
UNIVERSITY OF TARTU

Institute of Computer Science

Software Engineering Curriculum

Aleksandr Tsõganov

Integrating User Identity with Ethereum Smart

Contract Wallet

Master’s Thesis (30 ECTS)

Supervisor(s):

Orlenys López Pintado

Aivo Kalu

Kristjan Kuhi

Tartu 2019

2

Integrating User Identity to Ethereum Smart Contract Wallet

Abstract:

The first major application of the blockchain technology was made for cryptocurrencies and

by now it is used in numerous industries, including in energy, agriculture, manufacturing,

etc. The original idea of transferring assets from one account to another has to be updated

for those industries. Non-financial industries have a different definition of an asset and a

differing attitude towards the anonymity of the users, i.e. it is necessary for the users and

their wallets to become more public.

Namely, the main problem is related to the users' anonymity and uncontrolled asset transfers

in decentralized applications. In this thesis, the user’s identity is connected with his

blockchain wallet to allow asset transfers to take place only with added identity-based

signatures of the approver and the user himself. The implementation of the thesis includes

the analysis of the Ethereum blockchain principles, different wallet protection solutions and

state-level identity services. The thesis proposes a specification of an identity-based wallet

integration with Dapp. The solution specification is validated using Dapp and a smart-

contract prototype.

Keywords:

Blockchain, smart contracts, Ethereum, digital signature, user identity, Smart-ID

CERCS:

T120 Systems engineering, computer technology

3

Kasutaja Identiteedi Integreerimine Ethereum Nutika Lepingu

Rahakotiga

Lühikokkuvõte:

Esimene suurem rakendusplokiahela tehnoloogias oli krüptovaluuta ja selle vahendamine,

praeguseks on aga plokiahela tehnoloogia leidnud kasutust paljudes teistes

tööstusvaldkondades nagu energeetika, põllumajandus, tootmine jt. Algne idee, mis hõlmas

varade saatmist ühelt anonüümselt kontolt teisele, vajab uuendusi lähtuvalt uute

valdkondade vajadustest. Mittefinantssektorites võib vara määratlus olla erinev ning

suhtumine kasutajate anonüümsusesse samuti s.t, et kasutaja ja tema rahakott muutuvad

sellisel juhul avalikumaks.

Peamine probleem seisneb kasutaja anonüümsuses ja varade saatmise üle kontrolli

puudumises. Antud lõputöös me ühendame kasutaja identiteedi tema plokiahela rahakotiga

selleks, et lubada varade saatmist alles peale digitaalset signeerimist kinnitaja ja kasutaja

enda poolt. Lõputöö käigus analüüsitakse Ethereum plokiahela põhimõtteid, erinevaid

plokiahela rahakoti kaitselahendusi ja riigi poolt väljastatud identiteedil baseeruvad e-

identimise teenuseid. Lõputöö tulemusena esitatakse identiteedi põhise rahakoti ja

detsentraliseeritud rakenduse integreerimise spetsifikatsiooni. Töö tulemuse

valideerimiseks on kasutatud prototüüpi detsentraliseeritud rakendusest ja plokiahela

nutilepingust.

Märksõnad:

Plokiahel, nutikas leping, Ethereum, digitaalne signeerimine, kasutaja identiteet, Smart-ID

CERCS:

T120 Süsteemitehnoloogia, arvutitehnoloogia

4

Table of Contents

1 Introduction ... 6

2 Background and literature review ... 8

2.1 Ethereum Blockchain .. 8

2.2 Wallet protection solutions ... 11

2.2.1 Ledger ... 12

2.2.2 BlueWallet... 13

2.2.3 Multisignature ... 13

2.2.4 MetaMask .. 13

2.2.5 Coinbase Wallet .. 14

2.2.6 Comparison ... 14

2.3 User identity verification and signature services .. 15

2.3.1 ID-card based solution .. 15

2.3.2 Mobile-ID based solution .. 16

2.3.3 SplitKey based Smart-ID .. 17

2.3.4 Comparison ... 17

2.4 Summary ... 18

3 Specification of identity-based wallet integration with Dapp. 19

3.1 Requirements... 19

3.2 AS-IS processes specification ... 20

3.3 Analysis of existing solutions ... 21

3.3.1 Identity service integration with smart contract - Ethstonia example 22

3.3.2 Multisignature wallet contracts ... 23

3.3.3 Smart-ID signing and authentication process ... 25

3.4 TO-BE processes specification ... 27

4 Validating specification with prototype .. 31

4.1 Main frameworks and architecture .. 31

4.2 Validation example ... 32

4.3 Prototype project structure .. 32

4.4 Main functionality ... 33

4.4.1 Smart contract ... 34

4.4.2 Utilities .. 34

4.4.3 Dapp prototype .. 35

5 Conclusion... 36

References ... 38

License .. 42

5

Acknowledgments

I would like to thank WePower Network that gave an opportunity to do the research that

gives new inputs to their software system development. Additionally, Cybernetica and

Catapult Labs for giving advice on technical parts and my supervisors for their advice and

recommendations.

6

1 Introduction

Blockchain technologies are decentralized systems, originally developed for transferring

digital currencies. Currently, there are many potential applications of this technology in

different kinds of industries, for example, energy market agreements and agriculture supply

chain (Al-Jaroodi & Mohamed, 2019). Blockchain technology is gaining use in such

industries because of its tamper resistance, making hacking practically impossible. In case

of currency transactions, users regard anonymity of public blockchain systems as one of the

key characteristics to avoid being publicly linked to their assets for safety reasons. Assets

in blockchain are stored in wallets, which are protected using users’ private keys. As private

keys give control over wallets, there are many solutions developed to secure private keys.

These solutions have usability problems, for example USB based solutions require a specific

software and a computer to access the wallet. In addition, very few of them connect the

blockchain wallet to users’ identity, which makes it difficult for companies using blockchain

technologies to support their customers in case of any issues.

In one hand, anonymity is important for safety reasons and, in the other hand, platforms that

are using public blockchain technology as part of their system are facing difficulties with

supporting and protecting their users’ interests due to the anonymity of the latter. In non-

financial industries, where blockchain is used due to its decentralization, persistency and

auditability characteristics, the definition of an asset can be different. In such cases, the fact

that the users and their wallets become more public, because their tradable assets have

merely a prospective promissory value, may not constitute a problem in itself. Also, these

solutions may have no possibility to transfer the referred assets with just having access to

the wallet, because additional approvals of another user or service are required. To

implement that, a solution is required for identifying users to enable multiple-step approvals

or connections to such solutions.

One of such solutions is required by WePower Network, which has a platform that uses an

Ethereum blockchain decentralized application. There is a need to have users with verified

identity on this platform to provide trust for electricity purchase agreements on the platform.

To operate on state level in Estonia, it is required to have the identity verification service on

the same level as is performed by the state-issued digital identity verification service

provider in Estonia. The decentralized application itself is using Ethereum blockchain

wallets to make asset transactions between the users. The assets themselves contain

agreements between the users of the platform.

To give a better understanding of the problem context we will go through a simple example

visualized in Figure 1. The problem originates from the electricity domain, which might be

hard to understand. To make it somewhat clearer and simpler, we will explain electricity

through the example of water. Provided that we have an app that holds agreements between

A and B during a specified period of time. Let us assume that this contains a daily drinking

water supply agreement and there is lack of water in the state. We have a policy that limits

the amount of water for each participant, for example to three buckets for participant A. The

participant B is a producer of drinking water and needs to supply all the produced water

each day, otherwise having to pay a penalty due to regulatory rules. The app needs to verify

that all of the produced water from B is covered by the supply agreement, so that there is no

waste nor over-deliveries. To ensure auditability and storage of data in a distributed way

across the globe, the app uses Ethereum blockchain. The aim of the application is to sustain

control over the water supply agreements and ensure that the participants will not be

breaching applicable policies. If agreements were made between two participants only with

no third-party verification it would be difficult to guarantee that the agreements did not

7

violate the relevant policies. However, in case of under- or over-delivery (i.e. a breach of

the agreement), the enforcement of the aggrieved party's rights would be hindered due to

the agreement having been signed in blockchain where users are anonymous.

Figure 1 Blockchain application with agreement assets

The goal of this thesis is to propose a solution that ensures user wallet security and gives

additional value to decentralized applications by identifying anonymous users with verified

identity. An additional goal is to allow the transfer of assets between users with the

acceptance of the decentralized application approver signature.

The scope of the thesis is an Ethereum blockchain based application, the integration of user’s

identity verification and signing service and the development of approver functionality. The

main question is how to connect the user’s identity to the wallet in a way that transactions

can be made only after identity-based signature verification. For more detailed answer we

separated the main question into sub questions:

• SQ1 How to make the decentralized application know who is making the transactions?

• SQ2 How to associate an asset transfer with the user’s identity?

• SQ3 How to integrate the state-level identity-based signing into the Ethereum

blockchain?

• SQ4 How to create a wallet with multiple transaction approval steps?

• SQ5 How to verify identity-based signatures in Ethereum blockchain?

• SQ6 How to check that a transaction made in the past, was made with valid identity?

This thesis consists of five chapters:

Chapter 1 presents the topic, scope, problem and questions that the thesis will solve.

Chapter 2 includes the review of the literature of the problem space in three sections:

a. The Ethereum Blockchain is explored to gain an understanding of what its core

mechanism is and where the solution would be integrated.

b. The current solutions available for Ethereum wallet protection are reviewed and

compared to understand what approaches are used in current solutions and what are

the differences between them.

c. The review of the state-level identity verification services available in Estonia.

This chapter also presents the summary of the literature review and analyzes the possible

application of the knowledge gained from the literature to the proposed solution.

Chapter 3 explains the requirements and current state to create the specification for identity-

based wallet integration with Dapp. It is a more detailed analysis of the results and choices

made in Chapter 2, with real examples.

Chapter 4 presents the prototype of the solution to the problem outlined in this thesis. This

chapter also validates the prototype against the specification.

Chapter 5 summarizes the work, presents the solution and outcomes and provides

concluding remarks.

8

2 Background and literature review

This chapter covers the problem space and evaluates the working solutions that need to be

taken into account in the development of the one solution presented later in this thesis.

The problem space is Ethereum Dapp1, a blockchain based application that uses its own

currency tokens2. These tokens are transferred from user to user and everything is written

into the blockchain. Because the solution needs to integrate with blockchain, the Ethereum

blockchain functionality is described in Section 2.1. A wallet is a part of the blockchain and

hence also a part of the problem space. To answer SQ1 and SQ4 research questions, security

solutions for wallets are reviewed and compared in section 2.2. Based on the requirement

of using the Estonian national identity services, the available possibilities for integration

were reviewed and compared in section 2.3 to support answers for SQ2, SQ3 and SQ5.

2.1 Ethereum Blockchain

Blockchain is a technology that is based on a digitally distributed ledger system that has no

central storage owner authority. Unlike the traditional cloud storage approaches, the

Ethereum blockchain technology is open, which means that all records are trustfully shared

among parties. All users who run a certain blockchain software are called nodes. Nodes

store individual copies of records of the entire blockchain system. As nodes can be located

anywhere in the world, blockchain systems are globally decentralized. Because everything

stored in nodes is public, the system is self-verifying being in a so-called state of consensus.

In addition to storing, nodes carry out a verification process of new data validity against

other nodes’ copies (also called the mining process). Such process enables the blockchain

to be robust, which means that all the data stored in the network cannot be manipulated by

a single node and has no single point of failure. Blockchain networks are transparent and

incorruptible, which makes them safe to be called the single source of truth (RF Wireless

World, 2012) (Blockgeeks, 2018) (Berryhill, Bourgery, & Hanson, 2018).

Ethereum is an open source platform that runs on the Ethereum Virtual Machine (EVM).

EVM is a turing complete software that is working in the Ethereum network. An abstract

layer of the network enables to create own rules of ownership, transaction formats, and state

transition functions. These features are possible due to smart contracts, which are a set of

rules that are executed only if certain conditions are met (Vujičić, Jagodić, & Ranđić, 2018).

In addition, this solution enabled the possibility to create decentralized applications.

Ethereum provides its own high-level programming language named Solidity. Solidity is

one of the most common languages in blockchain solutions for writing smart contracts,

which is very similar to JavaScript. Solidity enables engineers to develop registries of debts

or promises, different markets or move assets according to some instructions as defined in

the past (Grech & Camilleri, 2017) (Destefanis, Marchesi, & Ortu, 2018).

1 Dapp – decentralized application of Ethereum platform.
2 Token – Ethereum platform can issue tokens for Dapps. Tokens are smart contracts that implement standards

of Ethereum. In majority of Dapps, the ERC20 Token Standard is used as the native currency (Vujičić, Jagodić,

& Ranđić, 2018).

9

Blocks

Blocks in Ethereum Blockchain contain a block number, difficulty, nonce3, transaction list

and the most recent state. The blocks are containers of smaller fractions of data – the

transactions. To enable data validation across the network each block has a hashed link to

the previous block, as shown in Figure 2. The hashing process is a mathematical problem

that must be mined by the computational power of a node in the network. The output of the

hashing process obtained by the input values passed through a cryptographic algorithm

results in a unique combination of numbers and letters with a fixed number of bits (Berryhill,

Bourgery, & Hanson, 2018). The hashed links enable blockchain data to be immutable and

consistent across the network. There is no way to remove data that has been written into the

blockchain. Distributed network is about consistency across all of the participants in the

blockchain network. Ethereum uses a proof-of-work validation scheme where all

participants must agree on a common ledger and have access to all entries of blocks ever

recorded (Valenta & Sandner, 2017).

Figure 2. Blockchain block link visualization (Saurel, 2018)

Transactions

A blockchain transaction is the core information that is stored as data in the blocks. Creating

a smart contract, broadcasting a smart contract and interacting with it is done by separate

transactions. Basically, one type of interaction with a smart contract can be described as a

banking transaction between persons A and B that is written in a hashed format. The

transaction flow (Wei, 2017) of the Ethereum blockchain works as follows

1. The person A is requesting a transaction to the person B.

2. The transaction is digitally signed and broadcasted to the network for validation

according to a logic, which is set by the creators of the Ethereum blockchain system.

In a transaction, there can be one or many inputs and outputs.

3. One node validates the broadcasted transaction and picks a block to include the

processed transaction in. When the transaction is marked as valid and stored in the

block it will wait until the prerequisites of a complete block are fulfilled.

4. The fulfilled block is sealed with the hash as described before and distributed across

the network to validate the new block with its hashed value.

5. The block is published to the network once all the nodes are confirming the new

block’s hash.

3 Nonce – the number of transactions sent from a given address.

10

Transaction Costs

Each transaction made on Ethereum blockchain costs a certain amount of so-called “Gas”.

The sum of the Gas cost is calculated as sum of every operation performed in a transaction.

Each block has a Gas limit, the amount of execution work that is needed to perform a

transaction and pay for that execution process itself. Ethereum Virtual Machine spends a

certain amount of Gas during the transaction execution according to specific rules

(Ethereum, 2019).

The Gas parameter has its own price, which is configurable by the transaction creator. The

Gas limit is multiplied by the Gas price and paid upfront before the execution of the

transaction. If some Gas is left after the execution, it will be refunded to the creator of the

transaction. The Ethereum network has limits to the transaction processing speed based on

the nodes’ availability. The less is paid for the Gas the longer it takes to perform a

transaction. If more Gas is needed for the transaction than allocated, the process is fully

reverted to the beginning state (Ethereum, 2019).

Wallet

Transactions in a blockchain can be made using specific assets, for example a numeric value

in a Dapp currency, described in a blockchain system, it can be a digital currency, energy

tokens or any value that can be transferred between the participants of the blockchain. In

most of the blockchain systems the information on these assets is presented in a hashed

form. To make transactions, there is a need to have a wallet, which includes these assets. A

blockchain wallet is an asset account, that has two types of keys – public and private, both

generated when the wallet is created (Andreas M. Antonopoulos, 2018).

Public and private keys

A public key is a public piece of information in a blockchain network, it is similar to a bank

account number in a bank. Making transactions in a blockchain system can be described as

sending assets from public key A to public key B. Public keys are created using

cryptographical algorithms. Special properties in the mathematical functions used in these

algorithms makes the creation of such keys simple, but also make it very hard to calculate

their inverse (Berryhill, Bourgery, & Hanson, 2018).

A private key is used to sign the transactions and is the only way to access the digital assets

in the wallet. Although the blockchain system itself may be secure enough, the security of

the private key has to be ensured by the users themselves (Andreas M. Antonopoulos, 2018).

Smart Contracts

When the basic implementation of a distributed ledger was introduced in Blockchain 1.0,

cryptocurrency became the most common application of blockchains. The financial market

was the simplest way to popularize blockchain systems. Large amounts of digital currencies

were implemented for trading and investing. The next step was the implementation of the

Ethereum Blockchain, in Blockchain 2.0, which introduced the smart contract concept

(Berryhill, Bourgery, & Hanson, 2018) (Unibright.io, 2017).

Smart contracts are a set of rules that can be executed when conditions are met, they are

similar to the users of the blockchain network. These are pieces of written scripts that are

11

connected to the blockchain network. The main advantage of smart contracts is that these

are nearly impossible to hack, because they are controlled by the blockchain logic, which

reduces the costs of execution and verification and also protects from fraud or third-party

interference (Berryhill, Bourgery, & Hanson, 2018).

Because smart contracts can be written by anyone, it enables individuals and companies to

write some of the business logic directly into the blockchain. The simplest example of a

smart contract is user A sending assets to user B after, for example, 5 days. The smart

contract definition describes a time-based condition, takes assets from A, holds them as a

third-party user in the network and then allows to execute the transaction to B only when 5

days have passed. Smart contracts enable to create decentralized autonomous organizations

in the blockchain systems (Christidis, 2016) (Berryhill, Bourgery, & Hanson, 2018).

In more detail, the smart contract can be separated into four independent parts: contractual

arrangements, control of preconditions, execution and finalization (Figure 3). In the

contractual arrangements (also called “create” activity), the parties who are involved decide

on their liabilities and write these into the code. As an output, there is an executable form

stored in the blockchain system. In the preconditions phase (known as “freeze” activity),

every node in the blockchain system can assess the smart contract to check the conditions,

so that the written logic is stored on the blockchain. This is the governance part of a smart

contract as it is checked publicly on the blockchain. It is followed by the execution part,

which evaluates the transactions that were defined to be executed in case the conditions are

met (Christian Sillaber, 2017).

Figure 3 The life cycle of a smart contract: phases, actors and services (Murthy, 2017).

2.2 Wallet protection solutions

The literature review has produced a feature overview of existing solutions, that were found

in the reviewed sources. The features are listed in Table 1. The main purpose is to analyze

the different solutions available for protecting blockchain users’ asset wallets and their

connection to the users themselves. To get a better overview, solutions made for different

Blockchains have been covered. There are many technologies and methods to protect the

12

user’s wallet, each of these having specific pros and cons. Most blockchain systems are

using similar solutions, but Ethereum for example, has additional solutions due to smart

contracts (Cheetah Mobile Blockchain Research Lab & Cheetah Lab, 2018).

Table 1 compares five different solutions that are being used for wallet private key storage

and/or for security enhancement. For the purposes of answering SQ1, two possible types of

wallet security were discovered – hardware-based and software-based. As wallet security is

a part of the blockchain process that requires user interactions, it leads directly to SQ2. The

aim is to find a solution that requires a smaller number of human actions, a possibility to

connect the user with his identity and allow the introduction of an additional approval step

before transferring assets.

Table 1 Comparison of wallet protection solutions

Name Type
Protectio

n

Connectivit

y

technology

Connect

s to

Approva

l

possibilit

y

User

identit

y

Backup

possibilit

y

BlueWallet Hardwar

e

PIN Bluetooth Mobile;

computer

no no unknown

Ledger Hardwar

e

PIN

4-8 length

USB Compute

r

no no yes

Multisignatur

e

Smart-

contract

Relies to

code and

contract

owner

wallet

security

Blockchain

network

Depends

on last

security

method

applied

yes no yes

MetaMask

Wallet

Browser

-

extensio

n

User

password.

12-word

recovery

Internet,

browser-

plugin

Compute

r

no no yes

Coinbase Web-

Service

Username

,

password,

2-step

Auth

Internet Anywher

e on the

web

no no yes

The following sections explain the wallet protection solutions from Table 1 in more detail.

2.2.1 Ledger

A ledger is a hardware wallet created specifically for protecting blockchain private keys. It

stores the private key entirely on hardware and provides access to it when a PIN-code is

entered. The initial setup of ledgers includes a recovery code generation to allow the private

key recovery in case of device damage or other issues. To allow for the recovery, it is

necessary to securely save the number of words that are needed to be entered in case of

restoring the key. The device can store 25 different blockchain private keys at the same time

(Ledger, 2018) (Bruno, 2017).

The Ledger solution is one of the simplest and the most popular one. The risk remains in the

software failure of the ledger device or in its physical damage. There are also usability issues

associated with the need of using a computer and a connecting wire each time a transaction

is made.

13

2.2.2 BlueWallet

A BlueWallet is a hardware solution that is implemented to securely authorize blockchain

transactions. It is mainly focused on Bitcoin blockchain transaction verification. The

BlueWallet represents a proof of concept of secure communication between hardware and

blockchain networks using a Bluetooth Low Energy connected device. In addition, this

solution can be used as an alternative payment method instead of using cash or credit cards

(Bamert T., 2014).

This concept requires that transactions that are made in a Bitcoin Blockchain can be

prepared offline from the blockchain network. This allows the solution to be completely

separated from any network. The transaction should be confirmed by the user’s private key,

which is safely stored in the hardware itself and protected with a PIN code. In case a bitcoin

transaction is made using a computer, it allows to sign the transaction using a Bluetooth

connected BlueWallet hardware for enhanced transaction security (Bamert T., 2014).

This approach uses quite a simple solution for storing a private key on hardware, but in

addition, it provides a convenient mechanism to sign transactions wirelessly, while

traditional hardware solutions are wired. The main risk of theft is reduced, since the user is

disconnected from the internet, although hardware errors or physical problems are still

possible. The access to the private key is simplified to having only a PIN code, which

increases the risk in case the device is stolen.

2.2.3 Multisignature

The Multisignature wallet also referred to as “multi-sig” is a different approach to solving

the private key security issue. Multisignature allows to create multiple private keys that need

to be used for signing a transaction. In this approach, multiple users have independent

private keys, which are applied as authorization signatures in a Multisignature wallet. This

solution requires more than one individual to use his key to make a transaction from the

wallet. For example, if you are having a multi-sig wallet in a three-person family, then if

something happens with one of the family members the wallet can be accessed by two others

(Hannan, 2018) (Unchained Capital, 2018).

The control remains in the user’s hands, so although it is better to have multiple sources and

possibilities, this solution is still subject to human error. However, with this solution the

recovery of a stolen key is possible. Technically, to make Multisignature work, it is required

to have smart contracts in the blockchain. Each transaction that will be made using a

Multisignature wallet should be executed within the framework of specific smart contract(s).

It adds complexity to the system and may cause vulnerability in case of an incorrect

implementation. This means that for each transaction there is a need for multiple users and

this solution may not be as user-friendly as the ones that rely on a single user (Hannan, 2018)

(Unchained Capital, 2018).

2.2.4 MetaMask

MetaMask is a web browser extension wallet that works for Ethereum blockchain. It is an

open source project that creates connections between Chrome, Firefox and Brave browsers

and Ethereum blockchain. This solution uses Hierarchical deterministic settings by giving

the user a list of words that can be used to reset lost account information. MetaMask allows

14

users to store their private and public keys in their own browser’s local storage. This solution

is not securing the keys completely, because while it is reasonably safe to store your own

keys in the browser application, it also has a connection to the internet, which presents other

security issues. While the browser is connected to the internet, there is a risk of facing

phishing attacks using browser’s opened tabs and stealing information through fake forms

or pop-ups opened from websites (King, 2018).

MetaMask improves the usability of private key in terms of ease of transactions, but it makes

the user’s computer and its browser susceptible to malicious actions that can be made

through the Internet. The list of words for restoring access to the keys needs to be stored in

some place physically or electronically, which is nearly the same level of risk as storing the

private key itself.

2.2.5 Coinbase Wallet

Coinbase is a web-based digital currency market that offers its own wallet storage. The

user’s wallet keys data is stored using AES-256 encryption on Coinbase servers. The servers

are entirely disconnected from the Internet for extra security. A secret sharing method is

used to split the data and backup on USB drives and papers, which are geographically

distributed around the world. For a user, there is both a username and password protection

as well as a 2-step verification available. Coinbase fully manages the private key of the

user’s wallet, so the user cannot use or even see the key separately (Coinbase, 2019). The

service is widely used, which means that this web-service wallet solution is trustworthy and

widely accepted by the users. Coinbase has more than 25 million users by today (Wilma

Woo, 2018).

The usability is quite good, due to the private key management by Coinbase. There is an

application available to interact with the wallet. The risk is mostly on the service-side to

securely hold and use the private key. User only stands for his account password and 2-step

verification process, which is quite simple and recoverable. This solution does not provide

identity verification.

2.2.6 Comparison

Ledger is a solution that does not connect to internet, so we cannot access and verify user’s

identity online. This is needed for our solution, because identity related services have

certificates that need to be checked for validity. It has a closed hardware, that cannot be

modified and integrated with identity. Interaction needs a computer, which means solution

usage on mobile device is not possible. BlueWallet is nearly the same, except that it is

wireless.

MetaMask is connected to computers browser and has no connection to user identity that is

also needed for our solution. Additional approving step is not allowed.

Coinbase web-service Wallet solution is a good example to use for implementing own

solution, because it has a large number of users that supports, and trust in Coinbase web-

service. In that field number of users means that service is trustful and well working. The

wallet can be accessed using internet from any device, but there is no possibility to develop

own integrations, so identity solutions cannot be connected.

Multisignature allows to use example script that is deployed to the blockchain network for

usage. As it is open-sourced it can be taken in to account as a template to make own

15

modifications. Cons of Multisignature is that it is fully self-written and it can be not well

tested or secured against issues. Multisignature is not device related, because it is in the

Blockchain network. Multisignature wallet can be controlled using Dapp.

2.3 User identity verification and signature services

This section briefly describes three possible ways of electronic identity (eID) verifying at

state level in Estonia. The aim of this section is to point out the specifications that will help

answer questions SQ2 and SQ3. All of the services use certificates issued by SK ID

Solutions AS which also provides validity confirmation and time-stamping services. First

solution is based on national ID-card, second and third are mobile services. An overview of

the solutions and comparison of the features and prices are compared (SK ID Solutions AS,

2019).

Table 2 gives an overview of the three Estonian nation-level identity services and their

differences. The important point was the operational complexity, from the user’s

perspective, of any action that requires confirmation of identity. Number of users is showed

to get overview of potential use of the service. Prices are taken into account to see

approximate cost of solution and additional charge for user.

Table 2 Table concluding different Identity Services

Service ID-card based Mobile-ID based Smart-ID based

Price for user
25€ citizen

Adult or 100€ for
1€/month 0

Number of steps

for authentication
4 3 3

Equipment needed

for use

ID-card, computer,

Internet,

card reader

Mobile phone, mobile

phone network connection

Smartphone

(Android/iOS), any kind

of internet connection

Number of access

points per identity
1 1

More than one (limit not

specified)

Number of users in

Estonia

~1198876

(Estonia, 2019)

~193000

(Sibold, 2018)
~341803 (Lõugas, 2018)

Number of users in

total

~1198876

(Estonia, 2019)

~400000

(SK ID Solutions AS,

2019)

~2001187

(Smart-ID, 2019)

Integration layer
SOAP API

DigiDocService
SOAP API DigiDocService Smart-ID REST API

2.3.1 ID-card based solution

ID-card is a mandatory identity document in Estonia which is connected to one person’s

physical identity. It is a secure data carrier for keys and certificates to verify user’s identity.

The card itself can be used for many operations, e.g. as a national ID document, national

health insurance card, proof of identification for bank accounts, i-Voting, for digital

signature creation and to access many other e-services (Republic of Estonia Information

System Authority, 2019; e-estonia, 2019).

16

ID-card has a chip which is used to read certificates from the card. The public key

infrastructure (PKI) model uses secret and public keys which are stored separately. The

connection of the keys is used to prove person’s identity for e-services or to make a digital

signature. The secret key is protected and can only be used by its original owner and the

public key is available to everyone. All of the operations that can be performed using an ID-

card are PIN-protected to prevent misuse of the card (Republic of Estonia Information

System Authority, 2019).

To use this service there is a need for the government issued card itself, which can be issued

to Estonian citizens or e-Residents (Politsei- ja Piirivalveamet, 2019). In addition to the card

itself there are also issued PINs which are needed to perform any operation with using the

card.

Each card has certificates stored inside that are needed to be valid and up to date to perform

any digital actions. Certificates are validated every time they are used for authentication or

document signing procedure against Certificate Authority service. This validation service

should be used by e-service provider (SK ID Solutions AS, 2018).

Computer with an internet connection, card reader and ID-card software are needed as

additional equipment to use the card-based services (id.ee, 2019). The process of

authentication for e-service includes 4 steps:

• Connecting to computer using a card reader

• Entering e-service

• Requesting authentication using an ID-card

• Entering the card’s PIN code

2.3.2 Mobile-ID based solution

Mobile devices are the most used personal devices in these days and mobile based electronic

identity services are becoming widely used around European Union. Mobile-ID service is

an addition to Estonian ID-card based solution, which uses special SIM card to perform eID

authentication and signature creation. The service has to be ordered from the mobile network

operator and costs 1€ per month (Kubach, 2015).

Issuing Mobile-ID SIM card follows the same requirements as an ID-card. The user’s

private keys are stored on the SIM card’s chip and are only accessible with valid PIN codes

that are provided by the issuer. SIM card has a small application that is used to deliver

authentication and signature processes through the mobile network. All data exchanges over

the service are performed over an encrypted connection (e-estonia, 2019).

To integrate an e-service with Mobile-ID there is a need to use DigiDocService which

provides SOAP-based web integration layer. To use this service, you need to have any kind

of mobile phone and mobile network connection. The process of authentication for e-service

requires 3 steps:

• Entering an e-service

• Requesting authentication using Mobile-ID

• Entering a PIN code on the phone

17

2.3.3 SplitKey based Smart-ID

SplitKey is an Authentication and Digital Signature Platform which uses end-user mobile

devices (iOS and Android) to allow secure authentications. The solution can be used as an

end-user access management tool for various e-services. SplitKey is fast and scalable

solution that is secure based on threshold cryptosystem. The solution allows digitally

signing documents according to the eIDAS directive of the European Union Regulation

(Cybernetica AS, 2017).

The technology is a mixed token solution which combines the benefits of using a

cryptographic hardware token and a software token. The main concept is to separate the

private key into two parts and store them in separated systems. The concept consists of three

main components. The first system is in the client mobile device and it is used for

authentication and digital signing. The second one is the service provider on the server (also

referred to as portal), which allows account management, user registration and customer

support. The third is the core servers and HSM4’s. The important role of this server is to

provide secure control of the client’s private key. The server-side provides trust, auditability

and assurance that a mobile device is not able to achieve independently. The client is the

sole possessor of the full final key. Full final key can be used only by entering a PIN code

from the device. Legally, the keys do not exist in isolation, they can exist only with client’s

personal identity certificates. There is a need to bind user’s identity to onboard the newly

created public key and results of SplitKey private keys (Cybernetica AS, 2018).

Smart-ID is main product that is powered by SplitKey technology. It is mostly used in

Estonia and the Baltic states. The authentication and signature are recognized as highest

level Qualified Electronic Signature in EU. In combination with recognition as QSCD

(Qualified Signature Creation Device) Smart-ID is allowed to create signatures on the same

level as ID-card or Mobile-ID based solutions. Smart-ID uses international scheme that is

meant to be used across countries with different eID implementations. The solution already

offers Smart-ID for identity providers, which means potential growth of the solution (SK ID

Solutions AS, 2019).

To use this service, the user needs to have a smartphone with iOS or Android operating

system and any kind of network connection. The process of authentication for e-service

consists of 3 steps:

• Entering an e-service

• Requesting authentication using Smart-ID

• Entering a PIN code on the phone

2.3.4 Comparison

ID-card based solution needs the most steps to perform any action, because of the additional

hardware it uses. Mobile-ID and Smart-ID solutions have the same number of steps. The

difference between them lies in how the service is accessed and the type of network

connection required. Mobile-ID is strongly mobile operator related and requires additional

monthly fee to use it. The advantage of Mobile-ID from the usability perspective is only

that it can be used by any mobile phone. The advantage of Smart-ID is that it can be used

4 HSM - Hardware Security Module

18

on any iOS and Android device connected to any type of internet and it has no fees for the

end user.

Integration for all of the services can be done using web service API. For ID-card and

Mobile-ID solutions there are SOAP web services and Smart-ID uses a REST API. ID-card

and Mobile-ID services are stricter to Estonian national eID PKI and are harder to

implement in other countries, where Smart-ID has an advantage. Smart-ID offers an Identity

Provider package for new eID providers which helps to expand the service usage.

2.4 Summary

The overview of wallet security solutions shows that none of them connects to user’s

identity which is needed for our solution. Having connection between identity of person and

his actions will enable to protect participants’ rights. This is one of the reasons why we start

analyzing how to make it possible in our work. To support SQ4 Multisignature will be taken

into account for further analysis in section 3.3.2. Multisignature allows to create own

solution that can be integrated with any Ethereum Blockchain Dapp. Multisignature is code-

based solution that does not require additional equipment to work. It will be an open-sourced

code, that will make it possible to get feedback from users to improve the solution in the

future.

In addition, we can state that Smart-ID is most accessible for user from other reviewed

identity solutions. Smart-ID does not require additional equipment, only users mobile

phone. It also does not have additional fees for end user and any internet connection can be

used to access the service. The solution has an additional advantage because of REST API

and possibility to integrate new identity providers. Smart-ID will be reviewed in more detail

in section 3.3.3.

19

3 Specification of identity-based wallet integration with Dapp.

The creation of specification will consider explanation of the entities that will be used. Then

in first part we will show what are the main requirements that we need to fulfill to solve the

problem. We will use BPMN language to explain how current solutions, hereafter called

AS-IS processes, work. These processes will be explained to see that current state is not

fulfilling the requirements. In the second part we will extract information from existing

solutions and analyze them. Analysis outcome will be used in solution specification,

hereafter TO-BE process. The third part is modelling TO-BE process specification and its

mappings to the requirements. BPMN models are including only information that is needed

for scope of the specification.

The main entities of the model context are:

• Approver – the user who have rights to accept and sign transaction request;

• Asset – value stored in wallet;

• Authentication – process which confirms that user is exactly the person whom he

calls himself;

• Dapp – web-based application that is connected to blockchain, which is used interact

with smart contracts deployed in blockchain network and services available in the

internet;

• Identity – user’s state issued national identity;

• Smart Contract – program script code which is part of the system that runs on

blockchain;

• Signature – value that is cryptographically signed using user personal private key;

• System – Combination of software in context;

• Transaction – identifier of asset transfer;

• User – person who has account on application or potentially creates one;

• User account – entry in application that stores user’s information and allows user to

use application;

• Wallet – Ethereum blockchain account with private and public keys.

3.1 Requirements

This section lists the requirements for the solution that are outlined by WePower Network5

and refactored to fit the scope of this thesis. Functional requirements are listed in Table 3

and non-functional requirements for identity service are showed in

Table 4.

5 WePower Network - https://wepower.network/

https://wepower.network/

20

Table 3 Functional requirements

ID Requirement

R1 User should sign up to the Dapp only with identity authentication.

R2 User should have an asset wallet that is connected with identity.

R3
User should transfer assets to another user only after signing transaction with identity

signature.

R4 Approver should approve assets transfer.

R5 Approver should approve transfer by signing transaction with an identity signature.

Table 4 Non-functional requirements

ID Non-Functional Requirement

NFR1 Identity service should not require additional fees from the user.

NFR2 Actions with identity service should not require additional pluggable equipment.

3.2 AS-IS processes specification

This section describes AS-IS process models that are related to the requirements. Aim is to

get overview of the processes and target tasks that should be updated with required

functionality.

Figure 4 shows main tasks that are followed to sign up to application. The process includes

two participants user and application. Model shows that blockchain wallet is created

separately of the application and wallet protection solution (one of mentioned in chapter

2.2) is used to protect the wallet private key. User signs up to application and uses wallet

address to link his account to the wallet.

Figure 4 AS-IS sign up

21

Figure 5 describes process of making transaction. The model shows that after user have

successfully logged in, the initiation of transaction should be triggered and after that

application prepares the transaction and asks private key. Private key is accessed by user

using one of wallet protection solutions (mentioned in chapter 2.2) and provided to

application to perform transaction.

Figure 5 AS-IS make transaction

On the models we can see that user is not connecting his identity to the application. The

transaction model shows that there is no approval step and transaction is not connected to

users identity signature. Overview of AS-IS processes relation to requirements are

concluded in Table 5. This table shows that none of the requirements are fulfilled in AS-IS

sign up and transaction process.

Table 5. AS-IS processes relation to requirements. Requirement not fulfilled is indicated as " - " and not

related marked as empty cell.

Process R1 R2 R3 R4 R5 NFR1 NFR2

Sign up - -

Make transaction - - -

3.3 Analysis of existing solutions

To create TO-BE specification for the solution there will be three different aspects analyzed.

The first part shows existing example of identity-based signing in smart contract. Analysis

of Multisignature examples is explained in the section 3.3.2 and processes of Smart-ID in

the third section 3.3.3.

22

3.3.1 Identity service integration with smart contract - Ethstonia example

This chapter analyzes how Ethstonia solution works. Ethstonia was a prototype which is

connecting government issued ID-card to Ethereum blockchain wallet and allow to sign

transactions using this ID. It is in prototype stage, so there was no interface online. The

solution is web page application, which connects to the Ethereum blockchain. Application

needs to be run from source code, and it needs ID- card from Estonia to apply the transaction.

There were no specification how the wallet itself was created and where the actual keys of

Ethereum wallet were stored (Logvinov, Ethstonia Identity, 2018).

To investigate the solution source code (Logvinov, 2019), the prototype was reviewed and

executed. The outcome of the review is visualized using BPMN model. Figure 6 shows the

main process flow of making transaction with three actors – user, application (Dapp) and

Smart contract. Tasks explain the flow of transaction process and data object usages. This

solution creates signature on hashed object that contains receiver wallet address and value

to be transferred. The same object and its signed values are sent to smart contract to perform

signature verification. After successful signature verification transaction is sent to receiver

with specified value.

Figure 6 Ethstonia transaction process

23

This solution is created using Truffle framework and the same framework that provides local

network is used for execution. Execution of this solution is limited and cannot be fully

performed due to costs of the computational tasks and signature verification task. The Gas

values used in transactions of the solution exceeds Gas limit values that are currently used

in live network, which is ~8M of Gas per block (Etherscan, 2019).

Outputs of Ethstonia example analysis is listed in Table 6. Ethstonia example shows that

signature must be verified and verification process is too expensive process in blockchain

network. As conclusion we see that it is important to have sufficient data to be signed with

identity signature and the calculations should be optimized to be cost efficient.

Table 6 Extracted information from Ethstonia example.

Specification topic Extracted information

Data to be signed with
identity

There should be necessary data to be signed. In case of Ethstonia
there is only receiver and value, which is not enough to associate
specific transaction with user’s signature.

Hashing algorithm Ethereum calculates hashes with SHA3/keccak256.

Signature verification Every signature created with the identity should be verified before
executing the transaction.

Calculations costs Calculations for signature verification might require more Gas than
can be used in the network. Calculations performed in the smart
contract should be simple to be executable on the chain

Solidity Framework Truffle Framework to write smart contracts and Dapp

3.3.2 Multisignature wallet contracts

This section describes results of the analysis of three different Multisignature smart contract

solutions. The main feature of Multisignature contract is make blockchain transactions by

acceptance of multiple users. This is exactly what is needed to fulfill requirement R4 where

one user will be who wants to perform transaction and another one who approves it. Purpose

of this analysis is extracting knowhows and finding suitable examples for solution to be

implemented.

According to overview of Multisignature contracts (Unchained Capital, 2018), there are

some contracts that lost their trust due to code vulnerability issues. ConsenSys, Gnosis and

BitGo Multisignature Wallet contracts are still trustful and used in production. Trust of the

Multisignature contract is important and implementing a solution from scratch is not

reasonable. Source codes of contracts are reviewed to find reusable features of existing

contracts. The output of the reviews is additional input for decisions made for solution’s

TO-BE specification.

ConsenSys Multisignature Wallet (George, 2017) and Gnosis Multisignature Wallet

(George, 2019) source codes are from the same author and the functionality of the contracts

are nearly the same. Common features and specifics of the contracts are as follows:

• Constructor defines an array of owners’ addresses and a number of required

confirmations for asset transaction (up to 50).

24

• Allows to add, delete, replace owner addresses. Method should be executed by the

wallet address itself.

• Allows to change required number of confirmations by walled address.

• Separated methods for transaction submission and confirmation.

• Submitted transaction is stored as a struct that holds all the required data to execute

the asset transfer when needed.

• No transaction signatures used, submitted transaction gets its id that other owners

should confirm.

• Owners can revoke their confirmation.

• Transaction can be executed by anyone, if required number of confirmations

condition are filled.

In addition to common features, ConsenSys contract has daily withdraw limit and Gnosis

has additional features to call current state of the transactions and confirmations.

BitGo Multisignature Wallet v2 (Allmendinger, Chan, & barathcj, 2017) source code is

reviewed, and main features and specifics are extracted:

• Constructor defines exactly 3 owners’ addresses.

• Uses modifier (requirement check) for all public methods.

• Uses sequence in each transaction to prevent replay attacks and verify if the same

sequence transaction has not been called before.

• Transfer assets requires signature argument, which is created using keccak256 with

arguments prefix, receiver address, value, data, expire time.

• Uses one method to perform asset transaction to new address, first owner is taken

as sender address and second from signature of one of the other participants (two

participants of three in total).

• During transaction method execution operation hash is created to retrieve second

participant from signature hash.

• Uses additional feature called safe mode to prevent asset transferring to wrong

addresses.

Main difference of these contracts is that how many methods should be called before the

execution, due to that BitGo contract needs to create its own signature that is verified before

the transfer. Outcome of the review has a number of features that are listed in Table 7.

According to requirements R3, R4, R5 there is a need to have multiple steps before

execution, because first user needs to initiate the transaction and this transaction should exist

before approval. In that case solution should use combination of reviewed contracts. To

conclude the table, we can say that most of the basic methods and features will be reused in

solution implementation.

Table 7 Extracted information from Multisignature wallet analysis.

Source Specification topic Extracted information

Gnosis, ConsenSys Transaction

Create transaction struct to store all
transactions and make them accessible by
id.
Use boolean “executed” for transaction
state tracking.
Use different methods for transaction
initiation and confirming.

25

BitGo Hashing algorithm
Keccak256 (Sha3) algorithm used to hash
used information in smart contract.

Gnosis, ConsenSys, BitGo Modifier
Modifier used to check conditions before
method execution in smart contract.

Gnosis, ConsenSys, BitGo Address
Store addresses of contract owners during
contract creation.

3.3.3 Smart-ID signing and authentication process

The section describes the process of Smart-ID based authentication and signing. Main

entities, execution steps and specifications are extracted and summarized. Output shows

specifications identity related functionality needed to fulfill the requirements.

Entities of Smart-ID process are as follows:

• Relying Party (RP) – The service that initiates Smart-ID processes, in case of this

project the Dapp.

• Certificate – certificate that belongs to certificate authority, which Public Key values

(exponent and modulus) are needed to verify signature.

• Data – hashed value of the document to be signed or random generated value in case

of authentication

• Certificate Authority (CA) – Authority that holds certificate of the person’s identity

• Verification code – The code that shows up on RP and mobile device which indicates

that signing or authentication is performed on the same data on both sides.

• Signature – object of value and algorithm that is result of signing or authentication

process. It can be used to verify the validity of signed data.

• Mobile device – device receives authentication or signing requests. Device where

user confirms actions by entering a PIN code.

• Smart-ID backend – application of Smart-ID system that interacts with RP, Mobile

device and CA.

• Person’s identifier – identifier of person’s identity (example in Estonia

38012121212)

Smart-ID uses REST API based interface which allows the execution of signing and

authentication processes. As our solution needs to integrate with Smart-ID we will show

more detailed process visualization. Figure 7 is a sequence diagram that describes detailed

authentication and signing process. The flow starts with request from Relying Party with

person’s identifier and random data hash, and which receives the session id. Smart ID

backend performs request from CA and starts user authentication on a mobile device.

Relying party is polling for response of session until user confirmation on mobile device.

Once user confirms authentication end result is returned (Jalukse, 2019).

26

Signing process consists of same steps as the authentication process, except that it has no

interaction with CA. Second difference is that the data object of first POST request includes

document hash that signature is requested for.

The OSCP6 service can be used separately for checking certificate validity after the signature

is made. This is the feature that supports SQ6, as we can always validate user’s identity to

have a proof of valid signature.

Figure 7 Smart-ID authentication and signing process sequence diagram (Nõmmik, 2017)

Conclusion of Smart-ID analysis is shown in Table 8. For authentication or signing with

Smart-ID the data should be hashed using SHA-2 type algorithm. Verification of signature

is performed using RSASSA-PKCS1-V1_5 standard (Internet Engineering Task Force,

(IETF), 2016), which is a mathematical calculation with 768-byte sized number. Execution

of sample authentication and signing requests gives different certificate results. It means

that signature cannot be verified with authentication certificate. As authentication and

signing is in theory the same process, signing request can be used as authentication. To

verify that user receives correct request of authentication or signing, verification code

calculation is performed using data hash and output consisting of 4 digits is displayed on

the mobile device and the service. Hashing algorithm, signature verification and the steps

through Smart-ID flow will be used in implementation of solution prototype.

6 OSCP (Online Certificate Status Protocol) – service of the warranty of user certificate validity.

27

Table 8 Extracted specification from Smart-ID

Specification topic Extracted information

Hashing algorithm Supports only SHA-2 types of data hashing.

Signature Verification standard RSASSA-PKCS1-V1_5.

Certificate Signature certificate should be stored for verification.

Signing and authentication process
Requires two requests to get data (initiation and getting
session result).

Verification code
Is calculated as:
integer(SHA256(data_hash)[−2:−1]) mod 10000

3.4 TO-BE processes specification

This section proposes TO-BE process models that fulfill the requirements. AS-IS processes

are used as a starting point and specifications extracted from analyzes discussed in section

3.3 are applied. All processes are modelled as success flow of the solution. As success flow

we consider going through the user interaction process without any errors.

AS-IS sign up process is creating connection between user and Dapp using only wallet

address. The TO-BE model aim is to connect specific user wallet which is connected to user

identity-based signature certificate provided by Smart-ID service.

Figure 8 describes the sign up process to Dapp. Smart-ID is showed as part of the process

to describe how R1 is fulfilled. Dapp requests user authentication and received certificate is

passed to the new smart contract along with approver certificate, approver address, user

personal id and wallet address. The new smart contract is instance of a new Identity-Based

Multisignature Wallet, hereafter called IBMSW in this paper. User wallet address is used to

interact with their IBMSW. Process results with new IBMSW deployed to blockchain

network and new account is created in Dapp, which fulfills requirement R2.

28

Figure 8 TO-BE sign up to Dapp

As user will have personal IBMSW after TO-BE signup process the AS-IS transaction

process is extended with interactions between the contract and the Smart-ID service.

Figure 9 describes transaction process using IBMSW. We are not mentioning the private

key usage from Blockchain Wallet Protection Solution in the following models to be clearer

on the interaction between Smart-ID, User, Dapp and Smart contract. We mention that the

private key is used for every interaction with Smart Contract.

A transaction process can be initiated only by user of Dapp. After user initiates and enters

receiver address and value, a new record of transaction is created in IBMSW. Next step is

to sign the transaction object that is created during the initiation. Signing process is

performed with the hashed value of the transaction object. After signing is confirmed by the

user, the signature is verified in IBMSW and added to transaction record. This step fulfills

requirement R3, as it cannot be skipped. Next task is subprocess of transaction request

approval, described in Figure 10. It is same the signing and verifying process as it is for the

user, except that signing is performed by approver. By completing approval process,

approver signature is added to transaction record. This shows that requirement R4 and R5

are fulfilled, as transaction process cannot go further without this step. Last step of

transaction is execution by the user, where confirmations are checked and value is

transferred to the receiver.

29

Figure 9 TO-BE make transaction

Figure 10 Transaction approval subprocess

30

Overview of requirements and relation with TO-BE processes is concluded in Table 9. Non-

functional requirements are marked fulfilled as Smart-ID uses smartphone application for

authentication and signing and Smart-ID is free of charge for end user.

Table 9 TO-BE processes relation to requirements. Requirement fulfilled is indicated as " + " and not

related marked as empty cell.

Process R1 R2 R3 R4 R5 NFR1 NFR2

Sign up + + + +

Make transaction

(with approval

subprocess)

 + + + + +

In summary the main concept of TO-BE models is to integrate identity based Multisignature

wallet into the Ethereum Dapp, also named as IBMSW. The Blockchain Wallet Protection

solution that holds Ethereum wallet private key, will still remain to be free of choice for the

user. Multisignature will only be additional layer in the process. This layer is connecting

users’ identity to blockchain to enable signing the transaction with the identity signature

through the Smart-ID. This enables us to fulfill all of the requirements raised in section 3.1.

31

4 Validating specification with prototype

This chapter describes the implementation of the prototype that validates TO-BE process

models discussed in section 0. Output of the existing solutions analysis from section 3.3 will

be used as inputs. Prototype includes smart contract and Dapp implementation.

4.1 Main frameworks and architecture

Truffle framework has been chosen for smart contract implementation and testing in local

Ethereum blockchain network. Truffle is using Ethereum Virtual Machine (EVM).

Framework provides support for writing, debugging, migrating and deploying contracts

written in solidity. Truffle has development boilerplates that helps to start implementing

exactly what is needed without setup configuration.

Dapp is created using JavaScript ReactJS framework. This framework is one of the most

popular user interface frameworks in JavaScript. It has largest recommendations percent

according to 2018 reports (Greif, Benitte, & Rambeau, 2018). Connection to Ethereum

network from ReactJS was provided using web3.js library (Ethereum, 2019). Smart-ID

integration was implemented using HTTP REST API requests to Smart-ID demo instance

(SK-EID, 2019).

General software architecture of the prototype is presented in Figure 11.

Figure 11 Architecture of prototype software

32

4.2 Validation example

The prototype consists of two parts: the Dapp and the smart contract. The main logic is

written in smart contract part and Dapp is used for interaction between Smart-ID and smart

contract.

To validate TO-BE specification we will go through sign up, transaction and transaction

approval processes using prototype.

To sign up user needs to provide their certificate that is given by Smart-ID service. First step

is to enter user identity code in Dapp and signing a document. For prototype we used secure

random generated hash (generated the same way as Smart-ID does authentication hash).

After user signs the hash on their smartphone Dapp receives user’s certificate. With user

certificate provided we use Dapp to create an instance of smart contract in Ethereum

network. The user certificate is stored as owner certificate, that will be used to verify further

signatures. In addition to user’s we save approver’s certificate. Which should be securely

provided from Dapp in the real case, but to simplify our prototype, we use the same user’s

certificate from another device. During this process we created new wallet that is connected

to user’s identity with respect to requirements R1, R2, NFR1 and NFR2.

To make a transaction user first needs to create a request in their wallet contract with amount

and receiver address specified. Each request creates new record in smart contract. The data

of transaction request is hashed and passed to Smart-ID service for signing. User signs

hashed data using their smartphone and signed data is validated in smart contract using

user’s certificate. The signature is stored in request record. The next step is to sign the data

by approver, which certificate was written to the smart contract on creation. Approver signs

the data same way using Smart-ID service. Their signature is validated using approver’s

certificate and stored in request record. Transaction can be executed when both validated

signatures are stored in transaction request record. Execution results with asset transaction

to specified receiver address and amount. This process fulfills requirements R3, R4, R5,

NFR1 and NFR2.

As addition, the request record is accessible by its id to check its status. There can be

multiple request created in parallel and executed in different order. This process works

successfully following the TO-BE specification.

4.3 Prototype project structure

The prototype is an open-source project, which structure will be described in this section.

A Truffle project is used as root which contains main truffle folders - contracts, migrations,

test and truffle-config.js as shown in Figure 12 on the left. Solidity code is stored in contracts

folder. Migration scripts specify Solidity contracts that will be deployed to network during

truffle migration. Truffle network configuration and compilation output folder is configured

in truffle-config.js. Compilation output is set directly to dapp/src/contracts folder, because

Dapp is using compiled version of contracts.

Dapp is created under truffle project in folder dapp shown in Figure 12 on the right. Dapp.js

is main application script that combines all libraries, utilities and defines user interface.

Scripts that helps to perform communication with Smart-ID (smartIdUtil.js), parse

33

certificates and signatures (cryptoUtil.js) and create connection to Ethereum network

(getWeb3.js) are located in utils folder.

Most of the project can be publicly found on Github

(https://github.com/aleksandertsg/IBMSWallet)

Figure 12 Prototype project structure

4.4 Main functionality

In this section we will have an overview of smart contract, utilities and Dapp. These are the

core components that interacts with each other according to the specification in section 0.

The following sections will show fragments of the code and its functionality.

34

4.4.1 Smart contract

Main functionality of IBMultiSigWallet.sol file (other functions are not shown):

contract IBMultiSigWallet {

 ...

 constructor (bytes memory oModulus, bytes memory oExponent, uint id, address

_approver, bytes memory aModulus, bytes memory aExponent) {...}

 function initiateTransfer(address payable receiver, uint256 value) {...}

 function signTransaction(uint transactionId, bytes memory signature, bytes32

messageHash, bytes memory message) {...}

 function approveTransaction(uint transactionId, bytes memory signature) {...}

 function executeTransaction(uint transactionId) {...}

 function verify(bytes32 msg_hash, bytes memory signature, bytes memory m,

bytes memory e) {...}

 ...

}

Function constructor(…) is used to create new wallet. It takes user certificate modulus,

exponent, personal id, approver address, approver certificate modulus and exponent. All of

the arguments are stored in wallet and these values cannot be changed.

Functions initiateTransfer(…), signTransaction(…), approveTransaction(…) and

executeTransaction(…) are transaction process methods that represents smart contract tasks

described in chapter 0. These functions can be executed only in order they are listed. And

every call is checked for allowance.

Function verify(…) is verifying signature against message hash using RSASSA-PKCS1-

V1_5 standard. This function uses external SolRsaVerify.sol contract to make the calculation

(Massanet, 2018).

4.4.2 Utilities

The main functionality of the utilities is to handle cryptographical calculations and

perform data transferring and processing in Dapp.

File smartIdUtil.js contains function:

request = async (type, docID, hash, hashType = 'SHA256', displayText) => {...}

Function request(…) makes HTTP request to Smart-ID and waits for signature response. It

performs two requests to get the value, as described in section 3.3.3.

File cryptoUtil.js has three functions that are needed to perform cryptographic calculations

for signature and data:

getPublicKey = (cert) => {...}

getDataHash = (hashType = 'sha512', data = secureRandom(64)) => {...}

calcVerifyCode = async (buf) => {...}

Function getPublicKey(…) is parsing exponent and modulus values out of given certificate

hash. These values are passed to contract while user registers new IBMSW contract.

Function getDataHash(…) calculates base64 value of data after hashing with specified

hashType.

35

Function calcVerifyCode(…) used data to calculate verification code that is displayed on

Smartphone and Dapp while authentication or signing operation from Smart-ID is requested.

4.4.3 Dapp prototype

In Figure 13 we can see Dapp user interface application that helps to interact with IBMSW

contract and Smart-ID. Using that interface, we can validate sign up and transaction TO-BE

processes from chapter 0.

Figure 13 Dapp prototype user interface

36

5 Conclusion

In this work we created an overview of the Ethereum blockchain entities and working

principles. We analyzed different wallet protection solutions and user identity verification

and signature services and selected most suitable ones. The requirements for solution were

listed and checked against current state. We pointed out that none of the requirements were

fulfilled and continued analyzing existing solutions on more deep level. The outcome of this

analysis was used to create the solution specification that fulfills all of the requirements. To

validate the solution specification, we developed a prototype that includes Multisignature

contract, simple Dapp and additional utilities. As a result, we have a solution specification

which is successfully validated with the prototype. After the completed work we can answer

for all of the research questions:

How to connect the user identity to the wallet in a way that transactions can be made

only after identity-based signature verification? We created a Multisignature contract

that holds user’s certificates from Smart-ID service. The transaction is signed using Smart-

ID and certificates are used for transaction validation before execution.

SQ1 How to make decentralized application know who is making the transactions?

The transaction cannot be performed without identifying the user, which is connected to

Smart-ID service through decentralized application.

SQ2 How to associate an asset transfer with user identity? In our solution, smart contract

stores a record of transaction with signature that is validated using user certificate given by

Smart-ID service.

SQ3 How to integrate state-level identity signing service into the Ethereum

blockchain? We used a user certificate, that is stored in smart contract and integration with

Smart-ID service in decentralized application.

SQ4 How to create a wallet with multiple transaction approval steps? The

Multisignature wallet is stores two certificates on creation one for the user and one for the

approver. No transaction can be performed without approver signature.

SQ5 How to verify identity-based signature in Ethereum blockchain? Each signed

transaction value is unpacked in smart contract using user’s certificate. The equality of

extracted value and unsigned transaction value is compared.

SQ6 How to check that transaction made in the past, was made with valid identity?

Smart-ID provides an OSCP service that allows to check validity of the certificates at any

time.

The limitations of this work were added in the beginning and during the progress:

• There were no academic papers about national identity connection to blockchain signing

process found during the research. Source code of examples and non-academic papers

were used as references.

• Solution is limited to be used on Ethereum Blockchain, because the smart contract is

written in solidity language. To use the solution in other Blockchains there is a need to

rewrite the code in another language.

• Identity services considered in the solution are national identity verification and signing

services of Estonia.

37

• To enable more countries to use the solution additional integration is needed. As

limitation of this thesis, user wallet private key security was not taken into account. Main

focus was to create solution model considering requirements and prototype of smart

contract and Dapp.

• In prototype we used simply hard coded approver certificates, because the focus is to

make it possible to work. Providing approver certificates

The outcome of the thesis answers all of the research questions and fulfills the requirements,

however we highlight some points for future work:

• Add possibility to have multiple approvers.

• Implement service that retrieves approver certificates on new contract creation.

• Create possibility for user to use multiple certificates.

• Implement error handling for execution failures.

• Create tests for smart contract

38

References

Al-Jaroodi, J., & Mohamed, N. (2019, 03 07). Blockchain in Industries: A Survey. IEEEE

Acces, 7, pp. 36500-36515.

Allmendinger, O., Chan, B., & barathcj. (2017, 11 23). eth-multisig-

v2/contracts/WalletSimple.sol. Retrieved from Gtihub:

https://github.com/BitGo/eth-multisig-v2/blob/master/contracts/WalletSimple.sol

Andreas M. Antonopoulos, G. W. (2018). Mastering Ethereum: Building Smart Contracts

and DApps. In Andreas M. Antonopoulos, Gavin Wood Ph.D. (pp. 59-160).

Sebastopol: O'Reilly Media. Retrieved from

https://books.google.ee/books?id=nJJ5DwAAQBAJ&pg=PA60&dq=private+key+

in+ethereum&hl=et&sa=X&ved=0ahUKEwiAnNOHipjfAhXGECwKHXh5CUQ

Q6AEIJzAA#v=onepage&q=private%20key%20in%20ethereum&f=false

Bamert T., D. C. (2014). BlueWallet: The Secure Bitcoin Wallet. Switzerland: Springer,

Cham.

Berryhill, J., Bourgery, T., & Hanson, A. (2018). Blockchains Unchained. (OECD

Working papers on Public Governance, no. 28, OECD Publishing, Paris.)

Retrieved 12 12, 2018, from https://read.oecd-ilibrary.org/governance/blockchains-

unchained_3c32c429-en#page1

Blockgeeks. (2018, 09 13). What is Blockchain Technology? A Step-by-Step Guide For

Beginners. Retrieved 12 12, 2018, from https://blockgeeks.com/guides/what-is-

blockchain-technology/

Bruno. (2017, 09 08). How Do Hardware Wallets like the Ledger Nano S Work? (Bitfalls)

Retrieved 12 15, 2018, from https://bitfalls.com/2017/09/08/hardware-wallets-like-

ledger-nano-s-work/

Cheetah Mobile Blockchain Research Lab & Cheetah Lab. (2018). 2018 Global

Cryptocurrency Wallet Security White Paper. Retrieved 12 14, 2018, from

https://www.cmcmbc.com/protocol/safe-wallet/white-paper/

Christian Sillaber, B. W. (2017, 08). Life Cycle of Smart Contracts in Blockchain

Ecosystems. Datenschutz und Datensicherheit - DuD, 41(8), 497-500. Retrieved

from https://link-springer-com.ezproxy.utlib.ut.ee/content/pdf/10.1007%2Fs11623-

017-0819-7.pdf

Christidis, K. (2016). Blockchains and Smart Contracts for the Internet of Things. (IEEE

Access) Retrieved 12 12, 2018, from https://ieeexplore-ieee-

org.ezproxy.utlib.ut.ee/stamp/stamp.jsp?tp=&arnumber=7467408&tag=1

Coinbase. (2019). Secure Bitcoin Storage. Retrieved 04 02, 2019, from

https://www.coinbase.com/security

Cybernetica AS. (2017). SplitKey Authentication and Digital Signature Platform.

Retrieved 12 16, 2018, from https://cyber.ee/products/digital-

identity/materials/splitkey-brochure.pdf

Cybernetica AS. (2018, 12 12). Introduction to SplitKey Foundations White paper.

Retrieved 12 16, 2018, from https://cyber.ee/products/digital-

identity/materials/splitkey-whitepaper.pdf

Destefanis, G., Marchesi, M., & Ortu, M. (2018). Smart Contracts Vulnerabilities: A Call

for Blockchain Software Engineering? (IEEE) Retrieved 12 10, 2018, from

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8327567&tag=1

e-estonia. (2019). Retrieved March 2019, from https://e-estonia.com/solutions/e-identity/

Estonia, I. S. (2019, 04 11). ID. Retrieved 04 11, 2019, from https://www.id.ee/

39

Ethereum. (2019, 03 23). Introduction to Smart Contracts. Retrieved from Github:

https://github.com/ethereum/solidity/blob/develop/docs/introduction-to-smart-

contracts.rst

Ethereum. (2019, May 2). web3.js - Ethereum JavaScript API. Retrieved from Github:

https://github.com/ethereum/web3.js

Etherscan. (2019, 05 2). Blocks. Retrieved from Etherscan: https://etherscan.io/blocks

Fu, Y. (2017, 09 12). Off-Chain Computation Solutions for Ethereum Developers.

Retrieved from Medium: https://medium.com/@YondonFu/off-chain-computation-

solutions-for-ethereum-developers-507b23355b17

George, S. (2017, 10 6). ConsenSys/MultiSigWallet/MultiSigWalletWithDailyLimit.sol.

Retrieved from Github:

https://github.com/ConsenSys/MultiSigWallet/blob/master/MultiSigWalletWithDa

ilyLimit.sol

George, S. (2019, 02 18). gnosis/MultiSigWallet/contracts/MultiSigWallet.sol. Retrieved

from Github:

https://github.com/gnosis/MultiSigWallet/blob/master/contracts/MultiSigWallet.so

l

Giuseppe Destefanis, A. B. (2018, March 29). Smart Contracts Vulnerabilities: A Call for

Blockchain Software Engineering? Retrieved April 5, 2018, from

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8327567

Grech, A., & Camilleri, A. F. (2017). Blockchain in Education - Pedocs Open Access .

Retrieved 12 15, 2018, from

https://www.pedocs.de/volltexte/2018/15013/pdf/Grech_Camilleri_2017_Blockcha

in_in_Education.pdf

Greif, S., Benitte, R., & Rambeau, M. (2018, 12). Front-end Frameworks. Retrieved from

State of Js 2018: https://2018.stateofjs.com/front-end-frameworks/overview/

Hannan, J. (2018, 06 29). Why You Probably Shouldn’t Use a Single Private Key to Secure

Your Assets. (Medium) Retrieved 12 15, 2018, from https://medium.com/modular-

network/why-you-probably-shouldnt-use-a-single-private-key-to-secure-your-

assets-cc7df87b30a

Hwong, C. (2017, 10 11). Chart of the Week: Which Devices Are Used Most Often? (Verto

analytics) Retrieved 12 16, 2018, from https://www.vertoanalytics.com/chart-of-

the-week-which-devices-are-used-most-often/

id.ee. (2019, 03 18). ID-card and Digi-ID, Article ID: 30500 . Retrieved April 2019, from

https://www.id.ee/index.php?id=30500

International Transport Forum. (2018, May 16). OECD iLibrary. Retrieved 12 10, 2018,

from https://www.oecd-ilibrary.org/transport/blockchain-and-beyond_bf31443f-en

Internet Engineering Task Force, (IETF). (2016, November). PKCS #1: RSA

Cryptography Specifications Version 2.2. Retrieved from Internet Engineering

Task Force: https://tools.ietf.org/html/rfc8017#section-8.2.2

Jalukse, K. (2019, 02 22). Smart-ID documentation. Retrieved from Github.com:

https://github.com/SK-EID/smart-id-documentation#43-certificate-choice-session

King, R. (2018, August 21). BitDegree. Retrieved January 20, 2019, from

https://www.bitdegree.org/tutorials/metamask/

Kubach, M. a. (2015). SSEDIC.2020 on mobile eid. In D. A. Hühnlein (Ed.), Open

Identity Summit 2015 (pp. 29-41). Bonn: Gesellschaft für Informatik e.V.

Ledger. (2018, 11 12). What Can a Backup Device Do for You? Retrieved 12 12, 2018,

from https://www.ledger.fr/2018/11/12/what-can-a-backup-device-do-for-you/

40

Lõugas, H. (2018, 11 08). digigeenius. Retrieved 04 2019, from

https://digi.geenius.ee/rubriik/uudis/suur-uudis-smart-id-saab-vordseks-

omakaelise-allkirja-ja-id-kaardiga/

Logvinov, L. (2018, September 9). Ethstonia Identity. Retrieved January 30, 2019, from

https://devpost.com/software/ethstonia-identity

Logvinov, L. (2019, 03 20). LogvinovLeon/estid-sig: Verify Estonian e-id signatures on

Ethereum. Retrieved from Github: https://github.com/LogvinovLeon/estid-sig

Massanet, A. (2018, 12 22). SolRsaVerify. Retrieved from Github:

https://github.com/adriamb/SolRsaVerify/tree/master/contracts

Mohanty, D. (2018). Advanced Programming in Oraclize and IPFS, and Best Practices. In

Ethereum for Architects and Developers (pp. 151-179). Apress, Berkeley, CA.

Murthy, M. (2017). Life Cycle of an Ethereum Transaction. (Medium) Retrieved 12 12,

2018, from https://medium.com/blockchannel/life-cycle-of-an-ethereum-

transaction-e5c66bae0f6e

Nõmmik, A. (2017, 05 19). Smart-id-documentation. Retrieved from Github:

https://github.com/SK-EID/smart-id-

documentation/blob/master/images/RP_API_sequences_REST.png

Politsei- ja Piirivalveamet. (2019, 04 10). Identity Documents. Retrieved 04 10, 2019,

from https://www2.politsei.ee/en/teenused/riigiloivud/riigiloivu-maarad/isikut-

toendavad-dokumendid/index.dot

Republic of Estonia Information System Authority. (2019, 01 09). Electronic Identity eID.

Retrieved April 2019, from https://www.ria.ee/en/state-information-

system/electronic-identity-eid.html

RF Wireless World. (2012). traditional storage vs cloud storage | difference between

traditional storage and cloud storage. Retrieved 12 12, 2018, from

http://www.rfwireless-world.com/Tutorials/traditional-storage-vs-cloud-

storage.html

Saurel, S. (2018, 01). Create your own Blockchain in 30 minutes. (Medium) Retrieved 12

10, 2018, from https://medium.com/@ssaurel/create-your-own-blockchain-in-30-

minutes-dbde3293b390

Sibold, G. (2018, 10 26). digigeenius. Retrieved 04 10, 2019, from

https://digi.geenius.ee/rubriik/uudis/suur-ulevaade-smart-id-ja-mobiil-id-kasvavad-

eestis-muhinal/

SK ID Solutions AS. (2018, 10 01). Price List of Validity Confirmation Services.

Retrieved 04 10, 2019, from

https://www.sk.ee/teenused/hinnakiri/kehtivuskinnituse-teenus/

SK ID Solutions AS. (2019). SK services. Retrieved March 2019, from

https://sk.ee/en/services/

SK-EID. (2019, February). Smart-ID decumentation. Retrieved from Github:

https://github.com/SK-EID/smart-id-documentation

Smart-ID. (2019, 04 11). Retrieved 04 2019, from https://www.smart-id.com

Unchained Capital. (2018, 03 08). A simple & safe multisig Ethereum smart contract for

hardware wallets. (Medium | Unchained Capital) Retrieved 12 15, 2018, from

https://blog.unchained-capital.com/a-simple-safe-multisig-ethereum-smart-

contract-for-hardware-wallets-a107bd90bb52

Unchained Capital. (2018, 03 8). A simple & safe multisig Ethereum smart contract for

hardware wallets. Retrieved from Unchained Capital: https://blog.unchained-

capital.com/a-simple-safe-multisig-ethereum-smart-contract-for-hardware-wallets-

a107bd90bb52

41

Unibright.io. (2017, 12 07). Blockchain evolution: from 1.0 to 4.0. (Medium.com)

Retrieved 12 1, 2018, from https://medium.com/@UnibrightIO/blockchain-

evolution-from-1-0-to-4-0-3fbdbccfc666

Valenta, M., & Sandner, P. (2017, June). FSBC Working paper. Retrieved from Frankfurt

School Blockchain center:

https://pdfs.semanticscholar.org/00c7/5699db7c5f2196ab0ae92be0430be4b291b4.

pdf

Vujičić, D., Jagodić, D., & Ranđić, S. (2018). Blockchain technology, bitcoin, and

Ethereum: A brief overview. 2018 17th International Symposium INFOTEH-

JAHORINA (INFOTEH). East Sarajevo: IEEE.

Wilma Woo. (2018, 10 03). $8 Billion Coinbase Now Has More Users Than 21 Million

Bitcoins. Retrieved from Bitcoinist.com: https://bitcoinist.com/8-billion-coinbase-

now-has-more-users-than-21-million-bitcoins/

42

License

Non-exclusive license to reproduce thesis and make thesis public.

I, Aleksandr Tsõganov

1. herewith grant the University of Tartu a free permit (non-exclusive license) to

reproduce, for the purpose of preservation, including for adding to the DSpace digital

archives until the expiry of the term of copyright,

Integrating User Identity with Ethereum Smart Contract Wallet supervised by

Orlenys López Pintado, Aivo Kalu and Kristjan Kuhi.

2. I grant the University of Tartu a permit to make the work specified in p. 1 available

to the public via the web environment of the University of Tartu, including via the

DSpace digital archives, under the Creative Commons license CC BY NC ND 3.0,

which allows, by giving appropriate credit to the author, to reproduce, distribute the

work and communicate it to the public, and prohibits the creation of derivative works

and any commercial use of the work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive license does not infringe other persons’

intellectual property rights or rights arising from the personal data protection

legislation.

Aleksandr Tsõganov

14/08/2019

	1 Introduction
	2 Background and literature review
	2.1 Ethereum Blockchain
	Blocks
	Transactions
	Transaction Costs
	Wallet
	Public and private keys
	Smart Contracts

	2.2 Wallet protection solutions
	2.2.1 Ledger
	2.2.2 BlueWallet
	2.2.3 Multisignature
	2.2.4 MetaMask
	2.2.5 Coinbase Wallet
	2.2.6 Comparison

	2.3 User identity verification and signature services
	2.3.1 ID-card based solution
	2.3.2 Mobile-ID based solution
	2.3.3 SplitKey based Smart-ID
	2.3.4 Comparison

	2.4 Summary

	3 Specification of identity-based wallet integration with Dapp.
	3.1 Requirements
	3.2 AS-IS processes specification
	3.3 Analysis of existing solutions
	3.3.1 Identity service integration with smart contract - Ethstonia example
	3.3.2 Multisignature wallet contracts
	3.3.3 Smart-ID signing and authentication process

	3.4 TO-BE processes specification

	4 Validating specification with prototype
	4.1 Main frameworks and architecture
	4.2 Validation example
	4.3 Prototype project structure
	4.4 Main functionality
	4.4.1 Smart contract
	4.4.2 Utilities
	4.4.3 Dapp prototype

	5 Conclusion
	References
	License

