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Abstract: Time-series analysis is widely used in forecasting future trends on financial 

markets. There is a family of models which represent the property of long memory. In this 

thesis we aim at introducing fractionally differentiated ARIMA model in forecasting future 

returns of market index. In theoretical part the description of long-memory processes and 

statistical testing of given data are provided. In practical part we fit the models without 

differencing, with differencing and with fractional differencing to the market data and 

compare its forecast accuracy with observed values.  
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vaadeldavat mudelit ja ning kirjeldatakse statistilisi teste, mida mudeli sobitamisega soetud 
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Introduction  

The presence of long memory is an important aspect in modeling financial time-series. 

It influences on the behavior of investors, which can make their decisions based on different 

investment horizons. First studies of possibility of statistical dependence in asset returns was 

Mandelbrot(1971). After that, for example, Greene & Fielitz (1977) discovered long-range 

dependence in daily returns of assets listed on NYSE. 

The property of long memory is usually related to the persistence that is shown by the 

sample autocorrelations of certain stationary time series, which decrease at a very slow rate, 

but finally converge towards zero, indicating that the innovations of these series have 

transient effects but last for a long time. This behavior is not compatible neither with the 

stationary models, which have exponential decrease in autocorrelations and therefore in 

effects of the innovations
1
, nor with the integrated models, where innovations have permanent 

effects. 

The model, which shows this evidence, was introduced by Granger and Joyeux in 

1980 as a generalized version of ARIMA models. It was shown, that for suitable values of 

fractional differencing factor the processes can model long-term persistence. 

In this work our aims will be: 

 to introduce the fractional ARIMA model as one of the models which has the 

property of  the long memory dependence in autocorrelations; 

 to test the model on the data; 

 to see how this model perform in forecasting in comparison with the standard 

ARIMA models. 

The thesis is divided into two main parts. First part is theoretical, which consists of 

review of long memory models and description of statistical tests which are used for the data 

examination. In the practical part, using rescaled range statistic (R/S) test we find evidence of 

long memory in absolute returns of daily values of S&P500 index. Using the Geweke-Porter-

Hudak estimator we compute the fractional differencing parameter of ARFIMA model. After 

that we fit long-memory models to market data and compare the accuracy of of forecasting 

with long and short memory models based on RMSE statistic. 

                                                 
1
 Innovation - the difference between the observed value of a variable at time t and the optimal forecast of that 

value based on information available prior to time t. 
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1. Long memory processes 

1.1 Literature review 

The empirical evidence of the long memory processes goes back to Hurst (1951) in 

field of hydrology. However, interest in long memory models for economic series arises from 

the works of Granger and Joyeux (1980), who noted that many such series are apparently not 

stationary in mean, and yet, the differentiated series usually present clear evidence of 

overdifferencing.  

For example, if the series exhibits any long-term trends, this will produce positive 

autocorrelations out to a high number of lags in the ACF plot. Therefore, the series should be 

differenced until the data is stationary. At the same time, if we take the difference over the 

stationary process, the result of overdifferencing can be more complicated model. Problem 

appears because the difference of a stationary series is not invertible. For example, if 𝑌𝑡 =

0.5𝑌𝑡−1 + 𝜀𝑡 , so that 𝑌𝑡  is the stationary AR(1), then the first difference 𝑍𝑡  is the non-

invertible ARMA(1,1) process
2
 𝑍𝑡 = 0.5𝑍𝑡−1 + 𝜀𝑡 − 𝜀𝑡−1, which has more parameters than 

original process. Because of the non-invertability of 𝑍𝑡 , its parameters will be hard to 

estimate, and it makes difficult to make the forecast of 𝑍𝑡+ℎ. (Hurvich, Differencing and unit 

root test, NYU) 

Coming back to visible evidence of overdifferencing, the differencing in general 

introduces negative correlation to the series, driving the autocorrelation of the lag-1 term 

towards negative values. If the lag-1 autocorrelation becomes negative, the series does not 

need to be differenced further. If the lag-1 autocorrelation becomes less than -0.5, it is 

possible the series is over-differenced. For the given example this evidence is not observed. 

Therefore, to model this type of series, the differentiation seems "excessive" but non-

differentiation is not adequate either. To cover this gap between the extreme cases of ARIMA 

models with unit roots, typically used to model non-stationary series whose level evolves in 

time, and stationary ARMA models where the mean level is constant and the series returns 

relatively quickly to that level, Granger and Joyeux (1980) and Hosking (1981) proposed a 

class of intermediate processes in which the integration order is fractional. These are ARMA 

processes fractionally integrated, ARFIMA (p, d, q), where d is a real number. By allowing 

the order of integration, d, to be a non-integer number, these models act as a "bridge" between 

                                                 
2
 An ARMA (p, q) is invertible if the largest root 𝜃 of the equation 𝑧𝑞 + 𝑏1𝑧

𝑞−1 + ⋯ + 𝑏𝑞 = 0 satisfies  𝜃 < 1, 

where 𝑏1  , . . . , 𝑏𝑞  are the MA parameters. 
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the processes with ARIMA unit roots (d = 1) and stationary ARMA processes (d = 0). When 0 

<d <1/2, the ARFIMA processes are stationary, that is, its mean level is constant, but 

deviations from the series over this level have a longer duration than when d = 0. 

The presence of long memory in economic series may be justified by what Granger 

(1966) (Granger, 1966) called the "typical" form of the spectrum of the series, which is 

characterized by not being bounded in the low frequencies and decreasing hyperbolically to 

zero. This must be added to the results on aggregation of Robinson (1978) and Granger 

(1980), which shows that the sum of independent AR (1) processes, whose coefficients follow 

a Beta-type distribution, is a fractionally integrated process. Many economic variables are 

aggregates of other variables, this result could explain the presence of long memory in certain 

economic series. Other alternative explanation of the existence of long memory in the 

economic aggregates can be seen in Parke (1999). 

The empirical evidence on the presence of long memory in economic series and 

financial services is extensive. To name a few examples, Greene and Fielitz (1977) use the 

statistic of rescaled rank to contrast the presence of long memory in 200 series of yields and 

find evidence in a large number of them. Subsequently, Lo (1991) detects long memory in 

financial returns using a modification of said statistic. Also, Cheung (1993) and Baillie and 

Bollerslev (1994) find evidence of long memory in the prices of assets. In macroeconomic 

series, e.g. Diebold and Rudebush (1989) and Sowell (1992) find long memory in quarterly 

series of the American Gross National Product, and Hassler and Wolters (1995) and Baillie, 

Chung and Tieslau (1996) - in different monthly series of inflation. On the other hand, the 

existence of seasonal long memory has been empirically observed, among others, by Porter-

Hudak (1990), Ray (1993), or Franses and Ooms (1997). In recent years, there has also been a 

great deal of interest in the use of long memory processes for modeling the volatility of 

financial series. 

The pioneering work of Ding, Granger and Engle (1993) revealed that sample 

autocorrelations of certain transformations of absolute yields of the S&P500 stock index 

decline very slowly towards zero, in line with the long memory property. Later works, such as 

Crato and de Lima (1994), Bollerslev and Mikkelsen (1996) and Lobato and Robinson (1998) 

have confirmed the evidence of long memory in the squares of different financial series. 

Motivated by these a number of models have recently been proposed which seek to represent 

the property of long memory in conditioned moments of second order. 
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1.2 Long memory processes definition 

The long memory models have played a significant role already at least since 1950, 

and have been used by statisticians from different fields starting from physical science, 

hydrology or climatology, when the presence of long memory within data recorded over both 

time and space was recognized, to econometricians in early 1980-s. The presence of long 

memory can be defined from an empirical, data-oriented approach in terms of the persistence 

of observed autocorrelations. In the case of a long memory process the behavior of the 

autocorrelations is essentially consistent with a stationary process, but decay way slower than 

the exponential rate associated with the ARMA class of models. 

This phenomenon was described in different data series by Hurst (1951, 1957), 

Mandelbrot (1972), and McLeod and Hipel (1978) among others. If considered as 

observations of the time series of a stochastic process, the autocorrelation function of those 

series exhibits persistence that is neither consistent with an I(1) process nor an I(0) process.  

A significant success in econometrics has been obtained from using the ARMA class 

of models which impose an exponential, or geometric, rate of decay on the Wold 

decomposition
3
 coefficients. At the same time, there is no conceptual reason for restricting 

attention to exponential rates of decay in the Wold decomposition, and there are indeed both 

theoretical and economic reasons for considering slower rates, such as hyperbolic decay
4
. 

While a most of recent works have emphasized the role of persistence of shocks, significant 

part of it has been directed towards testing for the presence of unit roots in autoregressive 

representations of univariate and vector processes. However, the sharp distinction between 

I(0) and I(1) processes may be too restrictive. The fractionally differenced process can be 

regarded as a compromise between the I(0) and I(1) paradigms. One attraction of long 

memory models is that they imply different long run predictions and effects of shocks to 

conventional macroeconomic approaches. 

The origin of interest in processes with a long memory is connected with the 

examination of data in the physical sciences and preceded interest from economists. Perhaps 

                                                 
3
  Wold's decomposition, or the Wold representation theorem, says that every covariance-stationary time series 

can be written as the sum of two time series, one deterministic and one stochastic. 

Formally, 𝑌𝑡 =  𝑏𝑗
∞
𝑗=0 𝜀𝑡−𝑗 + 𝜂𝑡 , where 𝑌𝑡  - time series, 𝜀𝑡  - uncorrelated sequence, b -  the possibly infinite 

vector of moving average weights (coefficients or parameters),  𝜂𝑡  - deterministic time series. 
4
 The sample autocorrelations 𝜌  𝑘 =

1

𝑛
  𝑥𝑖 − 𝑥  (𝑥𝑖+ 𝑘 − 𝑥 )𝑛− 𝑘 

𝑖=1 , where 𝑥 =
1

𝑛
 𝑥𝑖  , decays slowly with 

increasing lag k, and such decay of 𝜌  𝑘  is called hyperbolicwith a rate 𝑘−𝑎  for 0 < 𝛼 < 1. (Beran, Long-

memory processes, 2013) 
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the most well-known example has seen in hydrology. It included tidal flows and the inflows 

into reservoirs and was originally documented by Hurst (1951). 

The property of long memory can be described, for example, using a discrete time 

series process Yt with autocorrelation function ρj at lag j. 

According to McLeod & Hipel (1978), the process possesses long memory if the 

quantity 

lim
𝑛→∞

  𝜌𝑗  

𝑛

𝑗 =−𝑛

 

is nonfinite. A stationary and invertible ARMA process has autocorrelations which are 

geometrically bounded, i.e.,  𝜌𝑘  ≤ 𝑐𝑚−𝑘 , for large k, where 0 < m < 1 and is hence a short 

memory process (Baillie, 1996). 

To see how autocorrelation function behave in different models, we simulated 

ARMA(1,1), ARIMA(1,1,1) and ARFIMA(1,0.45,1) series with equal coefficients: ϕ=0.9 and 

θ=-0.6. From the Scheme 1.1 we can observe the decay in autocorrelations close to linear in 

autocorrelations in integrated model and the exponential decay of autocorrelations in 

fractionally differenced model. Also we can see that the model ARMA(1,1) has the 

distribution around the constant zero, ARIMA(1,1,1) does not have a constant mean value, 

and the fractionally integrates series ARFIMA(1,0.45,1) shows the transitional behaviour 

between those two models. 
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Scheme 1.1 

Comparison of autocorrelation functions of ARMA(1,1), ARIMA(1,1,1) and 

ARFIMA(1,0.45,1) 

  

  

  

 

 

 

1.3 ARFIMA processes 

ARIMA models were introduced by Box and Jenkins (1976). They are one of the 

general class of models for forecasting a time series, which consists the integrated part to 

allow also the modelling of non-stationarity. A random process describing a time series is 

stationary if its statistical properties are all constant over time.  A stationary series has no 

trend, the variance around its mean is constant in time, its autocorrelations remain constant 
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over time.  A random variable of this form can be described as a combination of signal and 

noise, and ARIMA model can be viewed as a filter that tries to separate the signal from the 

noise, and the signal is then extrapolated into the future to obtain forecasts.  

In case of financial forecasting, there is a need for a models which have the property 

of long-memory. There is a family of model which does meet these property, by generalizing 

the ARIMA model. The generalization consists of permitting the degree of differencing d to 

take any real value rather than being restricted to integral values; it turns out that for a suitable 

values of d, specifically 0 < d <1/2 , these 'fractionally differenced' processes are capable of 

modeling long-term persistence. 

The population characteristics of ARFIMA processes have been extensively studied by 

Granger(1980), Granger and Joyeux (1980), and Hosking (1981). For 0<d<1/2 the process Yt 

is covariance stationary and the moving average coefficients decay at a relatively slow 

hyperbolic rate compared with the stationary and invertible ARMA process where the moving 

average coefficients decline exponentially with increasing lag. 

The general form of ARFIMA (p, d, q) model can be written as:  

Ф(B)(1 − B)𝑑𝑋𝑡 = 𝛩(𝐵)𝜀𝑡 , 

where 𝜀𝑡~𝑖𝑖𝑑(0, 𝜎2), B is the backward-shift operator,  

Ф(B)=1-𝜙1𝐵 − ⋯− 𝜙𝑝𝐵
𝑝 ,  

Θ(B)= 1-𝑐1𝐵 + ⋯ + 𝜃𝑞𝐵
𝑞 , 

and (1 − B)𝑑  is the fractional differencing operator defined by the Tailor expansion: 

(1 − B)𝑑 =   
d d−1 …(d−k+1)

k!
(−B)k = 1 − dB −

1

2
d 1 − d B2 −

1

6
d 1 − d  2 − d B3 −∞

k=0

⋯. 

X is both stationary and invertible if the roots of Ф(B) and 𝛩(𝐵) are outside the unit 

circle and d< 1/2 . The Wold decomposition and autocorrelation coefficients will both 

exhibit a very slow rate of hyperbolic decay. When d=0, an ARFIMA process reduces to an 

ARMA process. 

Hosking (1981) showed that the autocorrelation, ρ(.), of an ARFIMA process satisfies 

ρ(k)~ 𝑘2𝑑−1 for 0<d<1/2 as k→ ∞. Thus the memory property of a process depends crucially 

on the value of d. When d∈ (0, 1/2), the autocorrelations do not have a finite sum. When 

d≤0, the autocorrelations have a finite sum; that is, ARFIMA processes with d∈ (0, 1/2) 

display long memory. 
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For -1/2 < d < 0, the sum of absolute values of the processes autocorrelations tends to 

a constant, so that it has short memory according to definition of long memory. In this case 

the ARFIMA(0, d, 0) process is 'antipersistent' or has 'intermediate memory', and all its 

autocorrelations, except lag zero, are negative and decay hyperbolically to zero. 

The effect of the d parameter on distant observation decays hyperbolically when the 

lag increases, while the effects of the ϕi and θj parameters decay exponentially. Thus d may be 

chosen to describe the high-lag correlation structure of a time series while the ϕi and θj 

parameters are chosen to describe the low-lag correlation structure. 

There are several approaches of estimating the fractional differencing parameter. 

Graphical method based on R/S statistics and the variance-time plot was described by Leland 

et al.(1994). The common parametric method is based on assumptions that d-th fractional 

difference of series follows a standard ARMA model, the order (p,q) is already known and 

model parameters including d are estimated by likelihood procedure (Fox & Taqqu, 1986). 

The algorithmic aspects computing the likelihood estimates are discussed by Hosking (1984), 

Haslett and Raftery (1989), Sowell (1992). In this thesis will be used the most widely studied 

non-parametric method, described by Geweke and Porter-Hudak (1983). 

ARFIMA models have also a lot of extensions comparisons of their relative 

forecasting performance. For example, Franses & Ooms (1997) proposed the periodic 

ARFIMA(0, d, 0) model where d can change seasonally. Ravishanker & Ray (2002) described 

the estimation and forecasting of multivariate ARFIMA models. Baillie & Chung (2002) 

considered the linear trend-stationary ARFIMA models, and Beran et al. (2002) extended this 

model to allow for nonlinear trends. Souza & Smith (2002) investigated the effect of different 

timeframes on estimates of the long-memory parameter d, such as monthly and quarterly 

ones. Similarly, Souza & Smith (2004) looked at the effects of temporal aggregation on 

estimates and forecasts of ARFIMA processes. Within the context of statistical quality 

control, Ramjee et al. (2002) introduced a hyperbolically weighted moving average forecast-

based control chart, designed specifically for non-stationary ARFIMA models. (De Gooijer & 

Hyndman, 2006) in their research paper summarized the works and the results gained since 

the year 1982. 
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1.4 Testing for long memory 

There are various methods that are frequently used for the recognition of a long 

memory. Mandelbrot has suggested to use the range over standard deviation or R/S statistics, 

also called "rescaled range". It uses the Hurst exponent, which was produced by a British 

hydrologist Harold Hurst in 1951 during his studies of river discharges.  

The main idea behind the R/S analysis is that one looks at the scaling behavior of the 

rescaled cumulative deviations from the mean. The R/S analysis first estimates the range R for 

a given n (Lo, 1991): 

𝑅𝑛 = max𝑚=1,…,𝑛   𝑌𝑗 − 𝑌  𝑚
𝑗=1 − min𝑚=1,…,𝑛   𝑌𝑗 − 𝑌  𝑚

𝑗=1 , 

where 𝑅𝑛  is the range of accumulated deviation of 𝑌𝑡  over the period of n and 𝑌  is the overall 

mean of the time series. Let 𝑆𝑛 =  
1

𝑛
  𝑌𝑗 − 𝑌  

2
𝑗  

1/2

 - the usual standard deviation estimator.  

As n increases, the following holds:  

Log [Rn/ Sn] = log 𝛼 + H log n 

This implies that the estimate of the Hurst exponent H is the slope. Thus, H is a 

parameter that relates mean R/S values for subsamples of equal length of the series to the 

number of observations within each equal length subsample. H is always greater than 0. When 

0<H<1, the long memory structure exists. If H ≥ 1, the process has infinite variance and is 

non-stationary. If 0 < H < 1/2, anti-persistence structure exists. If H = 1/2, the process is white 

noise. (Wei & Leuthold, 2000) 

 

 

1.5 Statistical testing of data 

Jarque-Bera is a test statistic for testing whether the series is normally distributed 

(Jarque & Bera, 1980). The test statistic measures the difference of the skewness and kurtosis 

of the series with those from the normal distribution. The statistic is computed as: 

𝐽𝐵 =
𝑛

6
(𝑆2 +

 𝐾−3 2

4
), 

where S is the skewness and K is the kurtosis. Under the null hypothesis of a normal 

distribution, the Jarque-Bera statistic is distributed as χ
2 

with 2 degrees of freedom. The 

reported probability is the probability that a Jarque-Bera statistic exceeds (in absolute value) 



13 

 

the observed value under the null hypothesis—a small probability value leads to the rejection 

of the null hypothesis of a normal distribution. 

For testing for presence of unit root (that is, for the need of differencing of the series 

for it to become stationary), we are going to use ADF test. It is an augmented version of the 

Dickey–Fuller test (Dickey & Fuller, 1979) for a larger and more complicated set of time 

series models.  

The testing procedure for the ADF test is applied to the model: 

∆𝑦𝑡 = 𝛼 + 𝛽𝑡 + 𝛾𝑦𝑡−1 + 𝛿1∆𝑦𝑡−1 + ⋯ + 𝛿𝑝−1∆𝑦𝑡−𝑝+1 + 𝜀𝑡 , 

where 𝛼 is a constant, 𝛽 the coefficient on a time trend and p the lag order of autoregressive 

process. (Cheung & Lai, 1995) The null hypothesis is 𝛾 = 0, and the alternative hypothesis is 

𝛾 < 0. Once a value for the test statistic 

𝐷𝐹 = (𝛾 − 1)/𝑆𝐸(𝛾 ) 

is computed, it can be compared to the relevant critical value for the Dickey–Fuller Test. The 

output value is a negative number, and the more negative is, it means the stronger rejection of 

the hypothesis that there is a unit root. 

Important aspect is the choice of p, the number of  AR terms. There are several papers 

outlining the possible approaches. One possible approach is to test down from high orders and 

examine the t-values on coefficients. (Corbae & Ouliaris, 1988) An alternative approach is to 

examine information criteria such as for example, the Akaike information criterion (AIC), as 

it is advised by Brockwell and Davis (1991, 2002). In this thesis we use the default value of 

the parameter in R, which is calculated inside the function 'adf.test' as 'trunc((length(x)-

1)^(1/3))', where x is a numeric vector or time series. 

To compare the goodness of fit of chosen models, we use the Akaike information 

criterion (AIC). The measuring the goodness of fit for some particular model can be done by 

balancing the error of the fit against the number of parameters in the model. It provides the 

measure of information lost when a given model is used to describe reality. AIC values 

provide a means for model selection and cannot say anything about how well a model fits the 

data in an absolute sense. If the entire candidate models fit poorly, AIC will not give any 

warning of that. The AIC is defined as  

𝐴𝐼𝐶 = 2𝑘 − 2ln⁡(𝐿), 
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where k is the number of parameters in the statistical model, and  L is the maximized value of 

the likelihood function for the estimated model. The AIC is applied in model selection in 

which the model with the least AIC is selected as the best candidate model. 

To distinguish the best model after procedure of prediction, the RMSE as the most 

frequently used measure to draw conclusions about forecasting methods. To calculate the 

RMS (root mean squared) error, the individual errors are squared, added together, divided by 

the number of individual errors, and then square rooted. This gives a single number that 

summarizes the overall error. 

𝑅𝑀𝑆𝐸 =  
 (𝑦 𝑖 − 𝑦𝑖)2𝑛

𝑖=1

𝑛
 

where (𝑦 𝑖 − 𝑦𝑖) - residuals, and 𝑦𝑖  are observed values, 𝑦 𝑖  - predicted values. 
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2. Fitting the models 

2.1 Data downloading and statistical testing 

The data set that will be analyzed in this chapter is S&P 500 stock market daily 

closing price index. The software for computation is R. R programming language as a 

software environment for statistical computing and graphics has many capabilities which are 

extended by various packages. The series was obtained from Yahoo Finance with R package 

'quantmod'. There are altogether 9340 observations from 30.04.1980 to 03.15.2017. Last 10 

observations will be subtracted from the main part for the purpose of comparing of 

forecasting accuracy of applied models. 

#getting the data (SP500 index) 
getSymbols('^GSPC',src='yahoo',from='1980-03-01',to='2017-03-15') 
## [1] "GSPC" 
head(GSPC) 
##            GSPC.Open GSPC.High GSPC.Low GSPC.Close GSPC.Volume 
## 1980-03-03    113.66    114.34   112.01     112.50    38690000 
## 1980-03-04    112.50    113.41   110.83     112.78    44310000 
## 1980-03-05    112.78    113.94   110.58     111.13    49240000 
## 1980-03-06    111.13    111.29   107.85     108.65    49610000 
## 1980-03-07    108.65    108.96   105.99     106.90    50950000 
## 1980-03-10    106.90    107.86   104.92     106.51    43750000 
##            GSPC.Adjusted 
## 1980-03-03        112.50 
## 1980-03-04        112.78 
## 1980-03-05        111.13 
## 1980-03-06        108.65 
## 1980-03-07        106.90 
## 1980-03-10        106.51 
Prices <- GSPC$GSPC.Close 

Returns <- diff(log(Prices)) 

Returns_vect <- as.vector(Returns) 

Returns_vect <- Returns_vect[-1] 

On the Scheme 2.1 there is the plot of original time series - the daily prices index. On 

the Scheme 2.2 simple log-returns of prices were plotted. 
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Scheme 2.1  

S&P 500 daily price index 01.03.1980 - 15.03.2017 

 

 

 

Scheme 2.2  

S&P 500 daily returns 01.03.1980 - 15.03.2017 

 

For analysis there were picked absolute returns as a typical transform of the return 

series (Scheme 2.3). It is one of stylized statistical properties of asset returns that the 

autocorrelation function of absolute returns decays slowly (Cont, 2001). To see this property 

and also the behavior of partial autocorrelations, we plot the ACF and PACF graphs. 

RetMod_all <- abs(Returns_vect)#absolute log-returns 

RetMod <- RetMod_all[-(9331:9340)]#substract the values we are going 
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to forecast 

#now we have returns up to 2017-03-01 

plot(RetMod, type = 'l') 

acf(RetMod,lag.max = 200) 
pacf(RetMod,lag.max = 200) 

 

Scheme 2.3  

S&P 500 daily absolute returns 30.04.1980 - 28.04.2017 

 

Scheme 2.4  

Autocorrelations of absolute returns up to lag 200 
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Scheme 2.5  

Partial autocorrelations of absolute returns up to lag 200 

 

Schemes 2.4 and 2.5 graph the first 200 autocorrelation and partial autocorrelation 

coefficients for the absolute returns respectively. The autocorrelations exhibit a clear pattern 

of persistence and slow decay which is typical of a long-memory process. 

Before starting with model estimation, we can take a look at some statistics of this 

time-series.  

summary(Returns_vect) 
##       Min.    1st Qu.     Median       Mean    3rd Qu.       Max.  
## -0.2290000 -0.0046270  0.0005319  0.0003270  0.0056620  0.1096000 
skewness(Returns_vect) 
## [1] -1.156088 
kurtosis(Returns_vect) 
## [1] 29.67046 
jarque.bera.test(Returns_vect) 
##  
##  Jarque Bera Test 
##  
## data:  Returns_vect 
## X-squared = 278900, df = 2, p-value < 2.2e-16 

Of course, we have to be careful about the results of the three last values since the data 

does not correspond to independent samples from a distribution but are serially correlated, but 
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the output values still give some feeling about the nature of the data in the series. We can see 

from output that kurtosis of 29.67 is higher than that of a normal distribution which is 3. It 

shows the characteristic 'fat-tailed' behavior compared with a normal distribution. The Jarque-

Bera normality test statistic is far beyond the critical value which suggests that absolute 

returns series is far from a normal distribution. 

To check the stationarity, the Augmented Dickey Fuller (ADF) test is mostly used. 

The ADF test examines the null hypothesis that a time series is stationary against the 

alternative that it is non-stationary.  

adf.test(RetMod, alternative = "stationary") 
## Warning in adf.test(RetMod, alternative = "stationary"): p-value 
smaller 
## than printed p-value 
##  
##  Augmented Dickey-Fuller Test 
##  
## data:  RetMod 
## Dickey-Fuller = -10.309, Lag order = 21, p-value = 0.01 
## alternative hypothesis: stationary 

The result shows, that since the p-value is smaller than 0.05, we can reject the null 

hypothesis that the series has a unit root. If there are no unit roots, then we conclude the series 

is stationary. 

 

 

2.2 Choosing the model 

The presence of long memory is tested using Hurst exponent produced by the 

Rescaled range analysis. The value of H indicates that the absolute returns have long memory 

structure since 0.5<H<1. 

hurstexp(RetMod) 
## Simple R/S Hurst estimation:         0.7323002  
## Corrected R over S Hurst exponent:   0.8441684  
## Empirical Hurst exponent:            0.9168726  
## Corrected empirical Hurst exponent:  0.8889158  
## Theoretical Hurst exponent:          0.5270019 
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The long memory parameter d is estimated with Geweke-Porter-Hudak model. The 

estimated value of the parameter, its asymptotic deviation value and regression standard 

deviation values are reported in the following output: 

fdGPH(RetMod, bandw.exp = 0.5) 
## $d 
## [1] 0.4610339 
##  
## $sd.as 
## [1] 0.07104335 
##  
## $sd.reg 
## [1] 0.06560436 

The value of d, 0<0.46<0.5 shows, that we can use this coefficient for estimation of 

ARFIMA model. 

To choose the appropriate candidate model, we fit ARFIMA with fixed fractional 

parameter, and then look at ACF and PACF plots of residuals. 

library(arfima) 
x <- arfima(RetMod, fixed=list(frac=0.46),dmean=FALSE) 
## Note: only one starting point.  Only one mode can be found. 
## Beginning the fits with 1 starting values. 
y <- resid(x) 
y <- as.numeric(unlist(y)) 
acf(y) 
pacf(y) 

Scheme 2.6 

Autocorrelation function of residuals 
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Scheme 2.7 

Partial autocorrelation function of residuals 

 

Looking at ACF and PACF plots (Scheme 2.6 and 2.7), we can see the evidence of 

MA(1) term on the first plot, and AR(4) on the second one. Therefore, two candidate models 

for fitting are ARFIMA(4,0.46,0) and ARFIMA(1,0.46,0).  

fitArfima1 <- 
arfima(RetMod,order=c(4,0,0),fixed=list(frac=0.46),dmean=FALSE) 
fitArfima2 <- 
arfima(RetMod,order=c(0,0,1),fixed=list(frac=0.46),dmean=FALSE) 
fitArfima1 
## Number of modes: 1 
## Warning in rbind(coeff, ses): number of columns of result is not 
a multiple 
## of vector length (arg 2) 
##  
## Call: 
## arfima(z = RetMod, order = c(4, 0, 0), dmean = FALSE, fixed = 
list(frac = 0.46)) 
##  
## Coefficients for fits: 
##           Coef.1:       SE.1:      
## phi(1)    -0.422087      0.0103064 
## phi(2)    -0.207168      0.0111031 
## phi(3)    -0.137832      0.0111043 
## phi(4)    -0.0959633     0.0103073 
## d.f        0.46                    
## zbar       0.00749157              
## logl       45745.6                 
## sigma^2    5.51229e-05             



22 

 

## phi_p(1)  -0.346046                
## phi_p(2)  -0.149939                
## phi_p(3)  -0.0982315               
## phi_p(4)  -0.0959633     0.0103064 
## Starred fits are close to invertibility/stationarity boundaries 
fitArfima2 
## Number of modes: 1 
## Warning in rbind(coeff, ses): number of columns of result is not 
a multiple 
## of vector length (arg 2) 
##  
## Call: 
## arfima(z = RetMod, order = c(0, 0, 1), dmean = FALSE, fixed = 
list(frac = 0.46)) 
##  
## Coefficients for fits: 
##           Coef.1:       SE.1:       
## theta(1)   0.443533      0.00991675 
## d.f        0.46                     
## zbar       0.00749157               
## logl       45717.8                  
## sigma^2    5.54353e-05   0.00991675 
## Starred fits are close to invertibility/stationarity boundaries 
AIC(fitArfima1) 
## [1] -91477.28 
AIC(fitArfima2) 
## [1] -91427.54 

 

The output shows, that the model ARFIMA(4,0.46,0) has the smaller value of Akaike 

criterion and bigger log-likelihood value. So, it is the model which will be used for 

predictions. The statistics for the model in on the Scheme 2.8. P-values are significant for 

more than 20 days, which shows the evidence of long memory of the model. 
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Scheme 2.8 

Statistics for ARFIMA(4,0.46,0) 

 

 

Next step is choosing model without differencing and with ordinary differencing to 

compare the accuracy of prediction. Looking at the plot of ACF and PACF (Scheme 2.4 and 

2.5), it is hard to identify the right type of model, since it does not correspond to simple AR or 

MA, so to find the best suitable model the function 'auto.arima' was used. Also, since we have 

daily market data, it is reasonable to allow a seasonal part with period 5 (weekly dependence). 

library(forecast) 

seas <- ts(RetMod, frequency = 5)#returns with weekly seasoning 

auto1 <- auto.arima(seas,max.p = 10,max.q = 
10,stationary=TRUE,stepwise=FALSE,approx=TRUE,seasonal = TRUE) 
auto1 
## Series: seas  
## ARIMA(1,0,3)(1,0,0)[5] with non-zero mean  
##  
## Coefficients: 
##          ar1      ma1     ma2      ma3    sar1    mean 
##       0.9853  -0.9478  0.0755  -0.0356  0.0620  0.0075 
## s.e.  0.0026   0.0107  0.0143   0.0109  0.0112  0.0005 
##  
## sigma^2 estimated as 5.516e-05:  log likelihood=32505.83 
## AIC=-64997.65   AICc=-64997.64   BIC=-64947.67 
auto2 <- auto.arima(seas,max.p = 10,max.q = 
10,stepwise=FALSE,approx=TRUE,seasonal = TRUE) 
auto2 
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## Series: seas  
## ARIMA(2,1,2)(1,0,0)[5]                     
##  
## Coefficients: 
##          ar1     ar2      ma1     ma2    sar1 
##       0.8614  0.0707  -1.8234  0.8256  0.0497 
## s.e.  0.0144  0.0115   0.0104  0.0104  0.0109 
##  
## sigma^2 estimated as 5.525e-05:  log likelihood=32493.53 
## AIC=-64975.06   AICc=-64975.06   BIC=-64932.22 

The result of autofitting is two models - ARIMA(1,0,3) and ARIMA(2,1,2) with 

seasonal order of differencing 1 and period 5. These models will be fitted to the data and be 

compared with output of ARFIMA(4,0,0). 

fit_arima1 <- arima(RetMod,order=c(1,0,3),seasonal = list(order = 

c(1, 0, 0), period = 5)) 

fit_arima2 <- arima(RetMod,order=c(2,1,2),seasonal = list(order = 

c(1, 0, 0), period = 5)) 

The evidence of long memory can be seen with plotting time-series diagnosis: 

tsdiag(fit_arima1,30) 

tsdiag(fit_arima2,30) 
  

The output is on the Scheme 2.9 and 2.10. 

Scheme 2.9 

Statistics for ARIMA(1,0,3) 
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Scheme 2.10 

Statistics for ARIMA(2,1,2) 

 

For both models p-values are significant more that for 20 days. 

 

 

2.3 Computing predictions 

For each model were made 10 step-by-step computations for one-step prediction and 

for 5 step prediction. The result of computations is in the Table 2.1. 

Table 2.1 

The observed and predicted values of absolute log-returns of S&P500 

 

№ Observed
Predicted_1

_ARIMA103

Predicted_1

_ARIMA212

Predicted_1

_ARFIMA400

Predicted_5

_ARIMA103

Predicted_5

_ARIMA212

Predicted_5

_ARFIMA400

1 0.00587712 0.0035503 0.0031414 0.00338823 0.0035805 0.0031242 0.00340476

2 0.00050375 0.0045788 0.0040841 0.00437971 0.0035552 0.0030635 0.00333052

3 0.00328262 0.0042352 0.0039931 0.00411947 0.00341 0.0028731 0.00318093

4 0.00291763 0.0039482 0.0037454 0.00384276 0.0034915 0.0029362 0.00327164

5 0.00228683 0.0047123 0.0042442 0.00463897 0.0049926 0.0045304 0.00488985

6 0.00079958 0.0041453 0.003743 0.00423936 0.0047274 0.0043876 0.00480784

7 0.00326334 0.0035878 0.0032605 0.00361828 0.0041353 0.0037314 0.00415593

8 0.00036657 0.0036324 0.0031731 0.0035112 0.0042806 0.0037457 0.00417836

9 0.00338475 0.0036339 0.0031851 0.00343625 0.0042258 0.0036423 0.00409057

10 0.00833988 0.0034029 0.0029496 0.00322844 0.0040528 0.0034847 0.0038865
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After that all models were tested for best fitting. For this purpose the root mean 

squared error (RMSE) test is used. It is a frequently used statistical measure of difference 

between predicted and actually observed values. The lower values of RMSE indicate better 

fit. RMSE is a good measure of how accurately the model predicts the response, and is an 

important criterion for fit if the main purpose of the model is prediction. 

library(forecast) 
acc_ARIMA_1_103 <- accuracy(Predicted_1_ARIMA103,Observed,d=0,D=1) 
acc_ARIMA_1_103 
##                     ME        RMSE         MAE      MPE     MAPE 
## Test set -0.0008404959 0.002761757 0.002293254 -220.722 240.4797 
acc_ARIMA_1_212 <- accuracy(Predicted_1_ARIMA212,Observed,d=0,D=1) 
acc_ARIMA_1_212 
##                     ME        RMSE         MAE       MPE    MAPE 
## Test set -0.0004497313 0.002663837 0.002115445 -186.2934 209.727 
acc_ARFIMA_1_400 <- accuracy(Predicted_1_ARFIMA400,Observed,d=1,D=0) 
acc_ARFIMA_1_400 
##                    ME        RMSE         MAE       MPE    MAPE 
## Test set -0.000738062 0.002761932 0.002258127 -212.6304 233.358 
acc_ARIMA_5_103 <- accuracy(Predicted_5_ARIMA103,Observed,d=0,D=1) 
acc_ARIMA_5_103 
##                     ME       RMSE       MAE       MPE     MAPE 
## Test set -0.0009429649 0.00269902 0.0022597 -226.7709 244.8672 
acc_ARIMA_5_212 <- accuracy(Predicted_5_ARIMA212,Observed,d=0,D=1) 
acc_ARIMA_5_212 
##                     ME        RMSE         MAE       MPE    MAPE 
## Test set -0.0004497071 0.002597764 0.002053237 -188.1892 211.696 
acc_ARFIMA_5_400 <- accuracy(Predicted_5_ARFIMA400,Observed,d=1,D=0) 
acc_ARFIMA_5_400 
##                     ME        RMSE        MAE       MPE    MAPE 
## Test set -0.0008174846 0.002696999 0.00222297 -217.7912 237.504 

Although all values are very small and the prediction horizon is only 10 days, looking 

at the root mean square error values and also at mean average error values we can conclude 

that the best model for prediction in this case for both 1-step and 5-step predictions is 

ARIMA(2,1,2). 
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Conclusion  

Application of fractionally integrated models in forecasting future values of time-

series is widely used. Many studies are focused on measuring forecast performance of 

ARIMA and ARFIMA models for stationary type series that exhibit long memory properties. 

In the first part of the work provided brief background on important concepts used in 

thesis. Overview of literature in the field provides knowledge about long memory processes 

and fractionally integrated models. In that part, there was defined the long memory processes, 

fractionally integrated autoregressive moving average model was introduced. Description of 

statistical indicators explains the methods used in measuring forecasting accuracy.  

The second part consists of empirical study of implementing ARFIMA model on the 

real market data. The result gained during numerous computations is not very obvious. Due to 

the small values of daily absolute returns and short horizon of prediction it is hard to 

distinguish the best model for future predictions. One of the difficulties is that programming 

tool for ARFIMA modeling (package 'arfima' for R by Justin Q. Veenstra) is still under 

developing, the functions are not optimally defined and computations take much more time 

comparing with popular ARIMA models. Theoretically it is also not clear if fractional 

differenced type of models captures the long-memory tendencies better than the models, 

where the differencing parameter is an integer. For example, (Ray, 1993) made such a 

comparison between ARFIMA models and standard ARIMA models. The results show that 

higher order AR models are capable of forecasting the longer term well when compared with 

ARFIMA models. 

In final conclusion it can be stated that the evidence of long memory in fractionally 

integrated time-series was found. The ARFIMA model was applied on the market data and the 

forecasting using this model performed better that applying non-differenced model. The 

ARFIMA model was not found to be better than ARIMA model as indicated by model 

diagnostic tools. The estimated forecast values from ARFIMA model is as closely reflect the 

changing in absolute returns as indicated by the forecast evaluation tools applied on both non-

integrated and integrated ARIMA models. Empirical studies show that further analysis is 

necessary for finding the advantages of using this model instead of ordinary ARIMA models. 

 



28 

 

References 

Baillie, R. (1996). Long memory processes and fractional integration. Journal of 

Econometrics 73 . 

Baillie, R., & Bollerslev, T. (1994). The long memory of the forward premium. Journal of 

International Money and Finance 13 , 565-571. 

Baillie, R., & Chung, S.-K. (2002). Modeling and forecasting from trend-stationary long 

memory models with applications to climatology. International Journal of Forecasting 18 , 

215-226. 

Baillie, R., Chung, C., & Tieslau, M. (1996). Analysing inflation by the fractionally integrated 

ARFIMA-GARCH model. Journal of Applied Econometrics 11 , 23-40. 

Beran, J. (2013). Long-memory processes. Springer-Verlag Berlin Heidelberg. 

Beran, J., Feng, Y., Ghosh, S., & Sibbertsen, P. (2002). On robust local polynomial estimation 

with long-memory errors. International Journal of Forecasting 18 , 227–241. 

Bollerslev, T., & Mikkelsen, H. (1996). Modeling and pricing long memory in stock market 

volatility. Journal of Econometrics 73 , 151-184. 

Box, G., & Jenkins, G. (1976). Time-series analysis: forecasting and control. San Fransisco: 

Holden-Day. 

Brockwell, P. J., & Davis, R. A. (1991). Time Series: Theory and Methods (2nd ed.). 

Springer. 

Brockwell, P., & Davis, R. (2002). Introduction to time-series and forecasting. Springer. 

Cheung, Y. (1993). Long memory in foreign-exchange rates. Journal of business and 

economic statistics 11 , 93-101. 

Cheung, Y. W., & Lai, K. S. (1995). Lag order and critical values of the augmented Dickey–

Fuller test. Journal of Business & Economic Statistics 13 , 277-280. 

Cont, R. (2001). Empirical properties of asset returns: stylized facts and statistical issues. 

Quantitative Finance vol.1 , 223-236. 

Corbae, D., & Ouliaris, S. (1988). Cointegration and Tests of Purchasing Power Parity. The 

Review of Economics and Statistics 70 , 508-511. 

Crato, N., & de Lima, P. (1994). Long range dependence in the conditional variance of stock 

returns. Economics letters 45 , 281-285. 

De Gooijer, J. G., & Hyndman, R. J. (2006). 25 Years of Time Series Forecasting. 

International Journal of Forecasting 22 , 443 – 473. 



29 

 

Dickey, D., & Fuller, W. (1979). Distribution of the estimators for autoregressive time series 

with a unit root. Journal of the American Statistical Association 74 , 427–431. 

Diebold, F., & Rudebusc, G. (1989). Long-memory and persistence in aggregate output. 

Journal of Monetary Economics 24 , 189-209. 

Ding, Z., Granger, C. W., & Engle, R. F. (1993). A long memory property of stock market 

returns and a new model. Journal of Empirical Finance 1 , 83-106. 

Fox, R., & Taqqu, M. (1986). Large-sample properties of parameter estimates for strongly 

dependent stationary Gaussian time series. The Annals of Statistics 14 , 517-532. 

Frances, P., & Ooms, M. (1997). A periodic long memory model for quarterly UK inflation. 

International Journal of Forecasting 13 , 117-126. 

Geweke, J., & Porter-Hudak, S. (1983). The estimation and application of long memory time-

series models. Journal of time-series analysis vol.4, No.4 , 221-238. 

Granger, C. (1980). Long memory relationships and the aggregation of dynamic models. 

Journal of Econometrics 14 , 227-238. 

Granger, C. (1966). The typical spectral shape of an economic variable. Econometrica 34 , 

150-161. 

Granger, C., & Joyeux, R. (1980). An introduction to long-memory time series models and 

fractional differencing. Journal of Time Series Analysis 1 , 15–29. 

Greene, M., & Fielitz, B. (1977). Long-term dependence in common stock returns. Journal of 

Financial Economics 4 , 339-349. 

Haslett, J., & Raftery, A. (1989). Space-time modelling with long-memory dependence: 

assesing Ireland's wind power resource. Appl. Statist. 38 , 1-50. 

Hassler, U., & Wolters, J. (1995). Long memory in inflation rates: international evidence. 

Journal of Business and Economic Statistics 13 , 37-45. 

Hosking, J. (1984). Modelling persistence in hydrological time-series using fractional 

differencing. Water Resourses Res. 20 , 1898-1908. 

Hosking, J. R. (1981). Fractional differencing. Biometrika 68 , 165–176. 

Hurst, H. (1957). A suggested statistical model of some time series which occur in nature. 

Nature 180 , 494. 

Hurst, H. (1951). Long-term storage capacity of reservoirs. Transactions of the American 

Society of Civil Engineers , 770–799, 800–808. 



30 

 

Hurvich, C. (n.d.). Differencing and unit root test. Retrieved May 02, 2017, from NYU Stern: 

http://people.stern.nyu.edu/churvich/Forecasting/Handouts/UnitRoot.pdf 

Jarque, C. M., & Bera, A. K. (1980). Efficient tests for normality, homoscedasticity and serial 

independence of regression residuals. Economics Letters 6 , 255–259. 

Leland, W. E., Taqqu, M., Willinger, W., & Wilson, D. (1994). On the self-similar nature of 

Ethernet traffic (extended version). IEEE/ACM Transactions on Networking 2 , 1-15. 

Lo, A. W. (1991). Long-term memory in stock market prices. Econometrica 59 , 1279–1313. 

Lobato, I., & Robinson, P. (1998). A non-parametric test for I(0). Review of Economic Studies 

65 , 475-495. 

Mandelbrot, B. B. (1972). Statistical methodology for non-periodic cycles: From the 

covariance to R/S analysis. Annals of Economic and Social Measurement , 259–290. 

Mandelbrot, B. (1971). When Can Price Be Arbitraged Efficiently? A Limit to the Validity of 

the Random Walk and Martingale Models. Review of Economics and Statistics 53 , 225-236. 

McLeod, A., & Hipel, K. (1978). Preservation of the rescaled adjusted range, Part 1, A 

reassessment of the Hurst phenomenon. Water Resources Research 14 , 491-508. 

Parke, W. (1999). What is fractional integration? Review of Economics and Statistics 81 , 

632-638. 

Porter-Hudak, S. (1990). An application of the seasonal fractionally differenced model to the 

monetary agregates. Journal of the American Statistical Assosiation, Applic. Case Studies 85 , 

338-344. 

Ramjee, R., Crato, N., & Ray, B. (2002). A note on moving average forecasts of long memory 

processes with an application to quality control. International Journal of Forecasting 18 , 

291–297. 

Ravishanker, N., & Ray, B. (2002). Bayesian prediction for vector ARFIMA processes. 

International Journal of Forecasting 18 , 207–214. 

Ray, B. (1993). Modeling long-memory processes for optimal long-range prediction. Journal 

of Time Series Analysis 14 , 511–525. 

Robinson, P. (1978). Alternative models for stationary stochastic processes. Stochastic 

Processes and their Applications 8 , 141-152. 

Souza, L., & Smith, J. (2002). Bias in the memory for different sampling rates. International 

Journal of Forecasting 18 , 299-313. 



31 

 

Souza, L., & Smith, J. (2004). Effects of temporal aggregation on estimates and forecasts of 

fractionally integrated processes: A Monte-Carlo study. International Journal of Forecasting 

20 , 487–502. 

Sowell, F. (1992). Maximum likelihood estimation of stationary univariate fractionally 

integrated time series models. Journal of econometrics 53 , 165-188. 

Sowell, F. (1992). Modeling long-run behavior with the fractional ARIMA model. Journal of 

Monetary Economics 29, , 277–302. 

Wei, A., & Leuthold, R. M. (2000). Agricultural future prices and long memory processes. 

(pp. 1-53). University of Illinois at Urbana-Champaign. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



32 

 

License  

Non-exclusive licence to reproduce thesis and make thesis public  

 

I, Kseniia Guskova (date of birth: 1991.05.03),  

              (author’s name)  

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:  

1.1. reproduce, for the purpose of preservation and making available to the public, 

including for addition to the DSpace digital archives until expiry of the term of validity 

of the copyright, and  

1.2. make available to the public via the web environment of the University of Tartu, 

including via the DSpace digital archives until expiry of the term of validity of the 

copyright,of my thesis 

Fractional ARIMA processes and applications in modeling financial time series,  

                                             (title of thesis)  

supervised by Raul Kangro,  

                   (supervisor’s name)  

2. I am aware of the fact that the author retains these rights.  

3. I certify that granting the non-exclusive licence does not infringe the intellectual property rights 

or rights arising from the Personal Data Protection Act.  

 

 

Tartu, 16.05.2017 


