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Morpheme-Aware Subword Segmentation for Neural Machine Trans-
lation
Abstract:
Neural machine translation together with subword segmentation has recently produced
state-of-the-art translation performance. The commonly used segmentation algorithm
based on byte-pair encoding (BPE) does not consider the morphological structure of
words. This occasionally causes misleading segmentation and incorrect translation of
rare words. In this thesis we explore the use of morphological structure in subword
segmentation and develop a novel segmentation algorithm that succeeds in preventing
misleading BPE segmentations that occur due to its disregard for morphology. Anal-
ysis shows that the proposed algorithm decreases translation performance as measured
by BLEU by 0.9 points while producing subjectively more intuitive segmentations and
mildly better translations for sentences previously involving inaccurate baseline seg-
mentation.
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ical structure
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Morfeemiteadlik sõnaosade segmenteerimine neuromasintõlke jaoks
Lühikokkuvõte:
Hiljuti kasutusele võetud neuromasintõlge koos sõnaosade segmenteerimisega on saavu-
tanud masintõlke süsteemidest parima tõlkekvaliteedi. Tihti kasutatav bait-paar kodee-
ringul (BPK) põhinev segmenteerimisalgoritm ei arvesta sõnade morfoloogilist struktu-
uri, mis haruldaste sõnade puhul põhjustab aeg-ajalt eksitavat segmenteerimist ja ebako-
rrektset tõlget. Käesolevas töös esitatakse uus algoritm sõnaosade segmenteerimiseks,
mis eemaldab BPK morfoloogilise struktuuri eiramise tõttu tekkinud segmenteerim-
isvead. Analüüs näitab, et esitatud algoritm vähendab BLEU poolt mõõdetud tõlkek-
valiteeti 0.9 punkti võrra, kuid parandab eelnevalt ebatäpseid segmenteerimisi sisal-
danud lausete segmenteerimist ja tõlget.
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ing, morfeem, morfoloogiline struktuur
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1 Introduction
Machine translation is the task of producing output in one natural language while given
input with equivalent meaning in another natural language. Until recently statistical
methods such as (Koehn et al., 2003) have mainly been used in machine translation.
However, recently specialized artificial neural network frameworks have been devel-
oped for machine translation that surpass the performance of state-of-the-art statistical
machine translation systems (Kalchbrenner and Blunsom, 2013; Sutskever et al., 2014;
Bahdanau et al., 2014).

One of the main limitations of neural machine translation (NMT) is vocabulary
size—the number of distinct tokens the neural model recognizes. Typical neural trans-
lation models are restricted to 30 000–80 000 tokens (Bahdanau et al., 2014; Sutskever
et al., 2014).

Proposed methods to address this problem include a back-off dictionary look-up (Lu-
ong et al., 2014; Jean et al., 2014) and segmentation of infrequent words into subword
units (Sennrich et al., 2015). Subword segmentation has shown significantly improved
performance compared to baseline models and models with a back-off dictionary.

However, current state-of-the-art segmentation algorithms do not consider the mor-
phological structure of words, occasionally violate morpheme boundaries and produce
misleading segmentations. The goal of this thesis is to develop an algorithm for subword
segmentation that considers the morphological structure of words and to determine its
applicability to NMT from Estonian compared to existing methods.

In Chapter 2 of this thesis we give an introduction into neural machine translation.
We discuss subword segmentation in Chapter 3 and the current state-of-the-art segmen-
tation algorithm for NMT in Chapter 3.2. We present a morpheme-aware segmentation
algorithm as the main contribution of this thesis in Chapter 4. In Chapter 5 we ana-
lyze the performance of the proposed morpheme-aware segmentation algorithm and its
effects on NMT.
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2 Neural Machine Translation (NMT)
Machine translation (MT) is the task of converting text from one natural language into
another natural language with the equivalent meaning.

Until recently statistical methods have been used for MT. Parameters for the un-
derlying statistical models are derived from bilingual parallel corpora. Typically in
statistical machine translation (SMT) separate statistical models are created for mod-
elling language fluency and translation adequacy: the language model and the transla-
tion model (Koehn, 2009).

Neural machine translation (NMT) is a recently proposed approach to MT that em-
ploys an artificial neural network for end-to-end translation. NMT uses one single model
for translation unlike SMT where several components are constructed, trained separately
and combined to produce the translation.

2.1 Encoder-Decoder Framework
NMT neural models commonly belong to the encoder-decoder family of neural network
models which is a subset of recurrent neural networks. For an introduction into neural
networks and recurrent neural networks see for example Chapter 6 of Deep Learning by
Ian Goodfellow, Yoshua Bengio and Aaron Courville (Goodfellow et al., 2016).

Fixed-length vocabularies are used both for the input and output languages that are
automatically extracted from the training corpus based on frequency. If vocabulary size
is n then the vocabulary usually consists of n most frequent tokens in the training corpus.

Figure 1 presents a high-level overview of a typical neural network used for transla-
tion. The encoder and decoder parts of the network are represented on the bottom and
top parts of the figure respectively. An example translation from English into French
is shown. The input sentence e and output sentence f are represented as sequences of
tokens. Any space-delimited sequence of characters is considered a token.

The tokens are encoded using one-hot (1-of-K) encoding that represents each token
as a vector of size n × 1. These vectors consist of 0’s except for one position in the
vector that corresponds to the position of the word to be encoded in the vocabulary.
This single position is filled with a 1.

One-hot vectors representing the words of the input sentence are transformed in-
to continuous-space representations using an embedding layer in the network whose
weights are learned during training.

Next the vectors are used to recurrently calculate the hidden state of the network.
This state is represented as a fixed-length vector that is called a context vector.

The decoder uses this context vector to first generate a probability distribution over
the output vocabulary and then choose the highest-scoring token for output. Each subse-
quent token is produced using the context vector and the previously generated token as
input for the recurrent state. This process is repeated until a special end-of-word token
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Figure 1. High-level view of a typical encoder-decoder framework for NMT (Cho,
2015a).
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Figure 2. Translation performance of unseen sentences with respect to their length (Cho
et al., 2014).

is produced by the network or a predefined maximum number of generated tokens in
reached.

This approach presents a problem in the context of translation. Namely natural
language sentences represented as sequences of tokens vary greatly in length. In practice
sentences can vary from a few tokens in length to tens of tokens. While the input length
is varied the internal representation of the sentence as a context vector always has a
fixed length. This may introduce problems, especially for longer sentences (Bahdanau
et al., 2014; Cho et al., 2014).

Figure 2 shows a correlation in translation performance as measured by BLEU (see
Chapter 5.3) and sentence length. The continuous and dotted lines represent input and
output sentence lengths respectively. The graph displays peak translation quality at
a sentence length of approximately 15 tokens. A sudden drop in the BLEU score is
observed for sentences longer than 20 tokens.

2.2 Attention Mechanism
To mitigate the problems that accompany encoding sentences into static fixed-length
context vectors, a new approach was proposed that uses a bidirectional recurrent neural
network (Schuster and Paliwal, 1997) to encode the sentence into a sequence of vectors
called annotation vectors. The decoder uses a separate feed-forward neural network to
find an alignment probability distribution over input tokens that shows how well each
input token is aligned to the current output token to be generated (Bahdanau et al.,
2014). This is called the attention mechanism since it represents the network’s ability
to concentrate its attention on some parts of the input sentence. The resulting context
vector is calculated as a sum of annotation vectors weighted by alignment scores.
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Figure 3. Encoder-decoder framework for NMT with a bidirectional RNN encoder and
attention mechanism (Cho, 2015b).

The attention mechanism allows the network to consider some input tokens more
than others when generating different parts of the output sentence. For example when
generating the first token of the output the network’s attention mechanism can learn to
consider tokens at the beginning of the source sentence more than tokens near the end.
It can also learn to identify sentence structures where the alignment between tokens in
the input and output sentences is not obvious.

Figure 3 demonstrates the use of a bidirectional recurrent neural network in the
encoder and the attention mechanism assigning weights to annotation vectors while
generating the second output token.

The bidirectional recurrent neural network (BiRNN) consists of two recurrent neu-
ral networks (RNN) that encode the sequence of tokens starting from opposite ends.
The forward RNN reads input tokens as they are ordered and calculates a sequence of
forward hidden states that correspond to each input word. The backward RNN reads
tokens in the reverse order and produces a sequence of backward hidden states.

These states are concatenated to form an annotation vector for each input token.
The attention mechanism is trained jointly with other parts of the framework to learn to
predict alignment between parts of the input and output sentences. When generating an
output token the attention mechanism calculates an attention weight for each input token
taking as input the corresponding token’s annotation vector and the decoder’s state.
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Figure 4. Translation performance of models with (RNNsearch) and without (RNNenc)
the attention mechanism. Performance is measured on unseen sentences with respect to
their length (Bahdanau et al., 2014).

After normalizing, the attention distribution over all input tokens is used to calculate the
context vector as a weighted average of annotation vectors.

Since RNNs tend to represent recently processed inputs better the calculated context
vector will also better represent tokens with a high predicted attention weight (Bahdanau
et al., 2014).

This approach manages to address the problem of translating sentences with a large
number of tokens. Figure 4 presents the translation performance with respect to sentence
length of four models: a model without the attention mechanism (RNNenc) and a model
with the attention mechanism (RNNsearch). Both models are trained twice: once with
sentences up to length 50 and once with sentences up to length 30. It is clear that the
model trained on long sentences with attention outperforms other models, especially on
longer sentences.

The attention-equipped neural model’s performance does not significantly degrade
with longer sentences. In addition to translating long sentences this allows increasing
the number of input tokens using subword segmentation techniques to mitigate a com-
mon problem in NMT—the limit on the size of the vocabulary.

2.3 Vocabulary Size Restriction
Recent NMT models typically outperform SMT systems but NMT has a major dis-
advantage compared to SMT: the complexity of training and using an NMT model is
proportional to vocabulary size (Jean et al., 2014). Size of the vocabulary of an NMT
model is typically restricted to 30 000–80 000 tokens (Bahdanau et al., 2014; Sutskever
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et al., 2014). Words that do not fit into the vocabulary are mapped to a special token
UNK that represents an unknown word.

As the number of unknown words increases the translation performance of the model
drops (Cho et al., 2014). This issue is even more prohibitive for languages with rich
morphology and inflection (Jean et al., 2014) such as Estonian, Finnish and German.

Proposed solutions to this problem include a dictionary back-off (Luong et al., 2014;
Jean et al., 2014), character-level translation (Costa-Jussà and Fonollosa, 2016; Chung
et al., 2016; Lee et al., 2016) and segmentation into subword units (Sennrich et al.,
2015).

NMT models have proven to produce state-of-the-art translation performance using
subword segmentation as a text preprocessing technique (Sennrich et al., 2015). This
method is discussed in the next chapter.
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3 Subword Segmentation
Subword segmentation is a method of text preprocessing that segments words into sub-
word units. Approaches can be commonly divided into unsupervised segmentation and
linguistically-driven segmentation. The latter leverages morphological analysis to seg-
ment words according to predefined rules whereas the former aims to optimize an ob-
jective such as the probability of the segmented corpus (Fišel, 2011).

The goal of text segmentation in SMT is to reduce the number of unseen words i.e
words that do not occur in the training data. This is often accomplished by separating
compound nouns, stems, affixes and suffixes (Koehn and Knight, 2003; Popović and
Ney, 2004; Popović et al., 2006).

In the context of MT it is beneficial to apply segmentation only to rare words that are
not included in the vocabulary or are infrequent. Segmentation of frequent words should
be discouraged since segmenting into smaller tokens typically increases ambiguity of
the tokens and the distances between meaningful parts of the sentence.

3.1 Subword Segmentation in NMT
Unlike SMT, NMT is restricted to a small vocabulary size thus making it very important
to limit the number of unique tokens in the text. A smaller number of tokens increases
each token’s ambiguity but recent NMT models employing the attention mechanism
counteract this with high context-sensitivity similarly to earlier neural language models
such as (Bengio et al., 2003).

One of the simplest methods of subword segmentation is using character n-gram
models. This technique segments words into character sequences of at most length n
with no word boundary crossing. This method decreases the number of unique tokens
in the text but it segments all words regardless of their frequency and its segmentation
has no meaningful reasoning (Sennrich et al., 2015).

Morfessor (Creutz and Lagus, 2005) is open-source software for unsupervised mor-
phological analysis. It has widely been used in SMT, for example by (Virpioja et al.,
2010), (de Gispert et al., 2009), (Kathol and Zheng, 2008) and (Virpioja et al., 2007).
Morfessor attempts to segment words according to their morphological structure but
similarly to n-gram models has no preference for infrequent words.

Current state-of-the-art NMT performance is achieved by a segmentation algorithm
based on the byte-pair encoding scheme.
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3.2 Byte-Pair Encoding (BPE) Segmentation
A segmentation algorithm was proposed by (Sennrich et al., 2015) for NMT that is in-
spired by the byte-pair encoding (BPE) technique. BPE is a data compression algorithm
that iteratively replaces the most common pair of consecutive bytes with a single byte
that does not appear in the data. The original data can be reconstructed using a table of
the replacements (Gage, 1994).

This data compression algorithm can be adapted to subword segmentation. Every
word is first viewed as a sequence of subword units of length 1 (characters). The most
frequent pair of consecutive characters are then merged into a subword unit of length 2
consisting of those merged characters. The process is repeated for a predefined number
of merges1 (Sennrich et al., 2015).

If the number of merges is not limited then all subword units will be merged back
together and the output will be equivalent to unsegmented text. After segmentation
the number of unique tokens in the text is equal to the number of merge operations
performed plus the number of unique characters in the text.

For example the 4-word corpus {’low’, ’lowest’, ’newer’, ’wider’} with 2 allowed
merges would be segmented into {’lo w’, ’lo we s t’, ’n e we r’, ’w i d e r’} because the
most frequent two pairs were (’w’, ’e’) and (’l’, ’o’).

The number of unique tokens can be controlled by the number of merge operations
permitted. The number of merges can be set according to the NMT model’s vocabulary
size so that there will be no out-of-vocabulary words2 while still utilizing the whole
vocabulary.

BPE segmentation works well with NMT because it satisfies the requirement of only
splitting rare words and leaving frequent words unsegmented.

However, the segmentation produced by BPE occasionally does not align with mor-
phological structure and sometimes appears to be misleading.

1A Python implementation is available at https://github.com/rsennrich/subword-nmt.
2Unseen characters and subword units of which all occurrences have been merged into larger units are

still out of vocabulary.
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4 Morpheme-Aware Subword Segmentation
This chapter represents the main contribution of this thesis.

Due to the inaccuracies of BPE segmentation presented in Chapter 3.2 our goal was
to modify the BPE segmentation algorithm to use morphological structure in segmenta-
tion decisions. The main idea was to restrict BPE from segmenting incomplete parts of
different morphemes into one subword unit.

For example the word ’piimaalase’ (meaning ’relating to milk’) is segmented into
’pii’, ’maal’ and ’ase’ by BPE since it is rare in our data while according to Morfessor
the word consists of morphemes ’piima’ and ’alase’. This BPE segmentation disagrees
with morphological structure because the subword unit ’maal’ consists of two incom-
plete parts of different morphemes: ’ma’ from the first morpheme and ’al’ from the sec-
ond one. The segmentation of ’õppimisraskustele’ into units ’õppimis’ and ’raskustele’
with identified morphemes as ’õppimis’, ’raskus’ and ’tele’ agrees with morphological
structure since no incomplete parts of different morphemes are merged into one subword
unit.

Three additions to the original BPE segmentation algorithm were developed as part
of this thesis. The most promising algorithm is an addition to BPE called temporary
morpheme boundary restriction. The algorithm is described in Chapter 4.3, its perfor-
mance in terms of segmentation is analyzed in Chapter 5.2 and its effects on translation
are discussed in Chapter 5.3.

All algorithms require segmentation into morphemes as the first step, Morfessor
is used for the provided examples and analysis. Python implementations of these al-
gorithms are built on top of the original BPE Python implementation (Sennrich et al.,
2015) and are freely available3.

4.1 Morphemes as BPE Starting Tokens
BPE segmentation begins by considering each character a subword unit and starts merg-
ing the most frequent consecutive units. Our proposed addition uses morphemes as
BPE starting subword units instead of characters. This prevents BPE from violating
morpheme boundaries since subword units always consist of whole morphemes.

If no merges are permitted then the produced text is equivalent to segmentation
into morphemes. If the number of merges is not limited then the produced output is
equivalent to the original unsegmented text. This means that the full vocabulary size n
will minimally be the number of unique morphemes and maximally the vocabulary size
of the original text: # unique morphemes ≤ n ≤ # unique words.

3See https://github.com/kspar/subword-nmt.
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4.2 Morpheme Boundary Restriction
Instead of considering morphemes as starting tokens (characters in normal BPE) they
can also be considered ending tokens (words in normal BPE). In this algorithm words
are first split into characters identically to normal BPE. Next the most frequent units
are merged predefined number of times but no morpheme boundaries are allowed to be
crossed while merging.

With no merges the output is identical to normal BPE with no merges. With an
unlimited amount of merges the produced output is equivalent to the output of the algo-
rithm described in Chapter 4.1 with no merges: segmentation into morphemes. Thus the
full vocabulary size n will remain between the number of unique characters and number
of unique morphemes: # unique characters ≤ n ≤ # unique morphemes.

4.3 Temporary Morpheme Boundary Restriction (TMBR)
The first method (Morphemes as BPE Starting Tokens) never allows segmentation to go
below morpheme level. The second method (Morpheme Boundary Restriction) never
allows segmentation to go above morpheme level. This means that resulting subword
units are always subsequences of exactly one morpheme.

Both of these additions have problems when used with NMT. Firstly neither of these
restrictions take full advantage of word and morpheme frequencies. If a word is rare then
the first algorithm will be unable to segment it into smaller units than morphemes even
when this is advantageous. The second algorithm is suboptimal for common words—it
is unable to merge morphemes inside a word even if the word is very common.

Secondly neither of these algorithms allows as flexible control over the full vo-
cabulary size as normal BPE does. BPE-segmented text has a full vocabulary size of
# unique characters + # merge operations while the number of merge operations
can be freely set. The proposed restrictions confine the vocabulary size of the result-
ing text to more than the number of distinct morphemes (first method) or less than the
number of distinct morphemes (second method).

Both of these problems are addressed in our proposed third method that starts out
with characters as does normal BPE but dynamically decides for each word whether
to allow merging separate morphemes. The algorithm keeps track of the words’ mor-
phological structure as identified by Morfessor and allows BPE to consider merging
separate morphemes only if all morphemes in the word already consist of exactly one
token. This means that only merging whole morphemes is allowed while merging of
proper subsequences of different morphemes is forbidden.

This restriction disallows violating morphological structure while keeping merges
dynamic enough to allow merging frequent tokens back into whole words and segment-
ing rare words into very small subword units. The resulting full vocabulary size is also
not fixed and varies only with the number of allowed merges just as with normal BPE.

14



5 Evaluation
We aim to answer the following research questions:

• Does using the BPE segmentation algorithm with TMBR improve the segmenta-
tion of words whose segmentation by normal BPE disagrees with morphological
structure and how does BPE with TMBR affect the overall segmentation quality?

• Does the translation of words whose segmentation by normal BPE disagrees with
morphological structure improve compared to normal BPE and how does using
BPE with TMBR affect the overall translation performance?

Chapter 5.1 presents a description of the experiment setup, chapters 5.2 and 5.3
contain the analysis of segmentation and translation respectively.

5.1 Experiment Setup
We performed experiments on the Estonian-English data from parallel corpora of Eu-
roparl (Koehn et al., 2002), EU Journal (Hajlaoui et al., 2014) and OPUS Open Subti-
tles (Tiedemann, 2012). The data consists of 14 million sentence pairs or approximately
125 million Estonian tokens and 160 million English tokens. Scripts from the open-
source toolkit Moses (Koehn et al., 2007) are used for tokenization and truecasing. The
data is split into testing (3000 sentences), development (3000 sentences) and training
sets.

We analyze the segmentation and translation of two classes of sentences. Both
classes are subsets of the testing set. The first class contains sentences that contain
words whose segmentation by BPE violated morphological structure. The second class
contains all sentences. We analyze randomly sampled sentences from both classes.

We train three separate models:

• a baseline model using normal BPE for segmentation (BPE)

• a model using Morfessor for segmentation (Morfessor)

• a model using BPE with TMBR for segmentation (BPE+TMBR)

All segmentation methods are applied both to the input and output texts. Training
and development sets for BPE and BPE+TMBR models are segmented with 50 000
allowed merges. All models have a maximum vocabulary size of 51 000 tokens. Each
model is trained for approximately 5 days an a machine equipped with an NVIDIA
Tesla K80 GPU and 4 x 2.7 GHz CPUs. Translation experiments are performed with
Neural Monkey (Helcl and Libovickỳ, 2017).
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5.2 Segmentation Analysis
An analysis of BPE segmentation showed that out of 3000 sentences (41 001 words) in
the Estonian test set the segmentation disagreed with morphological structure for 1906
words (4.6%) in 1096 sentences (36.5%).

We manually analyzed and subjectively rated the segmentation of 30 randomly se-
lected BPE-violated sentences by BPE and BPE+TMBR based on adequacy and agree-
ment with our intuition. Table 1 shows three sample sentences and their segmentations
by BPE, Morfessor and BPE with TMBR. Segmentation is represented by the symbol
’· · · ’. Words with differing segmentations are shown in bold. BPE+TMBR was rated
best in all three samples.

Morfessor täpsus — hinnangute lähedus tundmatute· · · le õigete· · · le
väärtuste· · · le ;

BPE täpsus — hinnangute lähe· · · dus tund· · ·matutele õige· · · tele
väärtustele ;

BPE+TMBR täpsus — hinnangute lähe· · · dus tundmatu· · · te· · · le õigete· · · le
väärtuste· · · le ;

Morfessor kujutle· · · ge , mille· · · le seda oleks võimalik kulu· · · tada seoses
arenevate riikide haiglate , arstide ja õpetajate· · · ga .

BPE kujutle· · · ge , millele seda oleks võimalik kulutada seoses
arene· · · vate riikide haig· · · late , arstide ja õpeta· · · jatega .

BPE+TMBR kujutle· · · ge , millele seda oleks võimalik kulutada seoses
areneva· · · te riikide haigla· · · te , arstide ja õpetajate· · · ga .

Morfessor tule nüüd . ära raiska oma aega selle jama seletamise· · · le .
BPE tule nüüd . ära raiska oma aega selle jama sele· · · tamisele .
BPE+TMBR tule nüüd . ära raiska oma aega selle jama seleta· · ·mise· · · le .

Table 1. Segmentation of 3 randomly selected Estonian sentences where BPE segmenta-
tion violates morpheme boundaries. Segmentation boundaries are represented by ’· · · ’.
Differing segmentations are shown in bold.

Out of 30 manually rated sentences normal BPE segmentation was rated best in 2
cases (6.7%), BPE with TMBR was rated best in 21 cases (70%) and no significant
difference was observed in 7 cases (23.3%).

An identical analysis of BPE segmentation on the English test set revealed that out of
3000 sentences (54 146 words) the segmentation disagreed with morphological structure
for 381 words (0.7%) in 308 sentences (10.3%).

Out of 30 manually rated sentences normal BPE segmentation was rated best in 3
cases (10%), BPE with TMBR was rated best in 16 cases (53.3%) and no significant
difference was observed in 11 cases (36.7%). Table 2 shows 3 sample sentences and
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their segmentations by BPE, Morfessor and BPE with TMBR. Words with differing
segmentations are shown in bold. In the first sample BPE+TMBR was rated best, no
significant change was observed in the second sample and BPE segmentation was rated
best in the third sample.

Morfessor ac· · · curacy shall refer to the close· · · ness of estimate· · · s to the un-
known true values ,

BPE accuracy shall refer to the clo· · · seness of estimates to the unknown
true values ,

BPE+TMBR accuracy shall refer to the close· · · ness of estimates to the unknown
true values ,

Morfessor Mr Mon· · · net and Mr Schu· · ·man were very far· · · -· · · sighted
people .

BPE Mr Monnet and Mr Sch· · · uman were very far-· · · sighted people .
BPE+TMBR Mr Monnet and Mr Schu· · ·man were very far· · · -· · · sighted people

.
Morfessor the climate is pre· · · valent· · · ly dry , with moderate wind and high

temperature· · · s .
BPE the climate is preval· · · ently dry , with moderate wind and high

temperatures .
BPE+TMBR the climate is pre· · · val· · · ent· · · ly dry , with moderate wind and

high temperatures .

Table 2. Segmentation of 3 randomly selected English sentences where BPE segmenta-
tion violates morpheme boundaries. Segmentation boundaries are represented by ’· · · ’.
Differing segmentations are shown in bold.

We also analyzed the segmentation of the whole test set. The Estonian segmenta-
tion of BPE and BPE with TMBR differed for 3431 words (8.37%) in 1569 sentences
(52.3%) and the English segmentation differed for 880 words (1.63%) in 634 sentences
(21.13%). Tables 3 and 4 show a sample segmentation of an Estonian and an English
sentence where the segmentation of BPE and BPE with TMBR differed. Differing
words are shown in bold.

On the whole Estonian test set out of 30 manually rated sentences normal BPE
segmentation was rated best in 6 cases (20%), BPE with TMBR was rated best in 9
cases (30%) and no significant difference was observed in 15 cases (50%).

On the whole English test set normal BPE segmentation was rated best in 10 cases
(33.3%), BPE with TMBR was rated best in 9 cases (30%) and no significant difference
was observed in 11 cases (36.7%).
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Morfessor Liberaal· · · ide fraktsioon on esitanu· · · d taotluse pikenda· · · da täh-
taega resolutsiooni ühisettepaneku· · · te ja muudatusettepaneku· · · te
esitamise· · · ks Euroopa Parlamendi prioriteetide kohta seoses
komisjoni õigusloome· · · - ja töö· · · programmiga homse· · · ni ,
teisipäeva· · · ni , 23.09· · · .2008 kella 10 : 00· · · -· · · ni .

BPE Liberaalide fraktsioon on esitanud taotluse pikendada tähtaega res-
olutsiooni ühise· · · ttepane· · · kute ja muudatusettepanekute esita-
miseks Euroopa Parlamendi prioriteetide kohta seoses komisjoni
õigusloome- ja tööprogrammiga homseni , teisi· · · päevani ,
23.· · · 09.· · · 2008 kella 10 : 00· · · -ni .

BPE+TMBR Liberaalide fraktsioon on esitanud taotluse pikendada tähtaega res-
olutsiooni ühisettepane· · · ku· · · te ja muudatusettepanekute esita-
miseks Euroopa Parlamendi prioriteetide kohta seoses komisjoni
õigusloome- ja tööprogrammiga homseni , teisipäeva· · · ni ,
23.· · · 09· · · .2008 kella 10 : 00· · · -· · · ni .

Table 3. Segmentation of an Estonian sentence from the test set. Segmentation bound-
aries are represented by ’· · · ’. Differing segmentations are shown in bold.

Morfessor led module ( s ) shall be tamper· · · proof .
BPE led module ( s ) shall be tam· · · per· · · proof .
BPE+TMBR led module ( s ) shall be tamper· · · proof .

Table 4. Segmentation of an English sentence from the test set. Segmentation bound-
aries are represented by ’· · · ’. The differing segmentation is shown in bold.
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5.3 Effects on NMT
Translation performance is measured by BLEU (Papineni et al., 2002) and TER (Snover
et al., 2006). Quantitative results are shown in Table 5.

Model BLEU TER
Morfessor 30.0 54.8
BPE 31.0 54.0
BPE+TMBR 30.1 54.6

Table 5. Translation performance of trained models as measured by BLEU and TER.

Morfessor denotes the model trained on data segmented into morphemes by Mor-
fessor. BPE is the baseline model trained on data that is segmented by normal BPE.
BPE+TMBR is the model trained on data that is segmented with the proposed algo-
rithm.

We manually evaluate 30 translations of sentences where BPE disagrees with mor-
phological structure and 30 random sentences from the test set. Each sentence is trans-
lated by the baseline BPE model and new the BPE+TMBR model. Samples of these
sentences are shown in Table 6 and Table 7. The input text that was translated is de-
noted by Source.

Source täpsus — hinnangute lähedus tundmatutele õigetele väärtustele ;
BPE accuracy — evaluations of estimates for unknown right values ;
BPE+TMBR accuracy — estimates of the estimated values to be unknown ;
Source kujutlege , millele seda oleks võimalik kulutada seoses arenevate ri-

ikide haiglate , arstide ja õpetajatega .
BPE imagine what it would be possible to spend with the hospitals , doc-

tors and teachers .
BPE+TMBR imagine what it could be possible to spend in relation to the hospital

of the countries , doctors and teachers .
Source tule nüüd . ära raiska oma aega selle jama seletamisele .
BPE don &apos;t waste your time to explain this shit .
BPE+TMBR don &apos;t waste your time to explain this shit .

Table 6. Translations of sentences where BPE segmentation disagrees with morphology.

For BPE-violated sentences the translation by the BPE model is rated better in 9
cases (30%) and BPE+TMBR in 13 cases (43.3%), the translations are rated equal in 8
cases (26.7%). For all sentences the translation by the BPE model is rated better in 13
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Source Liberaalide fraktsioon on esitanud taotluse pikendada tähtaega reso-
lutsiooni ühisettepanekute ja muudatusettepanekute esitamiseks Eu-
roopa Parlamendi prioriteetide kohta seoses komisjoni õigusloome-
ja tööprogrammiga homseni , teisipäevani , 23.09.2008 kella 10 :
00-ni .

BPE the applicant Group has submitted a request for a resolution on the
priorities of the motion for a resolution on the priorities of the Eu-
ropean Parliament &apos;s priorities for the Commission &apos;s
legislative and work programme tomorrow , Tuesday , 23.09.2008 :
00 .

BPE+TMBR the applicant Group has submitted a request for the submission of the
motion for a resolution on the priorities and amendments to the Eu-
ropean Parliament priorities in the Commission &apos;s legislative
and work work work tomorrow , Tuesday , 23.09.2008 : 00 : 00-i .

Source see on suurepärane mõte ja mul on selle üle üksnes hea meel .
BPE it &apos;s a great idea , and I &apos;m just glad to be .
BPE+TMBR that &apos;s a great idea , and I &apos;m just glad to do it .
Source tunnen ennast juba nagu rohtlajänes .
BPE I feel like a rock rabbit .
BPE+TMBR I feel like a ro-ass rabbit .

Table 7. Translations of random sentences from the test set.

cases (43.3%) and BPE+TMBR in 12 cases (40%), the translations are rated equal in 5
cases (16.7%).

5.4 Discussion
The first research question was whether using the proposed TMBR restriction with BPE
improves the segmentation of words whose segmentation by normal BPE disagrees with
morphological structure and how does BPE with TMBR affect the overall segmentation
quality.

Manual analysis of segmentation by BPE and BPE+TMBR showed that BPE+TMBR
produced subjectively more adequate and intuitive segmentations for words whose seg-
mentation by BPE did not agree with morphological structure. For Estonian sentences
BPE+TMBR algorithm’s segmentation was rated best in 70% of cases while in 23.3%
of cases there was no significant difference in segmentation. For English sentences
BPE+TMBR was best in 53.3% of cases and 36.7% of segmentations did not differ
significantly.

Analysis of segmentations of the whole test set showed that BPE+TMBR was rated
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mildly better than normal BPE for Estonian sentences (30% vs 20%) and mildly worse
for English sentences (30% vs 33.3%). We conclude that BPE+TMBR improves the
segmentation of words whose segmentation by normal BPE disagrees with morphology
and produces no significant difference in adequacy for other segmentations compared
to BPE.

The second research question was whether the translation of words whose segmen-
tation by normal BPE disagrees with morphology improves when using BPE+TMBR
compared to normal BPE and how does using BPE+TMBR affect the overall translation
performance?

Quantitative analysis revealed that using BPE+TMBR decreased the translation per-
formance as measured by BLEU by 0.9 points. A manual analysis of translations
showed that BPE+TMBR produced more adequate translations for sentences that con-
tained words whose segmentation by normal BPE disagrees with morphology in 43.3%
of cases while BPE was considered better in 30% of these cases. On samples from the
whole test set the translation by BPE+TMBR was considered better in 40% of cases
while BPE was considered better in 43.3% of cases.

We conclude that BPE+TMBR produced moderately better translations for sen-
tences that contained words whose segmentation by BPE disagreed with morphology.
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6 Conclusion
Current state-of-the-art translation performance in NMT is achieved using the byte-pair
encoding (BPE) subword segmentation algorithm as an input preprocessing step. Due
to only considering frequencies of word parts this algorithm occasionally fails to respect
morphological structure of the words and leads to incorrect translations.

A new algorithm for subword segmentation was developed that refrains from violat-
ing morpheme boundaries if this leads to a disagreement with morphology. The algo-
rithm allows only subsets of one morpheme or the concatenation of whole morphemes
to be considered as one subword unit. This approach succeeds in preventing misleading
segmentations that occurred due to the disregard for morphology in the baseline BPE
system.

Using the proposed algorithm for segmentation of source and target texts improved
the segmentation and translation of sentences from Estonian into English that contained
words whose segmentation by BPE did not agree with morphological structure. Overall
translation performance as measured by BLEU decreased by 0.9 points compared the
baseline system.

Future research in this field includes determining the impact of incorrect BPE seg-
mentation on the task of post-editing and further research into the refinement of BPE
segmentation to prevent incorrect translations without using morphological structure.
Other approaches such as linguistic morphological analysis could also be used for seg-
mentation into morphemes instead of unsupervised methods.
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