
U N I V E R S I T Y O F T A R T U

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Computer Science speciality

Dmitri Danilov

3D Graph Exploration

Master Thesis (20 cp)

Supervisor: Ulrich Norbisrath, PhD

Author: ... �.....� May 2010

Supervisor: .. �.....� May 2010

Allowed to defence
Professor: : .. �.....� May 2010

TARTU 2010

Contents

Acknowledgments 4

Introduction 5

1 3D Graph Exploration 7
1.1 The 3D Graph Visualization Software 8

1.1.1 CAIDA Walrus . 8
1.1.2 Nodes3D . 10
1.1.3 WilmaScope . 11
1.1.4 SkyRails/Interactorium . 13
1.1.5 Red�sh Solutions . 14
1.1.6 Data exploration property . 16

1.2 3D Graph Layouts . 16
1.2.1 Force-directed layout . 16
1.2.2 Hyperbolic space approach . 17
1.2.3 The 2.5D layout . 18

2 Implementation 20
2.1 The application engine . 20
2.2 The application structure . 21
2.3 The scene graph . 23
2.4 Environment . 26
2.5 Graph Layout . 27
2.6 Camera . 30
2.7 Task manager . 31
2.8 User interface and navigation . 33
2.9 Practice and results . 34

3 Manual 36
3.1 Customizable settings . 38
3.2 Extending the application . 38
3.3 Input CSV �le format . 39
3.4 Installing a custom skybox . 40

4 Future Work 41

Conclusion 44

Summary (in Estonian) 45

2

Bibliography 46

3

Acknowledgments

I would like to express my sincere gratitude to the people who helped me in the process
of writing this thesis.

At �rst I would like to thank my supervisor Ulrich Norbisrath. His guidance and
novelty changed a lot in my way of thinking. He is one of the few, who supported me
on this di�cult way.

I would like to thank my family, my mom Natalia and dad Nikolaj. They always
believed in me and supported me in the hard times. Without their support this thesis
would not see the light.

I would like to thank my friends, who encouraged me, when the complexity of the
problems made me sad.

And many many thanks I want to say to my special person - Julia, who always
helped and inspired me. Without her support this thesis would not be completed.

Many thanks to all of you!

4

Introduction

People are explorers by nature. According to Maslow's hierarchy of needs information
seeking is a fundamental human activity. However, the information overload and its
duplication become a signi�cant problem in society. E�cient search tools become more
and more valuable. This thesis introduces a set of ideas and implementation solutions
for data visualization in relation to the exploratory search strategy.

The predominant retrieval paradigm of search systems today is "query and re-
sponse", where queries are issued by the user and a set of potentially relevant items
are o�ered in response. This approach is usually insu�cient for complex cases like
vacation planning or research of some area. The inability of search engines to give an
adequate response to a complex problem motivates researchers to develop new infor-
mation seeking techniques. One of the most promising is exploratory search [29].

The exploratory search technique is one of the most suitable searching strategies
if a user is unsure about the ways to achieve his goals or even unsure about his goals
in the �rst place. The goals of exploratory search extend beyond simply locating
information toward activities associated with learning and understanding [29]. Thus,
the exploratory search technique may be used, when a user is not familiar with the
domain of his goals. A set of ideas provided by the exploratory search technique allows
to reduce search time, introduce learning and investigation into the search process and
make information �nding more e�cient.

Some of the key elements of exploratory search systems are interface and informa-
tion visualization. The information in common usually represents a complex network of
objects and their relations. These are tables and a set of keys in relational databases,
for example research papers and references or websites and hyperlinks. The classic
way to visualize relations between objects is drawing graph. A graph view may also
be used for a data exploration process. There are three main classes of elements in the
graph: nodes, edges and their attributes. This simple way of data visualization and
strong graph theory base can provide all necessary tools for a complex and structurized
network representation.

Exploratory search information visualization focuses on the visual representation of
large data collections to help people understand and analyze the data. In graph theory
this property can be successfully implemented by graph clustering (see chapters 1 and
2). Graphs can also be used to reduce data duplication. Data may be divided into the
pieces and each piece of information would be unique within the graph. Di�erent types
of layouts structurize the graph and give additional information about data hierarchy.
According to the list of exploratory search system features (see chapter 4 in [29]) the
software must o�er visualizations to support insight and decision making: Systems must
present customizable visual representations of the collection being explored to support
hypothesis generation and trend spotting. Drawing graphs is an e�cient technique to
explore the complex object relations and allows to generate hypotheses based on the

5

explored relations.
There is a set of e�ective methods to visualize and structurize graph in two-

dimensional space (2D). However, a human has a native ability to understand rep-
resentation of objects in three-dimensional space (3D). The 3D graph visualization is
relatively new �eld of knowledge and o�ers many bene�ts. Utilizing one extra dimen-
sion gives a possibility to go from plane to the space, from schematic representation to
the visualization of complex systems, where the major roles are played by navigation
techniques, graph structure, and interface solutions. The 3D representation allows to
reduce the space of the graph at the expense of a user's imagination ability and makes
navigation more dynamic. Thanks to modern 3D engines, the visualization of a graph
can be photorealistic and provide desired dynamism. The user interface can include
models of known physical objects that will make it intuitively understandable. The
navigation in 3D in common is more �exible and allows a user to change the viewpoint
and focus on a desired group of data. Unfortunately, representation of 3D space today
is limited to the display technology.

Until 3D displays or holography technologies are not present in every particular
home, people still need to transform 2D representation to 3D in the mind. The 3D
engines generate 2D pictures (frames) for each moment of the scene transformation in
a process called rendering and this is the closest way to emulate 3D space on a 2D
display. Actually, computers generate the stream of 2D visual data that is by-turn
transformed in the user's brain by the native human ability to the 3D scene. Depth
perception is the visual ability to perceive the world in three dimensions. In this case a
user does not receive the information about all object distances (scene depth), because
there is only one viewpoint for both eyes. When this type of adaptation is used (one
viewpoint), users are limited in their native cognition abilities.

Likely, there are techniques to partially overcome this problem. A user needs to
have more visual data that is coming from e�cient dynamic navigation and knowledge
of graph structure (see layout descriptions in chapter 1). The dynamic interface that
allows easy and frequent changes of the camera viewpoint will give more information
about the object transformation in space that will by-turn give information about
object distances (see section 2.8). The graph visualization software can provide a
clear and understandable layout structure to help the user to orientate in space (see
section 2.5). If the 3D graph layout is intuitively understandable and gives su�cient
information about the graph's hierarchical structure the user can navigate it more
e�ectively. The emphasis on the clear rigid structure simpli�es cognition and requires
less processing in the user's mind. The environment of the graph exploration can also
help the user to orientate (see section 2.4).

This thesis will introduce several solutions for the described 3D graph visualization
problems in context of exploratory search. The �rst chapter makes a small overview
of the most noticeable graph visualization software at the time of writing and analyze
software graph exploration properties (1). It also review the problems related to the
3D graph exploration in detail. The second chapter describes the implementation of
the 3D graph explorer and problem solutions (2). The third chapter is a small guide for
using and extending the developed 3D graph explorer (3). Finally, the fourth chapter
introduces a new features and ideas that can be implemented to improve the developed
3D graph explorer and ful�ll some of the exploratory search strategy aspects (4).

6

Chapter 1

3D Graph Exploration

Data exploration with a 3D graph o�ers many bene�ts. First of all, the additional
dimension provides an extra space for the graph layout. This is an advantage for
representation of a larger amount of structured data. At the same time it allows to
achieve the exploratory search visualization goal in representing larger data collections.
The graph representation in 3D can introduce understandable and also more complex
visualization of the structured data with a less space on the 2D display. The layout can
show the hierarchy of the data relations and target the valuable data centers. These
essential elements allow the user to search for important data nodes and generate
hypotheses. The data structured with hierarchical layout helps the user orientate and
navigate the graph. The graph could be partitioned to the clusters and give necessary
level of details on demand.

A graph-based 3D visualization of complex data does not require additional cogni-
tion skills. However, the 2D display does not provide enough information about the
scene depth. A user gains this information from the scene transformations during the
navigation process and cannot estimate the scene depth if the viewpoint is static. The
solution of this problem is always a challenge. The developer must keep a balance
between layout complexity and navigation solutions to help the user orientate in the
space. It is easier for a user to orientate in a less complex layout. However, the layout
must give more information about the data hierarchy to support hypotheses generation.
It is easier for a user to understand the graph depth from continuous graph transforma-
tions (like in Interactorium in section 1.1.4 with force-directed layout in section 1.2.1),
but in this case the user loses the impression of structurized data and cannot orientate.

The human ability to hold the structure in mind varies a lot from user to user. Thus,
the graph layout complexity must be customizable. The graph can be partitioned into
clusters and provide the necessary level of details. Moreover, graph partitioning must
be dynamic and change cluster size on user's need globally or locally. In analogy with
exploring the �le system in modern operation systems it must be possible to explode
and implode the clusters to choose the level of details on demand (See section 2.5). It
can be achieved by graph partitioning techniques.

The most common problem for graph visualization is its layout development. In
case of graph exploration the layout must provide the data hierarchical structure and
in the same time it must have less edge crossings. The structure of the graph must
provide the base for the user's orientation.

There is not many 3D graph visualization software today. One of the reasons is the
fact that computer graphics technology is one of the most dynamic �elds in computer

7

science and the possibilities of 3D visualization today di�er dramatically from the
possibilities a few years ago. The increasing availability of powerful graphics hardware
assists the development of 3D graphics technology. The new approaches in 3D engine
architecture signi�cantly speed up the development process. Today, it is possible to
create a 3D application using a high level programming language that would not lose
much in performance compared to the corresponding low level application.

This chapter will review several 3D graph visualization software and describes the
software advantages and disadvantages in context of graph data exploration. This chap-
ter also includes the graph structure (or layout) solution descriptions of the reviewed
software.

1.1 The 3D Graph Visualization Software

In the World Wide Web a several 3D graph visualization applications can be found.
However, they are designed with a focus on the visualization of the graph structure.
The data exploration in most of the software is problematic or very limited. This
section gives a brief overview of the most noticeable 3D graph visualization tools at
the moment of writing and review the software functionality in context of exploratory
search strategy. The aim of this section is to prove the need of development of new
3D graph visualization software that will ful�ll the exploratory search visualization
strategy goals.

1.1.1 CAIDA Walrus

CAIDA (The Cooperative Association for Internet Data Analysis) Walrus is an open-
source tool for interactively visualizing large directed graphs in three-dimensional space
[3] (Figure 1.1). It was developed by Young Hyun at CAIDA and it is based on Java3D
technology. As opposed to other software, Walrus has an advantage in handling very
large graphs. The main idea is to use the hyperbolic space, in other words, to display
graphs under a �sheye-like distortion. User can imagine a magnifying glass moving
around the graph. Graphs are rendered inside a sphere that contains the Euclidean
projection of 3D hyperbolic space (See 1.2.2 on page 17 for details). Unfortunately,
the layout is e�ective only for moderate sized graphs or graphs that are nearly trees.
Otherwise, the degree of node's connectivity increases and user loses the impression of
structurized data.

The rendering session of the graph with CAIDA Walrus must be started manually
by the user. Before rendering session is started the *.graph �le with saved graph
data must be opened. Unfortunately, only LibSea graph �les (documented CAIDA-
developed input format) are supported. The user can access all the tool features from
the main menu on the top of the screen. There are navigation features like �Show
Root Node�, �Show Parent�, but mostly the navigation is done by mouse right clicks
on the graph nodes. The graph is positioned inside the unit ball of Klein hyperbolic
model (See section 1.2.2 on page 17) and could be rotated around selected node (that
would be always in the center of the unit ball) by holding the left mouse button and
moving the mouse. This approach would suit for people, who have problems with
orientation in space. The analogy for this graph navigation technique would be the
rotation of some physical object in front of the observer. As edges and nodes Walrus
uses simple geometry - lines and small squares as nodes. One noticeable disadvantage of

8

the Walrus interface is absence of the zoom with mouse scrolling. Overall, the interface
is user-friendly, however the import of custom graphs would require additional work
with CAIDA-speci�c �le format. The navigation is limited to zooming and rotating
the graph around selected nodes.

One of the main disadvantages of this tool is the way it handles labels (attributes).
User can only access it by pressing the middle button on the node. There is no op-
portunity to display them for each node (or a group of nodes) automatically during
the exploration process. Thus, this tool is designed with a focus on the graph (tree)
structure exploration and it is less suitable for data exploration. The tool uses speci�c
*.graph input �le format. The latest version is 0.6.3, released on Mar 30, 2005.

Figure 1.1: CAIDA Walrus 3D graph visualization tool

HypViewer HypViewer is an open-source simple tool developed by Tamara Munzner[21]
for exploring 3D graph (Figure 1.2). This tool is based on the H3Viewer library [8, 9]
created by the same author. According to the CAIDA Walrus website [3], Walrus tool
is based on the Tamara Munzner's research and the idea of 3D graph representation in
HypViewer is the same as in Walrus tool.

The HypViewer tool has a minimalistic user interface allowing to observe the graph
with the mouse clicks. The rendering starts immediately after loading HypViewer spe-
ci�c �le (*.lvhist [9]) with graph data. As opposed to Walrus the additional advantage
of the HypViewer is possibility to smoothly change the center of the unit ball over the
graph. Another advantage is possibility to control the amount of labels being visible
near the center. The disadvantages in the context of graph exploring are poor interface
and inability to explore the data in the nodes or edges. Overall, this tool is more a
prototype than a visualization package of a full value.

9

Figure 1.2: HypViewer by Tamara Munzner[21]

1.1.2 Nodes3D

Nodes3D is an open-source 3D graph visualization program written by Issac Trotts in
the labs of Edward G. Jones [2] (Figure 1.3). This tool provides more native view of
the graph in the space. The layout of the nodes is automatic and similar to a star. User
can zoom and rotate the graph around the common center of the graph. There is also
possibility to travel from node to node. This is a nice tool for viewing small graphs, but
it is not e�ective with larger graphs (Figure 1.4). There is also no possibility to set the
random rotation center for the graph. Only initial center and node positions could be
set as graph rotation point. The navigation in the graph is limited to zooming, graph
rotation (around its imaginary center) and automatic camera position translation to
the selected node. The program uses *.lua[18] script �le as input.

The graph rendering in Nodes3D starts immediately when the *.lua script �le is
loaded to the program. The list of allowed commands is documented in the Nodes3D
package. The interface of the tool is simple window with loaded graph. Some of
representation settings could be accessed from the mouse context menu (right click),
but most of them are assigned to the keyboard speci�c buttons. A list of this buttons
could be found in documentation. The automatic camera translation to the selected
node in Nodes3D rede�nes the rotation center to the selected node. It is not possible
to rede�ne the graph rotation center to the random place. The windows version of the
tool is not stable with all example graph �les provided with the package, but interface
is user-friendly with minimalistic approach. The navigation is not a strong side of this
tool. The graph exploration is possible, but it is very limited.

10

Figure 1.3: Nodes3D by Issac Trotts

Figure 1.4: Nodes3D with large graph

1.1.3 WilmaScope

WilmaScope is a Java3D open-source application which creates real time 3D anima-
tions of dynamic graph structures[23, 22] (Figure 1.5). WilmaScope has an automatic
installer for Windows and integrates into the OS. Wilma was originally created by Tim
Dwyer, with valuable contributions from Peter Eckersley and James Cowling[23].

Wilmascope graph visualization tool is one of the most rich solutions for the graph
representation, analysis and modi�cation. The interface o�er many menus and settings.
It is possible to adjust forces in force-directed layout (see 1.2.1), modify the graph
deleting or adding new nodes, attributes, clusters. The most important feature of this
application is user-friendly interface for graph modi�cations. Wilmascope allows 3D
graph modi�cation on the �y. The tool provides a few graph analysis features: �Degree

11

centrality� and �Biconnected components� with options of an action that must be
performed for the graph (according to the analysis results) like adding labels, changing
node size, changing node repulsion and others.

The application uses force-directed layout (See section 1.2.1 on page 16). Wilmas-
cope also provides additional functionality that simpli�es its usage. Advantages of the
application are a lot of features like graph auto generator and a panel, where the user
can adjust the forces of the layout. Disadvantages of this application are inability to
change the graph's rotation center and light instability. Sometimes the application
crashes. The disadvantages of the navigation are missing possibility to rede�ne the
graph rotation center and no automatic camera positioning to the selected node/edge.
This application is comfortable for graph modi�cations and observing small or medium
size graphs (also a set of not connected graphs). However, it is not comfortable for
graph exploration process. It is not considered to access to the more complex data
inside the nodes.

Figure 1.5: Wilmascope

GEOMI The GEOMI (GEOmetry for Maximum Insight) is a visual analysis tool for
the visualization of di�erent network types like web-graphs, biological networks and
social networks. GEOMI is being developed by VALACON (Visualization and Analysis
of Large and Complex Networks) project team members in the National ICT Australia
(NICTA) IMAGEN program[25].

The GEOMI interface di�ers from old style Java based interface of WilmaScope.
However, the navigation and functionality are mostly the same. The GEOMI provides
many additional features in graph analysis like �Closeness Vitality�, �Bonachis Standard
Centrality�, �Counting Spanning Trees� and additional graph layouts like �Rod Tree�,
�Clustered Circular�, �Planar Cluster Force�, �Spectral Layout�, �Hierarchical Layout�
and others.

The GEOMI is based on the WilmaScope (See section 1.1.3 on the previous page)

12

graph visualization library, but provides many additional features for network analysis,
graph layout as well as interaction methods [25]. As an advantage of this implementa-
tion a large amount of new layouts can be named. However, this implementation have
the same problems with stability as the WilmaScope has and do not introduce new
techniques for graph navigation.

Figure 1.6: GEOMI

1.1.4 SkyRails/Interactorium

The Interactorium is a platform built to visualize very large interactome datasets [10].
Developed in collaboration with the School of Computer Science and Engineering at
the University of New South Wales, it was adapted from the SkyRails visualization
engine, which was originally developed by Yose Widjaja. Interactorium application
functions as an atlas of known protein-protein interactions [10] (Figure 1.7). The
application has featured interface and provides intuitively understandable navigation
techniques. Application also gives the possibility to navigate by selecting nodes and
edges. The Interactorium visualizes the cell from 3 di�erent levels: from the cell, to
protein complexes and interactions, and into protein structure [24].

The Interactorium is one of the most interesting visualization tools today. Many
shaders and visual interface solutions make it interactive and visually rich. As opposed
to other software in this area, the main fundamental di�erence of Interactorium is a
��rst person� navigation. User can imagine the �ight in the space from node to node
exploring the data and its relations. Most of the navigation is performed by the mouse
clicks. When user clicks on a node with a left mouse button the camera �y to the
node and the navigation mode changes. If some node is selected then camera starts to
rotate around the node showing its surroundings. In order to return to the previous
navigation mode user must select �free view� from mouse context menu (Figure 1.7).

13

Interactorium also provides an additional navigation technique by node attribute
�ltering. User can dynamically type the name of the target node and Interactorium
would suggest existing node names during the typing. Once the node is de�ned, user
would immideately �y to the appropriate node. This feature could be considered as
one of the exploratory search stratagy elements. Systems must help users formulate
queries and adjust queries and views on search results in real time (see chapter 4 in
[29]).

One of the important advantages of Interactorium is a console and support for
scripting. In the console user can run commands using Skeilein/Roenskripp. Inter-
actorium can integrates a 3D model of protein structure inside the node model circle
(Figure 1.8). This demonstrates the power of the method of exploring the graph in 3D,
where the data of the node could be represented as any 3D model giving more analogy
with known physical objects.

The interface of the Interactorium is dynamic and intelligent. The forces of the
layout are customizable. The interface is user-friendly, but the documentation is in-
su�cient. Interactorium provides one of the best navigation experiences. As opposed
to Interactorium, the SkyRails [30] could be used for other graph thematics. Unfortu-
nately, it has poor documentation and regular user can't get advantage of this system.

The both systems use force-directed layouts that evolve dynamically during the
exploration session. It can be considered as the main disadvantage of this application
because continuous change of the data structure makes impossible to orientate in the
graph and the probability of revisiting of already explored elements grows signi�cantly.

Figure 1.7: Interactorium. The navigation.

1.1.5 Red�sh Solutions

The force-directed graph layout project demo can be found on Red�shGroup website[19].
The project demo is the simulation of a closed physical system that self-organizes in a
way similar to the formation of crystals[20] (Figure 1.9). The project idea of using the
rules of di�erent type of crystal formation could give new approaches to the 3D graph

14

Figure 1.8: Interactorium. The 3D object inside the node.

layouts. The online demo provides a possibility to load the graph from the �le using the
URL. The �le format is documented. The tool is rather a prototype for the layout idea
representation. Navigation is limited to zooming and graph rotation around imaginary
graph center point. Unfortunately, there is not much information about this project.

Figure 1.9: Red�sh 3D layout demo

15

1.1.6 Data exploration property

The most suitable visualization tool for the graph data exploration is an Interactorium
platform. The navigation interface is intuitive and e�ective. However, the slowly evolv-
ing force-directed layout makes the orientation problematic. Poor documentation of an
application limits usable features. All other tools are considered more for observing the
graph structure and do not focus on the navigation among the graph data. The most
interesting for the handling the larger graphs is the CAIDA Walrus. The hyperbolic
approach allows to visualize the structure of the graph in an e�cient way with local
details and global context simultaneously. Nevertheless, it is confusing for an average
user and do not give much help for data exploration tasks. The WilmaScope, GEOMI
and Nodes3D are suitable for observation of smaller graphs, but the navigation part is
poor and can't be used for graph data exploration.

None of the software can handle the graph data exploration tasks. On the other
hand, some interface ideas can be useful for data exploration systems. The idea to
use di�erent navigation modes (like in Interactorium) can make the data exploration
process more felxible and e�cient. The di�erent graph theory algorithms that modify
the selected properties of nodes or edges (size, color, etc) can improve the layout and
help to �nd the desired data (implemented in WilmaScope and GEOMI).

All the software uses a low level programming languages. In order to extend the
software developer needs additional skills in programming computer graphics. On the
other hand there are 3D engines that o�er support of high level programming languages.
These 3D engines can provide all necessary tools for developing the dynamic interface
and 3D graph drawings with less time investment.

1.2 3D Graph Layouts

The term �layout� in graph visualization represents the method of the arrangement of
the graph nodes in the space (or on the plane for 2D). The most important features of
layout are clear structure and e�cient utilization of space. It is always a challenge to
keep the balance between intuitively understandable structure and e�cient utilization
of third dimension in 3D graph layouts. This section will give a short overview of
di�erent layouts used by 3D graph visualization tools in previous section.

1.2.1 Force-directed layout

Also known as force-based or force-directed algorithms for drawing graphs. The aim
of the algorithms is to provide a graph layout, where graph would have approximately
equal edge lengths and a small amount of edge crossings. These aims are achieved
by assigning forces among the set of edges and the set of nodes. There are a lot of
implementations with known laws of physics like using Hooke's law of elasticity for
edges and Coulomb's (electrostatic interaction) law for nodes. The forces applied to
the graph elements pull them closer together or pushing them further apart (Figure
1.10). The algorithm iteratively calculates the forces and changes the layout each step
until equilibrium state. At the moment of equilibrium the graph is drawn.

One of the main advantages of this approach is its �exibility. Force-directed al-
gorithms can be easily adapted and extended with additional forces or coe�cients to
reach the criterias. Usually these algorithms are intuitive since it is easy to �nd physical

16

analogies in the outside world. Force-directed algorithms can provide an interactivity
allowing user to see the layout evolving in time.

The main disadvantage of this layout is high running time. Force-directed algo-
rithms usually have at least O(V 3) time complexity (per step), where V is the number
of the nodes in the graph. Another problem that can be named here is poor local min-
ima problem. In short, the force-directed algorithms calculate the graph with minimal
energy. The local equilibrium (found local minimum) state achieved by the algorithm
is not always the global minimum. This makes it less reliable.

Figure 1.10: Force-directed layout approach

1.2.2 Hyperbolic space approach

The aim of hyperbolic space approach is to provide the graph display with local details
and the global context. User can imagine the magnifying glass that zoom in and show
details in the center and zoom out near the boundaries. There are several models
of surfaces in which the parallel postulate fails. Two of them are used by 3D graph
visualization programs discussed in the �rst chapter.

The Klein model of the hyperbolic space is used in CAIDA Walrus graph visu-
alization tool. This model of n-dimensional hyperbolic geometry corresponds to the
n-dimensional unit ball (disk in case of two dimensions). The �points� in that model
are points in the interior of the unit ball. The �lines� in the model are represented
by the chords (straight line segment with endpoints on the boundary sphere). The
�distance� between two points A(x,y) and B(u,v) (Euclidean coordinates) in the simple
Klein model of hyperbolic plane is arccosh((1−xu−yv)√

(1−x2−y2)(1−u2−v2)
) (Figure 1.11 of regular

pentagon in Klein's model of hyperbolic plane).
According to the notes of Young Hyun the HypViewer developed by Tamara Mun-

zner uses the Poincare model. However, in Tamara's work [26] she describe the layout
as �second-generation 3D hyperbolic cone tree� and is stating that application uses the
Klein model in her work. To understand the di�erence between Klein and Poincare
models, some details about Poincare model are provided below. The Poincare model
corresponds to an n-dimensional unit ball like the Klein model do. But, as opposed to
Klein model, the �lines� in Poincare model are represented as arc of a circle, whose ends
are perpendicular to the disk's boundary, where diameters are also permitted (Figure
1.11 of regular pentagon in Poincare's model of hyperbolic plane).

Thanks to the described peculiarities, hyperbolic models in Euclidean space pro-
vide an important property of geometry magni�cation in the center of the model and
reduction on its boundaries. This property allows to see the details in the center of the
models and the global context on the unit ball boundaries (Figure 1.12).

17

Figure 1.11: Regular pentagon plane in hyperbolic models

Figure 1.12: Poincare hyperbolic model in 3D[13]

1.2.3 The 2.5D layout

In computer graphics the 2.5D (also known as pseudo-3D and "two-and-a-half-dimensional")
is a set of techniques, that use a series of 2D scenes or images to emulate the 3D envi-
ronment. The 2.5D approach for graph drawings (graph layouts) represents a series of
planar subgraph layouts organized in 3D space (Figure 1.13). The subgraphs on the
planes are usually organized according to the hierarchy of relations. This approach
could also be used to represent the graph evolution in time, where each plane is one of
the graph states and the connections between nodes on the di�erent planes represent
equal nodes. One of the main advantages of this layout is clear hierarchical structure.
This is one of the best approaches, when the hierarchy of the graph is important.

18

Figure 1.13: 2.5D graph layout[27]

19

Chapter 2

Implementation

The implementation represents a 3D application that visualizes the directed graph
with a 2.5D layout and provides the possibility to explore the graph data. The main
motivator for this application development is the idea to use the graph for complex data
representation and apply the graph theory and 3D engine features to ful�ll the goals
of exploratory search visualization strategy. The reasonable and hierarchical layout for
data relations in 3D space can represent more structured data on a 2D display and
support hypotheses generation based on the explored relations. The 3D engine can
provide with the tools to realistically visualize the graph and make navigation more
dynamic and intuitive. This chapter describes an important parts of the application
implementation using the Panda3D engine (see section 2.1).

Data of the graph is parsed from a properly formated CSV �le (see section 3.3).
This is a test extension of the developed 3D graph visualization logic (see section 2.2
and 3.2 for structure and extension description). There is also one practical extension
made for the Email Information Concentrator (see section 2.9). Email Information
Concentrator aims to deliver emails via IMAP and parse the relevant parts of messages
to other formats, such as an Email Graph or Prolog statements.

This chapter is divided into nine sections. Each of them represents an important
part or aspect of the developed application. The �rst section describes the 3D engine
used by the application. The second section makes an overview of the developed ap-
plication structure and describes application main classes. The third section gives an
overview of an important engine feature called �scene graph� and describes its imple-
mentation in the developed application. The fourth section describes the techniques of
the environment emulation. The �fth section gives an explanation of the graph layout
solution. The sixth section describes the techniques associated with a camera object.
The seventh section explains the engine feature called �Task manager� and describe its
implementation in the application. The penultimate section describes the user inter-
face, navigation solutions and di�erent features. Finally, the last section describes the
practical extension of the application for another project.

2.1 The application engine

The base of the application is the 3D game engine �Panda3D�. Panda3D is a game
engine, a framework for 3D rendering and game development for Python and C++
programs [17]. It was selected because it is an open source project and free for use and
supports a high level programming language � Python. The high level programming

20

language allows to speed up the development process. This was an important require-
ments for this research project, as this work is not only about studying 3D programming
but also the getting a prototype for exploratory search realized. Another important
aspect is the possibility to use either DirectX[12] or cross-platform OpenGL[15]. As a
result the �nal application runs on several platforms. The engine itself is written in
C++ programming language and uses an automatic wrapper-generator to expose the
complete functionality of the engine in a Python interface. Thereby the engine allows
rapid development and keeps the performance of a compiled language in the engine
core. It is also possible to directly access the engine using the C++ code. The Python
runtime is included in the Panda3D distribution and an end-user does not need to
con�gure the installation.

Originally the engine was developed by the DisneyVR studio as a proprietary
project. Since 2002 the engine was released as an open source project to be able
to work with universities on research projects. The transition to open source allowed
Carnegie Mellon's Entertainment Technology Center[4] to join in the development of
the engine. The Carnegie Mellon's Entertainment Technology Center team contributed
to the project polishing the engine for public consumption, writing documentation, and
adding certain high-end features such as shaders (programs to calculate rendering ef-
fects on graphics hardware). The community of the Carnegie Mellon's Entertainment
Technology Center is quite active in its forum and helps developers to come up with a
solutions.

2.2 The application structure

The application is divided into eight classes. The classes �graph3D�, �world� and �sim-
pleGraph� have the main part of the logic. The class �world� mainly handles environ-
ment, navigation and interface code. The class graph3D deals with a graph drawing
(layout), animation and graph structure in memory. The class simpleGraph is a source
of the graph data. The structure of the application was developed with the aim to
make it as independent from a graph data source as possible. There are only six func-
tions that de�ne application interaction with the graph data source (see section 3.2 for
details). In case of exploratory search the data source can be any object network and
an easy extensibility was one of the main priorities.

In many aspects the current implementation with a simpleGraph as the graph data
source is an extension of the developed graph visualization logic. The six functions that
interact with a graph data source are located in the graph3D class. They are enclosed
in a box with red borders (Figure 2.1). The realization of this set of functions is located
in the simpleGraph class. This structure solution was developed after the request to
extend the application with another graph source - Email Information Concentrator.
During this work a set of six main functions was separated from the other logic to
provide developers with a �minimalistic bridge� for a graph data source de�nition (see
chapter 2.9).

The �node� class holds the information about a graph node. The main reason of
the node class development is a need to de�ne a cluster as a special purpose node and
integrate clusters to the layout. In future it would have more complex structure (see
chapter 4) .

The four other classes (�mouseMenu�, �popUp�, �contentScroll�, �DirectWindow�)
are GUI (Graphical User Interface) objects. The mouseMenu is a mouse context menu

21

object (Figure 2.8 and section 2.8). The popUp is an info label object that represents a
text that appear on the screen if a mouse cursor is positioned on the data object (Figure
2.2 near the mouse cursor). The contentScroll class represents a scrollable, resizable
and draggable transparent window that has a text as its content data (Figure 2.8 and
section 2.8). The contentScroll object uses the DirectWindow object that has all logic
for window representation. The DirectWindow class code was found in the Carnegie
Mellon's Entertainment Technology Center forum. The author of the DirectWindow
code and design is Reto Spoerri from Zürich, Switzerland.

Figure 2.1: Simpli�ed UML class diagram[13]

22

2.3 The scene graph

The Panda3D engine virtual world is initially empty. Usually, simple 3D engines use
a list of objects for rendering. Panda3D handles it a little bit di�erent. Instead of
maintaining a list of objects to render, it maintains a tree of objects called the scene
graph. The developer adds models to the virtual world by attaching them to the scene
graph. The root node of the scene graph is the node called �render�. All models or
geometry attached to the root node would be rendered by the engine. The scene graph
is a powerful tool because all transformations and position changes (translations) are
relative to the parent node. Thus, if the developer attached the model as node A to the
root node, changed its x coordinate to 10 and attached the other model as node B to
the created node A then node B would also have x coordinate equal to 10 relatively to
the root node. Actually, the node B has the x coordinate equal to 0 , but its coordinate
space has a zero point at the parent node position. For example a model of man and
his hat. If the hat model node is a child node of the man model node then in case of
the man model movements the hat will be left on his head. However, if the hat model
node is a child node of some man model node parents then the hat model will not
move with a man model automatically. The model transformations (for example size
or shape change) are also inherited from the parent node. This feature can help with
exploratory search process. In the futrue applications a user will be able to modify a
desired node and all subgraph connected with that node will inherit the modi�cations.
This is a nice tool for selection of connected components based on the layout hierarchy.

This is very powerful method for complex scenes. It is easier to de�ne the behavior
of the object in the parent node coordinate system it must interact with. It is also
very useful in reverse order. As an example we can take the rotation of the earth
planet (object A) around the sun (point C (x , y , z)) with radius r on x, y plane. The
classic solution of this problem is: A(t) = (rsin(t) + x , rcos(t) + y , z). Nevertheless,
the scene graph properties can give developers another way to solve it. The dummy
invisible node N can be created at the point C (x , y , z) (with position of sun) and the
earth (object A) can be attached to it with desired radius r as x or y coordinate. Then
the dummy node N could be rotated around the z axis. As a result the earth (object A)
will rotate around the point sun (with point C (x , y , z)) because the zero point of the
parent node (dummy node) coordinate system is rotated. To estimate the bene�ts of
this method, developer can consider more complex scene like full emulation of the solar
system, where objects (like sun, planets, satellites or asteroids) rotate around many
points. In this case, instead of complex equations developer can create the proper scene
graph structure using the given technique.

Most of the models are created in the free open source 3D content creation suite
called �Blender� [1]. The Panda3D accepts the *.egg 3D model �les. One of the ways
to convert the model created in Blender to the egg format model is to export it in *.x
format (DirectX native) and then convert it with a program called �x2egg� provided
with Panda3D engine. There are also some plugins for Blender to make an egg �le
export automatically. The plugins are �Chicken�, �EggX2� and �Panda3DExporter�.

The term �texture� in computer graphics mean a 2D image that is used to cover
3D models. During the development of the application, I created a number of simple
objects and textures. The application contains geometry models (Figure 2.2 for details):

• Sphere model. This model is used by the graph nodes with a texture de�ned in

23

a code. The same model is also used by the transparent �selecter� (green sphere
indicate the selected object) object, but the selecter object uses another texture
and objects with the same shape look di�erent.

• Pyramid models. These models are used for edge start and end arrows. The end
arrows are almost the same as designed in Blender, but the start arrows (appear
near the selecter object) have a modi�ed shape by the application logic. The
pyramid models were designed with a shift from its origin point to avoid the math
calculations for positioning outside the node/cluster model. When the pyramid
model is placed to the same position as the node object has, it appears outside
the node model because the arrow model has a shift that is approximately equal
to the node sphere model radius. The only operation the application performs is
adjusting the direction.

• Cube model. This model is used for a cluster object and environment map
(see section 2.4). These objects use di�erent cube models. As opposed to the
environment box, the cluster object is designed to use only one picture for all its
faces.

• Circle mesh. This �at model is used for the cluster control buttons. The same
model is used for two buttons and each button has its own texture.

Figure 2.2: Scene graph models: a and d - selecter/node sphere models, b and c - arrow
pyramid models, e - cluster cube model, f - circle mesh model

All the objects in the graph are created from the models in the list above. The
engine provides a possibility to use a custom texture for a model.

In order to improve the performance, the �Instancing� technique is used. Animating
of each separate model involves a lot of per-vertex matrix calculations. In case of the

24

graph visualization application, it is the node object. Instead of creating the copy
of the same model each time the developer can use only one model. The application
creates only one node object and during the rendering places it to all node positions.
In order to create this type of nodes, the developer must create a model and a target
dummy node where to put the instance of the model. The developer needs to use a
built in function createdModel.instanceTo(dummyNode) to put the model instance
to the dummy node. This method allows to use only one model for all nodes of the
graph. When Panda3D renders the scene graph a reference to a model for each such
node lead to the one model instance.

Figure 2.3: The structure of a scene graph

The scene graph of the application has a more complex structure (Figure 2.3) than
the visible part of it. First of all, there is a set of �orbits�. The orbits are invisible
dummy objects for position de�nitions of a 2D subgraph circular layouts or �levels�.
All nodes of each level have the same distance (number of edges) from the root. A set
of orbit objects is the skeleton of the scene graph. All transformations applied to the
particular orbit are inherited by all the nodes attached to the orbits starting from the
current (see blue lines on Figure 2.3).

Each node has a �full transformation� parent object (green circle on the Figure
below). The transformations applied to that node would be inherited by a node and
edge objects. The reason of such structure is an ability to apply transformations either

25

to each object separately or to a speci�c group of objects. Currently this structure
allow to transform:

• all graph (if apply transformation to the �rst orbit)

• part of the graph starting from de�ned orbit (if apply transformation to the
de�ned orbit)

• node and its edge (if apply transformation to the �full transformation� node,
green circle on the Figure below)

• speci�c model (if transformation will be applied directly to the model node)

In future work, the scene graph will have a more complex structure to allow the trans-
formations of any group.

2.4 Environment

The environment of the application is created with the skybox. The skybox is a method
to emulate the surrounding world (sky, nature, etc) for a 3D scene. When a skybox
is used, the scene is enclosed in a cube with the desired environment projected onto
the cube's faces. Each six faces of the cube are covered with a texture image. The
images used for the cube faces are created using a technique called cube mapping. The
texture created with this technique represents the appearance of six faces of a perfectly
mirrored cube as seen from vantage points in each of the six cardinal directions (Figure
2.4). The viewpoint is located in the center of the cube.

The skybox model is a child object of the camera. The idea is to keep the camera
in the center of the skybox model. Since the child node inherits the transformations
from the parent node it would translate its position with the camera. However, the
skybox would also inherit the parent node rotation and it will rotate together with the
camera. To compensate this side e�ect the �CompassE�ect� is applied to the skybox.
The �CompassE�ect� causes a node to inherit its rotation from some other reference
node in the graph. In our case it is the root node (�render�). Thus, when the camera
changes its position the skybox model also changes position together with the camera,
but when the camera rotates the skybox does not inherit its rotation.

The realistic and static environment is important for user orientation. During the
navigation it is easier and native to rely on the environment object position like sun
or rock. A good user orientation in space makes the data exploration more e�cient
since a user can remember the explored node positions using the environment objects.
Visually pleasant environment helps to enjoy the data exploration process.

26

Figure 2.4: The lower left image shows a scene with a viewpoint marked with a black
dot. The upper image shows the net of the cube mapping as seen from that viewpoint,
and the lower right image shows the cube superimposed on the original scene.[7]

2.5 Graph Layout

The graph layout represents a set of circular 2D subgraph layouts on the planes (Figures
2.5 and 2.6). The ideas are showing the hierarchy of the relations, make the minimum
number of edge crossings without additional logic and use simple and rigid layout to
support an easy user orientation. These ideas cannot be realized with a force-directed
layout (see 1.2.1) like in Interactorium (see 1.1.4).

Instead of using complicated algorithms that will make complex decisions for the
layout structure the application uses a set of circular 2D layouts, where each circle of
nodes is drawn on the di�erent plane. The group of nodes on the plane represents
a �level� or the distance to the root node. All the nodes drawn on each such plane
represent a group of nodes connected to the previous level. The drawing of graph is
started from the prede�ned root node with position x, y, z coordinates equal to zero.
All the root neighbor nodes are drawn on the plane below (Figure 2.6). After that, all
the neighbors of the drawn group are drawn on the second level from the root and so
on. This layout idea shows the hierarchy of the relations in respect to the root node
and allows the generation of hypotheses by the user.

This layout decision allows to reduce the space of the classic circular layout (Figure
2.5). The problem of the classic circular layout is the fact that each next circle of
nodes must have the radius greater than the previous circle radius. In the developed
application the radius of each circular subgraph depends only on the number of nodes
in that group. This solution allows to reduce the space by utilizing the 3-rd dimension
and keep the structure simple.

The application layout structure decision guarantees that relations for a particular
node in the graph will appear only with previous level nodes, next level nodes, or with
nodes in the same group. Thus, the neighbor nodes of the node a user is interested
in are always near the object in question and the direction (next or previous group)

27

represents the distance with respect to the root node. This allows to avoid long edges
and provide a user with information in respect to the root node. The application allows
to redraw the graph layout with the selected node as a root node and allows to apply
this feature to the particular node on the �y.

Another important possibility that provides 3D graph exploration is more �exibility
in changing the viewpoint. This is important when a user wants to focus on a group of
nodes, a group of relations or both. Thanks to the dynamically growing entertainment
industry the 3D engines are perfect tools for data visualization in space and provide
tools to easily implement such a navigation. We consider this an advantage as it is a
synthesis of layout and navigation.

The application uses a spherical coordinate system to calculate the positions of
nodes in the layout. The formulas for the layout pattern is: r = 10(N−1)

π
, γ = 2nπ

N
and

θ = const = π
2
, where N is the amount of nodes in the group and n is the order num-

ber of each node. After obtaining the results the spherical coordinates are converted
to the Panda3D native Cartesian coordinates with the formulas: x = rsin(θ)cos(γ),
xy = rsin(θ)sin(γ) and z = rcos(θ). This solution instead of Panda3D technique (see
section 2.3) is selected to give more control for the layout pattern in future (See layout
ideas in section 4).

The layout pattern formulas given above de�ne the circular layout of only one group
on the plane (because θ = const). To distribute the groups between levels the algorithm
uses the scene graph technique. In the beginning, the application creates the skeleton
using dummy nodes called �orbits� (the graph drawing in space is in many ways similar
to solar system) along the z axis with customizable distance. Each group of nodes has
its own orbit. During the layout drawing, each group is attached to the di�erent orbit
node of the scene graph skeleton and inherits its orbit position as the origin of the
coordinate system. This approach simpli�es the math part of the algorithm and allows
to simplify developing of more complex logic in future. The other advantage of this
approach is the access point for transformations of each particular group or a number
of groups.

The graph visualized in the application is a directed graph. The layout algorithm
traverses the graph starting from the prede�ned root and �lls the levels according to
the distance to the root node. However, in case of the directed graph not all nodes can
be visited. The application has a setting to either show the incoming edges or not. If
this setting is turned on the graph will include all connected nodes like for not directed
graphs. The simpli�ed version of the layout algorithm is provided below:

whi le nodes > 0 and o rb i t cn t <= Limit : #whi le the re are t r a v e r s ab l e
#nodes and we didn ' t reach the

l im i t
sendStack = [] #empty the s tack we send f o r

drawing
tota lOrbi tNodes = 0 #r e s e t counter o f nodes in the

group
f o r parent in nodes : #f o r each node in the s tack

ne ighbors = getNeighbors (parent) #obta in i t s ne ighbors
f o r node in nghbrs : #f o r each neighbor

i f not isNodeOccurred (node) : #check i t i s not drawn (i f c y c l e
)

NodeOccurred (node) #se t node as v i s i t e d
sendStack . append (node) #add node to the s tack that we

w i l l
#send f o r drawing

28

tota lOrbi tNodes++ #in c r e a s e the amount o f nodes in
#the group

i f tota lOrbi tNodes > maxNodesInOrbit : #i f the number reached the
maximum

#amount o f nodes in the group
ddCluster (sendStack , tota lOrbi tNodes)#then add them as c l u s t e r

e l s e : #otherwi se
addNodes (sendStack , tota lOrbi tNodes) #draw the group o f nodes

nodes = sendStack #update the t r a v e r s ab l e nodes

The current layout solution is not e�ective without hiding the nodes to the cluster
in case of huge graphs. The object marked with letter �e� on the Figure 2.2 represents
the cluster. The application automatically creates the cluster object instead of drawing
a group of nodes if the amount of nodes in the group reaches some customizable limit
k. Clusters have two buttons one on the left � �previous� and one on the right � �next�.
The user can explode the cluster showing the k next nodes or k previous nodes using
the buttons near the cluster. Buttons represent the circle mesh objects always facing
the camera. Moreover, when the camera moves along the graph the buttons rotate
around the cluster object and keep their positions on the left and on the right. The
cluster drawing improves performance and simpli�es the layout. It allows a user to
focus on the desired node group.

If a user explodes k nodes from the cluster they also can have relations with another
hidden nodes left in the clusters. In this case the user will see the blue relations between
nodes and the cluster (Figure 2.8). The blue relations say that the cluster has at least
one node that has a relation with the visible graph node. The blue relations can be
switched o� to simplify the scene. The cluster is positioned a little bit above the level
and relations between nodes on that level will not intercept the cluster model.

Figure 2.5: Circular layout (taken from [5]) and 2.5D layout of the application proto-
type.

29

Figure 2.6: The graph visualization in the application

2.6 Camera

The camera is considered as a child node of the �render� object and the navigation could
be simpli�ed by the same techniques as described in the section 2.3. By default the
camera node is created automatically and has the �perspective lens� object that behaves
the same way as the physical lens in a photocamera works or the same way the lenses
in our eyes work. The lens object of the camera has many customizable parameters
like the �eld of view (FOV), aspect ratio, or �lm size. The FOV is modi�ed in the
application and has the greater angle value.

The user starts the navigation process near the selected root node looking at it.
The position and point to look at are customizable and located in the �world� class
�__init__� function. The Panda3D has some render e�ects considered for the camera
that could be applied to the scene models. One of them is the �Billboard E�ect�. The
billboard e�ect causes a node to rotate automatically to face the camera (regardless
of the direction from which the camera is looking). The billboard e�ect is used in the
application for node labels. For every camera viewpoint the labels are always facing
the camera and user can read them from any position (if close enough).

Object selection and collision detect

The selection of the 3D object by the mouse is not as trivial as for 2D graphics ap-
plications. To select the object developer must �shoot� from the mouse position to
the scene with a ray. Then detect the collisions of the scene objects and the ray and,
�nally, sort the objects in order to get the closest to the camera. Collision detection

30

allows to realize that two objects are touching each other. The collision detection in
Panda3D is handled by the �CollisionTraverser� object.

In order to show the popup labels an application uses the same technique. During
the navigation an application is automatically �shooting� to the scene graph from a
mouse cursor with a customizable period of time. If some data object is detected, then
an algorithm calls for unhiding the popup label and sets its text and position. The
simpli�ed algorithm example is provided below.
i f mouseMenuhidden : #i f popUp i s not d i s ab l ed
frameCnt = tmpCnt + 1 #ca l c u l a t e frame delay
i f frameCnt == delay :
frameCnt = 0 #r e s e t de lay

i f mouseWatcherNode . hasMouse () and frameCnt == 0 : #i f mouse i s i n s i d e the window
#and delay i s c l e a r ed

mpos=mouseWatcherNode . getMouse () #get the mouse po s i t i o n
pickerRay . setFromLens (camNode , #s e t ray po s i t i o n

mpos . getX () , #accord ing to the camera
mpos . getY ())

c o l l i s i o nT r a v e r s e r . t r a v e r s e (graph . o r b i t s [f i r s tO r b i t]) #t r av e r s e the scene graph
#s t a r t i n g from the f i r s t l e v e l

amount = co l l i s i o nHand l e r . getNumEntries () #count a number o f c o l l i s i o n s
cnt = 0
found = False
i f amount > 0 : #i f the re are c o l l i s i o n s

c o l l i s i o nHand l e r . s o r tEn t r i e s () #s e t the r i g h t order
whi l e cnt < amount : #f o r a l l found c o l l i s i o n s

pickedObj=co l l i s i o nHand l e r . getEntry (cnt) . getIntoNodePath () #get ob j e c t
pickedObj=pickedObj . findNetTag (' type ') #check i f ob j e c t has a " type"
i f not pickedObj . isEmpty () : #i f ob j e c t has a " type" tag
cnt = amount #stop the loop next time
id = pickedObj . getTag (' id ') #get ob j e c t id
type = pickedObj . getTag (' type ') #get ob j e c t type
i f type == ' node ' : #i f ob j e c t i s a graph node

i f popup . h id ing or id != popup . id : #i f popup i s not a c t i v e
#and t h i s i s a new node

popup . show (mpos , graph . getNodeData (id) , id) #show popup
i f type == ' edge ' : #i f ob j e c t i s an edge
id2 = pickedObj . getTag (' id2 ') #get t a r g e t node id
idtmp = id + id2
i f popup . h id ing or idtmp != popup . id : #i f popup i s not a c t i v e

#and t h i s i s a new edge
popup . show (mpos , #show popup

graph . getEdgeType ((id , id2)) , #with edge data
idtmp)

i f type == ' c l u s t e r ' : #i f ob j e c t i s c l u s t e r
s e l f . popup . show (mpos , #show popup

graph . getNodeData (id) , #with c l u s t e r content
id ,
c l u s t e r = True)

i f type == ' c lu s t e r_cont ro l ' : #i f ob j e c t i s c l u s t e r button
popup . show (mpos , #show popup with ac t i on desc .

' show '+getAct ion ()+ ' '+getNodesInOrbit ()+ ' nodes ' ,
cut = Fal se)

found = True #se t found f l a g
cnt = cnt + 1

i f not found : #i f nothing i s found
i f not s e l f . popup . h id ing : #and popup i s a c t i v e
popup . hide ()

e l s e : #hide i f d i sab led , but a c t i v e
i f not s e l f . popup . h id ing :
popup . hide ()

2.7 Task manager

The Panda3D task manager (�taskMgr�) is a global object that handles all tasks. The
task in Panda3D is a subroutine that is called by engine every frame. The task allows

31

developer to update the world between rendering steps. Some important application
features are made by the tasks in navigation and user interface. There is also one
problem with object orientation that was solved with the development of an additional
task. The billboard e�ect described previously (see section 2.6) is a render e�ect and
considered only for camera. Actually, the model is not rotating in the global sense
and collision mesh is left on the same place. This is a problem for object selections by
mouse click (see subsection 2.6). It took a while to �nd the reason of that behavior.
Thanks to the active community of the Carnegie Mellon's Entertainment Technology
Center, this problem was solved replacing the billboard e�ect with a task that rotates
the scene subgraph with cluster control buttons (Figure 2.7).

Figure 2.7: Cluster control buttons. a - dummy node; b - circle mesh models that act
as buttons; c - camera

Intervals and Sequences

The interval in Pand3D is an object that acts like a task, where user can de�ne a
property change over some period of time. In case of camera it can be two position
points A(x0 , y0 , z0) and B(x1 , y1 , z1). The interval can be used to animate the camera
�ight (position change) from position A to position B over some time t. The camera
navigation by mouse clicks in the application is made by the intervals and sequences.
The sequence in Panda3D represents a complex task that can include multiple inter-
vals executed one by one. However, the developed application uses more comfortable
Panda3D class called �Parallel�. The Parallel class is similar to the Sequence class
except it executes all intervals at the same time and run them in parallel. When user
clicks on the desired node C the application calculates an end point and direction of
view of the camera near the node C. After the calculation of the points and direction
of view the application creates intervals for position and view direction change and
executes them in parallel using the Panda3D Parallel object. As a result a user can
see the camera �ight to the selected node from the previous position. In future the
application will have more such automatic ��ights� (see chapter 4).

32

2.8 User interface and navigation

The interface was developed with aims to support the navigation only with a mouse
or with a composition of mouse and keyboard. In future there is a plan to develop
a navigation by face recognition using a web camera (See chapter 4). By default
Panda3D provides a navigation technique for moving a camera with a mouse, but it
is not comfortable and �exible. To implement another camera controls the default
navigation must be disabled �rst with a function base.disableMouse().

The camera position change is handled by the two sets of functions. The �rst set
of functions accepts the keyboard button events and modi�es the �ags: �right�, �left�,
�back�, �forward�, �up�, �down�. The application has a main task (see section 2.7),
where the second set of functions is executed. The second set of functions moves or
rotates the camera according to the �ags and navigation modes every frame. This
decision was made to smooth the camera movements.

There are two camera navigation modes. The �rst mode is a �free look�, where a
user can move among the graph and �selected� mode, where the camera is attached to
the node and the same camera control buttons (see manual in chapter 3 for description
of controls) will rotate the camera around the selected node. The navigation modes
make interface more �exible and allow a users to choose the navigation style he likes
(according to the goals).

During the graph data exploration process a user mostly clicks on the di�erent
nodes to check the data and relations. The application has some logic to accelerate
these actions. When user clicks on the desired node with a left mouse button the appli-
cation immediately moves the camera to the selected node. The application calculates
the position Pos1 (x1 , y1 , z1) near the node using the initial position Pos0 (x0 , y0 , z0),
target node position Posn(xn , yn , zn) and a distance to target node d = const by the
formulas:

−−−−−−−−→
v(xv, yv, zv) = (xn − x0 , yn − y0 , zn − z0)

k =
d√

x 2
v + y2

v + z 2v

Pos1 (x1 , y1 , z1) = (xn − kxv , yn − kyv , zn − kzv)

To access the graph node data a user needs either to put a mouse cursor over the
node and observe the popup textual data (limited to thirty characters) or to double click
(left mouse button) on the desired node in order to open a window with a full content.
The window interface object is not a built-in Panda3D functionality (see section 2.2).
User can use already classic �drag-and-drop� window position movements. The content
inside the window is scrollable and a window is resizable. One important property of
the window movements is automatic window positioning near the corner if window is
moved o�-screen (automatically makes it visible).

After a selection of the desired node, the selecter object (a transparent green sphere
with stripes) indicates that the node inside the selecter is currently active. After the
selection of a node the outgoung relations are marked by the additional transparent
start edge arrows. The start arrows also can have the data and popup text and window

33

objects are also accessible for that graph elements. In exploratory search process user
must be able to easily access the data behind the visible structurized objects.

It is possible to rede�ne the root node and redraw the graph during the exploration
process. This feature allows to restructurize the graph in respect to the desired node
and explore the resulting relations. This mean that user can de�ne the point of interest
and apply the power of the layout to observe the surrounding data. This feature is
accessible from the context menu if user clicks on the node with a right mouse button.
The context menu is a realization of Panda3D �DirectOptionMenu� GUI class. In a
DirectOptionMenu developer must de�ne the menu elements and a function that will be
automatically called by Panda3D on element selection event. One disadvantage of this
class is the need to hold the left mouse button in order to choose the menu elements.
This is not intuitively understandable and convenient for users, who are used to the
usual mouse context menu in modern operation systems. In future development it
would be replaced with a custom menu made in the same way as the window object.

Overall, the interface supports the graph data exploration, but it is not yet featured
and rich in navigation solutions. It is a completed prototype for the exploratory search
task tests, but the full power of the 3D engine interactivity will be implemented in
careful and thorough future work (see chapter 4).

Figure 2.8: The GUI elements

2.9 Practice and results

The application is already used in another project called �Email Information Concen-
trator�. The aim of this knowledge management area project is a research for the
solution of the growing e-mail message overload problem. This project uses the graph
to make a complex system from the data parts of the e-mail messages. The idea is to
keep only unique mail message data parts and create relations for the duplicates. This
technique allows to reduce the data duplication. The graph visualization application
is used for the resulting e-mail graph examinations and research of the data relations.

34

The graph data source of the e-mail graph is integrated to the application using
the six functions described in the section 3.2. The graph data is exported (serialized
and stored as �le) with a �pickle� python module. The serialized object has a logic to
support the six actions de�ned in the functions. The graph data is then loaded by the
graph visualization application and the user can explore the resulting graph.

The e-mail graph has a huge amount of nodes per each level. This problem is
successfully solved by the clusters created instead of the nodes (see section 2.5 for
description about clusters in the graph layout). The user review the nodes exploded
from the cluster in smaller groups. The e-mail data is accessible by the popup text or
by the node/edge content window (Figure 2.9).

Figure 2.9: Graph of e-mail data

35

Chapter 3

Manual

In order to run an application the free and open source 3D engine Panda3D must be
installed[17] (see section 2.1 about the application engine). After the installation the
user can start the application by running the main.py script with a python provided
by Panda3D (typing python main.py if no other active python installation is already
available). After the execution a window of the application will occur (Figure 2.6 as
an example). The root node will be selected on application load. After the window
loading a user can immediately start the navigation and data exploration process.

In order to move the camera, the user can use arrow buttons for the camera move-
ments in the vertical plane and use the mouse scroll to move the camera forward or
backward (like zoom-in and zoom-out). Another possibility is to use buttons: �w�,
�s�, �a�, �d� to move the camera in horizontal plane and use a �Space� and �Ctrl� to
move camera up and down. It is more convenient because of full control in all six
directions by only the left hand. The mouse scroll in this case can be used as forward
and backward movement acceleration.

The change of the camera view direction is handled by the right mouse button.
The user can press and hold the right mouse button and move the mouse pointer. The
camera will change the direction of view according to the mouse pointer movements.
One important feature is added to that way of camera view direction change. If camera
is moving (one of the movement �ags is active) the e�ect of the camera direction view
change is stronger.

There is also another way to change the camera direction of view. If the user presses
the �m� button another mode will be activated. In this mode user does not need to hold
the right mouse button. The camera direction view is continuously changing according
to the mouse pointer position. Near the center of the application window the camera
direction view change is minimal, but when the mouse pointer is near the window
border the camera view direction is changing faster.

In order to focus on the desired node a user can click on it with a left mouse button
and the camera will immediately move to the point near the desired node. The desired
node will be in center of the application window. The end point distance to the desired
node is customizable (see next section for the customizable settings).

During the camera movements and camera view direction changing a user observes
the graph structure and the data behind the objects in order to generate hypotheses.
The data can be reviewed in short using a popup text or in full size using a window
(Figure 2.8 for window object and Figure 2.2 for popup text examples). The user
can see the popup text with a maximum length of thirty characters, when the mouse

36

pointer is hovering over the data object. The window can be opened in many ways.
The simple way is to double click on the data object. There is an additional possibility
for edges to press only the right mouse button over the edge object because the left
button will notify the application to move the camera near the target node. For a node
object the window with a content data is also accessible from the mouse context menu.

The mouse context menu opened for a node has the following elements:

• View Data. If this menu element is selected an application opens the window
with an object data.

• Select. If this menu element is used an application changes the camera navigation
mode. Camera will be rotated around the node.

• As Root. If this menu element is used the application redraws the graph with a
selected node as root.

When the user �nds some interesting node, the user can use the �select� mouse context
menu element and change the navigation mode. During this mode a camera is rotating
around the selected node using the same control buttons: either the arrow buttons or
�w�, �s�, �a�, �d� buttons. When the camera is rotating around the node, the user can
better observe node relations. If the node needs to be observed in context of a greater
amount of surrounding nodes, the user can use the �As Root� mouse context menu
element and redraw the graph in respect to the desired node (with a desired node as
root). After the use of this feature, a camera will �y to the root node.

The cluster objects act the same way as the nodes, but the data of the cluster would
be a list of node indexes hidden into it. The �As Root� mouse context menu element
is not accessible for a cluster because of its nature. However, the user can select the
cluster with the left mouse button and the camera will move to the cluster object the
same way as to the node object. User can access the data inside the root the same way
as for the node, but the data of a cluster is a list of nodes hidden inside. The popup
text and window objects are also working for the cluster object.

As opposed to the node object, the cluster has additional features and geometry.
The cluster object can be exploded by a user. The user can click on the buttons near
the cluster object and draw the n next or previous nodes hidden in the cluster on the
cluster level (Figure 2.2). The right cluster button will draw the next n nodes. The
left cluster button will draw the previous n nodes. The number n is a global level node
number limit and can be rede�ned in the application code (see section 3.1 for details).
If the number of nodes on any particular level is greater than n, the nodes of this level
will be replaced with a cluster object.

The environment of the application 3D scene can be changed during the exploration
process by pressing the �e� key. After pressing the �e� key the application loads the
next skybox model from the next environment folder located in the project folder in
the ./environment directory (see section 3.4 for more details).

The application has two possibilities for a graph data import. The �rst one is using
the CSV (Comma Separated Values) �le (see section 3.3 for the �le format). The
second opportunity is a development of an application extension (see section 3.2).

37

3.1 Customizable settings

The application has a number of constants for graph drawing, the navigation, and
interface. This section will give a small overview of their purpose and location. In
future work this will be integrated in the GUI.

The settings are located in init functions of graph3D and World classes. The de-
tailed list of settings is provided below:

• World.py

� anavSpeed - is a setting that de�nes a sensitivity of the camera view direc-
tion change, when user is holding the right mouse button.

� flyToNodeT ime - is a time (in seconds) of the automatic camera �ight to
the selected node. Lower values mean faster speed of the �ight.

� zoomFactor - is a coe�cient that increases/decreases the zooming step.
Bigger values mean greater zooming step.

� fov - or �eld of view in degrees (see section 2.6).

� doubleClickInterval - the interval in ms for the left mouse button clicks.

� initPos - initial position of the camera.

� worldScale - the coe�cient for the environment (skybox, see section 2.4)
size.

• Graph3D.py

� orbAmount - the maximum number of levels to draw.

� maxNodesInOrbit - the maximum number of nodes on one level.

� spacing - the distance between levels

� hideEdgesWithCluster - if set to True then application will not draw the
relations with a cluster object (blue color relations on Figure 2.8).

� showNotTraversableButConnectedComponents - if set to True the appli-
cation will draw all connected nodes even if they are not reachable from the
root node.

3.2 Extending the application

In order to extend the application, the developer must rede�ne 5 basic functions in the
Graph3D class:

• initSource() - this function must initialize the source logic and load the data.

• initRoot() - this function must de�ne the initial root node. Developer must put
the index f the initial root node to the global variable rootIndex.

• getNodeNeigbors(index) - this function must return a list of indexes of given node
neighbors.

38

• getPredecessors(index) - this function must return a list of indexes of given node
predecessors.

• getSrcNodeData(index) - this function must return the data for a given node in
string format.

• getSrcEdgeData(index) - this function must return the data for a given edge in
string format.

These six functions provide all the needed logic for a graph drawing in the developed
application. The default realization uses a CSV �le as a data source and the �networkx�
[16] python package for the graph data storing and manipulations. The realization uses
the same six functions provided above.

3.3 Input CSV �le format

The CSV (Comma Separated Values) is a textual �le format used to store the table like
structures. In the CSV �le format the data pieces are usually enclosed by the quotes
and separated by commas. In order to minimize the risk of errors, the application
uses a CSV �le format, where the values are separated by the semicolon. The CSV
�le contains two di�erent types of data: nodes with their data and edges with their
data. In order to use only one input �le and separate the sections with di�erent data,
the special section names are used. The section name �%SECTION_OF_NODES%�
is used to notify the application that it deals with the nodes and their data. The
section name �%SECTION_OF_EDGES%� noti�es the application that it deals with
the edges and their data.

In the section of nodes the index of a node is de�ned on the �rst position. The
second position de�nes the textual data of a node. In the section of edges the �rst and
the second positions are the out of node index and destination node index respectively.
The third position de�nes the textual data of an edge.

An example of correct input CSV �le is provided below for a reference:

"%SECTION_OF_NODES%";
"1" ;"From"
"2" ;"To"
"3" ;" test@mai l . ulno . net , 763534 r j d sbn f "
"4" ;" data4"
"10" ;" data10 some data here
a l s o l i n e 2 here
l i n e 3 here
some in fo rmat ion here on l i n e 4"
"11" ;" data11" "100";" data100"

"%SECTION_OF_EDGES%";
"1" ; "2" ; " data 1 −− 2"
"1" ; "3" ; " data 1 −− 3"
"1" ; "4" ; " data 1 −− 4"
"1" ; "10" ; "24 ,100" ;

39

3.4 Installing a custom skybox

The skybox or environment of the 3D scene (see section 2.4 for details about the
skybox) can also be easily customized. The application project folder has a directory
./environment where di�erent environment graphics is stored. The only requirement
for an extension is the existence of the separate folder and a skybox.egg model. In other
words, the environment customization must be stored in separate folder and have a
skybox.egg model �le. The textures must be de�ned inside the skybox.egg model �le.
The easiest way is to copy the skybox.egg model from another environment folder and
modify/replace the textures for the faces of the cube. The application automatically
lists the folder names in the ./environment folder on initialization. When a user presses
the �e� button during the graph data exploration process, the application tries to load
the skybox.egg model from the next folder in the list. An example of a customized
environment can be seen on Figure 3.1.

Figure 3.1: Customized environment example

40

Chapter 4

Future Work

The current application is a �rst version of a 3D graph explorer. The aim of this work
is the research of 3D exploring techniques and related technologies as well as developing
the application. Future implementations will also support a number of interface and
navigation solutions. One of the most ambitious goals is an interface design that will
help people involved in a common task achieve their goals in an exploratory way. It
will support a collaborative work and navigation using the latest human-computer
interaction (HCI) solutions. A possibility of collaborative work is another important
aspect of the exploratory search strategy.

Collaborative work can be achieved by using a multitouch interface. The multi-
touch interface (hardware part) could for example be supported with Nintendo Wii[6]
technology. There are a lot of projects[14] based on the Managed Library for Nin-
tendo's Wiimote[11]. This is a low-cost tracking support for a lot of interface solutions
with outstanding visual experience. One of the most exiting projects is tracking the
head position that allow to make an illusion of watching to the scene like through a
usual window. This solution can help to solve the problem related to the �at nature
of displays (see thesis introduction and beginning of the chapter 1 for the problem
description).

The less ambitious goals are mostly related to the more intelligent interface and
navigation and are listed below:

• The camera movements will be partially replaced with navigation patterns by
mouse clicks. The challenge of this task is the �nding of cases, where it can be
performed. A simple example of such a pattern is to zoom out and move outside
the circular subgraph of the selected node and show the whole subgraph on the
screen. This is like the opposite e�ect of the node selection. This action can be
bound to the mouse buttons pressed simultaneously and for backspace keyboard
button in analogy to the �Back� action in web browsers. The more analogies the
interface will have, the easier and faster a user will learn and interact with the
application.

• Pointing device gesture support that allows to accept drawn signs as action events
(like navigation mode switches). It is especially e�ective with a multitouch inter-
face support. Users can draw the signs to create new elements like an additional
node, make complex selections and combine groups. Users can also activate/-
draw additional control elements to make complex rotations and graph layout
modi�cations. An example of the simple gesture of back/escape/abandon action
can be found in Figure 4.1.

41

Figure 4.1: Example mouse gesture

• The logic for the node models will be improved to support a possibility to de�ne
a type of the node. There will be a special tool to make the matching pairs
of node type and corresponding 3D model. This feature will allow to make the
graph more understandable and will help a user to orientate. This feature also
requires more design work in 3D modeling.

• The graph data source extension management will be more intelligent. There is
a plan to develop a mechanism to manage the di�erent graph source extensions
using the GUI and rigid instructions for developers. This will allow to switch
between graph data sources or even combine them.

• The navigation will have more di�erent modes and it will be customizable in
GUI. The customizations for camera navigation will be also extendable in the
same manner as graph data sources will be. User will be able to choose the
navigation mode dynamically during the exploration process.

• The layout logic for the graph will be improved to minimize the edge crossings.
The nodes in the level group will be sorted in appropriate order.

• The cluster will have more features and a user will be able to de�ne the amount
of nodes to show. The system will also suggest more intelligent divisions into the
groups to allow a user to see all relations for a given group located inside the
cluster.

• There would also be more layout patterns. One of the planned layouts will
put subgraphs (level groups) to the surface of sphere instead of the surface of
plane. The subgraph in that case will not have the circular layout and will be
more similar to a grid or star to utilize the space more e�ciently. This lay-
out requires additional logic for node placement to minimize the edge crossings
(triangulations[28]).

• Intelligent selection algorithms will rely on distance to the object and will activate
or deactivate some control elements if the distance to the object is long or short.
As an example, if the number of nodes is huge, the cluster object is located far
away from the exploded nodes and it is di�cult to click on the buttons near it
because of its size. The algorithm must recognize the click to the any cluster
related object as selection of the cluster.

• The graph modi�cations: changes in the layout, hiding unnecessary nodes, adding
new nodes, creating of new groups and deleting the group will be available with
a possibility to save the modi�ed graph layout.

42

• The structure of the graph in memory will be replaced with a networkx[16]. This
will allow to support main graph theory algorithms in a e�cient way (like shortest
path �nding).

• The nodes will support the drag-and-drop technique to simplify the graph layout
modi�cations.

The project research in data exploration visualization with a combination of latest 3D
graphics technologies and HCI solutions can give a magni�cent outcome for exploratory
search tasks individually or in groups.

43

Conclusion

The searching tasks become progressively important in the society with a growth of
the information overload. The query results in the search engines return a lot of
duplicate data and people need to spend a huge amount of time and doing multiple
customized searches to �nd unique �pearls� or the area of information they need to
cover. The exploratory search strategy is considered to partially solve these problems.
The navigation and visualization of the data exploration is an important part of the
exploratory search strategy and can be successfully implemented with a 3D graph.

Di�erent graph layouts give a structurized overview of the data relations and help
users to generate hypotheses based on the found node groups. Clustering allows to
keep the clear layout and get more details on demand. Users can focus on the desired
node group or a set of groups using the navigation mode they like. The utilization of
the third dimension gives an extra space for graph layout and allows to make more
complex and understandable hierarchical structures. All these advantages allow to
represent more complex graph data structure in an understandable format.

In this work I have implemented a 3D graph visualization system with an emphasis
on the exploratory search visualization goals. The application can be e�ectively used
for the complex data networks and supports the �learning and investigation� key ele-
ments of the exploratory search systems. The application can handle large graphs and
provide hierarchical graph layout supporting the better user orientation and hypotheses
generation based on the explored graph data structure. The interface and navigation
solutions allow to easily navigate by mouse clicks. The application is already used by
other projects (see section 2.9 in chapter 2).

Moreover, the implementations for new challenging goals listed in the last chapter
will make the complex search tasks easier and introduce collaboration and more native
techniques to the process. The 3D models for di�erent type of nodes will make an anal-
ogy to the manipulation with physical objects. The newest 3D graphics technologies
introduce dynamism and more native interfaces based on the analogies with outside
world. The new HCI solutions help users to involve more into the data exploration
process and provide an outstanding usability experience.

The 3D graph visualization can give a key to the innovative search systems. The
information is usually a network and data relations represent the main point of inter-
est. The 3D graph visualization systems focused on the data exploration can give a
renewed impetus to the classic search systems allowing to develop more complex algo-
rithms based on the graph theory and hypotheses control in the 3D graph visualization
software.

I plan to continue this project in a PhD program to implement part of the ideas
proposed in the last chapter.

44

3D graa� uurimine

Magistritöö (20 AP)

Dmitri Danilov

Kokkuvõte

Ühiskonna üheks suureks probleemiks on informatsiooni üleküllus ning sellest tulenevalt
on otsingutehnoloogia muutunud järjest olulisemaks. Teadlasi motiveerib arendama
aina intelligentsemaid otsingusüsteeme see, et informatsioon on tihti korduv ja vaja-
liku informatsiooni leidmine keeruline. Kui otsingu ülesanded sisaldavad rohkem kui
üht probleemi, siis on oluline arendada süsteem, mis suudaks koondada informatsiooni
ja lihtsustada kogu otsingu protsessi. Üks paljulubavatest uuringuvaldkondadest on
exploratory search (edaspidi uuriv otsing). Selle eesmärgiks on aidata otsijal õppida ja
uurida uurimisprotsessi käigus.

Antud magistritöö eesmärgiks on realiseerida uuriva otsingu visuaalne programm.
Valminud programm visualiseerib graa� ruumiliselt. Navigatsiooni ja kasutajaliidese
lahendused võimaldavad uurida graa� andmeid ja luua hüpoteese, mis baseeruvad
leitud andmetel ja andme struktuuridel. Programm joonistab graa� kasutades 2.5D
paigutust. Graaf on struktureeritud ja koosneb ringjatest tasapinnalistest alamgraa�dest.
Antud rakendus loob automaatselt klastreid (cluster) joonistamise käigus. Autori poolt
loodud programmi juba kasutatakse mõndades projektides ja seda on lihtne laiendada
teistele graa� andmetele. Autor leiab, et antud projekt on suure potentsiaaliga ning
tulevikus võib seda programmi e�ektiivselt kasutada keeruliste andmekogumite uurim-
iseks. Autor plaanib programmi edasi arendada doktorikraadi raames.

45

46

Bibliography

[1] blender.org - home. http://www.blender.org/.

[2] BRAINMAPS.ORG - Nodes3D graph visualisation tool.
http://brainmaps.org/index.php?p=desktop-apps-nodes3d.

[3] CAIDA walrus visualisation tool.
http://www.caida.org/tools/visualization/walrus/.

[4] Carnegie mellon's entertainment technology center. http://www.etc.cmu.edu/.

[5] Circular tree � NetworkX v1.1 documentation.
http://networkx.lanl.gov/examples/drawing/circular_tree.html.

[6] Console at nintendo :: Wii. http://www.nintendo.com/wii/console.

[7] Cube mapping - wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Cube_mapping.

[8] H3Viewer. http://graphics.stanford.edu/~munzner/h3/.

[9] HypView documentation.
http://graphics.stanford.edu/~munzner/h3/HypView.html.

[10] Interactive visualization of large graphs and networks.
http://graphics.stanford.edu/papers/munzner_thesis/.

[11] Managed library for nintendo's wiimote. http://wiimotelib.codeplex.com/.

[12] Microsoft DirectX. www.microsoft.com/windows/directx/.

[13] Models of the hyperbolic plane.
http://www.geom.uiuc.edu/docs/forum/hype/model.html.

[14] .NET-based wiimote applications - brian peek's blog - BrianPeek.com.
http://www.brianpeek.com/blog/pages/net-based-wiimote-applications.aspx.

[15] OpenGL - the industry standard for high performance graphics.
http://www.opengl.org/.

[16] Overview � NetworkX v1.1 documentation. http://networkx.lanl.gov/.

[17] Panda3D - free 3D game engine. http://www.panda3d.org/.

[18] The programming language lua. http://www.lua.org/.

47

[19] Red�shGroup - santa fe. http://www.red�sh.com/.

[20] Red�shGroup: 3D force directed graph layout.
http://www.red�sh.com/research/graphLayout.htm.

[21] Tamara munzner's stanford home page.
http://www.graphics.stanford.edu/~munzner/.

[22] WilmaScope. http://wilma.sourceforge.net/main.html.

[23] Wilmascope 3D graph visualisation system. http://wilma.sourceforge.net/.

[24] Interactorium release notes 1.0, 2009.

[25] A. Ahmed, T. Dwyer, M. Forster, X. Fu, J. Ho, S. H Hong, D. Kosch\ützki,
C. Murray, N. Nikolov, R. Taib, et al. GEOMI: geometry for maximum insight.
In Graph Drawing, page 468�479, 2005.

[26] T. Munzner. Drawing large graphs with h3viewer and site manager. In Graph

Drawing, page 384�393, 1998.

[27] shhong. Gallery of 2.5D graph drawings (VALACON project).

[28] E. Welzl. The number of triangulations on planar point sets. In Graph Drawing,
page 1�4.

[29] Ryen W. White and Resa A. Roth. Exploratory search: Beyond the
Query-Response paradigm. Synthesis Lectures on Information Concepts,

Retrieval, and Services, 1(1):1�98, 2009.

[30] Yose Widjaja and Yose Widjaja. Skyrails graph visualisation system blog.
http://cgi.cse.unsw.edu.au/%7Ewyos/skyrails/.

48

	Acknowledgments
	Introduction
	3D Graph Exploration
	The 3D Graph Visualization Software
	CAIDA Walrus
	Nodes3D
	WilmaScope
	SkyRails/Interactorium
	Redfish Solutions
	Data exploration property

	3D Graph Layouts
	Force-directed layout
	Hyperbolic space approach
	The 2.5D layout

	Implementation
	The application engine
	The application structure
	The scene graph
	Environment
	Graph Layout
	Camera
	Task manager
	User interface and navigation
	Practice and results

	Manual
	Customizable settings
	Extending the application
	Input CSV file format
	Installing a custom skybox

	Future Work
	Conclusion
	Summary (in Estonian)
	Bibliography

