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A New Heuristic Based Phishing Detection Approach Utilizing Selenium 

Web-driver 

Abstract 

Phishing is a nontrivial problem involving deceptive emails and webpages that trick unsus-

pecting users into willingly revealing their confidential information. In this paper, we focus 

on detecting login phishing pages, pages that contain forms with email and password fields 

to allow for authorization to personal/restricted content. We present the design, implemen-

tation, and evaluation of our phishing detection tool “SeleniumPhishGuard”, a novel heu-

ristic-based approach to detect phishing login pages. First, the finest existing technologies 

or techniques that have used similar heuristics we will be discussed and evaluated. The 

methodology introduced in our paper identifies fraudulent websites by submitting incorrect 

credentials and analyzing the response. We have also proposed a mechanism for analyzing 

the responses from server against the submissions of all those credentials to determine the 

legitimacy of a given website. The application was implemented in python programming 

language by utilizing Selenium web testing library, hence “Selenium” is used in the name 

of our tool. To test the application, a dataset from Alexa top 500 and Phishtank was col-

lected. All pages with login forms from the Alexa 500 and Phishtank were analyzed. The 

application works with any authentication technologies which are based on exchange of 

credentials. Our current prototype is developed for sites supporting both HTTP and HTTPS 

authentication and accepting email and password pair as login credential. Our algorithm is 

developed as a separate module which in future can be integrated with browser plug-ins 

through an API. We also discuss the design and evaluation of several URL analysis tech-

niques we utilized to reduce false positives and improve the overall performance. Our ex-

periments show that SeleniumPhishGuard is excellent at detecting login phishing forms, 

correctly classifying approximately 96% of login phishing pages. 

Keywords: 

Phishing detection, Heuristics, URL analysis, Login pages, Selenium, DOM, White-list, 

Web security 

CERCS: P170, Computer science, numerical analysis, systems, control 
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Uus heuristikal põhinev õngitsemise avastamine Selenium Webdriveriga 

Lühikokkuvõte 

Õngitsemine on oluline probleem, mis hõlmab endas petlike meilide ja veebilehtede kasu-

tamist, tüssates pahaaimamatuid kasutajad vabatahtlikult avaldama konfidentsiaalset infor-

matsiooni. Antud uurimustöö põhifookuseks on avastada õngitsemise veebilehti, mis kasu-

tavad identifitseerimiseks meili ja salasõna, et pääseda ligi personaalsele või piiratud sisule. 

Töös esitletakse  SeleniumPhishGuard rakenduse kasutusmugavust ning analüüsitakse selle 

uudse heuristilise lähenemisega programmi võimalusi ja tulemusi õngitsemise lehekülgede 

tuvastamisel. Esmalt hinnatakse ning diskuteeritakse olemasolevate parimate tehnoloogil-

iste lahenduste ning meetodite üle, mis kasutavad sarnast heuristikat. Selles magistritöös on 

kasutatud metoodikat, mis identifitseerib võltsveebilehed, sisestades vormi vigased andmed 

ning analüüsides saadud vastust. Lisaks serverist saadud andmevahetusele pakume metoodi-

kat, mis määrab veebilehe legitiimsuse teiste põhimõtete järgi. Rakendus on realiseeritud 

Pythoni programmeerimiskeele,s kasutades Selenium veebi testimise raamatukogu. Sellest 

tulenevalt on ka programmi nimes viidatud Seleniumile. Rakenduse testimiseks on kasu-

tatud Alexa top 500 ja Phistank andmebaase. Kõiki sisselogimise vormiga veebilehti Alexa 

500 ja Phistank andmebaasides töödeldi ja analüüsiti kasutades antud rakendust. Rakendus 

töötab kõikide identifitseerimistehnoloogiatega, mis põhinevad isikuandmete vahen-

damisel. Praegune prototüüp on välja töötatud lehtedele, mis toetavad nii HTTP kui ka 

HTTPS audentimist ning aktsepteerivad isikuandmetena meili ja parooli. Algoritm on välja 

töötatud iseseisva moodulina ning tulevikus on võimalik seda integreerida veebilehitseja 

lisana läbi API. Lisaks olemasolevale metoodikale on hinnatud ja uuritud erinevate URL 

analüüside tehnikaid, mida kasutati vale positiivse info vähendamiseks ning soorituse paran-

damiseks. Katsetused näitasid, et SeleniumPhishGuard rakendus on hiilgav tööriist 

avastamaks õngitsemise vorme. Rakendus suutis tuvastada ligikaudu 96% sisselogimisega 

õngitsemislehtedest 

Võtmesõnad: 

õngitsemise avastamine, heuristika, URL analüüsid, sisselogimise lehekülg, Selenium, 

DOM, valge-nimekiri, veebi turvalisus 

CERCS: P170, Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimiste-

ooria) 
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1 Introduction 

Detection and prevention of phishing attacks are big challenges as the phisher per-

forms attacks to bypass the existing anti-phishing techniques. An educated and experienced 

user may still fall this attack. The attacker makes a fake yet similar webpage by copying or 

making a little change in the legitimate page, so that an internet user will not be able to 

differentiate between the real and the phished one. One of the effective solutions to prevent 

a phishing attacks is to integrate security features with the web browser to raise alerts when-

ever a phishing site is accessed by an internet user. Generally, web browsers provide security 

against phishing attacks with the help of list-based solutions. 

The list-based solutions contain either black-list or white-list. These solutions match 

the requested domain with the domains present in a list and take suitable decision. A com-

bination of technical experts and security software verify when a new domain needs to be 

added in this list. Security software checks the various features of a webpage to verify its 

legitimacy. 

 

Figure 1. Phishing life cycle 

 

1.1 Phishing Life-cycle  

1. The phisher clones the content from the website of a legitimate company or a bank 

and generates a phishing website. The phisher tries to keep the visual similarity of 

the phishing website to the corresponding legitimate website to trick more users (see 

Figure 1). 

 

2. The phisher sends an email including the link of the phishing website to it to his 

victims. In the case of spear phishing, a mail is sent to individual targeted victims. 

 

3. When the victim opens the email, and visits the phishing website, the phishing web-

site prompts the victim to insert private data, for example, if the phisher copycats the 
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phishing website of a famous organization, then the users of organization are ex-

pected to willingly reveal their private credentials to the phishing website. 

 

4. The phisher receives private data of the victim via the phishing website and utilizes 

this data for financial or some other benefits which will be discussed in detail is in 

the background section. 

In order to provide dataset for out tests, Alexa database, which contains the top 500 

visited pages, was used to collect legitimate pages and Phishtank was used to collect phish-

ing pages. During analysis of dataset (1) shown in Table 2 in the data collection section. We 

observe that 56% of the Alexa database domains contains pages with a login form. Phishers 

mimic the pages with login forms to steal credentials for financial gain or identity theft. The 

significance of phishing websites is shown as 60% of the dataset of live phishing pages 

collected in this research contain login forms.  

 In this paper, we focus on finding new techniques to detect login phishing pages. 

Login pages are pages which contain a form with an email/user password combination input 

fields as shown in Figure 2. Once the form is submitted the credentials are transferred to the 

backend servers to provide authentication. This login page can be significantly important if 

it is the gateway to a bank account, online wallet or just an email which can be used as an 

identity as described before.  

The nature of phishing relies on the naivety of computer users in accordance to their 

dealings with electronic communication channels, for instance web browsing, e-mail and so 

on. Due to its nature, it is a nontrivial task to be solved eternally and hence, the entire exist-

ing technology can only attempt to diminish the impact of phishing assaults. Phishing is a 

language-based attack, which utilizes communication channels to convey content in human 

readable languages. Computers have an enormous complication in precisely understanding 

human readable natural languages. Phisher introduces new phishing techniques that cannot 

be either detected by humans or software. Hence, the challenge here is that the mitigation 

techniques must always be improved. 

 

Figure 2. Login page with email and password fields 
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One of the biggest challenges in the security field is the zero-hour phishing attack. 

A zero-hour vulnerability denotes to a gaping hole in anti-phishing technique that is still 

unknown to the vendor. This security gaping hole is then exploited by attackers before the 

vendor detects the vulnerability and rushes to fix it. Embedded objects: The legitimate 

webpage is downloaded to create the phishing webpage which mimic a genuine webpage 

only in appearance. Hackers obfuscate the address bar by using an image or script which 

makes the victim trust that they are viewing the legitimate website. Phishers similarly utilize 

the embedded objects (flash, images, etc.) instead of HTML codes to avoid phishing detec-

tion techniques. 

PhishGuard is a phishing detection tool optimized to detect phishing login pages by 

injecting fake credentials and analyzing the HTTP response from the server. The main chal-

lenge for PhishGuard was classifying HTTPS pages. Normal HTTP pages reply to request 

with what is called HTTP server status codes. For example, 200 status code is returned when 

successful and 404 is returned when page requested is not found. There are codes that are 

special for HTTP authentication, if user is authenticated, the server returns 200 ok, if no 

successful authentication then server code 401 will be returned. In case of HTTPs, the be-

havior is different. The server usually return status code 200 ok, In case of authentication 

success or failure.  

In this paper, we describe some common characteristics of recent web phishing at-

tacks and the recent effective heuristics used by detection tools. Moreover, we are proposing 

a new methodology to detect phishing login webpages using heuristics similar to Phish-

Guard, SeleiumPhishGuard uses domain name, URL, link, and tests the login form shown 

in “Figure 2” to evaluate the likelihood that a given page is part of a phishing attack. For 

example, a page with a URL such as “http://suspicous.URL.com@127.0.0.1/phish.asp”. 

The URL will be tested against some heuristics rules specified in this paper and the 

will be given a certain score. If the score is higher than the threshold then the URL will be 

classified as phishing. If the score is lower than if the page contains login form then fake 

credentials will be injected and form will be submitted for an n number of times. Seleni-

umPhishGuard will classify the page depending on the response. If the credentials are re-

jected then the website will be classified as legitimate, if not, then the website will be clas-

sified as phishing. 
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2 Background 

2.1 History of Phishing 

Phishing according to the APWG – (Anti phishing working group) in the phishing 

activity trends report - 1st quarter of 2016, which was published on May 23, 2016 is a “crim-

inal mechanism employing both social engineering and technical subterfuge to steal con-

sumer’s personal identity data and financial account credentials. Social engineering schemes 

use spoofed e-mails purporting to be from legitimate businesses and agencies, designed to 

lead consumers to counterfeit websites that trick recipients into exposing financial data such 

as usernames and passwords. Technical phishing schemes plant crime-ware onto PCs to 

steal credentials directly, often using systems to intercept consumers online account user 

names and passwords. Moreover, phishing schemes corrupt local navigational infrastruc-

tures to misdirect consumers to counterfeit websites (or authentic websites through phisher-

controlled proxies used to monitor and intercept consumers’ keystrokes)” [1].  

Phishing scams commonly use spoofed websites and emails as decoy to prompt peo-

ple to willingly hand over sensitive information such as login credentials or bank infor-

mation. The term “phishing” is frequently used to express these ploys. Fishing is an activity 

to try catching fish by using bait. However, “ph.” used in place of the “f” in the spelling of 

the term as some of the first hackers were recognized as phreaks [1].  Phreaking refers to 

the examination, experimenting and learning of telecom systems. Furthermore, both Phreaks 

and hackers have always been closely linked. The “ph.” spelling was used to link phishing 

scams with these underground communities [1].  

According to Phishing.org, January 2, 1996 was the earliest time that the term 

“phishing” was used. The state occurred in a UseNet newsgroup called alt.online-service. 

America-online. It is fitting that it was made there too; AOL or America Online is where 

the initial boost of what would become the major cybercriminal problem ever to occur. Back 

then when America Online (AOL) was the top provider of Internet access, enormous amount 

of people logged on to the service each day. In addition, its popularity made it a natural 

choice for those who had less than pure motives. From the start, hackers and others who 

traded pirated software used the service to communicate with one another [2].  

Phishing has developed dramatically since its America online show day. Phishers 

started paying attention to online payment systems. Although the first attack in June 2001, 

which was on E-Gold, was not measured to be victorious, it was the building block to what 

came later. In the last quarter of 2003, phishers registered hundreds of domains that appear 

to be legitimate sites like eBay and PayPal. Phishers used adopted worm programs to spread 

spoofed emails to PayPal or eBay customers. Victims were redirected to spoofed sites and 

prompted to update their credentials, credit card information and other identifying infor-

mation [2]. 

 

2.2 Significance of Phishing 

The APWG or Anti-Phishing Working Group reported that there are more phishing 

attacks in the first quarter of the year 2016 as more than in any other quarter ever since it 

started tracking and reporting data in the year of 2004, according to the anti-cybercrime 

coalition's first quarter phishing activity trends report. In keeping with those statistics, the 

APWG reported that the amount of phishing websites it detected rose hysterically by 250 

percent within the period of just October 2015 to March 2016 (see Figure 3) [1].  
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Figure 3. Unique Phishing sites detected October 2015 - March 2016 from APWG Trends 

report 

 

Figure 4. Phishing reports received January - March 2016 APWG Trends report 

The amount of zero-day phishing reports submitted to APWG during last quarter of 

2016 was 557,964. The number of unique phishing reports submitted to APWG saw a dra-

matic raise of almost 130,000 in precisely two months’ period (See Figure 4) [1].  

In order to have a broader perspective, statistics from Statistica.com which is online 

statistics, market research and business intelligence portal, shows a statistic that provides 

data on the amount of international unique phishing domain names as of the second quarter 

of 2016 (see Figure 5). As of the last tracked quarter, 466,065 unique phishing sites were 

detected, up from 289,371 zero-day sites in the preceding quarter [3].  
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Figure 5. Number of unique phishing sites detected worldwide from 3rd quarter 2013 to 

2nd quarter 2016 

  

 It is apparent from Statistica’s graph above, that the general number of phishing 

websites. In fact, the number of unique zero-day phishing websites is increasing dramati-

cally [3]. Around 80% of people who are exposed to phishing fall victims for it according 

to a study to CBS News when it teamed up with Intel Security. The test was intended to 

examine their capability to detect phishing emails designed to steal their information [4]. 

More than 19,000 individuals around the globe from 143 different countries have taken the 

test. Intel’s test displayed 10 real emails sent to inboxes and extracted by analysts at McAfee 

Labs, which was division of Intel’s Security. A handful of emails were legitimate corre-

spondences from global companies, while many others were just phishing emails that look 

tremendously realistic and convincing. However, from all the 19,458 individuals who have 

taken the test, unfortunately the greater part, around 80% fell for no less than one of the 

phishing email from the ones they were presented. Only 3% has achieved an ideal score [4]. 

When compared to the earlier version of the test, where around 97% of participants opened 

at least one phishing email, 80% is not a striking decline, nevertheless certainly improved 

[5]. 

 

2.3 Motives for Phishing 

According to S. Sharma et. al. [6], the primary motives behind phishing attacks, from 

an attacker’s perspective are: 

Financial Gain:  

Sharma indicated that financial gain is the leading motive regarding phishing 

as different researches indicated that main victims of phishing attacks were the 

financial institutions. A phishing attack against any money related institution in-

volves destroying the brand of the association. According to Shivangi, the widely-

used technique is developing a phishing website page where phishers ask authori-

zation to access the account details of a victim.  
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Identity Hiding:  

Phishers steal identities and either commit a fraud related crime by means of 

these identities or sell them for financial gain to criminals who acquire and utilize 

stolen identities to hide their own. 

 

Fame and Notoriety:  

Peer recognition in this case is the primary motive where phishing attacks 

are initiated by persons who mainly want to gain recognition and acknowledgment 

among their colleagues. This is a tremendously psychologically driven aspect of 

phishing, wherein data is phished not for financial benefit, but rather just with the 

end goal of picking up consideration and greatness in the online group. 

 

Malware Distribution:  

This assault occurs by distributing malware by means of phishing messages 

that are sent in bulk and therefore, zombie networks are the most suitable to trans-

mit large phishing assaults. These messages enclose malicious links which, when 

clicked by an inexperienced customer, results into malware spreading over the vic-

tim’s machine. 

 

Harvesting Passwords:  

Phishers perform this raid using diverse methods. For instance, key loggers 

and additional malware like Man in the Browser (MITB) attack. Data gathered from 

client is either used once more for financial benefit, identity hiding, fraud or sold to 

attracted parties for fiscal gain. 
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3 Literature Review 

3.1 Existing Mitigation Methodologies 

The broader perspective to view the phishing problem mitigation techniques will 

provide us with only two options, end-user awareness and education where end-users are 

trained on how to correctly identify phishing to improve one’s own detection level to ap-

propriately identify and report phishing and the other solution where software is utilized to 

classify and identify phishing with a little to no human interaction. In this paper, the focus 

will be primarily on software solutions. 

The phishing detection literature survey which was published in IEEE Communica-

tions Surveys & Tutorials in 2013[7] highlighted that there are classically 4 major software 

approaches to mitigate phishing by the aid of software: 

• Blacklists 

• Heuristics 

• Visual similarity  

• Machine learning 

 

3.1.1 Blacklists 

Phishing detection by blacklists is the oldest and most widely-used phishing detection 

mechanism till this very day. Typically, it is client-server application where blacklist data-

base is hosted on the server and connected to a client application which queries the database 

whenever the user opens a URL. The major drawbacks of blacklists are privacy and inability 

to detect unique zero-hour phishing websites. However, blacklists are considered to have 

faster detection rate than heuristics, visual similarity and machine learning and have a lower 

false positives rate than heuristics [8]. Steve Sheng in his study called ‘An Empirical Anal-

ysis of Phishing Blacklists’ [8] where among his team, they collected 191 zero-hour phish-

ing pages that were live in less than 30 minutes. Blacklists were considered unsuccessful 

when defending end-users primarily, as most of them detected less than 20% of phishing 

websites at zero-hour. The study [8] also highlights an enormous delay of 12 hours before 

47% to 83% of phishing URLs were blacklisted. The common life time for 63% of phishing 

campaigns before it ends is two hours, which makes this enormous delay is a momentous 

concern [8].  

3.1.2  Visual Similarity 

In [9] and [10] phishing detections approaches based on heuristics check common 

properties of phishing sites such as unique keywords used in URLs or web pages to identify 

zero-day phishing websites. Nevertheless, these types of heuristics will be effortlessly by-

passed by attackers once their mythology is exposed. Visual similarity-based detection tech-

niques have been proposed to circumvent this limitation. Since phishing web pages must 

imitate victim sites, visual similarity between phishing sites and their target sites is alleged 

to be an inherent and not simply concealable property. However, these techniques require 

images of real target sites for detection. In [9] it was proposed to use a phishing detection 

mechanism based on visual similarity among phishing sites that imitate the same target web-

site. It was claimed that Just by analyzing visual similarity among web pages without a 

previous information, the method automatically extracts 224 different web page layouts im-

itated by 2,262 phishing sites. However, it achieves a detection rate around 80 % while 

maintaining the false-positive rate to 17.5 %.  
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3.1.3 Machine Learning Approaches 

Phishing detection by Machine learning approaches will be discussed in this section. It 

will not be covered in detail, but more of a comparative analysis of most existing approaches 

that uses heuristics similar to the ones that are used in this research. 

 

a. CANTINA+ 

CANTINA+ is a proposed a page content-based anti-phishing technique which calcu-

lates webpage content’s (TF-IDF) or term frequency-inverse document frequency 

[11]. CANTINA+ is an upgraded version of CANTINA which as well utilizes extra 

features from URL, HTML DOM (Document object model), third party services, 

search engine and trained these features using SVM (Support vector machine) to detect 

phishing attack. True positive rate of CANTINA+ is 92% and low false positive rate 

is 0.4% [12].  

b. Associative Classification data mining 

The approach proposed by Neda Abdelhamid et al [13] using Multi-Label Classifier 

based Associative Classification (MCAC) method for website phishing. Associate 

classification is successfully detecting phishing websites with high accuracy. Further-

more, MCAC is utilized to produce novel rules and it also improves its classifiers 

anticipation performance. Neda relies on various rules related to URL analysis, redi-

rect, DNS records, Age of domain and website traffic According to Neda, The accu-

racy ranges between 94%-95% 

c.  Classification mining techniques 

Maher Aburrous presented a methodology based on Classification Data Mining (DM) 

for detection on e-banking phishing websites. Aburrous has implemented six different 

classification algorithms (C4.5, JRip, PART, PRISM, CBA and MCAR) to measure 

the performance and accuracy on each of algorithm, however the downside of this 

algorithm is that the false positive rate is very high (13%) [14].  

d. SVM-based techniques to detect phishing URLs 

H Huang [15] et proposed an approach based on the URL based features. They have 

taken 23 features from URLs and train the system using SVM. System takes decision 

based on lexical and brand name features of URL by comparison with the top 10 brand 

name websites. It is claimed that this approach has an accuracy of 99% on average 

when tested with URLs downloaded from PhishTank database. 

 

V. Ramanathan [16] presents a strong technique to detect phishing websites by means 

of semantic analysis a topic modeling technique, a natural language processing tech-

nique Latent Dirichlet Allocation, and AdaBoost used for classification. The mere ad-

vantage of using this methodology is that it is both device and language independent. 

The technique uses a web-crawler which utilizes Google’s language translator to trans-

late pages to English. Topic model is created by means of the translated contents of 

desktop and mobile clients.  
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In addition, the web-crawler impersonates a regular human behavior using the 

browser. The classifier for phishing websites is developed using distribution probabil-

ities for the topics found as features using LDA or Latent Dirichlet Allocation and 

AdaBoost voting methodology. Tests were carried out on 47500 phishing websites and 

52500 legitimate websites. Results have shown phishing detection accuracy of 99%.  

 Garera et al. [17], presented a methodology based on phishing URLs discussed the 

four different kinds of obfuscation techniques of phishing URLs.  

I. Obfuscating the Host with an IP address. 

Hostname is swapped with an IP address, and typically the party 

being phished is placed in the path. Currently the IP address 

expressed in decimal or hex rather than the dotted quad form. 

 

II. Obfuscating the Host with another Domain. 

URL’s hostname contains a valid looking domain name; how-

ever, the path includes the party being phished. This type of as-

sault often aims to mimic URLs accommodating a redirect so 

that it seems legit. 

 

III. Domain unknown or misspelled. 

In this case, there is no obvious connection to the association 

being phished or the domain name is mistyped. 

 

IV. Obfuscating with large host names. 

This type of assault uses the party being phished in the host 

however; it adds a long string of domain and words after the 

host name. 

In the presented work, a range of URL features and suspicious keywords found in URL 

were extracted along with some addition and modification of this technique. The av-

erage accuracy for this technique was 97.31%. 

Gowtham et al [18] proposed using heuristics on 15 extracted features from Webpages. 

Results were used as an input to a trained machine learning algorithm to identify phish-

ing sites. Prior to deploying heuristics to theses webpage’s, two main classifying mod-

ules were utilized in this system. The first module checks site identifier and Webpages 

against a white-list. The second module is a Login Form Finder that extracts the 

HTML DOM from the page, arranges and divides web pages as legitimate when there 

are no login forms found. These modules used to decrease the unnecessary computa-

tions by the system and hence minimizing the rate of false positives without affecting 

the rate the false negatives. This technique identifies web pages with a 0.4% of false 

positive rate and 99.8% overall precision.  

There are other more techniques regarding machine learning yet they are out of scope 

or the interest of this research since the heuristics or methodologies used by these ma-

chine learning techniques are not closely related to our tool. 
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3.1.4 Phishing Detection by Heuristics 

 In [7], Phishing detection by heuristics is defined as Software which is deployed on 

the server or client side to inspect payloads of different protocols via diverse algorithms. 

Protocols include HTTP, SMTP, POP3 or any arbitrary protocol. Moreover, Algorithms 

could be any method to identify or stop phishing assaults. Furthermore, Phishing heuristics 

are properties that are considered to exist in phishing assaults in real life, nevertheless these 

properties are not always assured to exist in such attacks. Hence, if a set of universal heu-

ristic examinations are recognized, it might detect zero-hour phishing attacks, which is an 

advantage against blacklists. Since blacklists require exact matches to identify phishing 

websites, the precise same phishing attacks need to be examined first to blacklist them. Nev-

ertheless, such widespread heuristics also carry the risk of misidentifying legitimate web-

sites (False Positives). Recently, Global mail clients and web browsers are developed with 

phishing protection technologies, such as heuristic based detectors that help at identifying 

phishing attacks. Furthermore, the clients include but not limited to Internet Explorer, MS 

Outlook, Mozilla Firefox and Mozilla Thunderbird. In addition, phishing detection heuris-

tics is included in Anti Viruses (i.e. claimAV1) [7].  

 

a. Spoof Guard: 

Possibly one of the closest heuristic based techniques to the one used in this paper and 

thus will be discussed in detail. Spoof-Guard 2 a web browser add-on build by Stanford 

University, identifies HTTP/HTTPS based phishing attempts as a web browser plug-in, by 

measuring assured anomalies found in the HTML content against a defined threshold value. 

[19] The plug-in screens and filters a user’s Internet activity, calculates a spoof index, and 

alerts the user if the index exceeds a certain level adjusted by the user. The current level of 

detection accuracy and precision may be adequate to assist unsophisticated web users.  

Spoof-Guard analyses domain name, URL, link, and image checks to compute the 

likelihood that a current page is part of a phishing attack. Spoof-Guard as well utilizes user 

search history, such as if the user has visited the domain before and if the referring page 

was from an email site such as Gmail or Hotmail. Spoof Guard intercepts and computes 

user posts considering related history and the spoof index of an HTML form submitting 

page. After, it will examine post data ‘user name’ or ‘email’ and ‘password’ fields and 

compares posted data against previously entered passwords from different domains [19]. 

This technique alerts the user when sending his/her password to a site with a logo but out-

side the domain, for example. In addition, passwords matching is carried out using a cryp-

tographically secure hash, and thus passwords in plaintext are by no means stored by Spoof-

Guard [19].  

Since distinct sites have special input field names for user ids and passwords, 20 

usernames and 10 passwords combinations are predefined in Spoof-Guard. These combi-

nations are utilized to detect sensitive data in the obtained post data structure. These prede-

fined names are utilized by various major bank forms, commercial sites such as Amazon 

and eBay. Spoof-Guard at present cannot differentiate username and password combina-

tions with a different input field names [19].  

 

                                                 
1 www.claimav.net 
2 https://crypto.stanford.edu/SpoofGuard/ 
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b. PhishGuard 

The closest technique to the one proposed in this research. The proposed algorithm in 

[20] was considered as a novel algorithm at that time. The methodology’s main target is to 

detect a phishing website by injecting fake credentials before the user inputs correct cre-

dentials in a login form of a website. In addition, it was also presented to utilize a mecha-

nism for screening the server response against the submissions of these submitted creden-

tials to decide if the web page is legitimate or not. Although the idea is nonspecific and 

works with any authentication technologies that are based on submission of any credentials, 

the current prototype is developed for sites utilizing HTTP Digest authentication and ac-

cepting user-id and password combination as credential. Furthermore, method is built 

within a browser as plug-in for Mozilla Firefox  

The proposed methodology in [20] works as follows: 

1. The user visits a page with a login from. 

2. User submits his/her login credentials. 

3. PhishGuard will trap the credentials and will send fake credentials instead for a n 

random number of times 

4. If the page responded with ‘HTTP 200 OK message’, then it means the page is a 

phishing page, and is simply returning fake authentication success messages. 

5. If the page responded with ‘HTTP 401 Unauthorized message’, then will possi-

bly be: 

i. Legitimate website. 

ii. Phishing websites and blindly replies HTTP 401 Unauthorized message 

6.  To detect if the website is legitimate or not, PhishGuard sends the correct cre-

dentials to the website for the n + 1 time. 

 

7.  If the server responds with a ‘HTTP 200 OK message’ after the login form sub-

mission,  

i. Then the site is considered legitimate. 

 

8.  If the server responds with a ‘HTTP 401 Unauthorized message’, then it leads to 

two possibilities:  

i. The web page is a phishing page that indiscriminately replies with failure 

authentication messages. The drawback here is that the correct login cre-

dentials of the user were submitted to the phisher. Obviously, this 

method only prevents password theft for a subset of phishing websites. 

ii. The user submitted the wrong password. 

 

9.  PhishGuard came up with an idea to guarantee that the submitted password is 

not a wrongly mistyped password by the user, PhishGuard stores password 

hashes and validates future login against it: 
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i.  If the hash of the password submitted matches any hash value previously 

stored by phish guard, then the password was correct, and  

ii. The site is considered as a phishing website. 

iii. If no match was found, then PhishGuard concludes the user mistyped the 

password, and an alert will be generated to correct the informing the user 

that the submitted was not correct. 

The drawback of this methodology is when tested with secured site (i.e. HTTPS) us-

ing user-id/password as credential as that the response to authentication failure mes-

sage is as same as “200 OK” along with a redirected page with appropriate infor-

mation alerting user of authentication failure. In this paper, a methodology to over-

come this problem will be proposed. 

c. PhishWish 

Although, PhishWish is used to detect spam emails, yet the approach is like the one 

used in this research, therefore it is covered in this section.  In [21], only 11 heuristic 

rules were presented to determine whether an incoming email is a phishing message. 

The presented solution aims toward providing: 

▪ Far better protection against zero-hour attacks than blacklists while uti-

lizing relatively negligible resources (11 rules) 

▪ URL that fall within the email’s body and email headers are analyzed 

The email is considered as phishing if: 

1. If a URL is a page with a login form that is not a business’ real login page, the 

result is positive. PhishWish will utilize search engines and to get the business’ 

real login page. 

 

2. If the email has HTML content, and the included URL uses (TLS) Transport 

Layer Security, whilst the authentic (HREF) attribute - Hypertext Reference 

does not employ TLS. 

 

3. If the host-name part of a URL is an IP address. 

 

4. If an organization’s name (e.g. Amazon, PayPal) is in the URL path but does 

not exist in the domain name. 

 

5. If the HREF attribute contains a different domain name than the displayed do-

main name 

 

6. If the SMTP header received does not contain the organization’s domain name 

 

7. If a non-image URL’s domain part has obvious inconsistencies. 

 

8. If deviations are found in WHOIS records from non-image URL’s domain part. 
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9. If deviations are found in image URL’s domain part. 

 

10. If deviations are found in WHOIS records of image URL’s domain part 

 

11. If the page is not accessible or down. 

The weighted mean of all the 11 rules is calculated as the score which is used to foresee 

a class for the email depending on the score against a threshold.  

 For example, let’s assume that all rules have equal weights, if the score of a given e-

mail is ≥ 50% then it is predicted to be phishing, or legitimate if otherwise. 
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4 Methodology and Implementation 

Our approach is to build a client-side application with automatic real-time phishing de-

tection mechanism based on white-lists as shown in Figure 6. The application will inject 

fake credentials to login pages and check the response of the website. This approach is quite 

similar to the PhishGuard’s [20] approach which was discussed in section 3 “literature 

view”. Phishing login pages are designed to lure victims into willingly giving their creden-

tials. However, Phishing websites has no information regarding the victim’s real credentials. 

Hence, it is expected to have one of the following scenarios: 

a) Phishing website shows a success message. 

b) Phishing website redirects to another website. 

c) Phishing website shows a failure message. 

d) Phishing website shows the same login page again. 

 

 

Figure 6. Methodology 

 

4.1 Methodology 

 

1. User visits a website as shown in Figure 6. 

2.  URL and Domain analysis module checks if the website is in the white-list. 

3. If the domain name is found, then the website is legitimate. w 

4. If no domain is found in the white-list, the URL and Domain analysis module will 

check the following properties of the URL: 

a. Domain creation date < 365 days 
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b.Domain expiry date< 180 days 

c. No domain exists in WHOIS  

d.Number of Dots in the URL > 5 

e. Special character “@” in the URL. 

 

5. Each property will have a certain weight, for simplicity let’s assume all properties 

have equal weight of value 1. 

6. The sum weights will be computed, assume that all properties exist, then sum will 

range from 0 to 5 depending in which property exits. 

7. The sum of property weights will be compared with a specified threshold let’s assume 

3 and if sum is greater than 3 then URL will be classified as phishing.  

8. The Phishing identification module will inject n number of fake email password com-

binations. 

 

a. The phishing detection module will detect all the input text fields 

with type attribute (email) or name attribute (email, user, username, 

Id and userid). 

b.The module will inject the input text fields with fake credentials and 

wait till page loads. 

i. If the page loads with no password fields then it is considered 

as phishing. 

ii. If the page redirects to another website then it is considered 

as phishing. 

iii. If the page reloads with an input text field of type password, 

then the application will inject more fake credentials for n 

number of times. 

iv. If the password field still exits after n number of trials, then 

the page will be considered as legitimate. 

4.2 URL And Domain Analysis Module 

The purpose of the URL and domain analysis module is to minimize the rate of false 

positives and reduce analysis time. The URL and domain analysis module act as a filter for 

URLs that are clearly not legitimate before testing with the phishing identification module. 

Our filter consists of heuristics presented in the Table 1 below. These heuristics were used 

by CANTINA [11]. 

 There are many algorithms available to determine the best weights for the heuristics 

shown in the table below. However, for simplicity forward linear model will be used. 

Equation 1. Simplified Classifier Score Function 

𝐶 = 𝑡ℎ𝑥 (∑ 𝑤𝑒𝑖  ×ℎ𝑒𝑖) 
(1) 

 

ℎ𝑒𝑖 → Heuristic variable, integer {0 or 1} 
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𝑤𝑒𝑖 → Weight of a certain heuristic, integer 

𝑡ℎ𝑥 →  threshold function where "𝑥" is the threshold value , binary 

𝐶 → Our classifier function, binary 

 

Table 1. Heuristics for the URL and domain analysis module 

Heuristic Suspected phishing? 

Domain creation date <= 365 days 

Domain expiry date <= 180 days 

’@’ in URL >=1 

‘-’ in URL >=1 

Dots in URL >=5 

WHOIS  No entry for domain 

 

The next step is to calculate the weight for each heuristic. Fundamentally, the more 

effective the heuristic, the higher the weight it acquires. Preferably, the heuristic with high 

weights have high accuracy in detecting phishing sites while also having a low false posi-

tive rate. 

To measure the effect of a heuristic, the difference between true positives and false 

positives is calculated. This is a straightforward approach which is like the one used in an-

other report on anti-phishing toolbars [22]. We calculate each weight proportionally, that 

is: 

Equation 2.  Heuristic weight calculation function 

𝑤𝑒𝑖 = 𝑟𝑜𝑢𝑛𝑑(
𝑇𝑃𝑅𝑖 − 𝐹𝑃𝑅𝑖

10
)   

(2) 

 

Equations 1, 2 were used to determine the best weights for each heuristic. We used 

100 phishing URLs chosen from PhishTank and 100 legitimate pages from Alexa top 500 

database. The 200 URLs are different languages sites to ensure integrity. different threshold 

values were used for testing. The highest achieved accuracy 96.66% occurred when thresh-

old value x = 8.  

The URL analysis module checks a URL using the heuristics. The module will parse 

a given URL and extract the domain. WHOIS database will be queried using the extracted 

domain for the domain creation date and expiry date. Each heuristic rule will be checked 

and the sum of their weights will be calculated. The classifier will compare the sum with 

the threshold of value 𝑥 =  8, 𝐶 = 1 if x > 8 and in this case the page is classified as phish-

ing and 𝐶 = 0  if x > 8 and in this case, the page is classified as legitimate (see Figure 7). 
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Figure 7. URL and Domain analysis module activity diagram 

 

4.3 Phishing Identification Module 

Webpages are being fully tested and classified by the phishing identification module. 

The phishing identification module tests login pages by filling the login fields with fake 

credentials multiple times and based on the response, the page will be classified as phishing 

or legitimate. The phishing detection module is written in Python and utilizes Selenium web 

driver. Selenium is used to simulate normal user behavior (button clicks, text insertion, form 

submission, drag and drop). In addition, Selenium renders the webpage by utilizing many 

browsers (Firefox, Chrome). This is useful since tests are performed on browsed fully ren-

dered pages. The module will use Selenium to test a given URL. However, before Selenium 

starts with testing the webpage, the application will check if the domain is in the white-list 

by querying our stored white-list in MongoDB3 database. If the database has no entry for 

the current domain, it will continue testing the URL. 

SeleniumPhishGuard in our case utilized Mozilla Firefox web browser for rending 

and testing pages. After the webpage is requested and fully loaded, the web driver will start 

                                                 
3 https://www.mongodb.com/ 

https://www.mongodb.com/
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searching for all fields with input tag name. For example, the Figure 8. contains an HTML 

two input element fields with attribute type email and password which we are looking for 

in a page.  

<input type="text" type="email" name="email"> 

<input type="text" type="email" name="password">  

Figure 8.  HTML elements with input tags example 

In case if there are no fields with input tag name, the page is not considered for this 

test and the URL is logged to our logging database “InfluxDB4”. On the other hand, if the 

input tag name exits, the application will then filter and extract all input tag names with 

attribute type or name that contains ‘email’, ‘user’, ‘username’, ‘userid’ and ‘password’ 

using their XPaths.  

Here is an example of the XPath of HTML input tag names with type attribute set to pass-

word. Any password field in any webpage will have the same XPath (see Figure 9). 

"//input[@type='password']"  

Figure 9. example of XPath of a password field 

In case if there is no password field or input field in general, the current page will be 

considered as page with no login form and will not eligible for this test. The application will 

use a list of hardcoded predefined emails (see Figure 10) and passwords to test the URL 

with the following list of fake emails and some generic random password. 

 emails = ['first.last@name.com', 'bla@bla.com', 'python@great.com','happy@best.com']  

Figure 10. Sample of email list used for testing 

As shown in Figure 11. the web driver will insert the first email ‘first_email@do-

main.com’ and password and will simulate the Enter Key stroke as if performed by the user. 

The application will then wait for the server response and will check if a password field 

exists, if it exists then web driver will continue with submitting the form with the next fake 

email address in the list ‘next_email@domain.com’ and so on until the list finishes. In every 

iteration SeleniumPhishGuard will check if the login form exits, if password field no longer 

exits during or after the test (see Figure 12). The current domain will be considered as phish-

ing as the normal behavior for a legitimate website with a login page which submitted with 

fake credentials is to re-display the login form again to the user with an error message and 

thus a password field must exit always for a webpage to be considered as legitimate. 

                                                 
4 https://docs.influxdata.com/influxdb/v1.2/ 

 

https://docs.influxdata.com/influxdb/v1.2/
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 Figure 11. Phishing Identification module sequence diagram 
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Figure 12. Phishing Identification module activity diagram 
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5 Data Collection Process 

5.1 Phishing Pages’ Scrapper  

Two different scrapers were used to collect dataset for our tests. Ruby based scraper 

for scrapping phishing pages is implemented using Marlonso’s5 Phishtank scraper ruby 

module. The scrapper will fetch and extract data from the first 50 pages from Phishtank. 

Phishtank displays data in from of HTML table as shown in Figure 13. The scrapper will 

only scrap data if the last cell in the row contains ´ONLINE´ as HTML element content.  

 

Figure 13. Phishtank page layout 

 

The scraper will extract all cells (id, URL, created_at, submitted_by, valid and 

online) and export it to JSON format (see Figure 14) which will be later used in our tests 

(see Figure 15). The scraper will scrap Phishtank website however, we are only interested 

in phishing pages with login forms. This will be filtered in Phishing identification module. 

This scraper was used to scrape dataset (1) shown in Table 2. 

                                                 
5 https://github.com/marlonoso/phishtank_scraper 

 

 

https://github.com/marlonoso/phishtank_scraper
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[   

   {   

      "id":"4904749", 

      "URL":"http://cafeim.co.kr/wp/caixa.gov.br/pages/inter/index.php", 

      "created_at":"added on Mar 27th 2017 5:52 PM", 

      "submitter":"anafeijo", 

      "valid":"", 

      "online":"ONLINE" 

   }, 

   {   

      "id":"4904745", 

      "URL":"http://www.emapasgep.com/plugins/content/sub/.drpbxauhb.php", 

      "created_at":"added on Mar 27th 2017 5:42 PM", 

      "submitter":"balomish", 

      "valid":"", 

      "online":"ONLINE" 

   }, 

]  

Figure 14. Sample of Data scrapped from Phishtank website in JSON format 

 

 

Figure 15.  Phishtank scrapper 

 

5.2 Legitimate Pages’ Scrapper 

The legitimate pages’ scrapper is based on 2 different scrappers. The first 

scrapper is used to scrap Alexa database for the top 500 domains. This scrapper is 

based on a vivekpatani’s6 Python library and adds it to a domain list. Then the second 

scrapper NikolaiT7 Google scraper will scrap Google using for URLs containing 

keywords ‘login’ and the domain name. The results will be exported to JSON file 

(see Figure 17) for future use by the phishing identification module (see Figure 16). 

This scraper is used to scrape dataset (1) shown in table 2. 

                                                 
6 https://github.com/vivekpatani/alexa-scraper 
7 https://github.com/NikolaiT/GoogleScraper 

 

https://github.com/vivekpatani/alexa-scraper
https://github.com/NikolaiT/GoogleScraper
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Figure 16. Google Scrapper 

 "results": [ 

    { 

      "domain": "myaccount.payoneer.com", 

      "id": "648", 

      "link": "https://myaccount.payoneer.com/", 

      "link_type": "results", 

      "rank": "1", 

      "serp_id": "199", 

      "snippet": "Payoneer", 

      "title": "Payoneer", 

      "visible_link": "https://myaccount.payoneer.com" 

    }, 

    { 

      "domain": "teach.mapnwea.org", 

      "id": "649", 

      "link": "https://teach.mapnwea.org/", 

      "link_type": "results", 

      "rank": "2", 

      "serp_id": "199", 

      "snippet": "{{copyright}} ... {{copyright}}", 

      "title": "NWEA UAP Login", 

      "visible_link": "https://teach.mapnwea.org" 

    } 
] 

 

Figure 17. Sample output of the URL list exported by Alexa scrapper 

 

5.3 Data Sets 

Data scrapped from Phishtank and Alexa are filtered. The total number of URLs 

scrapped from Alexa database is 500 and from Phishtank 1020. However, 649 pages only 

where available and online and the rest were either not found or unreachable as shown Da-

taset (1) shown in Table 2. Since phishing pages have a very limited time online, more 

phishing pages where scrapped from Phishtank and filtered only for pages with login forms 

resulting in 258. In addition, Alexa URLs from Dataset (1) were fileted for pages with login 

form resulting in 284 pages as shown in Table 3. 

Dataset (3) shown in Table 4 used to determine the heuristic weights for the URL and 

domain analysis module, it is the first 100 phishing pages and the first 100 legitimate pages 
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from dataset (2). Dataset (4) uses the same 284 legitimate pages from Dataset (2) and newly 

scrapped URLs from Phishtank and filtered for login pages resulting in 421 URLs as shown 

in Table 5. 

 

Table 2. Dataset (1) - extracted on 21/02/2017 

Database Number of URLs Phishing/Legitimate 

Phishtank 649 Phishing 

Alexa 500 Legitimate 

 

Table 3. Dataset (2) – extracted on 16/03/2017 

Database Number of URLs Phishing/Legitimate 

Phishtank  258 Phishing 

Alexa 284 Legitimate 

 

Table 4. Dataset (3) – extracted on 22/03/2017 

Database Number of URLs Phishing/Legitimate 

Phishtank 100 Phishing 

Alexa 100 Legitimate 

 

Table 5.  Dataset (4) - extracted on 02/04/2017 

Database Number of URLs Phishing/Legitimate 

Phishtank 421 Phishing 

Alexa 284 Legitimate 
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6 Evaluation Metrics 

Evaluation metrics presented in this section will be used in proceeding sections. In any 

binary classification problem like the problem discussed in this paper, where the goal is to 

detect phishing pages in a dataset with a mixture of phishing and legitimate pages, there are 

only four classification possibilities exist. These possibilities are: true positive rate, false 

positive rate, true negative rate, false negative rate, and accuracy of our phishing detection 

mechanism. These are considered as standard metrics to moderate any type of phishing de-

tection system. 𝑁𝑃 represents the total number of phishing websites and 𝑁𝐿 represents the 

total number of legitimate websites. 

• 𝑁𝑃→𝑃 phishing websites classified as phishing 

• 𝑁𝑃→𝐿 phishing websites classified as legitimate 

• 𝑁𝐿→𝑃 legitimate websites classified as phishing 

• 𝑁𝐿→𝐿  legitimate websites classified as legitimate 

Performance measurements of a phishing detection mechanism is assessed in the fol-

lowing approach. 

True positive rate (TPR):  

• True positive rate is the rate of phishing websites classified as phishing out of the 

total phishing websites. 

Equation 3. True Positive Rate (TPR) 

𝑇𝑃𝑅 =
𝑁𝑃→𝑃

𝑁𝑃
×100 

(3) 

 

• False positive rate (FPR): false positive rate is the rate of legitimate websites classi-

fied as phishing out of the total legitimate websites. 

 

Equation 4. False Positive Rate (FPR) 

 

 

• False negative rate (FNR): false negative rate is the rate of phishing websites classi-

fied as legitimate out of the total phishing websites. 

Equation 5.  False Negative rate(FNR) 

𝐹𝑁𝑅 =
𝑁𝑃→𝐿

𝑁𝑃
×100 

(5) 

 

• True negative rate (TNR): true negative rate is the rate of legitimate websites classi-

fied as legitimate out of the total legitimate websites. 

𝐹𝑃𝑅 =
𝑁𝐿→𝑃

𝑁𝐿
×100 

(4) 
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Equation 6. True Negative Rate (TNR) 

𝑇𝑁𝑅 =
𝑁𝐿→𝐿

𝑁𝐿
×100 

(6) 

 

• Accuracy (A) measures the rate of phishing and legitimate websites which are iden-

tified correctly with respect to all the websites. 

Equation 7. Overall Accuracy (A) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝐿→𝐿 + 𝑁𝑃→𝑃

𝑁𝐿 + 𝑁𝑝
×100 

 

(7) 
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7 Development Environment, Tools and System Usage 

To ensure that our application was not compromised during analyzing phishing web 

pages, the development environment and testing environment were separated. The whole 

project was developed, Debian platform (development environment) and then deployed and 

tested on an Ubuntu virtual environment. The Ubuntu virtual environment is based on virtual 

screenshots or states, which means that every time the virtual environment is started with 

only libraries and tools installed. The code from the last run will be deleted.  

7.1 Development Environment 

The Operating system Debian8 GNU/Linux with release version number ’8.7’ was cho-

sen as our development environment. The reasons for choosing Debian Linux is that it is 

one of the most widely used operating systems for servers due it is robustness, stability and 

availability. Moreover, debian.org claims that Debian has the best packing system in the 

world. Furthermore, the system is quite memory efficient specially when compared to Linux 

distributions. A Pentium 4, 1GHz system is the minimum required for a desktop system. 

Depending on the architecture, it is expected to install Debian from 20MB for s390 to 60MB 

for amd64. Debian as well supports all the packages and Python modules needed for devel-

oping our tool. This is considered as a great aspect since all packages where signed and 

installed via package manager. No packages where compiled from source code. 

Python9 programming language with interpreter version 3.5 was chosen for the devel-

opment of ’SeleniumPhishGuard’. Professionally, Python is great for backend web devel-

opment, artificial intelligence, data analysis, data miming and scientific computing. Numer-

ous programmers have also utilized Python to build productivity applications, games, and 

desktop tools, and thus there are enormous amount of resources and libraries to help boot-

strap our development. Moreover, Python is a cross platform and works on all the popular 

operating systems. Furthermore, almost all Linux distributions come with Python installed 

by default which makes the deployment of our tool.  

The Database used for storing the white-listed URLs is MongoDB10 version 3.4.3. Mon-

goDB is a document-oriented database which saves data in collections made from separate 

documents, instead of storing data in tables like made from separate rows, like relational 

databases do. In MongoDB, a document is a big JSON file with no specific arrangement or 

schema. This makes the extensibility of the database quite easy specially in case if more 

relative data (e.g. IP address) must be added in the future. 

Selenium Webdriver11 is an open source software-testing framework for web applica-

tions which provides a playback tool for tests too. One of its options is Selenese - a test 

domain-specific language to write tests in Python and other programming languages. The 

tests can then be run against most modern web browsers. Selenium deploys on Windows, 

Linux, and OS X platforms.  

Git12 is a version control system (VCS) for tracking changes in code development, files 

and coordinating work on those files among multiple people if needed. It is principally used 

for software development but it can be used to follow changes in any files. Moreover, as a 

distributed revision control system it is intended to have support for distributed, non-linear 

                                                 
8 https://www.debian.org/ 
9 https://www.Python.org/ 
10 https://www.mongodb.com/ 
11 http://Selenium-Python.readthedocs.io/index.html 
12 https://github.com/ 

https://www.debian.org/
https://www.python.org/
http://selenium-python.readthedocs.io/index.html
https://github.com/
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workflows and robust data integrity. Version 2.12.2 was utilized in the development of our 

tool since it was the latest and the most stable version and connected to our remote repository 

on github.com. 

7.2 Testing Environment 

Ubuntu LTS (Long Term Support) version 16.04 was utilized as the testing environ-

ment. It is one of the most widely used Linux distributions. Ubuntu was installed within a 

virtual environment by utilizing Oracle VM VirtualBox13. The main reason for choosing 

Ubuntu is that there are many readymade live virtual-box images available for free. Thus, 

there is no need to install and configure it, it is plug and play on virtual box. The minimum 

requirements for Ubuntu desktop version are 700 MHz processor Intel Celeron or better, 

system memory of 512 MiB RAM, hard-drive space of 5 GB, VGA capable of 1024x768 

screen resolution, either a CD/DVD drive or a USB port for the installer media and Internet 

access.  

The same Python interpreter of version 3.5 was installed on Ubuntu along with Sele-

nium Webdriver module. InfluxDB14 version 1.2 was utilized for logging purposes. It is 

created to store time-series data. Relational databases can handle time-series but weren’t 

designed specifically for that objective. InfluxDB is made to work with a large size of time-

series data and perform real-time analysis on those data, rapidly. This database was used for 

logging test results, errors and bugs with respect to time. It also identifies that schema pref-

erences may change over time. In InfluxDB, these is no need to define schemas at start. Data 

points can have one of the fields on a measurement, all fields on a measurement, or any 

number in-between. New fields can be added to a measurement basically by writing a point 

for that new field.  

Grafana15 4.2.0 was utilized for data visualization and monitoring. Grafana is an open 

source metric analytics and visualization suite. It is frequently used for visualizing time se-

ries data for infrastructure and application analytics but numerous developers use it in other 

domains including weather, industrial sensors, process control and home automation. 

Grafana was specifically used since it compatible with InfluxDB and contains powerful real 

time visualization tools. 

7.3 System Usage 

User will be prompt as shown in Figure 18, by inputting “l”, legitimate pages will be 

tested. If the user inputs “p”, phishing pages will be tested. 

 

 

Figure 18. Selenium user prompt 

Figure 19 shows the log output by SeleniumPhishGuard during testing.  

                                                 
13 http://docs.grafana.org/ 
14 Data visualization & Monitoring 
15 http://docs.grafana.org/ 
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Figure 19. Testing real-time logs 

Firefox will find and inject email and password in their corresponding fields. Then it will 

submit form by simulating “enter” key (See Figure 20). 

 

Figure 20. Selenium filling Facebook login form 

Web-driver will continue to inject email and password and submit the form for n number of 

times. After that it will check for the presence of the password field (See Figure 21). If the 

password still exists then the webpage will be considered as legitimate, else classified as 

phishing. Test results are shown in the output terminal as shown in Figure 22. 

 

Figure 21.  Page response after form submission 
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Figure 22. Test successfully finished 

Real time data visualization was achieved by using Grafana. Grafana is a graphical tool 

integrated with our influx time series logging database to show results in real-time (See 

Figure 23). 

 

Figure 23. Grafana visualizing False positives and True Positives 
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8 Results 

8.1 Phishing Identification Module Results: 

The results and evaluation of our tool “SeleniumPhishGuard” will be discussed in this 

section. To ensure that our tool is language independent datasets collected from different 

languages websites as shown in Table 6.   

 Table 7. shows the results used to calculate heuristic weights for the URL and do-

main analysis module according to their effectiveness (See sub section 4.2). According to 

our test results, creation date was the most effective heuristic with 85% True positive rate. 

Dots in URL was effective as a heuristic by detecting 44% of phishing webpages. 

Table 6. Languages associated with datasets 

Language 

English 

German 

Russian 

Arabic 

Japanese 

Korean 

French 

Italian 

Portuguese 

Spanish 

Polish 

Czech 

Mandarin 

Hindi 

Urdu 
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Table 7. Heuristics weights 

Heuristic True positive False positive Effect weight 

Domain creation 

date 

85% 32% 53 5 

Domain expiry date 23% 5% 18 2 

’@’ in URL 10% 0% 10 1 

‘-’ in URL 15% 4% 11 1 

Dots in URL 44% 5% 39 4 

Domain inWHOIS  9% 7% 2 0 

 

 

 

Figure 24. Graph showing the threshold effect on accuracy 

To choose a value “𝑥” for threshold “𝑡ℎ𝑥” function in equation no.1, the system was 

tested 5 times against 100 phishing URLS and 100 legitimate URLS dataset (3) shown in 

Table 4. The limits for the choice of threshold values was not chosen randomly. Domain 

creation date has a heuristic weight of 5 and it does not make sense to have a threshold value 

“𝑥” of 5 since the classification will be based only on this heuristic. Therefore, lowest thresh-

old value in our test is 6, as the highest weight. The highest 𝑥 value for this test is 10, since 

its corresponding true positive rate is equal 93% same as using the phishing identification 

89%

90%

91%

92%

93%

94%

95%

96%

97%

98%

th=6 th=7 th=8 th=9 th=10

True Postive

Accuracy

True negative
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module unaccompanied. Therefore, higher testing with higher threshold values was not con-

sidered. Figure 24 shows how different threshold values affect the true negative rate, true 

positive rate and thus affects the overall accuracy.  

When 𝑥 = 6 the URL and domain analysis module had a lower true negative rate, 

which means a higher false positive rate or classifying more legitimate pages as phishing as 

expected. As shown in Figure 24 the increase in the threshold value results in a higher true 

negative rate. However, as 𝑥 increases beyond 8, the true positive rate decreases as URL 

and domain analysis module classify more URLs legitimate.  

Table 8 below shows results when the phishing identification module was tested 

solely against dataset (2) shown in Table 3.  The True negative rate is 96,83% which is quite 

high as expected. Since a legitimate website must always show a password field if the login 

form is submitted with incorrect credentials injected. 

Table 8. Results of phishing identification module 

Total tested URLs 542 

Phishing   258 

Legitimate 284 

True positives 241 

False Negative 17 

False Positive 9 

True Negative 275 

True Positive Rate 93,42% 

False Negative Rate 6,58% 

True Negative Rate 96,83% 

False Positive Rate 3,16% 

Overall Accuracy 95,2% 

 

 The whole system (URL and domain analysis module with the phishing identifica-

tion module) is tested against dataset (4) Table 5. The URL and domain analysis module 

improved the overall performance to 96.66% as shown in Table 9 due to lowering the rate 

of false positives from 3.16% to 2.65% as shown in Figure 25.  
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Table 9. Phishing Identification with URL analysis Module results 

Phishing   421 

Legitimate 284 

True positives 405 

False Negative 16 

False Positive 8 

True Negative 276 

True Positive Rate 96,2% 

False Negative Rate 3,80% 

True Negative Rate 97,34% 

False Positive Rate 2,65% 

Overall Accuracy 96,66% 

 

 

Figure 25. Comparison between system results with and without URL and Domain Analy-

sis Module 

 

91.00%

92.00%

93.00%

94.00%

95.00%

96.00%

97.00%

TPR Accuracy

with URL module without URL module
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8.2 Comparison Between Related Work and Our Application: 

Comparison between SeleniumPhishGuard and other related tools is presented in 

Table 10. All tools are designed to work as real time applications and detect zero-day phish-

ing pages. SeleniumPhishGuard is language independent along with PhishGuard and Spoof 

Guard. However, CANTINA only works with English language. SeleniumPhishGuard cor-

rectly tests and classifies HTTPS pages along with CANTINA and Spoof guard where 

PhishGuard fails since it depends on HTTP server status codes.  SeleniumPhishGuard tests 

and classifies script based pages since the tool utilizes Firefox to render pages. However, 

the rest of the other related tools work on the HTML source. The biggest challenge for Se-

leniumPhishGuard is testing pages with AJAX content and it is a challenge for the rest of 

the tools as well. In addition, our tool is the slowest amongst the rest of the tools since 

WHOIS queries and page rendering requires a lot of time. 

 

Table 10. Table of comparison 

 Spoof 

Guard 

PhishGuard CANTINA SeleniumPhishGuard 

Detecting script based 

pages 

No No No Yes 

HTTP yes Yes Yes Yes 

HTTPS yes no Yes Yes 

Language independency yes yes No yes 

real-time yes yes yes Yes 

Pages with AJAX con-

tent 

No No No No 

Zero-day detection yes yes Yes Yes 

Pages without login  Yes Yes Yes No 

Time efficient Yes Yes Yes No 
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9 Conclusion 

The APWG reported that the amount of phishing websites it detected rose hysteri-

cally by 250 percent within the period of just October 2015 to March 2016 [1]. Just in March 

2016, 123555 new unique phishing websites where detected. Phishing websites mimic le-

gitimate websites to trick victims into submitting credentials to access private content. Ac-

cording to our analysis, around 50% to 60% of the pages extracted for testing contains a 

login form with email/username and password combination. Thus, the focus of this paper is 

to introduce a new phishing detection tool that is effective in detecting phishing login pages. 

In this paper, overview of most of the existing phishing detection techniques were 

discussed. Effective heuristic-based methodologies where discussed more and our new 

method was proposed. Our approach is to detect phishing login pages by injecting fake cre-

dentials and analyzing response. Usually, Phishing pages does not check submitted pass-

word and will show success message or redirect to another website. Detecting the response 

from the server is quite achievable in case of HTTP authentication as the server replies with 

codes to represent if the authentication was successful (200 OK) or not authorized (401). 

The challenge was detection of server response in case of HTTPS authentication, since the 

server response is usually the same in both cases (Authentication success or failure). Our 

approach is to inject the credentials for n number of times and check if the password input 

field. If the password input field exits then this is considered as authentication failure and 

considered as authentication successful otherwise.  

A tool called “SeleniumPhishGuard” was built based on our approach. The tool uti-

lizes Selenium web-driver to render pages, inject credentials and analyze response. The 

URL and DNS matching module which was introduced in [23] was used in the first version 

of this tool to minimize the rate of false positives, however it was discarded in the current 

version due to high false negative rate. 

 URL analysis module was introduced to minimize the phishing detection rate and 

improve overall accuracy. We have devised a small set of weighted rules to detect some 

characteristics of phishing URLs. This module tests a give URL against the weighted rules 

and computes a total score for this URL and if the score exceeds the threshold the website 

is phishing. If not then Selenium will open the page and test it. 

We have presented a detailed algorithm and shown that our solution correctly iden-

tifies Phishing login pages with a low false positive rate. Our results indicate that our rules 

are quite efficient. In addition, SeleniumPhishGuard can detect zero-day attacks that are 

gone unnoticed by existing phishing detection mechanisms. Finally, besides the benefit of 

increased accuracy, SeleniumPhishGuard requires little configuration when compared to 

other filters. SeleniumPhishGuard can only be used as a stand-alone filter yet in future, An 

API for browser plugins will be introduced. Currently, SeleniumPhishGuard is test on either 

HTTP or HTTPS pages that contains a login form.  

We continue to further experiment with the current heuristics, particularly by testing 

and updating our tool against different language and technology based websites.  

Future Work: Enhancements 

The challenge that other content based phishing detection methodologies had to face 

is login pages that generate or obfuscate content dynamically with JavaScript to elude web 

crawlers that look for and process static HTML only. Because we render the page and thus 

JavaScript code will be executed, we can see through this obfuscation. Manual identification 

showed 12 suspected phishing pages that used JavaScript that we find in rendered page but 
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not in HTML alone: our application found all 12 of them. As well, since the module is 

language independent and it only relies of the presence or absence of the password field, it 

managed to detect phishing in many different languages that other heuristics based phishing 

detection tools will not.  

However, there are some limitations in Selenium that create a challenge for our clas-

sifier to successfully classify pages as legitimate or phishing. One of the properties of Sele-

nium web-driver, is that the page must be fully loaded before the test is executed. In addi-

tion, analysis is complicated when AJAX is implemented. To overcome this issue, specific 

waiting time was added in case if Selenium throws an exception that the page is not fully 

loaded, for instance Google accounts use AJAX with in forms (See Figure 26). It will for-

cibly stop page and inject the credentials to the password and email fields then refresh the 

page with the injected credentials. However, it is not guaranteed that it will work perma-

nently. 

 

Figure 26. Script based login form 
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Figure 27. Form with captcha 

Another challenge was captchas. Selenium cannot solve captchas as shown in Figure 

27, and it was not intended to be implemented in our application, since this is a phishing 

detection tool not a hacking tool. In case of a captcha existing in the form, it completely 

depends on the type of captcha and the response of the website. For some websites, captcha 

exits and it seems to Selenium that form is submitted and in this case, there is a big possi-

bility that the website will be considered as legitimate regardless. The other case, where the 

form will not be submitted, the website will be classified as incomplete test. Since our ap-

plication is white-list based, URLs with incomplete tests will not be added to the white-list 

and hence if classified as legitimate it will be considered as a false positive. 

Time taken for testing ranges from 0.1 sec to 4.9 seconds per page depending on the 

page being tested due to WHOIS queries and page rendering. Threading is one of the pos-

sible enhancements, which reduces the computational time. Our application can be used as 

a background script for browser plug-ins and thus an API should be implemented. It could 

be used to identify phishing URLs in web server referrer logs, or it could be used by web 

hosting providers to check for phishing sites on their servers.  

Classifying mainly by injecting credentials and analyzing response might create an 

opportunity for attackers to circumvent our application by always rendering a page with a 

password field. New heuristics must be introduced. 
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Appendix 

I. Glossary 

Abbreviation Description 

APWG Anti-phishing working group 

An international consortium that brings together businesses 

affected by phishing attacks, security products and services 

companies, law enforcement agencies, government agencies, 

trade association, regional international treaty organizations 

and communications companies. 

AOL America Online 

An American multinational mass media corporation based in 

New York, a subsidiary of Verizon Communications 

URL Uniform Resource Locator 

A URL is the address of a specific webpage or file on the 

Internet. 

DNS Domain Name Server/Service 

Domain names serve as memorizable names for websites and 

other services on the Internet. DNS translates domain names 

into IP addresses, allowing you to access an Internet location 

by its domain name. 

API Application programming Interface 

An API is a set of commands, functions, protocols, and ob-

jects that programmers can use to create software or interact 

with an external system.  

HTTP Hypertext transfer protocol 

HTTP is the protocol used to transfer data over the web. It is 

part of the Internet protocol suite and defines commands and 

services used for transmitting webpage data. 

HTTPS Hypertext transfer protocol secure 

HTTPS is the same thing as HTTP, but uses a secure socket 

layer (SSL) for security purposes.  

OS Operating System 

A software that communicates with the hardware and allows 

other programs to run. It is comprised of system software, or 

the fundamental files your computer needs to boot up and 

function. 
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IEEE Institute of Electrical and Electronics Engineers 

The IEEE is a professional association that develops, defines, 

and reviews electronics and computer science standards. 

HTML Hyper Text Markup Language 

HTML is the language used to create webpages. 

DOM Document Object Model 

A cross-platform and language-independent application pro-

gramming interface that treats an HTML, XHTML, or XML 

document as a tree structure wherein each node is an object 

representing a part of the document.  

IP Internet Protocol 

It allows devices running on different platforms to communi-

cate with each other as long as they are connected to the In-

ternet. 

 

SMTP Simple Mail Transfer Protocol 

A protocol used for sending e-mail over the Internet.  

POP Post Office Protocol 

A simple, standardized method of delivering e-mail mes-

sages. 

AV Anti-Virus 

Antivirus software is a type of utility used for scanning and 

removing viruses from your computer.  

JSON JavaScript Object Notation 

JSON is a text-based data interchange format designed for 

transmitting structured data. 

AJAX Asynchronous JavaScript and XML 

AJAX is a combination of Web development technologies 

used for creating dynamic websites.  

TLS Transport Layer Security 

Transport layer security (TLS) is a protocol that provides 

communication security between client/server applications 

that communicate with each other over the Internet.  

HREF Hypertext Reference 
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Reference to data that the reader can directly follow either 

by clicking, tapping, or hovering 

LDA Latent Dirichlet Allocation 

Generative statistical model that allows sets of observations 

to be explained by unobserved groups that explain why some 

parts of the data are similar 

TF-IDF Term frequency/inverse document frequency 

A numerical statistic that is intended to reflect how important 

a word is to a document in a collection or corpus.  

SVM Support Victor Machine 

Supervised learning models with associated learning algo-

rithms that analyze data used for classification and regression 

analysis 

MCAC Multi-label Classifier based Associative Classification 
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II. Previous Work (Discontinued) 

Previous Methodology: 

1. User visits a website as shown in Figure 28. 

2.  URL and DNS module checks if the website is in the white-list which updates from 

Google public DNS. 

3. If the domain name is found and matched the IP, then the website is legitimate.  

4. If domain is found in the white-list however, the IP was not matched, then this is a 

phishing website. 

5. If no domain is found in the white-list, will be checked by the phishing identification 

module. 

6. If Google open DNS has no info about the website then the application will test it. 

7. The Phishing identification module will inject n number of fake email password com-

binations. 

I. The phishing detection module will detect all the input text fields 

with type attribute (email) or name attribute (email, user, username, 

Id and userid). 

II. The module will inject the input text fields with fake credentials and 

wait till page loads. 

a. If the page loads with no password fields then it is considered 

as phishing. 

b. If the page redirects to another website then it is considered 

as phishing. 

c. If the page reloads with an input text field of type password, 

then the application will inject more fake credentials for n 

number of times. 

d. If the password field still exits after n number of trials, then 

the page will be considered as legitimate.  
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Figure 28. Preliminarily methodology 

 

URL and DNS Matching Module 

In this paper, we are utilizing the same the URL and DNS matching module which 

was introduced in [23]. The purpose of the URL and DNS module which accommodates 

white-list is to minimize the false positive rate. In addition, the white-list is composed of 

two parameters, domain name and its corresponding IP address. When a user requests access 

to website (see Figure 28), the application extracts the domain name of the current website 

from the URL and checks if it exits in the white-list. If the domain of the current website is 

found in the white-list, then the application checks the IP address before decision making. 

If the accessed website is currently residing in the white-list, then the matching module 

matches IP address to the corresponding domain to check for DNS poisoning attack. The 

white-list starts empty at the beginning; which means that at the beginning, there is no do-

main in the list and the white-list starts populating once a user accesses the fresh web pages. 

Moreover, whenever a user accesses a website, there are two chances, either it is the first-

time user accesses the website or it was visited previously by the user. If the user is accessing 

the website for the first time, the domain of the website will not be present in the white-list. 

Google public DNS will be queried to check if there were entries for that domain. If no 

domain exits, then the second module starts operating. The second module is the phishing 

identification module, which checks whether a webpage is legitimate or phishing (See Fig-

ure 29). This module was discontinued due high false positive rate as shown in Table 11 

and was replaced by URL and domain analysis module discussed in section 4.2.  
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Table 11. DNS and URL matching module results 

Total tested URLs 1149 

Phishing   649 

Legitimate 500 

True Positives 25 

False Negative 624 

False Positive 64 

True Negative 436 

True Positive Rate 3,85% 

False positive Rate 12,8% 

 

Figure 29. URL and DNS module activity diagram 
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Figure 30. Sample output of URL and DNS module 

 

The DNS module as shown in the Figure 30, checks all IP addresses in both the local 

DNS and if results do not exactly match, the URL and DNS module will classify the whole 

domain as phishing. If we take a closer look at the results that our URL and DNS module 

has classified as phishing as shown in Figure 31 and Figure 32 we clearly deduce that some 

of the top websites are considered as DNS poisoning or phishing as they have different IP 

addresses in the local DNS and Google public DNS. Major website domains like Face-

book.com, Twitter.com, Instagram.com and Google.de. Therefore, this module had to be 

discarded and replaced by the URL analysis module instead. 

 

Figure 31. Sample of IP mismatch for legitimate domains 
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Figure 32.  Sample of false positives by the URL and DNS matching module. 
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III. Phishtank Scrapper 

 

Phishtank Scrapper 

Scraper code is written in ruby language 

The scraper will mainly crawl the first 50 pages of phishtank.com and will scrape and filter 

results that are valid and online. 

Then the application will export the output to file in JSON format. 

require 'phishtank_scraper' 

require 'json' 

 

# get the contents of pages 0-50 

# export these contents as JSON in 'links.json' file 

pt_scraper = PhishtankScraper.new 

submissions = pt_scraper.page_scrape((0..50), {active: "y", valid: "y"}) 

submissions_json = submissions.to_json 

begin 

  file = File.open("links.json", "w") 

  file.write(submissions_json) 

rescue IOError => e 

  #some error occur, dir not writable etc. 

ensure 

  file.close unless file.nil? 

end 
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IV. Alexa Top 500 Scrapper 

 

Alexa Scrapper Code 

This scrapper class returns an array of the Alexa top 500 websites. 

def scrape(n=50, sub_dir="topsites", local="global", sub_local=""): 

    """ 

    Scrape the given number of pages from alexa website 

    """ 

    n = int(n) 

    if (n > 500): 

        print("Alexa Top 500 has at most 500 Links.") 

        n = 500 

 

    # Converting each letter after / to be uppercase, otherwise link will result 

in no response 

        for each_sub in range(len(sub_local)): 

            if (sub_local[each_sub - 1] == '/' or each_sub == 0): 

                new_sub_local += sub_local[each_sub].upper() 

            else: new_sub_local += sub_local[each_sub] 

 

        sub_local = "Top/" + new_sub_local 

 

    # Additional Headers to make it more human.  

    request_headers = { 

                    "Accept-Language": "en-US,en;q=0.5", 

                    "User-

Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64; rv:40.0) Gecko/20100101 Firefox/50.

0", 

                    "Accept": "text/html,application/xhtml+xml,application/xml;q=

0.9,*/*;q=0.8", 

                    "Connection": "keep-alive" } 

 

    # To calculate time for programme to run 

    start = time.clock() 

 

    # Get the number of pages we need to scrape 

    num_of_pages = calc_number_of_pages(n) 

    final_list = [] 
 

 

 

    for page_num in range(num_of_pages): 

 

        # Generate the complete URL based on input 

        full_URL = "http://www.alexa.com/" + sub_dir + "/" + local + ";" + str(pa

ge_num) + "/" + str(sub_local) 

 

        # Collect page data for current page 

        page = "" 

 

        # Try Making a request 
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        try: 

            request = Request(full_URL, headers=request_headers) 

        except e: 

            print(e.reason) 

 

        try: 

            response = URLopen(request) 

        except e: 

            print(e.reason) 

 

        for line in response: 

            line = line.decode('utf-8','ignore') 

            page += line 

 

        # Create a new parser for n links 

        parser = htmlparser(n=n) 

 

        # Reduce total by 25 links, since there are 25 links on each page 

        n -= 25 

 

        # Parse the collected page feed 

        parser.feed(page) 

 

        # Append the links to the final list 

        final_list += parser.links 

 

    # Print them in a readable way 

    print_top(final_list) 

 

    # print(str(time.clock() - start)) 

    return final_list 

 
 

 

 

 

 



62 

 

def main(): 

     

    # In case if user does not provide a parameter, 50 is defaulted 

    if (len(sys.argv) == 1): 

        scrape() 

 

    # When user provides n 

    elif (len(sys.argv) == 2): 

        try: 

            num = int(sys.argv[1]) 

        except ValueError: 

            print("Not an Integer") 

        scrape(n=num) 

 

    # When user provides by local and sub local 

    elif (len(sys.argv) == 4 and (sys.argv[2] == 'category' or sys.argv[2] == 'co

untries')): 

        num, local, sub_local = sys.argv[1:] 

        try: 

            num = int(sys.argv[1]) 

        except ValueError: 

            print("Not an Integer") 

        scrape(n=num, local=local, sub_local=sub_local) 

 

    # When user gives an unknown format of unknown, show them option 

    else: 

        print("Maybe you missed a parameter\n \ 

            List of Valid Command Formats: \n \ 

            1.) python script-name.py \n \ 

            2.) python script-name.py number-of-links \n \ 

            3.) python script-name.py number-of-links countries country-code \n \ 

            4.) python script-name.py number-of-links category sub-category1/sub-

category2/sub-categoryn/") 

 

if __name__ == "__main__": 

    main() 
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V. URL and DNS Matching Module  

 

URL and DNS Matching Module code: 

 

# resolve Ip from domain by querying the local Dns 

# using python socket library 

def get_ips_for_host(host): 

 

    ip_list = [] 

    try: 

        ips = socket.gethostbyname_ex(host) 

        ip_list = ips[2] 

        ip_list.sort() 

        print(ip_list) 

    except socket.gaierror: 

       print('error') 

    return ip_list 

 
 

 

 

# Query google open dns to get ip of the same domain 

def get_Info_from_googleOpenDns(domain): 

    res = resolver.Resolver() 

    res.nameservers = ['8.8.8.8'] 

    answers = res.query(domain) 

 

    index = 0 

    ip_list = [] 

 

    for rdata in answers: 

        ip_list.append(rdata.address) 

        ip_list.sort() 

 

    print(ip_list) 

    return ip_list 

 

 

 

 

 

 

def main(URL): 

        try: 

            domain = get_domain_from_uri(URL) 

            ip_local = get_ips_for_host(domain) 

            ip_google_dns = get_Info_from_googleOpenDns(domain) 

            if ip_local == ip_google_dns: 

                print('domain match') 

                to_influx_database(domain,0) 

            else: 

                print('Domain mismatch') 

                to_influx_database(domain,1) 

        except: 

            continue 
 

 

 



64 

 

VI. Phishing Identification Module 

 

Phishing Identification Module Code: 

 

Main function works as follows 

# this is our main function 

# user will be prompt to input whether he wants to test legitimate or phishing pa

ge 

# the function will extract domain from url and check if it is in white list 

# if domains exits the webdriver will close the firefox window session 

# if domain does not exit then it will be tested by 'full_test' function 

# then it will be logged 

def main(): 

    user_input = input("choose (l) for legitimate or (p) for phishing: ") 

    if user_input == 'p': 

        link_array = get_phishing_pages() 

    elif user_input == 'l': 

        link_array = get_legitimate_pages() 

    else: 

        link_array = get_phishing_pages() 

    print('test started with '+str(len(link_array))+' pages') 

    old_link = '' 

    for link in link_array: 

        print(link) 

        analysis = url_analysis.check(link) 

        if analysis >= 7 : 

            print('this is a phishing website domain analysis') 

            to_influx_database(link, 1) 

            continue 
 

 
if link != old_link: 

            if link is not None and link != '': 

                driver = webdriver.Firefox() 

                url = link 

                domain = get_domain_from_uri(url) 

                try: 

                    driver.get(url) 

                    print('testing .... '+domain) 

                    domain_in_whiteList = check_domain_in_white_list(domain) 

                    if domain_in_whiteList != None: 

                        print('domain is legit and in whitelist') 

                        to_influx_database(link, 0) 

                    else: 

                        WebDriverWait(driver,2) 

                        result = full_test(driver, domain, url) 

                        to_influx_database(url, result) 
 

 
      except TimeoutException as error: 

                    print('there is a timeout exception here'+str(error)) 

                    to_influx_database(link, -1) 

                    pass 

                except WebDriverException as error: 

                    print('webdriver exception here'+str(error)) 

                    pass 

                except ValueError or TypeError or UnicodeDecodeError as error: 

                    print ('value error or type error: ' +str(error)) 

                    continue 

                except Exception as error: 

                    print('total random exception: '+str(error)) 

                    continue 

 

                driver.quit() 

                old_link = link 

    print('test sucessfully finished') 
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# this function returns a list of fake emails for testing 

def test_email_list(): 

    emails = ['some_email@nicedomain.com', 'happy.forever@best.com', 'python@grea

t.com', 'first.last@name.com'] 

    return emails 
 

 
#selenium webdriver has no builtin function to check whether an element exists or

 not 

# this is why this function was implemented 

# it tries to find an element by xpath 

# if the element does not exist 

# NoSuchElementException will be raised and the function will catch that exceptio

n and 

# and return false 

 

def check_exists_by_xpath(driver, xpath): 

    try: 

        driver.find_element_by_xpath(xpath) 

    except NoSuchElementException : 

        return False 

    return True 

 

 
 

# this function will check the existance of all of the elements specified 

# and will return the ones that exists for testing 

def email_and_password_exits(driver): 

    input_tag = check_exists_by_xpath (driver, input_tag_xpath) 

    text_type = check_exists_by_xpath(driver, text_type_xpath) 

    email_type = check_exists_by_xpath(driver, email_type_xpath) 

    email_id = check_exists_by_xpath(driver, email_id_xpath) 

    email_name = check_exists_by_xpath(driver, email_name_xpath) 

    user_id = check_exists_by_xpath(driver, userId_xpath) 

    user_name = check_exists_by_xpath(driver, user_name_xpath) 

    username_name = check_exists_by_xpath(driver, username_name_xpath) 

    passwd = check_exists_by_xpath(driver, passwd_xpath) 

 

    return  input_tag, text_type, email_type, email_id, email_name, \ 

           user_id, user_name, username_name, passwd 
 

 
#------ testing part ------------------------------------------------------------

-# 

 

# this function will take fake credentials (email, username .. etc) 

# and will first clear the text input field then add 

# the fake email 

def test_fake_credentials(driver,test_email,xpath,count): 

    try: 

        user = driver.find_element_by_xpath(xpath) 

        if count > 0: 

            try: 

                # user.clear() 

                user.send_keys(Keys.CONTROL + "a") 

                user.send_keys(Keys.DELETE) 

            except: 

                pass 

        user.send_keys(test_email)  # Your email_id 

    except ElementNotVisibleException: 

        pass 

    except NoSuchElementException: 

        pass 
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# this function will get the password type field and will input a fake password 

def test_fake_password(driver,count): 

    passwd = driver.find_element_by_xpath(passwd_xpath) 

    if count > 0: 

        try: 

            passwd.clear() 

            passwd.send_keys(Keys.CONTROL + "a") 

            passwd.send_keys(Keys.DELETE) 

        except: 

            pass 

    passwd.send_keys("Hello12345")  # Your password 

    passwd.send_keys(Keys.RETURN) 

    WebDriverWait(driver, 2) 

    WebDriverWait(driver, 5).until(EC.staleness_of(passwd)) 
 

 

# here is our main testing function 

def full_test(driver, domain_name, url): 

 

    # returns all elements that we are interested in 

    input_tag, text_type, email_type, email_id, email_name, \ 

    user_id, user_name, username_name, \ 

    password = email_and_password_exits(driver) 

 

    # getting the fake email list 

    count = 0 

    email_list = test_email_list() 
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try: 

    while input_tag and count < 3: 

 

        if password: 

           domain = get_domain_from_uri(driver.current_url) 

 

        if email_type: 

             test_fake_credentials(driver, email_list[count],email_type_xpath, count) 

 

        elif email_id: 

             test_fake_credentials(driver, email_list[count],email_id_xpath, count) 

 

        elif email_name: 

             test_fake_credentials(driver, email_list[count],email_name_xpath, count) 

 

        elif user_id: 

             test_fake_credentials(driver, email_list[count],userId_xpath, count) 

 

        elif user_name: 

             test_fake_credentials(driver, email_list[count],user_name_xpath, count) 

 

        elif username_name: 

          test_fake_credentials(driver, email_list[count],username_name_xpath, count) 

 

        elif text_type: 

              test_fake_credentials(driver, email_list[count],text_type_xpath, count) 

 

        test_fake_password(driver, count) 

# if selenium injects the website with an email and password 

                    # and a redirect occurs this is for sure a phishing website 

                    newDomain = get_domain_from_uri(driver.current_url) 

 

                    if newDomain != domain: 

                        print('this is a phishing website because of redirect') 

                        return 1 

                    else: 

                        count += 1 

                        #recheck-

ing again what are the elements exist in the page before the next iteration 

                        input_tag,text_type, email_type, email_id, email_name, \ 

                        user_id, user_name, username_name, \ 

                        password = email_and_password_exits(driver) 

 

            else: 

                break  
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except TimeoutException as error: 

        if password and count > 0: 

            print('this is a legitimate page') 

            to_mongodb(domain_name, url) 

            return 0 

        #if this was the first iteration and there is not login fields 

# then this page has no login 

    if count < 1 and (not email_type or not email_id or not email_name) and not p

assword: 

        print('this page has no login') 

        return 2 

 

    # if after a couple of emails there are no more password field exists? 

    # then the website is a phishing one 

    elif not password and count < 2: 

        if not email_type or not email_id or not email_name: 

            print('this is a phishing website due to test') 

            return 1 

    # if the loop continued till the end and password still exits 

    # this website passes the test and is considered as legit 

    elif password and count >=2 : 

        print('this is a legitimate page') 

        to_mongodb(domain_name,url) 

        return 0 

 

    else: 

        # if count > 1 and password: 

        #     print('this is a legitimate page') 

        #     to_mongodb(domain_name, url) 

        #     return 0 

        # else: 

            print(‘unknown error’) 
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VII. URL and Domain Analysis Module  

# check the expiry date and creation date of domain 

def check_WHOIS(domain): 

    WHOIS_query = WHOIS.query(domain) 

    creation_date = WHOIS_query.creation_date 

    expiration_date = WHOIS_query.expiration_date 

    return creation_date,expiration_date 

 
 

 

#copute difference between expiration_date and creation_date 

def check_date_difference(cer_date,exp_date): 

    todays_date = datetime.date.today() 

    days_since_creation = (todays_date - cer_date.date()).days 

    days_till_expiration = (exp_date.date() -todays_date).days 

    print(days_since_creation) 

    print(days_till_expiration) 

 
 

 
def url_contain_symbols(url): 

    dots = url.count('.') 

    dashes = url.count('-') 

    ats = url.count('@') 

    return dots, dashes, ats 
 

 
def check(url): 

    count = 0 

    domain = get_domain_from_uri(url) 

    try: 

        cer_date, exp_date = check_whois(domain) 

        cer_days, exp_days = check_date_difference(cer_date, exp_date) 

        if cer_days < 365: 

            count += 5 

        if exp_days < 180: 

            count += 2 

    except: 

        count = 6 

    dots,dashes,ats = url_contain_symbols(url) 

    if dots >= 5: 

        count +=4 

    if dashes > 0: 

        count +=1 

    if ats > 0: 

        count += 3 

    return count 
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VIII. Database Functions 

 
# this function fetchs the mongodb white list for domains 

# to check if it already resides in the whitelist 

def check_domain_in_white_list(domain): 

    db_client = MongoClient() 

    db = db_client.phishing 

    cursor = db.whitelist.find_one({'legitimate.domain_name': domain}) 

    return cursor 
 

 
 
# get phishing pages from the ruby scraper 

def get_phishing_pages(): 

    jsonFile = open('scraper/phishing_links.json', 'r') 

    data = json.load(jsonFile) 

    jsonFile.close() 

 

    link_array = [] 

 

    for index in data: 

        link_array.append(index['URL']) 

 

    print(len(link_array)) 

    return link_array 
 

 
 
# get legit pages from python scraper 

# data is saved as JSON and this function will parse JSON 

# and will extract the domains 

def get_legitimate_pages(): 

    jsonFile = open('scraper/legitimate.json', 'r') 

    data = json.load(jsonFile) 

    jsonFile.close() 

    link_array = [] 

    for index in data: 

        if len(index['results']) != 0: 

            results = index['results'] 

            for result in results: 

                link_array.append(result['link']) 

    return link_array 
 

 
 
# strip protocol header and path 

# extract the URL 

def get_domain_from_uri(uri): 

    domain_name = URLparse(uri).hostname.split('.') 

    domain = domain_name[-2] +'.'+ domain_name[-1] 

    return domain 

 

 

 
# this function is called whenever a legitimate website 

# needs to be added to our whitelist which is hosted in this mongodb 

# the domain will be added under the collection *legitimate* in phishing database

 name 

def to_mongodb(domain,url): 

    db_client = MongoClient() 

    db = db_client.phishing 

    db.whitelist.insert_one( 

        { 

            "legitimate": { 

                "domain_name": domain, 

                "url": url 

            } 

        } 

    ) 
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# Influx_db is a time series no sql databases which has the first field always as

 the current time the log 

# in our case it is used because of the ease of use 

#we have mainly 4 measurements 

# phishing for websites that are detected as phishing 

# legitimate for the websites that are detected as legitimate 

# if the website has no login or considered as neutral 

# if the website contains login yet for some reason the test could not complete 

# it is considered as incomplete_test 

# this function takes the url and sends it to the influxdb under its correspondin

g measurement 

def to_influx_database(url, res): 

    if res == 1: 

        result = "phishing" 

    elif res == 0: 

        result = "legitimate" 

    elif res == -1: 

        result = "incomplete_test" 

    else: 

        result = "neutral" 

 

    points = [ 

 

        { 

            "measurement": result, 

            "tags": { 

                "browser": "firefox" 

            }, 

            "fields": { 

                "url": url 

            } 

        } 

 

    ] 

 

    try: 

        db_client = InfluxDBClient('localhost', '8086', 

                                   'root', 'root', 'phishing_db') 

        db_client.create_database('phishing_db') 

        db_client.write_points(points) 

 

    except IOError as error: 

        print(str(error)) 
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