher in the heavily polluted zone (63 ± 7; 
I). The variation in species number (SD) was highest in the moderately polluted 
zone (I). The MRPP test showed that the species composition of ground vege-
tation (herb and moss layer) in the heavily polluted zone was significantly diffe-
rent from that in unpolluted and moderately polluted zones (P=0.001; P=0.006), 
but species compositions in unpolluted and moderately polluted zones did not 
differ (P=0.254). 

The cover of bryophytes per tree varied between zero and 12%, and mean 
value per sample plot between zero and 4% near limestone quarries (III). The 
species richness of bryophytes per tree ranged between zero and 8 bryophyte 
species, and between zero and 11 species per sample plot (III). The cover of 
lichens per tree varied between zero and 75%, and mean value per sample plot 
between 3 and 60% near limestone quarries (III). The species richness of 
lichens per tree ranged between zero and 18 species, and between 8 and 31 
species per sample plot (III). The results of Kruskal-Wallis test did not indicate 
significant differences in the species richness and the cover of epiphytic bryo-
phytes between the four quarries (H(3,32)=3.8, p=0.28; H(3,32)=1.0, p=0.80; 
III), in the cover of Trentepohlia umbrina between the four quarries 
(H(3,32)=1.54; p=0.67; II), and in the cover of epiphytic lichens between the 
four quarries (H(3,32)=0.9, p=0.84; III). However, this test revealed a signi-
ficant difference in species richness of lichens between the four quarries 
(H(3,32)=12.1, p=0.01; III). 
 

3.2.1. Factors influencing species richness and cover 

Results of analyses revealed that species richness and cover were correlated 
with pollution intensity, but various species groups differently responded to 
pollution impact. According to the GRM analyses, the number of species in the 
herb and moss layers of boreal forest communities near Kunda cement plant 
was positively correlated with pollution intensity (I). Herb layer richness was 
well described by the model consisting of three environmental variables (adj R2 
= 91.0%). The herb layer richness increased most clearly along the pH gradient 
(standardized slope estimate b=0.707, p=0.0001; Fig. 3 in paper I); moreover, it 
increased together with the P content (b=0.360, p=0.0002), whereas N content 
of the litter horizon had a significant negative relationship to the species 
richness (b=0.281, p=0.0055 in paper I). Species richness of epigeic bryophytes 
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was dependent on pollution gradient via Ca content (b=0.643, P=0.0022; adj 
R2=38.1%; Fig. 3 in paper I). 

The GRM analyses also revealed that abundance of frequent plant species 
depended mainly on the litter horizon pH (Table 2 in paper I). The significant 
impact of the litter horizon N content was observed only for a restricted number 
of species; the P content affected only the abundance of Alnus incana and moss 
species Cirriphyllum piliferum. The increase of litter horizon pH was positively 
associated with the abundance of several shrub layer species (Corylus avellana, 
Ribes alpinum, and Sorbus aucuparia) and Quercus robur saplings. The in-
creased pH of the litter horizon had different impacts on the herb and moss layer 
species: abundance of species that were natural to boreal pine forests (e.g., 
Calluna vulgaris, Vaccinium myrtillus, and V. vitis-idaea, and bryophytes Hylo-
comium splendens, Pleurozium schreberi, and Ptilium crista-castrensis) 
decreased, while abundance of nemoral species (e.g., Mycelis muralis, Vicia 
sepium, V. sylvatica, and bryophytes Cirriphyllum piliferum and Rhytidia-
delphus triquetrus) increased (I). 

According to the results of one-way ANOVA, the species richness of 
epiphytic bryophyte per sample plot depended significantly on the distance from 
quarry (F(3,28)=9.9; p=0.0001): the species richness of bryophytes was higher 
near quarries and decreased gradually at increasing distances from quarries (Fig. 
3; III). The bryophyte cover also depended significantly on the distance from 
quarries (F(3,28)=21.7; p<0.00001; Fig. 3; III). The cover of epiphytic lichens 
per sample plot depended significantly on the distance from the quarry 
(F(3,28)=10.0, p<0.001) being lower near limestone quarries and increasing 
gradually with increasing distances from quarries (Fig. 3; III). The results of 
two-way ANOVA showed that the distance from the quarry had effect on the 
number of epiphytic lichens (F(3,25)=4.3, p=0.01): species richness was lowest 
near quarries, increased gradually till 2000 m from quarries, and started to 
decrease further than 2000 m from quarries (Fig. 3; III). According to two-way 
ANOVA, the type of quarry had an effect on the number of lichens 
(F(3,25)=6.9, p=0.01). The results of Spearman's correlation demonstrated no 
significant effect of mean tree circumference per plot on the number and the 
cover of bryophytes (N=32: Rs=-0.1, p=0.46; Rs=-0.03, p=0.89 in III), on the 
number and the cover of lichens (N=32: Rs=-0.3, p=0.07; Rs=-0.3 p=0.13 in 
III), and on the cover of Trentepohlia umbrina on pines (N=32: Rs= −0.06; 
p=0.75 in II). 

The cover of T. umbrina was strongly correlated with pine bark pH (Fig. 2 in 
paper II). The results of logistic regression analysis revealed that the occurrence 
probability of T. umbrina reached 50% at pH 3.4 and 90% at pH 3.9−4.0 (II). 
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Figure 3. The mean percentage of bryophyte and lichen cover (±0.95 confidence 
interval) and the mean number of bryophyte and lichen species (±0.95 confidence 
interval) on Scots pines per sample plot at different distances from the quarries; the 
significant differences between the groups are marked with letters a−c according to 
Tukey’ HSD test. 
 

3.3. Bioindicators of dust pollution 
According to results of ISA, 12 species (among them two orchids − Neottia 
ovata and Neottia nidus-avis) appeared to be significant indicators for the 
heavily polluted zone, and six species – for the moderately polluted zone around 
Kunda cement factory (Appendix S1 in paper I). 

Spearman’s correlation analyses confirmed a significantly higher cover of 
Trentepohlia umbrina in the vicinity of limestone quarries (Fig 2 in paper II). The 
cover of this species decreased steeply at the distance of 800–900 m from the 
quarry; further than 1000 m from the quarry the maximum cover value of T. 
umbrina was already less than 4%, and further than 2000 m less than 1% (Fig. 2 
in paper II). 

The GLZ analysis revealed that six epiphytic bryophyte species (Orthotrichum 
pallens, O. speciosum, Pylaisia polyantha, Radula complanata, Schistidium 
apocarpum, and Syntrichia calcicola) preferred a higher bark pH of pines in the 
vicinity of limestone quarries (Table 1 in paper III). No bryophyte species were 
significantly associated with lower bark pH (III). Thirteen lichen species 
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favoured a higher bark pH of pines in the vicinity of limestone quarries, and 21 
lichen species preferred a lower bark pH of Scots pines (Table 2 in paper III). 

 

3.4. Niche width along the soil pH gradient (I) 
We categorized the species using their indicator value patterns between pol-
lution zones near Kunda cement plant (Appendix S1 in paper I); 17 species 
were defined to acidic soils, 48 species were associated with calcareous soils, 
and 13 species were related to neutral soils (Fig. 4). Eight species (having fre-
quency ≥10%) were common species with no preference pH, and were con-
sidered as pH generalists. The species reactions measured with the parametric 
model (GRM and GLZ; Tables 2 and 3 in paper I) were in good agreement with 
the non-parametric niche definitions based on the indicator species analysis 
(Appendix S1 in paper I), particularly for the species at the extreme ends of 
pH/Ca gradients. The exceptions were two generalists (Vaccinium vitis-idaea 
and Hylocomium splendens), but as shown by GLM, their abundance decreased 
along the pollution gradient linearly, and indicator values also indicated this. 
We revealed that niche width classes, which were generated using species 
indicator value patterns were acceptable, because parametric models did not 
allow evaluation of species with lower frequencies or species with a neutro-
philous niche. The number of narrow and wide niche species increased from the 
acidophilous-neutrophilous niche class in both directions according to species 
counts in each niche class, but particularly toward calcicolous species (Fig. 4). 
 

 
 

Figure 4. Number of common species (frequency ≥ 10%) in pH-based niche classes: 
Aci, acidophilous; Aci-Neutr, acidophilous-neutrophilous; Neutr, neutrophilous; Neutr-
Calci, neutrophilous-calcicolous; Calci, calcicolous. pH generalist species are shown as 
background bar. The combined summary of these species by pollution zone describes 
the major pattern of species richness along the pH gradient. 
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3.5. Genetic diversity of Usnea subfloridana 
populations (IV) 

In total, 274 specimens of Usnea subfloridana were analysed and genotyped 
using nine microsatellite fungus-specific markers. We found 72 alleles at 
studied loci that provided 168 different genotypes across eight populations of 
lichen-forming fungus. All microsatellite loci were highly polymorphic. De-
tailed genetic estimates and number of alleles per each marker and population 
are given in Tables 1 and 3 in paper IV. 

The GLZ demonstrated that the presence of dust pollution and number of 
collected samples or sample size (sqrt N) revealed significant impact on allelic 
richness (A); this measure was higher in unpolluted forest sites than in polluted 
forest sites (Table 2). The presence of dust pollution showed the same signi-
ficant effect on the Shannon's information index (I) and genetic diversity (H) 
per population, but sqrt N revealed significant influence only on I (Table 2). 
GLZ also demonstrated that the number of multilocus genotypes (G) and the 
number of private alleles (P) were significantly contingent on the sample size 
(sqrt N), but did not differ between polluted and unpolluted forest sites (Table 
2). There was no statistically significant relationship between C and the 
presence of dust pollution (data not shown). There was also no significant 
interaction between clonal diversity (M) and dust pollution, and M did not 
correlate with sqrt N (Table 2). The average age of spruces in forest sites (sqrt 
AGE) did not show significant effect on any measures of genetic diversity of  
U. subfloridana populations in all CLZ analyses (Table 2, results of analyses 
shown partially). 

Hierarchical analyses of molecular variance (AMOVA) revealed no genetic 
differentiation between studied U. subfloridana populations from polluted and 
unpolluted forest sites (1% differentiation; PhiRT=0.01; P=0.06). The pro-
portion of alleles showed a ‘shifted mode’ distribution in population 4 and 5 
(Table 5 in paper IV). The results of Wilcoxon signed-rank test under all tree 
mutation models per population are given in Table 5, in paper IV. 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
24

Table 2. Results of generalized linear model (GLZ) for the allelic richness (A), the 
Shannon's information index (I), the genetic diversity (heterozygosity) (H), the number 
of multilocus genotypes (G), the clonal diversity (M), and the number of private alleles 
(P) in examined Usnea subfloridana populations. df, degrees of freedom; F, Wald-type 
F-statistic; p, significance level; sqrt Age, the square root of average age of spruces in 
each forest site; sqrt N, the square root of number of collected thalli in each population; 
Pollution, the presence of dust pollution. Bold-faced values represent significant effect 
 

Effect A I H 
  df F p df F p df F p 
sqrt Age 1 1.60 0.21 1 1.26 0.26 1 0.32 0.57 
sqrt N 1 16.86 <0.001 1 18.41 <0.001 1 1.89 0.17 
Pollution 1 10.03 0.002 1 12.30 <0.001 1 4.17 0.04 
Effect G M P 
  df F p df F p df F p 
sqrt Age 1 0.18 0.67 1 0.21 0.64 1 0.09 0.76 
sqrt N 1 247.6 <0.001 1 1.75 0.19 1 10.68 0.001 
Pollution 1 0.10 0.75 1 0.06 0.81 1 1.30 0.25 
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4. DISCUSSION 

4.1. Environmental variables under  
alkaline dust pollution 

Effect of long-term alkaline dust pollution from various pollution sources (viz., 
cement plant, limestone quarries, and unpaved road) on different organism 
groups was studied in boreal forest ecosystems. According to our results, the 
long-term dust pollution had a remarkable neutralizing effect on natural sub-
strates in pine forest ecosystems; both, the pH value of litter horizon (Table 1 in 
paper I) and pine bark (I, II, III) significantly decreased along an increasing 
distance from the sources of dust pollution. Additionally, the pH value of spruce 
bark had also increased (up to 5.9–6.6) in polluted habitats that were adjacent to 
limestone unpaved road, and significantly differed between polluted and un-
polluted forest stands (IV). 

Similarly, several studies have showed the noticeable decrease of soil and 
bark acidity (e.g., Gilbert 1976; Farmer 1993; Cutillas-Barreiro et al. 2016), and 
increase of Ca, Mg, and K content (Mandre 1995; Haapala et al. 1996a) in the 
vicinity of sources of alkaline air pollution. We also found that Ca, Mg, and K 
content of soil litter horizon followed the similar decreasing tendency along the 
dust pollution gradient (I). The Ca content of soil litter horizon was ten times 
higher near Kunda cement plant than in unpolluted areas. Previous studies from 
the early 1990s in the vicinity of Kunda factory had detected a 15-fold increase 
in Ca content from the unpolluted to the heavily polluted zone (Annuka and 
Mandre 1995). Comparing our results with previous 20-yr-old monitoring 
(Annuka and Mandre 1995), we can observe that the soil litter is recovering 
after the drastic reduction of alkaline emissions from the cement plant, but the 
over a century accumulated dust and its impact are still evident and persisted 
nowadays. Amarell (2000) also noticed the delayed recovery of soil in the pine 
forests of Central Germany. The observed delay in soil recovery may be 
explained by the saturation of pollution impacts, where increasing Ca content 
does not increase the pH above a certain level (Fig. 2 in paper I), and con-
sequently, after the reduction of pollution, the Ca level in soil can decrease over 
a long time before pH will reduce. The natural self-restoration of soils and pine 
forest ecosystems at whole is possible but it will last for decades. There have 
been no controlled studies that consider the restoration of pine ecosystems after 
long-term alkaline cement dust accumulation. Therefore, further continuing 
observations are required to evidence when total recovery processes will occur. 
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4.2. Bioindication of alkaline dust pollution 
Bioindicators are biological species, biological processes or communities, 
which are used to evaluate the quality of environmental conditions (Holt & 
Miller 2010). Comparing with monitoring stations and directly measured 
physical parameters, the using of bioindicators has several advantages as they 
allow assessing the cumulative impacts of chemical pollutant, habitat changes 
over time, and could provide the monitoring data about environment that is not 
covered with direct measurements (Conti and Ceccheti 2001; Sujetovienė 
2015). The good bioindicators should have some features, for instance, they 
should be well-studied, common in studied geographical region, and have 
measurable indicator ability (Holt & Miller 2010). 

The present study confirms some previously known, and suggests a few new 
bioindicators of dust pollution among algae, lichens, bryophytes, and vascular 
plants. The results of paper II confirm that green alga Trentepohlia umbrina, if 
growing on pines, could be used as an ecological indicator of alkaline dust 
pollution. Our results revealed that the abundance of T. umbrina on pine trunks 
was clearly higher near the limestone quarries, its maximum cover values 
reaching ca. 30% (mean of five trees studied per sample plot). We suggest that 
≥10% cover of T. umbrina on pines indicates considerable dust pollution (Fig. 2 
in paper II). These results are in agreement with those obtained by Haapala et 
al. (1996b), who also observed high abundance of T. umbrina on pine trunks in 
dust-polluted areas in Leningrad Oblast, Russia. Such reddish powdery cover of 
Trentepohlia on pine bark is easily recognizable at field (Appendix A in paper 
II); however, further separating between the species without microscopical 
examination might be challenging. 

The cover and species richness of epiphytic bryophytes also responded to 
limestone dust pollution (III). The cover of bryophytes had the highest mean 
values (2.9 %) up to 500 m from limestone quarries; further from the quarries, 
the cover of bryophytes decreased significantly, being 0.02 % at the distance 
range between 1001 and 2000 m and 0.1 % further than 2000 m (Fig. 3). The 
number of bryophyte species on pines was significantly higher near the lime-
stone quarries and decreased steadily along an increasing distance from the 
source of limestone dust pollution (Fig. 3). In the same way, we detected the 
inflated species richness of epigeic mosses and vascular plants in Vaccinium 
myrtillus site type pine forests in vicinity of Kunda cement plant (I). The 
number of species in the herb and moss layer was positively correlated with 
pollution intensity, but expressed via different indicators, pH of litter horizon 
for vascular plants and litter logCa content for bryophytes, which were more 
significant predictors than combined pollution factors (Fig. 3 in paper I). 
However, the pollution intensity has a different impact on abundance of 
vascular plants and epigeic mosses. For example, the increase of litter horizon 
pH was positively correlated with abundance of several shrub layer species 
(Table 2 in paper II) and negatively correlated with abundance of species that 
were natural to boreal pine forests (Table in paper II). 
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Lichen cover responded to dust pollution in a different way compared with 
alga Trentepohlia umbrina (II) and epiphytic bryophytes (III); correlation 
analysis confirmed the negative association between the bryophyte cover and 
lichen cover, while the maximum cover of bryophytes was considerably lower 
than lichen cover (viz., 12 and 75% per tree, correspondingly, in paper III). The 
lichen cover on pines increased considerably with the increasing distance from 
quarries up to 3340 m; the lichen cover was ca. 35% at the distance range 
between 1001 and 2000 m and further than 2000 m continued to increase 
slightly (Fig. 3). The number of lichen species was lowest near the source of 
pollution, increased at the distance of 1001–2000 m, and then started to 
decrease, being almost at the same level as in the closest vicinity near quarries 
(Fig. 3). In general, we revealed the shift of natural communities along a 
pollution gradient (I, III). These results are in agreement with the previous 
findings concerning the effect of alkaline dust pollution, for instance, on 
lichens, where the number of species was altered due to the change of bark pH 
from acidic to subneutral, and increased bark pH favoured the occurrence of 
basiphytic and neutrophytic species and even saxicolous species on the 
originally acid-barked trees (Gilbert 1976; Loppi and Pirintsos 2000; Marmor et 
al. 2010). The monitoring of cryptogamic communities (Rola and Osyczka 
2014) and communities of vascular plants could be useful in bioindication 
studies. At the same time, the community structure could be an even better 
predictor of environmental conditions than occurrence or absence of a specific 
species (van Haluwyn and van Herk 2002). Therefore, we suggest that increased 
bryophyte diversity and cover on pines due to invasion of species typical for 
nutrient-rich communities (III), diversification effect (to some extent) of lichens 
(III), the appearance of typical species for mesotrophic and meso-eutrophic 
habitats and increased abundance of shrub species in vegetation of Vaccinium 
myrtillus site type forests (I), as well as replacement of acidophilious/acido-
tolerant species by neutrophilous and calciphilous (I, III) could provide useful 
and promising tool for detecting environmental changes and, particularly, 
monitoring the dust pollution and its extent in dust-impacted areas. However, 
the relation between species richness and dust pollution may not be universal 
and simply linear in all cases (Marmor and Randlane 2007). Therefore, such 
findings need to be interpreted with caution, taking into account the initial 
environmental conditions and variation among different taxonomic groups and 
ecosystems. 

We also found that the occurrence of six epiphytic bryophytes was strongly 
correlated with the pH of their substrate: Orthotrichum pallens, O. speciosum, 
Pylaisia polyantha, Radula complanata, Schistidium apocarpum, and S. calci-
cola preferred a higher bark pH of pines (Table 1 in paper III). Some of them 
have been already proposed as indicator species of polluted areas with different 
dust pollution level: P. polyantha and R. complanata as indicators for moderate 
dust-polluted zones, and S. calcicola for heavy dust-polluted zones (Paal and 
Degtjarenko 2015). Here, we proposed that O. pallens, O. speciosum, and S. 
apocarpum, if growing on pines, can be regarded as new additional indicators of 
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alkaline dust pollution (III). Conifers, especially pines, are commonly colo-
nized by few epiphytic mosses in natural conditions (Király and Ódor 2010) due 
to the fact that Scots pines have an extremely acidic and oligotrophic bark, 
which is a rare habitat for bryophytes (Barkman 1958). Therefore, the occur-
rence of epiphytic calcicolous bryophytes on pines could serve as a very good 
indicator of dust pollution in dust-impacted areas. Our results in paper I also 
revealed that some epigeic bryophyte species can be indicators of alkaline dust 
pollution in pine forests (Appendix S1 in paper I), however many of them were 
in low abundance in the pollution areas and so they should be pooled for ana-
lyses and used as an indicator species complex. 

Several lichens were also correlated with the pine bark pH according to our 
results (III). Thirteen lichens (e.g., Lecania cyrtella, Lecania naegelii, Leca-
nora hagenii etc.) favoured a higher bark pH of Scots pine (Table 2 in paper 
III). Several of them were previously known as alkaline dust indicators if 
growing on pines (Marmor and Randlane 2007; Smith et al. 2009). Alyxoria 
varia, Caloplaca cerinelloides, Lecania cyrtella, and Lecidella elaeochroma 
have been repeatedly recorded in areas impacted by dust pollution that was 
released from limestone quarries (Loppi and Pirintsos 2000; Smith et al. 2009; 
Paoli et al. 2014). Hence, the presence of these species on Scots pines can be 
considered as a further indication of alkaline dust pollution. In addition, changes 
and loss of genetic diversity observed in Usnea subfloridana populations (IV) 
could be used as an additional sign to highlight environmental disturbances 
induced by alkaline air pollution. 
 
 

4.3. The impact of alkaline dust pollution on natural 
communities in boreal ecosystems 

Local long-term dust pollution has led to destruction of natural communities in 
pine forests, including epiphytic communities on pines. We outlined the process 
of ‘nemoralization’ in the vegetation of the studied Myrtillus site type pine 
forests (I). The ‘nemoralization’ of this habitat was expressed as step-by-step 
replacement of acidophilous/acidotolerant species by several neutrophilous and 
then by calcicolous species. In the heavily polluted zone near Kunda cement 
factory, numerous herb layer species and bryophytes typical of unpolluted 
Myrtillus-type forests were absent (I). The most indicating was the loss of 
dwarf-shrub species (Vaccinium myrtillus and Calluna vulgaris), a specific 
plant growth form of oligotrophic habitats (I). However, the species-poor 
undergrowth and ground vegetation of unpolluted Vaccinium site type forests 
was diversified by invasion with non-typical species for local communities 
along the cement pollution gradient (I). The characteristic arrival species, 
including several orchid species, were typical for mesotrophic and meso-
eutrophic habitats and for boreo-nemoral woodlands. These arrival species are 
generally common in calcareous habitats with nutrient-rich soils, but as in the 
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present study the addition of nutrients was not noticed (cement dust did not 
contain much N and P). Therefore, we outlined that pH was the most limiting 
factor for these species (I). 

Similarly, dust pollution and its alkalization effect for pine bark provoked 
the shift of cryptogamic communities along a pollution gradient (III). The 
structure of cryptogamic communities clearly responded to changing habitat 
conditions along the pollution gradient. For instance, the increased bark pH of 
pines promoted increased diversity of epiphytic bryophytes, including the 
occurrence of tolerant bryophyte species, which withstand or even favour 
alkalinity of substrates, and typically occur on limestone outcrops (e.g., Anomo-
don longifolius, Ditrichum flexicaule, Fissidens dubius, and Pseudoleskeella 
catenulata), concrete substrates (e.g., Amblystegium serpens, Brachythecium 
salebrosum, and Syntrichia calcicola) or on nutrient-rich bark (e.g., Ortho-
trichum diaphanum and Leskea polycarpa) (Ingerpuu and Vellak 1998; Ignatov 
and Ignatova 2004; Atherton et al. 2010). The increased bark pH from acidic to 
subneutral also favoured lichens that commonly occur on basic nutrient-rich 
bark of deciduous trees (e.g., Lecania cyrtella, Lecania naegelii, and Lecanora 
hagenii) (Smith et al. 2009). 

Besides species-specific reactions, dust pollution caused the ‘diversification 
effect’ of vascular plant (I) and bryophyte (I, III) communities and increased 
the total species richness (including several protected and rare species). The air 
pollution is considered as environmental stress to vegetation and other biota, 
and it commonly leads to the decrease of overall biodiversity and impoverish-
ment of natural communities (Zvereva et al. 2008). However, the increase of 
species richness can occur in low-diversity oligotrophic habitats in the response 
to stress (Odum 1984). Indeed, the alkaline dust pollution through increasing 
the soil and bark pH and nutrient input (e.g., Ca, Mg, and K) has a positive 
effect (to certain extent) on species richness in studied pine forests or on pine 
barks near the source of alkaline dust pollution. The rise of vascular species 
richness (e.g., Ksenofontova and Zobel 1987; Annuka 1995; Stravinskiene 
2011) and increased diversity of epiphytic bryophytes (Kannukene 1995; Paal 
and Degtjarenko 2015) induced by alkalization of environment has been noted 
in several previous studies; other studies, however, have indicated the negative 
impact and the loss of species richness among vascular plants (Stravinskiene et 
al. 2004; Sujetovienė 2008), epigeic bryophytes (Meininger and Spatt 1988; 
Auerbach et al. 1997), Sphagnum mosses among others, in naturally acidic 
ombrotrophic bogs (Paal et al. 2010; Vellak et al. 2014). This difference might 
be explained by the immigration time, initial natural conditions, pollution load, 
and variation in regional species pool size or availability of alternative species 
in the region, accumulated in communities with different environmental 
conditions. Indeed, in the neighbourhood of studied pine forest communities in 
Kunda (I), there were boreo-nemoral and limestone escarpment forests, which 
are characterized by high richness of vascular plant species and bryophytes, 
among them several red-listed species (Paal 2001; Ingerpuu et al. 2003). 
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Therefore, those adjacent forests may also contribute to availability of alterna-
tive species in Kunda region (I). 

We also revealed that species responded with different sensitivity to the 
changes in the environment, revealing their different ecological niche width 
along the pH gradient (Fig. 4). The niche width of species along the pollution 
gradient ranged among species and only a few species acted as pH generalists. 
The pH specificity of species, and the species niche widths along the dust 
pollution gradient, demonstrated that the species pool of calcicolous species was 
several times larger than species pool of acidophilous species, which was 
presumed according to large-scale analyses (Pärtel 2002; Ewald 2003). We also 
proposed that species filtering success is regulated, as suggested by Tilman 
(1988), by a critical level at the one end of the niche width along the limiting 
gradient (Lawesson 2003; Lõhmus and Kull 2011). In general, the study in 
paper I supported the classical individualistic approach of community assembly 
(Gleason 1926; Tilman 1988). According to that theory, species arriving in the 
community are filtered from the available species pool (Zobel 1997) not by their 
environmental average tolerance, but by niche thresholds or niche location and 
width along the limiting factor gradients. The species ecological niche space 
boundaries could be useful and could be kept in long-term database for future 
floristic studies. 

Moreover, we found that alkaline dust pollution revealed a ‘parapositive’ 
effect on species diversity. We recorded several locally rare species [(e.g., 
bryophytes Leskea polycarpa, Orthotrichum diaphanum, and Pseudoleskeella 
catenulata, red-listed in Estonia as NT (Vellak et al. 2015), and e.g., lichens 
Agonimia tristicula, Strangospora pinicola, and Caloplaca ulcerosa (red-listed 
in Estonia as VU; Randlane et al. 2008)], two woodland key habitat bryophyte 
indicators (Anomodon longifolius and Ulota crispa), and two woodland key 
habitat lichen indicators (Alyxoria varia and Pseudoschismatomma rufescens) 
on pines at the closest distance from the pollution source (Estonian Acts of Law 
2016). In the areas heavily polluted by cement dust, several orchids species 
having conservation value in Estonia were also recorded. The altered environ-
ment, e.g., increased bark pH of Scots pines or soil, dust cover and other 
changed environmental conditions, such as drier microclimatic conditions 
(Loppi and Pirintsos 2000), in dust-polluted areas could eventually shape a 
particular and alternative habitat for species, contributing to diversification of 
communities and the distribution of locally rare species. Although some rare 
species can even benefit from these environmental changes induced by 
pollution, the alkaline dust pollution has heavily disturbed the natural commu-
nities (I, III) and affected the genetic diversity of lichen populations (IV) in the 
vicinity of pollution sources. Those artificial communities containing rare or 
protected taxa are temporary phenomena, depending strongly on the conti-
nuation of pollution (Gilbert 1976). Consequently, those disturbed areas have a 
scientific importance as long-term ecological experiments but they do not 
contribute permanently to the local species richness. 
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4.4. The effects of dust pollution on genetic diversity 
of Usnea subfloridana populations (IV) 

Little is known about impacts of environmental pollution on the genetic pattern 
of cryptogams. For example, extensive urban pollution lowered the genetic 
diversity of the epiphytic bryophyte Leptodon smithii (Spagnuolo et al. 2007); 
moreover, gene diversity was correlated with airborne trace element content in 
moss tissue (Spagnuolo et al. 2009). No studies have been performed con-
cerning the genetic variation of populations of lichenized fungi in air polluted 
conditions; however, lower genetic diversity of the photobionts of the liche-
nized fungus Parmotrema tinctorum was demonstrated in the urban area 
compared to that in suburbs and mountainsides (Ohmura et al. 2006). 

We compared the variables of genetic diversity of eight Usnea subfloridana 
populations, a common lichen-forming fungus, from different habitats (polluted 
vs unpolluted) and defined that several variables of genetic variation were 
significantly different in U. subfloridana populations. Populations that deve-
loped under road dust pollution revealed significantly lower values of the allelic 
richness (A), Shannon's information index (I), and genetic diversity (H) than 
populations in unpolluted forest sites (Table 2). Previous studies have 
demonstrated that habitat quality was a crucial factor shaping the genetic 
variation of lichenized fungi populations (Werth et al. 2006; Jüriado et al. 2011; 
Otalora et al. 2011). At the same time, long-term dust pollution can change 
drastically local environmental conditions in the vicinity of the source of dust 
pollution (I, II, III), and influence the natural composition of epiphytic lichen 
communities and alter the species richness of lichens (Marmor et al. 2010; Paoli 
et al. 2014; III). The habitats located near the dusty roads suffer from similar 
changes (Marmor and Randlane 2007; Madl et al. 2010). Results of this study 
also indicated the increased mean bark pH value (5.9–6.6) of spruces growing in 
polluted habitats, while natural pH value of spruce bark is about 3.3–3.8 in 
unpolluted sites of Estonia (Marmor et al. 2010; 3.5–3.6 in our sites without 
dust pollution). Furthermore, Usnea species are usually sensitive to alkaline 
dust pollution (Martin and Nilson 1992) and generally prefer a lower bark pH 
(Marmor and Randlane 2007). Additionally, alkaline dust pollution contributes 
to drier microclimatic conditions (Loppi and Pirintsos 2000), and thus decreases 
the habitat quality for Usnea species even more. Hence, we suggest that reduced 
habitat quality increased Usnea mortality, which could cause a decline in 
population size (not directly measured in this study). Therefore, studied Usnea 
populations in polluted habitats may have experienced a continuing bottleneck 
reducing the allelic richness (A) of Usnea populations in polluted habitats but 
not yet other examined measures of genetic variation (e.g., M or P) in this 
study. The measure of A is usually more sensitive to the impact of bottleneck 
and is reduced by bottlenecks faster than other commonly reported variables of 
genetic variation (Leberg 2002; Kalinowski 2004). The observed measures of I 
and H support our results (Table 2), although, those measures were not 
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corrected for sample size as A. The bottleneck analysis showed a strong evi-
dence of the bottleneck only in one lichen population from polluted habitat in 
this study (Table 5 in paper IV). Still, it has been recently demonstrated that 
microsatellite-based bottleneck tests often either failed to recognize bottleneck 
in populations known to have experienced reductions or detected bottlenecks in 
putatively stable populations (Peery et al. 2012). For example, the significant 
heterozygosity excess was also detected under infinite alleles mutation model 
(IAM) in stable populations (Luikart and Cornuet 1998). Taking into account 
the insufficiency of microsatellite-based bottleneck tests, we hypothesize that 
probable population bottleneck (although detected only in one population from 
polluted habitat), which is caused by considerable changes of local environment 
due to the presence of alkaline dust pollution, may have reduced the genetic 
variation of studied U. subfloridana populations. 

The observed changes in genetic diversity in U. subfloridana populations 
that were exposed to dust pollution may theoretically have also experienced the 
negative edge effect of habitat, which could disrupt spore dispersal and ex-
change of individuals or genes among populations, resulting in genetic drift, 
increasing the genetic differentiation between populations, and reducing the 
genetic variation (Frankham et al. 2010; Holderegger and Di Giulio 2010). 
However, exchange of individuals still exists between the populations according 
to AMOVA analysis that showed no genetic differentiation (1% differentiation; 
PhiRT=0.01; P=0.06) among the lichen populations from polluted and un-
polluted habitats. Therefore, we consider population bottleneck more reasonable 
cause than negative edge effect for the reduced genetic variation in the studied 
populations of Usnea subfloridana in polluted habitats. 
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CONCLUSIONS 

The current study reviewed long-term influence of alkaline dust pollution 
emitted from different sources (cement plant, limestone quarry, and unpaved 
road) on species diversity, including vascular plants, bryophytes, lichens, and 
alga; and, additionally, on the genetic diversity of populations of a common 
lichen-forming fungus in Estonia. The results of this thesis demonstrate con-
siderable local contamination and destruction of natural communities around the 
sources of alkaline dust pollution, and provide different approaches of bio-
indication of dust pollution. 
 In general, the results of this thesis can be summarized as follows. 
1. Long-term dust pollution had a remarkable neutralizing effect on natural 

substrates in forest stands; both, the pH value of soil litter horizon and pine 
and spruce barks significantly decreased along an increasing distance from 
the sources of dust pollution. We also found that Ca, Mg, and K content of 
soil litter horizon followed the similar decreasing tendency along the dust 
pollution gradient. The resilience of soil litter horizon was observed but 
accumulated (over century persisted) pollution impact was still evident in the 
vicinity of Kunda cement plant. 

2. The long-term alkaline pollution has caused destruction of natural com-
munities and formation of novel communities in the vicinity of dust 
pollution sources. The alkaline pollution has induced remarkable and long-
lasting successional changes in pine forest ecosystems and has caused the 
‘nemoralization’ of the studied Vaccinium myrtillus site type pine forests 
close to Kunda cement plant. Dust pollution and its alkalizing effect on pine 
bark also provoked the shifts of epiphytic cryptogamic communities along a 
pollution gradient. The linear increase of species richness among vascular 
plants, epigeic and epiphytic bryophytes from unpolluted to newly formed 
polluted habitats was detected. The diversification took place by invasion of 
non-typical and pollution-tolerant species for local communities, including 
calcicolous species and species characteristic for nutrient-rich habitats. The 
increased bark pH from acidic to subneutral also favoured lichens that 
commonly occur on basic and nutrient-rich bark of deciduous trees or even 
limestone outcrops, while cover of lichens responded to dust pollution in a 
different way compared with cover of epiphytic bryophytes and Trentepohlia 
umbrina. We provided, for the first time, one-time inventory of the two 
cryptogamic groups (epiphytic bryophytes and mosses) growing on pine 
trees in the vicinity of limestone quarries. 

3.  The results of this study confirmed usability of several previously proposed 
bioindicators and suggested new, additional bioindicators of alkaline dust 
pollution among algae, lichens, bryophytes, and vascular plants. The 
presence of species being typical for mesotrophic and meso-eutrophic 
habitats (e.g., several orchid species) in vegetation of Vaccinium myrtillus 
site type forests or of cryptogams typical for basic nutrient-rich bark of 
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deciduous trees on originally acid-barked phorophytes could be used as bio-
indication of dust pollution. We also outlined that total community changes, 
species richness and abundance of selected species groups could be also 
useful and helpful indicators of alkaline dust pollution in biomonitoring 
studies around sources of similar pollution. 

4.  Our results revealed ‘parapositive’ impact of alkaline dust pollution on 
natural communities, suggesting that pollution might, besides disturbing 
natural communities, temporarily also contribute to the distribution of rare 
and protected species. Despite the fact that some rare and protected species 
can even benefit from these drastic environmental changes induced by 
alkaline dust pollution, the dust pollution has heavily destroyed the natural 
communities in the vicinity of pollution sources. Such polluted areas with 
disturbed communities had a high scientific importance as long-term eco-
logical experiments, but they are temporary phenomena, depending strongly 
on the continuance of pollution and are certainly not suggested as a tool for 
supporting rare taxa. 

5.  We revealed that species grouping along the alkaline dust pollution gradient 
indicates the existence of different ecological association in terms of eco-
logical niche use, and establishment of a new community is defined by the 
tolerance level of each species. This result also supports the classical 
individualistic approach of community assembly. We also conclude that for 
future floristic studies to predict community changes and species co-
existence, the species ecological niche space boundaries should be evaluated 
and kept in long-term data sets. 

6.  We recorded for the first time that long-term alkaline dust pollution released 
from unpaved roads had a negative impact on the genetic variation of Usnea 
subfloridana populations, a common species of lichen-forming fungi. We 
suggest that studied Usnea populations in polluted habitats may have 
experienced a continuing bottleneck reducing the allelic richness (A) of 
populations, but not yet other examined measures of genetic variation (e.g., 
M or P) in this study. The loss of genetic diversity and changes in genetic 
structure of populations of common lichen-forming fungi may serve as a 
warning to the vulnerability of lichen-forming fungi populations to environ-
mental disturbances caused by air pollution. 
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SUMMARY IN ESTONIAN 

Aluselise tolmusaaste mõju taimede ja 
samblike mitmekesisusele: kooslustest geneetilise 

mitmekesisuseni 

Keskkonnareostus (sh õhusaaste) ohustab märkimisväärselt üldist looduslikku 
mitmekesisust, avaldades mõju erinevatel bioloogilistel tasemetel – alates raku-
lisest ja koelisest tasemest kuni ökosüsteemide tasemeni. Näiteks õhusaastest 
tingitud keskkonnatingimuste muutused muudavad ka koosluste liigilist koos-
seisu, struktuuri ja funktsiooni, põhjustades tundlike liikide kadu või, vastupidi, 
saastet taluvate liikide sissetungi. On täheldatud, et keskkonnareostus võib 
mõjutada ka organismide geneetilist mitmekesisust erinevates liigirühmades. 
Selleks, et leevendada õhusaastest tekitatud kahju bioloogilisele mitmekesisu-
sele, on vajalik hinnata ja jälgida õhusaaste mõjusid, välja selgitada selle mõju 
ulatus ja otsida uusi võimalikke bioindikaatoreid täiendamaks õhuseirejaamade 
andmeid. 

Paljude õhusaasteainete (nt SO2, CO, C6H6) emissioon on Euroopas oluliselt 
vähenenud, kuid tahkete osakeste (particulate matter, PM) või tolmu emissioon 
on endiselt terav probleem, kuna paljudes EL riikides ületatakse jätkuvalt EL-s 
lubatud PM saasteainete piirkontsentratsioone. Atmosfääriõhku saastavad 
tahked osakesed või tolmusaaste on kompleksne segu väikestest õhus helju-
vatest osakestest, mis on erineva suurusega (ca. 0,1−10 μm), päritoluga (loo-
duslik vs tööstuslik) ja keemilise koostisega. Käesolev töö on keskendunud 
jämedatele tolmuosakestele, mis vabanevad keskkonda lubjakivi kaevandamise 
käigus, tsemenditööstusest ja kruusateedelt. Tekkiv tolm sisaldab suures 
koguses CaCO3, MgO ja K2O ning saasteainete vesilahus on tugevalt aluseline. 
Aluseline tolmusaaste on Eestis alati olnud oluline keskkonnaprobleem, kuna 
paljude aastate vältel moodustasid Eesti tööstusettevõtete poolt õhku paisatud 
saastest suure osa just tahked aluselised heitmed, mille mõjul tekkinud 
märkimisväärseid keskkonnamuutuseid Põhja-Eesti piirkonnas täheldati juba 
möödunud sajandi teisel poolel. Aluseline tolmusaaste võib liike otseselt mõju-
tada, põhjustades muutusi füsioloogilistes ja biokeemilistes protsessides, kuid 
võib mõju avaldada ka kasvukeskkonna (muld, puukoor, sademed) kaudu. 
Lisaks võib tolmusaaste kahjustada inimeste tervist, põhjustades hingamisteede 
ja südame-veresoonkonna haigusi ning suurendades suremuse riski. 
 Käesoleva töö peamine eesmärk oli uurida eri päritoluga pikaajalise aluselise 
tolmusaaste toimet boreaalsetele metsakooslustele (I), epifüütsetele sambliku-, 
sambla- ja vetikakooslustele mändidel (II, III) ning samblikku moodustava 
seeneliigi populatsioonide geneetilisele mitmekesisusele (IV). Töö detailse-
mateks eesmärkideks oli (1) välja selgitada tsemenditolmu pikaajaline mõju 
mustika (Vaccinium myrtillus) kasvukohatüübi metsakooslustele Kunda 
tsemenditehasest väljalastava õhusaaste mõjualas; (2) otsida uusi potentsiaalseid 
tolmusaaste indikaatoreid (I, II, III) ning hinnata rohevetika Trentepohlia 
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umbrina kasutamisvõimalusi tolmusaaste indikaatorina (II); (3) uurida, kuidas 
lubjakivikarjääride töötlemisprotsessis tekkiv tolmusaaste muudab epifüütsete 
sammalde ja samblike liigilist koosseisu ja liigirikkust mändidel (III); (4) 
selgitada välja, kas ja kuidas muutub ühe tavalise, laialt levinud samblikku 
moodustava seeneliigi, vars-habesambliku (Usnea subfloridana) populatsioo-
nide geneetiline varieerivus pikaajalise kruusateedelt lähtuva tolmusaaste mõjul. 
 Kunda tsemenditehase ümbruses uuriti 20 ringkujulist prooviala suurusega 
0,1 ha, kus iseloomustati puurinnet, puistu liituvust, puurinde järelkasvu, 
põõsarinnet ja alustaimestikku (sh maapinnal kasvavaid samblaid); lisaks koguti 
kolmest juhuslikust punktist mulla kõduhorisondi proove ning määrati nende 
pH, tuhasus, N-, P-, Ca-, K- ja Mg-sisaldus (I). Lubjakivikarjääride mõjupiir-
konnas mõõdeti 32-l proovialal samblike, sammalde ja rohevetika Trentepohlia 
umbrina katvus mändidel kasutades mõõdulindi meetodit, samas registreeriti 
kõikide männil kasvavate sammalde ja samblike esinemine 0,5 kuni kahe meetri 
kõrgusel ning koguti männikoort pH määramiseks (II, III). Vars-habesambliku 
populatsioonide geneetilise mitmekesisuse uurimuseks valiti kaheksa kuusel 
kasvavat populatsiooni, millest neli populatsiooni asusid kruusateede vahetus 
naabruses ning neli – saastamata/häirimata piirkonnas (IV). Ka selles uuringus 
näidati tolmusaaste olemasolu sambliku kasvupinna, kuuse puukoore pH määra-
mise kaudu. Vars-habesamblikku moodustava seene populatsioonide geneetilise 
varieeruvuse molekulaarseks uurimiseks kasutati üheksat seene-spetsiifilist 
polümorfset mikrosatelliitmarkerit (IV). 
 Käesolevas töös registreeriti kokku 86 liiki taimi (sh 25 maapinnal kasvavat 
sammalt) Kunda tsemenditehase mõjualas asuvates mustika kasvukohatüübi 
metsakooslustes (I) ning 34 epifüütset samblaliiki ja 84 samblikku lubjakivi-
karjääride ümbruskonnas kasvavatel mändidel (III). 

Töö tulemused kinnitavad, et pikaajaline tolmusaaste on avaldanud neutrali-
seerivat mõju mulla keemilistele omadustele ning männi ja kuuse koorele; 
mulla ja puukoore pH on oluliselt tõusnud tolmusaaste mõju piirkondades ja 
väheneb tolmusaaste allikate kaugenedes (I−IV). Sarnaselt võib täheldada mulla 
kõduhorisondi Ca, Mg ja K sisalduse langustendentsi piki tolmu reostus-
gradienti (I). Saadud tulemuste põhjal võib järeldada, et Kunda tsemenditehase 
ümbruskonnas mulla seisund taastub pärast üle sajandi kestnud aluselist tolmus-
aastet, kuid osade keemiliste elementide sisaldus mullas ja mulla pH on 
looduslikust foonist jätkuvalt mitmeid kordi kõrgem (I). 
 Pikaajaline aluseline tolmusaaste on hävitanud looduslikke kooslusi ning 
põhjustanud uudsete koosluste tekkimist tolmureostuse mõjupiirkondades. Saas-
tatud ala mullastiku omaduste muutused on avaldanud olulist mõju taimestikule 
Kunda tsemenditehase ümbruses, põhjustades happelembeste/happettaluvate 
liikide järk-järgulist asendumist neutrofiilsete ja seejärel kaltsifiilsete liikidega 
(I). Sellega koos on toimunud koosluste mitmekesistumine ehk soontaimede, 
epigeiidsete ja epifüütsete sammalde liigirikkuse tõus tolmusaaste mõjualadel 
(I, III). Aluselise tolmusaaste mõjul täheldasime ka epifüütsete koosluste 
nihkeid mändidel (III). Männi puukoore vähenenud happelisus soodustas män-
didel tavaliselt mittekasvavate, kõrgemat pH taset eelistavate liikide esinemist 
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(III). Epifüütsete sammalde ja Trentepohlia umbrina katvus mändidel oli 
kõrgem ning vähenes tolmusaaste allikate kaugenedes, samas kui samblike üld-
katvus muutus teisiti – suurenes tolmusaaste allikate kaugenedes (II, III). 
 Käesoleva töö tulemused kinnitasid mõnede eelnevalt teadaolevate bio-
indikaatorite kasutatavust. Samas pakkusime välja mitmed uued tolmusaaste 
indikaatorliigid: näiteks samblikud Alyxoria varia (härma-kiiriksamblik) ja 
Lecidella elaeochroma (piir-kärnsamblik), rohevetikas Trentepohlia umbrina, 
samblad Orthotrichum pallens (kahkjas tutik), Orthotrichum speciosum (tüve-
tutik) ja Schistidium apocarpum (harilik lõhistanukas) mändidel või Neottia 
ovata (suur käopõll) mustika kasvukohatüübi metsakooslustes (I−III). Väida-
me, et liigilise koosseisu, liigirikkuse ja katvuse muutused mõnedes organismi-
rühmades võivad olla abiks tolmusaaste inditseerimisel. 
 Töös registreeriti esimest korda aluselise tolmusaaste negatiivne mõju samb-
likku moodustava seeneliigi, vars-habesambliku (Usnea subfloridana) populat-
sioonide geneetilisele mitmekesisusele (IV). Kruusateede vahetus läheduses 
kasvavate vars-habesambliku populatsioonides ilmneb pudelikaela efekt, mille 
tulemusel on vähenenud alleelide mitmekesisus, kuid mitte veel teised uuritud 
geneetilise varieeruvuse näitajad (IV). Populatsioonide geneetilise varieeruvuse 
kadu osutab vastupidavuse vähenemisele tolmusaastest põhjustatud keskkonna-
häiringute suhtes (IV). 

Veel ilmnes, et aluseline tolmusaaste mõjub looduslikele kooslustele “para-
positiivselt” aidates looduslike koosluste häirimise kõrval kaasa haruldaste ja 
kaitstavate liikide levikule (I, III). Sellised häiritud kooslustega saastatud 
piirkonnad on kui kõrge teadusliku väärtusega pikaajalised ökoloogilised katse-
alad, samas on tegemist ajutise nähtusega, mis sõltub suurel määral saastuse 
kestvusest ning see ei ole haruldaste liikide leviku soodustamise soovitatav 
praktika.  
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