
University of Tartu

Faculty of Science and Technology

Institute of Technology

Fred Peter Boldin

C-eraph: Towards continuous OpenCypher

Bachelors Thesis (12 ECTS)
Computer Engineering Curriculum

Supervisor:

Riccardo Tommasini Assistant Professor of Data Management

Tartu 2020

Abstract / Resümee

C-eraph: Towards continuous OpenCypher

With the surge of data caused by the creation of internet, internet of things, growth of the com-
puting power and storage, there is a need to process data in real-time to benefit from it. We live
in a world that is connected, all of the information around us is in relationship to one another.
We can look at this information as a graph - nodes of objects connected with relationships.
To take advantage of this data model of nodes and relationships a graph database can be used.
Often the data that is collected needs to be used immediately and therefore streaming data pro-
cessing can be used to use the dynamic data that is generated in real-time. In this thesis we
have tried to find out if it is possible to create a system that is able to query streams of property
graphs continuously. In this paper we try to provide the required background knowledge of the
work and how the original system was changed to make it work with property graph data.

CERCS: P170 Computer science, numerical analysis, systems, control

Keywords: data, streaming, graphs, data processing, semantic web

C-eraph: Pidevaid andmevooge töötleva openCypher’i suunas

Tänu andmekoguse puhangule, mille on põhjustanud interneti teke, nutistu, arvutusvõimsuse
ning andmekandjate mahu suurenemine, on tekkinud vajadus andmeid töödelda reaalajas. Me
elame ühendatud maailmas, kogu meid ümbritsev informatsioon on omavahel seotud. Maailma
võib vaadelda kui graafi, kus kogu informatsioon koosneb tippudest, mis on omavahel seo-
tud servadega. Selleks, et graafi andmemudelit otstarbekalt rakendada saame kasutada graafi
andmebaasi. Tihtipeale on tarvis tekkivaid andmeid koheselt kasutada. Seda aitab saavutada
andmevoogude töötlemine, mis võimaldab dünaamiliste andmete kasutamist reaalajas. Käesol-
eva töö eesmärgiks on teha kindlaks, kas on võimalik ehitada süsteem, mis suudaks teha pi-
devaid päringuid andmevoogudele, mis hoiavad endas andmeid property graph mudeli kujul.
Töö sisaldab endas vajalikku taustainfot selle kohta, kuidas töötas baassüsteem ning millised
olid vajaminevad muudatused, mida tehti, selleks, et täide viia property graph mudeli lisamine
sinna süsteemi.

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine

Märksõnad: andmed, andmevood, graafid, andmetöötlus, semantiline veeb

2

List of contents

Abstract 2

List of figures 4

List of abbreviations, constants etc 5

1 Introduction 6
1.1 Motivation . 6

1.1.1 Problem statement . 8

2 Background 9
2.1 Streaming . 9

2.1.1 Kafka . 9
2.1.2 CQL . 10
2.1.3 Esper . 10

2.2 Graphs . 11
2.2.1 Graph Processing and Neo4j . 11
2.2.2 Property graph data model & Cypher 12
2.2.3 RDF and SPARQL . 15

2.3 Graph Streams . 16
2.3.1 Yasper . 17
2.3.2 Jasper . 19

3 Design 21
3.1 Refactoring . 21
3.2 Implementation . 22

3.2.1 Structuring of the data . 22
3.2.2 Querying . 22

3.3 Example of C-eraph . 23

4 Summary 26

Summary 26

5 Future work 27

Licence for reproduction 32

3

List of figures

1.1 Infographic: what happens in an internet minute 2020 6

2.1 Operational model of CQL from . 10
2.2 Northwind data set represented as a relational model 12
2.3 Northwind data set represented as a graph model 12
2.4 A visual representation of property graph and its components 13
2.5 Result of the example query that utilizes the CREATE command to make nodes

and relationships . 14
2.6 An example of RDF data statements . 15
2.7 Subjects can also be Objects, this way a graph can be formulated out of RDF

statements . 15
2.8 Modules that Yasper consists of . 18
2.9 The semantic model of RSP-QL . 19
2.10 The operational flow of Yasper . 19
2.11 Simplified cycle of operation for Jasper . 20

3.1 Breakdown of a Seraph Query . 23
3.2 An example demonstrating how a sliding window with a 10 second range and

step . 25

4

List of abbreviations

ASCII - American Standard Code for Information Interchange

RDF - Resource Description Framework

QL - Query Language

DBMS - Database Management System

RDBMS - Relational Database Management System

GDBMS - Graph Database Management System

RDBM - Relational Database Model

GDBM - Graph Database Model

W3C - World Wide Web Consortium

API - Application Programming Interface

5

1 Introduction

“Data is the new oil.”, this quote by the British mathematician and data scientist Clive Humby
[1] undeniably rings true in today’s world. The abundance of data can be attributed to the
birth of the Internet. The ability to transfer information over the network between electronic
devices has permanently changed the way we look at information. The amount of data created
is enormous, when looking at the info-graphic in Figure 1.1 in just one minute major companies
produce complex data by the millions [2].

With the amount of data growing exponentially each year [3] the opportunity to take advantage
of this information is remarkable. Indeed, collecting and analysing the data helps us make
informed decisions with the ultimate goal of trying to predict the future to some extent or at
least to react to changes fast enough [4].

1.1 Motivation
In these regards, data systems play a critical role for storing, managing and analysing data. To
be able to do this we also need to store the data in some form and thanks to the high capacity
of storage in modern computers and the variety of Database Management Systems (DBMS) we
can store data in different ways.

Figure 1.1: Infographic: what happens in an internet minute 2020

We can see from Figure 1.1 that data is very heterogeneous. The variety of information provides

6

us with an interesting problem, how do we store and manage this data coming from different
sources in an integrated way. As of now making sense of data is still heavily reliant on humans.
The aim is to create context for the diverse data so that computers can digest it [5].

Another thing that the info-graphic is trying to present is the data velocity representing the
speed at which data are consumed and insights are produced. The enormous amount of data is
creating a need for communicating it as fast as possible. If we do not take advantage of data
in real-time it becomes a bottleneck for getting the maximum value from it. One of the ways
that we are tackling the problem of data velocity is stream processing, analysing the data in a
continuous flow rather than in batches [6].

Charles W. Bachman is the person to design the Integrated Database System in the early 1960s
[7]. Ever since then the development of Data Base Management Systems(DBMS) has never
stopped [8]. There are a plethora of different database models, query languages, and storage
techniques in the DBMS literature. Undeniably, the most popular and used are the relational
DBMS and SQL [9] where the records store as rows in tables. And although relational databases
have been used they have drawbacks that, in such a data-intense world, may impact application
design. In particular, despite the name, relations are not first-class in Relational Database Man-
agement Systems(RDBMS). Connections between data requires complex analytics, they need
indexes and running complex queries with many joins operations. This degrades the response
time of the databases making it inadequate when the results are needed in real time.

Therefore, as can be seen in Figure 1.1 in an interconnected world Graph Database Manage-
ment Systems(GDBMS) are getting momentum. Graphs are an abstract data form that consists
of both vertices and edges. Graph databases manage the data considering relationships between
them as first-class citizens. In this form connections are easier to find and is far easier to ana-
lyze. Graph models are flexible and allow extensibility.

Since the graph database is based on graph theory and the relationships are stored as a first-class
entities it is very suitable not just for querying single data points but also relationship networks.
GDBMS uses index-free adjacency [10] to store the nodes in a way that maintains them as di-
rectly connected. This makes querying the data a special case of graph traversal. Moreover, the
graph database query languages are more expressive.

There are countless scenarios where the data that we produce and aquire needs to be processed
and analysed in real-time. Many modern companies take advantage of this to give them the
ability to act upon the data immediately. Great examples of this are organizations such as Spo-
tify, Netflix and Amazon, they all use data streaming to recommend their users new products
that might interest them according to the data that they have gathered so far from analysing
their choices. There are many other use cases for streaming such as: fraud detection, sensors,
business analytics, location data etc. One could argue that any industry that deals with data can
benefit from data streaming [11]. However, batch data processing has some major drawbacks,
i.e. the time delay between the collection of the data and getting the result. Stream processing,
on the other hand, analyses information on-the-fly without requiring to put data at rest.

In order to effectively use graph processing some requirements need to be met. As we can see
from Figure 1.1 the amount of data is huge, therefore we need a system with scalable processing
to keep up with the data as it grows. We need a powerful query language that gives us the ability
to extract intricate information from that data. The system has to also have expressive ontology

7

in order to describe artifacts with different degrees of structure. To get the most from graph
processing the system should utilize continuous semantics to combine it with stream processing
so the data can be processed in real-time.

1.1.1 Problem statement
The problems of data velocity and variety are not isolated. To be able to analyse complex data
in real-time is one of the biggest obstacles in big data. As the data grows and gets more complex
we need to process it in the most efficient way possible. For this we need to build systems that
can handle both of these problems of variety and velocity at the same time. Using graphs to
manage the varying data and streaming to communicate it quickly can help us pursue solving
that problem.

Some existing solutions are tailored for interoperability and use the data model of Resource
Description Framework(RDF) along with the SPARQL query language. The problem is that
these solutions do not have fine-grained access to information because of the limitations of the
SPARQL query language. They also do not have the ability to model complex application do-
mains due to inexpressive ontology of RDF.

To satisfy the requirements of effective graph stream processing we have decided to adapt the
existing solutions to use the data model of property graphs and Cypher query language, together
they provide a powerful query langauge and a ontologically expressive data storage.

In this thesis we are trying to find out if it is possible to create a system that is able to con-
tinuously stream and query property graph data. Additionally we will try to determine if it
is possible for this system to work in close to real-time and keep the temporary data that it
processes in-memory as opposed to writing it on disk.

8

2 Background

In the world of graphs and streaming there have been some solutions made that integrate these
two parts, but they have still remained separated. For example there is a solution for integrating
Apache Kafka with Neo4j [12], but it is just a connection through a plugin between the two and
not a unified system that works in-memory. There is no system or protocol built to continuously
stream and query the property graph data using a stream processing engine while not writing to
disk [13]. In this section I will go over some of the existing solutions that have been developed
and are relevant in the area of graphs and stream processing.

2.1 Streaming

A stream is an unbouded sequence of data. Usually the streams are in the format of (d, t)
where d is the data and t is the timestamp. Three specific characteristics differentiate streams
from other data: unboundedness, data are ordered by time, data are shared in a push model as
opposed to pull [14].

2.1.1 Kafka
Data streaming is widely used and there are various solutions for it, one of the most popular
streaming platforms is Apache Kafka. Kafka communicates through a TCP-protocol in a way
that is simple and highly efficient. It offers three key capabilities:

• Publishing and subscribing to streams of records that are similar to a message queue

• Processing streams of records as they occur

• Storing streams of records in a fault-tolerant way

Kafka is used as a way to build real-time streaming data pipelines and for real-time streaming
applications that transform streams of data [15]. Kafka is run on a cluster of multiple servers
that is highly scalable. Streams of records are stored in categories that are called topics. The
records are contain a key, value and a timestamp. The two main parts of the Kafka that com-
municate the data through the cluster are producers and consumers [16]. Producers publish
the data to chosen topics. The topics are managed by brokers that serve and receive the data.
Consumers subscribe to topics, messages in a topic are delivered to consumers. Kafka provides
fault tolerance guarantees for the user: topics are replicated across servers, the messages written
in a topic partition are ordered and the consumer instances see the records in the order that they
are stored in the topic. Kafka’s model provides a very concise, reliable and easily managed way
to manage streams of records.

9

2.1.2 CQL
Continuous Query Language(CQL) is a SQL-based query language for registering continuous
queries against relations and streams. A Stream is a collection of elements (s, t) where s is a
tuple belonging to the schema of the Stream and t is the timestamp of the element. Relations
are mappings from each time instant to a finite collection of tuples belonging to the Relation
schema. Instantaneous relations are the collection of tuples in a relation that are related to a
time instant t [17].

CQL has an operational model that consists of the operators: Stream-to-Relation(S2R), Relation-
to-Relation(R2R) and Relation-to-Stream(R2S). These operators define the semantics of a Query
as a composition of operators and set of input streams and relations. The result of this Query is
calculated at the time instant t.

The R2R operators handle the time-varying relations. The S2R operators are based on the con-
cept of time windows over a stream. There are three options for dealing with the R2S operator
which are:

• R-Stream - Used for streaming out all of the elements of an instantaneous relation at a
particular moment

• I-Stream - Used for streaming out all new entries of an instantaneous relation the previous
one

• D-Stream - Used for streaming out all deleted entries of an instantaneous relation

The model of CQL is illustrated in Figure 2.1.

Figure 2.1: Operational model of CQL from

2.1.3 Esper
Streams are unbounded sequences of data. To aggregate large amounts of different information
about the relationships of events in real time a tool is needed. Out of this necessity Esper was
created, a language, compiler and runtime for processing complex events available to use in
Java. The language of Esper is called Event Processing Language and it implements and ex-
tends the standard of SQL while enabling rich expressions over events and time [18].

An integral part of Esper is windowing. A window is a time interval that repeats and is used

10

to separate the data into groups. This enables the limitation of events to be queried and aggre-
gated. For example when creating a simple fire detection mechanism measuring the average
temperature of a room combined with the sensory data that shows the percentage of CO2 in the
air we can take the average of that data from the past 15 seconds and analyse it. If the combined
information is above the allowed threshold a FIRE event can be created which can automati-
cally call the rescue services or activate the emergency water sprinklers [19]. This is just one of
many possible use cases for streaming engines such as Esper. In the model of CQL Esper can
serve the part of both the Window Operator and Streaming Operator.

Esper event processing language(EPL) that extends SQL, it merges together event stream pro-
cessing and complex event processing into one language. It includes causality patterns and
event windows as first-class citizens. EPL allows using complex matching patterns, filtering
and sorting. Thanks to this we can use EPL to analyze series of events with regard to time and
derive conclusions from them [20]. Using EPL we can register statements in the runtime using
Java objects(JavaBean or plain-old-java-objects) to represent events. A listener class will be
called by the runtime when the EPL condition is matched as events arrive [21].

As a simple example of Esper we can look at this EPL query:

SELECT rstream avg(va lue) AS value FROM temperature# t ime(10 seconds)

In this query the Select clause specifies the events to retrieve, here it is avg(value). The rstream
tells the engine to deliver only the remove stream which denotes the result of events that are
leaving the data window. Following the from clause is the name of the stream which is temper-
ature. The listener then recieves only the events of a 10 second time window as specified by
time(10 seconds).

Using the Java API we can easily create the EPL statements using the administrative interface
EPAdministrator like so:

EPServiceProvider epService = EPServiceProviderManager.getDefaultProvider()
;

EPAdministrator admin = epService.getEPAdministrator();

EPStatement avgStmt = admin.createEPL(
"Select rstream avg(value) as value from temperature#time(10 seconds)");

After that we can subscribe to updates posted by this statement using listeners.

UpdateListener myListener = new MyUpdateListener();
avgStmt.addListener(myListener);

The EPL statements publish both new and old data to the UpdateListener. New data represents
new events and old data represents prior event values.

2.2 Graphs

2.2.1 Graph Processing and Neo4j
Assuming a certain familiarity with relational data model, we present GDBMS in comparison
with RDBMS.

11

In Figures 2.3 and 2.2 the Northwind data set is used here to demonstrate the differences be-
tween these two data models [22].

Figure 2.2: Northwind data set represented as a relational model

Figure 2.3: Northwind data set represented as a graph model

It is clear to see that a graph model is more natural at representing real life complex relation-
ships and is easier to read than the relational model [23].

2.2.2 Property graph data model & Cypher
The graph model used in Neo4J is the property graph, these are the components which make up
a property graph [23]:

12

• Nodes and relationships

• Nodes contain properties

• Nodes can be labeled with one or more labels

• Relationships are named and directed, and always have a start and end node

• Relationships can also have properties

A visual representation of a property graph would look something like Figure 2.4 [24].

Figure 2.4: A visual representation of property graph and its components

In property graph nodes are entities that can hold any number of attributes, which are called
properties. Nodes have different labels such as Employee or Company to represent different
roles in the database.

Relationships are from one node to another, they have a type, name and just like nodes they
too can have properties that give them a richer description. Because the entities in Neo4j have
unique identifiers there can be many relationships of the same type between two nodes [24]. In
order to query information from a Neo4J database it is required to use the Cypher. It is similar
to other query languages but is distinct in quite a few ways. It resembles ASCII art and is quite
compact and easy to grasp [23].

Here is an example of creating a few person nodes and connecting them with a friend relation-
ship from the Neo4j Cypher manual [25].

CREATE (john:Person {name: 'John'})
CREATE (joe:Person {name: 'Joe'})
CREATE (steve:Person {name: 'Steve'})
CREATE (sara:Person {name: 'Sara'})
CREATE (maria:Person {name: 'Maria'})
CREATE (john)-[:FRIEND]->(joe)-[:FRIEND]->(steve)
CREATE (john)-[:FRIEND]->(sara)-[:FRIEND]->(maria)

The result of this query is a property graph that can be seen on Figure 2.5.

13

Figure 2.5: Result of the example query that utilizes the CREATE command to make nodes and
relationships

As an example, in order to find all Johns non-direct friends, it is possible to use this query.

MATCH (john {name: 'John'})-[:FRIEND]->()-[:FRIEND]->(fof)
RETURN john.name, fof.name

The result of this query would look like this.

john.name & fof.name
"John" & "Maria"
"John" & "Steve"

In Cypher, just like in most query languages, clauses are the main part of the query. Just like
in this example the most basic queries can consist of just the MATCH and RETURN clause.
Any additional querying aspects can be constructed on top of this for creating more specific and
complex queries. To guarantee quick and efficient querying Neo4j allows running major graph
algorithms such as Dijkstra, A* and others [23].

When looking at other the available solutions for graph processing there are many out there.
The most common ways to model graph data is with RDF or as Property Graphs. Apache Jena
Fuseki is a Open Source SPARQL server [26], it serves as a triple store that can be ran in the
background by an application located in a server. It can be run as a operating system service,
as a server or a Java web application. Fuseki provides the SPARQL protocols for querying and
updating and also the SPARQL Graph Store protocol. It offers a transactional persistent storage
layer that can be used to provide the protocol engine for other RDF query and storages[27].
Another option for storing triples is OpenLink Virtuoso, is provides database functionality that
handles RDF data [28]. Like Fuseki it also supports SPARQL query language. Users can utilize
Virtuoso WebDAV repository for uploading the RDF data into the Virtuoso Quad store via the
HTTP protocol [29]. However the most popular way to represent graph data is in the form of
Property Graphs. Instead of the RDF model that uses URI’s that provide no internal structure for
the data, the Property Graph that uses Nodes and Relationships that do provide internal structure
in the form of properties [30]. This makes the property graph data more rich and therefore more
useful for many cases. There are different query languages to deal with Property Graphs for

14

example PGQL that is built on top of SQL and is used for graph pattern matching [31], but the
most widely used on is Cypher because it is used alongside the most popular Graph Database
Managment System Neo4j [32].

2.2.3 RDF and SPARQL
In this chapter we will go over the RDF and the SPARQL query language.

RDF that is a graph data model that fosters interoperability on the Web. It enables efficient inte-
gration of data from multiple sources in a way that separates the data from the schema. Because
the RDF is schema agnostic, it can be used for data integration. RDF data are represented in as
statements < Subject, Predicate, Object > [33].

We can imagine that in a social network a person named Mark has listed some information
about him, this information can be viewed as multiple RDF statements as shown in Figure 2.6.

Figure 2.6: An example of RDF data statements

As an example of this we can imagine a graph where a person named Mark adds another person
called Robert to his friends list. The result of this graph is illustrated in the Figure 2.7.

Figure 2.7: Subjects can also be Objects, this way a graph can be formulated out of RDF
statements

15

SPARQL is a query language and a protocol for RDF. Similarly to Cypher, SPARQL allows the
the retrieval and modifying of data in graph databases [34].

An example of a SPARQL query would look something like this:

PREFIX foaf: <http://xmlns.com/foaf/0.1/> #foaf is basically a text
document

SELECT ?name ?email # selects the names and emails
FROM <http://www.w3.org/People/Berners-Lee/card> # is a graph
WHERE {

?person foaf:name ?name ;
foaf:age ?age .

FILTER (?age > 18) # uses the filter
}
ORDER BY ?name # sorts the results in an alphabetical order
LIMIT 10 # limits the number of solutions
OFFSET 10 # offsets the presented solutions by 10 from the start

This query searches for persons from a graph, persons that pass through the filter are presented
as results in the alphabetical order.

2.3 Graph Streams
RSP-QL is a model for defining the semantics of RDF Stream Processing (RSP) system. It is
based on a model from the streaming data world called Continuous Query Language, which is
a continuous extention of SQL. “CQL is a continuous extension of SQL: its semantics define
a formal model with three kinds of operators (S2R, R2R and R2S) that process and transform
streams and relations.” [35]. In the case of S2R operators, CQL uses time-based and partitioned
window operators. R2S operators generate new streams according to the stream-type that is
chosen(R-stream, I-Stream, D-stream). The R2R operators take one or more relations and turn
it into a new one [36].

In this subsection the integral parts of the RSP-QL model will be explained. In RSP-QL a RDF
statement is a pair (d, t) where r is an RDF statement and t is an instant of time. Let’s call S a
sequence of timestamped RDF statements that are in a non-decreasing order of time.

S = ((d1, t1), (d2, t2), (d3, t3), ...)

A time-based sliding window operator W is a Stream-to-Relation(S2R) operator. It takes a
stream S as an input and produces a Time-Varying Graph GW . The window operator W is
defined as a triple (α, β, t0) where the parameters stand for:

• α - the width of window

• β - the sliding step length

• t0 - the time instant when W starts operating

The Time-Varying Graph is a function, it takes a time instant as an input and produces the result
as a RDF graph which is called an Instantaneous RDF Graph. The window operator W on a
RDF Stream S produces a Time-Varying Graph T . For any time instant t where W is defined
the window operator outputs an Instantaneous RDF Graph - it is a result of combining all of the
RDF Graphs or triples that are in the current window.

16

An SDS(Streaming Data Set) that is an extension of the SPARQL data set. It is composed of
three parts - an (optional) default graph, n amount of named graphs where (n ≥ 0) and m
named Time-Varying Graphs where (m ≥ 0).

The result of the RSP-QL query is a multi-set of Solution Mappings for each evaluation.
Relation-to-Stream(R2S) operators are necessary for the transformation of the instantaneous
multi-set to a stream. The R2S operators that RSP-QL uses are these: IStream - streams out
the difference between the answer of the current evaluation and the previous one, DStream -
outputs the part of the answers from the previous result that did not appear in the current one
and RStream - streams out the whole output every time an evaluation occurs [35].

An example of a RSP-QL query counting the number of blue colors in a time window would
look something like this:

SELECT (COUNT(?b) as ?numBlues)
FROM NAMED WINDOW <bw> ON :colorstream [RANGE PT15S STEP PT5S]
WHERE {

WINDOW ?bw { ?b a color:Blue .} }

In RSP-QL the query is continuously evaluated against an SDS by an RSP engine. The reporting
policy of the RSP engine that is set determines the time instants at which the evaluations occur.
There are many different strategies for the reporting policy and they can me used in combination
with each other. These strategies include:

• Content Change - report is made if the content of the current window changes

• Window Close - report is made if the current window closes

• Periodic - reports are made at regular intervals

• Non-empty Content - report is made if the current window is not empty

2.3.1 Yasper
YASPER - Yet another RDF stream processing engine is a library that can be used to build RDF
stream processing Engines according to the reference model of RSP-QL [35].

The main goal for the creation of Yasper was to further the research of the Semantic Web by
means of practical and usable software tools.

In this section, we will go over Yasper’s architecture and the way that it uses the concepts of
RSP-QL. Windowing, Querying, Stream and SDS - these are the modules that make up Yasper.
Figure 2.8 illustrates these modules and how they relate to each other [37].

17

Figure 2.8: Modules that Yasper consists of

For the Stream module an URI is used to identify the Stream and the content of it. As expected
with RDF data the StreamItem contains a triple (ti, te, D) - the ingestion time of the stream to
the system ti, occurrence time of the event te, and lastly the data itself D.

The default setting of Yasper is to use the time of occurred events te although it can be adjusted
to use the time of ingestion ti instead.

Because the occurrence time of the event is decided when reading the Stream Items, each time
there is an evaluation a RSP-QL query can be run against an instantaneous SDS. That is han-
deled by the R2R operator in the Query Execution module. The result of that query is then
formatted into a suitable form by the Result Formatter. An SDS is a streaming data set that
can be combined into a group of instantaneous graphs at the time when time-varying-graph is
updated.

The module of Windowing deals with the incoming streams of data and partitions them into
segments based on time-windows

The elements for the execution and instantation of the query lie in the module of Query Exe-
cution. CONSTRUCT and SELECT queries written in the syntax of RSP-QL are suitable to
use for Yasper. Taking all of this into consideration the CQL model of Yasper is illustrated in
Figure 2.9.

18

Figure 2.9: The semantic model of RSP-QL

In a simplified form the operational flow of Yasper looks like Figure 2.10.

Figure 2.10: The operational flow of Yasper

2.3.2 Jasper
Jasper, also known as the CSPARQL Engine 2.0 is a Yasper runtime based on Esper and Jena.

The module of Windowing is based on Esper, listener objects that continuously receive the out-
puts of the EPL queries. The EPL statements and listeners represent a window that is based on
time and is named on a RDF stream.

An Esper-based window operator is able to maintain one time-varying-graph. It can do so in
two different ways - (α) it pushes everything new to the time-varying-graph every time there is
an update or (β) only the differences between the old and the new window are added with the
update. Yasper’s default mode is (α) but it can be configured to be (β). Every time there is an
update a instantaneous RDF graph is generated.

Any time Esper produces a result Jena is triggered to compute. This cycle of operation is done
by different sub-classes that were all made to comply with the RSP-QL model. The standard
life cycle of the operation goes as follows - the data gets into Esper, Esper triggers an answer
which is then passed to Jena. The answer from Esper is then computed by Jena producing the

19

results of the query, after that the results are pushed out. Now the cycle of operation is described
by explaining the most important Jasper classes.

First a WebStream is created that has a URI. It is then registered with the EsperStreamRegistra-
tionService which returns a graph RDF EPLStream, it consists of the WebStream, EPStatement
that can contain a createStream function and the URI of the stream. After that a EsperGGWin-
dowOperator can be instantiated that provides a window with a step, range and a name. The part
of RSP-QL that corresponds to R2S is the window. Then the window operator can be applied
to the EPLStream the result will be a EsperTimeVaryingGraph that can be named. The Esper-
TimeVaryingGraph contains also the content of the stream elements and the streaming data set
SDS. This means that the EsperTimeVaryingGraph will be observed by the JenaSDSBB class.

To start the part of querying the JenaContinuousQueryExecution needs to be instantiated and
it will start observing the JenaSDS. So any time the EsperTimeVaryingGraph is updated the
JenaSDS is notified which then notifies the JenaContinuousQueryExecutionBinding to execute
the query. The R2ROperatorSPARQL is the part of the RSP-QL query in Yasper that corre-
sponds to the SPARQL query. It is used to create a stream of SolutionMappings of a Jena data
structure called Binding from the query results. The SolutionMappings correspond to the R2S
part of the RSP-QL model. After that all of the data are put into the output stream. The data
can be then consumed from the output stream to observe the results. In the Figure 2.11 the
operational cycle of the system is illustrated. The simplified operational cycle of Jasper can be
seen in Figure 2.11.

Figure 2.11: Simplified cycle of operation for Jasper

20

3 Design

In this chapter the process of the actual implementation of Neo4j into the existing C-SPARQL
Engine 2.0 and the design of C-eraph will be discussed. The chapter is seperated into three
parts, the aspect of refactoring the existing code, the implementation of Neo4j and Cypher and
a walk-through of the code that runs the example of this project.

The intricate part of the design was understanding Yasper and finding out how to correctly
implement Neo4j with its many differences from the previous solution. The implementation
itself was not inherently grand from the aspect of the code length, rather it was the refactoring
and understanding of the complex system that is Yasper that constituted to the most amount of
work done.

3.1 Refactoring
In order to make the following work easier and be able to implement Neo4j, it was decided that
an important step would be to first refactor the code to make it easier to implement Neo4j. The
base code was dependent on Apache Jena and its data model. This meant that all the code that
was in contact with the stream processing engine had to be made agnostic from the part of the
database and querying.

In Jasper the part of R2R operator utilized the Jena TDB Dataset interface. It provides a way
to communicate data without transactions, this does allow for faster communication but makes
the data at risk of corruption [38]. In C-eraph there was no choice to communicate the data
non-transactionally because Neo4j does not have that option. Each time the R2R operator is
called for query evaluation a new transaction begins. In Jasper the result of the query evaluation
was returned as a stream of RDF bindings. For the example data we used a mock social network
that has data about people who have initiated and accepted friend requests. Since C-eraph uses
Property Graphs we mapped the results of each query to contain the connected Node objects
and their properties such as date and who was the initiator of the friend request. These results
were put in a List and streamed out as a SolutionMappingImpl that contained the results and a
timestamps.

In the base code the part of window operators was also reliant on Jena. The time-varying-graph
was built to use Jena’s JenaGraphContent class. Since Neo4j did not have an equivalent to that
we had to build it on our own. ContentPGraphBean was created to server the part of the content
necessary for the time-varying-graph. It takes the Neo4j in-memory database as a parameter
and coalesces the data of the window to a graph.

Traditionally Neo4j does not work in-memory, it writes all of the data that it contains on disk.
We saw this as a potential bottleneck for speed and decided to find a way to store the data

21

in-memory. After some searching and experimenting we found out that Neo4j has an Imper-
manentDatabase class made for unit testing. Although this was not the perfect solution for our
problem it still worked and served the purpose for building the prototype.

3.2 Implementation
In this section the necessary parts for the implementation of Neo4j will be gone over. The code
was developed in Java 11 and the integral dependencies for this prototype were these:

• org.apache.commons commons-lang3 3.10

• com.github.jsonld-java jsonld-java 0.13.0

• com.espertech esper 7.1.0

• com.google.code.gson gson 2.8.6

• org.neo4 neo4j 4.0.3

• org.neo4j.community it-test-support 4.0.3

• org.slf4j slf4j-api 1.7.25

3.2.1 Structuring of the data
So since Yasper does not understand the concept of property graphs we needed to create a data
structure that would somehow store property graph information. For this the PGraph interface
was created that is able to hold both the nodes and edges along with the timestamp of the con-
nections. This enables us to stream the property graph data in a simple and concise way.

As of this moment the implementation of the actual data that is used for constructing the
PGraph’s is done through a JSON file that holds information about a social network. Every
event is in a form of one line that contains all of the necessary information. An example would
look like this:

{"initiated":"Cory", "accepted":"Levi",
"friends":true, "date":"2019-08-08T16:13:11"}

This one line holds information about both the initiator and the one who accepted the friend
request and the date when it happened. In a real scenario this information would come through
a stream of events containing actual social network friend requests.

3.2.2 Querying
One of the first problems we faced was how to extend Cypher language to include CQL opera-
tors(R2R, R2S, S2R) to make it even more powerful. We call this extention Seraph, in order to
understand what we did let us take a look at an example of Cypher and compare it to Seraph.

So a pure Cypher query would look like this:

MATCH (person1:Person)-[:KNOWS]->(person2:Person)
WHERE n.name = 'Alice'
RETURN person1

22

Now in order to introduce to Cypher the notion of Windowing and Streams we implemented the
following logic.

MATCH (person1:Person)-[:KNOWS]->(person2:Person)
WHERE WINDOW [RANGE, STEP] n.name = 'Alice'

RETURN RSTREAM/ISTREAM/DSTREAM person1

The added implementation is highlighted in green. The line with the MATCH clause corre-
sponds to the part of R2R and did not need any additions. The part of Windowing was im-
plemented after the WHERE clause, it states the WINDOW and provides the range and step
parameters for the window as needed for the S2R operator. In the last line we can see the part
of R2S, where after the RESULT clause, we can specify the option for Stream operator.

To get a grasp of what was accomplished by this we can take a look at Figure 3.1.

Figure 3.1: Breakdown of a Seraph Query

Because the base system was Jasper, the SPARQL querying had to be replaced by Cypher
and take the part of the query execution that corresponds to the Relation-to-Relation in the CQL
model. We extended the Time-Varying-Graph of the RDF graph to Time-Varying-PropertyGraph.
In order to implement Cypher querying into Yasper we created the Seraph class that is able to
hold the Cypher queries in a String format. The Seraph class extends the ContinuousQuery in-
terface that corresponds to the Relation-to-Stream part of the CQL semantic model. Each time
a Neo4jContinuousQueryExecution instance is created the Seraph query will be given to it as a
parameter. This sets the query that will be run against the streaming data set.

3.3 Example of C-eraph
Here a walk-though of the code for the runnable example will be discussed and explained. The
example was created in a way that is somewhat flexible, meaning that the configurations of cer-
tain parameters can be changed.

23

TestDatabaseManagementServiceBuilder builder = new
TestDatabaseManagementServiceBuilder();

GraphDatabaseService db = builder.impermanent().build().database(
DEFAULT_DATABASE_NAME);

Here the TestDatabaseManagementServiceBuilder is instantiated. It is a test factory for graph
databases. GraphDatabaseService is the actual graph database that is built using the factory and
creating an impermanent version of the database which does not write anything on disk an is
in-memory. This is the database that will have transactions going through it later on in the code.

EngineConfiguration en = new EngineConfiguration(resource.getPath());
sr = new Ceraph(0, en);

Here the EngineConfiguration is created with the parameters that are in the /ceraph.properties
file. With these configuration parameters a Ceraph engine is instanciated. The Ceraph engine is
just an extention of the existing Esper stream processing engine. The 0 just sets the start of the
application time as current.

Seraph q = new Seraph("MATCH (n:Person)-[p]->(n1:Person)
WHERE WINDOW [10,10]
RETURN RSTREAM n, keys(n)");

Next a Seraph query is created that contains a String that will be used to query the data from
property graph streams later on. Here the MATCH clause is used to find all Person nodes that
have a relationship with another Person node, the keys() function returns a list containing the
string representation for all the property names for the Person nodes.

GenericSDS<PGraph> sds = new GenericSDS<PGraph>();
WindowNode window = new WindowNode(q.getWindowMap());

SDS is a streaming data set that is composed of Time-Varying-Graphs, sliding windows and
data streams.

The WindowNode gets the range and step parameters from the Seraph query using the getWin-
dowMap function. For the example both of these parameters are set to 10 seconds. A visual-
ization of the sliding window is presented in Figure 3.2. Next we create an instance of a Esper
window operator, it requires several parameters that dictate the way the time is incremented, the
time it was instantiated, the window, data set and the database and some other variables.

EsperPGWindowOperator wo = new EsperPGWindowOperator(
Tick.TIME_DRIVEN,
new ReportImpl(),
true ,
Maintenance.NAIVE,
new EsperTime(RuntimeManager.getEPRuntime(), 0),
window,
sds,
db);

24

Figure 3.2: An example demonstrating how a sliding window with a 10 second range and step

Next up the PGraphStream is created and given a name "stream1". After that the continuous
query execution part is instantiated which is the part that actually executes the queries and
streams them out as a Stream of SolutionMappings containing the results of the query. The
SolutionMappings are created by the R2ROperatorCypher which begins the transaction with
the database, executes the query, and then maps the all of the results of that query to a list of
key-value mappings of the Node or Relationship and its values. After this each of the results
are put into an outstream that will be used by the Relation-to-Stream operator.

PGraphStream writer = new PGraphStream("stream1", n u l l);

Neo4jContinuousQueryExecution cqe = new Neo4jContinuousQueryExecution(
new DataStreamImpl<>("stream1"),
q,
sds,
new R2ROperatorCypher(q, sds, "SocialNetwork", db),
new RelationToStreamOperator<>(q.getOuputStreamType()),
wo);

Now whats left is to register the EPLStream to the C-eraph engine sr, apply the registered stream
to the window operator, add the TimeVarying object containing a PGraph to the streaming data
set sds, allow the streaming with the setWritable and add the continuous query execution cqe as
an observer for the streaming data set sds.

EPLStream<PGraph> register = (EPLStream<PGraph>) sr.register(writer);

TimeVarying<PGraph> apply = wo.apply(register);

sds.add(apply);

writer.setWritable(register);

sds.addObserver(cqe);

After this the continuous streaming cycle is created and the data starts flowing through the
system. It has no end point and stops the work if the program is stopped.

25

4 Summary

The end result of this thesis is a working software prototype written in Java that is able to stream
property graph data via Esper and query it in real time using Neo4j GDMS and Cypher. We
also managed to find a way to store the data in a in-memory using an extention of the Neo4j
embedded Database.

The code for this prototype can be found on https://github.com/FPBoldin/C-eraph.
As of now the evaluation of the prototype is ongoing and will be added to the webpage.

Both streaming and graph data are technologies that are continuously being more widely used,
the need for real-time data and a way to efficiently store this data while making it highly avail-
able is undeniably growing. We believe that this project has taken a step towards continuous
openCypher(an open-source project that makes it easy to use the Cypher language in order to
incorporate graph processing capabilities within a product or application) and can be further
developed into something that is truly unique and efficient in the problems it aims to solve.

26

https://github.com/FPBoldin/C-eraph

5 Future work

For future work one of the things that would bring this prototype to another level would be
the substitution of Esper with Kafka Streams. As discussed earlier, the prototype currently
uses Esper as the processing engine, with the introduction of Kafka Streams the system would
become highly scalable. The streaming data could be published to topics which are located in
the Kafka cluster. This means that the streaming load is spread among different machines which
could improve the throughput and lower the latency of the whole system. This would make it
possible to have many streams running for different purposes at the same time communicating
different kinds of data. One great thing about Kafka Streams is that it has an API which makes
it easier for the users to use because they can integrate it right to their Java applications so it
would fit quite easily into C-eraph.

27

Acknowledgements

In memory of the late Professor Dr.Sherif Sakr

28

Bibliography

[1] C. Humby, Lecture, ana senior marketer’s summit, kellogg school, Nov. 2006.

[2] L. Lewis. (). Infographic: What happens in an internet minute 2020, [Online]. Available:
https://www.allaccess.com/merge/archive/31294/infographic-
what-happens-in-an-internet-minute. (accessed: 9.05.2020).

[3] IDC. (). The digitization of the worldfrom edge to core, [Online]. Available: https://
www.seagate.com/files/www-content/our-story/trends/files/
idc-seagate-dataage-whitepaper.pdf. (accessed: 16.05.2020).

[4] F. Provost and T. Fawcett, “Data science and its relationship to big data and data-driven
decision making,” Big Data, vol. 1, Mar. 2013. DOI: 10.1089/big.2013.1508.

[5] S. Sakr, Big Data 2.0 Processing Systems: A Survey. 2016, p. 2.

[6] P. Russom, “Tdwi best practices report | big data analytics,” pp. 1–34, 2011.

[7] C. W. Bachman, “The origin of the integrated data store (ids): The first direct-access
dbms,” IEEE Ann. Hist. Comput., vol. 31, no. 4, pp. 42–54, Oct. 2009, ISSN: 1058-6180.
DOI: 10.1109/MAHC.2009.110. [Online]. Available: https://doi.org/10.
1109/MAHC.2009.110.

[8] K. D. Foote. (). A brief history of database management, [Online]. Available: https:
//www.dataversity.net/brief-history-database-management/.
(accessed: 16.05.2020).

[9] DBEngines. (). Db-engines ranking, [Online]. Available: https://db-engines.
com/en/ranking. (accessed: 16.05.2020).

[10] Neo4j. (). The native path to graph performance, [Online]. Available: https://neo4j.
com/business- edge/native- path- to- graph- performance/. (ac-
cessed: 20.05.2020).

[11] C. Inc. (). Streaming data - a complete guide, [Online]. Available: https://www.
confluent.io/learn/data-streaming/. (accessed: 9.05.2020).

[12] Neo4j. (). Chapter 6. kafka connect plugin, [Online]. Available: https://neo4j.
com/docs/labs/neo4j-streams/current/kafka-connect/. (accessed:
20.05.2020).

[13] ——, (). Neo4j streams kafka integration, [Online]. Available: https://neo4j.
com/labs/kafka/. (accessed: 12.05.2020).

[14] W. P. Bejeck, “Kafka streams in action: Real-time apps and microservices with the kafka
streams api,” 2018.

[15] A. Kafka. (). Introduction, [Online]. Available: https://kafka.apache.org/
intro. (accessed: 17.05.2020).

29

https://www.allaccess.com/merge/archive/31294/infographic-what-happens-in-an-internet-minute
https://www.allaccess.com/merge/archive/31294/infographic-what-happens-in-an-internet-minute
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://doi.org/10.1089/big.2013.1508
https://doi.org/10.1109/MAHC.2009.110
https://doi.org/10.1109/MAHC.2009.110
https://doi.org/10.1109/MAHC.2009.110
https://www.dataversity.net/brief-history-database-management/
https://www.dataversity.net/brief-history-database-management/
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://neo4j.com/business-edge/native-path-to-graph-performance/
https://neo4j.com/business-edge/native-path-to-graph-performance/
https://www.confluent.io/learn/data-streaming/
https://www.confluent.io/learn/data-streaming/
https://neo4j.com/docs/labs/neo4j-streams/current/kafka-connect/
https://neo4j.com/docs/labs/neo4j-streams/current/kafka-connect/
https://neo4j.com/labs/kafka/
https://neo4j.com/labs/kafka/
https://kafka.apache.org/intro
https://kafka.apache.org/intro

[16] ——, (). Topics, [Online]. Available: https://kafka.apache.org/intro#
intro_topics. (accessed: 17.05.2020).

[17] S. Langhi, “Towards extream processing with keplr,” pp. 25–29, 2020.

[18] E. Inc. (). Esper, [Online]. Available: http://www.espertech.com/esper/.
(accessed: 7.05.2020).

[19] ——, (). Chapter 3. processing model, [Online]. Available: http://esper.espertech.
com/release-5.5.0/esper-reference/html/processingmodel.
html#processingmodel_time_window. (accessed: 7.05.2020).

[20] ——, (). Esper faq, [Online]. Available: http://www.espertech.com/esper/
esper-faq/. (accessed: 19.05.2020).

[21] ——, (). Esper faq, [Online]. Available: http://www.espertech.com/esper/
esper-faq/#how-does-it-work-overview. (accessed: 19.05.2020).

[22] M. Hunger. (). From relational to graph: A developer’s guide, [Online]. Available: https:
//dzone.com/refcardz/from-relational-to-graph-a-developers-
guide?chapter=1. (accessed: 26.04.2020).

[23] E. E. Ian Robinson Jim Webber, Graph Databases, 2nd Edition.

[24] Neo4j. (). Neo4j streams kafka integration, [Online]. Available: https://neo4j.
com/developer/guide-data-modeling/. (accessed: 16.05.2020).

[25] ——, (). Chapter 1. introduction, [Online]. Available: https://neo4j.com/docs/
cypher-manual/current/introduction/. (accessed: 26.04.2020).

[26] A. Jena. (). Fuseki : Main server, [Online]. Available: https://jena.apache.
org/documentation/fuseki2/fuseki-main. (accessed: 18.05.2020).

[27] ——, (). Apache jena fuseki, [Online]. Available: https://jena.apache.org/
documentation/fuseki2/. (accessed: 18.05.2020).

[28] OpenLink. (). Rdf triple store faq, [Online]. Available: http://vos.openlinksw.
com/owiki/wiki/VOS/VOSRDFFAQ. (accessed: 18.05.2020).

[29] ——, (). Rdf insert methods in virtuoso, [Online]. Available: http://vos.openlinksw.
com/owiki/wiki/VOS/VirtRDFInsert. (accessed: 18.05.2020).

[30] J. Barrasa. (). Rdf triple stores vs. labeled property graphs: What’s the difference? [On-
line]. Available: https://neo4j.com/blog/rdf- triple- store- vs-
labeled-property-graph-difference/. (accessed: 18.05.2020).

[31] Oracle. (). Graph pattern matching for sql and nosql users, [Online]. Available: https:
//pgql-lang.org/. (accessed: 18.05.2020).

[32] C. Corner. (). Most popular graph databases, [Online]. Available: https://www.
c-sharpcorner.com/article/most-popular-graph-databases/.
(accessed: 18.05.2020).

[33] O. Inc. (). What is rdf? [Online]. Available: https://www.ontotext.com/
knowledgehub/fundamentals/what-is-rdf/. (accessed: 11.05.2020).

[34] ——, (). What is sparql? [Online]. Available: https://www.ontotext.com/
knowledgehub/fundamentals/what-is-sparql/. (accessed: 11.05.2020).

30

https://kafka.apache.org/intro#intro_topics
https://kafka.apache.org/intro#intro_topics
http://www.espertech.com/esper/
http://esper.espertech.com/release-5.5.0/esper-reference/html/processingmodel.html#processingmodel_time_window
http://esper.espertech.com/release-5.5.0/esper-reference/html/processingmodel.html#processingmodel_time_window
http://esper.espertech.com/release-5.5.0/esper-reference/html/processingmodel.html#processingmodel_time_window
http://www.espertech.com/esper/esper-faq/
http://www.espertech.com/esper/esper-faq/
http://www.espertech.com/esper/esper-faq/#how-does-it-work-overview
http://www.espertech.com/esper/esper-faq/#how-does-it-work-overview
https://dzone.com/refcardz/from-relational-to-graph-a-developers-guide?chapter=1
https://dzone.com/refcardz/from-relational-to-graph-a-developers-guide?chapter=1
https://dzone.com/refcardz/from-relational-to-graph-a-developers-guide?chapter=1
https://neo4j.com/developer/guide-data-modeling/
https://neo4j.com/developer/guide-data-modeling/
https://neo4j.com/docs/cypher-manual/current/introduction/
https://neo4j.com/docs/cypher-manual/current/introduction/
https://jena.apache.org/documentation/fuseki2/fuseki-main
https://jena.apache.org/documentation/fuseki2/fuseki-main
https://jena.apache.org/documentation/fuseki2/
https://jena.apache.org/documentation/fuseki2/
http://vos.openlinksw.com/owiki/wiki/VOS/VOSRDFFAQ
http://vos.openlinksw.com/owiki/wiki/VOS/VOSRDFFAQ
http://vos.openlinksw.com/owiki/wiki/VOS/VirtRDFInsert
http://vos.openlinksw.com/owiki/wiki/VOS/VirtRDFInsert
https://neo4j.com/blog/rdf-triple-store-vs-labeled-property-graph-difference/
https://neo4j.com/blog/rdf-triple-store-vs-labeled-property-graph-difference/
https://pgql-lang.org/
https://pgql-lang.org/
https://www.c-sharpcorner.com/article/most-popular-graph-databases/
https://www.c-sharpcorner.com/article/most-popular-graph-databases/
https://www.ontotext.com/knowledgehub/fundamentals/what-is-rdf/
https://www.ontotext.com/knowledgehub/fundamentals/what-is-rdf/
https://www.ontotext.com/knowledgehub/fundamentals/what-is-sparql/
https://www.ontotext.com/knowledgehub/fundamentals/what-is-sparql/

[35] D. Dell’Aglio, E. D. Valle, J.-P. Calbimonte, and O. Corcho, “Rsp-ql semantics: A uni-
fying query model to explain heterogeneity of rdf stream processing systems,” Interna-
tional Journal on Semantic Web and Information Systems (IJSWIS), vol. 10, no. 4, pp. 17–
44, 2014. [Online]. Available: https://EconPapers.repec.org/RePEc:
igg:jswis0:v:10:y:2014:i:4:p:17-44.

[36] A. Gordon, Programming Languages And Systems, 19th.

[37] R. Tommasini and E. D. Valle, “Yasper 1.0: Towards an rsp-ql engine.” [Online]. Avail-
able: http://ceur-ws.org/Vol-1963/#paper487.

[38] A. Jena. (). Tdb datasets, [Online]. Available: https://jena.apache.org/
documentation/tdb/datasets.html. (accessed: 19.05.2020).

31

https://EconPapers.repec.org/RePEc:igg:jswis0:v:10:y:2014:i:4:p:17-44
https://EconPapers.repec.org/RePEc:igg:jswis0:v:10:y:2014:i:4:p:17-44
http://ceur-ws.org/Vol-1963/#paper487
https://jena.apache.org/documentation/tdb/datasets.html
https://jena.apache.org/documentation/tdb/datasets.html

Non-exclusive licence to reproduce thesis and
make thesis public

I, Fred Peter Boldin,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to reproduce,
for the purpose of preservation, including for adding to the DSpace digital archives until
the expiry of the term of copyright,

“C-eraph: Towards continuous OpenCypher”,

supervised by Riccardo Tommasini.

2. I grant the University of Tartu a permit to make the work specified in p. 1 available to
the public via the web environment of the University of Tartu, including via the DSpace
digital archives, under the Creative Commons licence CC BY NC ND 3.0, which allows,
by giving appropriate credit to the author, to reproduce, distribute the work and commu-
nicate it to the public, and prohibits the creation of derivative works and any commercial
use of the work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’ intellec-
tual property rights or rights arising from the personal data protection legislation.

Fred Peter Boldin
20.05.2020

	Abstract
	List of figures
	List of abbreviations, constants etc
	Introduction
	Motivation
	Problem statement

	Background
	Streaming
	Kafka
	CQL
	Esper

	Graphs
	Graph Processing and Neo4j
	Property graph data model & Cypher
	RDF and SPARQL

	Graph Streams
	Yasper
	Jasper

	Design
	Refactoring
	Implementation
	Structuring of the data
	Querying

	Example of C-eraph

	Summary
	Summary
	Future work
	Licence for reproduction

