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ABSTRACT 

Urban expansion is characterized by the low–density, spatially discontinued, and 
scattered development of urban-related constructions beyond the city boundaries. 
Since urban expansion changes the agricultural and forest lands, and slight changes 
in urban areas can affect biodiversity and landscape on a regional scale in the long-
term, spatiotemporal monitoring of urban expansion and modeling of the future 
are essential to provide insights into the long-term trends and consequences. 

In Estonia, after the regaining independence in 1991, the Land Reform Act was 
passed, and the transfer of “land” from the state to private ownership began. Since 
then, Estonia has experienced the decentralization of residential areas affecting the 
transformation of agricultural and industrial regions around Tallinn, changes in 
people’s lifestyles, and the settling of wealthy people in single-family houses in 
the suburbs of Tallinn, Tartu, and Pärnu. During this period, Estonia’s population 
has declined dramatically 15 %.  

This doctoral thesis aims to “monitor, analyze and model the urban expansion 
over the past three decades in Estonia and simulate its future”. This is the first 
comprehensive study about modeling urban expansion and analyzing the factors 
influencing urban expansion in Estonia. So, this dissertation explores the expan-
sion of urban areas in Estonia utilizing various sets of remotely sensed data, driving 
forces and predictors, and modeling approaches including logistic regression, 
cellular automata, agent-based, and artificial neural network models to highlight 
the importance of these factors in representing the reality and detecting urban 
expansion footprints through time.  
 
To achieve the main objective of the thesis, three tasks were set: 

1. Analyze the physical driving factors and predictors (spectral–textural indices) 
of urban expansion over the past three decades in Estonia. 

2. Evaluate the performance of several modeling approaches for investigating 
the past trends and simulating the future of urban expansion in Estonia. 

3. Test the model performances by applying several datasets with different spatial 
resolutions. 

 
These tasks are addressed in four original research articles on urban expansion in 
two Estonian counties (Harju County, containing the nation’s capital, Tallinn, and 
Tartu County, where the country’s second major city, Tartu, is located), Tallinn 
and its 15 km buffer zone, and throughout the country. The research data was 
drawn from three primary remote sensing sources: (1) the time–series CORINE 
land cover database with 100 m spatial resolution (level 1 class; artificial surfaces 
considered urban), (2) Landsat imagery products with a spatial resolution of 30 m 
for extracting urban expansion and spectral–textural indicators of landscape 
physiognomy, and (3) a 30 m spatial resolution land cover dataset provided by 
Parente et al. (2021). Besides, some other spatial data, including the road net-
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works (main and local roads, railways) and the states’ administrative boundaries, 
were downloaded from the Estonian Land Board geoportal (ETAK database). 
Much software, including QGIS 3.10, ArcGIS 10.6, IDRISI, and GEOSOS–
FLUS, and platforms consisting of the Repast platform used in the AgentAnalyst 
extension for ArcMap 10.6 and Google Earth Engine cloud computing platform 
was employed to process the data, analyze, and simulate urban expansion.  

By applying two models of LR and MLP neural networks, the proximity factors 
were analyzed, and the relationship between the physical driving forces and the 
urban expansion was evaluated. The results indicated that urban expansion in 
Harju County and Tartu County was influenced mainly by proximity to main roads, 
the core of Tallinn and Tartu, and existing residential areas. Then, the most 
influential drivers and constraints were evaluated with a multi-criteria evaluation 
(MCE) function and AHP technique to create a suitability map of urban expan-
sion in Harju County. Besides the factors and constraints, behavioral rules and 
adjacent neighborhoods were applied to investigate urban expansion through 
dynamic interactions between cellular agents in Tallinn and its 15 km buffer zone 
and to simulate the future of urban expansion in 2030 by performing integrated 
CA and agent-based models. The integrated CA–Agent model had a simulation 
accuracy exceeding 86%; it predicted a continued infilling expansion (12.22 km2 
adding to built-up areas) around Tallinn by 2030. 

Through this research, the hybrid models of ANN, CA, and MCA (ANN–CA–
MCA) utilized spectral–textural properties of landscapes. Spectral–textural indi-
cators of landscape physiognomy have high potential in detecting the changes in 
urban expansion and monitoring their footprints. The accuracy of predictions 
reached up to 90%, confirming the high capabilities of morphologic indices in 
projecting the past trends of changes in urban expansion and their significant 
importance in representing reality.  

Overall, the scattering patterns of new constructions are expected to continue 
as the infilling development in the vicinity of main cities and existing residential 
areas, taking advantage of main roads and fed by the existing infrastructures in 
the future. Based on this, several courses of action are suggested to reduce the 
adverse impacts of urban expansion on the environment in long-term spatial 
planning in Estonia:  

• Enhancing public awareness by organizing cultural and nature tourism and 
motivating people to be involved in the conventional agricultural sector in the 
way of learning environmental sustainability, 

• Maintaining the importance of living and economic environments of the 
existing settlements to prevent the scattering of new ones, 

• Efficient regulations and policies by the local government regarding the con-
servation of biodiversity and Estonia’s natural landscapes and reduction of 
agricultural and forest lands’ conversion to built-up areas, 

• Protecting urban green areas surrounding main cities, and  
• Restrictions on infrastructure expansion in remote areas. 
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1. INTRODUCTION 

1.1. Background 

Land use/land cover (LULC) change encompasses the transformation of terrestrial 
earth surfaces (Sankarrao et al., 2021) due to human-environment interactions 
(Abdullah et al., 2019; Li et al., 2017; Verburg, Veldkamp, et al., 2004). LULC 
changes play essential role in changing the climate (Lin et al., 2007; Mehta et al., 
2013; Wu et al., 2013), biodiversity (Huang & Liao, 2019; Lawler et al., 2014; 
Seto et al., 2012), soil quality (Criado et al., 2020; Zambon et al., 2018), hydro-
logy (Lin et al., 2007; Zeng et al., 2018), landscape (Lee & Chang, 2011; Liu 
et al., 2009; Verburg, Veldkamp, et al., 2004), deforestation (Mansaray et al., 
2016; Salghuna et al., 2018), agricultural shifts (Forkuor & Cofie, 2011; Girma 
et al., 2022), wetlands degradation (Hartig et al., 1997; Ondiek et al., 2020) and 
urban expansion (Hashem & Balakrishnan, 2015; Roy & Kasemi, 2021). 

Urban expansion mainly refers to the low–density, spatially discontinued, and 
dispersed expansion of urban-related constructions into suburbs and beyond the 
city boundaries (Ciommi et al., 2018; Egidi et al., 2020; Saganeiti et al., 2021), 
which transforms the non–urban lands into urban (Zhang et al., 2020). Different 
factors govern urban expansion. From the macro-level standpoint, urbanization 
(Xu et al., 2019; Zambon et al., 2019), industrialization (Kandpal & Saizen, 2019; 
Wu & Zhang, 2012), population changes (Liu et al., 2009; Mansaray et al., 2016; 
Xu et al., 2019) and economic growth (Abdullah et al., 2019; Gibson et al., 2015) 
are leading causes of urban expansion. From the micro-level standpoint, physical 
and environmental factors, including infrastructure developments (Angel et al., 
2011; Sankarrao et al., 2021; Wu et al., 2019), elevation (Aburas et al., 2017; 
Zhao et al., 2017), proximity factors such as distance to roads (Poelmans & Van 
Rompaey, 2010; Traore & Watanabe, 2017), rivers or water areas (Salem et al., 
2019; Sarkar & Chouhan, 2020), existing residential areas (Abbas et al., 2021; 
Falah et al., 2020) and the central business district (CBD) or city center/core 
(Grigorescu et al., 2021; Simwanda & Murayama, 2018) are significant causatives. 

Since urban expansion is the source of remarkable variations in the LULC 
(Al–Hameedi et al., 2021), quantitative spatiotemporal analysis and modeling, 
identifying the local causative factors and exploring the indicators of its changes 
lead to better insight into its long-term processes and consequences, which are 
critical for making effective decisions and policies (Li et al., 2018). Besides, the 
dataset’s availability and consistency should be considered related to the study 
area. Long-term records of remote sensing datasets are critical for monitoring, 
analyzing, and modeling urban expansion. Accessible regional and continental 
datasets provide a good platform for spatial and territorial analysis on different 
territorial levels, while high-resolution remotely-sensed data (more detail and a 
smaller grid cell size) is more suitable for small-scale and local monitoring. 

There has been an increasing interest in urban expansion modeling in recent 
years. Modeling urban expansion helps realize urban evolution mechanisms and 
yields more profound insight into the future for developing a spatial planning 
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framework. Questions have been raised about the dynamic, descriptive, and 
analytical aspects of urban expansion modeling. Different models have been 
utilized to address the complexity of urban expansion over time, understand its 
mechanism and driving factors, and predict future spatial patterns. The con-
figuration of a single or hybrid/integrated urban expansion model depends on the 
research application and aims of the analysis; it can reflect on the non–linearity, 
complexity, scale dependency, and realities of urban expansion. Hence, many 
studies have applied synthesized models to determine the evolving dynamics of 
urban expansion, investigate the predictions of changes, visualize the spatio-
temporal patterns of the past and simulate the future spatial footprints of urban 
expansion to benefit urban planners and policymakers’ decisions.  
 
 

1.2. Urban Expansion Models 

Since urban expansion is a dynamic and complex process, many spatial models 
have been constructed to investigate, predict, and simulate it. Simulation models 
can develop scenarios for future-oriented decision–making (Harb et al., 2020). It 
can be done by preparing a projection of LULC changes, expecting the future 
urban land demands, and spatial distribution of these demands (Mustafa et al., 
2017). Scholars have long debated the evolution and importance of urban expan-
sion modeling using various approaches, including logistic regression, cellular 
automata, agent-based, and artificial neural network models. Here, some modeling 
approaches are described to provide a deeper insight into the urban expansion 
models applied in this thesis:  
 
 

1.2.1. Logistic Regression Model 

A considerable amount of literature has been published to explore the capabilities 
of logistic regression (LR) in determining the causative factors of urban expansion 
and predicting the potential future expansion (Azhdari et al., 2018; Bonilla–
Bedoya et al., 2020; Sarkar & Chouhan, 2020; Wu et al., 2019; Xiong & Tan, 
2018; Zhao et al., 2017). The parametric LR model provides a valuable under-
standing of drivers and their weights in the urban expansion (Traore & Watanabe, 
2017). While it is a predictive model (Eyoh et al., 2012), LR mainly describes the 
relationships between the binary dependent variable and different independent 
variables and their intensity (Luo et al., 2019). So, it estimates the influences of 
contributing factors. Grigorescu et al. (2021) explored the potential of a binary 
LR in modeling the future of urban expansion in Romania and determined the 
coefficients of the influential factors over time. Salem et al. (2021) analyzed 
various driving factors of urban expansion in Delhi and simulated the most prob-
able locations and future urban expansion patterns. To highlight the scale depen-
dency of causative factors of expansion, Shu et al. (2014) applied LR, and explored 
spatiotemporal differences in small towns’ scale, and suggested different policies 
and planning guidelines. 
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Proximity analysis is the most applied method in urban expansion modeling 
using the LR model. It evaluates the distances’ influence on new expansions (Gri-
gorescu et al., 2021). Traore & Watanabe (2017) used two categories of drivers, 
including five socioeconomic proximity variables and two landscape topography 
variables, and found a high probability of urban expansion in high–elevation 
areas and near main roads. Mustafa et al. (2018) explored twelve topographic, 
socioeconomic, and proximity factors as causative factors of urban expansion in 
Belgium. Their findings showed that the LULC policy, slope, and distance to 
roads are the most significant factors of urban expansion in their study area. In-
corporating proximity factors in urban expansion modeling provides valuable 
insight into protection and development in spatial planning for local governments 
as policymakers. Here, the methodological analysis of LR and quantifying the 
relationship between urban expansion and physical driving forces in two Estonian 
counties are described in section 2.3 and more thoroughly in Article I. 
 
 

1.2.2. Cellular Automata Model 

Cellular automata (CA) has been the most popular model employed by 
researchers since its conceptualization by Ulam and Von Neumann in the 1940s 
(Langton, 1984). CA model is a rule-based and dynamic model capable of 
simulating the complex urban expansion process with simple rules (Harb et al., 
2020; Li et al., 2017, 2018; Li & Gong, 2016; Liang et al., 2020; Tan et al., 2015; 
Vaz et al., 2012; Xu et al., 2019). It is a bottom-up approach implemented in a 
lattice or irregular surface. The evolution of urban expansion over time is based 
on two other essential functions, the rules of transition, which mines the state of 
a cell over time (Xu et al., 2021), and neighborhood effects (Cao et al., 2015; Pan 
et al., 2021; Santé et al., 2010). The CA model assumption is generally based on 
the effects of past changes on future transitions (Santé et al., 2010), but the spe-
cific transition rules vary regarding geographical regions and neighborhood inter-
actions. So, accompanying different models reinforce the CA model’s capa-
bilities and can increase the simulation’s popularity, efficiency, and accuracy (Li 
& Gong, 2016) as follows: 

• MCA provides information about the transformation and the conditional 
probability of cells beneficial in determining the trends of urban expansion 
changes over time. Integrated CA with Markovian chain analysis (MCA) has 
been implemented in much research (Deep & Saklani, 2014; Faqe et al., 2016; 
Liping et al., 2018; Ramachandra et al., 2013; Rimal et al., 2018; Saloni Jain 
et al., 2016).  

• Several studies enhanced the CA model with agent-based models to explore 
the drivers of urban expansion, boost the behavioral rules by defining the 
dynamic agents, and determine more realistic neighborhood effects to simulate 
urban expansion (Liu et al., 2020; Liu et al., 2013; Mustafa et al., 2017; Tan 
et al., 2015; Xu, 2019).  
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• The application of the analytic hierarchy process (AHP) in a CA–MCA model 
is beneficial in computing the weights of driving forces (Tajbakhsh et al., 
2016) in a multi-criteria evaluation (MCE) function. MCE is a process in which 
multiple layers are aggregated to yield a single output map of suitability.  

• Integration of CA with ANN is efficient for data–mining and enhancing the 
transition rules of the CA models (Abbas et al., 2021; Xu et al., 2021). Besides, 
the improvements of CA model elements, such as the cells’ structure, neigh-
borhood characteristics, and transition rules, have been widely reported by 
researchers in the last decades for the simulation of more realistic urban 
expansion (Aslan & Koc–San, 2020; Falah et al., 2020; He et al., 2018; Li 
et al., 2018; Li et al., 2017; Purevtseren et al., 2020; Tajbakhsh et al., 2016; 
Xu et al., 2019).  

 
The comprehensive frameworks of the CA model integrated with MCA–agent-
based models, MCA–AHP, and MCA–ANN models are more thoroughly de-
scribed in sections 2.4 and Articles II, III, and IV.  
 
 

1.2.3. Agent-Based Model 

The agent-based model has been widely applied to model urban expansion since 
the 2000s (Xu, 2019). It reveals the dynamic interaction between agents and the 
environment to decide on a response to these interactions (Tan et al., 2015). Agents 
can be structured based on their attributes, behaviors, and goals (Li & Gong, 2016). 
In general, agents characterize the human, land parcels, or any discrete entity 
(attributes) making decisions and behaving (behaviors) in a way that impacts 
urban expansion processes (goals). Processing and exchanging the information 
with the other agents, which are autonomous and dynamic with different attributes 
and actions, are based on behavior rules. So, the agents’ decisions and behaviors 
can change based on this information and the environment. The model’s outcome 
emerges from agents’ interactions over time (Groff et al., 2019) and the prob-
ability of changes in the agent’s behavior (Mustafa et al., 2017).  

Several attempts have been made to investigate the behaviors of human agents 
on urban expansion and its spatial changes to simulate future expansion (Jokar 
Arsanjani et al., 2013; Liu et al., 2020; Liu et al., 2013; Tian et al., 2011; Tian & 
Qiao, 2014; Zeng et al., 2018). Some authors have reported parcel agents’ 
behaviors in urban expansion changes (Kuru & Yüzer, 2021; Long et al., 2014). 
It demonstrated the adjustable characteristics of this model applicable to discrete 
geographical entities. So far, the spatial and temporal reflection of dynamic inter-
actions between cellular agents were described comprehensively in section 2.4.1 
and Article II. 
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1.2.4. Artificial Neural Network Model 

Recently, researchers have shown an increased interest in applying artificial neural 
networks (ANN) in modeling urban expansion (Abbas et al., 2021; Losiri et al., 
2016; Sankarrao et al., 2021; Wang et al., 2020; Yatoo et al., 2020). ANN is 
inspired by the human brain acting similarly by transferring the information from 
neurons signal to one another. It is a machine learning algorithm (Wang, 1994) 
and can be trained to estimate the probability of occurrence from non–linear 
functions dependent on many input layers (Liu et al., 2017). In general, the ANN 
is comprised of an input layer, one or more hidden layers, and an output layer 
with different numbers of nodes/neurons in each layer (Wang et al., 2020). The 
ANN models can learn how neurons’ weights change and calibrate to achieve the 
desired output (Gharaibeh et al., 2020; Saha et al., 2021). The most prominent 
type of ANN for urban expansion modeling is a multi–layer perceptron (MLP) 
algorithm suitable for investigating the drivers of changes (Chettry & Surawar, 
2021; Kafy et al., 2020; Leta et al., 2021; Losiri et al., 2016; Mondal et al., 2020; 
Sankarrao et al., 2021) through a backward stepwise constant forcing equation. 
The methodological analysis of MLP exploring the relationship between urban 
expansion and physical driving forces in two Estonian counties is described in 
section 2.3 and more thoroughly in Article I.  

When it comes to urban expansion simulation, it is essential to consider the 
complexity of defining the transition rules and spatial dependency of variables. 
So far, ANN is a practical data–mining algorithm for enhancing the transition 
rules in a CA model; among the various combinations, ANN–CA has been the most 
frequently used. Zhang et al. (2020) applied integrated MLP and CA–MCA models 
to assess the urban expansion in China, utilizing eleven environmental and socio-
economic factors to investigate expansion patterns and simulate the future. Xu et 
al. (2019) applied the same algorithms to produce the urban suitability map and 
simulate the urban expansion in South Auckland using nine environmental and 
proximity drivers. Additionally, they used two other tools, AHP and LR, to com-
pare the model outputs and prove the ANN performance. Likewise, in this study, 
a self–adaptive ANN algorithm combined with a CA–MCA model for simulating 
urban expansion in Estonia was applied, illustrated in section 2.4.3 and more 
thoroughly described in Article IV. 
 
 

1.3. Research Objectives 

“Land” was a state property during the Soviet-era occupation of Estonia. After 
the collapse of the Soviet Union and the regaining independence in 1991, the land 
reform act was passed, and transferring the land from state to private ownership 
started. Since then, Estonia has experienced a scattering of residential areas by 
transforming agricultural–industrial suburbs (Kährik et al., 2012), mainly around 
Tallinn. These socioeconomic and political shifts led to the expansion of re-
creational areas and coastal settlements near Tallinn (Ratas et al., 2014), changed 
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the people’s lifestyle (Oja, 2020), changed the farmlands (Reimets et al., 2015), 
and moved wealthy people to settle in detached houses in the suburbs (Jauhiainen, 
2006; Tammaru et al., 2009). While footprints of urban expansion in a scattering 
form raised gradually in the last three decades, the population in Estonia 
decreased dramatically by 15.31 % (Statistical database, 2022), and the internal 
migration from elsewhere in Estonia moved people mainly to the fringe of major 
cities of Tallinn, Tartu, and Pärnu (Jauhiainen, 2006).  

It is also worth pointing out that suburbanization in eastern European countries 
after the collapse of the Soviet Union mainly decentralized people and urban 
functions from the center to the suburbs (Grigorescu et al., 2021). Therefore, 
urban expansion in Estonia and some neighboring countries is quite different 
from most cities worldwide due to its geopolitical context (Hamilton et al., 2005). 
As urban expansion changes the agricultural and forest lands and small 
percentages of changes in urban areas can affect long–term biodiversity and 
landscape on a local scale (Li et al., 2017), the spatiotemporal monitoring and 
modeling of the future of urban expansion in Estonia is essential.  

Therefore, the primary aim of this study is to monitor, analyze and model 
urban expansion over the past three decades in Estonia, and to simulate the 
future. This is the first comprehensive study about modeling urban expansion 
and analyzing the factors influencing urban expansion in Estonia over the past 
decades. This dissertation explores the expansion of urban areas in Estonia 
utilizing several modeling approaches, different sets of data, and many driving 
forces and predictors. We assumed that: (i) Spectral–textural properties of 
landscape provide a sufficient proxy in the detection of urban expansion 
footprints and transitions over time, (ii) Implementation of integrated/hybrid 
models improves the model accuracy in representing urban expansion, and (iii) 
The dataset’s spatial resolution impacts the model performance. 
 
Therefore, to achieve the main objective, the following tasks were set out:  

a) Analyze the physical driving factors (Article I–III) and predictors (spectral–
textural indices) (Article IV) of urban expansion over the past three decades 
in Estonia. 

b) Evaluate the performance of several modeling approaches for investigating 
the past trends and simulating the future of urban expansion in Estonia by 
implementing two single model approaches of LR and MLP models 
(Article I) and three integrated/hybrid models, including the CA–Agent 
model (Article II), CA–MCA–AHP model (Article III), and ANN–CA–
MCA model (Article IV). 

c) Test the model representations by applying datasets with different spatial 
resolutions (Article I–IV). 
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2. MATERIALS AND METHODS 

2.1. Study Area 

This thesis comprises four original research articles that studied urban expansion 
in Estonia. Figure 1 shows the study areas addressed in Articles I–III; Article IV 
addressed the whole of Estonia. Area 1 represents two Estonian counties, in-
cluding Harju County, containing the nation’s capital, Tallinn, and Tartu County, 
where the country’s second major city, Tartu, is located. Their total area covers 
approximately 767,544.04 ha. In Article I, we analyzed the driving forces of 
urban expansion by applying two models of LR and MLP to investigate the 
weights of influence for twelve selected driving factors in those counties. The 
analysis period was between 1990 to 2018, when the significant sociopolitical 
changes in Estonia happened.  

 

 
Figure 1. The area of study for urban expansion modeling. Area 1 indicates the Article I 
task, Area 2 shows the task was done in Article II, Area 3 illustrates the task in 
Article III, and Area 4 refers to the Article IV task. 
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Our focus in Article II was on built-up areas in Tallinn, and its 15 km buffer 
zone (Figure 1, Area 2) to monitor the process of urban expansion between 1990 
and 2018 and simulate its future trend in 2030. While Tallinn covers a 159.37 sq. 
km area, considering the 15 km buffer zone, the study area is about 506 sq. km. 
Essentially, the sea area in the buffer has been excluded. Statistics (Statistical 
database, 2022) indicate that the population of Tallinn in 1990 was 479,666, 
experiencing a decrease of 10.19%, reaching 430,805 in 2018.  

In Article III, “urban expansion” in Harju County, which includes the country’s 
capital, was evaluated (Figure 1, Area 3) to monitor the changes from 1990 to 2018 
and simulate its future in 2046. We employed the CORINE land cover dataset; the 
level 1 category was used to emphasize the urbanization process, including arti-
ficial surfaces, agriculture, forest, water, and wetlands.  

We extended the study area to countrywide Estonia in Article IV (Figure 1, 
Area 4) to analyze the footprints of urban expansion between 2000 and 2019 and 
simulate the artificial surfaces for 2030. We mainly focused on the three major 
cities of Tallinn, Tartu, and Pärnu, explaining the urban expansion. It is essential 
to point out that based on statistics of Estonia (Statistical database, 2022), the 
country’s population has decreased by 11% from 2000 to 2019, while the internal 
migration mainly led the population to the surroundings of Tallinn, Tartu, and 
Pärnu, the rest of the regions (majority of the territory) have decreased population 
(Oja, 2020).   

 
 

2.2. Research Data and Image Processing 

To assess and analyze urban expansion, timely and accurate data is essential. Over 
the past decades, there has been a dramatic increase in the application of remote 
sensing data to detect and analyze urban expansion, and many researchers have 
reported the utilization of satellite data in this field (Deribew, 2020; Niang et al., 
2020; Kushwaha et al., 2021; Mahmoud et al., 2019). Here, to evaluate the third 
assumption concerning the dataset’s resolution used for modeling, the research 
data was drawn from three primary remote sensing sources: the CORINE land 
cover database (Article I and Article III), Landsat imagery products (Article II 
and Article IV), and a land cover dataset provided by Parente et al. (2021) 
(Article IV).  

While the basic coordinate system of the research articles was set to the primary 
Estonian projection system of Lambert Conformal Conic (Estonia_1997_Estonia_ 
National_Grid, EPSG 3301), the resolution of data was different depending on 
the database. Articles I and III used the time–series CORINE land cover dataset 
(level 1 classes; artificial surfaces considered urban). Some other spatial data were 
downloaded from the Estonian land board geoportal (ETAK database) and were 
rasterized to 100m resolution.  

In Article II, we monitored the footprints of urban expansion with the remotely 
sensed data of higher spatial resolution (30 m). We used the SCP plugin (Semi-
automatic Classification Plugin) in the open-source software QGIS 3.10 to extract 
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the Landsat images of the United States Geological Survey (USGS) with radio-
metric and geometric corrections. Then, we processed the data, classified it with 
a maximum likelihood (ML) classifier, and validated the images to check the 
accuracy of the classified maps of LULC (Table 1). For further analysis, the built-
up areas of 1990, 2006, and 2018 were extracted from LULC maps. 
 
Table 1. Landsat products. Source: Article II, Table 1 and 2. 

Product  
Description 

Date of 
Acquisition 

Ground 
Resolution 

Overall  
accuracy (%) Kappa 

TM_Landsat5 1990/05/13 30 m 98.20 0.96 
TM_ Landsat5 2006/06/10 30 m 97.80 0.96 
OLI/TIRS_Landsat8 2018/05/26 30 m 97.00 0.95 

 
The other spatial layers were extracted from the ETAK database and include road 
networks (main and local roads, railways), waterbodies (watercourses and lakes), 
and the administrative boundary of Tallinn. Polygon data of airport and wetlands 
was extracted from the CORINE Landcover database. The reference year of these 
data was 2018 and was resampled to 30 m resolution to be consistent with the 
classified maps and applicable for modeling purposes. 

In Article IV, we used two data types to perform the hybrid ANN–CA–MCA 
simulation model. First, we used the level 1 class of data provided by Parente 
et al. (2021) for 2000, 2011, and 2019 to analyze LULC and urban expansion. 
Second, we used the cloud computing platform of Google Earth Engine to process 
the optical remotely sensed data, and we extracted 147 spectral–textural indi-
cators of landscape physiognomy for those anchor years. Since textural indices 
are mathematically designed to indicate opposite landscape attributes (e.g., 
diversity-heterogeneity), they are highly multicollinear. So, we conducted the 
multicollinearity analysis, and the final selection of non–collinear predictors were 
19 spectral–textural indices presented in Table 2.  

This thesis used several platforms and software to process the data, analysis, 
and simulation. Employed software includes QGIS 3.10, ArcGIS 10.6, IDRISI, 
and GEOSOS–FLUS and used platforms consisted of Repast platform used in the 
AgentAnalyst extension for ArcMap 10.6 and Google Earth Engine cloud com-
puting platform.  
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Table 2. Selected predictors of LULC transformation and urban expansion; NDBI stands for 
Normalized Difference Built-up Index, NDVI – Normalized Difference Vegetation Index, 
NDWI – Normalized Difference Water Index. Source: Article IV, Table 2. 

Variables 
(Aliases) Description Landscape interpretation Formula 

reference 
blue_entropy_21 Blue band Shannon’s 

entropy 
Diversity of landscape com-
position regarding water 
elements, cultural features, 
and soil/vegetation edges

(Shannon, 
1948) 

green_gearys_21 Green band  
Geary’s C 

Spatial clusters of cultural 
features and vegetation

(Anselin, 2010) 

hue_dvar_21 Hue band GLCM 
Difference variance

Cultural features, highly 
urbanized areas

(Haralick et al., 
1973) 

ndbi_corr_21 NDBI GLCM 
Correlation 

Urban/non–urban gradients (Haralick et al., 
1973) 

ndbi_gearys_21 NDBI Geary’s C Clusters of built-up areas (Anselin, 2010) 
ndbi_idm_21 NDBI GLCM 

Inverse Difference 
Moment 

Water bodies, wetlands, 
vegetation clusters 

(Haralick et al., 
1973) 

ndbi_shade_21 NDBI GLCM Shade Landscape edges and 
coastal areas

(Conners et al., 
1984) 

ndvi_prom_21 NDVI GLCM 
Prominence 

Coastal areas (Conners et al., 
1984) 

ndwi NDWI Sea and inland water bodies (McFEETERS, 
1996) 

nir_gearys_21 NIR band Geary’s C Vegetation clusters (Anselin, 2010) 
nir_mean_21 NIR band Mean Inner parts of vegetation 

patches
 

nir_sd_21 NIR band Standard 
Deviation 

Edges of vegetation patches, 
landscape gradients, coastal 
areas

 

sat_asm_21 Saturation band 
GLCM Angular 
Second Moment

Water bodies and wetlands (Haralick et al., 
1973) 

sat_dent_21 Saturation band 
GLCM Difference 
Entropy 

Urbanized areas, roads, 
cultural features 

(Haralick et al., 
1973) 

sat_savg_21 Saturation GLCM 
Sum of Average

Water bodies, (semi)natural 
vegetation clusters

(Haralick et al., 
1973) 

swir1_gearys_21 SWIR1 band  
Geary’s C 

Bare soil, coastal areas (Anselin, 2010) 

swir1_sd_21 SWIR1 band 
Standard Deviation

Bare soil, coastal areas, land 
cover edges

 

val_dent_21 Value band GLCM 
Difference Entropy

Urbanized areas, roads, 
cultural features, bare soil

(Haralick et al., 
1973) 

wetness Tasseled Cap 
Wetness band

Canopy moisture content (Kauth & 
Thomas, 1976) 
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2.3. Analysis of LR and MLP Models (Article I) 

In Article I, to distinguish the relationship between the independent categorical 
variables and the urban expansion as the binary dependent variable, we employed 
the LR and MLP models. To obtain the regression coefficients in the LR model, 
a binary (0 and 1) dependent variable and 12 independent variables were defined 
as the model inputs, with a 10% sampling rate based on stratified random 
sampling. The following formula estimates the probability of the LR model: 
 𝑃(𝑦 = 1|𝑋) = exp(∑ 𝐵𝑋)1 + exp (∑ 𝐵𝑋)  (1)

 
where P represents the probability of the dependent variable being 1; X is the 
independent variable (X = (x0, x1, x2, …, xk), x0 = 1); and B is the estimated 
parameter, B = (b0, b1, b2, …, bk). 
 
The MLP function has two crucial forward, and backward propagation steps to 
complete the adjustments in neuron connection weights (Eastman, 2012). In the 
process of feedforward learning, neuron weights are associated based on a 
threshold, and reaching this threshold; the neuron is activated and able to send 
the data to the next layer. The input of a single node is weighted according to 
equation (2): 
 𝑛𝑒𝑡௝ = ෍ 𝑊௜௝ 𝑂௜௠௜ୀଵ  (2)

 
where 𝑊௜௝ represents the weights between nodes i and j, and 𝑂௜ is the output from 
node i. In our research, a sigmoidal function f is the activation function, and the 
weights will be applied before the signal reaches the subsequent layer. The output 
from node j is calculated by equation (3):  
 𝑂௝ = 𝑓൫𝑛𝑒𝑡௝൯ (3) 
 
When the forward pass is finished, the comparison will be made between the 
output nodes and the expected activities. Then the backpropagation process started 
adjusting the weights to learn the process thoroughly. To process the MLP model, 
we applied 50% of samples for training the algorithm and 50% for validation 
using 10,000 iterations. 

Here, we defined Y = 1; when land is converted from non–urban into urban 
between 1990 and 2018; otherwise, Y = 0; non–urban/no changes (Figure 2), and 
12 independent variables (Table3). Besides, to reduce multicollinearity, we 
performed a Pearson correlation analysis.  
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Table 3. Independent variables, explanation, and description (The table information is 
extracted from Article I). 

Independent 
variables Explanation Description  

X1 Distance from 
near cities  

The likelihood of urban expansion concerning 
proximity to near cities associated with accessibility 
and commercial uses

X2 Distance from 
the core of 
cities: Tallinn 
and Tartu  

The likelihood of urban expansion concerning 
proximity to the core of Tallinn and Tartu is 
associated with accessibility and commercial uses 

X3 Distance from 
green urban 
areas  

Urban expansion likelihood proximate to green 
urban areas and the importance of conservation of 
urban green spaces

X4 Distance from 
industrial or 
commercial 
units  

Accessibility to the industrial or commercial units 
for job seekers in industry and the likelihood of 
urban expansion near these places 

X5 Distance from 
airport 

Importance of urban expansion concerning the 
distance from airport due to the negative impacts of 
its noise and emissions

X6 Distance from 
sport and 
leisure facilities 

The likelihood of urban expansion concerning 
proximity to sports and leisure facilities as a 
residential preference for settlement selection 

X7 Distance from 
main roads  

Role of roads as accessibility factors that connect 
urban centers to periphery areas and affect the 
scattering of new construction around cities and 
urban expansion

X8 Distance from 
agricultural 
lands  

Likelihood of urban expansion on agricultural lands 
due to the ease of encroachment for construction 
purposes

X9 Distance from 
forest lands 

Importance of forest lands in trade-offs of urban 
expansion

X10 Distance from 
existing 
residential areas

The likelihood of urban expansion near existing 
residential areas while taking advantage of 
environmental attractions in the suburbs

X11 Distance from 
water areas 

Visual qualities of water areas and their location 
attractiveness for housing development

X12 Distance from 
wetlands  

Importance of wetlands in trade-offs of urban 
expansion
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Figure 2. Dependent variable (Y): urban expansion in Harju County and Tartu County 
between 1990–2018. Source: Article I, Figure 2. 
 
 

2.4. CA Model Implementation (Articles II–III–IV) 

A CA model consists of cell space, state, neighborhood, and transition rules. 
Improvements of the CA model elements such as the cells’ structure, neighbor-
hood characteristics, and transition rules help better and more realistic simulation 
and representation of future urban expansion. Here, the model elements applied 
in Articles II, III, and IV are described from a deeper perspective.  

Numerous studies have attempted to investigate the application of lattice/ 
regular grid cells in the CA model (Al–sharif & Pradhan, 2015; Falah et al., 2020; 
Jafari et al., 2016; Wu et al., 2010). Some studies suggest that irregular CA in the 
form of patch-based (Alaei Moghadam et al., 2018; Chen et al., 2019; Yang et al., 
2020) or vector-based (Long & Wu, 2017; Lu et al., 2020; Taillandier et al., 2017) 
can produce a more realistic spatial representation of geographical entities at fine 
scales (Chen et al., 2017; Otgonbayar et al., 2018). This study investigated an 
integrated regular environment with irregular cells (Article II) and regular grid 
cells’ CA (Articles III and IV).  

Extensive efforts have been devoted to the configuration of neighborhood 
effects, an essential subset of a CA model (Chen et al., 2017b; He et al., 2018; 
Khalilnia et al., 2013; Liao et al., 2014, 2016; Pan et al., 2021). Defining the 
neighborhood size and weights is a critical step in reducing the over–and under– 
estimation of these effects (Verburg, et al., 2004). Different neighborhood 
implementations were analyzed to capture the influence of neighboring cells and 
their interactions in the CA model. Among others, in a regular CA, the Moore 
neighborhood, which is based on a kernel cell, and its neighbors (3 × 3, 5 × 5, 
7 × 7, or larger odd neighbor cells), is the most applied neighborhood function 
(Falah et al., 2020; Liao et al., 2016; Liu et al., 2013; Omrani et al., 2017). In an 
irregular CA, different shapes (Pan et al., 2021; Pan et al., 2010) or influential 
regions neighborhoods (Otgonbayar et al., 2018) are considered to be the most 
applied neighborhood functions. Here, we used several neighborhood functions. 
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In Article II, an adjacent neighborhood function was implemented. The Moore 
neighborhood function was applied with 5 × 5 cells (Article III) and 7 × 7 cells 
(Article IV). 

Transition rules have been identified as major contributing factors to a CA 
model. Defining the driving factors of urban expansion in a historical approach 
by revisiting the past conversions (Jafari et al., 2016; Khalilnia et al., 2013; Liao 
et al., 2016; Wang et al., 2020), suitability analysis (Fu et al., 2018; Karimi Firozjaei 
et al., 2019; Saxena & Jat, 2020; Tajbakhsh et al., 2016) and spatial demand allo-
cations for the future specifications of urban expansion (Dang & Kawasaki, 2017; 
Liang et al., 2018; Lv et al., 2021) are the most widely used techniques for deter-
mining the transition rules. Enhancing the transition rules will result in the model’s 
performance. So, different models and tools were applied to boost the transition 
rules in a CA model. Among others, LR (Liao et al., 2016; Liu et al., 2015; 
Shafizadeh–Moghadam et al., 2017), MCA (Gharaibeh et al., 2020; Rimal et al., 
2018; Xu et al., 2019), ANN (Girma et al., 2022; He et al., 2018; Losiri et al., 
2016), AHP (Aburas et al., 2017; Tajbakhsh et al., 2016; Yang et al., 2011), 
agent-based (Dahal & Chow, 2014; Liu et al., 2020; Xu, 2019) and random forest 
(Liang et al., 2021; Lv et al., 2021; Qian et al., 2020) are the most applied 
methods. In this study, MCA and agent-based model combinations were applied 
in Article II, MCA and AHP integration was employed in Article III, and MCA 
and ANN models were implemented in Article IV and described in the following 
sections (2.4.1, 2.4.2, and 2.4.3). 
 
 

2.4.1. Integrated CA–Agent Model Framework (Article II) 

After evaluating the driving forces of urban expansion in two Estonian counties 
to find the most influential drivers (Article I), through Article II, we applied the 
most influential drivers alongside many other factors to investigate urban expan-
sion in Tallinn and its 15 km buffer zone. We selected influential factors, including 
distance to main roads, Tallinn, and built-up areas. We defined some constraints 
such as buffer of main lakes, watercourses, airport, and wetlands to analyze the 
suitability of urban expansion. Besides, we established some behavioral rules and 
neighborhood status for cellular agents to act in the CA–Agent model and make 
decisions for development over time. We also used the same study period in 
Article I for analysis (1990–2018). We then simulated the study area’s future 
(the year 2030).  

In Article II, we explained the capabilities of an integrated CA–Agent model 
as the second thesis assumption. While the framework’s base model was a parcel–
agent-based urban growth model developed by Li (2013), we improved the 
application of the base model’s parameters, input data, procedures, and behavioral 
rules for our analysis. The built-up areas were dispersed in irregular polygons; 
however, the undeveloped cells were resized to the square polygon grids ranging 
from 127 to 8100 m2. We defined the adjacent neighbors and used the ArcGIS 
polygon neighbor tool to delineate the heterogeneity of neighborhood effects.  
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Markovian transition probability (MCA) in the CA–Agent model was per-
formed to add complexity to the agent’s behavior and calculate the built-up 
transition probability for two periods from 1990 to 2006 and 2006 to 2018. The 
Euclidean distance tool was used for suitability analysis, and the constraints were 
analyzed using the buffer tool and fuzzy overlay analysis in the GIS environment 
(Figure 3). The CA–Agent model constraints were permanent during the run pro-
cess and precalculated to extract the number of unbuildable cells. The ranges of 
suitability factors were between 0 and 100. During the model run, cellular agents 
normalized suitability rates to reach the actual value for each factor. The con-
straints and factors were converted to raster (all the operations of cells run in the 
raster environment). 
 

 

Figure 3. Suitability analysis: suitability factors consist of “distance to Tallinn”, “distance 
to main roads”, and “distance to local roads”. (“neighborhood status” as a suitability factor 
was implemented into the model by its table records). Six constraints were defined to limit 
the buildable lands, which was a fuzzy overlay combination of “50m buffer of main lakes”, 
“30m buffer of railways”, “25m buffer zone of watercourses”, “50m buffer of main roads”, 
“50m buffer of the airport”, and “50m buffer of wetlands”. Source: Article II, Figure 5. 
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Behavioral rules were one of the most critical parts of the CA–Agent model and 
formed the development status of agents. These rules depended on different 
factors: the status of a cell, its neighbors, suitability criteria, constraints, and 
accessibility factors. Some of the behavioral rules defined for the model include: 
“if the cellular agent’s ratio of unbuildable area to total area exceeds the thres-
hold, then the agent will not be developed”; “if it falls in a constraint area, then 
it exhibited change”; and “if more neighbors are built up, then it is likely to 
develop.” Consequently, the CA–Agent model can consider many rules that reflect 
the actual urban expansion process over time and space. Therefore, the number 
of cells changing their states was entirely defined by behavioral rules. 

The CA–Agent model was run for two timesteps of 12 years to simulate urban 
expansion in 2018 (simulation validation) and 2030. The basic workflow of data 
preparation, spatial data analysis, and the CA–Agent model implementation is 
performed in Figure 4. 

 
Figure 4. The basic workflow of data preparation, spatial data analysis, and the CA–
Agent model implementation. Source: Article II, Figure 2.  
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2.4.2. CA–MCA–AHP Model Framework (Article III) 

In Article III, we used slope, distance to built-up, distance to water bodies, and 
distance to roads as the main driving forces of urban expansion in Harju County 
and defined buffer of water areas as constraints performed in an MCE function 
to investigate urban expansion. Then we analyzed the suitability of urban 
expansion in Harju County (from 1990 to 2018) and simulated the future (2046).  

In Article III, we explained the capabilities of an integrated CA–MCA–AHP 
model as the second thesis assumption. We improved the application of the CA 
model by performing an MCE function using the AHP technique to create a 
suitability map in the GIS environment (Figure 5). Markovian transition prob-
ability (MCA) was performed to produce the following outputs; a transition prob-
ability matrix, a transition areas matrix, and a set of conditional probability images 
applicable in the CA model. It should be noted that these weights were held 
constant throughout the simulation.  

Figure 5. The basic methodology adopted in Article III. Source: Article III, Figure 1.  
 
Using MCE is an effective way to weigh the different factors and constraints of 
an actual situation in a case study and make a transition suitability map as an input 
to the model. In Article III, we used a cell size of 100 m with a reference unit of 
1 meter as cell spaces. We performed the transition rules from non-urban to urban 
with a Moore neighborhood function of 5 × 5 cells. 
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2.4.3. Hybrid ANN–CA–MCA Model Framework (Article IV) 

Article IV assumed that landscapes’ spectral and textural properties adequately 
proxy LULC transitions and urban expansion. So, the hybrid ANN–CA–MCA 
model was performed for multiple LULC classes, including artificial surfaces, 
agriculture, forest, wetlands, and water. Here, the data concerning changes in the 
class of artificial surfaces is presented to maintain the focus. It is essential to point 
out that in Article IV, areas of urban fabric, industrial, and mineral extraction 
sites were classified as a single main class of artificial surfaces on a countrywide 
scale. While the class of “artificial surfaces” covers the term “urban” in most 
locations in Estonia, it is meaningless for the vast mining and industrial sites in 
the northeast of Estonia. So, further analysis is based on the changes in the class 
of artificial surfaces and, consequently, the artificial surface in the three major 
cities of Tallinn, Tartu, and Pärnu visualized as urban expansion. Overall, Figure 
6 shows the schematic framework of the implemented model. 
 

 
Figure 6. A schematic framework of the hybrid ANN–CA–MCA model. Source: 
Article IV, Figure 2. 
 
To estimate the spatial probability of occurrence and define the transition rules, 
we used ANN by self–learning/adaptive inertia algorithm suitable for the CA 
model simulation. Also, we performed multiple regression analysis to analyze the 
relationships between artificial surfaces’ probability of occurrence (dependent 
variable) and 19 spectral–textural indices (independent variables). The regression 
analysis was used to estimate the importance of spectral–textural indices on 
artificial surfaces’ probability of occurrence in 2011, 2019, and 2030. Then to 
project the future land demand, we used MCA.  

The initial configuration of the hybrid ANN–CA–MCA model was set as 
follows; a discrete square grid cell with a spatial resolution of 50 × 50 m described 
the quantity and degree of development. The neighborhood’s weights that are 
variant through time were calculated based on the evolution ratio of each LULC 
type, and its size was set to 7 × 7 grid units of the Moore neighborhood.  
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2.5. Accuracy Assessment Methods 

To identify the model accuracy and performance, validation of the model output 
against the actual reference map is essential. So, in this thesis, we tested and 
validated the prediction results using different validation tests, including Relative 
Operating Characteristic Curve (ROC), kappa coefficient, overall accuracy, 
Klocation, Qdisagreement, MediumGrid (m), Adisagreement, and user/producer’s accuracy. 
Table 4 represents the description and references of the methods applied.  
 
Table 4. An overview of the accuracy assessment methods used in the thesis. 

Accuracy assess-
ment method 

Description References 

Relative 
Operating 
Characteristic 
Curve (ROC)

Probability of true-positive opposed to false-
positive identified urban expansion  

Articles I 

Kappa coefficient The agreement between observed and expected 
correct in the classified/simulated map and 
ground truth map; represents the agreements 
and the pattern’s consistency

Articles II, IV 

Overall accuracy  The overall proportion/percentages of correctly 
classified/ simulated areas by reference pixel 
samples 

Articles II, IV 

Klocation  The kappa for the grid-cell level location to 
monitor how well the grid cells are located on 
the landscape

Articles II 

Qdisagreement The amount of disagreement regarding the fails 
in specifying the correct quantity of each 
category in comparison map with the reference 
map 

Articles II 

MediumGrid (m) The agreement between the reference map and 
the simulation map in terms of proportion 
correct 

Articles II 

Adisagreement Error in matching the spatial allocations due to 
differences in the location of comparison and 
the reference map categories

Articles II 

User’s accuracy  The statistics of the quality of the simulated 
map represent the proportion of a pixel mapped 
into a given class that actually represents that 
class on the actual map

Articles IV 

Producer’s 
accuracy 

The statistics of the quality of the simulated 
map represent how well classes of the actual 
map’s pixel are simulated

Articles IV 
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3. RESULTS 

3.1. Urban Expansion in Estonia from 2000 to 2019 

This section refers to Article IV and analyzes the changes in artificial surfaces in 
Estonia between 2000 and 2019 (Table 5 and Figure 7). About 24.16 sq. km was 
added to the artificial surfaces during this period, and most new dwelling areas 
replaced previous agricultural lands. During the later years, the addition of newly 
built areas has slowed down, so that from 2000 to 2011, the rate of increase in 
artificial surfaces was 1.64%, reaching 765.00 sq. km, and from 2011 to 2019, 
the areas of artificial surfaces increased by 1.49% (776.59 km2).  
 
Table 5. Dynamics of changes in artificial surfaces in Estonia from 2000 to 2019. Source: 
Article IV, Table 3. 

Artificial 
surfaces 

Area (Sq.km) Change (Percentage) 
2000 2011 2019 2000–2011 2011–2019 2000–2019 

752.42 765.00 776.59 1.64% 1.49% 3.11% 
 
 

 
Figure 7. Changes in artificial surfaces in Estonia from 2000 to 2019. Source: Article IV, 
reproduced from Figure 3. 
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3.2. Driving Forces of Urban Expansion  
in Two Estonian Counties (Article I) 

Based on the results of the LR model presented in Table 6, it can be explained 
that the distance factors from near cities (X1), the core of main cities of Tallinn 
and Tartu (X2), sport and leisure facilities (X6), main roads (X7), forest lands 
(X9), and water areas (X11) in both counties had a negative correlation with urban 
expansion. This means that where the distance from these variables increases, the 
tendency for urban expansion decreases (Article I).  
 
Table 6. LR Statistical results for Harju County and Tartu County. Source: Article I, 
Table 4. The coefficient values define the importance and the degree of relationship 
between dependent and independent variables as drivers of urban expansion. The sign of 
the coefficient (±) shows a positive or negative correlation to the response of the 
dependent variable. Positive coefficients indicate positive impacts, while negative values 
determine negative impacts (Eastman, 2012; Siddiqui et al., 2018). 

Independent 
variables 

Coefficients 
Harju County Tartu County 

Intercept 1.51 1.18 
X1 –0.09 –0.97
X2 –1.27 –3.48
X3 0.23 –0.54
X4 –0.92 1.26
X5 –1.58 3.53
X6 –0.59 –0.21
X7 –2.19 –0.4
X8 0.81 –2.74
X9 –1.46 –0.57
X10 1.17 –1.85
X11 –1.82 –1.01
X12 0.89 –0.34

Pseudo R2 0.36 0.43
ROC 0.95 0.97

 
We applied ROC to validate the LR model results. As seen in Table 6, the ROC 
values for Harju County and Tartu County were 0.95 and 0.97, respectively, 
showing that the LR model was a good fit. Besides, the Pseudo R2 parameter was 
checked to analyze the model prediction fitness. The results showed that using 
these variables provides prediction values of 37% in Harju County and 45% in 
Tartu County. The output of the LR model was a prediction map (Figure 8) 
verifying where urban expansion occurred in 2018 when the coefficients of 
proximity factors were employed in the study areas.  
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Figure 8. Predicted map of urban expansion using LR model for 2018 and overlay with 
the actual urban expansion maps (CORINE land cover dataset) in 2018. Source: Article I, 
Figure 10.  
 
The output of the MLP model provided a detailed statistical analysis and a pre-
dicted map based on the strength of the independent variables. The statistical 
analysis includes three main categories of information: (1) Model sensitivity 
when a single variable is constant. After training the whole variables to check the 
strength of independent variables, it holds the input values of a selected variable 
constant to remove its variability. (2) Except one variable, all variables are held 
constant. It shows complementary information about the existence of intercorre-
lation between independent variables. The results will prepare the most and least 
influential driving forces (Table 7). (3) Backward stepwise constant forcing keeps 
every variable constant, in turn, to distinguish which other variables have a minor 
effect on the model. This trend will remain constant for every probable pair of 
variables and check the least effective ones until only one variable is left (Table 8). 
It is a practical algorithm to remove powerless variables and reduce the likelihood 
of overfitting (Eastman, 2012). 

In the case of Harju County, the most influential independent variable was 
“distance from existing residential areas (X10)” and the least influential was 
“distance from sports and leisure facilities (X6)”. The variables “distance from 
the core of Tallinn (X2)”, “distance from green urban areas (X3)”, and “distance 
from main roads (X7)” were the most influential among the other variables. The 
most influential driving force in Tartu County was “distance from the core of 
Tartu (X2),” and the least influential was “distance from the airport (X5)”. The 
results showed that “distance from existing residential areas (X10)” in Harju 
County and “distance from the core of Tartu (X2)” in Tartu County had more 
strength than the other variables 

Likewise, the predicted map of the MLP model (Figure 9) verified 79% of the 
prediction based on the defined variables for Harju County and 49% for Tartu 
County, where urban expansion happened in 2018.  
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Table 7. Statistical information of the MLP model’s sensitivity (Steps 1 and 2). Source: 
Article I, Table 5. 
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 Force Constant a Single Variable Except One, Force Constant 

All Independent Variables 

Harju County Tartu County Harju 
County 

Tartu 
County 

R2 Influence 
Order R2 Influence 

Order R2 

With all 
variables 

0.04 N/A 0.02 N/A 0.0390 0.0217 

X1 0.04 9 0.02 8 0.0009 0.0000 
X2 0.03 2 0.01 1 (most 

influential)
0.0031 0.0018 

X3 0.03 3 0.01 2 0.0039 0.0012 
X4 0.04 8 0.01 5 0.0015 0.0009 
X5 0.03 5 0.02 12 (least 

influential)
0.0025 0.0000 

X6 0.05 12 (least 
influential)

0.01 4 0.0000 0.0011 

X7 0.03 4 0.01 3 0.0036 0.0012 
X8 0.04 10 0.02 9 0.0021 0.0000 
X9 0.03 6 0.02 11 0.0022 0.0000 
X10 0.02 1 (most 

influential)
0.02 6 0.0067 0.0004 

X11 0.04 11 0.02 7 0.0000 0.0002 
X12 0.04 7 0.02 10 0.0000 0.0000 
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Figure 9. Predicted urban expansion in relation to 12 independent variables using MLP 
for Harju County and Tartu County. The overlay of urban areas in 2018 was conducted 
to visualize the predicted urban expansion with the actual maps (CORINE land cover 
dataset) in both counties. Source: Article I, Figure 11. 
 
 

3.3. Integrated CA–Agent Model Simulation Results  
(Article II) 

The integrated CA–Agent model was implemented in Article II. As Figure 10 
represents, cellular agents have three different values; Value 1 is allocated to the 
cells developed to be built up between two timestamps (1990–2006 and 2006–
2018), Value 3 is the previous development to be built up (the initial development 
of Tallinn and surroundings), and Value 2 shows the undeveloped cells. During 
the model run, Value 2 agents, which range from 127 to 8100 sq. m area, have less 
likelihood of being developed in the neighboring areas unless they have a high 
probability of being located in Tallinn or a large cell. We took advantage of 
Markovian transition probability results set to 0.84 to allocate the CA–Agent 
model probabilities and perform suitability analysis by applying different con-
straints based on the guidelines of Estonian legislation on new constructions named 
“Riigi Teataja”.  

To evaluate the model parameters and their application in the study area, we 
performed the model once for simulating urban expansion in 2018 and then 
validated it against the actual map in 2018. Table 9 illustrates the high accuracy 
of the simulated map after applying the accuracy assessment. Kstandard (0.86), 
Klocation (0.89), and MediumGrid (m) (0.91) demonstrated high model 
performance, and the Qdisagreement (0.02) and Adisagreement (0.07) declared minor cell 
error match in the simulation result. Therefore, the CA–Agent model runs 
reached an acceptable prediction, so we performed the second run of 12-time 
steps for simulating the urban expansion by 2030 (Figure 11). 
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Figure 10. The urban expansion between 1990–2006 and 2006–2018 represents the state 
of the agents. Source: Article II, Figure 4. 
 
 

 
Figure 11. Simulated map of urban expansion applying the CA–Agent model for 2030. 
Source: Article II, Figure 7. 
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Table 9. Validation results of the simulated map and actual map in 2018. Source: 
Article II, Table 7. 

Image Comparison results (Degree from 0–1) 
Kstandard 0.86
Klocation 0.89
MediumGrid (m) 0.91
Qdisagreement 0.02
Adisagreement 0.07

 
According to Table 10, built-up areas consisting of residential, industrial, and 
other impervious surfaces increased by 40.80 sq. km (+25.03% change) in Tallinn 
and its 15 km buffer zone between 1990 and 2018. Besides, urban expansion from 
1990 to 2006 had risen by 18.15%, which was faster than the expansion between 
2006 and 2018 with an 8.40% increase. The CA–Agent model results also pre-
dicted the continued increase reaching 175.24 km2 in 2030, which means a 
30.25% increase from 1990 to 2030 due to the development of 2881 cells. The 
expansion rate was slower (6.97%) from 2018 to 2030.  
 
Table 10. Urban expansion in Tallinn and its buffer zone from 1990 to 2030. Source: 
Article II, Tables 4 and 8. 

Built-Up Areas Increased Area by sq. km Percentage of Change 

1990 2006 2018 2030 1990–
2006 

2006–
2018 

2018–
2030 

1990– 
2006 

2006–
2018 

1990–
2030 

122.22 149.32 163.02 175.24 27.10 13.70 12.22 18.15 8.40 30.25 
 
 

3.4. CA–MCA–AHP Model Simulation Results (Article III) 

In Article III, we applied an MCE function to evaluate the performance of the 
CA–MCA–AHP model. Combined constraint maps of water buffer zones with 
factors including slope, distance to built-up, distance to water bodies, and distance 
to roads were analyzed and weighted with an AHP technique to determine their 
influence on urban expansion and produce a suitability map in the Harju County 
(Figure 12). Zero values can limit the suitable areas for urban expansion. The 
most suitable areas are shown in red, mostly near existing built-up areas, low 
suitable areas in green to yellow, and unsuitable areas in black to dark blue colors.  
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Figure 12. MCE function output as suitability map for urban expansion in Harju County. 
Source: Article III, Figure 14. 
 
Based on the transition rules extracted from MCA and the suitability map utilized 
by the MCE function, urban expansion in Harju County for 2046 was simulated, 
and the results indicated that the expansion trend is mainly near the existing built-
up areas and roads (Figure 13). Meanwhile, the city of Tallinn expanded mainly to 
the northwest and northeast from 1990 to 2018, and this process continued to 2046. 
 

 
Figure 13. Urban expansion in Harju County during 1990–2018 and simulated 2046. 
Source: Article III, Figure 16. 
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3.5. Hybrid ANN–CA–MCA Model Simulation Results  
(Article IV) 

This study explored the changes in LULC and artificial surfaces using the hybrid 
ANN–CA–MCA model in the GIS environment. Several inputs were analyzed 
and put into the model for future simulation. Besides, the demand quantity was a 
primary input of the simulation model calculated by MCA. The estimation of 
demands was based on the transition probability and area of the changes in LULC 
from 2011 to 2019 (Table 11). The results showed that it is 78.30% probable that 
artificial surfaces remain the same, and their probability of transitions was mainly 
affected by agricultural lands by 13.03%.  
 
Table 11. Transition probability and demand prediction for simulation of artificial sur-
faces in 2030. Source: Article IV, Table 5. 

Transition Probability Demand 
prediction 
2030 (cells) 

2011 (row),  
2019 (columns) 

Artificial 
surfaces 

Agri- 
culture Forest Wet-

lands Water

Artificial surfaces 0.7830 0.1303 0.0807 0.0010 0.0050 314814 
 
Using a back propagation-ANN algorithm, the probability of occurrence was 
estimated to be one primary input in the simulation model. Table 12 illustrates 
the relationships between artificial surfaces’ probability of occurrence (dependent 
variable) and 19 spectral–textural indices (independent variables). The statistical 
results of the multiple regression analysis revealed the importance of spectral–
textural indices on the expansion of artificial surfaces. The adjusted R2 value was 
0.94 for the probability of occurrence in 2011 and 0.93 in 2019 and 2030, which 
indicated that artificial surfaces’ probability of occurrence is explained extremely 
high by spectral–textural indices. 

While the results explored the uniformity of distribution of color saturation, 
entropy on the pixel difference of color value, saturation value, and average on 
the sum of color saturation pixel pairs (sat_asm_21, val_dent_21, sat_dent_21, and 
sat_savg_21, respectively), were the best positive indicators of the probability of 
occurrence in 2011 and 2019. Also, correlation among normalized difference 
built-up index pixel pairs and NIR band mean (ndbi_corr_21 and nir_mean_21) 
most influenced the artificial surfaces’ probability of occurrence in 2030. In 
contrast, the homogeneity of normalized difference built-up index pixel pairs 
(ndbi_idm_21) was the most negative influential factor over these periods. 
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Table 12. Association between spectral–textural indices and artificial surfaces’ proba-
bility of occurrence in 2011, 2019, and 2030. Source: Article IV, Table 6. 

Spectral– 
textural indices 

Probability of 
occurrence 
coefficients Spectral–

textural indices 

Probability of 
occurrence 
coefficients 

2011 2019 2030 2011 2019 2030 
intercept –1.00 –1.27 –1.35 nir_gearys_21 1.00 0.99 0.99 
blue_entropy_21 7.28 –6.61 0.40 nir_mean_21 6.97 1.95 2.71 
green_gearys_21 2.75 0.08 1.21 nir_sd_21 –3.31 1.89 –1.11 
hue_dvar_21 –4.79 –4.47 –1.92 sat_asm_21 13.26 10.85 –4.80 
ndbi_corr_21 –7.98 –10.30 5.50 sat_dent_21 8.78 4.50 –1.81 
ndbi_gearys_21 –8.03 9.44 –2.65 sat_savg_21 2.97 2.41 1.85 
ndbi_idm_21 –12.69 –11.94 –6.74 swir1_gearys_21 0.96 1.02 0.97 
ndbi_shade_21 1.02 0.97 1.03 swir1_sd_21 –4.45 –4.18 –1.19 
ndvi_prom_21 1.20 1.16 1.04 val_dent_21 10.54 5.19 –1.86 
ndwi –6.89 8.73 –3.83 wetness –3.96 –1.84 1.74 

   Adjusted R2 0.94 0.93 0.93 
 
After performing the CA model to simulate the projection in 2011 and 2019, we 
validated the results against the actual maps of those years to explore the accuracy 
of the predicted indices for simulation in 2030 (Table 13). The accuracy assess-
ment indicated excellent simulation results and consistency in the simulation of the 
patterns (in 2011, the kappa coefficient = 0.8715 and overall accuracy = 93.46%, 
and in 2019, the kappa coefficient = 0.9094, overall accuracy = 95.38%). Pro-
ducers’ and users’ accuracy for both simulations were higher than 70% on 
artificial surfaces.  
 
Table 13. Statistical results of the accuracy assessments for the simulation of LULC in 
2011 and 2019. Source: Article IV, Table 7. 

Accuracy assessment 2011 2019 
Kappa Coefficient 0.8715 0.9094 
Overall Accuracy 93.46% 95.38% 
Producer’s Accuracy 74.87% 77.32% 
User’s Accuracy 74.77% 77.41% 

 
Based on the overall conditions set for the hybrid ANN–CA–MCA model, we 
predicted the changes in artificial surfaces in Estonia for 2030 (Table 14). Taking 
advantage of spectral–textural remote-sensing indices, the prediction of changes 
in artificial surfaces was estimated to increase at a rate of 1.33% and expected to 
reach 787.04 sq. km in total with a similar pattern to the previous periods (a total 
of 34.62 km2 growth (+4.40%) from 2000 to 2030). 
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Table 14. Artificial surfaces dynamic changes in Estonia from 2000 to 2030. Source: 
Article IV, Tables 3 and 8. 

Artificial 
surfaces 

Area (Sq.km) Change (Percentage) 

2000 2011 2019 2030 2000–
2011 

2011–
2019 

2019–
2030 

2000–
2030 

752.42 765.00 776.59 787.04 1.64% 1.49% 1.33% 4.40% 
 
Closer inspection of urban expansion in three major cities in Estonia, including 
Tallinn, Tartu, and Pärnu, represented in Figure 14, indicated that the new expan-
sion exceeded the cities’ boundaries, primarily distributed around the existing 
urban areas, indicating a prominence of infilling expansion. In Tallinn, where the 
water restricted expansion to the north and south, the expansion will be situated 
in the west and east directions. Expansion of artificial areas in the city of Tartu 
will be located mainly to the south and south-west. Indeed, scattering patterns of 
expansion in Pärnu as a summer capital will be placed in the northeast. A visual 
interpretation of urban expansion in these three cities also revealed that the vast 
majority of expansion was predicted in Tallinn, the capital city, with more popu-
lation. As the second major city in Estonia, more expansion was predicted for 
Tartu compared to Pärnu.  
 

 
Figure 14. Urban expansion in the main cities of Estonia by 2030. Source: Article IV, 
Figure 7. 
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4. DISCUSSION 

4.1. Driving Forces and Predictors  
of Urban Expansion in Estonia 

For practical purposes, the complexity of urban expansion simulation in cities 
and suburbs implies a need for distinguishing a reduced set of most influential 
factors affecting the phenomena. The effects of physical and proximity factors on 
urban expansion were explored in Articles I, II, and III, and extensive research 
has modeled their influences. For example, Tan et al. (2015) demonstrated that 
the distance to the city center and major roads negatively influences urban expan-
sion. Similarly, Mustafa et al. (2018) used the factors of distance to roads, towns, 
and railways, and Liu et al. (2013) applied spatial variables of distance to the 
town center and roads as the proximity factor affecting urban expansion. Through 
Articles I–III, we employed proximity analysis with different sets of driving 
factors.  

In Article I, we applied the proximity analysis, whose importance in modeling 
urban expansion was noted in prior studies (Abbas et al., 2021; Gharaibeh et al., 
2020; Paterson et al., 2015; Patra et al., 2018; Rahnama, 2021; Sohl et al., 2012; 
Ullah et al., 2019). We used twelve proximity measures for force, including “dis-
tance from near cities (X1)”, “distance from the core of main cities of Tallinn and 
Tartu (X2)”, “distance from the green urban areas (X3)”, “distance from industrial 
or commercial units (X4)”, “distance from airports (X5)”, “distance from sport 
and leisure facilities (X6)”, “distance from main roads (X7)”, “distance from agri-
culture land (X8)”, “distance from forest land (X9)”, “distance from existing resi-
dential areas (X10)”, “distance from water areas (X11)”, and “distance from wet-
lands (X12)” to investigate their influence on urban expansion in Harju County 
and Tartu County in Estonia.  

One interesting finding was that the footprints of urban expansion mainly were 
determined proximate to main roads (X7), the core of Tallinn and Tartu (X2), and 
existing residential areas (X10) in both counties, with different coefficients 
expressing the dominant role of these factors on urban expansion. In Harju 
County, based on the LR model, distance from main roads (X7) had the highest 
strength in urban expansion and then proximity to the core of Tallinn (X2), which 
this finding was broadly in line with the argument made by Reimets et al. (2015) 
who mentioned that the distance from the Tallinn was a less important factor than 
the distance from the main roads. Applying the MLP model also indicated the 
influence of these factors, while it showed that the most influential independent 
variable was the distance from existing residential areas (X10). This finding sup-
ports the conclusion reached by Samarüütel et al. (2010) that indicated the impor-
tance of Tallinn’s suburbs transforming into urban and expressed the likelihood 
of urban expansion and new constructions near the existing areas in the long-term 
Harju County. In Tartu County importance of proximity to the core of Tartu (X2), 
existing residential areas (X10), and main roads (X7) indicates the influence of 
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accessibility via main roads to the core of Tartu and existing residential areas. 
These factors revealed that people tend to settle proximate to existing residential 
areas or the core of Tartu, taking advantage of roads to commute between work 
and home while benefiting from environmental attractions in the suburbs. 

A closer look into the LR model results showed that in both counties, the dis-
tance from water areas (X11) was negatively correlated with urban expansion 
expressing the attraction of water for housing development (Tammaru et al., 
2009) and distance from the forest (X9) also had a negative impact on urban 
expansion, indicating the importance of forest land in trade-offs of urban expan-
sion. In Tartu County, the distance from agricultural lands (X2) ranked amongst 
the most influential factors of urban expansion, highlighting the importance of 
these lands in people’s lives and the tendency for conversion to urban expansion.  

The MLP model revealed that footprints of urban expansion are also apparent 
in proximity to the airport (X5) in Tallinn, while this factor is the least influential 
in Tartu County. The reason for this could be the spatial location of Tallinn inter-
national airport (Lennart Meri), which is inside the city’s boundary, with many 
residential settlements shaped in the periphery of the airport area during the last 
decades, while in Tartu County, the airport location (Ülenurme) is situated out-
side city’s boundary and less expansion was observed there. Besides, distance from 
green urban areas (X3) ranked amongst the influential factors of urban expansion, 
indicating the importance of urban greenery despite its reduction under the 
expansion of urban areas (Muhamad Nor et al., 2021). 

Further work in Articles II and III was done based on applying physical 
driving forces for modeling purposes in Harju County. In Article II, we applied 
the most influential drivers consisting of “distance to Tallinn”, “distance to main 
roads”, and “neighborhood status; representing the status of a cellular agent con-
cerning its neighboring residential area” alongside many other constraints and 
behavioral rules to investigate urban expansion in Tallinn and its 15 km buffer 
zone and then simulate the future of urban expansion in 2030. Applying these 
factors to the integrated CA–Agent model determined that the simulation’s 
accuracy reached 86%, indicating the high importance of defined driving factors 
and integrated model implementation in projecting the accurate urban expansion. 
Also, in Article III, combined constraint maps of water buffer zones with factors 
including slope, distance to built-up, distance to water bodies, and distance to 
roads were analyzed and weighted with an AHP technique in order to determine 
their influence on urban expansion and produce suitability map in Harju county.  

It was assumed that the landscape’s spectral–textural properties provide an 
adequate proxy in detecting urban expansion footprints and transitions over time. 
This assumption was addressed in Article IV, where we revisited utilizing 
spectral–textural information of landscape physiognomy as predictors of change. 
We modeled urban expansion with a hybrid ANN–CA–MCA model to investi-
gate the impacts of the proposed indicators on modeling. The results indicated 
that applying the spectral–textural indices by the hybrid ANN–CA–MCA model 
upgraded the accuracy of predictions reaching up to 90%, indicating the morpho-
logic indices’ high capabilities in projecting accurate urban expansion and their 
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significant importance in representing reality. In terms of artificial surfaces tran-
sitions over time, multiple regression analysis showed the dominant role of textural 
indices in representing diversity-related indices (e.g., difference entropy). While 
covering all aspects and predictors of the urban expansion transitions requires 
sufficient knowledge about the study area and trends of changes, adopting 
spectral–textural indices helps overcome the selection limitations and reliability 
in simulation results. Therefore, the assumption that landscapes’ spectral–textural 
properties provide a sufficient proxy for urban expansion transitions was proved, 
and it is suggested to use spectral–textural indices for modeling the future of urban 
expansion. 
 
 

4.2. Models’ Performance in Predicting  
Urban Expansion in Estonia  

In this thesis, different models have been utilized to address the complexity of 
urban expansion for analyzing past patterns and predicting future spatial patterns. 
The configuration of a single or hybrid/integrated urban expansion model should 
answer the evolving dynamics of urban expansion and the future spatial footprints 
of urban expansion to benefit urban planners’ and policymakers’ decisions. So, 
Article I set out to investigate the prediction power of two single models of LR 
and MLP. It showed a lower degree of prediction power for single models of LR 
(37% for Harju County, 45% for Tartu County) and MLP (79% for Harju County 
and 49% for Tartu County). While the dataset’s spatial resolution and selected 
driving factors are important input factors in the models, the implementation of 
these two single models proved the importance of hybrid models in representing 
the reality and detection of urban expansion footprints. Therefore, concerning the 
main objective of the thesis and to assess the second assumption, further works 
in Articles II, III, and IV were done with integrated/hybrid models.  

In Article II, We integrated the CA with MCA and agent-based models (CA–
Agent model) to simulate urban expansion in Tallinn and its 15 km buffer zone. 
The integrated CA–Agent model results determined the simulation accuracy 
reached up to 86%, indicating the importance of integrated model implementation 
in projecting the accurate urban expansion. In Article III, we applied the CA model 
with MCA and MCE models (CA–MCA–AHP) to simulate urban expansion in 
Harju County. The results indicated the high value of several models’ configu-
rations in projecting the future of urban expansion. Article IV synthesized the 
CA model with MCA and ANN models (ANN–CA–MCA) in the GIS environ-
ment to simulate urban expansion in country-wide Estonia. The results proved 
that applying the hybrid ANN–CA–MCA model also improved predictions’ 
accuracy, reaching up to 90%. Therefore, the results assert that combined models 
are beneficial to assure that simulation accuracy in representing the future is more 
realistic. It is worth discussing the essential findings of the implemented CA 
model’s components applied in this thesis: 
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(i) Cell space and state: Numerous research has attempted to investigate the 
application of lattice/regular grid cells in the CA model (Al–sharif & Pradhan, 
2015; Falah et al., 2020; Jafari et al., 2016; Wu et al., 2010). Implementing dif-
ferent cell spaces is a way to address the heterogeneity in space. Previous studies 
developed some approaches to answering the heterogeneity in the CA model cell 
space, including the patch-based approach of landscape metrics (Fenta et al., 2017; 
Lin et al., 2020; Liu et al., 2020; Yang et al., 2016), applying different cell sizes 
(Article II), partitioned grid cells (Lu et al., 2019; Xu et al., 2018; Xu et al., 
2021), and specifying different neighborhood characteristics (Tong & Feng, 
2019). Whereas in Article II, we applied different cell sizes approach to address 
the heterogeneity. The defined space for undeveloped cellular agents in the CA–
Agent model was square cells ranging from 127 to 8100 m with three different 
states. A cellular agent’s final state changed to built-up when a cell passed the 
complete assessment tests. Therefore, applying an irregular structure of cells with 
different sizes can better represent the reality of the non-uniform space of urban 
expansion. The spatial resolutions of cells in Article III were regular square grid 
cells of 100 × 100 m and in Article IV were regular square grid cells of 50 × 50 m, 
which multiple LULCs defined the transitions from non-urban to urban. One 
important finding was that pixel-level and non-uniform spatial information 
derived from spectral–textural indices provided higher accuracy for the hybrid 
cell-based model while addressing the heterogeneity in space. 
 
(ii) Transition rules: Transition rules are major contributing factors in a CA 
model. We defined the driving factors of urban expansion with suitability analysis 
approaches (Articles II and III) and spatial demand allocation (Article IV) for 
the future specifications of urban expansion to determine the transition rules. 
Besides, this study confirms that MCA (Articles II, III, and IV) estimated the 
transition probability and potential future changes. Previous studies developed 
MCA transition probability to answer the changes in cell state. Berberoğlu et al. 
(2016) have shown that conditional probabilities of the Markov model are reliable 
for allocating the to-be-changed state of cells. A similar application of the MCA 
model was obtained by Aburas et al. (2017) in predicting the quantity of urban and 
non-urban areas. However, consistent with the literature, to overcome the 
limitations of the MCA model, we applied three other mining models to boost the 
transition rules: the agent-based model (Article II), AHP (Article III), and ANN 
(Article IV).  
 
Article II synthesized the probabilities, transition rules, and interaction with other 
cellular agents and environments into one model. These capabilities allowed the 
cellular agents to decide to develop or not. Instead of randomly assigning the 
probability values, MCA extracted the spatial conversion during the time to 
interact with cellular agents and mine the transition rules. Transition rules were 
defined in several steps; consisting of searching the lands, collecting information 
(cell’s size, the least area needed for building a dwelling, the location, and adjacent 
neighboring cells) for the probable development status, assessing the situation 
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(based on the behavioral rules, suitability, and probability of developing a cell), 
investigating the thresholds and reaching the development decision. Article III 
utilized the AHP technique to explore the suitability of urban expansion in Harju 
County based on several factors and constraints. Article IV employed the ANN 
algorithm to discover the spatial probability of occurrence in non-linear systems 
like urban systems and mine the transition rules based on a competition mechanism 
using the spectral–textural predictors. The high value of adjusted R-square also 
detected this algorithm’s effectiveness for estimating the probability of occurrence; 
indeed, it reflected the diversity and complexity of transitions over time.  
 
(iii) Neighborhood: Defining the neighborhood size, shape, and weights is 
critical in reducing the over–and under–estimation of the models’ outcome. In 
Article II, we did not replicate the previous research applying Moore neigh-
borhood (Falah et al., 2020; Liao et al., 2016; Liu et al., 2013; Omrani et al., 
2017), different shapes (Pan et al., 2021; Pan et al., 2010) or influential regions 
(Otgonbayar et al., 2018); instead, we applied the adjacent cell’s neighborhood 
considering the polygon neighbor list, which could cover all the possibilities of 
the accessibility by neighbors. The adjacent neighborhood was based on the spatial 
and quantity influence of neighbors. Through the adjacent polygon neighbor list, 
the cellular agent assessed the number and proportion of neighbors that have 
developed at each time step and made its development decision. If no immediate 
neighbor or neighbor’s neighbor has been developed, developing the probability 
value of cellular agents was small. However, in Article III, a Moore neigh-
borhood function with 5 × 5 cells and in Article IV, 7 × 7 cells with different 
weights were applied. Here, it is nice to point out that the most interesting finding 
of implementing different neighborhood functions is to properly mine the 
transition rules and answer the reality of model representation and prediction. So, 
applying the proposed neighborhood functions accompanying different factors 
and tools, roughly impacts the models’ accuracy.  
 
 

4.3. Dataset Spatial Resolution for Modeling  
Urban Expansion in Estonia  

In this research, we used three primary remote sensing sources: (1) the time–
series CORINE land cover database with 100m spatial resolution (level 1 class; 
artificial surfaces considered urban), (Article I and Article III), (2) Landsat 
imagery products with a spatial resolution of 30m for extracting urban expansion 
and spectral–textural indicators of landscape physiognomy (Article II and 
Article IV), and (3) a 30m–spatial resolution land cover dataset provided by 
Parente et al. (2021) (Article IV). 

The most prominent finding to emerge from the analysis is that using the time–
series CORINE land cover database with 100m spatial resolution in Article I 
impacts the low prediction power of two single models of LR and MLP. The 
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prediction power of LR was determined to be less than the MLP model 
(LR = 37% for Harju County, 45% for Tartu County, and MLP = 79% for Harju 
County and 49% for Tartu County). In Article II, applying a new classified map 
with a spatial resolution of 30 m for a smaller area (Tallinn and its 15 km buffer 
zone) in an integrated CA–Agent model determined that the accuracy of the 
simulation reached up to 86%. Through Article IV, we used a dataset with a 
spatial resolution of 30 m, and we reclassified the data to 50 m resolution for 
LULC monitoring purposes and computationally convenience. Also, the results 
of the hybrid ANN–CA–MCA model revealed the accuracy of predictions 
upgraded and reached up to 90%.  

It was assumed that the dataset’s spatial resolution impacts the model perfor-
mance, and the model implementation results indicated the importance of the 
dataset’s spatial resolution. Besides, other factors such as selected driving factors, 
predictors, and models impact the models’ output in representing the reality and 
detection of urban expansion footprints.  
 
 
(i) Urban expansion in Estonia  
 
Suburbanization in eastern European countries after the collapse of the Soviet 
Union mainly decentralized people and urban functions from the center to the 
suburbs (Grigorescu et al., 2021). The construction of new settlements in 
scattering form has been a characteristic attribute of urban expansion in the main 
cities of Estonia over the past three decades. It reveals the reality of people’s 
decisions and actions over time on land, while the population experienced a 
dramatic decrease. Hence, the results of model implementation in this research 
confirmed that the scattering patterns of new constructions are expected to 
continue as the infilling development form, proximate to main cities and existing 
residential areas, taking advantage of main roads (Article I) and fed by the 
existing infrastructures in future. Article II showed the continued infilling 
patterns of new developments in Tallinn and its 15 km buffer zone reaching 
175.24 sq. km (12.22 km2 adding to built-up areas) in 2030. Besides, Article III 
indicated that new constructions would be located near the existing built-up areas 
in Harju County. Article IV predicted the expansions of Tallinn, Tartu, and Pärnu 
in the vicinity of existing constructions, experiencing a 34.62 km2 growth of 
artificial surfaces from 2000 to 2030. Scattering patterns of urban expansion 
around the main cities of Tallinn, Tartu, and Pärnu are continuing, so it is essential 
to pay attention to the specifications in the spatial plan of Estonia 2030+ in 
supporting the living and economic environments of the existing settlement to 
prevent scattering. 
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(ii) Suggestions for Future Work 
 
• To develop a complete picture of urban expansion in Estonia and its driving 

forces, socio-economic and governmental policies that influence urban expan-
sion at the macro level seem interesting to investigate.  

• While the footprints of urban expansion monitored by different sets of satellite 
data revealed the reality of people’s decisions and actions over time, future 
studies on how peoples’ preferences and actions form the scattering patterns 
of urban expansion are recommended. Likewise, it shapes a preference-led 
model considering the human decisions’ dimension instead of suitability and 
constraints-driven models. 

• The CA–Agent (Article II) model and ANN–CA–MCA model (Article IV) 
provided high accuracy in simulating the future of urban expansion in Estonia. 
However, further research might benefit from developing and using time-
series spatial data at the cadastral level to generate simulations closer to reality 
and answer the complexity of urban systems. 
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5. CONCLUSIONS 

This thesis set out to monitor, analyze, and model the past, present, and future of 
urban expansion in Estonia. We used different sets of remotely sensed data, 
including CORINE land cover datasets and different sets of data derived from 
Landsat satellite images. We explored many driving forces and spectral–textural 
properties of landscape as predictors of urban expansion changes. We conducted 
several modeling approaches consisting of LR, MLP, CA–Agent, MCE, and 
ANN–CA–MCA to understand the best modeling approaches for representing the 
reality of urban expansion in Estonia.  

Urban expansion in Estonia and some neighboring countries due to its geo-
political context, mainy after the collapse of the Soviet Union is quite different 
from most cities worldwide. While the population decreased over the past three 
decades in Estonia, people’s interventions on the environment raised gradually, 
such that utilizing satellite imagery determined the footprints of people’s actions 
over time. Therefore, Monitoring urban expansion in Estonia indicated continued 
expansion of urban-related constructions in a scattering form.  

The diversity in the models and methods, indicators, datasets, extrapolation of 
past trends, and inherited human-environment interactions has complicated urban 
expansion modeling. This thesis confirmed that synthesized CA-based models 
had great potential in simulating urban expansion by applying several driving 
factors and predictors and utilizing different datasets. Besides, the utilization of 
spectral–textural properties of landscape physiognomy as continuous indices 
fundamentally raised the model accuracy. An essential aspect of spectral–textural 
indices is their pixel-based capabilities and potential to detect the discrete cells 
of multiple LULC transitions over time. Thus, our research was among the first 
attempts to evaluate the importance of these factors in representing the reality and 
detection of urban expansion footprints at the landscape scale over time. 

More specifically, this thesis is the first comprehensive modeling study about 
urban expansion in Estonia and its factors over the past decades. The main 
conclusions emerging from the results were as follows:  

• The scattering patterns of urban expansion are a characteristic of urban expan-
sion in the main cities of Estonia from 1990 to 2019, while the population in 
Estonia decreased dramatically within this period by 15.31%. 

• By applying two models of LR and MLP and proximity analysis, the footprints 
of urban expansion in Harju County and Tartu County mainly were deter-
mined proximate to main roads (X7), the core of Tallinn and Tartu (X2), and 
existing residential areas (X10) in both counties with different weights of 
influence and coefficients expressing the dominant role of these factors on the 
urban expansion (Article I). 

• In Harju County, based on the LR model, distance from main roads (X7) had 
the highest strength in urban expansion and then proximity to the core of 
Tallinn (X2). Applying the MLP model also indicated the influence of these 
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factors, while it showed that the most influential independent variable was the 
distance from existing residential areas (X10) (Article I).  

• In Tartu County importance of proximity to the core of Tartu (X2), existing 
residential areas (X10), and main roads (X7) indicates the influence of acces-
sibility via main roads to the core of Tartu and existing residential areas 
(Article I).  

• The prediction power of LR was an estimated expansion of 37% for Harju 
County and 45% for Tartu County, and MLP showed 80% of predictions by 
the selected variables in Harju County and 50% for Tartu County from 1990 
to 2018 (Article I). 

• Applying different factors, constraints, behavioral rules, and adjacent neigh-
borhoods by the integrated CA–Agent model determined the simulation 
accuracy reached up to 86% in Tallinn and its 15 km buffer zone (Article II).  

• There is a high potential for spectral–textural properties of landscapes for moni-
toring LULC transitions and modeling the future of urban expansion in Estonia. 
The results indicated that applying the spectral–textural indices by the hybrid 
ANN–CA–MCA model upgraded the accuracy of predictions reaching up to 
90%, indicating the morphologic indices’ high capabilities in projecting 
accurate urban expansion and their significant importance in representing 
reality (Article IV). 

• The scattering patterns of new constructions are expected to continue as the 
infilling development form, proximate to main cities and existing residential 
areas, taking advantage of main roads and fed by the existing infrastructures 
in the future (Article II, Article III, and Article IV). 

• The continued infilling expansion in Tallinn and its 15 km buffer zone will 
reach175.24 sq. km (12.22 km2 adding to built-up areas) in 2030 (Article II).  

• Implementation of the hybrid ANN–CA–MCA model indicated that artificial 
surfaces would experience a 34.62 km2 growth from 2000 to 2030 (Article IV).  

 
While scattering patterns of urban expansion around the main cities of Tallinn, 
Tartu, and Pärnu is continuing, several courses of action are suggested to reduce 
the adverse effects of urban expansion on the environment in long-term spatial 
planning in Estonia.  

• Enhancing public awareness by organizing cultural and nature tourism and 
motivating people to be involved in the conventional agricultural sector in the 
way of learning environmental sustainability, 

• Maintaining the importance of living and economic environments of the 
existing settlements to prevent the scattering of new ones  
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• Efficient regulations and policies by the local government regarding the 
conservation of biodiversity and Estonia’s natural landscapes and reduction of 
agricultural and forest lands’ conversion to built-up areas, 

• Protecting urban green areas surrounding main cities, and  

• Regulating restrictions on infrastructure expansion in remote areas. 
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SUMMARY IN ESTONIAN 

Lühikokkuvõte. Linnade laienemine Eestis:  
seire, analüüs ja modelleerimine 

Linnade laienemist iseloomustab vähese tihedusega, ruumiliselt ebaühtlane ja 
hajutatud areng linna piiridest välja. Kuna linnade laienemine muudab põllu-
majandus- ja metsamaid ning väikesed muutused linnapiirkondades võivad mõju-
tada elurikkust ja maastikku pikaajaliselt, on hädavajalik seirata linnade ruumilist 
laienemist ning modelleerida tulevikutrende, saamaks ülevaadet suundumustest 
ja tagajärgedest pikemas perspektiivis. 

Eestis võeti pärast taasiseseisvumist 1991. aastal vastu maareformi seadus 
ning algas “maa” üleandmine riigilt eraomandisse. Sellest ajast peale on Eestis 
toimunud elamupiirkondade detsentraliseerimine, mis on mõjutanud Tallinna 
ümbruse põllumajandus- ja tööstuspiirkondade muutumist, inimeste elustiili 
muutusi ning jõukate inimeste elama asumist ühepereelamutesse Tallinna, Tartu 
ja Pärnu lähiümbrusse. Selle aja jooksul on Eesti rahvaarv vähenenud 15,31%. 

Käesoleva doktoritöö eesmärk on analüüsida ja modelleerida linnade laie-
nemist viimase kolme aastakümne jooksul Eestis ning prognoosida selle protsessi 
tulevikku. Tegemist on esimese põhjaliku linnade laienemise modelleerimisega 
ja linnade laienemist mõjutavate tegurite analüüsiga viimastel aastakümnetel 
Eestis. Doktoritöö uurib linnapiirkondade laienemist Eestis, kasutades erinevaid 
kaugseireandmeid, liikumapanevaid jõude ja parameetreid ning modelleerimis-
meetodeid, sealhulgas logistilist regressiooni, rakkautomaate, agendipõhiseid ja 
tehisnärvivõrgu mudeleid. 
 
Seetõttu püstitati töö põhieesmärgi saavutamiseks kolm ülesannet: 

1) Analüüsida Eesti viimase kolme aastakümne linnade laienemist määravaid 
füüsilisi tegureid ja prognoosivaid faktoreid (spektraal-tekstuuriindekseid). 

2) Hinnata eri modelleerimismeetodite toimivust Eesti linnade laienemise mine-
vikutrendide uurimisel ja tuleviku prognoosimisel. 

3) Testida mudeli jõudlust, rakendades mitut erineva ruumilise eraldusvõimega 
andmekogumit. 

 
Käesolev töö sisaldab nelja originaaluuringut linnade laienemise kohta kahes Eesti 
maakonnas (Harjumaa, kuhu kuulub ka riigi pealinn Tallinn ja Tartumaa, kus 
asub riigi suuruselt teine linn Tartu), eraldi Tallinnas ja selle 15 km puhver-
tsoonis, ning üleriigiliselt Eestis aastatel 1990–2030. Uurimisandmed on võetud 
kolmest esmasest kaugseireallikast: aegrida CORINE maakatte andmebaasist 
100-meetrise ruumilise eraldusvõimega (klass 1; tehispinnad loetakse linnadeks), 
Landsati satelliitkujutised (30 m lahutusvõimega) linnade laienemise ja maastiku 
füsiognoomia spektraaltekstuurinäitajate eraldamiseks ning 30 m lahutusvõimega 
maakatteandmestik, mida pakuvad Parente jt. (2021). Peale selle kasutati ruumi-
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andmeid veel Eesti Maa-ameti geoportaalist (ETAK andmebaasist), sh teedevõrk 
(põhi- ja kohalikud maanteed, raudteed) ning riigi halduspiirid. Andmete töötle-
miseks ja analüüsimiseks kasutati muuhulgas QGIS 3.10, ArcGIS 10.6, IDRISI 
ja GEOSOS-FLUS platvorme, ning tarkvara, mis koosneb ArcMap 10.6 Agent-
Analyst laienduses kasutatud platvormist Repast ja Google Earth Engine’i pilv-
andme töötlusplatvormist ning imitatsioonmodelleerimist. 

Logistilist regressiooni ja mitmekihilisi pertseptronnärvivõrke kasutades ana-
lüüsiti lähedusfaktoreid ning hinnati seoseid füüsiliste liikumapanevate jõudude 
ja linna laienemise vahel. Tulemused näitasid, et Harju maakonna ja Tartu maa-
konna linnade laienemist mõjutasid peamiselt põhimaanteede, Tallinna ja Tartu 
linnatsentri ning olemasolevate elamupiirkondade lähedus. Seejärel hinnati pea-
misi tegureid ja piiranguid mitme kriteeriumi hindamise (MCE) funktsiooniga, et 
koostada Harju maakonna linna laienemise sobivuskaart. Lisaks teguritele ja 
piirangutele arvestati üleminekureegleid ja naaberpiirkondi, et uurida linnade 
laienemist dünaamiliste interaktsioonide kaudu Tallinnas ja selle 15 km laiuses 
puhvertsoonis ning imiteerida linna laienemise tulevikku 2030. aastaks integ-
reeritud mobiilsideautomaatide abil ja agendipõhiseid mudeleid (CA–Agent). 
Nende tegurite kaudu saadi integreeritud CA-Agent mudel täpsusega üle 86%, 
mis ennustas Tallinna ümbritseva täisehitatud pinna jätkuvat laienemist (asustus-
aladele lisandub12,22 km 2 ) 2030. aastaks. 

Hübriidmudelitena kasutati tehisnärvivõrkude, rakkautomaatide ja Markovi 
ahela ühendamist (ANN-CA-MCA mudel). Ennustuste üle 90% täpsus tõestas 
morfoloogiliste indeksite head prognoosivõimet linna laienemise kirjeldamiseks 
ja meetodi tähtsust tegelikkuse kujutamisel. 

 
Kokkuvõttes võib järeldada, et 2030. aasta perspektiivis jätkuvad uusehitiste 
hajumismustrid peamiste linnade ja olemasolevate elamupiirkondade täite-
vormina, tuginedes põhimaanteedele ja “toidetuna” olemasolevast taristust. Eesti 
pikaajalise ruumilise planeerimise jaoks pakutakse välja mitmeid tegevussuundi, 
et vähendada linnade laienemise kahjulikke mõjusid keskkonnale: 

• Üldsuse teadlikkuse tõstmine kultuuri- ja loodusturismi korraldamise kaudu 
ning inimeste motiveerimine lööma kaasa keskkonnasäästlikkuse õppimisel 
tavapõllumajanduses, 

• Olemasolevate asumite elu- ja majanduskeskkondade olulisuse säilitamine, et 
vältida uute asulate hajumist, 

• Kohaliku omavalitsuse tasandil tõhusad regulatsioonid ja poliitikad elurikkuse 
ja loodusmaastike säilitamisel ning põllu- ja metsamaade hoonestusalaks 
muutmise vähendamisel, 

• Peamisi linnu ümbritsevate rohealade kaitsmine, 

• Taristu laiendamise piirangute reguleerimine linnapiirkondade äärealadel. 
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