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ABSTRACT

Cattail and reeds are the most common plants in constructed and semi-natural
wetlands for wastewater treatment, and can play an important role in nutrient
retention. On the other hand, both plants are highly valued in environmental-
friendly construction. In this PhD dissertation, the broadleaved cattail (Typha
latifolia L.) biomass production and the nitrogen (N) and phosphorus (P)
content in phytomass in three treatment wetland systems is evaluated and
compared, in order to study the effect of added “fibre-wool” from cattail
spadixes and cattail chips in clay-sand plaster on its humidity-exchange capa-
bility.

The cattail phytomass measurements were performed in autumn after the
vegetation period, i.e. at the end of August and the beginning of September and
also the following winter, i.e. at the end of January and the beginning of Feb-
ruary, in the years 2002 to 2006. The biomass samples (roots/rhizomes, shoots
with leaves and spadixes) and litter were collected from 1m×1m plots – 15 plots
in the Tänassilma semi-natural wetland, 15 plots in the Põltsamaa free water
surface (FWS) constructed wetland (CW), and 10 plots in the Häädemeeste
FWS CW.

The average aboveground biomass of T. latifolia varied from 0.37 to
1.76 kg DW m–2 in autumn and from 0.33 to 1.38 kg DW m–2 in winter. The
belowground biomass of the cattail varied from 0.61 to 1.31 kg DW m–2.

The greatest average nitrogen (22.95 g N kg–1) concentration was found in
spadixes, and the phosphorus (6.5 g P kg–1) concentration was measured in
roots–rhizomes.

The average standing stock of nutrients in Tänassilma, Põltsamaa and
Häädemeeste belowground phytomass varied from 11.6 to 19.4 g N m–2 and
from 1.6 to 4.6 g P m–2, and aboveground from 17.0 to 32.3 g N m–2 and from
2.6 to 6.0 g P m–2. The corresponding results in winter were 4.4–7.5 g N m–2

and 0.6–1.0 g P m–2.
The quantity of humidity absorption and desorption was measured in a

climatic chamber where the humidity of ambient air was suddenly raised from
50% to 80% (absorption) and reduced from 80% to 50% (desorption). Over 12
hours, all of the samples released the same amount of water as they absorbed.
The clay-sand plaster samples absorbed more slowly than they desorbed,
whereas the gypsum wallboard required significantly more time for desorption.
Added phytomass had positive effects by reducing the weight of the clay-sand
plaster, accelerating and increasing humidity absorption.
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1. INTRODUCTION

Wetlands are areas where saturated soil conditions and a prevalence of vegeta-
tion provide high primary production. Constructed treatment wetlands are
defined as engineered wetlands that utilize natural processes involving wetland
vegetation, soil and microorganisms to remove pollutants from wastewater
(Kadlec and Knight, 1996).

Treatment wetlands-ecosystems are widely used for wastewater treatment
throughout the world. These systems provide high treatment effectiveness in
terms of removal of nutrients, suspended solids and enteric viruses, and gene-
rally improve water quality. Such low-tech treatment systems have lower ener-
gy demands and are easier to operate compared to active sludge and other
wastewater treatment technologies (Kadlec and Knight, 1996; Brix, 1997;
Mander et al., 2001a; Pinney et al., 2002; Vymazal, 2002).

Plants are an important part of wastewater treatment wetlands. Macrophytes
absorb nitrogen, phosphorus and carbon that are assimilated in the tissues of the
plants, provide a surface for microorganisms, prevent soil clogging and insulate
the surface against frost during winter, control erosion, transport oxygen to the
root zone from the atmosphere, as well as additional ecological roles like
creating habitats for birds and mammals and increasing the aesthetic value of
the site (Kadlec and Knight, 1996; Brix, 1997; Bachand and Horne, 1998).

Wetlands are considered to be among the most productive ecosystems in the
world. The production of vegetation in constructed wetlands can vary from 700
to 11000 g m–2 (Kadlec and Knight, 1996; Vymazal, 2004), standing stock of
nitrogen (N) from 12.5 to 585 g m–2, and phosphorus (P) from 1.8 to 112.5 g m–2

(Kadlec and Knight, 1996; Brix, 1997).
Not all wetlands species are suitable for wastewater treatment because

plants must be able to tolerate the combination of continuous flooding and
exposure to wastewater containing relatively high and often variable concentra-
tions of pollutants. The plants that are most often used in treatment wetlands are
persistent emergent plants such as bulrushes (Scripus spp.) common reed
(Phragmites australis) and cattails (Typha spp.) (Kadlec and Knight, 1996;
Ennabili et al., 1998; Bachand and Horne, 2000, Vymazal, 2004).

As a consequence of nutrient uptake, large volumes of biomass that would
be available for different uses are produced in planted wetlands (Mander et al.,
2001a; Wild et al., 2001; Ciria et al., 2005; Toet et al., 2005). The long-term
results of biomass production in wastewater treatment wetlands are confusing.
The amount of reproduced biomass and the quality of the macrophytes
contained therein must be determined for wastewater treatment wetlands
producing macrophyte-based material.

Cattails in treatment wetlands
Cattails are very often part of natural and constructed treatment wetland
ecosystems (Linde et al., 1976; Kadlec and Knight, 1996; Vymazal, 2007).
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Cattail has been planted in constructed wetlands for primary and/or
secondary treatment of domestic and industrial sewage (Ennabili et al., 1998;
Shanon et al., 2000; Mander et al., 2001a; Lim et al., 2003; Solano et al., 2004;
Toet et al., 2005; Álvarez and Bécares, 2006), industrial wastewater (Maine et
al., 2006; Ye et al., 2001), runoff from agricultural irrigation systems (Ray and
Inouye, 2007) and agricultural drainage (Borin and Tocchetto, 2007), waste-
water from a tannery (Calheiros et al., 2007), farms (Hunt et al., 2003), a dairy
(Newman and Clausen, 1997; Gottschall et al., 2007), fish farms (Maltais-
Landry et al., 2007), a landfill (Maehlum, 1995, Bulc, 2006), wood waste (Mas-
bough et al., 2005), contaminated groundwater from industrial areas (Machate
et al., 1999) and mining (Mitsch and Wise, 1998; Lee; Bukaveckas, 2002), as
well as urban runoff (Scholz and Xu, 2001).

Free water surface wetlands (FWS) covered by cattails can be considered
valuable biotopes supporting biodiversity (Lacki et al., 1991; Kadlec and
Knight, 1996; Wild et al., 2001).

Emergent macrophytes can influence nutrient removal processes in treat-
ment wetlands. Plant surfaces in the water column and the sediment provide
attachment surface for microbial communities including algae, and nitrifying,
denitrifying, and other decomposing bacteria (Toet et al., 2005). There are no
observed significant differences between the performance of cattail and other
commonly used plants in treatment wetlands with regard to their purification
ability (Solano et al., 2004).

Cattail phytomass
The shoots of cattail develop from leaf primordial in the base of the sprout. The
sprout is formed at the end of the previous growing season. Growth in the base
of the leaf pushes the maturing portions upward. Not all shoots produce a
fruiting head. The average Typha latifolia spike produces 250,000 seeds. Seeds
begin to shed as umbrella-like floss and are carried away by wind in winter
(Linde et al., 1976).

Typha is persistent, spreads aggressively and has tremendous reproductive
potential. Cattail can produce up to 3.0 kg m–2 annual aboveground biomass
(Wild et al., 2002). Cattail can be a much greater producer of biomass (2.2 kg
m–2) than common reed (Solano et al., 2004).

The Typha leaf mass has high porosity and elasticity in the aerenchyma
tissue. At the same time there is a uniform distribution of bast fibres. Thus the
leaves have a high stability and show excellent insulation qualities. Further-
more, the leaf tissue has a high content of polyphenols, and so the dry raw
material shows a high resistance to decay (Wild et al., 2002).

The Typha plants are perennial and can therefore be cultivated for a long
period (Wild et al., 2002). Toet et al. (2005) has demonstrated that over two
years the vitality of Typha did not decrease in the wetland system after mowing
of the aboveground biomass. Also, Typha is able to survive a harvest in winter.

3
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A cutting level 20 to 40 cm above ground level does not affect population
development in the next vegetation period (Wild et al., 2002).

Nutrients in cattail
Emergent macrophytes are productive due to a high availability of water, light
and nutrients in wastewater treatment wetlands. Therefore, a considerable
amount of nutrients may be stored in the plant biomass. This storage is only
temporary, as plant tissues senesce and nutrients are released again by decom-
position of the litter. A permanent removal can be achieved by harvesting the
aboveground plant material (Toet et al., 2005).

Nutrient removal due to harvesting of shoots of macrophytes is often in-
significant in wetlands used for wastewater treatment in comparison to nutrient
mass input, because plants only take up a small fraction of the passing nutrients
(Vymazal, 2004). The Typha stands yield higher N and P removal efficiencies
through shoots harvest than do the Phragmites stands (Toet et al., 2005).

The amount of nutrients that could be removed from wastewater via plant
harvesting is given by nitrogen and phosphorus standing stock, which means the
amount of nutrients stored in aboveground biomass. Nutrient standing stock in
vegetation is commonly computed by multiplying nutrient concentration in the
plant tissue by biomass per unit area. The nutrient standing stock in the biomass
depends on both nutrient concentrations in the plant tissue as well as on the
amount of plant tissue (Vymazal, 2004).

A lower nutrient supply may reduce the shoot biomass and nutrient standing
stock of macrophytes. The Typha stands are more sensitive to a lower nutrient
availability at N and P mass input rates (Toet et al., 2005).

In a temperate climate with seasonal growth, the date of the harvest is
important. Nutrient removal is highest if shoots are cut toward the end of sum-
mer, when standing stocks of nutrients are at their peak. However, harvesting in
summer would be detrimental to the plants because they would not have
sufficient opportunity to withdraw nutrients and non-structural carbohydrates
from the shoots to the belowground plant parts. These reserves are necessary for
initial growth in spring (Linde et al., 1976; Toet et al., 2005). Therefore emer-
gent macrophytes are usually harvested in winter (Vymazal, 2004). Long-term
nutrient removal by cutting and harvesting shoots of Typha stands in October
can be viewed as a sustainable form of management (Toet et al., 2005).

The use of cattail
By virtue of their material qualities, Typha leaves are particularly well suited to
serve as raw material for several applications (Wild et al., 2002).

Some patent applications for Typha insulation products already exist in
Germany (Wild et al., 2002). There is also some experience of using cattail for
construction materials in Estonia.

All parts of the aboveground cattail biomass can be used. Cattail chips
mixed with clay are used in the production of safe and cost-efficient building
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blocks. The material is light and has good thermal insulation properties. Since
the blocks are air-dried, no fossil fuel energy is used in the drying process. The
fundamental advantage of this technology is that the resulting house is con-
sidered very healthy because of a stable humidity in the rooms throughout the
year. Fibre material from cattail spadixes is used as clay plaster reinforcement.
The fibre is an ideal material to avoid cracks in clay plaster. Ready-made dry
fibre and clay mixtures and cattail chips and clay blocks are produced and sold
on the market (Mauring, 2003). The effect of added “fibre-wool” from cattail
spadixes in clay plaster on its humidity-exchange capability is unknown.

The aboveground phytomass will be harvested in winter when the leaf mass
has a minimum water content (Wild et al., 2002; Mauring, 2003). The har-
vesting technique has been adopted from a common reed harvest (Mander et al.,
2001b).

Objectives

(1) To evaluate the annual biomass production of broad-leaved cattail (Typha
latifolia L.) in free water surface flow constructed wetlands and in semi-
natural treatment wetlands in Estonia (I, II, III).

(2) To determine the standing stock of N and P in the phytomass of Typha in
treatment wetlands (I, II, III).

(3) To study the effect of added “fibre-wool” from cattail spadixes and cattail
chips in clay plaster on its humidity-exchange capability (IV).
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2. MATERIALS AND METHODS

2.1. Phytomass production and measurement
of standing stock of nutrients

2.1.1. Site description

The fieldworks of studies (I, II, III) were carried out in three wetlands: in the
subsurface flow semi-natural wetland in Tänassilma (58º22’ W 25º31’ N) and in
two free water surface constructed wetlands in Põltsamaa (58º38’ W 25º58’ N)
and Häädemeeste (58º5’ W 24º29’N) (Figure 1).

A  

B  

C 

Figure 1. Location of sampling plots (1–15; 1–10) in test areas: A – Tänassilma semi-
natural wetland; B – Põltsamaa constructed wetland; C – Häädemeeste constructed
wetland.
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The Tänassilma semi-natural wetland (total area 228 ha) is located in a primeval
valley at the head of the Tänassilma River. The wetland is adapted to a high pollu-
tant load of 15,000 population equivalents, and has received precipitation run-off
and untreated municipal wastewater from the town of Viljandi from 1948 to 2005.
The upper reach of the wetland (69 ha) used to be species-rich grassland and former
swamp, but after wastewater had been discharged into the wetland, vegetation
downstream was replaced by dense stands of broadleaved cattail. This area has
almost no surface overflow and acts as a root system and peat filter (Nõges and
Järvet, 2002). The new effluent of treated wastewater from the Viljandi treatment
plant flows in a narrow ditch in the centre of the wetland. The average water level
decreased in 2004, when the wastewater effluent was changed.

The Põltsamaa CW is a cascade of 4 serpentine ponds with a total area of
1.2 ha. The mean depth of the first pond is 100 cm, and that of the other three is
approximately 70 cm. The system is located in the flood plain of the Põltsamaa
River. The system is designed for the secondary treatment of wastewater from a
conventional treatment plant, which consists of mechanical filters, sedimenta-
tion tanks and aeration tanks. It treats wastewater from the town of Põltsamaa
(~5000 inhabitants) and from the food processing industry. It was constructed in
1997 (Mander et al., 2001a). Initially about 1200 cattail plants were planted in
the soil at the bottom of the second and third ponds, and 500 young reed plants
were planted in the fourth pond in summer 1998. Within a few years, the reed
disappeared and the cattail colonised all of the ponds. The cattail rhizomes-roots
became woven together and accumulated decaying leaf litter to form floating
mats on the wetland surface.

The Häädemeeste wastewater treatment system consists of a conventional
treatment plant, five infiltration ponds (total area 0.23 ha) planted with common
reed, and a cattail (Typha latifolia L.) free water wetland (0.72 ha). The system
is located half a kilometer from the Baltic Sea coast and treats the municipal
water (max Q=160 m3 day–1) of the settlement of Häädemeeste. The system was
built in 1999. The primary purpose of the wetland is the removal of N and P
(Mauring, 2002). After five years (2004), the cattail basin was colonised by
another local native species – common reed (Phragmites australis Cav.).

The average annual wastewater and nutrient loadings of the studied areas
are presented in Table 1 (Ministry of the Environment, 2004).

Table 1. The average annual (2002 to 2003) hydraulic (L m–2 yr–1) and nutrient (g m–2

y–1) loadings of Tänassilma semi-natural wetland and Põltsamaa and Häädemeeste CWs

Wetlands

Loading
Tänassilma

(69 ha)
Põltsamaa
(1.21 ha)

Häädemeeste
(0.95 ha)

Hydraulic (L m–2 yr–1) 278 26,436 10,421
N (g m–2 yr–1) 13.8 849.7 58.7
P (g m–2 yr–1) 2.6 170.3 22.2

4
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2.1.2. Sampling and analysis of plant fractions

The cattail phytomass measurements were performed in autumn after the
vegetation period, i.e. at the end of August and the beginning of September and
also the following winter, i.e. at the end of January and the beginning of Feb-
ruary, in the years 2002 to 2006 (I, II, III). The samples were collected from
1m2 plots. The information on phytomass sampling and nutrient analysis in the
plant fractions is given in Table 2.

Table 2. The pattern of phytomass sampling and analysis in the Tänassilma semi-
natural wetland and Põltsamaa and Häädemeeste CWs

Wetlands
Tänassilma Põltsamaa Häädemeeste

Sampling
and

analysis
Fractions

autumn winter autumn winter autumn
Roots-rhizomes – –
Litter
Shoots

Number of
collected
samples Spadixes

15 15 15 15 10

Roots-rhizomes – –
Litter
Shoots

Year of
collected
samples Spadixes

2002–2006 2003–2006 2002–2006 2003–2006 2002–2006

Roots-rhizomes – –
Litter
Shoots

Number of
analysed
samples Spadixes

15 4 9 6 10

Roots-rhizomes – –
Litter
Shoots

Years of
analysed
samples Spadixes

2002–2003 2005 2002–2003 2005 2002–2003

Soil samples were taken from the topsoil in autumn and winter 2005. The
above-ground biomass was harvested at the ground level, and the belowground
root-rhizome samples were collected to a depth of 50 cm in Tänassilma and a
depth of 20 cm in Häädemeeste and Põltsamaa, using an auger (Ø108.6 mm). It
was not possible to bore deeper in Häädemeeste and Põltsamaa because of the
thickness of the clay soil. Root samples were washed clean of soil. Cattail was
divided into four fractions: roots-rhizomes, shoots with leaves, spadixes and
litter. All samples were dried to a constant weight (DW) at 70°C. The nutrient
(N, P) content was measured using the Kjeldahl technique and the automatic P
analyzer (APHA, 1989). All chemical analyses were performed at the labora-
tories of Tartu Environmental Research Ltd.



15

2.1.3. Statistical analysis

The statistical analysis was carried out using the STATISTICA 7.0 (StatSoft
Inc.) program. The normality of the variables was verified using the Lilliefors’
and Shapiro-Wilk W tests. Biomass production and nutrient content variables
were normally distributed (I, II, III). The 95% confidence intervals were used
to compare the mean values of results. The level of significance α= 0.05 was
accepted in all cases.

2.2. Laboratory methods of experiment
of added cattail phytomass in clay plaster

2.2.1. Clay-sand plaster

The mineralogical composition of the clay-sand plaster was analysed through
X-ray diffraction using a Dron-3M diffractometer. The quantitative composition
of unoriented powdered clay preparations was analysed in accordance with the
Rietveld method, using Siroquant 3.0TM code (Tailor, 1991). The results of
mineralogical showed that the most common component is quartz (54.7 weight
% (wt%), followed by dolomite, calcite and albite (Table 3, IV). The clay mine-
rals that give this mineral plaster its plasticity are represented by illite and illite-
smectite type phases (4.5%), and kaolinite (1.9%). Traces of chlorite were also
observed.

2.2.2. Raw material

The cattail and reed for the experiment was harvested in a wastewater treatment
subsurface flow semi-natural wetland and in two free water surface constructed
wetlands in Estonia. Shoots of Typha and Phragmites were minced to 2 x 20 mm
chips (IV).

2.2.3. Gypsum wallboard

Gypsum wallboard is the most commonly used material in interiors in Estonia,
and thus it was used as a reference material. It can be described as a flat board
comprised of a gypsum core with an external surface that is covered with
paperboard. The product is a three-layer composite composed of paper/gypsum/
paper. For the study we used standard 15 mm thick gypsum wallboard (manu-
factured by Gyproc) (IV).
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2.2.4. Climatic chamber

The humidity absorption and desorption quantity was measured in a climatic
chamber, which was constructed by the Testing Centre of the University of
Tartu, Estonia, using a refrigerator. The climatic chamber consisted of a freezer
(for low humidity air), a convector (for suitable and constant temperatures), a
setting panel (to change temperature and humidity), and a control sensor (Figure
2). Distilled water was used for air humidity manipulation. Changes in the
weights of samples were measured using a balance (Kern and Sohn, model Kern
PLS 510–3) controlled by a computer.

The moisture content and temperature of the chamber can be independently
controlled between about + 10 and 37°C (± 0.2°C) and 50 to 80% (±4%) (<3
minutes) (IV).

2.2.5. Preparation of samples

A painted and wallpapered gypsum wallboard sample, a pure clay-sand plaster
sample and 8 samples were made, and different amounts of cattail wool and
cattail and reed chips were added to these (Table 3). The painted gypsum
wallboard sample was covered once with a fine filler and twice with latex paint.
The wallpapered gypsum wallboard sample was covered once with a fine filler
and undercoated with latex paint, and then covered with the wallpaper (IV).

Figure 2. The climatic chamber and the clay-sand plaster sample. A – setting panel; B –
control sensor; C – sample specimen; D – balance (Kern PLS 510–3); E – convector;
F – freezer.
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Table 3. Weight (g) of clay-sand plaster (with different content of cattail (Typha
latifolia) wool and chips and reed (Phragmites australis) chips) and gypsum wallboard
(painted and wallpapered) samples and content (wt%) of added phytomass in clay-sand
plaster

Phytomass
content (wt%)ID (abbreviation) and full name of sample

Weight of
sample

(g) wool chips
CS Clay-sand plaster 374.4 – –
CST1w Clay-sandplaster with Typha wool 333.2 1.0 –
CST2w Clay-sand plaster with Typha wool 220.1 2.0 –
CST05c Clay-sand plaster with Typha chips 342.7 – 0.5
CST1c Clay-sand plaster with Typha chips 333.0 – 1.0
CST2c Clay-sand plaster with Typha chips 312.3 – 2.0
CSP1c Clay-sand plaster with Phragmites chips 352.2 – 1.0
CST05w025c Clay-sand plaster with Typha wool and

chips
356.1 0.5 0.25

CST1w05c Clay-sand plaster with Typha wool and
chips

332.0 1.0 0.5

PG Painted gypsum wallboard 164.9 – –
WG Wallpapered gypsum wallboard 169.4 – –

The tested specimen of clay-sand plaster had the dimensions 200 x 100 mm and
was 10 mm thick, and the gypsum wallboard had dimensions 200 x 100 mm and
was 15 mm thick.

Samples based on polycarbonate plates (200 x 100 mm) were dried at 25°C
and the weight of the sample was measured after drying. The surface of the
samples was left exposed, and the sides were isolated using paraffin. Samples
were acclimatised for 24 h in a climatic chamber before measurement. The
weight of each sample was measured after 15 minutes (IV).

5
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3. RESULTS AND DISCUSSION

3.1. Biomass

The average aboveground biomass of T. latifolia varied from 0.37 to 1.76 kg
DW m–2 in autumn and from 0.33 to 1.38 kg DW m–2 in winter for the three
wetlands throughout the study period. The corresponding results for P. australis
were from 0.61 to 1.32 kg DW m–2 and from 0.61 to 1.02 kg DW m–2 kg
respectively (Figure 3).

Figure 3. Above-ground and below-ground phytomasses (kg m–2) of cattail (T. latifolia)
and reed (P. australis) in Tänassilma semi-natural wetland, and Põltsamaa and Hääde-
meeste CWs in autumn (September; a) and winter (January; w) from 2002 to 2006.

The belowground biomass of the cattail varied from 0.61 to 1.31 kg DW m–2,
and reed from 1.60 to 1.69 kg DW m–2.

The differences in aboveground phytomass values between the studied
wetlands in autumn were only significant in Tänassilma in 2004 and Põltsamaa
in 2006. The estimated biomass of cattail shoots varied from 0.56 to 1.07 kg m–2

in Tänassilma, 0.27–1.58 kg m–2 in Põltsamaa, and 0.47–1.21 kg m–2 in Hääde-
meeste (Figure 4). The phytomass of cattail litter was between 0.20–
0.57 kg m–2 in Häädemeeste, and 0.07–0.35 kg m–2 and 0.09–0.48 kg m–2 cor-
respondingly in Tänassilma and Põltsamaa. The average biomass of spadixes in
Põltsamaa varied from 0.03 to 0.10 kg DW m–2. The corresponding results in
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Häädemeeste were 0.20–0.31 kg DW m–2, and in Tänassilma 0.03–0.20 kg DW
m–2. The average phytomass of spadixes in winter was 0.15 kg DW m–2 in
Häädemeeste, and the same results in Tänassilma and Põltsamaa varied from 0.02
to 0.16 kg DW m–2 and from 0 to 0.35 kg DW m–2 respectively. The average
aboveground biomass of reed did not vary significantly from cattail, but there
were more roots-rhizomes of reed than cattail (I, II, III).

Figure 4. Aboveground phytomass fractions (kg m–2) of cattail and reed in Tänassilma
semi-natural wetland, and Põltsamaa and Häädemeeste CWs in autumn (September; a)
and winter (January; w) from 2002 to 2006.

Up to 1 kg less aboveground phytomass of cattail was left in winter than at the
end of the vegetation period in autumn. Phytomass loss was less when there
were more spadixes in autumn. This is because fruiting shoots are more
weather-resistant (Linde et al., 1976). There was half a kilogram less above-
ground reed phytomass in winter than in autumn. Cattail biomass has a large
temporal and spatial variation in productivity. This makes it difficult to use it as
a raw material for construction and fibre production (II, III).

The litter, spadixes and shoots biomass values indicated that in free water
surface CWs, plants grow and die more quickly than in subsurface wetlands.
Therefore, in Tänassilma we found significantly less spadixes and litter than in
Põltsamaa and Häädemeeste (I).
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It is known that plants do not always bear fruit in stable quantities every
year, but rather alternate between a year of high production and a year of low
production. It is possible that heavy fruiting of cattail may also produce an
imbalance within the plant that affects the next year's production (Linde et al.,
1976). There were more spadixes in Häädemeeste than in Põltsamaa and
Tänassilma in 2002 and 2003, but only a few cattail shoots survived, and com-
mon reed colonised the free water wetland surface in 2004. There were more
spadixes in Tänassilma in 2003 than in 2002, but there were only a few spadixes
and low production of aboveground phytomass in 2004. The cattail population
on floating mats creates less spadixes, because fruiting shoots are heavy, and
they cannot stand up if they are not fixed to the soil. This also caused extensive
loss of aboveground phytomass in Põltsamaa in winter (II, III).

The average aboveground cattail biomass values (0.3–1.8 kg DW m–2) in
Tänassilma semi-natural wetland and Põltsamaa and Häädemeeste CWs were
lower than reported by Toet at al. (2005) – 2.09 kg m–2, Ennabili et al. (1998) –
2.16 kg m–2 and Fernandez and Miguel (2005) – 2.23 kg m–2, but were similar
to those found in Germany (1.3 – 1.45 kg m–2; Wild et al., 2002). The cattail
root and rhizome biomass values (0.6–1.3 kg DW m–2) in the studied systems
were similar to those recorded by Romero et al. (1999), varying from 0.7 to 1.6
kg m–2, but were lower than those measured by Ennabili et al. (1998) – 3.5 kg
m–2. The average aboveground standing stock values of reeds in the studied
areas were once again lower than those reported by Lesage et al. (2006) – 1.5 kg
m–2, Vymazal (2004) – 2.09 kg m–2, Ennabili et al. (1998) – 2.3 kg m–2, Bragato
et al. (2005) – 2.5 kg m–2 and Toet et al. (2005) – 2.85 kg m–2 (I, II, III).

3.2. Nutrients

The concentration of N and P was highest in soils in Tänassilma, varying from
23.6 to 31.3 g kg–1 for N and 1.2–5.6 g kg–1 for P. In Põltsamaa and Hääde-
meeste the N concentrations were 0.8–28.2 and 0.4–1.5 g kg–1, and P concentra-
tions were 0.5–6.3 and 0.2–1.1 g kg–1 respectively (I, II, III). In Tänassilma the
N concentrations in soil were significantly higher than in plant fractions,
whereas in other wetlands an opposite relationship was found. In all studied
treatment wetlands the P concentrations were higher in plant fractions than in
the soil samples (Table 4).

The greatest average nitrogen concentration (22.95 g N kg–1) was found in
spadixes in 2002, and phosphorus concentration (6.5 g P kg–1) was measured in
roots-rhizomes in 2003. Phosphorus concentration in litter, shoots and roots-
rhizomes was higher in 2003 than in 2002, but was lower in spadixes (I, II, III).
For spadixes, the maximum average P concentration was measured at 4.76 g kg–1,
while in the case of litter the greatest P concentration was 2.7 g kg–1. N and P
concentrations in cattail shoots and litter were lower in winter than in autumn,
but were higher in spadixes and roots-rhizomes (Table 4).
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Table 4. The range (min-max) of N and P concentrations (in both soil and plant
fractions; g kg–1) and standing stock (g m–2) in cattail plant fractions in the Tänassilma
semi-natural wetland and Põltsamaa and Häädemeeste CWs in autumn and winter

Wetlands
Tänassilma Põltsamaa Häädemeeste

Elements Fractions autumn winter autumn winter autumn
Soil 23.6–28.0 26.6–31.3   1.6–28.2   0.8–5.4     0.4–1.45
Roots-
rhizomes 15.6–25.2 19.0–27.0 15.7–33.3 16.0–34.0 11.0–21.0

Litter   8.2–19.2    9.5–19.9   7.3–18.1
Shoots 12.7–24.1   8.0–12.0 14.7–27.4   7.0–14.0 12.8–23.1

N (g kg–1)

Spadixes 16.3–23.8 13.0–21.0 11.6–27.1 10.0–21.0 10.9–21.8
Roots-
rhizomes   7.0–26.3 – 6.9–23.0 – 5.2–30.6

Litter   1.9–6.4 0.5-  9.3 0.5–11.9
Shoots 10.4–32.2 3.0–7.0 6.4–61.6 0.6–6.3 2.5–46.2

N (g m–2)

Spadixes   0.5–6.3 1.2–4.5 1.3-  4.4 0.5–0.6 0.3–11.3
Soil 1.2–4.4 1.9–5.6 0.9–6.3 0.5–1.5 0.2–1.1
Roots-
rhizomes 1.2–4.6 2.8–4.3 2.5–8.6 3.7–5.2 0.9–5.9

Litter 1.6–3.7 0.6–1.3 1.3–3.8 0.2–1.9 0.9–2.9
Shoots 1.6–4.3 2.3–4.4 1.7–3.9

P (g kg–1)

Spadixes 2.5–4.7 2.7–4.1 3.0–5.6 2.2–3.3 2.4–4.6
Roots-
rhizomes 0.6–3.3 – 1.1-  7.2 – 0.5–7.2

Litter 0.4–1.5 0.1-  2.0 0.1–1.9
Shoots 1.5–6.0 0.2–0.8 1.1–10.2 0.01–0.7 0.4–6.4

P (g m–2)

Spadixes 0.1–1.3 0.3–0.9 0.2-  0.9 0.1–0.1 0.1–2.4

Average nitrogen and phosphorus standing stock was higher in aboveground
than belowground phytomass (Table 3). The average standing stock of nutrients
in Tänassilma, Põltsamaa and Häädemeeste belowground phytomass varied
from 11.6 to 19.4 g N m–2 and from 1.6 to 4.6 g P m–2, and from 17.0 to 32.3 g
N m–2 and from 2.6 to 6.0 g P m–2 in aboveground. The corresponding results in
winter were 4.4–7.5 g N m–2 and 0.6–1.0 g P m–2. The standing stock of
nutrients depends on both the elements’ concentrations in the plant tissue as
well as on the amount of plant biomass (Vymazal, 2004).

We found that N and P were stored in reserve organs after the fruiting stage
(I, II). Stored nutrients are available to help the plant develop new shoots the
following spring. For instance, Vymazal (2004) reported that Phragmites aust-
ralis translocates reserve products very late in the season, and the harvesting of
this plant during the growing season may lead to serious damage to the stand.
Therefore we recommend that the harvesting of cattail be undertaken after
nutrient translocation.
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The nutrient balance of treatment wetlands depends on many factors and
can vary from year to year. In warm and sunny summers the accumulation of N
and P in both belowground and aboveground phytomass can significantly
increase (Mander et al., 2008). In subsurface flow CWs with low hydraulic and
nutrient loadings, nutrient removal can be significant, although we should also
consider that the pool of nutrients in filter material and sediments plays a more
important role in phytomass production than direct wastewater inflow. For
instance, the Tänassilma system received significantly higher loadings from the
1950s to 2000 (Nõges and Järvet, 2002), which has now fallen to 13.8g N m–2

y–1 and 2.6 g P m–2 y–1 (Table 1). Therefore the high nutrient accumulation in
Tänassilma is largely due to the accumulated N and P in sediments. Thus the
calculation of removal efficiency based only on initial wastewater loadings and
annual nutrient uptake does not provide adequate results. A similar situation can
be seen in the Häädemeeste FWS CW with low initial loadings. In Põltsamaa,
on the other hand, both hydraulic and nutrient loadings are very high (Table 1),
which would result in low removal efficiency if the plants were harvested: 0.5
% of N and 0.3 % of P of initial wastewater loadings. Thus removed nutrients
via the harvesting of aboveground biomass from heavily loaded CWs in
temperate and cold climates yield a very small portion of the inflow load,
usually as little as < 1 %, and harvesting does not usually increase removal
efficiency (Vymazal, 2004) (II).

Harvesting may be feasible if there is an application for macrophytes, e.g.
construction (Mauring, 2003) or energy production (Mander et al., 2001b; Ciria
et al., 2005). However, the stability of cattail re-growth after harvesting has not
been thoroughly researched (Hellsten et al., 1999).

3.3. Added cattail phytomass in clay-sand plaster

One of the influences of phytomass added to clay-sand plaster samples was the
reduction of their weight (Table 3). The lowest weight was measured in the case
of clay-sand plasters that were mixed with 2 wt% of Typha-wool. On the other
hand, this amount of phytomass significantly lowers the intensity of their air
humidity absorption (Figure 5) (IV).

The experiments showed that the 10 mm thick layer of clay-sand (CS)
plaster with added 2 wt% of Typha chips was able to absorb about 36.8 g of
water per m2 of wall surface in 12 hours if the humidity of ambient air was sud-
denly raised from 50% to 80% (Figure 5) (IV).

The desorption rates of clay-sand plasters and gypsum wallboards are
shown in Figure 6 (IV).

All samples released the absorbed humidity over 12 hours. The most rapid
desorption took place with plaster that contained 2% of weight of Typha-wool.
The main reason for this was obviously the lower content of absorbed water in
this material (IV).
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Figure 5. Absorption curve of samples, at a temperature of 21°C, with a sudden in-
crease of humidity from 50% to 80%.
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The pure clay-sand plaster absorbed 11.3 g m–2 (38.2% of all humidity absorbed
in 12 hours) in the first hour (Table 4, IV). Added phytomass in clay-sand
plaster accelerated the absorption of air humidity in comparison with pure clay-
sand plaster, except for clay-sand plaster where 1 wt% of Typha-wool and
0.5 wt% of chips was added, which absorbed only 11.0 g m–2 in the first hour
(0.3 g m–2 less than pure clay-sand plaster).

The pure clay-sand plaster desorbed 42.2% (12.5 g m–2) of all humidity
absorbed in 12 hours in the first hour. The other clay-sand plaster samples
released a smaller percentage of absorbed humidity than clay-sand plaster in the
first hour, but the amount (g) of water was in some cases greater (CST1w:
13.3 g m–2; CST05c: 12.7 g m–2; CST1c: 12.8 g m–2; CSP1c: 14.7 g m–2;
CST1w05c: 13.4 g m–2). Painted and wallpapered gypsum wallboard absorbed
only 1.9 g m–2 (24.2%) and 0.9 g m–2 (18.9%) respectively (IV).

In the first hour, 4.3% (0.3 g m–2) and 2.2% (0.1 g m–2) of absorbed humi-
dity was desorbed by painted and wallpapered gypsum wallboard respectively
(IV).

Clay-sand plaster samples absorbed the same amount of humidity more
slowly than they desorbed it, with the exception of samples of clay-sand plasters
with an added 1 wt% (CST1c) and 2 wt% (CST2c) of cattail chips. The gypsum
wallboard demonstrated opposite results (Table 5, IV).
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4. CONCLUSIONS

Plants are an important part of constructed wetlands for wastewater treatment.
Macrophytes take up nutrients that are assimilated in the tissues of the plants,
provide a surface for microorganisms, insulate the surface against frost during
winter, transport oxygen from the atmosphere to littoral areas, create habitats
for birds and mammals, and increase the aesthetic value of the site.

Average aboveground biomass of T. latifolia varied from 0.3 to 1.8 kg DW
m–2, and below-ground biomass from 0.3 to 1.4 kg DW m–2, and the same
results for P. australis were from 0.6 to 1.3 kg DW m–2 and 0.6 to 1.0 kg DW
m–2 respectively (I, II, III).

The results showed that cattails in CW have a large temporal and spatial
variation in terms of productivity, which makes it difficult to use them as a
potential source for building material production. Thus further investigations in
this field are required because of the increasing need for Typha wool as a
valuable ingredient in clay plasters (I, II, III).

The nutrient uptake capacity of cattail was quite high. The average N and P
concentration was higher in belowground than in aboveground biomass, where-
as the belowground stock of both nutrients was lower than the aboveground
stock (I, II, III).

The harvesting of aboveground biomass would have a remarkable influence
on nutrient removal in systems with lower hydraulic and nutrient loadings
(Tänassilma and Häädemeeste systems), and would not be significant in sys-
tems with overloaded free water surface treatment constructed wetlands (Põltsa-
maa) (I, II, III).

Plants grow and die more quickly in free water surface wetlands than in
subsurface wetlands. Therefore significantly less spadixes and litter were found
in Tänassilma than in Põltsamaa and Häädemeeste (I).

The N and P contents in plant fractions demonstrated that these nutrients
were stored in reserve organs after the fruiting stage. In Põltsamaa the N and P
content in all plant fractions was higher than in other test areas (I, II, III).

Added phytomass provided positive effects by reducing the weight of clay-
sand plaster, and accelerating and increasing the amount of humidity absorbed.
The quantity of absorption decreased when more than 1 wt% of Typha-wool
was added to clay-sand plaster (IV).

All of the water absorbed in the 12 hours after a sudden rise in air humidity
from 50% to 80% in the climatic chamber was released within 12 hours after a
sudden decrease in air humidity from 80% to 50% (IV).

The clay-sand plaster samples absorbed the same amount of humidity more
slowly than they desorbed it, whereas the gypsum wallboard demonstrated the
opposite effect (IV).

Clay-sand plaster with phytomass of Typha is a promising and highly-
valued building material for environmental-friendly construction (IV).
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SUMMARY IN ESTONIAN

Hundinuia produktsiooni ja toitainetesisalduse varieeruvus ning
biomassi kasutamine loodussõbraliku toorainena

Käesoleva doktoritöö eesmärk on selgitada hundinuia populatsiooni produkt-
siooni ja toitainete sisalduste varieeruvust reoveepuhastuse märgalades Eestis
ning analüüsida hundinuia tõlvikute villa ja pealsete hakke mõju saviliivakrohvi
õhuniiskuse imamisvõimele.

Ökotehnoloogilise puhastusmeetodina kasutatakse reovee puhastamiseks ja
kvaliteedi parandamiseks tehismärgalasid. Tänu madalatele ehitus- ja majandus-
kuludele ning suuremale töökindlusele on vabaveelised märgalad ja pinnasfiltrid
odavaks alternatiiviks nõrgfiltritele ja aktiivmudapuhastitele. Heitveepuhastus-
tehismärgalasid kasutatakse laialdaselt orgaanika, lämmastiku ja fosfori ühen-
dite eemaldamiseks nii majapidamis-kui ka tööstusreoveest (Kadlec ja Knight,
1996; Brix, 1997; Mander et al., 2001a; Pinney et al., 2002; Vymazal, 2002).

Reoveepuhastuse märgalade taimede kaudu toimub päikeseenergia mõjul
reoainete ümbertöötamine biomassiks. Puhastussüsteemi sissetulevast koor-
musest on taimestiku toitainete sidumisvõime hinnanguliselt kuni 10% (Vyma-
zal, 2004). Biomassi tootlikkus ning toitainete sisaldus on olnud pikka aega
spekuleerimise teema – erinevate allikate andmed ei ole olnud usaldusväärselt
erineva suuruse ja tingimustega aladele üle kantavad.

Koos hariliku pillirooga (Phragmites australis) on laialeheline hundinui
(Typha latifolia) levinumaks taimeliigiks tehismärgalades, mida kasutatakse
heitvee puhastamiseks (Kadlec ja Knight, 1996; Ennabili et al., 1998; Bachand
ja Horne, 2000, Vymazal, 2004). Puhastusprotsessi kõrvalsaaduseks on bio-
mass, mida on võimalik kasutada alternatiivse ehitusmaterjalina (Mander et al.,
2001a; Mauring, 2003).

Hundinuia lehe kude on hästi poorne ja elastne. Niinkiud on ühtlaselt jaotu-
nud, mis tagavad lehtede ja varte ehitusmaterjalina kasutamisel püsivuse ning
suurepärased isolatsiooniomadused. Kuivatatud toormaterjali vastupidavuse
lagunemise vastu tagab kõrge polüfenoolide sisaldus (Wild et al., 2002).

Kuivatatud biomassi kasutatakse soojusisolatsioonimattide valmistamiseks.
Lisaks tehakse taime lehtedest ja vartest piki- ja ristikiudu lõigatud liistakuid,
mida kasutatakse puiste-isolatsioonimaterjalina või lisatakse kergsaviplokki-
dele. Savikrohvile pannakse sisse hundinuia seemneid, mis muudavad krohvi
elastsemaks ja pragunemiskindlamaks. Tükeldatud hundinuia biomassi ja kerg-
savi plokkidega soojustatud ning taimse armatuurkiu ja savikrohviga viimistle-
tud majas on aastaringselt tasakaalustatud õhuniiskus- ja temperatuur (Mauring,
2003).

Hundinuiakoosluste biomassi tootlikkuse ning lämmastiku ja fosfori sisal-
duse varieeruvuse analüüsimiseks uuriti kolme erineva vanuse, suuruse ning
toitainete koormusega reovee puhastamiseks kasutatavat märgala. Uuritavateks
aladeks olid Tänassilma poollooduslik märgala ning Põltsamaa ja Häädemeeste
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avaveelised tehismärgalad. Taimefraktsioonide (juurte-risoomide, võsude, tõlvi-
kut ja varise) massid kaaluti, proovid nende keemilisteks analüüsideks võeti 1-
m2 suurustelt prooviruutudelt. Tänassilmas oli 15 prooviruut, Põltsamaal samuti
15 ning Häädemeestel 10. Tööd toimusid septembris ja jaanuaris 2002– 2006.

Taimeproovide keemiline analüüs tehti Tartu Keskkonnauuringute laboris.
Süsinikusisaldus määrati IR meetodiga Skalar – Soca 100 süsinikuanalü-
saatoriga. Lämmastikusisaldus määrati Kjeldahli meetodil Kjelteci analüsaato-
ril. Fosforianalüüs toimus ICP – seadmega, eeltöötluseks kasutati mikrolaine-
ahju.

Maa-aluste osade proovide võtmiseks kasutati alaneva südamikuga
monoliidipuuri, lõiketera läbimõõduga 108,6 mm. Igast ruudust võeti juhusliku
paigutuse järgi 3 monoliiti, mille sügavus oli Tänassilmas 50 cm, Põltsamaal ja
Häädemeestel ~20 cm. Põltsamaa ja Häädemeeste märgalades paiknes sügava-
mal suure lasuvustihedusega kiht, millesse puuri ei õnnestunud suruda. Suur
lasuvustihedus takistab juurte ja risoomide tungimist sellesse kihti, mistõttu
saadud tulemusi võib kasutada maa-aluse osa hinnanguna. Pealsed lõigati juure
pealt maha ning koguti ka prooviruudule maha vajunud varis. Monoliidi-
proovidest pesti välja kõik elusad ja surnud juured ning risoomid. Proovid
kuivatati 70 °C juures. Käesolevas töös on biomassiandmed esitatud absoluut-
kuivadena.

Andmeanalüüsil kasutati programme Excel ja STATISTICA 6,0 (StatSoft
Inc.). Mõõdetud tunnuste jaotuste vastavust normaaljaotusele kontrolliti
Kolmogorov-Smirnovi, Lillieforsi ja Shapiro Wilk W testidega. Shapiro-Wilk
W ja Lillieforsi testide vastukäivate tulemuste korral kontrolliti erinevust
normaaljaotusest ka hii-ruut testi abil. Juhinduti tugevama, s.t. hii-ruut testi
tulemustest. Tänassilma, Põltsamaa ja Häädemeeste märgaladel hundinuia
taimefraktsioonide fütomassid kui elementide sisalduste tulemused olid
normaaljaotustega Kolmogorov-Smirnovi, Lilliefors’ ja Shapiro Wilk W testide
järgi. Kõigil juhtudel oli olulisuse nivoo α=0,05.

Hundinuia hakke ja kiuga saviliivakrohvi õhuniiskuse imamisvõime mõõt-
miskatsed viidi läbi kliimakambris, kus sai muuta kiiresti õhuniiskust 50%lt
80%le ning vastupidi. Kliimakamber valmistati Tartu Ülikooli Katsekojas.
Katsete jaoks tehti erineva hundinuia kiu (1–5%) ning hundinuia (0,5–2%) ja
pilliroo (1%) hakkega (2 x 20 mm) saviliivakrohvi katsekehad (200 x 100 mm,
paksus 10 mm) ning võrdluseks värvitud ning tapeediga kaetud kipsplaadi
katsekehad (200 x 100 mm, paksus 15 mm). Proovikehad tehti õhukesele ja
kergele polükarbamiidist alusele ja servad isoleeriti parafiiniga. Enne mõõtmise
algust aklimatiseeriti proovikehi 24 tundi kliimakambris.

Keskmine maapealne hundinuia fütomass varieerus 0,37–1,76 kg m–2 peale
vegetatsiooni perioodi, kusjuures talveks oli uuritavatele märgaladele alles
jäänud 0,33 kuni 1,38 kg m–2. Keskmine maa-alune hundinuia fütomass jäi
vahemikku 0,61–1,31 kg m–2.

Tänassilma, Põltsamaa ja Häädemeeste märgaladelt kogutud hundinuia
maapealse osa produktsiooni tulemused (0,3–1,8 kg m–2) olid väiksemad, kui
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kirjeldatud Toet at al. (2005; 2,1 kg m–2) Fernandez ja Miguel (2005) ning
Ennabili et al. (1998; 2,2 kg m–2) poolt, kuid olid võrreldavad Saksamaal
Donaumoosi katselalal saadud andmetega: 1,3–1,45 kg m–2 (Wild et al., 2002).
Maa-aluse osa keskmiste fütomasside tulemused (0,6–1,3 kg m–2) olid teistes
töödes saadud tulemustega 0,7–1,6 kg m–2 (Ennabili et al., 1998; Romero et al.,
1999) samas vahemikus.

Suurim keskmine fosforisisaldus hundinuias oli juurtes-risoomides (6,5 g P
kg–1) ning lämmastikusisaldus tõlvikutes – 22,95g N kg–1. Sisalduste analüüsist
selgus, et uurimisaladel toimub toitainete kogunemine tõlvikutesse. Samuti
kinnitas sisalduste analüüs fraktsioonide masside analüüsi tulemusi. Hundinuia
fraktsioonide elementide keskmised sisaldused ning nende varieeruvused olid
suurimad Põltsamaal ja Häädemeestel.

Korrelatsioonianalüüs näitas, et varise osakaalu suurenemisel maapealses
fütomassis suureneb elementide sisaldus nii võsudes kui ka tõlvikutes. Varise
moodustumisel peale vegetatsiooniperioodi toimub fosfori liikumine lehtedest
allesjäävatesse vartesse ja valmivatesse viljadesse. Seejärel lehed surevad ning
moodustub varis. Positiivne korrelatsioon võsude ja tõlviku biomasside vahel
näitas, et võsude suurema biomassi korral valmib ka rohkem tõlvikuid.

Keskmine toitainetvaru maa-aluses osas jäi vahemikku 11,6–19,4 g N m–2 ja
1,6–4,6 g P m–2 ning maapealses osas 17,0–32,3 g N m–2 ja 2,6–6,0 g P m–2.
Talvine maapealse fütomassi tulemused olid vastavalt 4,4–7,5 g N m–2 ja 0,6–
1,0 g P m–2.

Ruutmeeter saviliivakrohvi imas 30 g vett 12 tunni jooksul, kui kliima-
kambris tõsteti õhuniiskus 50%lt 80 %le. Samadel tingimustel imas saviliiva-
krohv, millele oli lisatud 2% hundinuia haket 36 g, 1 % tõlvikute kiudu 32 g,
1% kiudu ning 0,5% haket 33 g ning värvitud kipsplaat 10 g ja tapeediga kaetud
kipsplaat 6 g vett.

Saviliivakrohvile lisatud taimne osa vähendas krohvi kaalu ning kiirendas ja
suurendas õhuniiskuse imavust. Krohvi õhuniiskuse imavus vähenes, kui sellele
oli lisatud rohkem kui 1% hundinuia tõlvikute kiudu. Kogu 12 tunni jooksul
imatud õhuniiskus vabanes sama aja jooksul, kui kliimakambris vähendati
niiskust 80%lt 50 %le. Õhuniiskus imendus aeglasemalt kui vabanes saviliiva-
krohvist. Kipsplaadis täheldati vastupidist tendentsi.

Reoveepuhastusmärgalades kasvanud hundinui on potentsiaalne loodus-
sõbralik ehitusmaterjal, eeskätt ökomajades.
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