

ТАРТУСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

РЕАКЦИОННАЯ СПОСОБНОСТЬ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

ТОМ XXIV ВЫП. 3(87) Сентябрь 1987

TAPTY

ТАРТУСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

РЕАКЦИОННАЯ СПОСОБНОСТЬ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

ТОМ XXIV ВЫП. 3(87) Сентябрь 1987

TAPTY

Редакционная коллегия:

В.А. Пальм (отв. редактор)

- В.И. Минкин
- А.Ф. Попов
- И.А. Коппель
- М.М. Карельсон

С Тартуский государственный университет, 1988

ПРАВИЛА ДЛЯ АВТОРОВ

- I. Статья должна быть написана с краткостью, совместимой с ясностью изложения, окончательно отредактирована и оформлена. Статья является оригиналом для печати.
- 2. Текст должен быть напечатан на белой бумаге стандартного формата через I,5 интервала с одной стороны листа и занимать вместе с рисунками и таблицами площадь в пределах I5,5 см по горизонтали и 23,5 см по вертикали. Статья должна быть напечатана на машинке с тщательно очищенным шрифтом, печать должна быть четкой и контрастной, но не слишком жиршой. На первой странице статьи следует оставить сверху два пустых ряда для названия сборника, а название статьи следует писать, отступив 6 см сверху от начала листа.
- 3. Математические символы, напр. log, вах, а также химические элементы и латинские названия журналов, книг и т.д. вписываются по возможности на малинке.
- 4. Для каждого рисунка необходимо оставить место среди текста над соответствущей подписью. Рисунки следует прилагать четко выполненными на миллиметровой бумаге в масштабе 2: I по отношению к оставленному в тексте месту. Рисунки пронумеровать.
- Каждая работа должна сопровождаться направлением учреждения, в котором она выполнена, двумя рецензиями и актом экспертизы.
- 6. Сборник издается на двух языках -- русском и английском; поэтому необходим идентичный русскому тескст статьи на английском языке.
- В английском варианте статьи:
 в циррах вместо залитой следует ставить точку (напри-

мер, 10.5 вместо 10,5);

- б) в заголовке статьи, а также в списке литературы, перед последней фамилией ставится "and", если число авторов больше двух, то перед "and" ставится запятая, все слова в заголовках (например, таблиц) пишутся с большой буквы;
- в) следует придерживаться американской транскрищии слов, допускающих разноналисание (например, "ionization", а не "ionisation", "center", а не "centre", "behavior", а не "behaviour" и т.д.).
- 8. Ссылки на литературные источники даются в соответствии с правилами "Chemical Abstracts".
- 9. При ссылках в английском варианте статьи на выпуски настоящих сборников, вышедних до 1975 г., название сборника следует писать в виде "Reakts. sposobn. organ. soedin.", после 1975 г. — "Organic Reactivity".
- Авторы, испытывающие затруднения при переводе на английский язык, могут обратиться за помощью в редакцию.

Реакц.способн.орган.соедин., том 24, внп. 3(87), 1987.

УДК 541.12

Ab initio SCF LCAO MO PACUETH MOJEKYJ.

УІ. Влияние сольватационных взаимодействий на строение и основность анионов ОН-кислот

И.А. Коппель

Лаборатория химической кинетики и катализа, Тартуский госуниверситет, 202400 Тарту, СССР

Поступило 26 августа 1987 г.

Посредством модельных неэмпирических расчетов (супермолекулярный подход, STO-3G базис, полная оптимизация геометрии методом градиентов) исследовано влияние специфической сольватации на энергетические и структурые характеристики анионов XO⁻,их протонированных форм XOH и соответствующих гидратов XO⁻... nH₂O и XOH... nH₂O (где n \leq 3, a X = H, Me, Et, i-Pr, t-Bu, F, HO, O⁻, H₂N, CH₂F, CF₃, CF₃CH₂, (CF₃)₂CH, (CF₃)₃C, Me₃N⁺, NO₂, ClO₃ и ³C(H) = C(H)NO₂.

Специфическая сольватация соединений указанного типа вызывает существенные изменения как в их геометрии и энергетике, так и в распределении заря рядов. В результате постепенного присоединения молекул воды к депротонированной и протонированной формам основания существенно меняется относительная чувствительность конкретной реакционной серик к эффектам заместителей. Другими словами, под влиянием межмолекулярных взаимодействий могут существенно меняться как интенсивность, так и направленность внутримолекулярных взаимодействий. Показано, что в использованном приближении газофазная основность анионов XO⁻ должна быть около 2,2 раз более чувствительной к эффектам строения, чем основность их тригидратов, в то время, как сравнение экспериментально измеренных основностей в газовой фазе (ГФ) и в воде как растворителе приводит к трехкратному спаду этой характеристики.

Вопреки широкораспространенному мнению установлено (3-216[±] базис), что молекулы ДМСО способны образовать стабильные сольватационные комплексы с анионами типа F⁻ и ОН⁻. В частности для последнего аниона расчетная энергия комплексообразования составляет 24,3 ккал/моль. В приложении приведена информация о геометрии и распределении электронной плотности для 95 нейтральных частиц, анионов и их гидратационных комплексов.

Модельные неэмпирические расчеты влияния специфической сольватации на энергетику и структуру ионов и нейтральных молекул различных классов в приближении т.н. подхода "супермолекулы" иногда приводят к результатам¹⁻⁻⁷, которые находятся в удовлетворительном согласии с экспериментом.

Как по степени адекватности результатов, так и по распространенности в литературе доминируют прежде всего ЛКАО МО расчеты сольватационных комплексов относительно маленьких нейтральных молекул и положительных ионов^{8--II}.

Ввиду гораздо большей актуальности проблемы учета корреляционных эффектов расчеты структуры и энергетики сольватационных комплексов анионов значительно менее распространены.

На различных уровнях одноэлектронного приближения, а тем более в рамках схем, учитывающих поправку за счет корреляционной энергии, рассмотрено лишь весьма ограниченное число малых анионов и их сольватационных (гидратационных) комплексов⁴⁻⁶, 9-14.

Анализ накопленных результатов показывает⁴, ⁹, что нередко неэмпирическая квантовохимическая теория даже на примитивном STO-30 уровне способна предсказать основные закономерности влияния специфической сольватации на строение сольватационных комплексов и на энергетику процессов переноса протона, протекающих с их участием. В связи с этим нами предпринята попытка[#] систематического исследования посредством модельных неэмпирических расчетов в приближении модели супермолекулы влияния специфической сольватации на энергетические и структурные параметры частиц, участвующих главным образом в следующих превращениях:

 $\frac{PA_{X0} - ... nH_{2}0}{M0^{-} ... n(H_{2}0) + Me0^{-} ... n(H_{2}0)} \xrightarrow{PA_{X0} - ... nH_{2}0} X0^{-} ... n(H_{2}0) + Me0H_{2} - ... n(H_{2}0) + (1)$

rge $n \le 3$, a X = H, Me, Et, i-Pr, t-Bu, F, HO, 0⁻, NH₂, CF₃CH₂, (CF₃)₂CH, (CF₃)₃C, Me₃N, NO₂, CF₃, ClO₃, MeCO, C(H) = C(H)NO₂.

Геометрии нейтральных молекул, анионов и их гидратационных комплексов находились, используя полную оптимизацию как длин связей, так и валентных и конформационных углов. Для вычислений использовались системы программ Гауссиан-80¹⁹ и Гауссиан-82²⁰ в минимальном (STO-3G) базисе. Основные результаты вычислений приведены в табл. I--3. Некоторые характерные черты энергетики и геометрии молекул, ионов и соответствующих сольватационных комплексов представлены в Приложении (см. также работы¹⁵⁻¹⁷).

Для сравнения проведены также модельные расчеты (базисы: STO-3G, 3-21G и 3-21G^H) влияния специфической сольватации на строение и энергетику сольватационных комплексов диметилсульфоксида с некоторыми анионами (F⁻, оH⁻) и нейтральными молекулами (HF, H₂O). Основные результаты указанных расчетов представлены на рис. I.

Некоторая часть полученных результатов нашла отраже-ие работах 15-18.

Таблица І

Полные энергии E_{tot} (STO-3G базис, атомные единицы), участвующие в равновесии (I) негидратированных (n=0) нейтральных молекул XOH, анионов XO⁻, сродства к протону последних (в ккал/моль, PA_{calc} -- расчет, PA_{exp} -- эксперимент) и разницы суммарных зарядов (Aq) на реакционном центре в протонированной и депротонированной формах основания^а

and the second	X	-Etot(XOH)	-Etot(XO ⁻)	PAcalc	-APA calc	Δq	PAexp	-APA exp
I	2	3	4	5	6	7	8	9
Ŧ.	Н	74.9659	74.0650	565	-36.0	0.600	390.8	-II.6
2.	Me	II3.5492	112.7064	529	0	0.537	379.2	0
3.	Et	152.1331	151.2960	526.4	+2.6	0.600	376.I	3.I
4.	i-Pr	190.7165	189.8840	522.2	6.8	0.490	374.I	5.I
5.	t-Bu	229.2994	228.4720	519.4	9.6	0.475	373.3	5.9
6.	F	172.3742	171.5531	515.4	13.6	0.600	-	-
7.	НО	148.7650	147.9366	520.0	9.0	- 1	367.9	II.3
8.	0-	147.9366	146.6230	824.5	-295.5	0.571	144	-
9.	H_N	129.2631	128.4265	521.6	7.4	0.58	51- 31	S
IO.	CH_F	211.0080	210.1961	509.6	19.4	0.55	-	-
II.	CF2	405.957I	405.2064	470.7	58.3	0.512	348	-
12.	CF CH	444.5136	443.7170	500.0	29.0	0.490	364.4	I4.8
I3.	(CF) CH	775.4753	774.7108	479.9	49.I	0.470	347.9	31.3
I4.	(CF3) 3C	1106.3866	II05.673I	447.9	8I.I	0.452	334.3	44.9

Прополжение таблицы І

T	2	 3	4	5	6	7	8	9
	+	 						
15.	Me ₃ N	245.4341	244.8884	342.5	I86.5	0.517	235	I44.2
I6.	NO2	275.6585	274.9690	432.8	96.2	0.460	324.6	54.2
17.	NO	201.9156	201.1640	471.3	57.7		338.3	40.9
I8.	C103	749.9337	749.2985	398.0	I3I.0	0.354	280	99.2
I9.	CN	165.5112	164.8060	442.7	86.3	1	_	-
20.	MeCO	224.9102	224.0483	478.2	50.8	0.414	350.9	28.3
21.	CF 3CO	517.1805	516.4620	451.0	78.0	0.450	325.7	53.5
22.	нсо	186.2179	185.4563	478.0	51.0	0.458	347.6	31.6
23.	Ph	300.9872	301.7280	465.0	64.0	0.393	351.4	27.8
24.	$O_{O}NC(H) = C(H)$	350.9400						

а -- Основные черты геометрии рассмотренных частиц представлены в работе и в Приложении. См. также ¹⁵.

265

N

Таблица 2

Неэмпирический расчет энергий и распределения зарядов для сольватационных комплексов, участвующих в равновесии (I)^{a, б}

			XO	нон	XOH.	0H2				
		-E _{tot}	EHB(XO	·) Δ1	-E _{tot}	EHB (XOF	I) Δ2	∆ ^E HB	PA x0	HOH AqH 0
I	2	3	4	5	6	7	8	9	10	II
I.	Н	149.1432	70.5	-	149.9398	5.9	-	64.6	500	-
2.	Me	187.7489	48.I	0.290	188.5251	6.3	0.051	41.8	487.2	0.393
3.	Et	226.3342	45.4	0.291	227.1076	5.4	0.048	39.0	485.5	0.394
4.	i-Pr	264.9188	43.2	0.281	265.6888	4.0	0.068	39.2	483.3	0.390
5.	t-Bu	303.5023	39.2	0.266	304.2702	3.I	0.061	36.I	482.0	0.376
6.	F	246.5971	49.0	0.290	247.3540	8.7	0.068	40.3	472.6	0.427
7.	HO	222.9766	46.I	0.282	223.7430	7.6	1	38.9	48I.I	0.282
8.	0-	222.0016	(259) ^B	0.53	222.9766	46.5	12	(212.5) ^B	613	-
9.	H_N	203.4679	47.4	0.294	204.2406	7.3	-	40.I	485.0	-
IO.	CF2	480.2163	27.6	0.182	480.9410	II.3	0.082	I6.3	454.6	0.418
II.	CFCH	518.7423	37.3	0.252	519.4934	7.8	2	29.5	471.4	0.407
12.	(CF) CH	849.7210	27.8	0.200	850.4560	9.3	0.069	18.5	461.4	0.4II
I3.	(CF_)_C	II80.6723	20.9	0.154	II8I.370I	II.O	0.061	9.9	438.0	0.384
I4.	Me N+	319.8782	15.0	0.124	320.4200	12.6	0.139	2.4	340.I	0.419
I5.	C10,	824.2840	12.3	0.086	824.9309	19.6	0.145	-7.3	400.I	0.294

Продолжение таблицы 2

I	2	3	4	5	6	7	8	9	10	II
16.	NO2	349.9690	19.6	-	350.6480	14.8	- 1	+4.8	428.0	0.412
17.	MeCO	299.0538	25.3	0.108	299.7875	9.4	0.069	15.9	460.5	0.383

Таблица З

Неэмпирический расчет (STO-3G базис) полных энергий (E_{tot}, a.e.) гидратационных комплексов (для n=3), участвующих в равновесии (I), энергий комплексообразования (к ккал/моль) XO⁻ и XOH с тремя молекулами воды, E_{HB}(XO⁻) и E_{HB}(XOH). Величины в 5 и 8 графах характеризуют перенос заряда от XO⁻ или XOH на молекулы воды (в единицах заряпа электрона), величины РА(XO⁻...n(H₂O)) и Δ РА(XO⁻...n(H₂O) даны в единицах ккал/моль^а

		X0 ⁻ n(H ₂ 0)		XOH	n(H ₂ 0)	9 123 V.S	12.00.0			
X		-E _{tot} E	EHB (X0") ∆1	-E _{tot}	EHB (XOH)	Δ2	∆ ^E _{HB}	PA(XO ^{n(H20)} Δq_{H20}		
I	2	3	4 5	6	7	8	9	10	II	
I.	Н	299.1779	I35,I	299.8860	I4.I		121.0	444.5		
2.	F	396.6085	99.0 0.40I	397.3115	24.9	0.120	74.I	441.3	0.387	
3.	Me	337.7647	79.3 -	338.4770	I8.8	0.100	60.5	447.I	-	
4.	CF3	630.2086	65.6 0.356	630.9010	29.0	0.158	36.6	434.6	0.360	
5.	Me ₃ N ⁺	469.8340	30.I 0.328	470.3670	22.I	0.268	8.0	334.5	0.33	
6.	CIÓZ	1049.2292 ⁶	42.20 0.260	974.8962	41.8	0.290	0.4	397.3	-	
	-		,	1049.8390	26.20			382.80		
7.	Et	376.3509	101.3 0.467	-	-	-	-	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
8.	Ph	525.9664	50.8	526.6577	19.7	-	3I.I	433.9	+13.4	

Продолжение таблицы З

а -- Для остальных обозначений см. текст или табл. І и 2. В монофункциональных анионах 3 молекулы воды присоединены к неподеленным парам кислорода (см. Приложение и рис. 5. и из работы¹⁵), в случае XOH-форм сольватация осуществляется тримером воды, который своим центральным атомом кислорода присоединен к атому водорода ХОН. Геометрию частиц см. в Приложении и в работе 15. б - Для n=4; Cl0, сольватирован четырьмя молекулами воды (одна молекула воды на каждый атом кислорода С10, -группы). Хлорная кислота сольватирована в данном случае тремя молекулами воды через кислородные атомы с10, группы и одной молекулой H20 через H-атом OHсвязи кислоты. Приведенные для X=Clo, в 6 по II грефах цифры предполагают гидратацию хлорной кислоты тримером воды через водородную связь между последним и ОН-группы кислоты.

Обсуждение результатов

Анализ результатов модельных неэмпирических квантовохимических расчетов влияния как специфической сольватации (настоящая работа, а также источники 1, 8, 15, 17, 18), так и неспецифической сольватации²¹ на строение и энергетику ионов и нейтральных молекул различных классов показывают, что в обоих сдучаях переход несольватированной в газовой фазе частицы в раствор сопровождается существенными изменениями как в структуре (длинны связей, изменение эффективного радиуса реагирующей частицы и т.д.), так и в распределении зарядов. Особенно заметными такие изменения являются в случае ионных молекул. В частности, по данным настоящей работы (см. Приложение), виден эффект постепенного добавления молекул воды к некоторым анионам (алкоксид-ионы, перхлорат и т.д.) и их сопряженным кислотам АН в газовой фазе. Видно (см. табл. 2 и 3), что в общем случае гидратация аниона сопровождается переносом заряда как от атома кислорода --центра основности аниона, так и от последнего как целого на молекулу воды. При этом степень переноса (Д1) заряда от

Рис. I. Неэмпирический расчет (система Гауссиан-82) энергии комплексообразования ДЕ.

Продолжение рисунка І

- (I) -- между молекулой $(CH_3)_2$ SO и анионом OH (3-21G[#] баsuc); $<(OSO) = 108.55^{\circ}, <(SOH) = 103.3^{\circ}; E_{tot} =$ = -623.7540 a.e., $E_{tot}(DMSO) = -548.8467$ a.e., $E_{tot}(OH^-) = -74.8686$ a.e.; $\triangle E = 24.3$ ккал/моль;
- (2) --- межцу молекулами (CH₃)₂SO и H₂O (3-21G[#] базис); \angle (CSO) = 103.5°, \angle (SOH1) = 109.9°, \angle (H1OH2) # = 107.6°; E_{tot} = -624.4420 a.e., E_{tot}(H₂O) = = -75.5860 a.e.; \triangle E = 5.9 ккал/моль;
- (3) -- между молекулой (CH₃)₂SO и F⁻ -анионом (STO-3G базис); \angle (FSO) = 86.0⁶, \angle (FSC) = 131.0[°]; $q_F = -0.496$, $q_S = 0.368$, $q_0 \neq -0.513$, $q_C = -0.3103$, $E_{tot} = -642.8470$ a.e., E_{tot} (DMSO) = -545.1921 a.e., $q_0 = -0.372$, $q_S = 0.4063$, $q_C = -0.2687$, E_{tot} (F⁻) = -97.6133 a.e.; $\triangle E = 26.1$ ккал/моль. между молекулой (CH₃)₂SO и HF (STO-3G базис, на рис. I не указано); $E_{tot} = -643.7841$ a.e., E_{tot} (HF)= = -98.5729 a.e., $q_g = 0.442$, $q_C = -0.267$, $q_O = -0.368$, q_H (HF) = 0.212, $q_F = -0.316$, $\triangle E = 12.1$ ккал/моль;
- (4) -- между молекулами (CH₃)₂SO и H₂O (STO-3G базис): \angle (CSO) = 103.5°, \angle (SOH1) = 103.61°, \angle (H10H2) = = IOI.0°, q₀ = -0.4073, q₀ = -0.379, q_S = 0.444, q_C = -0.2658, q_H = 0.202, q_H = 0.1205, E_{tot} = = -620.I725 a.e., E_{tot}(H₂O)² = -74.9659 a.e., \triangle E = 9.I ккал/моль. M = 5.7 D

иона на молекулы воды зависит как от природы иона, так и от числа молекул растворителя в гидратной оболочке последнего. Так, например, согласно расчету, заряд на атоме кислорода СН₃СН₂О⁻ аниона (-0.625) уменьшается при добавлении первой молекулы Но0 до -0.515 заряда электрона (см. Приложение, № 30, 32). При последующей гидратации еще двумя молекулами воды абсолютное значение этого заряда падает уже до -0,468, а при протонировании станет равным -0.300 зарядам электрона (см. Приложение № 34 и 30). Гораздо меньше изменение (уменьшение) заряда, например, в случае гидратации ацетат-мона, CF₃0, (CF₃)₂CHO, (CF₃)₃CO, Me₃NO (Приложение № 43, 45, 47, 53, 55, 57, 59, 67-70, 75-79) и особенно в случае фенолят- и перхлорат-ионов (Приложение № 82-84, 87), отличающихся значительной внутренней делокализацией, заряда и относительно низкой основностью. С другой стороны, "гидратация" супероснования 05 сопровождается полным переносом заряда от последнего на молекулу Н.О и полным переносом протона на основание (т.е. 02 + H20 ----НОО + НО) (см. табл. 2, № 8 и Приложение № 17). Весьма заметным является также перенос заряда в случае маленьких (жестких) одноатомных анионов. Так, для F (STO-3G расчеты) величина 🛆 переноса отрицательного заряда на молекулу воды (Приложение, 1 95) составляет 0.466 единицы электрона, а на молекулу ДМСО (рис. I, № 3) даже 0.504 единицы электрона. При ионном протонировании отрицательный заряд на атоме F падает от -I до -0.209 а.е., т.е. на 0.791 единицы заряда электрона. (Приложение, № 94).

Указанный переход отрицательного заряда от аниона на модекулы воды в свою очередь результируется на увеличении его на атомах кислорода H_2O . Поскольку "утечка" отрицательного заряда с анионного или анионноподобного (Me₃NO) основания на молекулы растворителя происходит не только от самого центра основности (в данном случае — от атома кислорода),но и от заместителя, то брутто-эффект переноса отрицательного заряда от аниона как целого на молекулы растворителя гораздо больше, находясь, как правило, в пределах от -O.15 до -O.35 единиц заряда электрона (см. табл. 2 и 3, величины Δ_1). Для алкилзамещенных алкоксид-анионов и FO

величина Δ_1 в большинстве случаев -0,25 - -0,30, в то время как для перфторпроизводных ((CF₃)₃Co⁻, (CF₃)₂CHO⁻, CF₃O⁻) $-0,15 \ge \Delta_1 \ge -0,20$, для $Clo_4 \Delta_1 = -0,09$, для CH₃COO⁻ $\Delta_1 = -0,108$, а для $02^{-} - \Delta_1 = -0,53$. Из табл. 3 видно, что при сравнимых условиях абсолютная величина степени переноса заряда Δ_1 увеличивается по мере увеличения числа молекул воды, сольватирующих анион. Так, при n = 3 величина Δ_1 для X = CF₃, F и Et составляет, соответственно, -0.36, -0.40 и -0.467 единицы. Однако для внутренне более стабилизированного аниона, Clo_4^- величина Δ_1 увеличивается гораздо более умеренно, достигая при n=4 лишь величины -0.26 единиц заряда электрона (см. также Приложение, % 87).

Естественно, что глядя "со стороны растворителя", эффект переноса отрицательного заряда от аниона на молекулы растворителя эквивалентен частному переносу положительного заряда от последних (в частности, от молекул воды) на растворенную частицу, т.е. в случае протонодонорного растворителя частичной протонизации последней.

Эффект сравнимой интенсивности переноса заряда был недавно предсказан^I и для процесса гидратации положительно заряженных ионов RNH₃⁺. (см. также Приложение, № 7).

Инициируя межмолекулярный перенос заряда между растворенным веществом и молекулами растворителя, сольватационные взаимодействия эффективно (вплоть до выключения) конкурируют⁸, I5, I7, I8 с механизмами внутримолекулярной (посредством взаимодействий различной природы (индукционные и поляризационные взаимодействия, резонанс, гиперконъюгация и т.д.)) стабилизации или дестабилизации растворенных частиц.

Действительно, из Приложения видно, что, как правило, из-за действия указанных внутримолекулярных механизмов (в частности, анионной гиперконьюгации²²⁻²⁴) в алкоксид-ионах плины С-О связи в непосредственной близости к центру протонирования короче, длины С-С и С-Н связей в *«с*-положении и С-F связей в *«с* и β-положениях длиннее, чем в соответствующих протонированных формах XOH^{*}.

В свою очередь, из Приложения видно, что сопровождающего сольватации XO⁻ переносу отрицательного заряда на молекулы воды и эквивалентно этому процессу частичного переноса протона от последних на растворенное вещество сопровождают и весьма значительные изменения в геометрии ионов.

Видно, что уже добавление первой молекулы воды растягивает (см. Приложение) длину связи С-О в большинстве анионах XO⁻ от \approx I,3O Å до I,35-I,4I Å, что близко к расчетной (и экспериментальной) длине (I,43 Å) этой связи в полностью протонированном анионе, т.е. в молекуле XOH. В свою очередь, гидратация алкоксид-иона также сопровождается укорочением α -C-C, α -C-H и α ⁴⁴C-F связей (Приложение, % 23-62 и др.). Постепенное добавление дополнительных молекул воды вызывает уже гораздо меньшее увеличение длин этих связей, которые станут практически неотличимыми от таковых в молекулах типа XOH.

Качественно иная ситуация наблюдается для HO⁻-аниона и других (относительно маленьких) анионов (Fo⁻, HOO⁻, H₂NO⁻, O²⁻ и др.), содержащих электродонорную группу в непосредственной близости к центру протонирования и неспособных к внутримолекулярной стабилизации посредством механизма, характерному взаимодействию донорного центра реакции с электроноакцепторным заместителем (см. предыдущую работу)^{*}.

Геометрия указанных анионов относительно нечувствительна к добавкам молекул воды (наблюдается некоторое уменьшение длины связи X-O⁻, где X = F, HO, H₂N, O⁻ и H), хотя и происходит значительное перераспределение заряда между растворенным веществом и молекулами растворителя (см. Приложение). Из рис. I видно, что эта тенденция соблюдается и в случае сольватации ОН⁻ иона (длина ОН-связи в этом ионе I.029 Å, 3-21G базис) молекулой ДМСО. Ясно, что наряду с использованием межмолекулярных сольватационных взаимодействий для вклю-

^{*} Естественно, что изменение качественного и количественного распределения электронной плотности в ионе или молекуле должно привести и к существенным изменениям в интенсивности внутримолекулярных взаимодействий типа заряд-заряд, заряд-диполь, диполь-диполь и ион-индуцированный диполь (см. ниже).

чения или выключения резонансных или гиперконъюгационных механизмов внутримолекулярной стабилизации или дестабилизации частицы, аналогичные характерные изменения в геометрии и энергетике последней могут быть достигнуты также (или даже в первую очередь) чисто "внутримолекулярным" способом, например, выбором конформаций, в которых не могут взаимодействовать друг с другом по указанным механизмам, например, из-за нарушения условия их копланарности 22. В этом смысле типичным является случай аниона 0,NC(H) = C(H)0 (см. Приложение, № 91). Видно, что большинство элементов геометрии этого аниона в случае перпендикулярной конформации (NO2 - группа повернута на 90° относительно ОС(H)CH плоскости) похожи на те, которые соответствуют гидратированной на О (акцептором Н-связи является алкоксидный атом кислорода) этого же аниона (Придожение, № 93) в случае копланарности NO2 - группы и ОС(H)CH плоскости. Сказанное в равной мере правомочно также в случае ряда пругих систем, рассмотренных в настоящей работе, в случае которых интенсивность внутримолекулярной стабилизации или пестабилизации по механизму отрицательной гиперконьюгации или диполярных взаимодействий может существенно зависеть от конформации (гош-транс(цис) ориентация ОН-группы в спиртах ХОН относительно отдельных электроотрицательных (F) электропозитивных или Н-атомов в заместителе и т.д.*).

Результаты настоящей работы (см. Приложение, 6, II, I2, 28, 29, 33, 42, 46, 48, 56, 60, 66 и др.): подтверждают предположение^I, 8, I5--I8, что геометрия нейтральных молекул XOH существенно меньше зависит от неличия молекул растворителя, чем геометрия ионных частиц.

Специфическая сольватация (гидратация) или (в предельном случае) полная протонизация XO⁻ должны сопровождаться уменьшением отрицательного заряда на центре протонирования

3*

^{*} В Приложении для XOH приведены данные для наиболее стабильных конформаций. Более подробный анализ влияния взаимной ориентации составных частиц молекул и ионов на интенсивность и наличие внутримолекулярных механизмов их стабилизации или дестабилизации можно найти в обзоре Радома²².

и меньшей доступностью свободных электронных пар атома кислорода в их стабилизирующем или дестабилизирующем взаимодействии последнего с групповыми орбиталями электроноакцепторных (напр., CF3, C(CF3)3, NO2 и др.), алкильных (CH3, (CH3)3C и др.) или потенциально электронодонорных (HO, OT, F, NH, и др.) заместителей. Поэтому естественно, что в гидратированных или протонированных формах ХО процессы вышеупомянутой внутримолекулярной стабилизации посредством анионной гиперконъюгации или каких-нибудь других механизмов, включающих внутримолекулярное перераспределение зарядов, взаимодействие орбиталей и т.д., выражены относительно слабее, чем в соответствующих депротонированных, специфически несольватированных формах ХО". Поэтому и неудивительно, что геометрия нейтральных полярных молекул ХОН существенно меньше зависит от наличия молекул растворителя. Однако опять происходит ощутимое перераспределение заряда между сольватированными частицами и молекулами растворителя (воды). Направление процесса перекачки заряда от нейтральных протонодонорных кислот ХОН (напр., ХОН, СН3СООН, НС10, и $T_{.d.}$)¹⁵, 17 или от протонированных форм нейтральных основа-ний (напр., XNH₃^{+ 1}, Me₃NOH⁺)¹⁵ противоположно тому, что имело место при рассмотрении последствий гидратации анионов.

В результате перераспределения заряда в данном случае наблюдается брутто-эффект переноса положительного заряда Δ_2 (0.05—0.15 единиц заряда электрона от частиц типа XOH и около 0,34 единиц заряда электрона пля XNH₃⁺¹ или, что опять одно и то же — переход соответствующего отрицательного заряда от молекулы H₂O как основного растворителя на электрофильную растворенную частицу[×]. Наблюдается определенная корреляция между протоно-донорной способностью электрофила и величиной перенесенного на молекулы растворителя (воды) заряда Δ_2 , который для нейтральных частиц больше всего (+0,15) для хлорной кислоты (для спиртов 0.05 $\leq \Delta_2 \leq$ 0.09, для Me₃NOH⁺ Δ_0 = 0.14). В результате такого перерас-

В случае вышеприведенного примера гидратации F - аниона молекула H₂O выступает в роли кислоты XOH; перенесенный ею на основание (F), доля положительного заряда составляет 0.466 а.е. (см. также Приложение, 7). пределения зарядов для соединений типа ХОН увеличиваются также как положительный заряд на атоме водорода, так и отрицательный заряд кислорода в гидроксильной группе ХОН. В итоге специфическая гидратация такого рода увеличивает полярность растворенной частицы ХОН, а вычисленные дипольные моменты комплексов типа ХОН... (OH_2) достигают значительной величины, будучи иногда больше суммы дипольных моментов отдельных компонентов. Можно отметить, что сольватация молекулы воды молекулой ДМСО сопровождается (см. рис. I, \aleph 2 и 4) относительно слабовыраженным переносом положительного заряда от молекулы H₂O на молекулу ДМСО (0.085 a.e., sto-3G базис).

Из вышеизложенного следует, что как в связи с межмолекулярным переносом заряда, так и из-за изменения геометрии заряженной пастворенной частицы, эффективные размеры и распределение заряда так или иначе меняются, а эффективное расстояние между центроидом отрицательного (для системы XNH₃^{+ 1} -- положительного) заряда и диполем заместителя увеличивается, в то время как эффективный заряд (т.е. его абсолютное значение) на центре протонирования уменьшается.

Допуская вышеизложенный механизм влияния специфических межмолекулярных взаимодействий на внутримолекулярные взаимодействия между заместителем и реакционным центром и принимая для весьма грубого приближения простые модельные представления о взаимодействиях типа заряд-зарял, заряд – диполь, диполь-диполь и заряд – индуцированный диполь следует ожидать, что специфическая сольватация ионов (напр., XO⁻) и переход последних из газовой фазы в раствор должны сопровождаться значительным уменьшением как энергии внутримолекулярных взаимодействий типа заряд-заряд (ур. (2)), заряд-диполь (ур.(3)) и диполь-диполь (ур. (4)), так и поляризационных взаимодействий между зарядом и индуцированным диполем (ур. 5);

 $E_{\text{NOH-NOH}} = q_i q_j / Dr_{ij}$

где q_i и q_j -- точечные заряды, находящиеся на расстоянии г_{i,j} в среле с диэлектрической проницаемостью D.

(2)

ENOH-ANNOID = 9 Mcos 0/Dr²

где 9 --- угол ориентации диполя заместителя

- D -- диэлектрическая проницаемость
- г расстояние между точечным зарядом q на центре реакции и центром точечного диполя заместителя (с дипольным моментом м)

(3)

$$\mathbf{E}_{\text{диполь-диполь}} = \mu_1^{\cos \theta_1} \mu_2^{\cos \theta_2/\text{Dr}^3}$$
(4)

где _{µ1} и _{µ2} -- дипольные моменты фрагментов θ_1 и θ_2 -- углы ориентации диполей г -- расстояние между центрами диполей

$$E_{\rm mon} = -d_{\rm q}^2/2{\rm Dr}^4$$
 (65)

и

При этом, ввиду г⁻⁴ зависимости энергии последнего взаимодействия, эффект среды при переходе из газа в раствор в данном случае должен быть особенно значительным.

Примечательно, что наподобие относительной независимости в пределах реакционной серии разницы суммарных зарядов Δq (см. табл. I) на реакционном центре в исходном (депротонированном) и конечном (протонированном) состояниях (напр., для превращения X0⁻ + H⁺ — XOH $\Delta q = q_{OH} - q_{O}^{-}$) в газовой фазе, аналогичный переход (величина $\Delta q_{H_{20}}$ см. табл. 2) между моносольватированными частицами X0⁻...HOH и XOH...OH₂ также практически не зависит от природы радикала $\chi(\Delta q_{H_{20}} = 0.38^{\pm}0.07; \chi = F, CF_3CH_2, Et, Clo_3, Me_3N, t-Bu,$ $1-Pr, (CF_3)_2CH, CF_3), хотя сама величина <math>\Delta q_{H_{20}}$ меньше величины Δq для этого же процесса в \approx I,4 раза^{*}.

* Δq_{H2} вычисляется как разность между суммарным зарядом на (сольватированной) ОН группе и зарядом на сольватированном О-атоме. Зарядами на молекуле H₂O пренебрегают.

(A)

(B)

Рис. 2. Сравнение относительных изменений вычисленных сродств к протону несольватированных ионов XO⁻ (STO-3G базис) со сродством к моногидратированному (А) и тригидратированному (Б) ионам XO⁻...n(HOH).

Сравнимое уменьшение чувствительности данной реакционной серии к эффектам строения под влиянием добавки первой молекулы воды в сольватную оболочку ХОН или ХО вытекает также из прямого сравнения (см. табл. I и 2 и рис. 2) вычисленных в настоящей работе в STO-3G базисе относительных сродств к протону несольватированного ($\triangle PA(XO^-)$ (см. уравнение (I) и моногидратированного ($\triangle PA(XO^-...HOH)$) XO⁻ионов (см. уравнение (I)),

$$\Delta PA(XO) = a + b \Delta PA(XO...HOH)$$
(6)

Наклон этой зависимости несколько колеблется в зависимости от того, включены ли точки для Me_3NO и O_2^{2-} . Без этих то-чек наклон b = 1,61, с включением Me_3NO b = 1,44 и с включением также точки для 0^{2-}_{2-} b = 1,85. При этом, статистически наиболее вероятным представляется первое из этих значений, т.е. b = 1,61. Постепенное добавление к XOH и XOT еще пвух молекул Н₂О приводит (см. табл.3) к дальнейшему уменьшению как величины Дан (примерно на I5--20%), так и к дополнительному спаду чувствительности данной реакционной серии к эффектам строения. Так, из сопоставления относительных величин расчетных сродств к протону моногидратичованного и тригидратированного анионов (см. рис. 2) вытекает, что чувствительность реакционной серии к эффектам строения падает с добавлением двух дополнительных молекул волы в сольватную оболочку еще в. І.4 раза. Таким образом, наиболее вероятный расчетный брутто-эффект влияния послеповательной гидратации на сродство к протону анионов ХО- тремя молекулами волы составляет I,6xI,4 = 2,24 раза (с включением точки для Me_3NO этот эффект равен I,44x I,4 = 2,0I,а с включе-нием также точки для O^2 I,85x I,4 = 2,57 раза).

С другой стороны,² непосредственное сопоставление газофазной и жидкофазной основностей некоторых анионов XO⁻, однако, показывает, что чувствительность данной реакционной серии к эффектам строения уменьшается при переходе из газовой фазы в воду около 3,7±0,3 раз, т.е. примерно на 40% больше, чем предсказано на основе вышеуказанных простых неэмпирических расчетов в приближении модели супермолекулы с учетом лишь трех молекул воды. Поэтому ясно, что в данном случае для адекватного учета влияния сольватационных эффектов при переходе из газовой фазы в воду недостаточно лишь

учета влияния специфической сольватации. Известен, однако, по крайней мере один случай^I, ⁸ (протонирование первичных аминов), где простая модель специфической сольватации приводит к адекватному описанию эффектов среды уже на уровне простых расчетов на базисе STO-3G.

Несколько меньший экспериментально наблюдаемый бруттоэффект уменьшения (около 2 раз) цувствительности данной реакционной серми к влиянию строения характерен для перехода из газовой фазы в ДМСО. В свою очередь, переход из последнего растворителя в воду уменьшает чувствительность к брутто-эффектам строения практически столько же (1.9+0.2).

Сравнимые по их величине изменения характеризуют переход из газовой фазы в раствор также с точки зрения коэффициента а, из уравнения ¹⁵, 17, 18, 25, 26

 $A = A_0 + a_1 \sum \delta^{\pi} + a_2 \sum \Delta R + a_3 \sum \delta^0_R + a_4 n_1 + a_5 \Delta n_2$ (7)

где А -- обозначает газо- или жидкофазную основность основания, ∑б[∞] и ∑б^о -- суммы индукционных

> и резонансных постоянных у центра реакции, $\Delta R - MR - MR$ (метил), где MR - вычисленная аддитивная молекулярная рефракция заместителя, n_1 -- количество атомов водорода, непосредственно связанных к центру реакции, $\Delta n_2 = n_2 - n_2$ (метил) - где n_2 -- количество атомов водорода в \ll -положении к центру реакции, A_0 , a_1 , a_2 , a_3 , a_4 и a_5 -- постоянные

как для этой серии, так и для серии замещенных алифатических карбоксилат-ионов (НСОО⁻ (см. табл. 4).

В качестве заведомо нестрогого и весьма грубого приближения нередко⁸, 15, 17,18 индукционный эффект в терминалах уравнения (7) или его частных вариантов аппроксимируется через энергию ион-дипольного или диполь-дипольного взаимодействий, выражаемых выше ур. (3) и (4). Аналогично, поляризационный вклад (a₂ <u>C</u>AR) в рамках уравнения (7) может быть визуализован в терминах представлений о взаимодействиях ти-

па точечный заряд (центра реакции) — индуцированный диполь (заместителя), передаваемых через ур. (5) (см. выше).

Для сравнения в табл. 4 приведены в случае двух вышеуказанных реакционных серий типичные данные¹⁷, 18, 25, 26 как по коэффициентам а, и а, для некоторых других сред, так и по коэффициентам¹⁷, 18, 25 о° и о_R из уравнения

$$A = A_{o} + \rho^{o} \delta^{o} + \rho_{R}^{\pm} \delta_{R}^{\pm}, \qquad (8)$$

где б° и $b_{R}^{+} = b^{\pm} - b^{\circ} (b^{+} u b^{-}, cootветственно)$ электрофильные и нуклеофильные константы заместителей) – константы заместителей²⁷, а A_{o} , ρ° и ρ_{R}^{\pm} — посточные реакционной серии, А —либо газофазная основность, либо р K_{a} соответствующего (в данном случае анионного) основания в жижкой фазе.

для кислотной лиссоциации (т.е. основности соответствующих сопряженных анионов) замещенных бензойных кислот и фенодов в газовой фазе и различных растворителях.

Из табл. 4 видно, что во всех рассмотренных случаях переход из газовой фазы в растворитель не меняет условия $a_1 < 0$ и $\rho^0 < 0$, $\rho_R^- < 0$, хотя сами эти величины могут уменьшаться весьма существенно. При этом наибольшие изменения (табл. 4) для ланного процесса (напо., диссоциация спиртов, фенолов и бензойных кислот) связаны с переходом из газа в воду, что может быть хотя бы качественно объяснено доминированием в реакциях отгыва протона от нейтральных ОНкислот специфической электпофильной сольватации в анионной (A^- ...H-OH) форме над нуклеофильной сольватацией нейтральной кислоты (AH...OH₂). Забегая вперед скажем, что тэкой же вывод напраяивается и в рамках анализа данных табл. 4 в терминах эмпирического уравнения (см. ниже) для учета отдельных вкладов неспецифической и специфической сольватации в брутто-эффектах стеды.

Встественно, что соптовождающее образование сольватов перераспреледение заряда и изменение эффективных размеров реагирующих частиц (см. выже) должно сказываться (как правило, в сторону уменьшения) и на интенсивность влияния неспецифических сольватационных взаимодействий (полярность и Типичные регрессионные коэффициенты^{*} а₁ и а₂ ур. (7) и р^о и р_R[±] ур. (8) для некокоторых растворителей и газовой фазы (ГФ)

	XO		XC00		ArO		ArCO	0
ореда	-a 1	-a ₂	-a ₁	-a 2	-~°	-70R-	70°	-PR+
ΓΦ	I0.4	0.52	7.8	0.22	I8.I	8.9	15.0	3.0
ДМСО	7.6	0.17	3.91	0.08	6.6	2.7	3.6	0,04
CH3CN	1.		4.73	0.042	5.9	3.4	3.5	I.4
ДМФ	-		-	8 - 2 1	6.5	-	3.2	I.9
CH3NO2	- 1	-	4.54	-0.027	4.8	-	3.5	-
снзон	5 -	E	2.3	0.035	3.5	I.9	I.9	0.5
C ₂ H ₅ OH		-	2.2I		3.4	I.9	2.I	0.53
(СН3) 2СНОН	-	-	2.48	-	4.6	2.8	2.I	0.52
(СН3) 3СОН	-	-	2.98	- 1	7.7	-	4.2	-
H ₂ 0	3.84	0.049	2.46	0.II	2.48	0.68	I.37	0.34

* Регрессионные коэффициенты (см. также¹⁵, 17, 18, 25, 26) даны в ккал/моль единицах.

поляризуемость среды)8, 17, 18, 28

Промежуточное положение фактора затухания эффектов строения под влиянием среды величин a_1 , а также коэффи-циента ρ° уравнения (8) для ДМСО (см. табл. 4 и ссылки^{8,25}) обычно объясняется отсутствием на фоне неспецифических сольватационных взаимодействий электрофильной сольватации посредством водородной связи в анионной форме кислоты (ХО-, XCOO и т.д.), (возможным) доминированием стабилизирующей нуклеофильной сольватации в нейтральной кислоте типа XCOOH...OSMe, XOH...OSMe, и предполагаемой³⁹ пренебрежимостью вклада специфической сольватации от взаимодействий аниона с молекулами ДМСО. Надо, однако, учесть, что согласно результатам наших неэмпирических расчетов (3-21G^ж ба-зис), (см. рис. I, а также работы¹⁵, ¹³, ДМСО способен к эдектрофильной сольватации положительным концом диполя S-O анионов типа но, F, FO и, по всей вероятности, также алкоголят- и карбоксилат-ионов. Видно (см. рис. I), что энергия указанного взаимодействия такого же порядка или даже больше, чем энергия взаимодействия ДМСО с электрофилами типа ХОН или ХСООН в газовой фазе. Этот вывод был недавно поддержан³⁰ прямым экспериментальным наблюдением комплексов ДМСО с анионами С1, NO, и др. в газовой фазе.

Воздействие менее интенсивных по сравнению с ДМСО специфических сольватационных взаимодействий ожидается в случае нитрометана³¹ и ацетонитрила. Так или иначе, в связи с этим обращает внимание очень низкое соотношение величин (табл. 4) для реакции диссоциации ХСООН в газе и в ДМСО, меNO₂ и MeCN. Соотношение для системы $X_{\rm I}X_{\rm 2}X_{\rm 3}C^{-}$ при переходе из газа в ДМСО также не превышает I.2.¹⁸.

Как и следовало ожидать, на основе уравнения (5) и результатов модельных расчетов⁸, ¹⁵, ¹⁸ а₂ меняется (уменьшается) гораздо больше, чем чувствительность к. влиянию полярных (индукционных) эффектов. Так, для серии ХО⁻ переход из газовой фазы в воду уменьшает а₂ на 5.7 раза, а в ДМСО на 3 раза, чувствительность серии диссоциации ХСООН, в свою очередь, меняется в обоих случаях около 3,7 раза. Простой расчет на основе уравнений (3) и (5) (предполагается идентичность величин г и ^D в обоих уравнениях) показывает, что качественно масштабы изменения величин a_1 и a_2 не противоречат друг другу. Действительно, изменению г от 2 до 3 Å соответствует ожидаемое изменение a_1 на 2,3 и a_2 на 5,1 раза, а вполне реальному увеличению г от 3 до 4 Å, соответственно, I,8 и 3,2 раза. При оценке относительных вкладов влияния неспецифической и специфической сольватационных взаимодействий на характеристики чувствительности реакционных серий (a_1 , ρ° , ρ_R^-) к эффектам строения (или на величины pK_a) некоторую дополнительную информацию можно получить используя корреляционное уравнение²⁸, учитывающее в отдельност^и вклады полярности, поляризуемости, электрофильности и с. ей основности растворителя.

$$A = A_0 + yY + pP + eE + bB, \qquad (9)$$

где Y = f(D) и P = f(n_D) – соответственно т.н. полярность и поляризуемость растворителя, D и n_D – соответственно диэлектрическая проницаемость и показатель преломления среды, E и B, соответственно эмпирические меры электрофильности и общей основности растворителя, A_o , y, p, e и b – постоянные, причем A_o = A для газовой фазы (A – log k, pK_a, спектральная характеристика, и т.д.).

Типичные примеры применения этого уравнения к некоторым регрессионным коэффициентам 0° и а (0[±]) уравнений (7) и (8) из табл. 4 можно найти в табл. 5.

Анализ приведенной там зависимости величин а_I из уравнения (7) и ρ° из уравнения (8), соответственно, для основности алифатических карбоксилат-ионов ХСОО⁻ и для основности замещенных бензоат- и фенолят-ионов в рамках уравнения (9) показывает, что чувствительность основности анионных оснований к влиянию строения в двух последних случаях уменьшается с переходом из газовой фазы в более полярную и более электрофильную среду (для ArCOO⁻ важна и поляризуемость среды), в то время как по весьма скудным данным для алифатических анионов ХСОО⁻ величина а_I уменьшается с переходом из газа в жидкую фазу главным образом за счет электрофильной компоненты сольватационных воздействий, которая стабилизирует анионную форму, сопряженное основание A⁻ кислоты AH, тем

самым увеличивая силу кислоты (специфическая сольватация кислоты АН в этом случае стабилизирует исходное состояние и уменьшает кислотность кислоты. Несколько неожиланной оказывается пренебрежимость вклада влияния нуклеофильной сольватации на брутто-величины р° в случае серии бензоат и фенолят-ионов и лишь относительно слабое влияние этого фактора для ХСООТ. Возможно, что это связано с относительно слабой зависимостью (свободной) энергии стабилизации нейтральной формы кислоты при достаточно умеренном изменении кислотности последней при варьировании строения кислоты-понора водородной связи. По-видимому, об этом свидетельствуют и проведенные в настоящей работе модельные неэмпирические расчеты гидратации спиртов ХОН и алкоксид-ионов ХО молекулами воды, откуда следует (см. табл. 2 и 3), что как сама энергия комплексообразования между молекулой воды и анионом ХО, так и ее изменение со строением Х (рис. 3), намного превосходят как абсолютный уровень, так и изменение силы водородной связи между нейтральным спиртом ХОН как электрофилом и молекулой воды (рис. 4), так и нуклеофильным (основным) сольватирующим агентом.

Действительно, из рис. З и 4 видно, что в первом случае линейная зависимость между относительными расчетными энергиями комплексообразования XO⁻ с H_2O и сродством к протону аниона[×] характеризуется средним наклоном (0.375±0.10), который почти в четыре раза превосходит наклон (0.10) зависимости энергии комплексообразования нейтральной кислоты XOH с молекулой воды от $\Delta PA_{cal}(XO^-)$ (т.е. от расчетной кислотности кислоты XOH). Обращает также на себя внимание факт^{××}, что не всегда данные различных авторов (см. рабо-

* Здесь необходимо заметить, что по данным настоящей работы (см. рис. 3) найденная в эксперименте на основе сравнительно ограниченного набора ХО линейность между силой водородной связи и сродством к протону аниона ХО являеття скорее всего исключением, чем правилом.

 Экспериментальные величины пля некоторых комплексов X0⁻...
 ...H₂0 следующие X=H^{7a}, ⁸:25.0 ккал/моль, Me:19.9^{7a}ккал/ моль и 23.9⁷⁶ ккал/моль, t-Bu ⁷⁶23,4 ккал/моль, C₆H₅⁷⁶: I5.4 ккал/моль, NO₂¹⁴ :I2.3 ккал/моль.

Таблица 5

Анализ влияния неспецифических сольватационных воздействий на некоторые регрессионные коэффициенты (ρ° из уравн. (8) для кислотно-основных равновесий с участием замещенных бензоат- и фенолят-ионов и величина a_1 из уравн. (7) для производных алифатических карбоксилат-ионов) в рамках мультипараметрового уравнения (9)^а

Корре емая чина	елиру- вели- А	Ao	У	р	e	-b	R -	s %	n
,0°, щенны зоат-	заме- ые бен- -ионы	-10.84 (2.23)	5.87 (I.96)	I0.69 (6.63)	0.II3 (0.03I)	0	0.964	4.3	12
,0°, лят-1	замещенные фено-	-I3.I3 (0.88)	9.IO (0.76)	0	0.151 (0.033)	0	0.965	5.7	10
а ₁ , фатих	замещенные али-	-5.03 (0.17)	0	0	0.127 (0.035)	0.0065	0.724	16.3	9

 а -- В скобках под регрессионными коэффициентами уравнения (9) указаны их доверительные пределы, ноль обозначает пренебрежимость данного фактора среды, R -- коэффициент множественной регрессии, в % = (s/ ΔA_{max}) 100, где в -- стандартное отклонение, а ΔA_{max} -- диапазон изменения коррелируемой величины, n -- число точек.

Рис. 3. Зависимость относительных энтальпий (ΔЕ_{XO}-...HOH) образования водородной связи между XO⁻ анионами и одной молекулой воды от относительной основности донора xO⁻(ΔPA_{xO}-(calc)).

Рис. 4. Зависимость относительной силы водородной связи △^EHB(XOH) между нейтральной кислотой XOH и одной молекулой воды как основания от относительной основности сопраженного с кислотой основания хо⁻(△PA_{XO}-(calc)).

ты 7а и 76, где, например, найденные для комплекса Ме0Но0 силы водородной связи отличаются на ~4 ккал/моль, слишком завышенной кажется также приведенная в работе 76 аналогичная величина для t-Bu0 ... H_0 и т.д.) согласуются друг с другом в пределах разумных экспериментальных ошибок. Тенденция к доминированию стабилизации анионной формы ХО падает, как правило, с увеличением размеров аниона и (или) введением электроотрицательных заместителей. Причины этих явлений сложные. Так. увеличение эффективного радиуса иона вследствие увеличения его размеров или лучшей делокализации заряда должно привести к уменьшению интенсивности как неспецифической электростатической, так и электрофильной специфической сольватации анионной формы кислоты. Веление более электроотрицательных заместителей, в свою очередь, ведет к уменьшению истинной основности аниона ХО- (т.е. к уменьшению электрофильной стабилизации посредством водородной свявеличины Енр(ХО) в табл. 2 и 3) и к повышению кислот-ЗИ ности кислоты, которая должна результироваться в большей нуклеофильной стабилизации и нейтральной формы ХОН (см. величины Енв(ХОН) в табл. 2 и 3). Можно отметить, что согласно результатам настоящих модельных расчетов, стабилизация за счет специфической сольватации ХОН в случае двух частиц. НС10, и МезNOH⁺, превосходит по своей активности стабилизирующее влияние соответствующих депротонированных форм, Clo, и Me.NO.

В литературе⁸, 9, 15, 17, 18, 22 высказывалось предположение, что даже в минимальном базисе спеременные неэмпирические расчеты различных фундаментальных свойств (энергетика, строение и т.д.) молекул нередко правильно отражают некоторые основные закономерности изменения экспериментально измеренных величин при варьировании факторов строения и среды.

Это относится также к расчетам газофазной основности или сродства к протону органических молекул и анионов. В частности, замечено ¹⁵, ³², что несмотря на то, что предсказанные в минимальном базисе величины PA_{calc} по своим абсолютным величинам существенно отличаются от их экспериментальных значений PA_{exp}, между изменением указанных двух ве-

личин имеется удовлетворительная корреляция, которая позволяет на основе расчетных величин оценить вероятные ожидаемые значения (пока) недоступных экспериментальным значений РА

В частном случае, для 61 анионного основания соответствующее корреляционное уравнение выглядит³²:

$$PA_{exp} = 108(16) + 0.536(0.033) PA_{calc}$$
(10)

где в скобках указаны доверительные пределы регрессионных коэффициентов.

При этом стандартное отклонение от регрессионной линии составляет 9 ккал/моль, хотя наибольшие абсолютные отклонения отдельных расчетных величин от PA_{exp} достигают в среднем 92 ккал/моль. Указанное уравнение включает (за исключением Clo_4^-) также серию анионов – ОН кислот, рассмотренную в настоящей работе. К настоящему времени известна⁶ газофазная основность лишь весьма ограниченного числа моногидратов XO⁻ (X = H, Me и др.)⁷, а также небольшого количества алкилзамещенных XO⁻, сольватированных молекулами спирта⁷. Поэтому аналогичные уравнения, связывающие соответствующие расчетные и экспериментальные значения сродств к протону (газофазной основности) гидратированных или сольватированных частиц XO⁻, отсутствуют.

Возможно, что из-за этого, до накопления достаточного количества экспериментальных данных по сродствам к протону моно-, ди-, три- и т.д. гидратированных оснований ХО⁻, для весьма грубой оценки указанных величин следовало бы пользоваться вышеуказанным соотношением (IO), где вместо РА_{саlс} использовались бы соответствующие величины, рассчитанные в настоящей работе для гидратационных комплексов Хо⁻...n(H₂O).

В заключение следует сказать, что наряду с предсказанием завышенных абсолютных значений РА, расчеты в минимальном базисе также явно переоценивают силу водородной связи как между ХО⁻ и ХОН, так и между нейтральной кислотой ХОН и ОН₂. Особенно заметны эти отклонения для маленьких и жестких заместителей (H,F)⁸.

Есть основания считать, что переход на более высокий

уровень теории (более полный и гибий базис, использование для анионов т.н. диффузных функций⁹, переход за пределы Хартри-Фока либо в рамках прямого метода конфигурационных взаимодействий, либо с использованием теории возмущений Меллера-Плессета и т.д.) позволяет с удовлетворительной точностью определить как эти величины, так и сродства к протону анионных оснований⁷, 9, 15, 33.

Нами в настоящее время ведутся теоретические работы в этом направлении. Начаты также экспериментальные исследования (ИЦР) с целью прямого определения величин газофазной основности гидратированных или сольватированных анионов органических, в том числе и ОН-кислот.

С другой стороны, следует признать, что в области развития теоретических квантовохимических и статистических методов расчета эффектов среды следует, несомненно, признать весьма перспективными т.н. комбинированные подходы, объединяющий основные черты различных по своей природе методов. Сюда должны относиться, например, сочетание супермолекулярного подхода и методов модельного гамильтониана с формализмом методов Монте Карло и молекулярной динамики и построения наиболее эффективных межмолекулярных потенциалов, советание подхода супермолекулы с методами модельного гамильтониана, и т.д. (см. работы ¹⁰, ³⁴, ³⁵ для литературных ссылок). Необходимо отметить, что в самое последнее время в этом направлении достигнуты весьма обнадеживающие успехи (см., напр., обзоры¹⁰, ³⁵, работы ³⁶--³⁸ и др.

Автор благодарен проф. Р.У. Тафту и У.Дж. Хери за стимулирующую дискуссию, ценные советы и поддержку при проведении настоящего исследования во время его работы на химическом факультете университета Кадифорнии (г. Зрвайн) в 1981/82 гг.

Литература

- M. Taagepera, D. DeFrees, W.J. Hehre, R.W. Taft, J. Am. Chem. Soc., <u>102</u>, 424 (1980).
- J. Bromilow, J.L.M. Abboud, C.B. Lebrilla, R.W. Taft, G. Scorrano, V. Lucchini, Tam me. 103, 5448 (1981).
- S. Yamabe, T. Minato, K. Hirao, J. Chem. Phys. <u>80</u>, 1576 (1984).
- 4. W.L. Jorgensen, M. Ibrahim, J. Comput. Chem., 2, 7(1981).
- 5. a) S. Ikuta, TAM me, 5, 374 (1984).
 - 6) S. Ikuta, Mass Spectrometry, 30, 297 (1982).
- M.M. Szceczniak, S. Scheiner, J. Chem. Phys., <u>77</u>, 4586 (1982).
- 7. a) G. Caldwell, M.D. Rozeboom, J. Kiplinger, J.E. Bartness, J. Am. Chem. Soc., <u>104</u>, 4660 (1984).
 6) M. Meot-Ner, L.W. Sieck, J. Am. Chem. Soc., <u>108</u>,7525 (1986).
- 8. R.W. Taft, Progr. Phys. Org. Chem., 14, 247 (1983).
- W.J. Hehre, L. Radom, P.v.R. Schleyer, J.A. Pople, Ab initio Molecular Orbital Theory, New York, Interscience, 1985.
- В.Л. Зубков, Б.М. Колегов, Т.М. Бирштейн. Усп. химии, 52, 1057(1983).
- И.Г. Каплан. Введение в теорию межмолекулярных взаимодействий. М., Наука, 1982.
- 12. M.D. Newton, S. Ehrenson, J. Am. Chem. Soc., <u>93</u>, 4971 (1971).
- W.P. Kraemer, G.H.F. Diercksen, Theor. Chim. Acta, <u>23</u>, 398 (1971).
- J.M. Howell, A.M. Sapse, E. Singman, G. Synder, J. Phys. Chem., <u>86</u>, 2345 (1982).
- 15. а) И.А. Коппель, У.Х. Мёльдер, этот журнал, <u>20</u>, 3 (1983).
 6) И.А. Коппель, У.Х. Мёльдер, В.А. Пальм, этот журнал, 22, 3 (1985).
- И.А. Коппель. Тезисы докладов: а) IX Всесовзного совещания по квантовой химии, IO--I2 ивня I985 г., г. Иваново. ч. I. стр. I3.
 - б) международной конференции "Химическая физика ферментативного катализа, 21-24 сент. 1987, г. Таллин, стр. 99.
- 17. И.А. Коппель. Диссертация, ИХФ АН СССР. М., 1986.
- И.А. Коппель, У.Х. Мёльдер, Р.Й. Пиквер. Гдава У в книге В.А. Мазунов (ред.). Ионно-молекулярные реакции органических соединений в газовой фазе. Наука, Уфа, 1987.
- 19. J.S. Binkley, R.A. Whiteside, R, Krishnan et al., QCEP, No 406, 437, 446, 500.

- R.F. Hout, M.M. Francl, E.S. Blurock et al., University of California, Irvine, 1977-1983.
- 21. М.М. Карельсон. Этот журнал, 17, 371 (1980).
- 22. L. Radom, Progress in Theoretical Organic Chemistry,
 v. 3, I.G. Csiszmadia (Ed.), Amsterdam, Elsevier, 1983,
 crp. 1.
- 23. P.v.R. Schleyer, A. Kos, Tetrahedron, 39, 1141 (1983).
- D.S. Friedman, M.M. Francl, L.C. Allen, Tam me, <u>41</u>, 499 (1985).
- 25. И.А. Коппель, М.М. Карельсон. Этот журнал, II, 985(1975).
- 26. I.A. Koppel, U.H. Mölder, в книге QSAR Strategies in the Design of Bioactive Compounds, J. Seydel (Ed.), Weinheim: VCH, 1984, с. 281.
- 27. В.А. Пальм. Основы количественной теории органических реакций. Л., Химия, 1977.
- I.A. Koppel, V.A. Palm, B KHNre N.B. Chapman, J. Shorter (Eds.), Advances in LFER, London, Plenum, 1972, ch. 5.
- 29. A.J. Parker, Chem. Rev., <u>69</u>, 1 (1969).
- 30. a) T.F. Magnera, G. Caldwell, J. Sunner, S. Ikuba, P. Kebarle, J. Am. Chem. Soc., <u>106</u>, 6140 (1984).
 6) L.W. Sieck, J. Phys. Chem., <u>89</u>, 5552 (1985).
- 31. К.М. Дюмаев, Б.А. Королев. Усп. хим., 49, 2065 (1980).
- 32. И.А. Коппель, М.Б. Комизароу. Этот журнал, 17, 498 (1980).
- T. Clark, J. Chandrasekhar, G.W. Spitznagel, P.v.R. Schlyer, J. Comput. Chem., 4, 294 (1983).
- Г.М. Жидомиров, А.А. Багатурянц, И.А. Абронин. Прикладная квантовая химия. М., Химия, 1979.
- Б.Я. Симкин, И.И. Шейхеб. В книге физическая химия. Современные проблемы. М. "Наука", 1983.
- 36. E. Clementi, G. Gorongiu, M. Gratorola et al., Int. J. Quant. Chem., <u>16.</u> 409 (1982).
- E. Clementi, G. Gorongiu, Studies in Physical and Theoretical Chemistry, <u>27</u>, 397 (1983).
- 38. J. Chandrasekhar, S.F. Smith, W.L. Jorgensen, J. Am. Chem. Soc., <u>107</u>, 154 (1985).

Приложение

Некоторые характерные черты геометрии и распределения зарядов в системах Х0⁻...n(H₂0) и Х0H...n(H₂0)[≠]

	Сибтема	Геометрия и распределение зарядов
	I	2
1.	но	$H0=1.045, q_{G}=-0.760$
2.	НОН	H0=0.989; H0H=100.02, q ₀ =-0.330, q _H =0.165
3.	HO H1OH2	$H_0=1.035, H_1_0=1.01, 0H_2=1.007, 0H_1=1.199, H_0H_1=100.9, H_1_0H_2=100.9$
4.	HO, 2(H'OH")	$HO_1 = 1.033, O_1H^2 = 1.30$
5.	HO 3(H' OH")	HO ₁ =1.030, O ₁ H'=1.40, H'O=1.0, OH"=0.985, HO ₁ H'=110.0;
		H'OH"=100.5
6.	H_OH'O_H"OH_	$OH'=0.981$, $H'O(H_2)=1.84$, $OH=0.988$, $q_{O_2}=-0.412$, $q_{O}=0.330$,
	2 1 2	$q_{\rm H}$ = 0.174, $q_{\rm H}$ = 0.18
7.	OH2+3(0'H2')	OH=1.018, HO ^L 1.379, HOH=120.0, q _o =-0.45, q _o ,=-0.348, q _H =0.331,
) 2	$q_{\rm H}$,=0.25, Δ_2 =0.45, $E_{\rm tot}$ =-300.4170 a.u.
8.	FO	$FO=1.55$, $q_{O}=-0.553$, (6-31 G^{T} : $FO=1.49$)
9.	FOH	F0=1.355, OH=1.006, FOH=101.01, q ₀ =-0.149, q _H =0.195, q _F =-0.046
10.	FO H-O'-H	F0=1.373, OH=0.957, OH ₁ =1.00, FOH=103.6, HOH ₁ =100.9, FH=1.294,
		$q_0 = -0.444, q_0 = -0.509, q_H = 0.216$

	1	2
11.	FOH' 0'H2	FO=1.355, OH'=1.011 H'O'=1.63, O'H=0.986,
	2	FOH'=101.4, HOH=114.3 q ₀ =-0.214, q ₀ ,=-0.333
	H O'H.	-q _H ,=0.231
12.	FO1H O	$FO_1 = 1.356$, $O_1H' = 1.027$, $H'O = 1.488$, $OH_1 = 0.987$,
	^H 1···O' ^H 2	OH ₂ =0.988, H ₁ O'=1.70, FO ₁ H'=101,6, H ₁ OH ₁ =112.9,
		$H'OH_1 = 117.3$, $q_0 = -0.253$, $q_{H_1} = 0.245$, $q_0 = -0.427$,
		$q_{\rm H} = 0.221, q_{\rm O} = -0.334, q_{\rm H} = 0.189$
13.	FO	m_1 m_2
		FO.H'=107.8. $U'OH=100.3$. $a_{-}=-0.382$. $a_{-}=-0.187$.
		$q_{+} = 0.224$, $q_{-} = -0.446$, $q_{-} = 0.07 \pm 0.08$,
14.	02-	$q_{\rm H} = 0.227, q_0 = 0.440, q_{\rm H} = 0.000, 0.$
15.	НО О-	$Q_{0} = 1.4492$ $Q_{0} = 1.021$ $H_{00} = 105.36$ $q_{0} = = -0.57$
1.2.	11010	$q_0 = 0.42$
16.	HOOH	90 - 13964 + 10 - 1.001 + 100 - 101.12 - 125.3
17.	$(0-0)^{2-}$ HO!H!	$00 - 1.449$ 0 H=1 021 H0!- ∞ 0'H!-1.045
	(0-01)	00 + 105 36 a = 0.57 a = 0.42 a = 0.76
18	HOOTH	$H_{0-1} = 1 + 0 + 0 + 1 + 0 + 1 + 0 + 1 + 0 + 0 +$
	1001	0.14 = 1.00 + 100 = 102 1 + 00 + 1 = 102 5 + 10.14 = 100 8
		a = 0.318 $a = -0.446$ $a = -0.505$ $a = 0.22$
		$q_0 = 0.003$ $q_0 = 0.046$
10	H00- 2(H101H11)	$q_{\rm H} = 0.000$, $q_{\rm H} = 0.040$
120	1001	$100_1 = 1.41, 0_11 = 1.50, 1.0 = 1.02, 0.11 = 0.55, 0.01 = 0.05, 0.05, 0.01 = 0.05, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.$
		$n_{1}=1.0099$, $n_{1}=109.24$, $00^{1}n_{1}=39.57$, $n_{1}0^{1}n_{1}=100.5$

	1	2
20.	HONH2	NO=1.427, NH=1.04, OH =0.995, NOH=101.4,
		q ₀ ≈-0.210
21.	HoNO	NO=1.48, NH=1.051, q ₀ -=-0.587, q _H =-0.012
22.	H_NO H'O1H''	NO=1.45, HN=1.057, OH'=1.28, H'0 ₁ =1.10,
		0 ₁ H''=0.999, H'0 ₁ H''=100.99, HNO=107.4,
		NOH'=105.9, q_0 -=-0.443, q_0 =-0.515, q_H ,=0.217,
		q _H ,=0.004, q _N =-0.349, q _H =0.043
23.	H ₃ CO	CO=1.368, CH=1.132, HCO=117,12, q _O =-0.658
24.	H3COH'	CO=1.433, CH=1.095, OH'=0.991, COH'=103.86,
		q ₀ =-0.295, q _H ,=0.177, q _C =-0.065, q _H =0.061
25.	H3CO H'01H''	CO=1.407, CH=1.108, H'0 ₁ =1.096, 0 ₁ H''=0.999,
		OH'=1.274, COH'=107,7, H!O1H''=100.8,
		$q_0 = -0.515$, $q_0 = -0.517$, $q_c = -0.073$, $q_H = 0.222$,
		$q_{\rm H}$, =0.0047, $q_{\rm H}^{1}$ =-0.04
26.	H ₃ CO ⁻ 2(H'O ₁ H'')	CO=1.41, CH=1.10, OH'=1.36, H'0 ₁ =1.05,
	,	0 ₁ H''=0.995, HCO=113.7, H'0 ₄ H''=100.5,
		$COH' = 108.7, E_{tot} = -262.7650$
27.	H ₃ CO ⁻ 3(H'O ₁ H'')	CO=1.425, CH=1.095, OH'=1.458, H'O ₁ =1.023,
		0 ₁ H''=0.991, HCO=112.95, COH'=109.0,
		H'0,H''=100.3

_	1	2
28.	н ₃ сон'о'н ² '	CO=1.424, CH=1.0926, OH'=0.984, H'O'=1.715, O'H''=0.985, COH'=104:17, H'O'H''=114.04, q _O =-0.336, q _{O'} =-0.335, q _{H'} =0.214, q _H =0.042++0.05 q _{H''} =0.193, q _C =-0.069
29.	H ₃ COH'0' H''0' H ₂	CO=1.430, CH=1.095, H'O'=1.58, O'H''=0.983 H''O''=1.71, OH'=1.00, O''H=0.985, HCO=109.8, COH'=104.36, H'O'H''=114.8, H''O''H=115.8,
30.	н ₃ с'сн ₂ о ⁻	q _C =-0.073, q _O =-0.372, q _O ,=-0.438, q _O ,=-0.344, q _H ,=-0.344, q _H =0.240, q _H =0.03++0.045, q _H ,=0.216, q _H (0''H ₂)=0.195 CO=1.348, C'C=1.62, CH=1.133, C'H=1.090, C'CO=116.7, HC'C=112.9, О в транс-положении
31.	н ₃ с'сн ₂ он	q _C ,=-0.204, q _H (CH ₂)=-0.097, q _H (C'H ₃)=0.002 C'C=1.547, CO=1.434, OH=0.991, CH=1.086, C'H=1.0936++1.0974, COH=103.98, гош-конформация,
32.	н ₃ с'сн ₂ о ⁻ н'о ₁ н''	$q_0 = -0.300, q_H(0H) = 0.175$ CO = 1.40, CC' = 1.57, CH = 1.111, C'H = 1.086 + 1.090, $OH' = 1.27, H'O_1 = 1.099, O_1H'' = 0.994, C'CO = 112.68,$
		HC'C=112.19, COH'=106.9; H'O ₁ H''=100.7, $q_0=-0.519$, $q_C=0.014$, $q_C=-0.188$, $q_H(CH_2)=-0.035$, $q_H(C'H_3)=$ =0.004, $q_{H_1}=0.222$, $q_{O_1}=-0.515$, $q_{H_1}=0.0025$

	1	2
33.	н ₃ с'сн ₂ он'о'н ₂ '	CO=1.430, CH=1.085, C'H=1.099, CC'=1.544, OH'=0.992, H'0'=1.72, O'H''=0.987, HC'C=110.3,
		C'CO=108.7, COH'=104.28, H'O'H''=114.5, q _O =-0.333, q _C ,=-0.188, q _C =0,005, q _O ,=-0.335, q _H ,,=0.190, a=0.2085.
34.	н ₃ с'сн ₂ 0 ⁻ 3(н'о ₁ н'')	CC'=1.55, $CO=1.41$, $CH=1.084$, $C'H=1.095$, $OH'=1.45$, $H'O_1=1.025$, $O_1H''=0.996$, $C'CO=114.06$, $HC'C=111.32$, $H'O_1H''=100.25$, $COH'=108.56$, $q_0=-0.4676$, $O_1H''=100.25$, $COH'=108.56$, $q_0=-0.4676$,
35.	(н ₃ с') ₂ с(н)о ⁻	$q_0 = 0.14969$, $q_c = 0.008$, $q_c = -0.1992$, $q_H = 0.228$, $q_H^{,} = 0.0727$, $q_H^{(CH_2)} = 0.004$, $q_H^{(C'H_3)} = 0.02 + 0.046$ C0 = 1.337, $C'H = 1.087 + 1.090$, $CH = 1.13$, $CC' = 1.62$, $HC'C = 113.6$, $HC0 = 117.07$, $q_0 = -0.6142$, $q_c = 0.122$,
36.	(H ₃ C') ₂ C(H)OH'	q _C ,=-0.203, q _H (CH)=-0.0892 CO=1.421, CH=1.097, C'H=1.085, OH'=0.957, CC'=1.55, HCO=104.55, COH'=103.0, HC'C+110.12,
		q _O =-0.293, q _H ,=0.1691, q _C =0.0844, q _C ,=-0.1923, q _H (CH)=0.060, транс-конформаци я
37.	(H ₃ C') ₂ C(H)0 ⁻ H'O'H''	CO=1.40, CH=1.1107, CC'=1.575, C'H=1.088, OH'=1.270, H'O'=1.098, O'H''=1.003, HCO=111.9, CONT. 107, O. MICHAIL, 100, CO. MICH. 112, 4 - 0, 500
		$q_c = 0.0886, q_c = -0.1941, q_0 = -0.5127, q_H = 0.2214,$

	1	2
38.	(H ₃ C') ₂ C(H)0 ⁻ 3(H'0'H'')	CO=1.42, CH=1.105, CC'=1.572, C'H=1.087,
	_	C'H=1.105, OH'=1.51, H'O'=1.013, O'H''=0.990,
		COH'=104.5, HCO=113.23, H'O'H''=100.88,
		q ₀ =-0.498, q _c =0.0882, q _H =-0.017, q _c ,=-0.1969,
		q _H ,=0.2193, q ₀ ,=-0.475, q _H ,,=0.1215
39.	(H ₃ C') ₃ CO ⁻	CO=1.33, CC'=1.62, C'H=1.085++1.088, C'CO=115.49,
	A. water .	HC'C=113.05, $q_0 = -0.607$, $q_c = 0.181$, $q_c = -0.2022$
40.	(H ₃ C') ₃ COH'	CO=1.44, OH'=1.00, CC'=1.57, C'H=1.095, COH'=102.0
		HC'C=109.5, q ₀ =-0.297, q _H ,=0.165
41.	(H ₃ C') ₃ CO ⁻ H'O'H''	CO=1.39, CC'=1.576, C'H=1.085+1.090, OH'=1.28,
		H'0'=1.097, 0'H''=1.00, C'CO=110.62, HC'C=112.5,
		COH'=108.7, H'O'H''=100.53, q _O =-0.5212, q _C =0.1612,
		$q_{C_1} = -0.188 + 0.194$, $q_{H_1} = 0.236$, $q_{O_1} = -0.5109$,
		q _H ,,=0.099
42.	(H ₃ C') ₃ COH'O'H''	CO=1.44, CC'=1.55, OH'=0.996, O'H''=0.986,
	T GOLT CLAR	C'H=1.092, H'O'=1.61, C'CO=106.17, COH'=106.9,
		HC'C=110.8, $q_0 = -0.363$, $q_0 = -0.3298$, $q_0 = 0.1507$,
		q_{C} ,=-0.181++-0.191, q_{H} ,=0.219, q_{H} ,=0.195
43.	F ₃ CO ⁻	$CO=1.275$, $CF=1.423$, $FCO=117.05$, $q_O=-0.572$,
	ALCENTRO MARCEL	$q_{\mu} = -0.286$, $q_{c} = 0.430$
44.	F3COH	CO=1.401, OH=0.991, CF=1.380, COH=104.0.FCO=110.4

6*

	1	2
45.	F3C0 HO'H'	CO=1.31, CF=1.402++1.407, OH=1.40, O'H'=0.994,
	,	HO'=1.037, COH=115.14, FCO=116,6, HO'H'=100.55,
		q ₀ =-0.5296, q _C =0.4586, q _F =-0.242++-0.253,q _H =0.2332, q ₀ ,=-0.4676, q _H ,=0.0541
46.	F3COHO'H'	CO=1.40, CF=1.366++1.375, OH=0.997, HO'=1.589,
	a georgeological and a second	0'H'=0.985, COH=105.6, HO'H'=114.2, FCO=108.88,
		q ₀ =-0.358, q _C =0.520, q _H ≠0.2494, q _F =-0.152++0.174, q ₀ ,=-0.33, q _H ,=0.207
47.	F3C0 3 (HO'H')	CO=1.35, CF=1.387++1.394, OH=1.53, HO'=1.00,
		0'H'=0.990, FCO=113.7, COH=113.9, HO'H'=99.9,
		$q_0 = -0.4935$, $q_0 = -0.4321$, $q_F = -0.2095 + 0.2127$,
	HI OUH	q _C =0.4805, q _H =0.2241, q _H ,=0.093
48.	F3COH0 H'0'H2	CO=1.385, CF=1.37++1.378, OH=1.028, HO'=1.39, O'H'=0.985, H'O''=1.63, O''H=0.988, COH=106,23,
		FCO=110.1, HO'H'=112.8, H'O''H=116.96, q_=-0.3999,
		$q_{0} = -0.440, q_{0} = -0.3336, q_{F} = -0.1681 + -0.186, q_{H}(0H) = 0.2684, q_{H} = 0.2335, q_{H}(0''H_{2}) = 0.204$
49.	CF3CH20	CO=1.32, CF=1.383++1.389, CH=1.129, CC=1.687,
		CCO=116.95, FCC=112.96, q ₀ =-0.5786, q ₀ (CH ₂)=0.039,
		$q_{C}(CF_{3})=0.3266, q_{F}=-0.2127++-0.2243, q_{H}=-0.0687$

	1	2
50.	СF ₃ C'H ₂ OH'	q _{CO} =1.432, CF=1.373, CC=1.576, OH'=0.991, C'H=1.097, COH'=103.87, CCO=107.48, FCC=110.27,
		$q_0 = -0.2747$, q_H , =0.1883, $q_H = 0.070$, q_C , =-0.0264, $q_C = 0.427$, $q_B = -0.149 + 0.156$
51.	CF3C'H20 H'O'H''	C'0=1.39, $CC'=1.60$, $C'H=1.11$, $CF=1.380++1.387$,
	5 2	OH'=1.31, H'O'=1.077, O'H''=0.999, C'OH'=110.2,
		FCC'=112.17, CC'0=111.78, H'O'H''=100.6,
		$q_0 = -0.5067, q_0 = 0.011, q_0 = 0.3782, q_0 = -0.4987,$
		q_{u} ,=0.2252, q_{u} ,=0.0214, q_{u} =-0.188++-0.204
52.	CF3C'H20 2(H'O'H'')	$E_{+o+} = -593.7520$ a.u., C'0=1.397, CC'=1.59,
	3 2	C'H=1.106, CF=1.38, OH'=1.40, H'O'=1.036,
		0'H''=0.993, C'OH=108.95, H'O'H''=100.5,FCC'=112.1
		$q_0 = -0.474$, $q_0 = -0.467$, $q_C = -0.02$, $q_C = 0.388$,
		q _H =0.0108, q _H ,=0.2297, q _H ,=0.06
53.	(CF ₃) ₂ CHO	CO=1.30, CF=1.38, CH=1.13, CC=1.67, FCC=116.0,
		$q_0 = -0.540$, $q_F = -0.196 + -0.204$, $q_C(CH) = -0.095$,
		$q_{C}(CF_{3})=0.341, q_{H}=-0.043$
54.	(CF ₃) ₂ CHOH'	CO=1.430, CH=1.094, OH'=0.993, CF=1.370, CC=1.587,
		HCO=108.16, COH'=104.0, FCC=111.5, q ₀ =-0.267,
		q_{H} ,=0.198, q_{H} =0.088, q_{F} =-0.142++-0.152, q_{C} (CH)=0.013, q_{C} (CF ₃)=0.417

	1	2
55.	(CF ₃) ₂ CHO ⁻ H'O'H''	CO=1.367, CC=1.62, CF=1.383, CH=1.112, OH'=1.375,
		HCO=116.4, H'O'H''=100.4, $q_0=-0.4998$, $q_c(CH)=0.042$, $q_c(CF_3)=0.377$, $q_F=-0.171$ **-0.182, $q_0=-0.477$,
56.	(CF ₃) ₂ CHOH'0'H'2'	q _H ,=0.225, q _H =-0.0036, q _H ,,=0.051 CO=1.43, CF=1.37, CC=1.59, OH'=1.01, H'O'=1.61, O'H"=0.995, COH'=106.53, H'OH'=112.98, FCC=111.53,
57.	(CF ₃) ₃ CO ⁻	q ₀ =-0.319, q _C (CF ₃)=0.415, q _C (CH)=0.11, q _H =0.088, q _H ,=0.2315, q _F =-0.148++-0.164, q _H ,,=0.225++0.250 C0=1.294, CC=1.69, CF=1.36, FCC=115.5, C00=114.6,
	CATERIO	$q_0 = -0.514$, $q_c = 0.1477$, $q_c (CF_3) = 0.3502$, $q_m = -0.186 + -0.189$
58.	(CF3)3C'OH	C'0=1.424, CC'=1.616++1.622, OH=0. 9 97,
		CF=1.36++1.37, CC'0=106.1, C'0H=103.4, FCC'=113.2, $q_0 = -0.269$, $q_C = 0.039$, $q_C = 0.455+0.469$, $q_H = 0.207$, $q_F = -0.145+-0, 159$
59.	(CF ₃) ₃ C'O ⁻ HO'H'	C'O=1.27, CC'=1.59, CF=1.361, OH=1.45, HO'=1.037, O'H'=0.994, C'OH=115.1, HO'H'=100.2, CC'O=114.55,
		FCC'=115.48, q ₀ =-0.4898, q _C =0.1504, q _C =0.3613** **0.3657, q _F =-0.1700**-0.1800, q _H =0.224, q ₀ =-0.443, q _H =0.067

	1	2
60.	(CF3)3C'OHO'H'2	CO=1.42, CF=1.36, OH=0.990, O'H'=1.00, CC'=1.62, HO'=1.62, C'OH=103.2, HO'H'=113.0, CC'O=106,8, 0.==0.3388, 0.=0.410+0.433, 0.=0.049
		$q_{\mu} = -0.130 + + -0.14$, $q_{0} = -0.322$, $q_{\mu} = 0.243$, $q_{\mu} = 0.19$
61.	FCH20	CO=1.315, CF=1.445, CH=1.147, FCO=114.9,
		$q_0 = -0.6114$, $q_H = -0.114$, $q_F = -0.3031$, $q_C = 0.1352$
62.	FCH20H	CO=1.425, CF=1.381, CH=1.03++1.075, OH=0.991,
	2 Alexandre States	FCO=110.6, COH=104.2, q _O =-0.297, q _H (OH)=0.191,
		$q_{\rm m} = -0.160, q_{\rm cr} = 0.132$
63.	NO	$NO=1.315$, $q_0=-0.384$, $q_{N}=-0.152$
64.	NONO	NO=1.27, NO'=1.444, O'H=0.998, NO'H=100.5,
		$q_0 = -0.1548$, $q_0 = -0,1578$, $q_M = 0.233$, $q_H = 0.234$
65.	0''NO HO'H	$NO=1,35$, $NO''=1.30$, $q_O=-0.370$
66.	0; 'NOH0'H'	$NO=1.43$, $q_0=-0.231$, $q_{011}=-0.184$, $q_{11}=0.273$,
	-	$q_{0} = -0.335, q_{N} = 0.221$
67.	(CH3) 3NO	NO=1.546, CN=1.522, CH=1.09, CNO=108.14,
		$q_0 = -0.377$, $q_N = -0.129$, $q_0 = -0.09$, $q_{tr} = 0.07 + 0.095$,
		µ =4.26D
68.	(CH ₃) ₃ NOH ⁺	NO=1.446, CN=1.527, OH=1.002, CH=1.09, NOH=102.91,
		$CNO=103.92$, $q_0=-0.118$, $q_{0}=-0.080$, $q_{w}=-0.0625$.
		q _{tr} =0.13

	1	2
69.	(CH ₃) ₃ NOH'O'H"	NO=1.51, CN=1.53, OH'=1.54, H'O'=1.00, O'H"=0.987, NOH'=109.82, H'O'H"=100.34, CNO=111.7, q _O =-0.3451,
		q_{0} ,=-0.437, q_{N} =-0.110, q_{C} =-0.085, q_{H} ,=0.210, q_{H} "=0.1027
70.	(CH ₃) ₃ NO3(H'O'H")	NO=1.4706, CH=1.09, OH'=1.58, H'O'=1.00, O'H"=0.992, CN=1.533, HCN=109.5, NOH'=111.14, H'O'H"=102.05, CNO=109.75, q ₀ =-0.3028,q _N =-0.0902,
		$q_{C} = -0.08, q_{H} = 0.09, q_{0} = -0.430$
71.	(сн ₃) ₃ пон ⁺ о'н ₂	NO=1.43, CN=1.54, OH=1.027, O'H'=0.988, HO'=1.47, CH=1.09, NOH=107.45, HO'H'=115.82, CNO=101.0, q_0 =-0.211, q_N =-0.0763, q_C =-0.076, q_H =0.2847, q_0 =-0.3374, q_H =0.225
72.	(сн ₃) ₃ ион ⁺ о ^н 'о ^н ''' н'о ^н ''	N0=1.451, CN=1.54, H0'=1.235, H'0 ₁ =1.56, OH=1.10, O'H'=0.99, HO'H'=113.6, CNO=104.3, NOH=106.2, H'0 ₁ H"=130.7, O ₁ H"=0.99, q_0 =-0.250, q_N =-0.0837, q_C =-0.08, q_H (OH)=0.2895, q_0 =-0.457, q_H =0.260, q_0 =-0.436, q_H "=0.265
73.	HCOO-	q ₀ =-0.5147, q _C =0.1582, q _H =-0.1288
74.	HC(0')OH'	q ₀ ,=-0.270, q ₀ (OH)=-0.260, q _H =0.074, q _H ,=0.203, q _C =0.255

	1	2
75.	сн ₃ с'о ₂	CC'=1.63, CH=1.087, CO=1.263, OCO=130.5, HCC=111.4, q _O =-0.5048, q _C =-0.2317, q _O ,=0.2313, q _H =0.05
76.	сн ₃ с'(о')он'	CH=1.085, CC'=1.537, CO'=1.2164, OH'=0.4899, C'OH=104.6, CC'O'=126.8, O'C'O=121.8, q _O ,=-0.2692, q _O =-0.2943, q _H ,=0.2026, q _C ,=0.3157, q _C =-0.2070, q _H =0.0834
77.	снзскону	CC'=1.61, CH=1.087, C'0=1.267, OH'=1.82, O'H'=0.995, HCC'=110.6, C'0H'=105.3, CC'0=115.8, H'0'H'=95.5, OH'0'=141.0
78.	сн ₃ с'(о')он'о"н"2	CC=1.54, CO'=1.222, OH'=1.00, CH=1.085, H'O"=1.55, O'H"=0.982, CO=1.376, C'OH'=105.15, O'C'O=122.5, CC'O=125.1, H'O"H"=116.7, HCC'=110.1, q _O :=-0.2917, q _O =-0.337, q _H :=0.2337, q _O :=-0.3518, q _H :=0.2140
79.	сн ₃ с'(0 ⁻ 2)2(H'0'H")	C'0=1.269, CC'=1.588, CH=1.086, OH'=1.53, H'0'=1.01, O'H"=0.985, HCC'=110.5, H'0'H"=100.1, CC'0=115.2, C'OH'=121.95, q _C ,=0.244, q _C =-0.224, q _O =-0.483
		a state and the state and the

	1	2
80.	c⊮₃c⁺o₂	CC'=1.705, C'0=1.254, CF=1.38, FCC'=113.6, CC'0=112.6, q ₀ =-0.4602, q _C =0.3126, q _C ,=0.2399, q _F =-0.2098++-0.2123
81.	сљ ³ с.(0,)он	CC'=1.590, C'0'=1.213, C'0=1.213, OH=0.989, CF=1.37, CC'0'=123.11, CC'0=111.47, C'0H=104.33, FCC'=108.6, $q_{C}=0.4140$, $q_{C}=0.2914$, $q_{O}=-0.2783$,
		$q_0 = 0.2313, q_H = 0.2204, q_F = 0.139$
82.	c104	Cl0=2.00, 0Cl0=109.5, q ₀ =-0.2037, q _{Cl} =-0.1851
83.	0"-ОСІО'Н	H0'=1.006, Cl0'=1.75, Cl0"=2.26, (в трансположении относительно H), Cl0=2.32, Cl0'H=99.38, OCl'=101.3 q ₀ ,=-0.1103, q ₀ =-0.0603, q ₀ ,=-0.0447, q _{Cl} =0.0142, q _H =0.261, <i>M</i> =2.44D
84.	ојстоно"н'	ClO=1.98, ClO'=1.99, OH=1.61, HO"=1.00, O"H'= =0.984, O'ClO=109.23, ClOH=109.1, HO"H=99.9,
85.	о"'сіо чнон'	0'H=1.049, ClO"'=2.33, ClO"=2.26, ClO'=1.77, H0=1.39, OH'=0.987, ClO'H=95.8, H0H'=104.08, O"ClO"'=101.3, q_0 =-0.1647, q_H =0.295, q_{Cl} =-C.0894, q_0 ",=-0.0501, q_0 "=-0.0680, q_0 =-0.3266, q_H ,=0.230, μ =5.29D

2 20 C 35. 0'H=1.139, HO=1.178, OH'=0.990, 01H"=0.985, Regmotukoca 0"' Clo'H...0" Cl0'=1.77, 0"Cl0"'=101.3, Cl0"'=2.33, Cl0"=2.26, Cl0'H=100.06, HOH'=122.3, H'0,H"=128.3, $q_{H}=0.3136, q_{0}=-0.2142, q_{0}=-0.0588, q_{0}=-0.0826,$ $q_0 = -0.4547$, $q_0 = -0.344$, $q_H = 0.2783$, $q_{H''} = 0.228$, $q_{C1} = -0.165, \mu = 10.78D$ Clo_...4(HO'H') 87. C10=2.00, OH=1.73, H'O'=0.990, HO'=0.995, ClOH=99.9, HO'H'=99.6, OClO=109.5, q_O=-0.1484** ++-0.1504, q_{C1}=-0.150, q_H=0.204, q_O,=-0.392, q_H,=0.122 307 38. 0...H"O"'H HO'=1.096, H'O"=0.987, O"H=1.37, H"O"'=0.974, но"...но сто...н"о" чн OH"=1.89, Cl0=2.26++2.33, Cl0'=1.77, Cl0'H=111.8, H'O"H=117.5, O'ClO=101.3, ClOH"=100.05, H"0"H=99.7, q_0 ,=-0.175, $q_H(0'H)=0.303$, $q_{0''}=-0.341$, $q_0 = -0.382, q_{0''} = -0.366, q_{H'} = 0.24, q_{H''} = 0.190,$ $q_{\rm H}(0"'{\rm H})=0.176$, $q_{\rm Cl}=-0.0793$, $q_{\rm O}=-0.014$ 89. NO NO=1.294, ONO=114.3, q₀=-0.454 90. HONO' NO'=1.224, NO=1.42, OH=0.993, ONO'=108.3, NOH=101.5, q_0 ,=-0.09, q_0 =-0.217, q_H =0.213, q_N=0.095

a) E_{tot} =-350.9400 a.e. CO=1.27, CG=1.42, CH=1.11, CH'=1.078, CN=1.38, NO=1.31, HCO=121.2, CCH'=121.7, CCN=122.4, CNO=120.2, CCO=126.28, q₀-=-0.335, q_C (CHO)=0.1025, q_C (CH')=-0.1646, q_H=0.0095, q_H,=0.0128, q_N=0.0816, q₀ (NO)₂=-0.3385, NO₂**группа в плоскости** HC(0⁻)CH' **б)** E_{tot} = -350.9050 a.e.

CO = 1.24, CC = 1.385, CH = 1.114, CH' = 1.071, CN=1.495, NO=1.28, HCO=120.44, CCH'=123.8, CCN=122.07, CNO=120.38, CCO=126.7, $q_{C}=0.4316$, $q_{C}(CHO)=0.0924$, $q_{C}(CH')=0.211$, $q_{H'}=0.00$, $q_{N}=0.1096$, $q_{O}(NO_{2})=-0.2623$, NO_{2} -группа в перпендикулярном положении к плоскости $HC(O^{-})CH'$

Etot=-425.9360 a.e.

Со=1.24, СС=1.43, СН=1.08, СН'=1.075, С№ 1.38, № 1.32, ОН"=1.77, О'Н"=0.990, НСО=120.7, ССН'=122.4, СС№ 121.7, С№ 120.4, ССО=126.6, ОН"О'=146.2, Н"О'Н"=96.4, № Н"=108.6, q₀-=-0.3373, q_C(СНО)=0.1075, q_C(СН')=-0.1382, q_№=0.0801, q₀(№₂)=-0.325, q₀(H₂0)=-0.4604, q_H(H₂0)=0.1784, №₂- **группа в плоскости** НС(0⁻)СН' 93. Н

но'н".

1

80 94. HF 95. F[−]...HOH' Etot=-425.9300 a.e.

2

CO=1.26, CC=1.396, CH=1.105, CH'=1.07, CN=1.43, NO=1.30, OH"=1.477, O'H"=1.013, O'H"=0.987, HCO=119.95, CCH=123.3, CCN=121.8, CNO=119.9, CCO=126.3, COH"=106.83, HO'H"=100.23, q_0 -=-0.3823, q_C (CHO)=0.1123, q_C (CH')=-0.1517, q_H (CHO)=0.033, q_H ,=0.0242, q_N =0.0935, q_0 (NO₂)= =-0.30, q_0 ,=-0.4423, q_H "=0.229, q_H =0.0885 NO₂ - **группа копланарна с** OCH=CH системой E_{tot} =-98.5729, HF=0.956, q_F =-0.209 FH=1.071, OH=1.227, OH'=1.015, HOH'=101.2, q_F =-0.534, q_H =0.195, q_0 =-0.587, q_H ,=-0.074, E_{tot} =-172.1540 **a.e**.

Как правило, приведены данные для наиболее стабильных конформации. За исключением некоторых систем, которые не входили в Табл. I-З полные знергии систем приведены в указанных таблицах.

Для упрощения представления геометри в графе 2 настоящей таблицы принята следующая форма записи: а) длины связей приведены (в Å) после указания атомов образужщих конкретную связь (напр., HO=I.045), б)валентные углы (в градусах) следуют после указании соответствующих атомов, образующих этой угол (напр., в случае молекулы воды, виде записи: HOH=IO0.02). Как правило, конформационные углы не указаны. Заряды (заселенности по Малликену) на атомах даны в единицах заряда электрона.

В случае частиц 57--60, видимо, не достигнута полная оптимизация геометрии.

Реакц.способн.орган.соедин., том 24, вып. 3(87), 1987.

УДК 539.194 + 541.6

ФОТОЭЛЕКТРОННЫЕ СПЕКТРЫ МОЛЕКУЛ 9. Гидроксиламины

 У.Х. Мёльдер, И.А. Коппель, Р.Й. Пиквер, Ю.D. Тапфер
 Кафедра геофизики, лаборатория химической кинетики и катализа и вычислительный центр Тартуского госуниверситета, г. Тарту, ЭССР
 Институт химической и биологической физики АН ЭССР, г. Таллин, ЭССР

Поступило 23 сентября 1987 г.

Проведен анализ ФЭ спектров 6 метилзамещенных гидроксиламина с использованием неэмпирических (система программ Гауссиан-80, базисы STO-3G, 3-21G и 4-31G и полуэмпирических (НАМ/З и СNDO/2 методов квантовохимического расчета. Для молекул HONMe₂, MeONH₂ и MeONHMe снят ФЭ спектр.

В настоящей серии работ^{1—8} проведен анализ ФЭ спектров различных классов органических молекул, используя как эмпирические зависимости (IP от энергии связи внутренних электронов, от сродств к протону, сопоставление ФЭ спектров гомологических рядов и т.д.), так и квантово-химические расчеты. В настоящей работе экспериментальные ФЭ спектры некоторых Nи О- алкилзамещенных гидроксиламинов $R_1R_2ONR_3R_4$ сопоставлены собственными значениями энергии по теореме Куупманса как на уровне неэмпирических расчетов (базисы STO-3G и 3-21G в системе программ ГАУССИАН-80), так и полуэмпирических расчетов методами сNDO/2 и HAM/3.

Экспериментальная часть

Использованная в данной работе аппаратура и методика эксперимента описаны в работе . Так как спектрометр заперживающего поля имеет достаточно высокую эффективность при собрании электронов, а чувствительность к электронам различной кинетической энергией отличается сравнительно мало. ток фотоэлектронов регистрируется динамическим электрометром. Представленные спектры являются результатом повторного сканирования. Вертикальные IP определены на месте максимума соответствующего пика и точность их определения составляет от 0.05 до 0.1 эВ. Строго говоря. IP. определенные из ФЭ спектров, можно считать адиабатическими только в том случае, если при анализе колебательной структуры полосы данный переход идентифицирован как 0-0 переход. Напа практика показывает, что IP, определенные как начало спектральной полосы, смещенной в энергетической шкале на расстояние полуширины линии аргона, совпадают с определенными по фотоионизационной методике IP с точностью +0.03 эВ.

Полученные ФЭ спектры трех метилзамещенных гидроксиламинов приведены на рис. І. Некоторые данные о спиртах этих соединений были приведены в работе .

Измеряемые вещества синтезировались стандартными способами из соответствующих гидрохлоридов под воздействием КОН непосредственно в ходе эксперимента. Так как ФЭ спектр имеет приблизительно одинаковую чувствительность ко всем присутствующим соединениям, имеются определенные трудности в разделении линий воды и соответствующего гидроксиламина в спектре смеси. Перед снятием спектра образцы повторно вымораживали жидким азотом, откачивали и снова расправляли. Благодаря хорошей летучести гидроксиламинов нам удалось подавить спектр воды до минимума и получить достоверные ФЭ спектры этих соединений^ж. Спектры гидроксиламина и О-метилгидроксиламина хорошо совпадают с приведенными в работе¹⁰. Для наиболее тяжелого амина меоNMe, Эта методика не

ж Исключением было лишь НОМме₂, в случае которого не удалось надежно определить даже первый потенциал ионизации.

Рис. I. ФЭ спектры метилпроизводных гидроксиламина.

привела к успеху и нами надежно определены лишь первые адиабатический и вертикальный IP.

В таблице I собраны как литературные, так и определенные нами из ФЭ спектров значения потенциалов ионизации (IP), а также имеющиеся результаты квантовохимических расчетов. Последовательным значениям IP_i сопоставлены расчетные собственные значения энергии (- ε_i) в соответствии с теоремой Купманса. Наряду с симметрией МО указывается также приближенный характер их локализации (используртся общепринятые обозначения). Приведены и полные энергии молекул, достиг-

313

нутые в расчетах. Все неэмпирические расчеты проведены нами с полной оптимизацией геометрии. Подобные расчеты в расщепленном базисе 3-21G практически точно воспроизводят экспериментальные геометрии молекул, поэтому для всех изученных молекул в табл. I имеются оптимальные длины связей и валентные углы, вычисленные в базисе 3-21G. В литературе имеются данные о геометрии H₂NOH, , определенной по микроволновым спектрам. Для MeONH₂ установлена транс-позиция NH₂-группы относительно OC-связи (см. ссылки в¹⁰).

Обсуждение результатов

Хорошо изучены соединения, в которых соседние атомы имеют по одной паре неподеленных электронов (например, гидразины типа $X_1 X_2 NNX_3 X_4)^{10}$ и по две неподеленные пары (в перокисях типа $X_4 OOX_2)^{11}$. В гидроксиламинах на соседних атомах азота и кислорода имеется, соответственно, одна и две неподеленных пар электронов. Нами исследованы ФЭ спектры как О-метил-, так и N-метилгидроксиламинов.

Подобные соединения, имеющие неподеленные пары электронов в *«с*-положении относительно нуклеофильного центра, являются "сверхнуклеофилами"¹⁴ и проявляют т.н. *«с*-эффект¹¹, основной причиной которого принято считать взаимодействие неподеленных пар электронов через пространство¹⁵.

Ранние расчеты этих соединений проводились без оптимизации геометрии, используя экспериментальные или стандартные значения длин связей и валентных углов для вычисления определенных параметров молекул, в том числе и конформационных барьер¹⁶. В работе¹⁷ интерпретированы ФЭ спектры гидроксиламина и о-метилгидроксиламина, исходя из полуэмпирического сNDO/2 расчета. Только в работе¹² выполнен неэмпирический расчет гидроксиламина и его фторпроизводных с полной оптимизацией пеометрии, используя базисы STO-3G и 4-31G.

Полуэмпирический CNDO/2 расчет с использованием экспериментальной геометрии репродуцирует конформацию молекулы гидроксиламина неверно. Структура с конформационным углом $\varphi = 180^{\circ}$ (см. на рис. 2) оказывается на 2.13 ккал/моль стабильнее, чем экспериментально установленная $\varphi = 0^{\circ}$. Этот результат согласуется с результатами работы, но противоречит

Таблица I

Потенциалы ионизации гидроксиламинов, определенные из Φ ЭС и вычисленные различными методами орбитальные энер-1. номн₂ гии (- \mathcal{E}_i), в эВ

TD 8	CN	IDO/2 ^b	Н	AM/3°			STO-	3G ^d
1Pv	- Ei	МО	12.000	- Ei	MO		-8i	MO
10.59	15.05	5a'	n _N , G _{OH}	10.59	5a'	n _N	9.14	7a' n _N
II.70	15.77	2a"	no	II.50	2a**	no	10.34	2a" n
15.50	20.37	4a'	ONO	15.33	4a'	ONO	I4 .2 4	6a' ONO
16.80	22.30	3a'	O _{OH} , n _N	16.32	3a'	JOH, nN	15.59	5a' OOH
(17.0)	22.86	1a"	π _{NO} , π _{NH}	17.68	1a"	π _{NH2}	16.56	1a" J _{NH2}
3-2	== === 1G ^e		4-31	G ^f	=====		316 ^g	
- E i	MO	14,45	- E i	MO	1	- Ei	MO	
II. 0 4	7a'	n	11.55	7a' n _N	TEN	11.59	7a' :	n _N
I2.69	2a"	n _O	13.14	2a" n_0		13.19	2a"	no
15.76	6a.'	ONO	16.32	6a' ON	0	16.38	6a' (NO
17.46	5a'	0 _{OH}	18.05	5a' 00	H	18.1I	5a' (JOH
18.48	1a"	JiNH2	18.83	1a" J	H ₂	I8.87	1a" §	T _{NH2}
a (см. IO	а такж	e ^{II} ; эт	а работа	a: IF	$a^{(I)} = I0$	He 00.0	3,
-90000	$IP_a^{(z)} =$	II.5 a	B, IP _v '	" = IO	.56 :	B, IP _v	(2) =	II.69 3B.
б	Etot	= -32.4	204 a.e	., эта ј	работ	a.		
B :	эта ра	бота, э	ксперим	ентальна	ая ге	ометрия	4.	
Г	Etot	= -129.	2031 a.	е., эта	pa60	та.		
д	Etot	= -130.	2004 8.0	э., эта	paoo	та; оп	гимальн	las reo-
1	ництэм	: NH =	1.008 A	, NO =	1.468	3 A, OH	= 0.9	67 A,
0	HNO =	104.54	, NUH =	102.87	O. I	1H = 100	8.88	
6	tot	-100.	- 131	TI58 o	~	, эта	расота	L,
	NO =	1.440 8	101.	1.0113	8. N	H = 1.0	REHAD	он -
	= 0.90	65 А. н	ON = 110	0.41°. F	INO =	106.60	H1NO	= 113.30
	Etat (I	H_NOT)	= -130.1	1392 a.e	0	птималь	HAR TE	ометоия:
	LOL	4						

Продолжение таблицы І

NO = 1.506 Å, HN = 1.015 Å, HNO = 106.5°, HNH = 105.7° , PA = 409.3 KKAJ/MOJE.

- 3 -- E_{tot} = -I30.9232 а.е., см. IO, экспериментальная геометрия I3: NH = 1.016 Å, NO = 1.453 Å, OH = 0.962 Å, HNH = 107.1°, HNO = 103.25°, NOH = 101.4°, NH₂ трансотносительно OH.
- 2. HONHMe

CND	0/2 ⁸	HAM/3 ^b	STO-	3G ^C	3-21	g d
- E ₁	MO	-ε _i ΜΟ	- ε _i	MO	- E _i	МО
13.17 14.69 17.58 19.30 21.37	n _N n _O n _{CH3} , o _{NO} o _{OH} , n _{CH3} o _{NC} , o _{NH}	9.65 n _N 10.91 n _O 13.62 π _C 14.05 π _C 14.71 δ _N	8.51 10.17 13.10 H ₃ 13.92 N ₃ 14.28	n _N o o o o no o o no o o no n	10.44 12.42 14.36 15.26 15.84 17.82	ⁿ N ⁿ O ^o NO ^o OH, <i>T</i> _{CH} 3 ^o NC, <i>T</i> _{CH} 3 ^o OH, <i>T</i> _{CH} 3

 ≠ -- Ф∂ спектр неизвестен (см. текст).
 a -- E_{tot} = -41.0848 a.e., эта работа.
 6 -- оптимальная 3-21G геометрия.
 в -- E_{tot} = -167.8409 a.e., эта работа.
 г -- E_{tot} = -169.0723 a.e., эта работа; оптимальная геометрия; NO = 1.467 Å, NH = 1.008 Å, OH = 0.967 Å, CN = 1.478 Å, H1C = 1.079 Å, HC = 1.083 Å, CNO = 105.60°, HCN = 109.95°, H1CN = 108.36°, HNO = 103.62°, NOH =

 $= 103.89^{\circ}$.

Продолжение таблицы І

3. HONMe

TP &	CNDO	/2 ^b	HAM	'3°		STO-30	d		3-2	lGe	
v	- E _i	MO	- E _i	MO		-ε _i	МО		- E _i	MO	
9.22	12.67	8a" n _N	9.46	8a.'	n _N	8.II	11a'	n _N	10.02	11a'	n _N
11.08	14.22	5a" no	10.71	5a."	no	9.95	6a."	no	12.20	6a"	no
		v	13.21	4a"	N _{CH}	I2.57	10a '	ONO	13.99	10a'	ONO
			13.45	3a"	TTCH 3	13.14	5a"	TCH	14.19	5a"	TCH
(13.0)			13.72	7a'	ONO ³			0113			3
			I4.08	6a '	Con JICH						
I4.55	17.35	7a' ONO, TO	14.95	2a"	ONC 3	13.93	9a'	Ony	15.04	4a"	TICH
	17.44	4a" no, TCH	³ 15.21	5a'	no	14.17	4a*	TCH	15.29	9a'	OH3
15.8	19.12	3a" TCH3,	3 16.24	4a '		15.45	.3a"	0113	16.97	38"	ONC
a IPa	I) _{= 8.}	60 3B, IP,	²⁾ = 10.80	эB;	эта работа,	спектр	снят	я.я.	Виллемо	M (TT	У).
6 Et	t = -4	9.768I a.e.	, эта рабо	та; е	эта рас	бота, оп	TIMAJ	ьная 3	-21G r	eomet	рия.
r Eto	= -2	06.4263 a.e	., эта раб	ота.							
д E _{to} CN	= -2	07.8906 a.e $1, 110 = 1$., эта раб .086 Å, нс	ота; = 1.	оптимальная 080 Å, смо	- 104.8	о 9 ⁰ , но	NO = 0	1.466 Å 08.65°,	, OH = H1CN	0.968 = 111.

4. MeONH

	2								
	CND	0/2 ^b			HAM/	'3°			
IPv	- Ei	МО	2.2	-	ε _i	МС)		
10.16	13.87	7a'	n _N	9	.77	7a'	n _N	la b	1
I0.93	I4.I4	3a"	no, JINH	10	.34	3a"	no		
I2.94	I7.39	oa!	TCH ONO	13	.15	6a'	IT CH		
15.0	I9.15	2a"	TCH JI NH	14	.70	2a"	I CH		
	21.23	5a'	OCO, ONO	² I4	.89	5a'	0 _{CO}		
17.3I	24.34	4a'	TICH , ONO	16	.55	4a'	ONO		
17.3I	25.14	18"	3 10	17	.20	1a"	JI NH-	no	
							2		
	igne se a								
STO)-3Gª		4-31G	9		1.50	3-2	1G ^r	
- Ei	MO		- ɛi	MO			- E1	MO	
8.68	10a'	n _N	11.25	10a '	n		[0.84	10a'	nar
9.58	3a"	no	12.39	3a"	no	-	[1.54	3a"	no
12.46	9a'	Sur Tigu	13.96	9a.	n		13.65	9a'	Gue Than
14.36	8a.'	Goo Ch	317.21	2a"	Tou	FINE .	15.93	8a'	O CO
14.78	2a"	Tion	17.62	8a '	0003	2	16.II	28."	Tau
16.12	7a'	Jau 3	18.32	7a'	Tou]	[7.35	7a'	Tou3
17.21	1a"	TNH2, no	19.41	1a**	TNH2	TCH3	[8.67	1a"	T _{NH2}
a I	Pa IO	9.55 a. , II; б	B, $IP_a^{(2)}$ E_{tot}	= IO = -	.5 эН 41.08	В; эта 369 а.	a pado .e., 3	ra; cm ra pac	1. так- бота;
B 0	птимал	ьная 3-	21G reom	етри	я, э	ra pat	бота;		
г E	tot =	-167.8	447 a.e.;	тра	нс-к	онформ	лация в	a I.E	2 кал/
M	оль ме	нее уст	ойчивая,	чем	цис-ф	рорма	для п	ро тони	рован-
н	юй фор	мы МеС	NH3 Etc	ot =	-168	.2483	a.e.		
д н	Etot =	-169.7	077 a.e.,	CM.	11.				
e 1	Etot =	-169.0	672 a.e.,	эта	рабо	ота; с	птима	льная	reomer-
P	NC: NC) = 1.46	3 Å, NH =	= 1.0	09 Å	, CO :	= 1.44	7 Å, H	HC =
-	= 1.081	A, HNO	= 104.0	5°, C	ON =	110.	44°,	HCO =	108.92
ł	11C0 =	109.660							

Продолжение таблицы І

5. MeONHMe

8	CNDO/	2 ^b	HAM/	3 ^c	3-2	1G ^d
IPv	- E _i	МО	-E ₁	MO	- ε _i	МО
9.39	I 3. 45	n _N	9.48	n _N	10.31	n _N
10.22	15,51	no	9.95	no	II. 3 9	no
12.61	16.22	ONC, TICH	12.28	ONO, TCH	13.24	ONO, TICH
I3.95	16.27	JOCO, JNH	I3.46	ONO 3	I4.6I	OCO, TCH
		00 111	13.67	TCH , ONC	15.06	TCH , ONC
			14.62	II CH 3	I9.95	Tran 3
(14.5)			I4.94	5 STON	I6.85	Con For
			I5.66	ONO CH3		co cn3
16.II	18.10	ĨĨ CH	16.38	no	17.06	TICH , ONO
17.25	20.75	TI CH3	20.89		I8.39	3 NO

а -- $IP_{a}^{(I)}$ = 8.92 эВ, $IP_{a}^{(2)}$ = I0.0 эВ ; $IP_{a}^{(3)}$ = I2 эВ; эта работа; 6 -- Е = -49.7207 а.е., эта работа; в -- оптимальная 3-21G геометрия, эта работа; г -- Е_{tot} = -207.8833 а.е., эта работа; оптимальная гео-

метрия: NO = 1.461 Å, NH = 1.009 Å, CO = 1.448 Å, HC = = 1.81 Å, CN = 1.479 Å, CNO = 105.82°, H1CN = 112.16°, HCN = 108.53°, HNO = 103.15°, CON = 110.67°, HCO = $= 109.13^{\circ}$, H1CO = 109.71°.

6. MeONMe

TDa	CND	0/2 ^b	HAI	M/3 ^c	
v	- E;	MO	- E <u>i</u>	МО)
9.33	12.43	10a' n.	9.09	10a'	nar
	I3.64	6a" n	9.94	6a"	n
	16.24	9a' ONO, JCH.	12.29	9a'	ONO, THE
	I6.99	5a" Tich 3	I2.8I	5a"	Лач СПЗ
	I8.45	8a' 0 00	I3.4I	4a"	Tigh 3
	19.01	4a" TCH.	I3.43	8a'	$\overline{n}_{0}^{\text{ch}}$ 3
	19.75	3a" T CH 3, ONO	I3.84	3a"	ONG , TION
	20.35	7a' TCH3	14.23	7a.'	NC UN3

Продолжение таблицы І

STO-3Gd			3-2	1G ^e		
- Ei	MC		- E1	МС)	
8.06	14a'	n _N	9.91	14a'	n _N	
9.28	7a"	no	II.26	7a#	no	
II.68	13a'	ONO	I3.00	13a'	ONO	
12.99	6a"	ONC , SCH	I4.06	6a"	ONC, ACH	
13.14	12a'	0°00 3	I4.38	12a'	0°C0 3	
14.17	5a"	J.CH.	I4.94	5a"	T _{CH}	
14.42	4a."	TCH-	I5.72	4a"	ПСН.	
I4.86	11a'	ПСН.	I5.85	11a'	R _{CH}	
			17.50		3	
			17.55			

а -- эта работа, IP = 8.78 эВ,

б --- Е+++ = -58.4508 а.е., эта работа

в -- оптимальная 3-21G геометрия, эта работа,

г -- E_{tot} = -245.0109 а.е., эта работа,

 $g - E_{tot} = -246.7016$ а.е., эта работа; оптимальная геометрия: NO = 1.460 Å, CO = 1.448 Å, CN = 1.473 Å, H1C = = I.086 Å, HC = I.080 Å, HIC (в MeO) = I.079 Å, HC(в MeC) = I.082 Å, CNO = 104.95°, H1CN = 111.28°, HCN = = 108.71°, CON = 111.11°, H1CO = 109.65°, HCO = 109.18°.

работе¹⁷. Полуэмпирический расчет методом НАМ/З различных структур, полученных поворотом ОН-связи относительно неподеленной пары азота (угол Ψ) (при фиксированных длинах связей), указывает на небольшое предпочтение экспериментально установленной конформации. На рис. 2 представлена зависимость энергий МО от угла Ψ , рассчитанная методом НАМ/З. Надо учесть, что две выше занятые орбитали являются смесью от n_0 и n_N а статистический вес их участия зависит от угла Ψ .

На основе этих результатов и результатов неэмпирических расчетов молекул с полной оптимизацией геометрии можно сделать следующий простой вывод: в гидроксиламине и в его метилпроизводных наиболее стабильной является та конформа-

Рис. 2. Диаграмма Уолда молекуль HONH₂ согласно расчетам по методу HAM/3 (фиксированная 3-21G оптимальная геометрия).

ция, в которой *с* - эффект или взаимное отталкивание неподеленных пар электронов минимальное. Как указывается в работе¹⁶, для электроотрицательных заместителей этих соединений выпеуказанное правило может не соблюдаться. С точки зрения квантовохимического анализа ФЭ спектры алкилзамещенных гидроксиламинов следует считать относительно простым объектом исследования, так как они имеют две хорошо разрешенные полосы, соответствующие ионизации неподеленной пары азота и кислорода. Метилзамещение у азота и у кислорода приводит к сдвигу полос неподеленных пар электронов этих атомов в соответствии с индукциянным эффектом заместителя. При этом перекрывания указанных полос не происходит. На рис. 3, по данным неэмпирических расчетов в базисе 3-216, изображена корреляционная диаграмма энергии МО (-£,) всех

Рис. 3. Корреляционная диаграмма 3-216 энергии MO для метилзамещенных гидроксиламина.

шести метилзамещенных гидроксиламинов.

При увеличении количества метильных групп энергия борбитали N-0 связи постоянно растет, причем метилзамещение у кислорода вызывает смешивание этой орбитали с π_{CH_3} орбиталью.

Замещение у атома азота вызывает заметное смешивание \mathcal{T}_{CH_3} орбитали с \mathcal{O} -орбиталями, хотя в пределах незмпирических расчетов общая последовательность МО сохраняется. В методе НАМ/З смешивание менее ярко выражено и орбитали метильной группы \mathcal{T}_{CH_3} характера расположены выше \mathcal{O}_{NO} орбитаим. Появление метильной группы у кислорода вызывает аналогичные изменения в спектре.

В таблице 2 собраны результаты статистической обработки вычисленных различными квантовохимическими методами спектров (т.е. собственных значений - ε_i отдельных молекул в рамках уравнения:

$$IP_{i} = a + b(-\xi_{i}),$$
 (1)

где а и b -- постоянные, IP₁ -- последовательные экспериментальные потенциалы ионизации из ФЭ спектра

Для тех соединений, ФЭ спектр которых неизвестен, проверялась корреляция между независимыми расчетами НАМ/З и неэмпирическим расчетом на базисе 3-21G. Как для ноинме, так и для меомме₂ коэффициент корреляции достиг 0.990 и стандартное отклонение было в пределах 0.2:0,35 зВ.

Судя по статистическим характеристикам из табл. 2, все методы расчета описывают спектры исследуемых молекул удовлетворительно. По условиям наибольшей близости коэффициентов регрессии ур. (I) к их идеальным значениям (a = 0 и b = 1.0) следует признать, что в данном сдучае как полуэмпирический CNDO/2 метод, так и неэмпирические расчеты в минимальном (STO-3G) базисе явно уступают расчетам как по методу НАМ/З, так и с использованием расшепленных базисов 3-21G, 4-31G и 6-31G.

Определенной, хотя и неполной характеристикой нуклеофильности молекул можно признать сродство к протону. В исследуемых соединениях центром протонирования скорее всего является атом азота¹⁹⁻²². CNDO/2 расчет сродств к протону в ккал/моль исследуемых молекул с учетом корреляционных соотношений между экспериментальными и расчетными значениями сродства к протону, приведенных в работе²³ (в скобках указано неккорригированное расчетное значение РА), предсказывает следующие значения для РА гидроксиламинов:

H2NOH	196.0	(277.7)	HONHMe	209.6	(300.3)
MeONH ₂	210.1	(301.1)	HONMe ₂	215.3	(309.8)
MeONHMe	201.0	(286.0)	MeONMe	218.3	(314.6)

Пересчет при помощи корреляционных соотношений из работы²⁰, рассчитанных с использованием неэмпирических методов расче-

Таблица 2

	- C1277	a state of	уравнению (1)	ato solatesting			
уър ПП	Соединен	ие Метод	8.	b	r	S	= n
I.	Honoh	CNDO/2	-1.804(0.903)	0.841(0.049)	0.997	0.30	4
	-	HAM/3	-0.534(0.414)	I.055(0.030)	0.999	0.15	4
		STO-3G	I.739(0.017)	0.966(0.004)	0.999	0.03	4
		3-21G	-0.842(I.068)	1.017(0.075)	0.995	0.38	4
		4-31G	-1.142(0.988)	I.00I(0.066)	0.996	0.34	4
		6-31G	-1.149(0.989)	0.998(0.066)	0.996	0.34	4
2.	HONMe ₂	CNDO/2 HAM/3 STO-3G 3-21G	-3.900(1.265) -1.375(0.606) 2.137(0.237) -0.683(0.811)	I.04I(0.077) I.140(0.049) 0.885(0.019) 0.982(0.059)	0.997 0.998 0.999 0.996	0.37 0.23 0.12 0.32	14 4 4 4
3.	MeONH ₂	CNDO/2 HAM/3 STO-3G 3-21G 4-31G	I.666(0.904) 0.362(0.737) 2.250(0.447) -I.047(0.440) -0.447(I.270)	0.647(0.049) 0.999(0.056) 0.905(0.036) I,033(0.03I) 0.927(0.085)	0.989 0.995 0.998 0.999 0.992	0.45 0.33 0.23 0.18 0.53	66666
4.	MeONHMe	CNDO/2 HAM/3 3-21G	-2.621(1.604) -0.846(0.341) -2.319(0.790)	0.892(0.090) 1.094(0.026) 1.119(0.050)	0.980 0.999 0.995	0.69 0.17 0.35	6 6 6

Результаты регрессионного анализа спектров, согласно уравнению (I)

* г -- козффициент корреляции, в - стандартное отклонение (в зВ), п -- число точек. В скобках для а и в указаны их доверительные пределы.

та величин PA_{calc} для H₂NOH приводит к следующим наиболее вероятным "экспериментальным" значениям PA_{exp}:

PAcalcon	PA exp
246.7 20,21,8	201.7
209.9 ²¹	195.5
204.1 ⁸	195.8
	PAcalc 20,21,a 246.7 20,21,a 209.9 ²¹ 204.1 ^a

6-31G [#]	205.921	198.9
MP4/6-31G	189.924	190.3

Средняя величина 196.4

а — эта работа, б — величина РА для NH₃ принята равной 207 ккал/моль¹⁷, 18

Из установленной нами линейной зависимости между сродствами к протону молекулы и потенциалом ионизации (при условии, что центр протонизации совпадает с центром ионизации) подучается РА(H_NOH) = 199.7 ккал/моль.

Неэмпирический расчет с полной оптимизацией геометрии на базисе STO-3G протонированной формы О-метилгидроксиламина с учетом корреляционных соотношений из работы²⁰ позволяет предсказать PA_{exp}(MeONH₂) = 204.6 ккал/моль (PA_{calc} = 253.2). Установленное экспериментально²² методом ИЦР значение сродства к протону этого соединения практически совпадает (205.4 ккал/моль) как с указанной величиной, так и с величиной (206 ккал/моль), предсказанной в работе⁹ на основе линейной зависимости между PA и IP_w.

Разница между экспериментальной величиной РА для этого соединения и средней величиной РА_{ехр} для H₂NOH составляет 9.0 ккал/моль, что вполне сравнимо с эффектом замены атома водорода на метильную группу (~8 ккал/моль) в метаноле и уксусной кислоте¹⁷.

В заключение можно отметить, что предсказанные⁹ на основе линейной зависимости между сродствами к протону и потенциалом ионизации центра протонирования величины РА для ноиме₂ и меоиме₂ составляют, соответственно 214 и 220 ккал/моль.

Авторы благодарны Я.Я. Виллему за снятие ФЭ спектра HONMe.

Литература

- I. И.А. Коппель, У.Х. Мёльдер, Р.Й. Пиквер, Реакц. способн, орган. соедин., 20, 45 (1983).
- У.Х. Мёльдер, Р.Й. Пиквер, И.А. Коппель, Там же, 20, 204 (1983).
- З. У.Х. Мёльдер, Р.Й. Пиквер, И.А. Коппель, Там же, 20,

226(1983).

- 4. У.Х. Мёльдер, Р.Й. Пиквер, И.А. Коппель. Там же, 20, 355(1983).
- 5. У.Х. Мёльдер, И.А. Коппель. Там же, 20, 474 (1983).
- 6. У.X. Мёльдер, И.А. Коппель. Там же, 21, 34(1984).
- 7. У.Х. Мёльдер, Р.Й. Пиквер, И.А. Коппель. Там же, 24, 94 (1987).
- 8. У.Х. Мёльдер, Р.Й. Пиквер, И.А. Коппель. Там же, 24, 213(1987).
- И.А. Коппель, У.Х. Мёльдер, Р.Й. Пиквер. Там же, <u>17</u>, 460(1980).
- IO. K. Kimura, S. Katsumata, Y. Achiba, T. Yamazaki, S. Iwata, Handbook of Photoelectron Spectra of Fundamental Orgamic Molecules, Japan Scientific Societies Press, Tokyo; Halsted Press, New York, 1981.
- II. P. Rademacher, B. Freckmann, J. Electron Spectrosc. Relat. Phenom., <u>19</u>, 251 (1980).
- I2. I.F. Olsen, J.M. Howell, J. Fluorine Chem., 12, 123(1978),
- I3. K.-H. Hellwege, A.M. Hellwege (Eds.), Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, New Series, Vol. 7, Springer-Verlag, Berlin, Heidelberg, New York, 1976.
- I4. I.A. Zoltewicz, L.W. Deady, J. Am. Chem. Soc., <u>94</u>, 2765 (1972).
- 15. R. Hoffmann, Acc. Chem. Res., 4, 1 (1971).
- I6. L. Radom, W.J. Hehre, J.A. Pople, J. Am. Chem. Soc., <u>93</u>, 289 (1971); ibid., <u>94</u>, 2371 (1972).
- 17. K. Kimura, S. Katsumata, J. Chem. Phys., 67, 1225 (1977).
- 18. M.S. Gordon, J. Am. Chem. Soc., 91, 3122 (1969).
- I9. H. Johansson, P.A. Kollman, J.F. Liebman, S. Rothenberg, J. Am. Chem.Soc., <u>96</u>, 3750 (1974).
- 20. И.А. Коппель, У.Х. Мёльдер, В.А. Пальм. Там же, 22,3(1985)
- 2I. R.A. Whiteside, M.J. Frisch, J.S. Binkley et al., CMU Quantum Chemistry Archive, 2nd Edition, 1981, CMU, Pittsburgh, PA, 15213.
- 22. И.А. Коппель. Докторская диссертания. Москва, 1986.
- И.А. Коппель, У.Х. Мёльдер. Реакц. способн. орган. соедин., <u>18</u>, 43 (1981).

 J.E. DelBene, M.J. Frisch, K. Raghavachari, J.A. Pople, J. Phys. Chem., <u>86</u>, 1529 (1982).

B. Liter and the same stranger on a horizon and
Реакц.способн.орган.соедин., том 24, вып. 3(87), 1987.

УДК 541.133.08

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ДОБАВОК АМИНОКИСЛОТ НА ЭЛЕКТРОПРОВОДНОСТЬ ВОДНЫХ РАСТВОРОВ ЭЛЕКТРОЛИТОВ

Х. Куура, М.М. Карельсон

Тартуский государственный университет, Лаборатория химической кинетики и катализа, г. Тарту, 202400, Эстонская ССР

Поступило 2 декабря 1987 г.

Измерен дифференциально-кондуктометрический эффект при добавлении глицина, в –аланина и j^{ℓ} – аминомасляной кислоты к растворам хлорида калия при 25⁰С.

Обсуждена зависимость полученных параметров V_s, характеризующих влияние цвиттерионной добавки на структуру раствора, от строения соответствующей аминокислоты.

В ряде работ^{I--4} приведены результаты дифференциальнокондуктометрического исследования малых добавок неэлектролитов в воде и неводных растворителях.

При этом обнаружены характерные линейные зависимости между мольными объемами V_g , характеризурщими влияние добавляемого неэлектролита на структуру данного однотипного растворителя, и собственными объемами V_i молекул соответствующих неэлектролитов. Оказывается, что полученные величины V_g в воде хорошо коррелируются с разными параметрами гидрофобного эффекта для электронейтральных органических веществ ($(\mathfrak{I}, \log P)^5$. Следовательно, величины V_g могут также применяться в качестве параметров гидрофобности.

Поэтому значительный практический интерес представляет

дифференциально-кондуктометрическое исследование влияния малых биомолекул на структуру растворов электролитов в разных растворителях. В данной работе приведены результаты измерения влияния добавок некоторых аминоксилот на электропроводность водных растворов хлорида калия.

Экспериментальная часть

В методе дифференциальной кондуктометрии определяется величина

$$Y = \frac{k \cdot 10^3}{C_{\rm g}} \left(\frac{1}{R_{\rm o} + \Delta R} - \frac{1}{R_{\rm x}} \right),$$
(1)

где k обозначает постоянную измерительной ячейки (см⁻¹), C_{s} является концентрацией маленькой добавки исследуемого вещества ($\approx 10^{-2}$ моль/л), а R_{o} и R_{x} омическими сопротивлениями раствора до и после добавления исследуемого вещества, соответственно. ΔR является поправочным членом, учитывающим изменение сопротивления раствора, которое обусловлено добавлением исследуемого вещества. Ранее показано^I, что величина Y просто связана с объемом переструктурирования растворителя данным добавляемым веществом, V_:

$$Y = V_{g} \cdot \mathcal{X} , \qquad (2)$$

где \mathcal{X} является удельной электропроводностью чистого раствора электролита данной концентрации. Молярный объем V_s соответствует той доле от общего объема раствора, в которой имеет место изменение проводящей активности ионов электролита в соответствии с двухструктурной моделью растворов⁶. В случае положительных значений V_s ионы переходят из проводящего состояния в непроводящее, а в случае отрицательных значений V_s ионы переходят у драводящего состояния в непроводящее. Спринаетельных значение порадящее и в случае отрицательных значений V_s происходит обратное явление. Параметр V_s характеризует, таким образом, специфическое влияние добавляемого вещества на структуру раствора.

Для измерения электропроводности использовалась ранее описанная аппаратура⁷. Все измерения проводились при температуре 25,0+0,1°C, поддерживаемой с точностью +0,001°C. Для предотвращения поглощения влаги из воздуха измерительная ячейка была изолирована трубками с ангидроном. По-

329

стоянная ячейки была 19,40 см⁻¹. Для измерения сопротивления более разбавленных растворов использовалось параллельное сопротивление ($R_p = 9907, 0.\Omega$) к измерительной ячейке. Эффект разбавления ΔR в формуле (I) учитывался согласно ранее приведенной процедуре².

Для приготовления растворов применялись препараты глицина, в -аланина и *f* -аминомасляной кислоты фирмы "Реанал" (Венгрия).

В качестве препарата воды применялся деионизованный бидистиллят.

Использовался хлорид калия марки осч.

Обсуждение результатов

Результаты экспериментальных измерений влияния аминокислот на электропроводность водных растворов хлорида калия приведены в таблицах I--3. Следует отметить, что для всех исследованных соединений (глицин, в -аланин, χ -аминомасляная кислота) хорошо соблюдается пропорциональная заивисимость между величиной у и удельной электропроводностью раствора \mathcal{X} (см. рис. I). Поэтому из наклонов этих зависимостей можно определить постоянное значение параметра V_S для каждого соединения в широком промежутке изменения концентрации фонового электролита (0,0I--3,0 моль/л). Численные значения этих параметров приведены также в таблицах I--3. Из предыдущих работ^{I--4} известно, что в случае неэлек-

Из предыдущих работ¹ известно, что в случае неэлектролитных добавок к растворам электролитов обнаруживается линейная зависимость между объемами переструктурирования V_в и собственными объемами химически однотипных добавок (гидроксильные соединения, апротонные растворители и т.д.). В случае гидроксильных добавок к водным растворам эта линейная зависимость имеет следующий вид^I:

$$V_{\alpha} = -27,9 + 11,5 \Sigma R_{D}, \qquad (3)$$

где $\sum R_D$ -- оценка собственного объема исследуемой добавки по сумме инкрементов молекулярной рефракции. Для цвиттерионных добавок к водным растворам наблюдаются, однако, значительные отклонения от зависимости (3) в сторону меньших зна-

Таблица І

		and the second second	
^С КС1 (моль/л)	2€ • ₁₀ 2 (ом ^{−I} см ^{−I})	 Ү	V _в (см ³ /моль)
0,013	0,180	0,151	84,I
0,055	0,722	0,685	94,9
0,116	I,47I	I,29	88,I
0,234	2,830	2,48	87,6
0,57	6,524	5,70	87,4
0,87	9,597	8,50	88,6
2,00	20,484	19,1I	93,2
3,22	30,712	27,82	90,6
			₹ = 89,3 <u>+</u> 3,5

Значения дифференциальных электропроводностей у для глицина в водных растворах хлорида калия при 25°С

Таблица 2

Значения дифференциальных электропроводностей у для в -аланина в водных растворах хлорида калия при 25°С

CKCI	$\mathscr{X} \cdot 10^2$	Y	Vs
(моль/л)	(OM ⁻¹ CM ⁻¹)		(см/моль)
0,012	0,171	0,256	150,0
0,054	0,704	I,05	149,2
0,120	1,511	2,26	149,6
0,18	2,210	3,21	145,3
0,50	5, 68 I	7,92	139,4
I,07	II,565	16,60	143,5
I,86	19,037	28,24	148,3
3,12	29,789	45,II	151,4
		v	a = I47, I+4, I

Таблица 3

Значения дифференциальных электропроводностей У для ^у -аминомасляной кислоты в водных растворах хлорида калия при 25⁰С

CKC1	$\partial C \cdot 10^2$	v	Vs
(моль/л)	(om ^{-I} cm ^{-I})	-	(см ³ /моль)
0,012	0,171	0,346	202,3
0,051	0,674	I,56	231,5
0,110	I,457	3,24	222,4
0,20	2,614	5,64	215,7
0,49	5,613	12,50	222,7
0,81	II,758	26,II	222,0
I,88	19,389	43,03	221,8
2,79	27,639	55,59	201,1
			$\overline{V}_{s} = 217, 5 \pm 10, 6$

чений V при равном с гидроксильным соединением собственном объеме (см. рис, 2). Согласно применяемой нами интерпретации влияния маленьких добавок на структуру раствора это указывает на меньшее структуруобразующее влияние аминокислот в водном растворе по сравнению с электронейтральными гидроксильными соединениями. В таблице 4 приведены соответствующие вклады в величину V :

 $\Delta V_{s} = V_{s}(\text{цвиттерион}) - V_{s}(\text{гидроксил}), \quad (4)$

где $V_{\rm B}$ (гидроксил) вычислен из зависимости (3) для гипотетического гидроксильного соединения с равным цвиттериону значением $\Sigma R_{\rm D}$. Эти вклады по знаку совпадают с соответствующими вкладами для разных аммониевых и алкиламмониевых ионов, вычисленных исходя из данных работ⁹, 10. Это указывает на то, что ответственной за отрицательными отклонениями от зависимости (3) для цвиттерионов (более структуру-разрыхля-

Рис. I. Соблюдение пропорциональной зависимости между величинами У и удельной электропроводностью раствора & для некоторых цвиттерионных соединений в водных растворах хлорида калия при 25°С. (I — глицин, 2 - В -аланин, 3 — У -аминомасляная кислота).

Рис. 2. Зависимость между величинами V_S и собственными объемами цвиттерионных соединений (SR_D). (I -- глицин, 2 - в -аланин, 3 - ^г -аминомасляная кислота, 4 -- прямая для электронейтральных гидроксильных соединений).

Таблица 4

Значения инкрементов ∆V_g(4) для цвиттерионов и алкиламмониевых ионов в водных растворах при 25⁰С

Ион	н ₃ n ⁺ сн ₂ соо ⁻	3 ^{n⁺сн₂соо⁻ н₃n⁺(сн₂)₂соо⁻}		H ₃ N ⁺ (CH ₂) ₃ COO ⁻	
∆ v _s	-70,4	-66,0		- 49 ,I	
Ион	NH4+	с ₂ н ₅ nн ₃ +	(с ₂ н ₅)) ₂ NH ₂ ⁺ (C ₂ H ₅) ₃ NH ⁺	
∆ V g	-85,0	-116,7	-117	7,9 -154,9	
Кон	(c ₂ H ₅) ₄ N ⁺	с ₅ н ₅ мн ⁺		(онсн ₂ сн ₂) ³ ин ⁺	
∆ ⊻ s	-240,0	0,0 -167,9		-151,6	

риже влияние) является ионизованная аминогруппа в их молекулах. В пределах экспериментальных погрешностей величину ∆V_в можно считать постоянной для всех исследованных трех аминокислот. Однако для серии алкиламмониевых ионов разной замещенности эта величина сильно зависит от числа водородных атомов у атома азота. При этом уменьшение числа водородных атомов, что соответствует и уменьшению способных к образованию водородных связей центров в молекуле, приводит к значительному повышению структуру-разрыхляющей способности соответствующих ионов.

Результаты данного исследования показывают применимость дифференциальной кондуктометрии для количественного выявления сольватационных асобенностей цвиттерионов и других полиэлектролитных, биологически важных соединений.

Литература

- I. М.М. Карельсон. Этот журнал, <u>14</u>, вып. I(49), 79 (1977).
- М.М. Карельсон, Х. Куура, Этот журнал, <u>20</u>, вып. 3(71), 388 (1983).
- М.М. Карельсон, Х. Куура. Этот журнал, <u>21</u>, вып. 3(75), 330 (1984).
- 4. X. Куура, М.М. Карельсон. Этот журнал, <u>23</u>, вып. 4(84), 472 (1986).
- C. Hansch, A.J. Leo, Substituent Constants for Correlation Analysis in Chemistry and Biology, J. Wiley & Sons, N.Y., 1979.
- 6. М.М. Карельсон, Этот журнал, <u>21</u>, вып. 2(74), 168 (1984).
- 7. D.Л. Халдна, В.А. Пальм. Докл. АН СССР, <u>135</u>, 667 (1960).
- 8. Справочник химика, т. I, ГХТИХЛ. М.-Л., 1962, с. 391.
- 9. М.М. Карельсон, В.А. Пальм, **D.Л.** Халдна. Этот журнал, 9, вып. 3(33), 831 (1972).
- D.Л. Халдна, Л.Р. Орасте. Этот журнал, <u>14</u>, вып. 3(51), 357 (1977).

Реакц.способн.орган.соедин., том 24, вып. 3(87), 1987.

УДК 541.12.038+541.127

ВЛИЯНИЕ РАСТВОРИТЕЛЕЙ НА СКОРОСТЬ ОКИСЛЕНИЯ «АЛКИЛАКРОЛЕИНОВ

И.И.Ятчишин, Я.Н.Пириг, Р.Г.Макитра

Львовский политехнический институт Отделение физико-химии и технологии горючих ископаемых ИФХ АН УССР им. В.Л.Писаржевского, г.Львов

Поступило II ноября 1987 г.

Исследована кинетика окисления акролеина, метакролеина и этилакролеина надуксусной кислотой в I2 растворителях. Скорость окисления увеличивается с ростом электрофильности, полярности и поляризуемости растворителя, но уменьшается с ростом его самоассоциации. Реакция идет через стадию образования надуксусной кислотой донорно-акцепторного комплекса с альдегидом, электрофильная сольватация которого благоприятствует протеканию реакции.

В отличие от радикальных реакций окисления альдегидов кислородом, превращение их в кислоты путем взаимодействия с надуксусной кислотой является реакцией гетеролитической. В работах Н.М.Эмануэля и сотр.¹⁻³ показано, что ацетальдегид, взаимодействуя с надуксусной кислотой, образует промежуточный продукт, превращающийся затем постепенно в две молекулы уксусной кислоты; однако строение промежуточного продукта не выяснено.

Определенные сведения о механизме реакций окисления альдегидов надкислотами может дать изучение влияния среды на кинетику процесса. Однако, в отличие от реакций надкислот с олефинами (эпоксидирование по Прилежаеву) или окисления ими сульфидов, литературные сведения о влиянии растворителей на скорость окисления альдегидов надкислотами почти отсутствуют. Только в³ сообщается, что скорость реакции заметно уменьшается в среде ацетона, нитрометана и метанола по сравнению с толуолом или CCI₄, вероятно, вследствие образования ими водородной связи с надуксусной кислотой. За прошедшие со времени этой публикации 30 лет в этой области не появилось ни одного исследования. В настоящей работе приведены результаты исследования по влиянию среды на скорость окисления ненасыщенных альдегидов (акролеина, метакролеина, α -этилакролеина) надуксусной кислотой (НУК) (таблица).

Экспериментальная часть

Реакцию проводили в термостатированном реакторе при соотношении реагентов I:I, концентрации надуксусной кислоты и альдегида 2-3 моль/л. Для предотвращения процесса полимеризации в реакционную смесь добавляли гидрохинон в количестве I% от массы альдегида.

При окислении метакролеина в уксусной кислоте константы скорости реакции в присутствии гидрохинона и без него не выходят за пределы погрешности измерений (20 °C): $(1,17\pm0,03).10^3$ и $(1,21\pm0,03).10^3$ л/моль.мин соответственно. Было также установлено, что надуксусная кислота при 20 °C в условиях опытов практически не разлагается. Степень превращения исходных веществ составляла 70-80%. Скорость расходования надуксусной кислоты при окислении ненасыщенных альдегидов описывается уравнением реакции второго порядка. Концентрацию надуксусной кислоты по ходу процесса определяли иодометрическим методом. Состав продуктов окисления контролировали хроматографически⁴.

В результате окисления в индиферентных растворителях образуются только ненасыщенные кислоты и в незначительных количествах (I-3%) эпоксиальдегиды и низшие карбоновые кислоты. При окислении в спиртах кроме непредельных кислот образуются сложные эфиры ненасыщенной кислоты и взятого

Таблица

Константы скорости реакции окисления *«с-алкилакролеинов надуксусной кислоты при 20 °C* в различных растворителях

JANA !	Растроритель	E	Константы скорости. к .103 л/моль.мин				
	Тастворитонь	T	акролеин	метакролеин	этилакролеин		
I.	Хлороформ	39,I	I,4I±0,05	0,87 <u>+</u> 0,04	0,74±0,05		
2.	Тетрахлорметан	42,5	I,43+0,03	0,85 + 0,03	0,85+0,05		
3.	Хлорбензол	37,5	I,75±0,10	I,06+0,09	0,77+0,06		
4.	Бензол	34,5	I,85±0,05	I, 42 + 0, I0	0,74+0,03		
5.	Диоксан	36,0	$I,44 \pm 0,05$	0,92+0,05	0,89+0,08		
6.	Ацетон	42,2	I,77 ± 0,05	0,89 + 0,02	0,82+0,02		
7.	Этилацетат	38,I	2,98 ± 0,03	0,62+0,02	0,42+0,04		
8.	Метанол	55,5	4,31 ± 0,10	2,33±0,0I	$I,68 \pm 0,02$		
9.	Этанол	51,9	4,95±0,10	2,66 ± 0,01	$I,94 \pm 0,03$		
IO.	Пропанол	50,7	6,39±0,20	2,72±0,0I	I,89±0,08		
II.	Вода	63,I	4,28 + 0,20	$I,58 \pm 0,10$	$I,44 \pm 0,12$		
12.	Уксусная кислота	51,2	I,78±0,05	$I, I7 \pm 0, 03$	0,90±0,0I		

спирта с выходом 10-15% по альдегиду.

Обсуждение результатов

Как видно из таблицы, скорость процесса, в отличие от данных работы³, максимальна в спиртах и минимальна в этилацетате и других донорных растворителях, однако, в общем, константы скоростей различаются между собой не более, чем в 4 раза. Скорости окисления *«салкилакролеинов в I,5-2 ра*за ниже, чем акролеина.

Следует отметить, что изучение реакции проводилось в концентрированных, 2-3 м растворах, т.е. содержание реагентов и продуктов реакции составляло 30-50% реакционной смеси. Соответственно, в смеси преобладает взаимодействие альдегид-надкислота, ведущее в пределе к образованию соединения. Однако на равновесие взаимодействия оказывает влияние сольватация реагентов и реакционного комплекса молекулами среды, на что указывают заметные, в 3-4 раза, различия в скоростях взаимодействия в различных растворителях. Так как соотношение реагентов во всех изученных случаях равно I:I и мольная их концентрация в смеси практически одинакова, можно было попытаться установить количественную связь между скоростью реакции и физико-химическими характеристиками растворителей.

Попытка увязать скорость процесса с эмпирической мерой эффективности ("полярности") среды – параметром Е_т Димрота-Райхардта⁵ к успеху не привела (рисунок). Как видно из рисунка, какой-либо отчетливой зависимости между 1g к и Е_т нет. Растворители можно разделить на две группы. В одну входят вещества, обладающие меньшей сольватирующей способностью, нежели уксусная кислота. Скорость процесса в них практически не зависит от величины Е_т, что, возможно, обусловлено присутствием в растворе примеси уксусной кислоты, внесенной вместе в НУК, и образующейся в ходе реакции, в результате чего степень участия этих растворителей в общей сольватации незначительна в пользу преобладающей сольватации СН₃СООН. Во вторую группу входят спирты и вода, обладающие Е_т сравнимым или большим, чем для уксусной кислоты

Рис. Зависимость логарийма константы скорости окисления *d*-алкилакролеинов от параметра E_T: *О* для акролеина, *Для d*-этилакролеина. Ми точек соответствуют Ми растворителей в таблице.

(E_T = 51,2) и ускоряющие процесс. Однако это ускоряющее действие ослабевает с ростом величины E_T. Можно предположить, что ускоряющее действие связано со специфической сольватацией гидроксилсодержащими растворителями переходного состояния альдегид-надкислота.

С целью более детального выяснения характера влияния растворителей и происходящих в них сольватационных процессов, полученные результаты были обработаны посредством линейного пятипараметрового уравнения свободных энергий:

$$lg k = a_0 + a_1 \cdot \frac{n^2 - I}{n^2 + 2} + a_2 \cdot \frac{\ell - I}{2\ell + 1} + a_3 \cdot \delta^2 + a_4 \cdot B + a_5 \cdot B$$

учитывающего способность растворителя к специфической и неспецифической сольватации⁶, а также к самоассоциации⁷, в котором в и \mathcal{E} – показатель преломдения и диэлектрическая проницаемость растворителя, В и Е – его основность и электрофильность по⁶, \mathcal{S}^2 – плотность энергии когезии

в <u>ккал</u>. В случае акролеина степень связи для всех растворителей мизкая: величина общего коэффициента корреляции равна всего R = 0,946, однако исключение из рассмотрения наиболее отклоняющихся данных для двух растворителей (хлороформа (№ I) и пропанола (№ IO) позволяет получить удовлетворительное значение коэффициента корреляции:

$$lg k = -3.089 + 0.580 \cdot \frac{n^2 - I}{n^2 + 2} + 0.758 \cdot \frac{\varepsilon - I}{2\varepsilon + I} - 0.001 \cdot \frac{\varepsilon}{2}^2 + \frac{1}{2\varepsilon + I}$$

_ 0.004 ·B + 0.041 ·E ; N=9; R=0.974; ==0.081

Парные коэффициенты корреляции по отдельным параметрам rol = 0,678; ro2 = 0,770; ro3 = 0.627; ro4 = 0,451; ro5 = 0,879. Таким образом, определяющее влияние на скорость процесса оказывает электрофильная сольватация промежуточного состояния, однако, определенное "корректирующее" влияние оказывают и другие сольватационные процессы. В частности, повышение основности среды снижает скорость процесса (знак "минус" при соответствующем члене уравнения регрессии) вследствие связывания молекулы НУК, подобно тому, как это происходило в процессе эпоксидирования⁹.

Проверка значимости входных параметров уравнения путем их последовательного исключения показывает на относительно низкую значимость поляризуемости и основности среды. Влияние растворителя удовлетворительно описывается трехпараметровым уравнением, учитывающим, кроме электрофильной сольватации, только полярность и плотность энергии когезии растворителя:

 $lg k = -2,929 + 0,556 \cdot \frac{\mathcal{E} - I}{2\mathcal{E} + I} - 0,00076 \cdot \delta^2 + 0,034 \cdot E$ N = 9. R = 0.957 : S = 0.089

Исключение остальных параметров уравнения понижает степень связи более заметно, до R < 0.95.

Для других альдегидов получены соответственно уравнения: а) для метилакролеина lg k = -4.27I + $4.264 \cdot \frac{n^2}{n^2+2} + 0.496 \cdot \frac{\varepsilon}{2\varepsilon+1} - 0.00174 \cdot \delta^2 + 0.063 \cdot E$ N = II; R = 0.955; s = 0.085; r_{OE} = 0.700 б) для этилакролеина (после исключения данных для ССІ₄ (№ 2) и этилацетата (№ 7)

$$lg k = -3.54I + I.I3I \cdot \frac{n^2 - I}{n^2 + 2} + 0.459 \cdot \frac{e - I}{2e + I} - 0.000II3S^2 + 0.042 \cdot E$$

N = 9; R = 0.957; B = 0.087 $r_{OF} = 0.795$

Таким образом, сольватационные эффекты для окисления всех трех ненасыщенных альдегидов имеют одинаковую природу. Определяющим фактором является электрофильная сольватация промежуточного комплекса, повышающая скорость превращения, на что указывают максимальные парные коэффициенты корреляции по этому параметру и наибольшее понижение величины общего коэффициента корреляции при исключении этого параметра. Повышает скорость процесса (знак "плюс" при соответствующем члене уравнения) также увеличение полярности среды, благоприятствующей разделению зарядов в промежуточном реакционном комплексе. Плотность энергии когезии среды во всех случаях снижает скорость процесса, что, вероятно связано не столько с затратой энергии на образование полости (cavity) для помещения промежуточного реакционного комплекса, сколько с необходимостью разрыва ассоциатов спирта, так как только мономерные молекулы могут сольватировать реакционный комплекс. В малополярных растворителей № I-7 величины 8² близки, изменяются в пределах 0.08-0.II ккал/л, в то время как в спиртов и в воды они в 2-5 раз больше.

В случае окисления альдегидов первой стадией является образование комплекса с водородной связью между альдегидом и ациклической формой НУК¹⁻³. В дальнейшем происходит приближение кислородного атома пероксидной группы к электрондефицитному атому углерода альдегида и перегруппировка комплекса в продукты реакции⁴, которой способствуют как электрофильная сольватация растворителем карбонильного атома кислорода надкислоты, так и неспецифическая сольватация, содействующая разделению зарядов в комплексе:

где S - молекула растворителя.

В отличие от реакции эпоксидирования олефинов НУК⁸, в нашем случае роль основности среды несущественна. Низкая скорость процесса в ароматических растворителях и незначимость влияния основности среды позволяют высказать предложение об определенном различии механизма реакции окисления альдегидов НУК и реакции эпоксидирования олефинов. В то время, когда при эпоксидировании происходит комплексообразование по двойной связи олефина с циклической формой НУК (механизм butterfly - "бабочки")" и основные растворители снижают скорость взаимодействия вследствие превращения активной циклической формы НУК в неактивную, то карбонильная группа альцегицов является значительно более сильным донором электронов, нежели двойная связь С=С, одефинов, и связь с НУК осуществияется легче, вероятнее всего с образованием водородной связи по неподеленной электронной паре. Тем не менее незначительное снижение скорости в сильноосновных растворителях (этилацетат, ацетон) и знак "минус" при члене с параметром основности позволяет предподагать возможность определенной конкуренции за молекулу НУК между окисляемым альдегидом и основным растворителем. Вероятно, что в растворителях большей основности, нежели исследованные, например, диметилформамид, скорость процесса понизится более заметно.

Інтература

- I. Р.Ф. Васильев, Н.М. Эмануэль. Изв. АН СССР, сер. химич., 1956, вып. 4, с. 378--396.
- Р.Ф. Васильев, А.И. Теренин, Н.М. Эмануэль. Изв. АН СССР, сер. химич., 1956, вып. 4, с. 397-402.
- 3. Р.Ф. Васильев, А.И. Теренин, Н.М. Эмануэль. Изв. АН СССР, сер. химич., 1956, вып. 4, с. 403-409.
- 4. М.Д. Федевич, И.И. Ятчинин, Я.Н. Пириг, М.В. Каспрук. Нефтехим., 1975, т. 15, № 3, с. 449-453.
- Х. Райхарт. Растворители в органической химии. М.: Химия, 1973, 150 с.
- 6. В.А. Пальм. Основы количественной теории органических реакций. І.: Химия, 1977, с. 87-126.
- Р.Г. Макитра, В.Я. Дуковский, Я.Н. Пириг. Кинетика и катализ, 1982. т. 23, вып. 5, с. 1262-1265.
- 8. Р.Г. Макитра, Я.Н. Пириг. Ж. физ. хим., 1978, т. 52, вып. 3, с. 785--787.
- 9. B.M. Lynch, K.H. Pausacker. J. Chem. Soc., 1955, No 5, p. 1525--1531.

Реакц.способн.орган.соедин., том 24, вып. 3(87), 1987.

УДК 531.1:547.835 + 545.33:661.721.4

РЕАКЦИОННАЯ СПОСОБНОСТЬ ПРОИЗВОДНЫХ ФЕНИЛ-АНТРАНИЛОВОЙ КИСЛОТЫ

III. Кинетика реакции щелочного гидролиза производных метилового эфира 4-хлор-5-нитро-М-фенилантраниловой кислоты в бинарном растворителе диоксанвода

А.Н.Гайдукевич, Е.Н.Свечникова, Е.Е.Микитенко Харьковский государственный фармацевтический институт г. Харьков, УССР

Поступило З декабря 1987 г.

Исследована кинетика реакции щелочного гидролиза 8 производных метилового эфира 4-хлор-5-нитро-N-фенилантраниловой кислоты в смещанном растворителе диоксанвода в интервале температур 45-85°С. Рассчитаны бимолекулярные константы скорости реакций, энергия, энтальпия, энтропия и свободная энергия активации, проанализировано влияние электронной природы и положения заместителей в неантраниловом фрагменте молекулы субстрата на эти параметры. Установлено, что изученная реакционная серия подчиняется единому уравнению Гаммета для 2′и 4′-заместителей. Показано соблюдение изокинетического соотношения с энтальпийным типом контроля, определена изокинетическая температура.

В продолжение серии работ¹⁻²по изучению реакционной способности биологически активных производных фенилантраниловой кислоты исследована кинетика реакции щелочного гидролиза 2',4-производных метилового эфира 4-хлор-5-нитро-N-фенил-

антраниловой кислоты в смешаном растворителе диоксан-вода (60 объемных % диоксана) при различных температурах (45-85°С). Реакция протекает по уравнению:

Процесс описывается кинетическим уравнением второго порядка:

$$\frac{d\mathbf{x}}{d\mathbf{t}} = \mathbf{k}(\mathbf{a} - \mathbf{x})(\mathbf{b} - \mathbf{x}) \tag{1}$$

где а,в - начальные концентрации эфира и целочи (моль/л) соответственно;

х - текущая концентрация продукта реакции (моль/л);

t - время (сек.);

k - константа скорости реакции (л/моль сек).

Разделение переменных и интегрирование уравнения (I) позволяет определить константу скорости реакции:

$$k = \frac{2.303}{t(b-a)} \lg \frac{a(b-x)}{b(a-x)}$$
 (2)

Полученное значение к коррегируется на объемное расширение растворителя при изменении температуры от 25° C до t^oC умножением на фактор 5[°] = d_{25}/d_t

где d₂₅, d_t - плотность бинарного растворителя диоксан-вода при температурах 25°и t°C.

Константы скорости реакции расчитывались по изменению концентрации гидроксида натрия во времени по уравнению (2). Концентрации нуклеофила и субстрата варьировались, но величина константы скорости реакции при этом оставалась постоянной в пределах ошибки эксперимента. Следовательно изучаемая реакция второго порядка.

На константы скорости исследованной реакционной серии существенное влияние оказывает электронная природа и полоТаблица I. Константы скорости реакции щелочного гидролиза производных метилового эфира 4-хлор-5-нитро-N-фенилантраниловой кислоты при различных температурах

	$k \cdot 10^3$, л.моль ⁻¹ сек ⁻¹ при Т.К							
318 K	328 K	338 K	348 K	358 K				
0,80+0,02	I,47+0,07	2,45+0,08	3,82+0,10	6,92+0,12				
0,50+0,03	0,95+0,04	I,78+0,07	2,69+0,08	4,79+0,10				
0,46+0,03	0,81+0,06	I,48+0,04	2,64+0,12	3,98+0,10				
1,37±0,12	2,45+0,09	3,80+0,06	6,6I <u>+</u> 0,04	9,55+0,II				
0,32+0,03	0,59+0,05	I,I0 <u>+</u> 0,08	I,86±0,07	3,16+0,10				
0,45+0,04	0,76+0,07	I,38 <u>+</u> 0,II	2,23+0,03	3,76+0,05				
0,35+0,03	0,63+0,04	I,05+0,07	2,04+0,II	3,3I <u>+</u> 0,09				
1,04+0,08	I,95 <u>+</u> 0,09	3,02 <u>+</u> 0,II	5,25+0,08	8,13 <u>+</u> 0,08				
	318 K 0,80±0,02 0,50±0,03 0,46±0,03 1,37±0,12 0,32±0,03 0,45±0,04 0,35±0,03 1,04±0,08	318 K 328 K 0,80±0,02 I,47±0,07 0,50±0,03 0,95±0,04 0,46±0,03 0,81±0,06 I,37±0,I2 2,45±0,09 0,32±0,03 0,59±0,05 0,45±0,04 0,76±0,07 0,35±0,03 0,63±0,04 I,04±0,08 I,95±0,09	318 K328 K338 K $0,80\pm0,02$ $I,47\pm0,07$ $2,45\pm0,08$ $0,50\pm0,03$ $0,95\pm0,04$ $I,78\pm0,07$ $0,46\pm0,03$ $0,81\pm0,06$ $I,48\pm0,04$ $I,37\pm0,I2$ $2,45\pm0,09$ $3,80\pm0,06$ $0,32\pm0,03$ $0,59\pm0,05$ $I,I0\pm0,08$ $0,45\pm0,04$ $0,76\pm0,07$ $I,38\pm0,II$ $0,35\pm0,03$ $0,63\pm0,04$ $I,05\pm0,07$ $I,04\pm0,08$ $I,95\pm0,09$ $3,02\pm0,II$	318 K328 K338 K348 K $0,80\pm0,02$ $1,47\pm0,07$ $2,45\pm0,08$ $3,82\pm0,10$ $0,50\pm0,03$ $0,95\pm0,04$ $1,78\pm0,07$ $2,69\pm0,08$ $0,46\pm0,03$ $0,81\pm0,06$ $1,48\pm0,04$ $2,64\pm0,12$ $1,37\pm0,12$ $2,45\pm0,09$ $3,80\pm0,06$ $6,61\pm0,04$ $0,32\pm0,03$ $0,59\pm0,05$ $1,10\pm0,08$ $1,86\pm0,07$ $0,45\pm0,04$ $0,76\pm0,07$ $1,38\pm0,111$ $2,23\pm0,03$ $0,35\pm0,03$ $0,63\pm0,04$ $1,05\pm0,07$ $2,04\pm0,111$ $1,04\pm0,08$ $1,95\pm0,09$ $3,02\pm0,111$ $5,25\pm0,08$				

жение заместителей в неантраниловом фрагменте молекулы (табл.1): введение донорных заместителей уменьшает скорость процесса, акцепторные заместители оказывают обратное действие,т.к. вызывают стабилизацию аниона производных фенилантраниловой кислоты за счет большей делокализации его заряда. Следовательно для реакции щелочного гидролиза производных 4-хлор-5-нитро-N-фенилантраниловой кислоты подтверждается известный из литературы³ В_{АС}2 механизм щелочного гидролиза:0

 $\begin{array}{c} R - U \\ R - U \\ - 0 \\ - 0 \\ R - U \\ - 0 \\ - 0 \\ R - U \\ - 0$

Интересно отметить, что эфиры с 2-заместителями имеют меньщую реакционную способность, чем с 4-заместителями.

Количественная оценка влияния электронной природы заместителей на реакционную способность метиловых эфиров 4хлор-5-нитро-М-фенилантраниловой кислоты проводилась по уравнению Гаммета (табл.2) для 2,4-производных раздельно и совместно.

Из данных таблицы 2 следует, что величины реакционного параметра ρ положительны при всех изученных температурах, что подтверждает В_{АС}2 механизм целочного гидролиза данной реакционной серии. 2'и 4'-производные метиловых эфиров 4-хлор-5-нитро-N-фенилантраниловой кислоты подчиняются уравнению Гаммета с высокими коэффициентами корреляции. Величины ρ для 2'и4'-производных невелики, что объясняется удаленностью заместителей от реакционного центра субстрата. Обращает внимание близость величин ρ для реакции целочного гидролиза 4'-производных в -диметиламиноэтилового эфира 4хлор-N-фенилантраниловой кислоты и 2',4'-производных 4-нитро-N-фенилантраниловой кислоты и 2',4'-производных 4-хлор-5-нитро-N-фенилантраниловой кислоты. Это, вероятно, связано с близким механизмом передачи электронных

Таблица 2. Параметры уравнения Гаммета реакции целочного гидролиза метиловых эфиров 4-хлор-5-нитро-N-фенилантраниловой кислоты в растворителе диоксан-вода

при различных температурах

T,K	p	lg k ⁰	F	S
318 ^a	1,104+0,022	-3,060 <u>+</u> 0,049	0,9968	0,023
328 ⁸	1,078+0,012	-2,844+0,026	0,9983	0,016
338 ^a	0,927+0,017	-2,617+0,038	0,9952	0,024
348 ^a	0,923+0,021	-2,400+0,048	0,9922	0,030
358 ^a	0,852+0,019	-2,191+0,042	0,9927	0,027
3180	0,982+0,022	-2,926 <u>+</u> 0,057	0,9948	0,030
3280	0,96I+0,0IÔ	-3,187+0,026	0,9989	0,014
338 ⁶	0,860+0,031	-2,708+0,079	0,9873	0,042
3480	0,842+0,026	-2,467 <u>+</u> 0,066	0,9907	0,035

 $lg k = lg k_0 05$

-

Продолжение таблицы 2.

I	2	3	4	5
358 ⁶	0,771 <u>+</u> 0,023	-2,263 <u>+</u> 0,057	0,9918	0,030
318 ^B 328 ^B	I,046+0,019 I,018+0,020	-3,139 <u>+</u> 0,042 -2,941 <u>+</u> 0,045	0,9826 0,9810	0,046 0,049
338 ^B	0,917+0,024	-2,655+0,053	0,9650	0,058
348 ^B	0,882 <u>+</u> 0,03I	-2,504+0,025	0,9612	0,065
358 ^B	0,833 <u>+</u> 0,019	-2,221 <u>+</u> 0,043	0,9723	0,047

- а коррелировались данные для 4-производных
- б коррелировались данные для 2-производных
- в коррелировались данные для 2'и 4-производных совместно

Таблица З. Кинетические параметры активации (Е_А иlmA) реакции целочного гидролиза производных метилового эфира 4-хлор-5-нитро-N-фенилантраниловой кислоты

R	Е _А кдж/моль	ln 🛦	r	S
Н	49,8 <u>+</u> 0,5	II,7 <u>+</u> I,6	0,9988	0,048
4 CH3	52,7+0,5	I2,4+I,9	0,9986	0,054
3',4' -CH3	52,2+0,4	12, I <u>+</u> I,5	0,9991	0,043
4'-CI	47,4+0,5	II,3 <u>+</u> I,7	0,9984	0,052
2,4'-CH3	54,6+0,2	12,6+0,6	0,9997	0,015
2'-CH3	50,5+0,3	II,4 <u>+</u> 0,9	0,9996	0,027
2'-0CH3	53,8+0,4	I2,4+I,7	0,9988	0,052
2'-CI	48,4 <u>+</u> 0,4	II,4 <u>+</u> I,3	0,9991	0,039

влияний заместителей на реакционный центр. Величины ρ для 2-заместителей ниже, чем для 4-заместителей, но различия невелики. Поэтому была проведена совместная корреляция для соединений с 2,4-заместителями. Она оказалась также статистически значимой (проверка по F -критерию Фишера⁴), хотя значения коэффициента корреляции ниже, а величины дисперсии S выше,чем в случае раздельной корреляции. Величина ρ с ростом температуры уменьшается.

Для всех соединений данной реакционной серии соблюдается уравнение Аррениуса:

$$\ln k = \ln A - \frac{E_A}{RT}$$
(3)

Рассчитанные по уравнению (3) величины энергии активации E_A и предэкспоненциального фактора A приведены в таблице 3. Введение электронодонорных заместителей в молекулу эфира вызывает закономерное увеличение энергии активации, электроно-акцепторные заместители вызывают обратный эффект. Корреляция же зависимости E_A от \mathfrak{S} -констант Гаммета статистически недостоверна.

По уравнению Эйринга⁵ рассчитаны энтальпия (ΔH^{\neq}) и энтропия (ΔS^{\neq}) активации, свободная энергия активации (ΔG^{\neq}) вычислена по второму началу термодинамики. Полученные данные приведены в таблице 4. Энтропия активации для всех соединений отрицательна, что еще раз подтверждает B_{AC}^2 механизм изученной реакции. Большие абсолютные значения ΔS^{\pm} позволяют предположить образование высокосимметричного интермедиата. Введение акцепторных заместителей в молекулу вызывает возрастание абсолютного значения ΔS^{\pm} и уменьшение ΔH^{\pm} . Небольшие значения ΔH^{\pm} свидетельствуют о синхронности исследованной реакции. Линейная корреляция ΔH^{\pm} и ΔS^{\pm} от \mathfrak{S} -констант заместителей статистически недостоверна. Влияние заместителей на величину свободной энергии активации аналогично их влиянию на ΔH^{\pm} . Интересно отметить, что энтальпийный и энтропийный вклады в величину ΔG^{\pm} близки.

Для проверки существования изокинетического соотношения в исследованной реакционной серии исследовались корреляции Таблица 4. Термодинамические параметры активации (ΔH[#], ΔS[#], ΔG[#]) реакции щелочного гидролиза производных метилового эфира 4-хлор-5-нитро-N-фенилантраниловой кислоты.

R		∆ G [#] кдж/моль			∆H [#] ∆S [#]		x .	8	т∆́Ѕ кдж/моль
318K	328K	338K	348K	358K	кдж/моль	дж/град			318K
96,9	98,5	100,0	101,6	103,2	47,0+0,4	-157 <u>+</u> 2	0,9670	0,047	-49,9
98,I	99,7	101,2	102,7	104,2	49,9+0,2	-152 <u>+</u> 1	0,9994	0,033	-48,2
98,4	99,9	101,5	103,0	104,6	49,4+0,4	-154+3	0,9989	0,043	-49,0
95,4	97,I	98,7	100,3	102,0	43,4+0,4	-164+2	0,9987	0,043	-52,0
99,4	100,9	102,4	103,9	105,4	51,8+1,3	-150+4	0,9998	0,015	-47,6
98,5	100,I	101,7	103,3	104,9	47,7+0,8	-160+6	0,9996	0,026	-50,8
99,I	100,7	102,2	103,7	105,2	51,0+0,4	-151+3	0,9986	0,052	-48,I
96,2	97,8	99,4	101,0	102,6	45,6 <u>+</u> I,6	-159+2	0,9990	0,039	-50,6
	318K 96,9 98,1 98,4 95,4 99,4 99,4 99,1 99,1 96,2	ΔG [#] 318K 328K 96,9 98,5 98,1 99,7 98,4 99,9 95,4 97,1 99,4 100,9 98,5 100,1 99,1 100,7 96,2 97,8	∆G [#] кдж/мол 318К 328К 338К 96,9 98,5 100,0 98,1 99,7 101,2 98,4 99,9 101,5 95,4 97,1 98,7 99,4 100,9 102,4 98,5 100,1 101,7 99,1 100,7 102,2 96,2 97,8 99,4	Дс [#] кдж/моль 318К 328К 338К 348К 96,9 98,5 100,0 101,6 98,1 99,7 101,2 102,7 98,4 99,9 101,5 103,0 95,4 97,1 98,7 100,3 99,4 100,9 102,4 103,9 98,5 100,1 101,7 103,3 99,1 100,7 102,2 103,7 96,2 97,8 99,4 101,0	Дб [#] кдж/моль 318К 328К 338К 348К 358К 96,9 98,5 100,0 101,6 103,2 98,1 99,7 101,2 102,7 104,2 98,4 99,9 101,5 103,0 104,6 95,4 97,1 98,7 100,3 102,0 99,4 100,9 102,4 103,9 105,4 98,5 100,1 101,7 103,3 104,9 99,1 100,7 102,2 103,7 105,2 96,2 97,8 99,4 101,0 102,6	Даф кдж/моль АНф З18К З28К З38К З48К З58К кдж/моль 96,9 98,5 100,0 101,6 103,2 47,0±0,4 98,1 99,7 101,2 102,7 104,2 49,9±0,2 98,4 99,9 101,5 103,0 104,6 49,4±0,4 95,4 97,1 98,7 100,3 102,0 43,4±0,4 99,4 100,9 102,4 103,9 105,4 51,8±1,3 98,5 100,1 101,7 103,3 104,9 47,7±0,8 99,1 100,7 102,2 103,7 105,2 51,0±0,4 96,2 97,8 99,4 101,0 102,6 45,6±1,6	$\Delta G^{\#}$ κдж/моль $\Delta H^{\#}$ $\Delta S^{\#}$ 318K328K338K348K358Kкдж/мольдж/град96,998,5100,0101,6103,247,0±0,4 -157 ± 2 98,199,7101,2102,7104,249,9±0,2 -152 ± 1 98,499,9101,5103,0104,649,4±0,4 -154 ± 3 95,497,198,7100,3102,043,4±0,4 -164 ± 2 99,4100,9102,4103,9105,451,8±1,3 -150 ± 4 98,5100,1101,7103,3104,947,7±0,8 -160 ± 6 99,1100,7102,2103,7105,251,0±0,4 -151 ± 3 96,297,899,4101,0102,645,6±1,6 -159 ± 2	Дб [#] кдж/моль Дh [#] Дб [#] Дб [#] x 318K 328K 338K 348K 358K кдж/моль дж/град 96,9 98,5 100,0 101,6 103,2 47,0±0,4 -157±2 0,9670 98,1 99,7 101,2 102,7 104,2 49,9±0,2 -152±1 0,9994 98,4 99,9 101,5 103,0 104,6 49,4±0,4 -154±3 0,9989 95,4 97,1 98,7 100,3 102,0 43,4±0,4 -164±2 0,9987 99,4 100,9 102,4 103,9 105,4 51,8±1,3 -150±4 0,9998 98,5 100,1 101,7 103,3 104,9 47,7±0,8 -160±6 0,9998 99,1 100,7 102,2 103,7 105,2 51,0±0,4 -151±3 0,9986 96,2 97,8 99,4 101,0 102,6 45,6±1,6 -159±2 0,9990	Да [#] кдж/моль Дн [#] Да [#] Да [#] к. в 318K 328K 338K 348K 358K кдж/моль дж/град 96,9 98,5 100,0 101,6 103,2 47,0±0,4 -157±2 0,9670 0,047 96,9 98,5 100,0 101,6 103,2 47,0±0,4 -157±2 0,9670 0,047 98,1 99,7 101,2 102,7 104,2 49,9±0,2 -152±1 0,9994 0,033 98,4 99,9 101,5 103,0 104,6 49,4±0,4 -154±3 0,9989 0,043 95,4 97,1 98,7 100,3 102,0 43,4±0,4 -164±2 0,9987 0,043 99,4 100,9 102,4 103,9 105,4 51,8±1,3 -150±4 0,9998 0,015 98,5 100,1 101,7 103,3 104,9 47,7±0,8 -160±6 0,9996 0,026 99,1 100,7 102,2 103,7 105,2 51,0±0,4 -151±3 0,9986 0,052 96,2

 $\overline{\omega}$

 $\Delta H^{\neq} - \lg k_T, \Delta H^{\neq} - \Delta S^{\neq}, \beta - I/T$ (табл.5). Их линейный характер доказан методом регрессионного анализа с использованием *F*-критерия Фишера. Вычисленные из этих зависимостей значение изокинетической температуры ^B, близки к значениям вычисленным независимым путем по уравнению⁶ (табл.6);

 $lgk_{T_2} = const + xlgk_{T_1}$

Величина в лежит выше опытного интервала температур, что свидетельствует об энтальпийном типе контроля для реакции целочного гидролиза производных метилового эфира 4-хлор-5-нитро-М -фенилантраниловой кислоты.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

<u>Реактивы</u>. Очистка растворителей и контроль степени их чистоты описаны ранее^I.

Метиловые эфиры 4-хлор-5-нитро-N-фенилантраниловой кислоты синтезировались по известной методике⁷. Чистота их контролировалась элементным анализом, методом тонкослойной хроматографии в системах (уксусная кислота-вода I:I, пропанол--вода I:I) на пластинках "Silufol"

Для приготовления растворов гидроксида натрия использовался твердый гидроксид натрия, очищенный от карбонатов по методу⁸.

<u>Кинетические измерения</u> проводились по методике¹. Концентрация гидроксида натрия в растворе определялась потенциометрическим титрованием на иономере ЭV -74 водным раствором HG1. Кинетика реакции изучена при 45,55,65,75,85°C. Опыты проводились в трехкратной повторности и включали 6-8 измерений (глубина превращения не менее 80%). Оценка точности полученных параметров осуществлялась методом математической статистики для малых выборок⁴ (доверительная вероятность 0,95). Линейные уравнения обрабатывались методом наименьших квадратов на микрокалькуляторе "Электроника МК-52" с использованием стандартных. программ⁹. Таблица 5. Определение изокинетической температуры. Корреляционные параметры уравнений у = а+вх зависимости кинетических и активационных параметров реакции щелочного гидролиза производных метилового эфира 4-хлор-5-нитро-N-фенилантраниловой кислоты и изокинетическая температура в.

x	У	Call & Call	в	r	S	к
^{1g} K318	△H	(10,0 <u>+</u> 1,1)·10 ³	(-II,8 <u>+</u> 0,4)·10 ³	0,915	0,91	657
1g K328	ΔH	$(14, 1+1, 2) \cdot 10^3$	$(-11,5+0,4) \cdot 10^3$	0,915	I,I0	686
1g K338	ΔH	$(13, 1+1, 4) \cdot 10^3$	$(-12,8+0,5) \cdot 10^3$	0,925	· I,I6	683
1g K348	ΔH	(15,0 <u>+</u> 1,3)·10 ³	(-13,2+0,5)·10 ³	0,905	I,12	701
1g K358	∆H	$(16, 0+1, 4) \cdot 10^3$	(-14,0+0,6)·10 ³	0,918	I,25	700
∆ S [#]	∆H	$(56, 4+1, 1) \cdot 10^3$	556 <u>+</u> 16	0,931	3,78	556
I/T	ę	-0,872 <u>+</u> 0,068	609+22	0,987	0,032	698

Коррелировались данные для 2 и 4-производных совместно.

13:

Таблица 6. Определение изокинетической температуры /3. Корреляционные параметры уравнения lg k_T = const + x lg k_T реакции щелочного гидролиза производных метилового эфира 4-хлор-5-нитро-М-фенилантраниловой кислоты.

ратура,К					
T ₂	x	r	S	e K	
338	0,885	0,9889	0,029	657	6 30
348	0,858	0,9944	0,023	551	
358	0,798	0,9973	0,015	560	
358	0,896	0,9941	0,022	731	
358	0,914	0,9865	0,033	517	
	атура,К Т2 338 348 358 358 358 358	ратура,К T ₂ х 338 0,885 348 0,858 358 0,798 358 0,896 358 0,914	Jarypa,K r T2 x r 338 0,885 0,9889 348 0,858 0,9944 358 0,798 0,9973 358 0,896 0,9941 358 0,914 0,9865	T2 x r S 338 0,885 0,9689 0,029 348 0,858 0,9944 0,023 358 0,798 0,9973 0,015 358 0,896 0,9941 0,022 358 0,914 0,9865 0,033	T2 x r S B K 338 0,885 0,9889 0,029 657 348 0,858 0,9944 0,023 551 358 0,798 0,9973 0,015 560 358 0,896 0,9941 0,022 731 358 0,914 0,9865 0,033 517

Коррелировались данные для 2,4-производных совместно.

Литература

- I. А.Н.Гайдукевич, Е.Н.Свечникова, Г.П.Казаков, Т.А.Костина. Реакц.способн.орг.соедин. 23,442(1986)
- 2. А.Н.Гайдукевич, Г.П.Казаков, А.А.Кравченко, Е.Е.Микитенко, Е.Н.Свечникова, Г.Сим. Тезисы докл. XV Украинской респ. конференции по органической химии, Ужгород, 1986, с.353.
- 3. Р.Кери, Р.Сандберг. Углубленный курс органической химии М., "Химия", 1981, с. 300.
- 4. Е.Н.Львовский. Статистические методы построения эмпирических формул. "Высшая школа", М., 1982.
- 5. Г.Эйринг. Основы химической кинетики. "Мир", М., 1983.
- 6. В.А.Бальм. Основы количественной теории органических реакций. Л., "Химия", 1977.
- Синтез и превращения гетероатомсодержащих органических соединений. Баку, 1981, с.68
- А.Альберт, Е.Сержент. Константы ионизации кислот и оснований. М., "Химия", 1964.
- 9. Я.К.Трохименко. Программирование микрокалькуляторов "Электроника МК-52" и "Электроника МК-61", "Техника", 1987.

Реакц. способн. орган. соедин., том 24, вып. 3(87), 1987.

УДК 541.124/127+547.821

НУКЛЕОФИЛЬНОЕ ЗАМЕЩЕНИЕ У ТЕТРАКООРДИНАЦИ ОННОГО АТОМА СЕРЫ. Ц. РЕАКЦИОННАЯ СПОСОБНОСТЬ ТИОАЛКОГОЛЯТ-ИОНОВ

Ю.С.Симаненко, Т.М.Прокопьева, И.А.Белоусова, В.А.Савелова, А.Ф.Попов, Г.С.Сакулин

Институт физико-органической химии и углехимии АН УССР, г.Донецк, 340II4

Поступило 23 ноября 1987 г.

Проведен кинетико-термодинамический анализ тиоалкоголиза арилсульфонатов. Установлено, что реакция включает нуклеофильную атаку тиоалкоголят-и она на тетракоординационный атом серы сульфоната, а наличие в молекуле нуклеофила таких кислотно-основных центров как -COO[®], >N. »NH и ОН-групп не оказывает внутримолекулярного содействия переносу сульфонильной группы. Скорость тиоалкоголиза слабо зависит от структуры атакующего нуклеофила (^βN= 0.25) и природы уходящей группы (рут-0.32). Количественное сопоставление реакционной способности RS -анионов и аминов RNH, показывает, что тисалкоголят-ионы-более эффективные нуклеофилы, и прослеживается полная аналогия в характере влияния заместителей в нуклеофиле на скорость переноса ацильной и сульфонильной групп. Установлено, что в отличие от аминолиза арилсульфонатов переходное состояние для тиоалкоголиза является ранним и обсуждены факторы, контролирующие скорость нуклеофильной атаки тисалкого-Лят-Ионами.

Тиоалкоголят- и тиоарилат-анионы Выступают в качестве эффективных нуклеофильных реагентов по отношению к субстратам различной природы¹⁻⁶. Будучи высоко поляризуемыми нуклеофилами они аномально быстро реагируют с "мягкими" субстратами, а с арилвинилсульфонами. и арилтиоизоцианатами² скорость реакции почти в 10⁴ раз больше, чем скорость взаимодействия со структурноподобными алкоголят-анионами. Однако, повышенная реакционная способность тиоалкоголят-ионов по сравнению с аминами и алкоголят-анионами была обнаружена и в реакциях с кислородными и тиоловыми эфирами карбоновых кислот 3,4, при присоединении к карбонильной группе альдегидов, а в случае 4-нитрофенил-4-толуолсульфоната (H&TC) тиофенолят-ион реагирует в 100 раз быстрее, чем алифатические амины близкой основности, незначительно уступая по реакционной способности таким 2-нуклеофилам как оксимат-ионы. Еще более высокая нуклеофильность тиоалкоголят-иона, соизмеримая с нуклеофильностью гипохлорити ацетгидроксамат-анионов, отмечалась и в реакции тиобутилатиона с дисульфонами 7. Указанные субстраты вряд ли можно отнести к классу "мягких" электрофилов (скорее наоборот - это "жесткие" субстраты), и потому, с точки зрения поставленной задачи8 - научно-обоснованного поиска высокоэффективных нуклеофильных реагентов и каталитических систем, способных быстро расцеплять стабильные в воде субстраты, - представлялось целесообразным провести детальное кинетическое исследование реакции нуклеофильного замещения у тетракоординационного атома серы с участием тисалкоголят-анисное и ариловых эфиров 4-толуолсульфокислоты. Как известно9, ариловые эфиры 4-толуолсульфокислоты являются "жесткими" электрофилами, они стабильны в воде, и, следовательно, информация об их взаимодействии с нуклеофилами различной природы может быть полезной для выяснения факторов, контролирующих реакционную способность "мягких" легко поляризуемых нуклеофилов - тиоалкоголят-ионов.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

Характер Влияния кислотно-основных свойств замещенных меркапто Спиртов на их скорость реакции с ариловыми эфирами 4-толуолсульфокислоть был прослежен на примере взаимодействия меркаптопроизводных с НФТС. Кинетический анализ этого процесса указывает, что реагирующей формой тиоловых спиртов выступают тиоалкоголят-анионы, а скорость реакции возрастает как с увеличением суммарной концентрации тиоспирта, так и о ростом рН среды (рис.I,2). Реакция протекает только с разрывом связи серы с уходящей группой (4-нитрофенолят-ионом) и, следовательно, включает нуклеофильную атаку на тетракоординационный атом серы НФТС.

Рис. I. Зависимость наблюдаемых констант скорости псевдопервого порядка $k_{\rm H}, c^{-I}$ для реакции тиогликолевой кислоть с НФТС от [HSCH₂COOH]₀ при различных значениях pH; 25°C, r=I.0 (КСI)

По крайней мере, ни в одном случае не удалось зарегистрировать продуктов реакции, отвечающих нуклеофильной атаке на ароматический атом углерода 4-нитрофенильного ядра. Отсутствие дейтериевого изотопного эффекта растворителя для реакции с участием метилового эфира тиогликолевой кислоты ($k_{2(H_2O)}/k_{2(D_2O)=I.03}$) также согласуется с заключением о том, что имеет место нуклеофильное замещение, а не общеосновный катализ гидролиза НФТС тиоалкоголят-ионом.

Количественная оценка реакционной способности тиоалкоголят-ионов (ЖІ-4, табл.І) не вызывает затруднений, поскольку наблюдаемая скорость реакции подчиняется уравнению (І), а знание рК_а их сопряженных кислот дает возможность проводить реакцию при оптимальных значениях рН, находить концентрации реагирующих тиоалкоголят-ионов и, следовательно, рассчитывать величины k₂, M⁻¹c⁻¹.

$$\mathbf{k}_{\mathrm{H}^{=}} \mathbf{k}_{2} \left[\mathrm{RCH}_{2} \mathrm{S}^{\Theta} \right] = \frac{\mathbf{k}_{2} \mathbf{k}_{a}}{\mathbf{k}_{a} + \mathbf{a}_{\mathrm{H}}^{\Theta}} \left[\mathrm{RCH}_{2} \mathrm{SH} \right]_{0} \qquad (\mathrm{I})$$

Однако ситуация существенно отличается для цистеина, цистеамина и N,N-диэтилцистеамина, которые существуют в водных растворах в виде четырех форм (схема 2), причем три из них -

Таблица І

Условия проведения эксперимента, основность тиоалкоголят-ионов (pK_g) и их реакционная способность (k_2 , M^{-I}c^{-I}) по отношению к НФТС в 5% водном этаноле; 25°С; \int^{q} =I.0 (КСІ)

же п/п	Нуклеофил	рК _а	рН	[RCH2SH]a)	nd)	k ₂
I.	OOCCH2-S	I0.20+0.06	I0.0-I2.0	0.06-0.5	20	(8.5+0.I)·I0-4
2.	CH3CONHCHCH2-s ^e	9.63+0.03	9.6-10.0	0.06-0.5	8	(8.9+0.2).10-4
3.	HOCH2CH2-s	9.58+0.03 I0.02+0.06 ^B)	9.2-II.0	0.05-1.0	II	(6.6+0.2)·I0 ⁻⁴
4.	CH300CCH2-S	7.70+0.03	I0.0	0.05-0.5	5	(I.8+0.I)·I0-4
5.	NH3CHCH2-s	8.45 ^{F)}	9.0-10.2	0.5	5	(2.1+0.2).10-4
6.	NH_CHCHS	9.91 ^{Д)}	I0.8-II.8	0.5	5	(3.9+0.4).IO-4 e
1	-coo=-	Con Participante	9.0-10.2	0.5	5	(3.5+0.2)·10-4 e
7.	NH2CHCH2SCH3	8.77 <u>+</u> 0.04	8.7-10.0	0.5	5	(I.I+0.2)·I0 ⁻⁵
8.	HaCHaCHa-8°	8.49 ^г)	9.0-10.0	0.5	5	(3.4+0.2).10-4
9.	NH2CH2CH2-Se	9.85 ^Д)	I0.4-II.6	0.5	5	(6.0+0.4).10-4
I0.	NH2CH2CH2SCH3	9.50+0.03	9.5-10.5	0.5	5	(4.I+0.4).I0-5
II.	(C2H5) NH (CH2)2-8	8.II ^{F)}	8.5-9.8	0.2	5	(2.0+0.3).10-4
I2.	(C2H5)2N(CH2)2-8	9.70 ^Д)	10.0-10.5	0.2	6	(4.0+0.4).10-4
I3.	(C2H5)2N(CH2)2BCH3	9.71+0.06	10.7	0.2	5	(I.2+0.I)·10-5

361

цвиттер-ионная Н^ФА[•], нейтральная НА и моноанионная А[•] - потенциальные нуклеофильные реагенты.

$$(H_{2}^{\oplus}A) \xrightarrow{\oplus} (H_{2}^{\oplus}-CHCH_{2}^{-S}) \xrightarrow{H_{1}^{\oplus}-CHCH_{2}^{-S}} (A^{\oplus})$$

$$(H_{2}^{\oplus}A) \xrightarrow{\oplus} (H_{2}^{\oplus}-CHCH_{2}^{-SH}) \xrightarrow{H_{1}^{\oplus}-CHCH_{2}^{-S}} (A^{\oplus})$$

$$(H_{2}^{\oplus}A) \xrightarrow{\oplus} (H_{2}^{\oplus}-CHCH_{2}^{-SH}) \xrightarrow{H_{1}^{\oplus}-CHCH_{2}^{-SH}} (A^{\oplus})$$

$$(H_{2}^{\oplus}A) \xrightarrow{\oplus} (H_{2}^{\oplus}-CHCH_{2}^{-SH}) \xrightarrow{H_{2}^{\oplus}-CHCH_{2}^{-SH}} (A^{\oplus})$$

$$(H_{2}^{\oplus}A) \xrightarrow{H_{2}^{\oplus}-CHCH_{2}^{-SH}} (A^{\oplus})$$

$$(H_{2}^{\oplus}A) \xrightarrow{H_{2}^{\oplus}-CHCH_{2}^{-SH}} (A^{\oplus}) \xrightarrow{H_{2}^{\oplus}-CHCH_{2}^{-SH}} (A^{\oplus})$$

Наличие в молекулах цистеина, цистеамина, N,N-диэтилцистеамина двух кислотно-основных центров – SH и N приводит к тому, что в зависимости от pH среды с НФТС может реагировать либо аминогруппа форм НА и А[°], либо тиоалкоголятная группа Н[®]A[°] и A[°]-форм. В соответствии с этим скорость реакции будет описываться соотношением:

 $\mathbf{k}_{\mathrm{H}} = \mathbf{k}_{\mathrm{H}} \bullet_{\mathrm{A}} \bullet [\mathrm{H}^{\Phi} A^{\Theta}] + \mathbf{k}_{\mathrm{H}A} [\mathrm{H} A] + \mathbf{k}_{\mathrm{A}} \bullet [A^{\Theta}] = \frac{\mathbf{k}_{\mathrm{H}}}{\mathbf{1} + \mathbf{k}_{\mathrm{T}}} \mathcal{A}_{\mathrm{H}A} \bullet [A^{\Theta}] = \frac{\mathbf{k}_{\mathrm{H}}}{\mathbf{1} + \mathbf{k}_{\mathrm{T}}} \mathcal{A}_{\mathrm{H}} \bullet [A^{\Theta}] = \frac{\mathbf{k}_{\mathrm{H}}}{\mathbf{1} + \mathbf{k}} \mathcal{A}_{\mathrm{H}} \bullet$ где [А] - суммарная концентрация меркаптопроизводного, вводимого в реакционнув систему, К_т - константа таутомерного превращения цвиттер-иона Н "А" в нейтральную форму НА, d HATдоля меркаптопроизводного, находящегося в виде нейтральной и цвиттер-ионной форм ([HAD] = [HA] + [H[⊕]A⁼]), $\mathcal{L}_{A^{\oplus}}$ - доля меркаптопроизводного, находящегося в виде моноанионной формы А, а к. е = к + к. е - характеризует суммарную реакционную спообоность амино- и тисалкоголятной групп в моноанионе А и имеет размерность константы скорости второго порядка. Количественное описание этого сложного многопотокового процесса, протекавщего с образованием тиоловых эфиров и сульфонамидов 4-толуолсульфокислоты, оказывается возможным, если известны реакционные способности аминогруппы в формах НА и А[®] и "микроскопические" константы ионизации Кд, К, К, и К, ответственные за накопление в системе ионогенных форм НА, Н^ФА^Ф и А[●] (уравнения (4-6)).

$$[HA] = \frac{1}{1+K_{T}} \cdot \frac{K_{\tilde{I}}a_{H}^{\Phi}}{K_{\tilde{I}}K_{\tilde{I}}+K_{\tilde{I}}a_{H}^{\Phi}+a_{H}^{2\Phi}} [A]_{0} = \frac{I}{I+K_{T}} \mathcal{L}_{HA^{\pm}}[A]_{0}$$
(4)

$$\left[H^{\oplus}A^{\ominus}\right] = \frac{K_{\mathbf{T}}}{\mathbf{I} + K_{\mathbf{T}}} \cdot \frac{K_{\mathbf{T}}a_{\mathbf{H}}^{\oplus}}{K_{\mathbf{T}}^{\pm}K_{\mathbf{T}}^{\pm} + K_{\mathbf{T}}^{\pm}} \overset{2 \oplus}{\mathbf{H}} \left[A\right]_{0} = \frac{K_{\mathbf{T}}}{\mathbf{I} + K_{\mathbf{T}}} \mathscr{L}_{\mathbf{H}A^{\pm}} \left[A\right]_{0}$$
(5)

$$\begin{bmatrix} A^{\Theta} \end{bmatrix} = \frac{K_{\overline{I}}K_{\overline{I}}}{K_{\overline{I}}K_{\overline{I}}+K_{\overline{I}}a_{H}^{\Theta}+a_{H}^{\Theta}} \begin{bmatrix} A \end{bmatrix}_{o} = \mathcal{A}_{A}\Theta[A]_{o}$$
(6)

Поэтому анализ этих процессов осуществлялся в два этапа. Первоначально методом потенциометрического титрования определялись "макроскопические" константы кислотной ионизации К и К п (7,8) для цистеина, цистеамина и N,N-диэтилцистеамина и константы равновесия для их S-метилпроизводных (9), моделирующих стадию ионизации, характеризуемую величиной К₂.

$$K_{\underline{I}} = \frac{\left(\left[H^{\oplus}A^{\ominus}\right] + \left[HA\right]\right)a_{H}}{\left[H_{2}^{\oplus}A\right]} = K_{\underline{I}} + K_{2}$$
(7)

$$K_{\underline{\underline{\Pi}}} = \frac{\begin{bmatrix} A^{\Theta} \end{bmatrix} a_{\underline{H}}^{\Theta}}{(\begin{bmatrix} H^{\Theta} A^{\Theta} \end{bmatrix} + \begin{bmatrix} HA \end{bmatrix})} = \frac{K_{3}K_{4}}{K_{3} + K_{4}}$$
(8)

 H_{N}^{\oplus} -CHCH₂-SCH₃ $\overset{K_{a}}{\longrightarrow}$ N-CHCH₂-SCH₃ (9) Поскольку изменение стандартной свободной энергии превращения H₂^A в A^{\oplus} не зависит от пути перехода, а pK₁+pK₃=pK₂+pK₄= pK₁+pK₁, то, исходя из соотношений (7), (I0), (I1) и измеренных величин K₁, K₁, K_a (при условии K_a=K₂), можно расочитать "микроскопические" константы ионизации K₁, K₃ и K₄ (табл.2).

$$K_{3} = \frac{K_{\overline{I}}K_{\overline{I}}}{K_{\overline{I}}-K_{2}} = \frac{K_{\overline{I}}K_{\overline{I}}}{K_{\overline{I}}}$$
(10)
$$K_{4} = \frac{K_{\overline{I}}K_{\overline{I}}}{K_{\overline{I}}-K_{\overline{I}}} = \frac{K_{\overline{I}}K_{\overline{I}}}{K_{2}}$$
(11)

Затем для S-метильных производных цистеина, цистеамина и N,N-диэтилцистеамина определялись константы скорости второго порядка, количественно характеризувщие реакционнув опо-

14*
собность аминогруппы по отношению к НФТС. Найденные константы скорости второго порядка могут быть апроксимированы как величины k_{HA} для их неметилированных аналогов, и убедительным доводом в пользу этого служит то обстоятельство, что значения 1g k_2 для данных нуклеофилов попадают на бренстедовскую зависимость для реакции НФТС с аминами (рис.3).

Таблица 2

Величины "микроскопических", "макроскопических" констант ионизации, а также константы таутомерного равновесия для цистеина, цистеамина и N,N-диэтилцистеамина в 5% водном этаноле; 25°C; м=I.0 (КСІ)

pKa	Цистеин	Цистеамин	N, N-Диэтилцистеамин
pКŢ	8.28+0.04	8.45+0.03	8.10+0.04
pK	I0.40+0.03	10.90+0.06	II.30+0.06
pK	8.45	8.49	8.II
pK	8.77+0.04	9.50+0.03	9.71+0.06
pK3	I0.23	I0.86	II.29
pKh	9.90	9.85	9.69
.K _T	2.I	10.2	39.8

Бренстедовские зависимости для реакции тиоалкоголят-ионов и аминов с 4-нитрофенил-4-толуолсульфонатом (прямые А и В; номера точек те же, что и в табл.1) и 4-нитрофенилацетатом (прямые С и D). Прямые С и D построены по данным работ⁴, 10,11, прямая В построена по данным работы⁸.

Существенное отрицательное отклонение от корреляционной зависимости Бренстеда для S-метил-N,N-диэтилцистеамина скорее всего связано с высокой чувствительностью этой реакции к стерическим эффектам заместителей^{6,8}.

На втором этапе анализа из pH-зависимости наблюдаемых

констант скорости псевдопервого порядка определялись реакционные способности форм $H^{\oplus}A^{\oplus}$ и A^{\oplus} , как тиоалкоголят-анионов. Реакция проводилась в условиях (см.табл.1), когда вклады маршрутов с участием $H^{\oplus}A^{\oplus}$ и НА в наблодаемую скорость процесса были сопоставимы с вкладом маршрутов с участием A^{\oplus} . Преобразовав выражение (3) к виду (I2), в координатах "k^{*}_{2, каж} - $\mathcal{L}_{A^{\oplus}}/\mathcal{L}_{HA^{\pm}}$ " легко рассчитать величины k^{*}_{2, каж} и k^{*}₄ \in (рис.4а).

$$\mathbf{k}_{2}^{*}, \mathbf{kax}^{*} = \frac{\mathbf{k}_{\mathrm{H}}}{\mathcal{L}_{\mathrm{HA}}^{+}[\mathbf{A}]_{0}} = \left\{ \mathbf{k}_{\mathrm{H}} \bullet_{\mathbf{A}} \bullet_{\mathbf{A}} \frac{\mathbf{K}_{\mathrm{T}}}{\mathbf{A} + \mathbf{K}_{\mathrm{T}}} + \mathbf{k}_{\mathrm{HA}} \frac{\mathbf{I}}{\mathbf{I} + \mathbf{K}_{\mathrm{T}}} \right\} + \mathbf{k}_{\mathbf{A}} \bullet_{\mathbf{A}} \frac{\mathcal{L}_{\mathbf{A}} \bullet}{\mathcal{L}_{\mathrm{HA}}^{+}} = \mathbf{k}_{2}, \mathbf{kax} + \mathbf{k}_{\mathbf{A}} \bullet_{\mathbf{A}} \frac{\mathcal{L}_{\mathbf{A}} \bullet}{\mathcal{L}_{\mathrm{HA}}^{+}}$$
(12)

Исходя из значений $k_{2', Kaж}$ и измеренных величин K_{T} и k_{HA} , в дальнейшем определяли искомые константы k_{HA} . Индивидуальные константы скорости, характеризурцие нуклеофильнур реакционнур способность анионного центра $-S^{\circ}$ ($k_{S^{\circ}}$) и нейтрального центра N (k_{N}) в молекуле A° , были найдены, подагая, что поведение A° , как амина, описывается уравнением Бренстеда⁸; тогда $k_{S^{\circ}} = k_{A^{\circ}} - k_{N}$ (см. табл. 1). При рН ≥ 10 , когда основной формой, реагирурцей с НФТС, является A° , а вклады потоков с участием форм $H^{\circ}A^{\circ}$ и НА малы (т.е. $k_{2,Kax} \simeq 0$). оказывается возможным из зависимости (I2) определить только величину $k_{A^{\circ}}$ (рис. 46). Совпадение значений $k_{A^{\circ}}$, найденных в различных областях рН (см. табл. I, 16), свидетельствует о справедливости кинетического закона скорости (3).

Рис.4. Реакция НФТС с цистемном в 5% водном этаноде; 25°С; и=I.0 (КСІ). Обработка результатов измерений согласно уравнению (I2): а)рH=9.0-I0.2; б) рH=I0.8-II.6.

Взаимодействие 2-меркаптоэтанола с ариловыми эфирами 4-толуолсульфокислоты было изучено в 30% по объему водном этаноле, что обеспечивало хорошув растворимость как реагентов, так и образувщихся продуктов реакции. Переход из 5% в 30% водный этанол не сказывается на нуклеофильности анионной формы меркаптопроизводного (ср.величины k_2 для НФТС и 2,5-ДНФТС^{*)} в 5% и 30% этаноле в табл.3), хотя в этих же условиях реакционная способность аммиака по отношенив к НФТС уменьшается в ~ 50 раз¹². По-видимому, это связано с тем, что в случае тиоалкоголиза НФТС при переходе в 30% этанол одновременно с увеличением основности уходящей группы в субстрате возрастает основность атакувщего тиоалкоголят-иона (см.табл.1, 3), тогда как основность аммиака вероятно уменьшается¹³ и при этом весьма существенно.

Скорость реакции аниона 2-меркаптоэтанола с арилтолуолсульфонатами довольно слабо зависит от основности уходящего арилат-аниона (уравнение (I3)).

 $lgk_{2}=(-0.99+0.30) + (-0.32+0.04)pK_{p}, S_{00m}=0.13, r=0.984$ (I3) При переходе от ХФТС к 2,5-ДНФТС основность уходящей группы уменьшается в ~10⁵ раз, тогда как скорость нуклеофильной атак ки с разрывом - \$40Ar связи возрастает всего лишь в 20 раз (см.табл.3). Однако скорость взаимодействия этого же тиола с 2,4-ДНФТС почти в 3.10⁴ раз больше по сравнению с 2,5-ДНФТС. хотя основности соответствующих арилат-анионов очень близки (табл.3). Причиной тому - смена механизма реакции: в отличие от арилсульфонатов ##2-5 (табл.3), где атака осуществляется на атом серы сульфонильной группы, в реакции 2,4-ДНФТС тиоалкоголят-анион атакует ароматический атом углерода фенольного фрагмента с разрывом -S-04C связи (I). В результате этого процесса количественно и необратимо образуются 2-оксиэтил-2, 4-динитрофенилсульфид и 4-толуолсульфокислота (см. экспериментальную часть), а константа скорости второго порядка для этой реакции была рассчитана по уравнению (1).

*) См. аббревиатуру в табл. 3.

Условия проведения эксперимента, основность уходящей группы в субстрате (pK_a) и реакционная способность (k₂,M^{-I}. c^{-I}) 2-меркаптоэтанола по отношению к ариловым эфирам 4-толуолсульфокислоты в 30% этаноле; 25°С; н=I.0 (КСІ)

жж п/п	Субстрат	pKaa)	Д , нм	рН	[HOCH ₂ CH ₂ SH] _c M	k2
Ι.	2,4-Динитрофенил-4-толуолсульфонат (2,4-ДНФТС)	3.88+0.02 (4.II)	370	6.0-9.4	0.0625-1.0	55.7 <u>+</u> 0.1 ⁶)
2.	2,5-Динитрофенил-4-толуолсульфонат (2,5-ДНФТС)	5.26+0.06 (5.22)	440	I0.50 9.50	0.0625-I.0 0.I-I.0	0.0018+0.0001 0.0015+0.0001 ^B)
3.	4-Нитрофенил-4-толуолсульфонат (НФТС)	7.5I+0.03 (7.I4)	410	9.2-II.0 9.50	0.0625-I.0 0.I-I.0	0.0005+0.0000I 0.00066+0.00002
4.	2, 4-Дибромфенил-4-толуолсульфонат (2, 4-ДБФТС)	8.56+0.02 (7.74)	315	10.20	0.125-1.0	0.00012+0.00001
5.	3-Хлорфенил-4-толуолсульфонат (ХФТС)	9.67 <u>+</u> 0.04 (9.02)	300	II.0	0.1-1.0 0	.000079 <u>+</u> 0.000003

Примечания. ^{а)}Константы ионизации замещенных фенолов определены спектрофотометрическим методом в 30% этаноле; в круглых скобках приведены величины pK_a в воде^{12,15}.^{б)}Величина k₂ характеризует окорость арилирования аниона 2-меркаптоэтанола 2,4-ДнФТС.^{в)}Значения k₂ определены в 5% этаноле. Способность динитроарилсульфонатов выступать в качестве арилирурщих агентов отмечалась и ранее¹⁴.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Нуклеофильная реакционная способность тиоалкоголят-ионов по отношению к НФТС слабо зависит от их основности (см. табл. 1) и описывается соотношением Бренстеда:

lgk2=(-5.7±0.47) + (0.25±0.05)рКа, S_{Общ}=0.10, F=0.936 (I4) На одну корреляционную прямую (рис.3) попадают данные для всех меркаптопроизводных, и это является веским доводом в пользу того, что такие кислотно-основные группы как -COO[©],) М, ЭМН и -OH, входящие в состав цистеина, цистеамина, N,N-диэтилцистеамина, тиогликолевой кислоты и 2-меркаптоэтанола, не оказывают заметного стабили зи рубщего влияния в переходном состоянии лимити рубщей скорость стадии тиоалкоголиза. Другими словами, эти функциональные группы каталитически индиферентны как в исследуемой реакции, так и в реакции меркаптопроизводных с 4-нитрофенилацетатом (НФА)³.

Кинетические закономерности при тисалкоголизе и аминолизе ариловых эфиров уксусной и 4-толуолсульфоновой кислот обнаруживают ряд общих черт. В условиях скорость определяювей атаки тиоалкоголят-ионами атома углерода карбонильной группы арилацетатов чувствительности к основности нуклеофила и уходящей группы соответственно равны В_N=0.27⁴ и В_X= -0.33". Эти величины практически совпадают со значениями в при переносе 4-толуолсульфонатной группы на тиол (уравнения (13) и (14)). Вряд ли такое совпадение величин в случайно, скорее всего оно отражает подобие в структуре переходных состояний этих реакций и идентичность распределения эффектив-ных зарядов (S) на атакувщей и уходящей группах в переходном состоянии. Эффективный заряд на эфирном атоме кислорода арилсульфоната в исходном состоянии был установлен как 8= +0.812. Воспользовавшись этим значением и величиной S=-1.0 иля тиоалкоголят-аниона, нами были рассчитаны эффективные заряды на реагирующих атомах в тригональном бипирамидальном состоянии (П) для реакции переноса 4-толуолсульфонатной группы (см. схему (I5а)). Здесь же для сравнения (I5б) пока-

зано как изменяются эффективные заряды в переходном состоянии (Ш), когда нуклеофильная атака атома углерода тиоалкоголят-ионом является скорость определяющей стадией⁴.

$$\begin{bmatrix} -I \cdot 0 & 0 + 0 \cdot 8 \\ RS^{\bullet} + \swarrow S = 0 - Ar \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -0.75 & 0 + 0.48 \\ RS \cdots S = 0 - Ar \\ 0 & 0 \end{bmatrix} \neq (I5a)$$

$$(\overline{I})$$

 $\begin{array}{c} -\mathbf{I} \cdot \mathbf{0} & \mathbf{0} + \mathbf{0} \cdot \mathbf{7} \\ \mathbf{RS}^{\Theta} + \mathbf{C} - \mathbf{0} - \mathbf{Ar} \end{array} \xrightarrow{\left[-\mathbf{0} \cdot \mathbf{74} \quad \mathbf{0} + \mathbf{0} \cdot \mathbf{37} \\ \mathbf{RS} \quad \dots \quad \mathbf{C} \quad -\mathbf{0} - \mathbf{Ar} \end{array} \right] \neq (\mathbf{I56})$

Установить степень подобия переходных состояний (\overline{I}) и (\overline{I}) реагентам или продуктам реакции оказывается возможным, если известно как изменяются эффективные заряды на реагирурщих атомах при переходе от исходного состояния к продуктам реакции⁴. В случае образования тиоловых эфиров уксусной кислоты суммарное изменение заряда на атоме серы составляет +1.38⁴, на сложноэфирном атоме кислорода -1.70⁴. Эффективный заряд на атоме серы в тиоловых эфирах арилсульфоновых кислот неизвестен. Однако, сравнивая электроноакцепторную способность ацильной и арилсульфонильной групп в соединениях (\overline{IY}) и (\overline{II}), а также (\overline{IY}) и (\overline{Y}), можно прийти к заключению о том, что, по-видимому, и в тиоловых эфирах арилсульфоновых кислот эффективный заряд на атоме серы должен быть близок к величине $\delta \approx +0.4$ (\overline{II}).

(II) (I) (I) (I) изменение зффективного заряда составляет \approx

≈20%.

Низкая чувствительность к основности тиолат-анионов в реакциях с различными субстратами является скорее правилом, чем исключением. Кроме НФТС и НФА низкие значения β_N характерны для реакций тиоалкоголят-ионов с ацетилимидазолий-катионом ($\beta_N \approx 0.2^{16}$), а также для присоединения к карбонильной группе ацетальдегида ($\beta_N \approx 0.1^5$) и метилкобалоксиму ($\beta_N \approx 0^{17}$). Для этих процессов типичным является раннее переходное состояние с небольшим изменением заряда на нуклеофильном атоме серы, и это согласуется с изменением величины энтропии активации при переходе от реакции НФТС с анионом 2-меркаптоэтанода к реакции с пиперидином. Разница ТаS[#] (пиперидин) – ТаS[#] (2-меркаптоэтанод) составляет -5ккал/моль (см.табл.4), т.е. переходное состояние для процесса с участием 2-меркаптоэтанода.

Таблица 4 Термодинамические активационные параметры для реакции НФТС с пиперидином и 2-меркаптоэтанолом в 5% водном этаноле; M=I.0 (КСІ)

Нуклеофил	аб (298 К)	∆Н [≠]	∆S≠	Т∆S [≠]
	ккал/моль	ккал/моль	∋.e.	ккал/моль
Пиперидин	2I.5	9.0 <u>+</u> I.I	-(42.I+0.7)	-I2.5
2-Меркаптоэтанол	2I.8	I4.3 <u>+</u> I.I	-(25.2+I.0)	-7.5

В соответствии с постулатом Хэммонда^{I8} в случае раннего переходного состояния чувствительность скорости реакции к структурным эффектам должна быть низкой. Когда же в реакциях тиоалкоголятов с ариловыми и тиоариловыми эфирами карбоновых кислот⁴, метиойодидом О-ацетилпиридин-4-альдоксима^{I9} происходит смена скорость определяющей стадии и реализуется позднее переходное состояние, чувствительность к природе тиолат-анионов возрастает ($\beta_N \approx 0.9$). К сожалению, нам не удалось исследовать реакционную способность тиоалкоголятии онов с рК_а меньшими, чем рК_а уходящей группы в НФТС, поэтому остается неясным будет ли происходить изменение симметрии

переходного состояния от реагентоподобного к продуктоподобному в исследуемой реакции, когда основность атакующего нуклеофила меньне основности уходящей группы.

В отличие от тиоалкоголиза аминолиз армлацетатов и армлсульфонатов имеет значительно более высокур чувствительность к природе атакурщего амина и уходящей группы (для аминолиза арилсульфонатов $\beta_N^{=0.79^8}$, $\beta_X^{=-1.08^{12}}$; для аминолиза арилацетатов $\beta_N^{=0.9^4}$, $\beta_X^{=-1.02^0}$). Высовые значения β при аминолизе этих двух классов "жестких" субстратов означают, что в переходных состояниях (IX) и (\bar{X}) (схема (16)) возникают почти целочисленные положительные заряды на атоме азота нуклеофила и заряды, близкие к нуло, на кислороде уходящего фенолят-иона.

0		0	+0.7		[+0.9 0	-0.30] ≠	
N	+	Ċ	-OAr	-	PNC	OAr	
·	-	1			[/	(貳)	
0		0	+0.8		+0.790	-0.281¥	
N	+	,S	-OAr	-	EN	0Ar	
		6				(1)	

(16)

Такие переходные состояния, находящиеся, по-видимому, на половине пути от реагентов к предуктам реакции, по своему зарядовому распределению и структуре напоминают промежуточные продукты присоединения, и для аминолиза был действительно получен ряд убедительных доводов в пользу того, что этот процесс стадийный и протекает с образованием тетраздрического промежуточного продукта присоединения (ТПП), а величины ря= 0.9 в основном отражают характер влияния заместителей на константы равновесного образования ТПП⁴. В то же время высокие чувствительности к природе атакующего нуклеофила и уходящей группы могут быть с успехом объяснены и в рамках согласованного механизма реакции, поскольку величины в, характеризуя изменения эффективных зарядов на реагирующих атомах, практически не несут в себе никакой информации о порядках образующейся и рвущейся связей с атакующей и уходящей группами в переходном состоянии. Аминолиз H&TC в 41% спирте протекает по двум параллельным маршрутам, один из которых

имеет второй порядок по амину⁶. В принципе такое поведение аминов может быть следствием образования пеитакоординационного промежуточного продукта присоединения. Однако, катализ второй молекулой амина не был обнаружен ни при аминолизе НФТС в 5% спирте⁸, ни при аминолизе ариловых эфиров 4-толуолсульфокислоти в 30% этаноле¹². Также не было получено кинетических доказательств существования промежуточных продуктов и в реакциях сультонов с замещенными фенолами, гидроксил-ионом, фосфат-анионами²¹. Поэтому вопрос о том, какой же все-таки механизм аминолиза арилсульфонатов реализуется согласованный или стадийный - в настоящее время остается открытым, несмотря на тот факт, что чувствительности аминолиза арилсульфонатов и арилацетатов к природе нуклеофила и уходящей группы практически совпадавт.

Тиоалкоголят-анионы реагируют с НФТС быстрее, чем амины, а нуклеофильность низкоосновных анионов тиолов с $pK_a \approx 8.0$ почти в 100 раз превышает реакционную способность аминов с сопоставимыми значениями pK_a . С ростом основности тиоалкоголят-ионов и аминов различия в их реакционной способности сглаживаются, а корреляционные прямые А и В (рис.3) пересекаются при $pK_a \approx II.4$, отвечая основности гипотетического тиоалкоголят-иона. Следовательно, при любых значениях pK_a , которые могут быть достигнуты, тиоалкоголят-анионы – более эффективные нуклеофилы, чем амины. Аналогичное поведение RS⁶-ионов и аминов прослеживается и в реакции с НФА (см. рис.3), а пересечение корреляционных прямых С и Д происходит при $pK_a \approx II.0$. Ясно, что такое поведение тиоалкоголят-ионов в реакциях с НФТС и НФА обусловлено более низкими для них величинами β_N .

Ти оалкоголят-ионы, как и большинство"мягких", легко поляризуемых нуклеофилов, характеризуются наличием доступных d-орбиталей, которые могут акцептировать неподеленную электронную пару субстрата, выступая в качестве обобщенной кислоты Льюиса и, тем самым, стабилизировать переходное состояние реакции. Именно этот фактор может оказаться главной движущей силой, обеспечивающей высокие скорости их реакции с НФТС за счет подачи электронов с атомов кислорода сульфонильной

группы на свободные о орбитали нуклеофильного центра тиола (XI); аналогичное переходное состояние, по-видимому, реализуется и для реакции Rs⁹-анионов с метилкобалоксимом¹⁷.

Такая интерпретация кинетических данных едва ли является исчерпывающей, поскольку химическое поведение °CH₂SH и °CH₂OHкарбанионов не может быть связано только с наличием (p-d), взаимодействий в их молекулах, а существующие различия в свойствах этих карбанионов легко объяснимы с точки зрения более высокой поляризуемости атома серы по сравнению с кислородом и большей длины связи -Ç-SH²², Тем не менее, ЭПР-спектры свидетельствуют о значительной делокализации неспаренного электрона на атоме хлора в б-хлорэтильном радикале²³; последнее позволяет предположить, что легко поляризуемые атомы, в том числе и сера, могут принимать участие в стабилизации переходных состояний типа (X) за счет делокализации электронов на свободных ф-орбиталях.

Нуклеофильная атака на тетракоординационный атом серы арилсульфонатов может приводить кообразованию изомерных переходных состояний (ХП-ХПУ), имеющих структуру бипирамиды, с различными положениями атакующей и уходящей групп.

Наиболее благоприятным направлением атаки является такое, когда атакурщая и уходящая группы находятся в апикальных положениях, а атомы кислорода сульфонильной группы и углерод фенильного ядра в экваториальных, образуя ос-ование бипирамиды (Т). Такое переходное состояние энергетически наиболее стабильно и в то же время наименее чувствительно к стерическим эффектам заместителей в уходящей группе по сравнению с переходными состояниями (XI) и (XIV), в которых атакующая и уходящая группа находятся, соответственно, в апикальном и экваториальном положениях. Действительно, введение орто-заместителей в фенильное ядро уходящей группы не приводит к заметным отрицательным отклонениям на корреляционных зависимостях типа (I3) как для тиоалкоголиза, так и для аммонолиза арилсульфонатов¹², хотя в случае аммонолиза переходное состояние является поздним и, следовательно, должно быть весьма чувствительным к стерическим эффектам заместителей. По-видимому, теоретические положения, объясняющие расположение полярных заместителей в вершинах билирамидального переходного состояния реакций замещения у четырехкоординационного атома фосфора с полным основанием применимы и к пентакоординационному атому серы. Действительно, изучение органических пентакоординационных соединений серы - сульфуранов - показало, что они имеют бипирамидальную структуру и отречают тем же правилам размещения лигандов²⁵, которые были сформулированы для пентакоординационных соединений фосфора.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Тиогликолевая кислота, метиловый эфир тиогликолевой кислоты, N.N-диэтилцистеамин, 2-меркаптоэтанол были многократно перегнаны в токе аргона. Цистеин, цистеамин, N-ацетилцистеин (товарные препараты марки"хч") использовали без дополнительной очистки. S-Метиловые эфиры цистеамина и N.N-диэтилцистеамина были синтезированы по следующей общей методике: тиол (0.1М) растворяли в 150мл метанола, содержащем 0.12М метилата натрия, и при охлаждении (t ~5°C) прикапывали 0.12М иодистого метила, раствор выдерживали ≈12 часов в холодильнике. К смеси добавляли метанол, насыщенный хлористым водородом, и растворитель упаривали досуха. Хлоргидраты S-метиловых эфиров цистеамина и N.N-диэтилцистеамина экстрагировали горячим изопропанолом, которые при охлаждении выпадали в виде бесцветных кристаллов. Хлоргидрат S-метилового эфира N, N-диэтилцистеамина был три раза перекристаллизован из изопропанола; т.пл. IOI-IO3°С, содержание галогенид-иона в анализируемой навеске соответствует теоретическому. Хлоргидрат З-метилового эфира цистеамина

переводили в основание раствором метилата натрия в метаноле, хлористый натрий отфильтровывали, растворитель упаривали досуха, а Ś-метиловый эфир цистеамина перегоняли в атмосфере аргона, т.кип. I47°C (ср. с т.кип. I46.8°C²⁶). S-Метиловый эфир цистеина получен и очищен, как указано в²⁷. Во всех случаях степень чистоты тиолов контролировали иодометрическим титрованием²⁸; содержание сульфгидрильных групп в анализируемой навеске составляет не менее 97%.

Ариловые эфиры 4-толуолсульфокислоты получены из соответствующих фенолов (0.IM) и 4-толуолсульфохлорида (0.IM) в присутствии триэтиламина (0.IM) в абсолютном диоксане. По завершению реакции диоксан упаривали до минимального объема, и раствор выливали на лед. Выпавшие кристаллы отфильтровывали, промывали 0.IM раствором НСІ и высушивали на воздухе. Ариловые эфиры 4-толуолсульфокислоты перекристаллизовывали до постоянной температуры плавления (см.табл.5).

Таблица 5

Температуры плавления и растворители для перекристаллизации ариловых эфиров 4-толуолсульфокислоты

₩₩ п/п	Эфи р	Т.пл. ^о С	Растворитель для перекристаллизации
I.	2,4-ДНФТС	I23 (I22-I23 ^{I2})	Абсолютный этанол
2.	2,5-ДНФТС	II6 (II5-II7 ^{I2})	
3.	НФТС	98 (97-97.5 ^{I2})	
4.	2,4-ДБФТС	I20 (I20 ²⁹)	Толуол-гексан
5.	ХФТС	42-43	

Неорганические реактивы квалификации "осч" или "хч" применялись без дополнительной очистки; была использорана тяжелая вода (D_20) и растворы хлористого дейтерия в D_20 с основным содержанием изотопзамещенного вещества 99.8%; дейтерооксид натрия приготоблен, как рекомендуется в 30.

Константы ионизации меркаптопроизводных были определепри 25°С, ионной силе _M=I.O, поддерживаемой КСІ в 5° этаноле, потенциометрическим, а замещенных фенолов (30% этанол; _M=I.O (КСІ)) - спектрофотометрическим методами¹⁵. Расчет величин рК, проводили по уравнению Хендерсона-Хассельбаха.

Контроль за ходом реакции ариловых эфиров 4-толуолсульфокислоты с нуклеофилами осуществляли Уф-спектрофотометрически по накоплению соответствующего арилат-иона при длинах волн, приведенных в табл.3. при температуре 25+0.5°C. Во всех кинетических опытах начальная концентрация субстрата (I·I0⁻⁵-5·I0⁻⁵.М) была много меньше начальной концентрации нуклеофила (0.06-I.0, М). Наблюдаемые константы скорости псевдопервого порядка рассчитывали, как и в работе⁸. Растворы нуклеофильных реагентов готовили непосредственно перед каждой серией кинетических измерений, а их начальные концентрации были таковыми, что они одновременно выполняли и функции буфера; требуемые значения рН устанавливали концентрированными растворами NaOH и HCI. Ионнур силу раствора фиксировали введением IM КСІ. Кислотность реакционной среды контролировали до и после каждого кинетического опыта; если по завершению реакции изменение рН превышало 0.05 единиц рН, то подобные результаты во внимание не принимались.

Анализ продуктов реакции проводили УФ-спектрофотометрически. Во всех случаях (за исключением 2, 4-динитрофенил-4толуолсульфоната) Уф-спектры продуктов реакции совпадали со спектрами модельных растворов, составленных из предполагаемых продуктов реакции, образующихся при разрыве S-0 связи ариловых эфиров 4-толуолсульфокислоть. При взаимодействии 2-меркаптоэтанола с 2,4-ДНФТС в реакционной смеси накапливаются 4-толуолсульфокислота и 2-оксиэтил-2, 4-динитрофенилсульфид; последний интенсивно поглощает в той же области, что и 2.4-динитрофенолят-ион, т.е. 2 = 370 нм. Отсутствив изменений в поглощении при данной длине волны реакционной и модельной смеси, состоящей из 4-толуолсульфокислоты и 2-оксизтил-2,4-динитрофенилсульфида, при подкислении растворов вплоть до pH ≈ I.О однозначно указывает на разрыв -5-04Аг связи, а не -540-Аг. Таким образом, в реакции 2,4динитрофенил-4-толуолсульфоната с 2-меркаптоэтанолом реализуется нуклеофильная атака на углерод ароматического ядра 2,4-динитробензола, а не на тетракоординационный атом серы.

Активационные параметры для реакции пиперидина и 2-меркаптоэтанола с НФТС были определены из температурной зависимости (25, 40 и 50°С) констант скоростей аминолиза и тиоалкоголиза и представлены в таблице 4.

Литература

- P. De Maria, A. Fini, J. Chem. Soc., Perkin Trans., Part II, 1773 (1973).
- L. Drobnica, D. Podhradsky and P. Gemeiner, Collect. Czech. Chem. Commun., 40, 3688 (1975).
- J.W. Ogilvie, J.T. Tyson, B.S. Strauch, Biochemistry, <u>3</u>, 754 (1964).
- 4. D.J. Hupe, W.P. Jencks, J. Am. Chem. Soc., 99, 451(1977).
- 5. J.E. Lienhard, W.P. Jencks, J. Am. Chem. Soc., <u>88</u>, 3982 (1966).
- P. Monjoint, G. Guillot, M. Laloi-Diard, Phosphorus and Sulfur, 2, 192 (1976).
- 7. J.L. Kice, E. Legan, J. Am. Chem. Soc., 95, 3912 (1973).
- В. Симаненко, Т.М. Прокопьева, В.А. Савелова, А.Ф. Попов, Г.С. Сакулин, И.А. Белоусова. Реакц. способн. орган. соедин., 23, 208 (1986).
- 9. J.L. Kice, Adv. Phys. Org. Chem., 17, 65 (1980).
- W.P. Jencks, M. Gichrist, J. Am. Chem. Soc., <u>90</u>, 2622 (1966).
- 11. W.P. Jencks, J. Carriuolo, J. Am. Chem. Soc., <u>82</u>, 1788 (1960).
- N.A. Suttle, A. Williams, J. Chem. Soc., Perkin Trans., Part II, 1563 (1983).
- Д. Гордон. Органическая химия растворов электролитов. Мир. 1979.
- 14. Р.В. Визгерт, И.М. Оздровская, С.Г. Шейко, Е.С. Митченко. Реакции нуклеофильного замещения в ряду активированных сульфоксилот. -- В кн.: Структура и реакционная способность органических соединений. Киев: Наукова думка, 1981, с. 104--140.
- 15. А. Альберт, Е. Сержент. Константы ионизации кислот и

Содержание

И.А.	Коппель. Ab initio SCF LCAO мо расчеты мо- лекул. УІ. Влияние сольватационных взаимодействий
У.Х.	на строение и основноеть анионов Оп-кислот 201 Мёльдер, И.А. Коппель, Р.Й. Пик- вер, D.D. Тапфер. Фотоэлектронные спект-
	ры молекул. 9. Гидроксиламины ЗІІ
Х. К	уура, М.М. Карельсон. Исследование влияния добавок аминокислот на электропроводность водных растворов электролитов
И.И.	Ятчишин, Я.Н. Пириг, Р.Г. Макит- ра. Влияние растворителей на скорость окисления « -алкилакролеинов
A.H.	Гайдукевич, Е.Н. Свечникова, Е.Е. Микитенко. Реакционная способность производных фенилантраниловой кислоты. Ш. Кине- тика реакции целочного гидролиза производных ме- тилового эфира 4-хлор-5-нитро- N -фенилантранило- вой кислоты в бинарном растворителе диоксан-вода. 345
D.C.	Симаненко, Т.М. Прокопьева, И.А. Белоусова, В.А. Савелова, А.Ф. Попов, Г.С. Сакулин. Нклеофиль- ное замещение у тетракоординационного атома серы. П. Реакционная способность тиалкоголят-ионов 358

РЕАКЦИОННАЯ СПОСОБНОСТЬ ОРГАНИЧЕСКИХ СОЕДИНЕНИЯ. На русском языке. Тартуский государственный университет. ЭССР, 202400, г.Тарту, ул. Бинкооли, 18. Ответственный редактор В. Пальм. Подписано к печати 12.04.1968. МВ 02639. Формат 60х64/16. Бумага писчая. Машинопись. Ротаприят. Условно-печатных листов 7,21. Учетно-издательских листов 6,79. Печатных листов 7,75. Тираж 400. Заказ № 314. Цена 1 руб. 40 коп. Типография ТГУ, ЗССР, 202400, г.Тарту, ул.Тийги, 78. 1 руб. 40 коп.