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The Flavor Hierarchy Problem in the Standard
Model and Beyond the Standard Model

Theories
The flavour hierarchy problem, manifested in the large order of magnitude difference in
the masses and mixing angles of the fundamental fermions of the Standard Model (SM) is
a well known curiosity in particle physics. Although these masses and mixing angles can
be included in the SM with a suitable parametrization, the SM offers no explanation for
the difference of many orders of magnitude in these free parameters. In this thesis, the
flavour hierarchy problem will be used as motivation for models of new physics. Within
the new models, the origin of the flavour hierarchy will be theoretically explained as
resulting from higher order radiative corrections, induced by the new fields in the model.
Furthermore, a numerical scan will be run in order to fit the effective parameters to the
experimental observations. Finally, the analytical form of the radiative amplitudes will be
used in order to check the consistency of the effective parametrization approach. Further
phenomenological consequences of these models will be outlined.

Keywords: Flavor hierarchy problem, dark sector, extensions of the Standard Model
CERCS: P210 — Elementary particle physics, quantum field theory

Lõhnaprobleem Osakestefüüsika
Standardmudelis ja selle edasiarendustes

Standardmudeli (SM) lõhnaprobleem seisneb erinevate fundamentaalsete fermionite
vahelises suures massi ja segunemisnurkade erinevuses. Kuigi kõik fermionite massid
ja segunemisnurgad on vabade parameetrite abil võimalik SMi lisada, jääb vastavate
parameetrite mitme suurusjärgune erinevus SMi kontekstis seletamata. SMi lõhnaprobleem
võetakse antud lõputöös aluseks, uurimaks võimalike uue füüsika mudelid. Kasutades
erinevaid SMi edasiarendusi, kirjeldatatakse lõputöös üht võimaliku SMi lõhnaprobleemi
seletust kõrgemat järku kiirguslike parandite näol. Loomaks seoseid kiirguslike parandite
efektiivse kirjelduse ning reaalsete eksperimenditulemuste vahel, viiakse läbi numbriline
uuring efektiivse parameetriruumi ulatuses. Lisaks kontrollitakse mudelis rakendatud
efektiivse parametrisatsiooni teoreetilist õigsust, kasutades kõrgemat järku amplituudide
täpset analüütilist valemit. Ühtlasi kirjeldatatakse vastavate uute osakestefüüsika mudelite
fenomenoloogiat.

Märksõnad: Lõhnahierarhia probleem, tume sektor, standardmudeli laiendused
CERCS: P210 — Elementaarosakeste füüsika, kvantväljade teooria
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Introduction

Throughout scientific history, laws of physics have been formulated in order to model the
natural phenomena in a minimal set of fundamental rules. Currently, all observed physical
processes can be explained by four fundamental forces known as the gravitational, the
electromagnetic, the strong and the weak force. In order to describe physics at microscopic
scales, the electromagnetic, the strong and the weak forces can be combined into one
coherent theory known as the Standard Model of Particle Physics (SM). These forces are
modelled as interactions between matter particles, and are mediated by a different type of
particles known as the gauge bosons. The SM describes the properties and interactions of
the fundamental particles that constitute matter and mediate the fundamental forces. The
elementary constituents of matter belong to the group of fermions, while the mediators of
the forces belong to the group of bosons. Adhering to Pauli’s spin-statistics theorem, the
fermions are defined as particles with spin =

2 , while bosons have spin =, with = ∈ N. [1]
Overall, there are 12 fermions (6 quarks and 6 leptons), each of which have an antiparticle
counterpart. The antifermions have identical physical properties, such as mass, but
opposite quantum numbers compared to their counterparts.1 The positively and negatively
charged quarks, as well as the charged and uncharged leptons each organize into three
generations. The precise particle content of fermions in the SM can be found from Table 1.

Although the SM has been remarkably successful in describing a wide range of physical
phenomena, the original formulation of the SM still suffers from few shortcomings which
may be used as directions for the search of a more complete description of particle physics.

1Provided that the CPT invariance holds exactly. [2]

Table 1: The fermions of the Standard Model

Generation u-type quarks d-type quarks Charged leptons Neutral leptons

1 u d e a4
2 c s ` a`
3 t b g ag
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In this thesis, a particular issue of the SM known as the flavour hierarchy problem will
be taken under inspection. In order to explain the flavour hierarchy problem, Chapters 1
and 2 will provide a review of the SM and the Higgs mechanism that is responsible for
generating the masses of the bosons and fermions of the SM. Next, addressing the flavour
hierarchy problem will lead to two distinct extensions of the SM, both of which can be
realized by extending the gauge group of the SM and by adding new fields. The first of
these approaches, known as the Froggat-Nielsen mechanism will be briefly described in
Chapter 3 in order to offer a review of one of the most common solutions to the flavour
hierachy problem. However, the novel work that was carried out during the completion
of this thesis is centered around an alternative model, which can be described as one
representative of a class of radiative models. Chapter 4 will first introduce the new
features of this model, including the new fields as compared to the SM and their mass
generation mechanism. After that, the radiative model will be used to explain the flavour
hierarchy problem that was first introduced in Chapter 2. In regard to using the radiative
model, my own independent contributions were individually working out the previously
known theoretical details of the radiative model that can be found from [3] and [4], most
importantly the calculations given in Appendices G and F; and also running numerical
scans for the free parameters in the model in order to match the theoretical details with
the experimental constraints. To that end, I contributed as a coauthor of a paper on the
application of the Left-Right Symmetric radiative models for explaining the quark flavour
hierarchy. [4] Finally, after explaining the usage of the radiative model in order to explain
the flavour hierarchy, this new extension of the SM will be shown to have many interesting
phenomenological features, which make it an interesting alternative to SM irrespective of
the flavour hierarchy problem.
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Chapter 1

The Standard Model of Particle Physics

1.1 Mathematical Formulation

The SM Lagrangian describes the dynamics, masses and interactions of fermions and
bosons. In general, the number of terms that can be added to the Lagrangian is constrained
by Lorentz invariance, local gauge invariance and renormalizability. The gauge group
of the SM is a direct product of three Lie groups: (* (3)2 × (* (2)! ×* (1). , where the
subscripts refer to the color, weak isospin and hypercharge quantum numbers respectively.
[5] Given that the Lagrangian must be invariant under a local transformation of this
gauge group, the derivatives appearing in the kinetic terms of the Langrangian must be
generalized to covariant derivatives. [6] The generalization to covariant derivatives can be
easily carried out by using a minimal substitution as follows:

m` → �` = m` − 86′�`. − 86,0
` C
0 − 86B�1

`C
1, (1.1)

where 6′, 6, 6B are the coupling constants of * (1). and (* (2)!, (* (3)2 respectively. The
indices 0 = 1, 2, 3, 1 = 1, .., 8 reflect the 3- and 8-dimensional Lie algebras of the nonabelian
groups (* (2)! and (* (3)2 respectively. Hence, new bosonic fields of spin 1 are introduced
: eight vector fields �1

` for (* (3)2, three vector fields ,0
` for (* (2)! and one vector field

�` for * (1). . These gauge fields arise from the adjoint representation of the corresponding
gauge group. Overall the Lagrangian of the SM becomes [7]

L = −1

4
�`a�

`a − 1

4
,0
`a,

0`a − 1

4
�1
`a�

1`a

+8k̄! /�k! + 8k̄' /�k' + (�`q)†�`q + `2q†q − _(q†q)2 + .8 9 k̄!,8qk', 9 + ℎ.2.,
(1.2)
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where 0 = 1, 2, 3 and 1 = 1, .., 8, and 8, 9 run over the three generations of the charged
leptons and u- and d-type quarks given in Table 1. The first three terms appearing in
equation (1.2) describe the kinetic terms of the vector bosons corresponding to the photon
of electromagnetism, the ,± and / bosons of the weak interaction and the eight gluons of
the strong interaction respectively. Explicitly one has

�`a = m`�a − ma�`, (1.3)

,0
`a = m`,

0
a − ma,0

` + 6 5 012,1
` (1.4)

with 0, 1, 2 = 1, 2, 3, and
�0
`a = m`�

0
a − ma�0

` + 6B 5 012�1
` (1.5)

with 0, 1, 2 = 1, ..8. [6] The structure constants 5 012 appearing in equations (1.4) and (1.5)
arise from the Lie algebras of (* (2)! and (* (3)2 respectively, by the following definition:

[C0, C1] = 8 5 012C2 . (1.6)

Interestingly, it follows from equations (1.2), (1.4), (1.5) and (1.6) that the gauge bosons
corresponding to non-abelian Lie groups exhibit self interactions via three-and four-point
vertices.

The fermions of the SM are described by spin 1/2 spinor fields k.1 More precisely, the
fermion sector is chiral, comprising the left-handed fields k! transforming as doublets
under (* (2)! and the right-handed fields transforming as singlets under (* (2)!. [8] The
spinor field k may stand for either the lepton fields or the quark fields. The explicit form
of the left-handed lepton doublets is

!4! =

(
a!

44!

)
!`! =

(
a`!

`!

)
!g! =

(
ag!

g!

)
. (1.7)

Analogously, the quark doublets are given by2

&21! =

(
D2
!

32
!

)
&22! =

(
22
!

B2
!

)
&3! =

(
12
!

C2
!

)
. (1.8)

1Here the generation and color indices have been suppressed for the sake of clarity.
2The index 2 = A, 1, 6 denotes the color index associated to the fundamental representation of (* (3)2.

From hereon, the color index is understood appearing implicitly in all quark fields.
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Table 1.1: The gauge quantum numbers of the fundamental fermion fields of the SM.
The (* (2)! quantum numbers have been assigned according to the doublet description
presented in equations (1.8) and (1.7), while the hypercharges . are fixed by the requirement
of matching the (* (2)! quantum numbers and the experimentally observed electric charge,
by using equation (2.30).

&! D' 3' !! 4'

* (1). 1
6

2
3 −1

3 −1
2 −1

(* (2)! ( 12 ,−
1
2 ) 0 0 ( 12 ,−

1
2 ) 0

(* (3)2 triplet triplet triplet singlet singlet

The explicit form of the right handed lepton singlets is given by

44' = 4' 4`' = `' 4g' = g' . (1.9)

Similarly, the quark right-handed singlets are given by

@*D' = D' @*2' = 2' @*C' = C' (1.10)

@�3' = 3' @�B' = B' @�1' = 1' . (1.11)

Moreover, the relevant quantum numbers can be found from Table 1.1.

The first term on the second line of equation (1.2) describes the kinetic terms of the
fermion fields, where the partial derivative has been replaced by the covariant derivative
and /� = �`W

`. Due to the covariant derivative, interaction terms between the fermions
and the gauge bosons will appear in the Lagrangian in addition to the kinetic terms of the
fermion fields. These interactions are governed by the gauge coupling constants 6, 6′, 6(.
Although 6 and 6′ grow with increasing energy, 6B on the other hand increases when the
energy is lowered. Consequently, at very low energies the particles with nonzero color
charge are very strongly bound together. As a result, quarks and gluons are confined at
low energies, meaning that they cannot be observed as free particles. [9, 10, 11]

In addition, a scalar field q of spin 0 can also be included in the SM Lagrangian.
As will be shown in Chapter 2, this field is necessary for carrying out the spontaneous
breaking of the (* (2)! ×* (1). symmetry. It should be noted that since q is associated
with the (* (2)! ×* (1). the last term of equation (1.1) does not appear in (�`q)†�`q.
Consequently, the covariant derivative acting on q does not result in the interaction of q
with the massless gluons. The interactions of q with the other gauge bosons are discussed
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in Chapter 2. The quadratic and quartic operators in q appearing in equation (1.2)
describe the so-called Higgs potential, which sources the spontaneous symmetry breaking
(SSB) in the electroweak (EW) sector, as will be shown in Chapter 2. Finally, the last
term of the SM Lagrangian in equation (1.2) collects the Yukawa terms responsible for
generating the fermion masses after spontaneous breaking of the EW symmetry, discussed
in Section 2.3. These terms do not follow from any symmetry consideration and must
be solely added to the Lagrangian to match experimental observations. Crucially, the
vector boson and the spinor fields have no explicit mass terms in equation (1.2) since the
inclusion of mass terms is constrained by local gauge invariance. Further details about the
mass generation mechanism for the fields of the SM are given in Chapter 2.

1.2 The Electroweak Sector of the Standard Model

The Lagrangian of the EW sector of the SM without the mass terms for the gauge bosons
and the charged fermions is symmetric under local (* (2)! ×* (1). gauge transformation.3

[8] It consists of the kinetic terms for the spinor field and for the gauge fields. The mass
terms, as will be shown, are forbidden by the requirement of local gauge invariance. The
interactions between the gauge bosons and the fermions are encoded in the covariant
derivative, which again must be added to the Lagrangian in order to maintain invariance
under local (* (2)! ×* (1). transformations.4

The SM Lagrangian can be made invariant under the local gauge transformations of the
fermion fields:5

* (1). : k → 48_. (G).k (1.12)

and,
(* (2)! : k → 48_

0
!
(G))0k, (1.13)

by simultaneously transforming the gauge fields:

* (1). : �` → �` +
1

6′
m`_. (G) (1.14)

3Here the terms associated with (* (3)2 are omitted as this symmetry remains unbroken during the
spontaneous breaking of the EW symmetry.

4In this short section, the discussion of gauge fixing and ghost terms has been omitted as it is not
relevant for the introduction of the flavour hierarchy problem. However, the discussion of gauge fixing for
a * (1) local gauge symmetry is briefly discussed in the Appendix, where the propagator for the gauge
field associated to a new * (1)� symmetry is explicitly calculated.

5The transformation properties of the scalar field q can be chosen in such a way that the terms
containing q also remain invariant under simultaneously transforming q, the gauge fields and the fermion
fields. The transformation laws of q are more carefully considered in Chapter 2.
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and,

(* (2)! : ,0
` → ,0

` +
1

6
m`_

0
! (G) + n

012,1
`_

2
! . (1.15)

In order to obtain the states with definite chirality from a general spinor k, the projection
operators %! and %' can be used, so that

%' =
1

2
(1 + W5) and %'k = k' (1.16)

and,

%! =
1

2
(1 − W5) and %!k = k! . (1.17)

Using the anticommutation relations between W5 and W0 and the hermiticity of W0, it is
also easy to calculate:

k̄%' = k̄! and k̄%! = k̄' . (1.18)

Then from %! + %' = 1, it follows that

k̄W`�`k = k̄W
`�`%!k + k̄W`�`%'k = k̄%'W

`�`%!k + k̄%!W`�`%'k. (1.19)

Thus,
k̄W`�`k = k̄!W

`�`k! + k̄'W`�`k' . (1.20)

As for the mass terms of the gauge bosons, it is clear that due to equations (1.14) and (1.15),
it is not possible to write down a gauge invariant mass term for �` and ,0

` . Instead, the
Higgs mechanism needs to be employed. This is demonstrated in Chapter 2. Analogously,
gauge invariance along with requiring Lorentz invariance also forbids the mass term for
the spinor fields. Although the term <kk† is not Lorentz invariant, a Lorentz invariant
mass term can still be written by using k̄ = k†W0 as can be seen below.6

k̄ (G) k (G) = k† (G) W0k (G) → k†
(
Λ−1G

)
( [Λ]† W0( [Λ] k

(
Λ−1G

)
= k†

(
Λ−1G

)
W0( [Λ]−1 ( [Λ] k

(
Λ−1G

)
= k†

(
Λ−1G

)
W0k

(
Λ−1G

)
= k̄

(
Λ−1G

)
k

(
Λ−1G

)
.

(1.21)

However, by writing this term as

<k̄k = <k̄%2
!k + <k̄%2

'k = <k̄'k! + <k̄!k', (1.22)

6Here the transformation laws k(G) → ( [Λ] k
(
Λ−1G

)
and k† (G) → k†

(
Λ−1G

)
( [Λ]† for the Dirac

spinor and its adjoint, along with the identity ([Λ]† = W0([Λ]−1W0 are used. [12]
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it is clear that since the right-handed fields transform as singlets, while the left-handed
fields transform as doublets under (* (2)!, the mass term for the fermions cannot be
written in the form displayed in equation (1.22). This problem will also be solved by the
Higgs mechanism in Chapter 2.

1.3 Parameters of the Standard Model

The SM can be described by 19 parameters. [13] The 5 flavour universal parameters
are the 3 gauge couplings 6B, 6 and 6′, associated to the (* (3)2, (* (2)! and * (1).
groups respectively; the Higgs quartic coupling _ and the mass squared `2 of the Higgs
field. Observing a non-universality of any of the coupling constants across different
flavours would signal a deviation from the SM, and thus is an active research topic.
[14, 15] The mass squared parameter of the Higgs field was independently determined
with the measurement of the Higgs boson mass by the CMS and ATLAS collaborations
at CERN in 2012 [16, 17]. The quartic coupling could be inferred from the di-boson
scattering experiments that will take place within the High Luminosity LHC experiments
or from lepton colliders such as the Circular Electron Positron Collider (CEPC) or the
Future Circular (Lepton) Collider (FCC-e). [18]. The rest of the parameters are the six
quark masses, three charged lepton masses, four quark mixing parameters, including one
charge-parity (CP) violating phase and three mixing angles, and one strong CP-violating
parameter. The latter does not appear in the flavour hierarchy problem, so it is for the
most part unimportant for the purpose of this thesis.7 The neutrinos remain massless in
the original formulation of the SM, which is the approach taken in this thesis, although
it is well known from the observation of neutrino oscillations, that neutrinos indeed do
have a mass, small in value in comparison to the masses of the charged leptons. [19]
Extending the SM to contain massive neutrinos would mean including either 9 or 7
additional parameters to the SM, depending on whether the neutrinos are considered to
be Majorana or Dirac fermions.

The electron mass has been very precisely measured using Penning traps. [20]
The value cited by the Particle Data Group (PDG) is given by

<4 = 0.5109989461 ± 0.0000000031 MeV. (1.23)
7As a minor exception, the question of the strong CP violation is briefly tackled in Section 4.5 where

the novel phenomenological implications of the radiative left-right symmetric theories explaining the
flavour hierarchy problem are considered.
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The mass of the muon is determined by measuring the Zeeman transition frequencies in
the muonium atoms. The value of the muon mass is [19]

<` = 105.6583715 ± 0.0000035 MeV. (1.24)

For the tau mass, the PDG quotes the average of several measurements over the tau decay
channels as well as the mass inferred from electron-positron collisions. [19] The mass is
given by

<g = 1776.86 ± 0.12 MeV. (1.25)

Determining the quark masses is much more difficult due to quark confinement, mentioned
in Section 1.1. Hence, the quark masses must be inferred from the properties of hadrons.
The light quark masses can be obtained by lattice-QCD calculations,8 by fine-tuning
the constituent quark masses to reproduce the masses of the observed pions, kaons and
eta-mesons. [21] The values quoted by the Flavour Lattice Averaging Group (FLAG)
collaboration are [21, 22]

<D = 2.50(17) MeV <3 = 4.88(20) MeV <B = 92.9(0.7) MeV. (1.26)

The mass of the charm quark depends strongly on the momentum scale due to the running
of the mass. Estimations can be obtained from correlation functions by using �-, �B- and
charmonium mesons’ data. [21] The FLAG collaboration quotes the charm quark mass at
the renormalization scale ? = <2 [21]

<2 (<2) = 1.280(13) GeV. (1.27)

Detailed description of the estimation of the bottom quark mass is outside the scope of
this thesis. In short, the PDG collaboration quotes the bottom quark mass as [19]

<1 (<1) = 4.198(12) GeV. (1.28)

The top quark is special, as it is the only quark that can decay semi-leptonically, by
the emission of an on-shell ,-boson. [19] For this reason, the top quark decays before
hadronization, and hence its mass can be inferred directly from scattering experiments.
Currently, the most precise measurement has been performed by the CMS collaboration:
[23]

<C = 172.22 ± 0.73 GeV. (1.29)
8In this section all of the quark masses are quoted within the modified minimal subtraction scheme

("().
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All of the above mass values can be included in the SM via the Higgs mechanism, which will
be introduced in the next section. However, by solely using the SM one cannot explain the
large difference in masses between quarks and leptons of different generations. Moreover,
the quark mixing parameters also follow a noticeable spread in values as will be shown in
Section 2.4. These issues will eventually lead to the extensions of the SM.
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Chapter 2

Spontaneous Breaking of the
Electroweak Symmetry

2.1 Introducing the Higgs Boson

As was mentioned in the previous chapter, the requirement of gauge invariance forbids the
mass terms for the fermions and gauge bosons of the SM. Hence, in order to have a theory
with massive fields, it is necessary to introduce a gauge-invariance breaking mechanism.
This is realized in this chapter by the introduction of a scalar field q, which spontaneously
breaks the (* (2)! ×* (1). symmetry.1 [24, 25, 26] The scalar field q can be written as
follows:

q =
1
√

2

(
q1 + 8q2

q3 + 8q4

)
. (2.1)

It is a color singlet, a (* (2)! doublet with hypercharge . = 1/2 and it appears in the
Lagrangian of the SM through the following terms2

Lq =
(
�`q

)† (�`q) −+ (q) + L.D: . (2.2)

The first term in Lq contains the kinetic terms and the interaction of q with the SM gauge
fields. Secondly, the + (q) term represents the most general gauge invariant potential
involving q:

+ (q) = −`2q†q + _
(
q†q

)2
. (2.3)

1This (* (2)! ×* (1). symmetry breaking mechanism is usually referred to as the Higgs mechanism.
2Here, the conventions and charge assignments of [27] are used.
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Higher powers of q are omitted on the grounds of renormalizability. To investigate equation
(2.3) further, it is customary to explore the behaviour of the minima of the potential
for different values of ` and _. The field configurations giving rise to the minima of the
potential in equation (2.3) define the vacuum of the theory and the corresponding field
values 〈q〉 which are known as the vacuum expectation values (vev).

1. If _ < 0, then the potential is not bounded from below and there is no stable vacuum
state.

2. When _ > 0 and −`2 > 0, then the minimum energy state is defined by q = 0. In that
case, the vacuum state given by q = 0 is unchanged under a gauge transformation,
and hence the (* (2)! ×* (1). symmetry remains unbroken.

3. Finally, if _ > 0 and −`2 < 0, then it can be easily seen that the minimum energy
configuration is given by 〈

qq†
〉
=
`2

2_
. (2.4)

In that case the (* (2)! ×* (1). gauge symmetry has been spontaneously broken
and q obtains a expectation value, given by equation (2.4).

With the normalization given by equation (2.1), the potential in equation (2.3) can be
written as follows:

+ (q) = −`
2

2

(
q2

1 + q
2
2 + q

2
3 + q

2
4

)
+ _

4

(
q2

1 + q
2
2 + q

2
3 + q

2
4

)2
(2.5)

Clearly, using equation (2.1) equation (2.4) can also be rewritten as3

1

2

(
q2

1 + q
2
2 + q

2
3 + q

2
4

)
=
`2

2_
=
E2

2
. (2.6)

In the unitary gauge, q can be written as4

q =
1
√

2

(
0

q3

)
. (2.7)

Furthermore, q3 can be decomposed as

q3 = ℎ + E with 〈ℎ〉 = 0. (2.8)
3In this chapter, from now the symbol v will be used in the sense of equation (2.6) and called the

vacuum expectation value (vev).
4The benefit of using the unitary gauge is that the (* (2)! ×* (1). symmetry can be broken without

breaking the * (1)�" symmetry associated with electromagnetism. Thus the symmetry breaking scheme
is (* (2)! ×* (1). → * (1)�" .
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The fact that q3 is a real scalar field means that q3 describes a neutral boson of spin 0.
This guarantees that the vaccuum does not become electrically charged after the SSB of
the (* (2)! ×* (1). symmetry. With this modification, equation (2.5) becomes

+ (q) = −`
2

2

(
q2

1 + q
2
2 + (ℎ + E)

2 + q2
4

)
+ _

4

(
q2

1 + q
2
2 + (ℎ + E)

2 + q2
4

)2
. (2.9)

Since the fields q1, q2, ℎ, q4 are treated as small excitations of the vaccuum, the Higgs
potential appearing in (2.9) can be expanded about the field values, omitting higher order
terms. Rewriting equation (2.9) in the unitary gauge and eliminating `2 = _E2 gives

+ (q) = 2>=BC + 0q2
1 + 0q2

2 + _E
2ℎ2 + 0q2

4 + O
(
q3

)
, (2.10)

where O
(
q3

)
denote the third order terms in either ℎ or q8, for 8 = 1, 2, 4. Clearly, the only

field with quadratic terms is ℎ. Hence, only the scalar field ℎ will obtain a mass. Adhering
to the convention of writing the mass term of a real scalar field as 1

2<
2q2, [27] it follows

that the mass of ℎ is given by
<ℎ =

√
2_E2. (2.11)

The 3 massless Goldstone boson fields q1, q2, q4 are therefore absorbed into the gauge
transformation and the associated degrees of freedom re-appear as longitudinal polarization
modes of the massive vector bosons ,+, ,−, / . More details can be found in Appendix A.

2.2 Masses of the Gauge Bosons

In the unitary gauge, the kinetic term appearing in equation (2.2) takes the following form
[27] (

�`q
)
(�`q)† = 1

2

(
m`ℎ

)
(m`ℎ) + 1

8
62 (E + ℎ)2

(
,1
` − 8,2

`

) (
,1` + 8,2`

)
+1

8
(E + ℎ)2

(
−6′�` + 6,3

`

)2
.

(2.12)

The first term appearing in equation (2.12) is the kinetic term for the Higgs field. To
interpret the second term of equation (2.12), it is useful to consider the covariant derivative
terms for the left-handed quark fields.5

k̄!W
`�`k! =

(
D̄ 3̄

)
W`

(
m` − 8

6′

2
�` − 8

6

2
,0
`f

0

) (
D

3

)
. (2.13)

5In Chapter 1 it was shown that the left and right handed fermion fields decouple for the case of kinetic
terms.
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For the ,1
` and ,2

` terms one can write

,1
`f

1 +,2
`f

2 =
1

2

(
,1
` − 8,2

`

) (
f1 + 8f2

)
+ 1

2

(
,1
` + 8,2

`

) (
f1 − 8f2

)
. (2.14)

Thus, by defining 2f+ ≡ f1 + 8f2 and 2f− ≡ f1 − 8f2, it is possible to write the ,1
` and

,2
` terms of equation (2.13) as

(
D̄ 3̄

)
W`

(
−8 6

2
,1
`f

1 − 8 6
2
,2
`f

2
)
%!

(
D

3

)
= −6
√

2
,1
` − 8,2

`√
2

(
D̄ 3̄

)
W`f+%!

(
D

3

)
−6
√

2
,1
` + 8,2

`√
2

(
D̄ 3̄

)
W`f−%!

(
D

3

)
.

(2.15)

After using the explicit matrix representation of f+ and f−, equation (2.15) takes the
form:

− 6
,1
` − 8,2

`√
2

D̄W`%!3 − 6
,1
` + 8,2

`√
2

3̄W`%!D. (2.16)

Since the Higgs mechanism leaves the * (1)�" symmetry invariant, it follows that the
terms of the Lagrangian must be charge neutral, otherwise the * (1) symmetry of
electromagnetism would be broken. Thus, the following charged bosonic fields may
be defined:

,± =
,1 ∓ 8,2

√
2

, (2.17)

where the ± refers to the electric charge. Then, using equation (2.17) for the vector
mediators, the second term in equation (2.12) can be written as

1

8
62 (E + ℎ)2

(
,1
` − 8,2

`

) (
,1` + 8,2`

)
=

62E2

4
,+`,

−` + 6
2E

2
ℎ,+`,

−` + 6
2

4
ℎℎ,+`,

−` .

(2.18)

From equation (2.18) it is easy to identify the W-boson mass:

<2
, =

62E2

4
, (2.19)

the coupling factor for the Higgs-W three-point vertex:

6ℎ,, =
62E

2
(2.20)
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and the coupling factor for the Higgs-W four-point vertex:

6ℎℎ,, =
62

4
. (2.21)

It remains to investigate the third term of equation (2.12). In order to relate this term to
the physical fields, the reparametrization with the introduction of the Weinberg angle \,

6√
62 + 6′2

≡ cos \, and
6′√

62 + 6′2
≡ sin \, , (2.22)

can be used, to rewrite:

6,3
` − 6′�` =

√
62 + 6′2

(
cos \,,

3
` − sin \,�`

)
. (2.23)

In that case, the third term in equation (2.12) becomes

1

8
(E + ℎ)2

(
−6′�` + 6,3

`

)2
=

(
62 + 6′2

)
E2

8
/ `/`

+
(
62 + 6′2

)
E

4
/ `/`ℎ +

(
62 + 6′2

)
8

/ `/`ℎℎ.

(2.24)

From equation (2.24) it is evident that the Lagrangian contains a massive physical field
/ ` with mass given by

"2
/ =

(
62 + 6′2

)
E2

4
. (2.25)

Moreover, there is a Higgs-Z trilinear vertex, with a coupling factor of

6//ℎ =

(
62 + 6′2

)
E

4
, (2.26)

and a Higgs-Z four-point vertex, with a coupling factor of

6//ℎℎ =

(
62 + 6′2

)
8

. (2.27)

The orthogonal state to /`, given by

�` ≡ sin \,,
3
` + cos \,�`, (2.28)
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can be used along with the definitions of ,+` , ,−` , /−` to rewrite the covariant derivative
as [27]

�` = m` − 8
6
√

2

(
,+`)

+ +,−`)−
)

−8/`
(
6 cos \,)

3 − 6′ sin \,.
)

−8�`
(
6 sin \,)

3 + 6′ cos \,.
)
.

(2.29)

Moreover, it is evident that the field �` as defined by equation (2.28) does not have a mass
term in any of the summands appearing in equation (2.12). Hence, �` can be identified
with the only massless field in the EW sector - the photon. In fact, the photon coupling in
equation (2.29) can be further simplified, by invoking the Gell-Mann-Nishijima relation6

[28]
& = )3 + . . (2.30)

Then from equations (2.22) and (2.30) it follows that7

6 sin \,)
3 + 6′ cos \,. =

66′√
62 + 6′2

(
)3 + .

)
≡ 4&. (2.31)

Thus, the coupling constants of the (* (2). and * (1). groups and the electric charge are
not independent, but related via

4 =
66′√
62 + 6′2

= 6 sin \, = 6′ cos \, . (2.32)

2.3 Masses of Fermions

As shown in equation (1.22), the fermion mass term cannot be written in terms of spinor
fields only. Instead, the fermion masses are generated by the SSB mechanism, by coupling
the fermion fields to the scalar (* (2)! doublet q, analogous to the generation of the gauge
boson masses in Section 2.2. [29, 30] Since the mass dimension of the fermion fields is 3

2

and the mass dimension of a scalar field is 1, the only renormalizable mass term that can
be generated via SSB, must be of the form Hk̄qk. The dimensionless constant H is called
the Yukawa coupling. After SSB, it will play a crucial role in determining the masses of
fermions, as is shown below.

6Again, the conventions of [27] are used.
7The inclusion of the electric charge 4 follows from the assumption that the �`-term in the covariant

derivative takes the form −84�`&.
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2.3.1 Masses of the Charged Leptons

For the charged leptons, the Yukawa terms in the Lagrangian,8 responsible for the
generation of the lepton masses are given by [5, 31]

L;.D: = −
∑

8, 9=4,`,g

(
H8 9 4̄

′
8'q
†!′9 ! + H∗8 9 !̄′9 !q4′8'

)
, (2.33)

Using the unitary gauge, equation (2.33) becomes

L;.D: = −
∑

8, 9=4,`,g

1
√

2

[
(E + ℎ) H8 9 4̄′8'4′9 ! + (E + ℎ) H∗8 9 4̄′ 9 !4′8'

]
. (2.34)

Consequently, the mass terms for the charged leptons are given by the rescaled eigenvalues
of the Yukawa matrix

<8 =
H88E√

2
8 = 4, `, g (2.35)

and the coupling constants of the charged leptons to the Higgs field are given by

68 9 =
H8 9√

2
. (2.36)

Evidently, by diagonalizing the Yukawa matrix via a biunitary transformation it is possible
to both identify the mass eigenstates, as well as to write down the Higgs-lepton coupling
in a diagonal basis.9

2.3.2 Masses of Quarks

Whilst considering quarks, most of the arguments used in Subsection 2.3.1 can be taken
over. For the down type quarks, the Yukawa terms can be written as [27, 31]

L�.D: =
∑
8=1,2,3

∑
9=3,B,1

. ′8 9
�&̄′8!q@

′�
9' + . ′�∗8 9 @̄′�9'q

†&′8! . (2.37)

In order to generate the Yukawa terms for u-type quarks, one has to take care of a subtlety
related to the hypercharges. Namely, the product &̄′8!@′*9' has hypercharge . = 1

2 . Hence,
in order to couple this bilinear to the Higgs, the scalar field needs to have a hypercharge

8The prime symbols on top of the lepton fields denote the gauge eigenstates, i.e. terms that have only
diagonal interactions with the gauge fields.

9The mathematical details are given in Appendix B.
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. = −1
2 to maintain gauge invariance. To that end, one might consider

q̃ ≡ 8f2q. (2.38)

The transformation law of q̃ is given by

q̃→ 8f2

(
4−8_. (G).−8_

0
!
(G)f0∗f2

)
8f2q

∗ = 4−8_. (G).+8_
0
!
(G)f08f2q

∗

= 4−8_. (G).+8_
0
!
(G)f0 q̃,

(2.39)

where the equalities f2f2 = � and f2f
`∗f2 = −f` were used. As can be seen from

equation (2.39), q̃ transforms like q under (* (2)! and has hypercharge . = −1
2 , allowing

to write the Yukawa terms for the u-type quarks

L*.D: = −
∑
8=1,2,3

∑
9=D,2,C

. ′*8 9 &̄
′
8! q̃@

′*
9' + .

′*∗
8 9 @̄′*9' q̃

†&′8! . (2.40)

As in the previous subsection, in order to find the quark mass eigenstates, we need to
diagonalize the Yukawa matrices . ′� and . ′* by biunitary transformations. Explicitly

+
�†
!
. ′�+�' = .� .�8 9 = H

�
8 X8 9 , 8, 9 = 3, B, 1, (2.41)

+
*†
!
. ′*+*' = .

* .*8 9 = H
*
8 X8 9 , 8, 9 = D, 2, C. (2.42)

The matrices used to perform the biunitary transformations in equations (2.41) and (2.42)
can also be used to define the mass eigenstates of quarks as follows:

@�! = +
�†
!

©­­«
3′
!

B′
!

1′
!

ª®®®¬ =
©­­«
3!

B!

1!

ª®®®¬ @�' = +
�†
'

©­­«
3′
'

B′
'

1′
'

ª®®®¬ =
©­­«
3'

B'

1'

ª®®®¬ (2.43)

@*! = +
*†
!

©­­«
D′
!

2′
!

C′
!

ª®®®¬ =
©­­«
D!

2!

C!

ª®®®¬ @*' = +
*†
'

©­­«
D′
'

2′
'

C′
'

ª®®®¬ =
©­­«
D'

2'

C'

ª®®®¬ . (2.44)

After diagonalization, the quark masses are simply given by rescaled eigenvalues of the
Yukawa matrix

<8 =
H�
88
E
√

2
8 = 3, B, 1, (2.45)
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<8 =
H*
88
E
√

2
8 = D, 2, C. (2.46)

The eigenvalues of the Yukawa matrices are unknown parameters of the SM which have to
be obtained from experiment.10

2.4 The Weark Charged Current and the CKM Matrix

2.4.1 The CKM Matrix

In the SM two types of interactions between the fermions and bosons mediating the weak
force can be distinguished. As the currents participating in these interactions are coupled
to charged (,±) and neutral (/) bosons, they are called weak charged currents (WCC)
and weak neutral currents (WNC) respectively. In this section, the focus is on WCC, while
the WNC will be considered in the next section. In agreement with the experiment, the
WCC arising from the covariant derivative of the lepton and quark fields is given by [31]

9
`

,
= 9

`

,,!
+ 9 `

,,&
. (2.47)

In terms of the gauge eigenstates the leptonic WCC is given by

9
`

,,!
=

∑
8=4,`,g

[
ā′8!W

`4′8! + 4̄′8!W`a′8!
]
. (2.48)

Since the neutrinos in the SM are assumed massless, one can rewrite equation (2.48) as11

9
`

,,!
= a′

L
W`e′L + e′

L
W`a′L = aL+

!†
!
W`+ !! eL + e′

L
+
!†
!
W`+ !! a

′
L, (2.49)

where

a′L =
©­­­«
a′
4!

a′
`!

a′
g!

ª®®®¬ e′L =
©­­«
4′
!

`′
!

g′
!

ª®®®¬ (2.50)

and,
aL = +

!
! a
′
L eL = +

!
! e′L. (2.51)

10The current experimental and theoretical progress on determining the quark masses is very briefly
mentioned in Section 1.3. More details can be found from [19] and references therein.

11The massless neutrino fields will remain massless after transformation by any unitary matrix. Hence
the neutrino fields can be rotated by the same matrix +! that diagonalizes the Yukawa matrix of the
charged leptons.
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Then, from the unitarity of + !
!
it follows that

9
`

,,!
= aLW

`eL + eLW
`aL. (2.52)

From equation (2.52), it is clear that in the charged current interactions, the three lepton
numbers !4, !` and !g are conserved. This is related to the global symmetry of the
Lagrangian under rephasing the neutrino fields (cf. Appendix C.2).

As was shown in the previous section, all quark fields in the SM are massive. This is
different from the case of leptons, where the neutrino fields were assumed massless within
the context of the SM and has important consequences on the quark mixing. [32, 33] The
hadronic WCC is given by

9
`

,,&
=

∑
8=1,2,3

[
3′
!,8
W`D′!,8 + D′!,8W

`3′!,8

]
. (2.53)

By using equations (2.44) and (2.43), equation (2.53) can be written as

9
`

,,&
= d′

L
W`u′L + u′

L
W`d′L = dL+

�†
!
W`+*! uL + uL+

*†
!
W`+�! dL. (2.54)

Defining the Cabbibo-Kobayashi-Maskawa (CKM) matrix

+@ ≡ +*†! +�! , (2.55)

equation (2.54) can be written as

9
`

,,&
= dL+

†
@ W

`uL + uL+@W
`dL. (2.56)

Equation (2.56) displays the explicit mixing between quarks of different flavour caused by
the WCC.

2.4.2 Parametrization of the CKM matrix

In general a complex # × # matrix can be parametrized by 2#2 values. Since +@ is
unitary,12 there are #2 constraints on the matrix elements of +@. Hence, +@ can be
described by #2 parameters. These can be divided into # (#−1)

2 mixing angles and # (#+1)
2

phases. [31] However, not all of these phases are observable. This idea will be illustrated
for both # = 2 and # = 3.

12This simply follows from the definition of +@ in equation (2.55): +@+†@ = +
*†
!
+�
!
+
�†
!
+*
!
= �.

24



Many low energy physical processes can be described by considering only two
generations of quarks. In that case one can define

@*! =

(
D!

2!

)
@�! =

(
3!

B!

)
. (2.57)

As described above, for # = 2 there is 1 phase and 1 mixing angle. The CKM matrix can
then be parametrized as

+@ =

(
cos \�4

8l1 sin \�4
8(l2+[)

− sin \�4
8(l1−[) cos \�4

8l2

)
(2.58)

Then, by rephasing the quark fields:

D! → 48(l1+[)D! 2! → 48l22! 3! → 48[3! , (2.59)

the quark mixing matrix for two generations can be written as

+ =

(
cos \� sin \�

− sin \� cos \�

)
. (2.60)

The angle \� is known as the Cabibbo angle. [32] Its experimental value is commonly
inferred from hyperon decays and is given by [19]

sin \� = 0.2243 ± 0.005. (2.61)

For 3 generations, there are 3 mixing angles and 6 phases. The quark fields can be rephased
as follows

@*8! → 48q8@*8! @�9! → 48q 9@�9! . (2.62)

Factoring out a single phase, equation (2.53) becomes

9
`

,,&
= 4−(8kB−8k2)

∑
8=3,B,1

∑
9=D,2,C

@̄�8!4
8kB−8k8 (+@ ) 8 9 W`@*9!48k 9−8k2

+4−8(k2−kB)
∑
8=D,2,C

∑
9=3,B,1

@̄*8!4
8k2−8k8 (+@ ) 8 9 W`@�9!48k 9−8kB (2.63)

It is clear from equation (2.63) that 5 out of 6 phases in the case of # = 3 can be removed
by rephasing the quark fields. The last phase cannot be removed, because rephasing all
of the quark fields leaves the Lagrangian invariant. This is related to the conservation
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of baryon number.13 In conclusion, the CKM matrix for 3 generations of quarks has 4
parameters : 3 rotation angles and 1 phase. The elements of the CKM matrix are often
denoted as

+@ =
©­­«
+D3 +DB +D1

+23 +2B +21

+C3 +CB +C1

ª®®®¬ . (2.64)

The standard parametrization is given by [34]

+@ =
©­­«
1 0 0

0 223 B23

0 −B23 223

ª®®®¬
©­­«
213 0 B134

−8X

0 1 0

−B134
8X 0 213

ª®®®¬
©­­«
212 B12 0

−B12 212 0

0 0 1

ª®®®¬
=

©­­«
212213 B12213 B134

−8X

−B12223 − 212B23B134
−8X 212223 − B12B23B134

8X B23213

B12B23 − 212223B134
8X −212B23 − B12223B134

8X 223213

ª®®®¬ ,
(2.65)

where B8 9 = sin \8 9 , 28 9 = cos \8 9 and X is the phase responsible for the CP-violating
phenomena in the flavour changing processes of the SM. All the angles \8 9 can be chosen
within the first quadrant, so that B8 9 > 0 and 28 9 > 0. [19] Experimentally, the quark
mixing angles exhibit a strong hierarchy

B13 << B23 << B12 << 1. (2.66)

Thus, it is often easy to use the Wolfenstein parametrization [35]

B12 = _ =
|+DB |√

|+D3 |2 + |+DB |2
B23 = �_

2 = _
|+21 |
|+DB |

B134
8X = +∗D1 = �_

3 (d + 8[) . (2.67)

For instance up to O
(
_4

)
, the CKM matrix is then given by [35]

+@ =
©­­«

1 − _2

2 _ �_3 (d − 8[)
−_ 1 − _2

2 �_2

�_3 (1 − d − 8[) −�_2 1

ª®®®¬ . (2.68)

The experimental values of the elements of +@ are briefly reported in Subsection 2.4.5.
More detailed information can be found from [19].

13The invariance of Lagrangian under a continuous symmetry transformation is always related to a
conserved quantity, as outlined in Appendix C. The specific calculation of the conserved baryon number
operator closely resembles that of the lepton number, performed in Appendix C.2.
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2.4.3 The Phase of the CKM Matrix and CP-Violation

As mentioned in the previous section, the physical phase X is responsible for the CP-violation
in the SM processes.14 CP-violating processes are often used as tests of beyond the SM
physics, and for this reason, the connection between the phase of the CKM matrix and
the CP-violation will be taken under closer consideration. First, the charged boson field
that is coupled to the WCC transforms under CP in the following way [5]

, ` (G) �%−−→ [∗,,
†
` (G′) . (2.69)

Then, by choosing [, = −1, the W-bosons transform as

,±`
�%−−→ −,∓` , (2.70)

where the lowering of the Lorentz index follows from the [`a = 3806(1,−1,−1,−1)
convention for the Lorentz metric, implying also that x transforms under parity as,

G = (C, x) %−→ G′ = (C,−x) . (2.71)

The WCC responsible for the quark flavour mixing (cf. equation (2.56)) transforms under
CP in the following way:

−
∑

8, 9=1,2,3

(
3̄8!W

` (+@)†8 9D 9 ! + D̄8!W
` (+@)8 93 9 !

)
�%−−→

∑
8, 9=1,2,3

(
D̄ 9 !W

` (+@)†8 938! + 3̄ 9 !W
` (+@)8 9D8!

)
=

∑
8, 9=1,2,3

(
D̄ 9 !W

` (+@)∗9838! + 3̄ 9 !W` (+@)
∗†
98
D8!

) (2.72)

Thus, the Lagrangian is transformed as follows:

L,,& (C, x) = −
6
√

2

[
q̄D

L W
`+†@qU

L,
−
` + q̄U

L W
`+@q

D
L,

+†
`

]
�%−−→ − 6√

2

[
q̄U

L W
`+∗@qD

L,
+†
` + q̄D

L W
`+†∗@ qU

L,
−
`

]
.

(2.73)

It is evident from equation (2.73) that if +@ = +∗@ , then the Lagrangian of the SM is
invariant under the CP transformation. However, if this equality does not hold, meaning
that the CKM matrix has a nonzero phase X ≠ 0, then the processes involving WCC can

14The CP-violation was first observed in the SM by [36].
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exhibit CP-violation. For the case of two generations of quarks, the CKM matrix was
parametrized by a single real parameter \� . Hence from the discussion above, it follows
that there can be no CP-violation if only 2 generation of quarks are considered. In fact
it was shown by Kobayashi and Maskawa, that CP-violation manifests in the mixing
of all three generation of quarks. [33] This also explains the smallness of the observed
CP-violation; it is suppressed by the small mixing angles between different generation of
quarks. [33]

2.4.4 The Unitarity Triangle

As was already mentioned in the preceding sections, the CKM matrix is unitary. This
imposes some constraints on the values of the matrix elements. Namely,∑

8

+8 9+
∗
8: = X 9 :

∑
9

+∗8 9+: 9 = X8: . (2.74)

The importance of equation (2.74) is that the violation of the unitarity relations signals
new physics effects. The vanishing contributions to equation (2.74) can be considered as
triangles on the complex plane. [37] Most commonly the triangle is defined by rescaling
the sum

+D3+
∗
D1 ++23+

∗
21 ++C3+

∗
C1 = 0, (2.75)

by the most well-known value - +23+∗21. [19] All of the different triangles that can be
constructed by the vanishing of the relations in equation (2.74) have a common area, given
by half of the Jarlskog invariant �. [38] In general, � is defined by

�<

[
+8 9+:;+

∗
8;+
∗
: 9

]
= �

∑
<,=

n8:<n 9 ;=. (2.76)

The importance of � is that under the rescaling of the CKM matrix by a diagonal matrix,
the value of � does not change. Moreover, if � = 0, there can be no CP-violation within
the SM. Hence � is a phase-convention independent measure of CP-violation. [38]

2.4.5 The Experimental values of the CKM Matrix Elements

As mentioned in previous sections, the CKM matrix can be parametrized by 3 rotational
angles and one phase. The relation between the elements of the CKM matrix and these
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parameters, whilst following the convention of equation (2.65) is as follows:

B12 = _ =
|+DB |√

|+D3 |2 + |+DB |2
B23 = _

����+21+DB
���� B134

8q = +∗D1 . (2.77)

In this section, the current experimental values for the CKM matrix elements are outlined.

|+D3 |

The precise determination of |+D3 | is inferred from the superallowed 0+ → 0+ decays. Its
current value as reported by [19] is

|+D3 | = 0.97420 ± 0.00021. (2.78)

|+DB |

The magnitude of the |+DB | is reported by the Particle Data Group (PDG) by combining
various different Kaon and Pion decay measurements as15

|+DB | = 0.2243 ± 0.0005. (2.79)

|+23 |

The value of |+23 | is inferred by the PDG by averaging over the measurements of leptonic
and semileptonic D-meson decays together with neutrino scattering data. [19] The resulting
value is given by

|+23 | = 0.218 ± 0.004. (2.80)

|+2B |

|+2B | is similarly found from the analysis of the semileptonic and leptonic D-meson decay
data. [19] It is given by

|+2B | = 0.997 ± 0.0017. (2.81)

|+21 |

|+21 | is determined by investigating the B-meson decay into D and �∗. Its value given by
PDG is [19]

|+21 | = (42.2 ± 0.8) × 10−3. (2.82)
15Further information can be found from [19] and from references therein.
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|+D1 |

The value of |+D1 | is also inferred from B-decay data. [19]. Its current value is reported by
PDG as

|+D1 | = (3.94 ± 0.36) × 10−3. (2.83)

|+C3 |, |+CB |

The measurements of |+C3 | and |+CB | are unlikely to be made at tree-level, and so � − �̄
oscillations involving box diagrams with top quarks or loop mediated rare decays of K- or
B-mesons must be used. [19] The values following from these considerations as reported
by [19] are

|+C3 | = (8.1 ± 0.5) × 10−3 |+CB | = (39.4 ± 2.3) × 10−3. (2.84)

|+C1 |

The value for |+C1 | can be determined by averaging over different measurements of the
cross sections of a single top-quark production. [19] The PDG reports this value as

|+C1 | = 1.019 ± 0.025. (2.85)

2.5 The Weak Neutral Current and the GIM

Mechanism

In the EW sector, the WNC can be expressed as16 [31]

9
`

/
= 9

`

/,!
+ 9 `

/,&
. (2.86)

In terms of the gauge eigenstates, the leptonic WNC is given by

9
`

/,!
= 26

∑
8=4,`,g

ā′8!W
`a′8! + 26

∑
8=4,`,g

(
4̄′8!W

`4′8! + 4̄′8'W`4′8'
)
, (2.87)

and the hadronic WNC is given by

9
`

/,&
= 2

∑
8=D,2,C

(
6@̄′*8!W

`@′*8! + 6@̄′
*
8'W

`@′*8'

)
+ 2

∑
8=3,B,1

(
6@̄′�8!W

`@′�8! + 6@̄′
�
8'W

`@′�8'

)
. (2.88)

16Both the leptonic and hadronic WNC were discovered in 1973 at CERN by the Gargamelle bubble
chamber collaboration. [39, 40]
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Given that the mass eigenstates of quarks do not coincide with the gauge eigenstates, it
is interesting to investigate whether transforming from one basis to the other changes
the mathematical form of the WNC. To that end, the matrices +� and +* introduced in
the previous section along with equations (2.44) and (2.43) can be used to transform the
hadronic neutral currents into the mass basis

9
`

/,&
= 2q̄U

L+
*
! W

`+
*†
!

qU
L + 26q̄U

L+
*
! W

`+
*†
!

qU
L+

26q̄D
L+

�
! W

`+
�†
!

qD
L + 26q̄D

R+
�
' W

`+
�†
'

qD
R

= 26q̄U
L W

`qU
L + 26q̄U

RW
`qU

R

+26q̄D
L W

`qD
L + 26q̄D

RW
`qD

R.

(2.89)

Hence, unitarity of the transformation matrices +*
!,'

and +�
!,'

ensures that there are no
tree-level hadronic flavour changing neutral currents (FCNC) in the SM. This is known as
the GIM mechanism. [41] Due to the similarity between the quark and leptonic terms in
the Lagrangian, it is easy to see that the same result also holds true for leptonic FCNC.

2.6 The Flavour Hierarchy Problem in the Standard

Model

The numerical values of the fermion masses obtained from theory and experiments were
overviewed in Section 1.3. Evidently, the masses exhibit a large spread in magnitude,
as displayed in Figure 2.1. In the context of the SM this hierarchy is described by the
hierarchy of the Yukawa couplings that are associated with the charged fermion masses
after SSB. Crucially, however, the SM makes no attempt to explain the spread in the
Yukawa couplings which are solely inserted into the theory as free parameters. The goal of
the extensions of the SM is to theoretically explain this hierarchy as emerging from new
physics which is not included within the SM. Examples are provided in Chapters 3 and 4.
Analogously to the fermion masses, the CKM matrix elements also exhibit a noticeable
hierarchy. This is depicted on Figure 2.2. Similarly to the fermion masses, the hierarchy of
the CKM elements can be traced back to the hierarchy of the Yukawa couplings. Moreover,
the mixing of quarks within WCC at tree level is closely associated with the mass difference
of u-type and d-type quarks.17 The hierarchy of the CKM elements and the fermion masses
together constitute what is known as the flavor puzzle. One of the goals of a successful
flavor physics theory is to explain the physical origin of this hierarchy. Due to limitations
in volume, in this thesis the focus has only been put on explaining the hierarchy in the

17If the u-type and d-type quarks had the same mass, then +�
!,'

= +*
!,'

so +@ = � and there would be
no mixing at tree level.
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Figure 2.1: The order of magnitude hierarchy of the charged fermion masses in the SM.
The yellow lines depict the masses of the charged leptons, the blue lines the masses of the
u-type quarks and the green lines the masses of the d-type quarks. The nonzero neutrino
masses have been omitted from this plot as they are not relevant for the purpose of this
thesis.

quark masses and mixing angles. Nevertheless, similar models could be constructed to
explain the charged lepton mass hierarchy, for instance by extending the framework in
Chapter 4 to the lepton sector. Extending the SM by the inclusion of the neutrino masses
will not be considered in this thesis.

32



Vud Vus Vcb Vub

0

1

2

V i
j[l

og
]

Figure 2.2: The hierarchy of the 4 independent physical parameters of the CKM matrix.
The chosen matrix elemnents of +@ can be fitted as powers of the Cabibbo angle _ ≈ 0.22.
[42] In particular, the elements span 3 orders of magnitude.
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Chapter 3

The Froggat-Nielsen Mechanism

As was discussed in Section 2.6, the SM does not explain the experimentally observed
hierarchy in fermion masses and the mixing angles of the CKM matrix. In this chapter, an
extension of the SM explaining the quark hierarchy and mixing, first developed by Froggat
and Nielsen (FN) is presented.1 [43] The idea of the FN mechanism is to introduce a
new symmetry of the Lagrangian that forbids the inclusion of the fermion masses at tree
level. One of the simplest symmetry groups for such a task is given by * (1)� . Since the
corresponding * (1)� charges can be assigned arbitrarily, the Higgs field can be chosen
to have zero charge under * (1)� while the right and left-handed fermions can be chosen
to have different * (1)� charges. In that case, if the * (1)� symmetry is exact, then no
fermion mass terms can be generated at tree level via SSB as described in Chapter 2. Since
the mass terms cannot be generated by the Higgs mechanism of the SM, new fields must
be introduced in order to source the mass generation mechanism. In the scalar sector,
a new field ( called the flavon is introduced. This field transforms as a singlet under
(* (3)2 × (* (2)! ×* (1). , with all quantum numbers associated with the SM gauge group
set to zero. However, it has a non-zero * (1)� charge ', given by ' = −1. In addition, to
distinguish the FN mechanism from the usual SSB mechanism, the flavon field does not
couple directly to the SM fermions.2 Thus, one needs additional left-and right-handed
fermion fields �! and �' to couple the flavon to the SM fermions. The new fermions have
identical quantum numbers to the SM fermions except for the mass and * (1)� charge.
The * (1)� charges for the �! and �' fields are assigned in a way such that the mediator
fermions can only couple to the standard model quarks via the Higgs doublet q or the
flavon field. The SM quarks are also charged under * (1)� , with the left-handed quark @ 9

1The considerations for charged leptons are very similar and are thus omitted from this short review.
2In fact, the flavon and the SM fermions cannot be coupled to each other in Yukawa-like terms, if the

renormalizability conditions and invariance under the SM gauge group are imposed on the Lagrangian.
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Figure 3.1: The Feynman diagram for the mass generation of the heavy mediators.
The dotted lines on the sides indicate that this is an amputated diagram from a more
complicated diagram.

having ' = 2 + 1 9 and the right-handed quark having ' = 2 − 0 9 . Thus, the difference of
the flavon charge between a left- and right-handed quark of the same generation 9 is given
by

Δ'!−' = 1 9 + 0 9 . (3.1)

By convention, 18 ≤ 18+1 and 0 9 ≤ 0 9+1, where 8 = 1, 2, 3 and 9 = 1, 2, 3 label the generations
of quarks.

The fermion mediator masses can be generated analogously to the SSB mechanism
introduced in Chapter 2 by giving a nonzero vev to a ' = 0 Higgs scalar �.3 This
is depicted on Figure 3.1. The amplitude of the process in the low energy limit, |? |

<
→ 0

can be approximated as

|M| =
���� /? + <?2 − <2

�������� E6√
2

�������� /? + <?2 − <2

����→ 1

<2

E6
√

2
. (3.2)

The masses of the SM fermions are generated by the SSB of the ' = 1 flavon field by
imposing a nonzero vev : 〈(〉 ≠ 0. This mechanism is described in detail on Figure 3.2.

After the * (1)� symmetry breaking, the flavon field ( obtains a nonzero vev, and the
symmetry breaking parameter n can be introduced in order to facilitate calculations

n =
〈(〉
<
. (3.3)

The overall * (1)� charge conservation imposes

2 + 1 9 − # = 2 − 0 9 , (3.4)

where N denotes the number of the intermediate flavon fields. Equation (3.4) in turn
3Not to be confused with the Higgs doublet of the SM, here denoted by q.
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Figure 3.2: The effective mass generation diagram for the SM fermions.

implies that
1 9 + 0 9 = #. (3.5)

Thus, the difference in the flavon charges of the left- and right-handed quarks fixes the
number of intermediate flavons needed to generate the fermion masses. The amplitude for
the process depicted on Figure 3.2 is given, in the low energy limit, by4

M8 9 → n18+0 9 &̄8!.8 9q@
0
9', (3.6)

where 0 = *, � for u- and d-type quarks, and .8 9 is a matrix consisting of the product of
all the coupling constants relevant to Figure 3.2. Hence, the amplitude in equation (3.6)
sources an effective Lagrangian for the down type quarks,

L�4 5 5 = −
∑
8, 9

n18+0 9 &̄8!.8 9q@
3
9' (3.7)

and similarly, for up quarks,

L*4 5 5 = −
∑
8, 9

n18+0 9 &̄8!.8 9 q̃@
D
9' . (3.8)

By absorbing the vev of the Higgs field inside a redefined Yukawa matrix .̃8 9 , the mass
matrix for the charged fermions after SSB of (* (2)! ×* (1). symmetry can be written as

"8 9 = .̃8 9n
18+0 9 . (3.9)

The mass eigenvalues of "8 9 corresponding to the physical quark masses can be found

4The Higgs field of the SM, q is assumed to satisfy ' = 0.
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after diagonalizing the mass matrix appearing in equation (3.9) as shown in [43]. After
diagonalization, the following relation is obtained

<8

< 9

≈ n08−0 9+1 9−18 . (3.10)

By finding the corresponding eigenvectors one can construct the CKM matrix similarly to
the procedure outlined in Section 2.4. The resulting CKM matrix is given by [43]

+@,8 9 = 08 94
|18−1 9 | (3.11)

where the constants 08 9 are functions of the coupling constants contributing to the process on
Figure 3.2. Equations (3.10) and (3.11) illustrate the main idea behind the Froggat-Nielsen
mechanism: the hierarchy in the quark masses and the mixing angles can be generated by
a suitable choice of the * (1)� charges for the quarks of the SM.
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Chapter 4

Radiative Generation of the Quark
Masses and Mixing

4.1 Yukawa Couplings from Radiative Generation

Models

Although the Froggat-Nielsen mechanism provides an explanation for the hierarchy in the
Yukawa couplings, it also exhibits certain shortcomings. Currently, there is no underlying
physical justification for invoking this mechanism while the large number of scalar fields
involved in operating the flavon symmetry breaking mechanism also casts a doubt on
testability of such a model. [44] In light of these circumstances, it is imperative to
also consider alternative models explaining the flavour hierarchy problem. For example
the flavour hierarchy can readily be explained by invoking the so called radiative mass
generation mechanisms. [45, 46, 47, 3, 48] In these scenarios, the Yukawa couplings are
forbidden at tree level by a new symmetry imposed on the Lagrangian of the model at
hand. Although the simplest symmetry that one could insist on is /2, [47] in this thesis
the left-right (LR) symmetric model is considered instead. The advantage of the LR
model is the rich phenomenology that it possesses such as providing an explanation for
the strong CP problem and allowing to identify * (1)�−! global symmetry with the local
* (1). symmetry. [3]

4.2 The Chiral Symmetry Breaking in the Dark Sector

If the Yukawa terms are forbidden at tree-level, then the usual Higgs SSB mechanism cannot
be used to explain the generation of the fermion masses. Instead, the mass generation
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mechanism could originate from higher order interactions. As an example, one can consider
extending the SM with a dark sector that consists of new fermionic fields. The so-called
dark fermions can then for instance acquire non-zero masses by explicitly breaking the
chiral symmetry. The chiral symmetry breaking mechanism is then transmitted to the SM
fields via loop diagrams associated with the interaction of the SM fields and dark fermions
with a set of new fields - collectively known as the messenger sector. After integrating
out the heavy fields at low energies, one recovers the hierarchy of the Yukawa couplings
observed in the SM. Thus, by making use of the radiative mechanism, the hierarchy in
the Yukawa couplings of the SM can be solely attributed to the properties present in the
dark sector. Here, this idea is illustrated following the construction outlined in [3, 49]. In
detail, the dark fermion quark sector consists of the fields &*8 and &�8 associated to the
three generations (i=1,2,3) of up and down-type quarks respectively, charged under a new
* (1)� symmetry. Naturally, the * (1)� symmetry includes a gauge boson �̄`, named the
dark photon. The covariant derivative associated to * (1)� gauge is given by

�` = m` + 86&̂ �̄`, (4.1)

where &̂ denotes the * (1)� charge operator. Remembering that * (1)� is an abelian group,
the field strength tensor can also be defined in the usual way

�`a = m` �̄a − ma �̄` . (4.2)

With these modfications the Lagrangian for the dark sector can be written as1

L�( = 8
∑
8

(
&̄*8�`W

`&*8 + &̄�8�`W
`&�8

)
− 1

4
�`a�

`a + 1

2Λ2
m`�`Uma�

aU . (4.3)

The higher derivative term can be related to the emergence of massive Lee-Wick ghost
fields appearing in the scattering amplitudes that cancel the quadratic divergences. [49]
As shown in [50], the mass scale Λ will turn out to be proportional to the mass of the
ghost fields, thereby defining a scale of new physics. Although the Lagrangian contains
no explicit chiral symmetry breaking terms, the new physics scale Λ can nevertheless be
used to source a dynamical chiral symmetry breaking (ChSB) mechanism, resulting in the
generation of masses at low energies such that < < Λ. The dynamical ChSB proposed in
[49] closely follows the approach originally proposed in [51, 52]. In particular, the masses of
the dark fermions result from the 1-loop corrections to the fermion propagators depicted on

1This form of the Lagrangian does not include the interaction terms between dark fermions and the
messenger fields, which are contained in L"(.
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+

Figure 4.1: The 1-loop self-energy corrections giving rise to the dark fermion dynamical
mass generation mechanism. The black line denotes the dark fermion propagator, the blue
line denotes the usual gauge boson propagator, arising from the :2 = 0 pole of the gauge
propagator in equation (4.4), while the red line denotes the new massive ghost propagator
associated to the :2 = Λ2 pole of equation (4.4).

Figure 4.1.2 By using the covariant gauge fixing term, − (m`�
`)2

2b , the propagator becomes

�`a = −
8Λ2

:2(Λ2 − :2)

(
[`a − (1 − b)

:`:a

:2
− b

:`:a

Λ2

)
, (4.4)

justifying the two dark fermion self-energy graphs depicted on Figure 4.1. 3 Using equation
(4.4), the self-energy correction becomes4

Σ(/?, <) =
U

2c

(∫ 1

0
3G(2< − G/?) ln

(
GΛ2 + (<2 − ?2G) (1 − G)
(<2 − ?2G) (1 − G)

))
, (4.5)

By resumming the 1-loop corrections at all orders, the well known result for the fermion
propagator is then obtained5

((?) = 8

/? − Σ(/?, <)
. (4.6)

The self-consistency relation, known as the mass gap equation, [51, 52]

< = Σ(/?, <)
��
/?=< (4.7)

can then be used to determine the physical pole mass of the dark fermions. Using equations
(4.5) and (4.7), one obtains the following consistency condition at low energies <2 << Λ2

1 = − U
2c

∫ 1

0
3G(2 − G) ln

(
<2(1 − G)2

GΛ2

)
+ O

(
<2

Λ2

)
. (4.8)

2More details can be found from [49, 50, 53].
3The formula for the self-energy correction and the formula for the propagator were taken from [49].

In order to shed some light on the emergence of these formulae, both of them have been explicitly derived
in the Appendix.

4Here a purely gauge-dependent term � (b) has been omitted with the understanding that the fermion
self-energy when computed on-shell /? = < is a gauge-independent quantity. [49]

5The bare mass <0 does not appear in the denominator of the fermion propagator since there is no
bare mass in equation (4.3).
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Solving equation (4.8) for the pole mass

< = Λ exp

[
−2c

3U
+ 1

4

]
. (4.9)

Finally, extending the calculation to # 5 fermions all with a common charge @ 5 and
incorporating the running of U, equation (4.9) becomes

< 5 = Λ4G?

[
− 2c

3U(< 5 )
+ 1

4

]
. (4.10)

The above discussion was focused on the dynamic mass generation mechanism at low
energies. However, the dynamic ChSB can also be realised at high energies in the strong
coupling regime. To that end, a new Lagrangian for the dark sector, with unbroken chiral
symmetry can be written down: [3]

L�( = 8k̄�`W
`k − 1

4
�`a�

`a . (4.11)

This is analogous to the Lagrangian of the massless QED. Then in the strong coupling
regime

U > U2 =
c

3
(4.12)

the mass gap equation has a nontrivial solution, given by [54, 55]

< = 4Λ�4
− cU2√

U−U2 . (4.13)

Contrary to the low-energy regime, the scale Λ2 now emerges spontaneously from the
theory. The appearance of the mass scale Λ2 can be related to the energy scale at which
the strong coupling regime dominates. Thus, the dynamical mass generation model for
the dark fermions can be applied both at low energies and high energies provided that
the * (1)� charges have been chosen accordingly in order to be compatible with the dark
fermion hierarchy required for describing the SM flavour hierarchy.

4.3 Quark Masses in the Left-Right Symmetric Model

As was mentioned above, several different symmetry schemes can be applied in order
to forbid the appearance of the Yukawa couplings at tree level. However, in this thesis
only a concrete LR symmetric model is considered due to its simplicity and desirable
phenomenological features. The analysis is based on [4], to which I have also given my own
contribution to as described in Subsection 4.4.1; and on [3] on which [4] was built upon.
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4.3.1 The Higgs Mechanism

In this section the Higgs mechanism responsible for the spontaneous (* (2)' × (* (2)!
symmetry breaking is elucidated. The analysis is based on [3]. The Lagrangian of the
Higgs sector is given by

LH = �`�! (�`�!)† + �`�' (�`�')† −+ (�! , �') , (4.14)

where �! and �' denote the left-and right-handed scalar doublets of (* (2)! and (* (2)'
respectively.6 The potential can be chosen as a general, renormalizable scalar potential
symmetric under $ (2) ×$ (2) transformations, as follows:

+ (�! , �') = _!
(
�!�

†
!

)2
+ _'

(
�'�

†
'

)2
+ _!'

(
�'�

†
'

) (
�!�

†
!

)
−`2

!

(
�!�

†
!

)
− `2

'

(
�'�

†
'

)
.

(4.15)

After the SSB of both (* (2)! and (* (2)', the scalar doublets can be written in resemblance
to the unitary gauge of the SM:

�! =
1
√

2

(
0

E! + ℎ!

)
�' =

1
√

2

(
0

E' + ℎ'

)
. (4.16)

Consequently, the Lagrangian of the Higgs sector acquires the following form

LH =
1

2
m`ℎ! (m`ℎ!)† +

1

2
m`ℎ' (m`ℎ')† −

1

4
_! (ℎ! + E!)4 −

1

4
_' (ℎ' + E')4

−1

4
_!' (ℎ' + E')2 (ℎ! + E!)2 +

1

2
`2
! (ℎ! + E!)

2 + 1

2
`2
' (ℎ' + E')

2 .

(4.17)

In order to consider the minimal amount of free parameters, the tree level mass term for
the left-handed (LH) Higgs field has been set to zero, `2

!
= 0 while the negative tree level

mass term for the right-handed (RH) Higgs field −`2
'
< 0 is retained in the model. The

LH Higgs field obtains its mass via the negative portal coupling _!'. Determining the
vev-s associated with the SSB of (* (2)! and (* (2)' proceeds through the minimalization
of the potential appearing in equation (4.15), where the dynamical Higgs fields ℎ! and ℎ'
have been set to zero, corresponding to the lowest energy state.

∇+ (ℎ! , ℎ')
���
ℎ!=ℎ'=0

= 0. (4.18)

6Naturally, �! transforms as singlet under (* (2)' and �' transforms as singlet under (* (2)!.

42



This gives the following equations

m+

mℎ!

���
ℎ!=ℎ'=0

= _!E
2
! +

1

2
_!'E

2
' = 0. (4.19)

m+

mℎ'

���
ℎ!=ℎ'=0

= _'E
2
' +

1

2
_!'E

2
! − `2

' = 0. (4.20)

Solving equation (4.19) for E2
!
yields

E2
! = −

_!'

2_!
E2
' . (4.21)

Thus, in order to have a real vev, E! ∈ R, the portal coupling must be negative: _!' < 0.
Moreover, substituting (4.21) into (4.20) gives an equation for E2

'
:

E2
' =

`2
'(

_' −
_2
!'

4_!

) . (4.22)

In that case, the consistency condition E' ∈ R demands that

2
√
_!_' > _!' > −2

√
_!_' . (4.23)

Combining the two conditions given above, results in the overall consistency conditions

− 2
√
_!_' < _!' < 0 (4.24)

_!,' ≥ 0. (4.25)

Equation (4.25) is imposed by the requirement that the potential must be bounded from
below. In addition, equation (4.24) can be translated into a hierarchy condition for the
vev-s:

E2
!

E2
'

<

√
_'

_!
. (4.26)

As discussed in Appendix A, the mass matrix for the two Higgs fields can be found by
computing the Hessian matrix of the potential as a function of ℎ! and ℎ'.7

"2 =
©­«

m2+

mℎ2
!

m2+
mℎ!mℎ'

m2+
mℎ'mℎ!

m2+

mℎ2
'

ª®¬ (4.27)

7The Hessian matrix is understood to have been evaluated at ℎ! = 0 and ℎ' = 0.
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By using the relations

_!' = −2_!

(
E!

E'

)2

`2
' =

_'E
4
'
− _!E4

!

E2
'

, (4.28)

that follow from (4.21) and (4.22), the mass matrix becomes8

"2 = 2E2
'

(
_!n

2 −_!n3

−_!n3 _'

)
, (4.29)

where the parameter n = E!
E'

satisfies n << 1.9 The smallness of n allows to approximate
the eigenvalues of "2 by the diagonal entries of "2. In that case, the eigenvalues of the
mass matrix are given by

<2
1 = 2E2

'_!n
2 <2

2 = 2E2
'_' . (4.30)

Furthermore, the hierarchy of the masses of the two Higgs fields can be encoded in the
following inequality

<2
1 <

√
_!

_'
<2

2. (4.31)

In order to achieve more precision, higher order terms in n can also be included, resulting in
the determination of the transformation matrix *, allowing to relate the mass eigenstates
ℎ1, ℎ2 to the gauge eigenstates ℎ! and ℎ'. More details can be found from [3] and the
Appendix.

4.3.2 The Gauge Sector

The main idea of the LR symmetric model is to extend the gauge group of the EW sector
of the SM to (* (2)! × (* (2)' ×* (1). . [3] Consequently, the right-handed fermion fields
then transform as doublets of (* (2)', while they remain singlets under (* (2)!. On the
contrary, the left-handed fermion fields are still doublets under (* (2)!, while they become
singlets under (* (2)'. Analogously to Chapter 2, due to the introduction of a new (* (2)'
symmetry, three new gauge fields / `

'
, ,+`

'
, ,−`

'
arise. The gauge fields associated with

the (* (2)! of the SM are now be denoted by / `
!
, ,+`

!
, ,−`

!
. The hypercharges of the

RH and the LH doublets are set to reproduce the observed electric charges and to impose
the LR symmetry, the coupling constants associated with (* (2)! and (* (2)' have been

8Although "2 is referred to as the mass matrix, its eigenvalues actually describe the squared masses of
the two Higgs fields.

9The fact that n lies in the perturbative regime is a condition of the hierarchy of the vev-s, E! << E'.

Since collider experiments’ data imposes <,'
≥ 1 TeV, E

2
!

E2
'

=
<2

,!

<2
,'

≤ 0.08.
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chosen to satisfy
6! = 6' . (4.32)

After the SSB of both (* (2)! and (* (2)' ,the LH and RH doublets will acquire the
nonzero expectation values: 〈

�!,'
〉
=

(
0
E!,'√

2

)
. (4.33)

Then similar to the mechanism presented in Section 2.2, by using a redefinition akin to
equation (2.17)

,
±`
!,'

=
,

1`
!,'
∓ 8,2`

!,'√
2

, (4.34)

the Lagrangian terms contributing to the masses of the gauge bosons can be rewritten as

L ⊃ 6
2

4

(
E2
',
±†
'
,±' + E2

!,
±†
!
,±!

)
+
E2
'

8

(
6,3

' − 6′�
)2
+
E2
!

8

(
6,3

! − 6′�
)2
, (4.35)

where the contraction of the Lorentz indices of the vector fields has been left implicit and
the LR symmetry condition 6 = 6! = 6' has been used. From equation (4.35) the squared
masses of ,±

!,'
can be easily identified:

"2
,!,'

=
62E2

!,'

4
, (4.36)

where ,!,' in the subscript stands both for ,−
!,'

and ,+
!,'

. The remaining 3 neutral
gauge fields are not mass eigenstates as exhibited by the nondiagonal squared mass matrix
"2, given by

"2
©­­«
�

,3
!

,3
'

ª®®®¬ =
©­­«
(
E2
!
+ E2

'

)
6′2 −E2

!
66′ −E2

'
66′

−E2
!
66′ E2

!
62 0

−E2
'
66′ 0 −E2

'
62

ª®®®¬
©­­«
�

,3
!

,3
'

ª®®®¬ . (4.37)

Instead, the squared masses can be found by diagonalizing "2, and they are given up to

order O
((
E!
E'

)2
)
by, 10

"� = 0, (4.38)

"2
/!
=

(
64 + 26′262

)
E2
!

4
(
6′2 + 62

) , (4.39)

10Importantly, the hierarchy E' >> E! allows to omit higher order terms. The calculation is very similar
to calculation of the mass eigenstates of Higgs’ and thus the details are omitted for considerations of
brevity. More details can be found from [3].
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"2
/'
=

(
E2
!
+ E2

'

)
6′4 + 26′262E2

'
+ 64E2

'

4
(
6′2 + 62

) . (4.40)

The mass eigenstates are given by

�` = 6�` + 6′
(
,3
!` +,3

'`

)
(4.41)

/!` =

6′2
(
,3
!`
−,3

'`

)
− 66′�` + 62,3

!`√
26′4 + 3626′2 + 64

(4.42)

/'` =
6,'` − 6′�`√

6′2 + 62
. (4.43)

These equations can be inverted for the fields ,3
`!
, ,3

`'
and �` (this is explicitly carried

out in [3]) and inserted into the Lagrangian. Then, the covariant derivative terms for the
fermion fields can be written as

L ⊃ k̄! /�k! + k̄' /�k'

= 8k̄!


6′6√

26′2 + 62

(
�3! + .

)
/� + //!

6
[
6′2

(
�3
!
− .

)
+ 62�3

!

]√(
6′2 + 62

) (
26′2 + 62

) − 6′2√
6′2 + 62

. //'

 k!
+8k̄!


6′6√

26′2 + 62

(
�3' + .

)
/� − //!

66′2
(
�3
'
+ .

)√(
6′2 + 62

) (
26′2 + 62

) + 62�3
'
− 6′2.√

6′2 + 62
//'

 k! .
(4.44)

Then, analogously to Section 2.2, the photon coupling terms allow to identify the LH and
RH charge operators:

&!/' = �
!/'
3 + ., (4.45)

and the value of the electric charge in terms of the coupling constants of (* (2)!/' and
* (1). :

4 =
6′6√

26′2 + 62
. (4.46)

The resemblance of the above formalism to the gauge sector of the SM can be extended
by defining \ via

4 =
6′6√

26′2 + 62
= 6 sin \. (4.47)

However, due to the trigonometric identity

cos 2\ = 1 − 2 sin2 \, (4.48)
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Table 4.1: The gauge group quantum numbers for the LH and RH quark and lepton
doublets. Each member of the fermion doublet 5!/' transforms trivially under the isospin
operator corresponding to the opposite chirality, i.e. �3

!
( 5') = 0 and �3

'
( 5!) = 0. The

hypercharges have been chosen to satisfy equation (4.45). The reported eigenvalues hold
correspondingly for the fermions belonging to the heavier second and third generations.

Field �3
!/' Y Q

D! +1
2 +1

6 +2
3

3! −1
2 +1

6 −1
3

D' +1
2 +1

6 +2
3

3' −1
2 +1

6 −1
3

4! −1
2 −1

2 −1

a! +1
2 −1

2 0

4' −1
2 −1

2 −1

a' +1
2 −1

2 0

it follows that

1 − 26′2

26′2 + 62
=

62

26′2 + 62
= cos2 2\. (4.49)

Hence, (4.47) can be rewritten as

4 =
6′6√

26′2 + 62
= 6 sin \ = 6′

√
cos 2\. (4.50)

Equation (4.50) marks a clear distinction of the LR symmetric model from the prediction
of the SM. However, the right-most equality of equation (4.50) can not be tested, since g’
cannot be measured due to the absence of photon self-coupling.

The hypercharge must have the same value for each pair of LH and RH fermion
doublets, due to equation (4.45) and the fixed eigenvalues of the weak isospin �!/'3 = ±1

2 .
The precise assignment of hypercharge enforced by the above considerations is highlighted
in Table 4.1.

It can be seen from Table 4.1 that all quarks and all leptons have the same hypercharge.
This allows to make a convenient identification between the hypercharges and � − !
quantum number

. =
� − !

2
. (4.51)

Equation (4.51) can be used to identify the local symmetry under * (1). with the global
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Table 4.2: Field content of the hidden sector. The index 8 denotes the generation, and
satisfies 8 = 1, 2, 3. The subscripts L and R identify the chiral structure, akin to the
chirality structure of the SM; @*8 and @�8 denote the * (1)� charges of the quarks of the
SM.

Fields Spin (* (2)! (* (2)' * (1). (* (3)2 * (1).
(
�8
!

0 1
2 0 1

3 3 −@�8
(
*8
!

0 1
2 0 1

3 3 −@*8
(
�8
'

0 0 1
2

1
3 3 −@�8

(
*8
'

0 0 1
2

1
3 3 −@*8

&�8 1
2 0 0 0 0 @�8

&*8 1
2 0 0 0 0 @*8

symmetry under* (1)�−! explaining the anomaly cancellation between the Noether currents
associated with the invariance of the Lagrangian under * (1)� and * (1)!.11

4.3.3 The Messenger sector

The purpose of the messenger sector is to transmit the ChSB from the dark sector to the
SM via loop diagrams. [47, 3] Therefore, the messenger fields must interact both with
the SM and the dark fermions. As a consequence of interacting with the SM fermions,
gauge invariance requires that the messenger fields possess the same quantum numbers
as the sleptons and squarks of the Supersymmetric (SUSY) theories. [3] In detail, gauge
invariance prescribes the introduction of 2# doublets of (* (2)! and 2# doublets of (* (2)',
where # = 3, in accordance with the existence of 3 families of up- and down-type quarks
in the SM. [3] The complete field content of the dark sector, including both the messenger
fields and the dark fermions, along with the corresponding quantum numbers is presented
in Table 4.2.

The Lagrangian of the messenger sector can be written as follows:

L"( = L0
"( + L

�
"( . (4.52)

Here, L0
"(

denotes the tree-level mass terms as well as the kinetic terms of the messenger
fields, thus including the interaction with the SM gauge bosons via the covariant derivative.
Secondly, L �

"(
consists of the interaction terms of the messenger fields with the SM

fermions, dark fermions and the Higgs field. The interactions between the SM gauge
11Here * (1)! refers to the abelian symmetry responsible for the conservation of the lepton number.
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bosons and the messenger fields have no significant role in the origin of the Yukawa
couplings and thus are omitted from hereon. With this modification, L0

"(
can be written

as

L0
"( =

∑
8=1,2,3

m` (̂
*8m` (̂†*8 + m` (̂�8m` (̂†�8 + (̂*8"2

(
*8 (̂†*8 + (̂�8"2

(
�8 (̂†�8, (4.53)

where (̂ =

(
(̂! (̂'

)
. Imposing the minimal flavour violation (MFV) hypothesis

consequently requires equation (4.53) to be invariant under (* (6).12 [3] Hence, there can
be only two mass scales appearing in equation (4.53) - "2

(,!
common to all (̂*8

!
and (̂�8

!

and "2
(,'

common to all (̂*8
'

and (̂�8
'
. In fact, by choosing <2

!
= <2

'
reflecting the LR

symmetry, the number of masses can be reduced to one. The interaction Lagrangian,
constrained by gauge invariance and renormalizability, contains the following terms

L �"( = 6̂!

(
3∑
8=1

[
@̄8!&

*8
'

]
(̂*8! +

3∑
8=1

[
@̄8!&

�8
'

]
(̂�8!

)
+

6̂'

(
3∑
8=1

[
@̄8'&

*8
!

]
(̂*8' +

3∑
8=1

[
@̄8'&

�8
!

]
(̂�8'

)
+

_

3∑
8=1

(
�̃
†
!
(̂*8! (̂

*8†
'
�̃' + �†! (̂

�8
! (̂

�8
'
†�'

)
+ ℎ.2.

(4.54)

In equation (4.54), the contraction of (* (3)2 and (* (2)!,' indices has been left understood.
The @8

!,'
are defined analogously to the SM, i.e. @8

!,'
=

(
D8
!,'

38
!,'

)
; �! denotes the

left-handed Higgs doublet of the SM, and �' the corresponding analogue associated to
(* (2)'; the conjugate Higgs field is defined by �̃!,' = 8f2�

∗
!,'

. The coupling constants
remain in the perturbative regime, 6̂!,' < 1 and the LR symmetry dictates that 6̂! = 6̂' = 6̂.

4.3.4 Origin of the Diagonal Yukawa Terms

After SSB of (* (2)' and (* (2)! the third line in equation (4.54) contributes to the mass
terms of the scalar fields in addition to the diagonal mass terms appearing in equation
(4.53). Overall, the mass matrix of the scalar fields becomes

"2
( =

(
<2
!

Δ

Δ <2
'

)
(4.55)

12A very brief overview of MFV is given in Appendix D
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wherein Δ = 1
2_E'E!, _ denoting the coupling constant appearing in equation (4.54) and

E!, E' denoting the vev-s of �! and �' respectively. [3] As discussed in the previous
subsection, the minimal flavour violation, realized as the global symmetry of the Lagrangian
under (* (6), forces the tree-level mass terms appearing in equation (4.53) to be identical
for each (�8,*8, where ( =

(
(
�8,*8

!
(
�8,*8

'

)
. Hence, the mass matrix described by (4.55)

must be identical for each (�8,*8. Following equation (4.55), "2
(
is manifestly Hermitian,

meaning that it can be diagonalized by a unitary transformation. The diagonal mass
matrix resulting after the diagonalization, has two distinct eigenvalues:

<± =
1

2

(
<2
! + <2

' ±
√
(<2

!
− <2

'
)2 + 4Δ2

)
. (4.56)

A restriction to a fully LR symmetric scenario, <̄2 = <2
!
= <2

'
allows to simplify equation

(4.55) further
<2
± = <̄

2 (1 ± b) , (4.57)

with the mixing parameter b defined by

b =
_E'E!

2<̄2
. (4.58)

The diagonal Yukawa couplings responsible for the appearance of fermion masses in the
SM can be generated by considering one-loop diagrams transmitting the hierarchy encoded
in the dark fermion masses to the fermion fields of the SM. The required diagrams are
shown on Figures 4.2 and 4.3. [3]

Since the masses of the messenger fields and the dark fermions appearing in these diagrams
are above the TeV scale, the results of the effective field theory can be used. Consequently,
the following effective Lagrangian is generated at one loop

L4 5 5 =
1

Λ
5

4 5 5

(
k̄
5

!
�!

) (
�
†
'
k
5

'

)
+ ℎ.2., (4.59)

where k̄ 5

!
and k 5

'
are generic left and right handed fermions of flavour f respectively, Λ 5

4 5 5

denotes the effective flavour dependent scale, which has to be determined by matching the
effective theory to the analytical calculation of the 1-loop diagrams. Clearly after SSB
of (* (2)', the Yukawa couplings of the SM can be obtained, depending on the flavour
through the effective scale Λ 5

4 5 5
. Similarly, the Yukawa couplings to the right handed Higgs

field �' can be obtained after the SSB of (* (2)!. It follows that the Yukawa couplings to
�' are given in terms of the Yukawa couplings of the SM up to a rescaling by E!

E'
.13 The

13The lower bound of E' lies in the TeV scale, as discussed in [3]. Thus the Yukawa couplings to �'
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Figure 4.2: The 1-loop diagram responsible for the generation of the d-type quark masses
of the SM. The solid black lines denote the propagators of the d-type quarks of the SM.
The solid red lines denote the propagators of the associated dark fermions. The black dot
indicates that the �' fields has been set to its vev, after SSB of (* (2)'. The blue dot
denotes the mass insertion between &�8

'
and &�8

!

exact expression for the Yukawa couplings of the SM after the SSB of (* (2)' is given by
[56]

. 5 =

(
62
!'

16c2

) (
b"& 5

√
2

E!

)
51(G 5 , b) (4.60)

where "& 5 is the mass of the dark fermion associated with the SM quark of flavour 5 ,

G 5 =
"2
& 5

<̄2 and b is the mixing parameter introduced in equation (4.58). The loop function
51(G 5 , b) is given by [3]

51(G 5 , b) =
1

2

[
�0

(
G

1 − b

)
1

1 − b + �0

(
G

1 + b

)
1

1 + b

]
. (4.61)

In turn, the scalar loop function �0 is given by, [3]

�0(G) =
1 − G(1 − log G)
(1 − G)2

. (4.62)

Equation (4.60) evidently displays a partial solution to the flavour hierarchy puzzle. In
detail, the mass hierarchy of the SM quarks follows directly from the mass hierarchy of
the associated dark fermions due to the dependence of . 5 on "& 5 . Moreover, the mass
hierarchy of the dark fermions can be traced back to the dynamical ChSB in the dark sector
arising from a hidden * (1)� symmetry. Thus, no fine tuning of the Yukawa couplings is
needed in order to recover the observed hierarchy in the quark masses.

are very small compared to the Yukawa couplings of the SM.
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Figure 4.3: The 1-loop diagram responsible for the generation of the u-type quark masses
of the SM. The solid black lines denote the propagators of the u-type quarks of the SM.
The solid red lines denote the propagators of the associated dark fermions. The black dot
indicates that the �' fields has been set to its vev, after SSB of (* (2)'. The blue dot
denotes the mass insertion between &*8

'
and &*8

!

4.4 The Quark Mixing in the Left-Right Symmetric

Model

Previously, it was shown that the quark masses of the SM can be explained by a radiative
generation mechanism in the context of LR symmetric models. However, in order to
reconcile the radiative mechanism with the observed flavour hierarchy of the SM, the
hierarchy of the CKM matrix must also be explained in the same framework. In fact, the
evident structure of CKM matrix can be explained analogously to the mass generation
mechanism, via two- and three-loop diagrams, as will be shown in this section.

In the present framework, the CKM matrix results from a Lagrangian of the form, [4]

L� " = 6̂! @̄8!-
!
8 9&

9

'
(̂
9

!
+ 6̂' @̄8'-

'
8 9&

9

!
(̂
9

'
, (4.63)

where -8 9 is a generic matrix in flavour space, and the sum over flavour indices
8, 9 = D, 3, 2, B, C, 1 has been understood. Moreover, the sum over the color and spin indices
is also implicitly assumed. The CKM matrix appears in the SM due to the misalignment
between mass and gauge eigenstates, (cf. Section 2.4). Here the misalignment is encoded
in -8 9 , which can be parametrized as,

-8 9 = X8 9 + Δ 8 9 . (4.64)
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Without any misalignment, -8 9 would take the form X8 9 resulting only in the generation of
the diagonal Yukawa couplings responsible for the masses of the SM quarks, (cf. Section
4.3). Broadly speaking, the off-diagonal elements Δ 8 9 result from the misalignment between
the mass matrices of the quark and the associated dark fermion fields. This mechanism
has important phenomenological consequences for FCNC-studies and hadron physics.
[56] Moreover, to reproduce the observed hierarchy of the CKM matrix, the off-diagonal
elements must satisfy

Δ 8 9 << 1. (4.65)

Albeit in line with the MFV hypothesis, several other ad-hoc constraints are needed to
justify equation (4.65). The inherent hierarchy between the elements of X8 9 and Δ 8 9 can
be explained if the elements of Δ 8 9 are generated by higher-order processes. For instance,
this scenario can be realized by the introduction of a new scalar field � - the dark flavon,
sourcing two- and three-loop diagrams responsible for generating the elements of Δ 8 9 .
In particular, � is a complex singlet of SM, transforming with charge @� under * (1)� .
Furthermore, in order to generate the necessary higher order diagrams, the * (1)� charges
of the dark fermions are constrained in terms of @�

@� = @
*
2 − @

*
1 = @

*
3 − @

*
2 = @

�
2 − @

�
1 = @

�
3 − @

�
2 , (4.66)

where @*
8
, @�

8
denote the * (1)� charges of the dark fermions associated with quarks of

generation 8 in U and D sectors respectively. Equation (4.66) imposes a simple relation
between the * (1)� charges between dark fermions of different generation,

@
*,�

2 =
@
*,�

3 + @*.�1

2
. (4.67)

Furthermore, gauge invariance of the Lagrangian introduced in Section 4.3 ensures that
analogous charge assignment holds for (*,�

!8
and (*,�

'8
. Constrained by renormalizability

and the * (1)�-invariance, the Lagrangian containing the flavon field can be written as,

L� =
1

2
(�`�)†(�`�) − 1

2
<2
���

† + ([*&̄*1&*2 + [′*&̄*2&*3)� + ([�&̄�1&�2 + [′�&̄�2&�3)�

+`* ((̂*1†
!

(̂*2
! + (̂

*2†
!

(̂*3
! )� + `� ((̂

�1†
!

(̂�2
! + (̂

�2†
!

(̂�3
! )� + (! ↔ ') + ℎ.2.

(4.68)
where (! ↔ ') denotes the same expression with ! and ' indices swapped.

The form of the flavon Lagrangian L� allows for an insertion of the flavon fields into the
one loop diagrams of Section 4.3. Consequently, two- and three-loop diagrams presented
on Figures 4.4, 4.5, 4.6 can be obtained. [4] For the sake of brevity only the diagrams
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Figure 4.4: The 2-loop diagram generating the .�12 Yukawa matrix. The solid black lines
denote the propagators of the d-type quarks of the SM. The solid red lines denote the
propagators of the associated dark fermions. The black dot indicates that the �' field
has been set to its vev, after SSB of (* (2)'. The blue dotted line denotes the scalar
propagator associated to the flavon field.

generating the off-diagonal terms of the d-type quark Yukawa matrix have been shown,
with the understanding that the diagrams generating the off-diagonal terms of the u-type
quark Yukawa matrix follow analogously.

Crucially, the two-and three-loop diagrams result in smaller amplitudes than the
one-loop diagrams presented in the previous section, hence explaining the relative
smallness of the off-diagonal Yukawa couplings compared to the diagonal ones. Therefore,
the two- and three-loop amplitudes can also be understood to have only negligible
contribution to the masses of the SM quarks. [4] As far as CP-violation is concerned, at
least two complex couplings - [*,� and [′

*,�
are needed to account for the CP-violation. [4]

Using effective parametrization the Yukawa matrix for the down sector generated
by the diagrams on Figures 4.4, 4.5 and 4.6 can be written as [4]

.�

H1
=

©­­«
��A [� Y�1 ��Y�1 Y

�
2

Y�∗1 [( Y�2

��Y�∗1 Y�∗2 Y�∗2 1

ª®®®¬ , (4.69)

where .�

H1
denotes the down-type Yukawa matrix parametrized in terms of the Yukawa

coupling of the bottom quark H1. The constants [8 satisfy [8 = <8
<1

, wherein 8 = �, (. The
free parameters �� and ��A are real coefficients of O(1 − 10) and O(0 − 1) respectively. In
more detail, �� is used to compensate the extra loop and coupling suppression yielding from
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Figure 4.5: The 2-loop diagram generating the .�23 Yukawa matrix. The solid black lines
denote the propagators of the d-type quarks of the SM. The solid red lines denote the
propagators of the associated dark fermions. The black dot indicates that the �' field
has been set to its vev, after SSB of (* (2)'. The blue dotted line denotes the scalar
propagator associated to the flavon field.
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Figure 4.6: The 3-loop diagram generating the .�13 element of the Yukawa matrix. The
solid black lines denote the propagators of the d-type quarks of the SM. The solid red
lines denote the propagators of the associated dark fermions. The black dot indicates that
the �' field has been set to its vev, after SSB of (* (2)'. The blue dotted lines denote the
scalar propagators associated to the flavon field. The blue dot denotes the mass insertion
between &�3

'
and &�3

!
.
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modelling a three-loop process as a product of two two-loop processes. [4] The constant
��A , in turn factors in the contribution of the quark mixing into the first generation down
quark masses. [4] Contributions from loops are taken into account with the introduction
of Y1,2 that lie well in the perturbative regime

��Y1,2

�� << 1. Recalling that the up sector
exhibits similar loop diagrams to those that were presented on Figures 4.4, 4.5 and 4.6,
the Yukawa matrix parametrized in terms of the top Yukawa coupling HC becomes

.*

HC
=

©­­«
�*A d� Y*1 ��Y*1 Y

*
2

Y*∗1 d( Y*2

��Y*∗1 Y*∗2 Y*∗2 1

ª®®®¬ , (4.70)

where d8 = <8
<C
, with 8 = *,�. The CKM matrix can be found from the relation

+� " = +
* (+�)†, (4.71)

by finding +* and +� such that

+*.* (+*)† = .*3806 +�.� (+�)† = .� (4.72)

where .*,�
3806

represents a diagonalized Yukawa matrix of up- and down-sectors respectively.

4.4.1 Matching Theory with Experimental Results

In the previous section an effective parametrization of the down and up sector Yukawa
matrices was proposed following [4]. Diagonalizing .� , .* the CKM matrix can be
calculated for any fixed values of the free parameters appearing in the Yukawa matrices.
Consequently, the computed CKM matrix can be compared against the experimentally
observed results to constrain the free parameters responsible for the generation of .* , .� .
For the sake of simplifying this task all the phases of the complex parameters have been
omitted, amounting to a rearrangement of the relative phases. Moreover, .* has been
chosen to be already diagonalized. [4] Although this convention introduces mixing factors
in the interaction terms of the u-type quarks with the scalar mediators and dark fermions,
it considerably reduces the number of parameters required for carrying out the numerical
analysis. With the described modifications in mind, a preliminary scan was first conducted
to determine the relevant parameter space to be further analysed. The resulting bounds
on the parameter space can be found from Table 4.3.

Then, for each combination of the input parameters in the range reported in Table 4.3,
the squared .� was diagonalized and thus the predictions for the quark masses could
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Table 4.3: The ranges of the input parameters.

Input parameter Lower bound Upper bound Number of points

��A 10−5 10 200

n�1 10−2.5 10−2 200

n�2 10−1.5 10−1 200

�� 5 45 200

be calculated by multiplying the square root of the eigenvalues of .� by <1. Having
determined the eigenvalues of the .� , the matrix +� appearing in equation (4.72) could
be determined, thus allowing to calculate the CKM by using equation (4.71) 14

+� " = (+�)†. (4.73)

Having obtained +� " the mixing angles could be calculated from,15

sin \12 =
+12√

+2
23 ++

2
33

sin \23 =
+23√

+2
23 ++

2
33

sin \13 = +13.

(4.74)

For each combination of input parameters, the resulting quark masses as well as the sines
of the mixing angles were then compared against the experimental bounds highlighted in
Table 4.4.

In particular, for lighter quarks, more conservative ranges were used to account for the
running of their masses. For the bottom quark mass and the mixing angles the 3f range
from [57] were used. The comparison of the calculated masses and mixing angles against
the observed values allowed to constrain the effective phase space of the input parameters
appearing in Table 4.3 as well as to study the effect on the predictions of the model for
each choice of input parameters. During the course of this work, 45 correlation plots were
produced encompassing a correlation plot between all possible combinations of input and
output parameters. The six panels constraining the effective phase space of the input

14Since .* was chosen as a diagonal matrix, +* turns out to be proportional to the identity matrix
and hence can be omitted from the definition of the CKM matrix, since the proportionality factor can be
absorbed into the elements of +�.

15In the following formula, the matrix elements of +� " are written in the form +8 9 for the sake of
compactness.
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Table 4.4: The experimental constraints on the masses and the mixing angles of the d-type
quarks in the SM.

Parameter Lower bound Upper bound

<3 (�4+) 10−3 10−2

<B (�4+) 5 × 10−2 1.5 × 10−1

<1 (�4+) 4.06 4.3
B8=\12 0.2195 0.2291
B8=\23 0.0368 0.0458
B8=\13 0.0022 0.0052

parameters are presented on Figure 4.7.

The first three panels on Figure 4.7 depict the dependence of ��A on different loop factors.
On closer inspection, two distinct regions can be identified on all three panels. The first
region, where ��A < 1, encloses the area of allowed phase space where the mass of the down
quark is mostly accounted for by the quark mixing effects. Conversely, for the other region
where ��A > 1, the mass of the d-quark mostly results from the (diagonal) element .�11 of
the Yukawa matrix. Importantly, for both cases the allowed range for the loop parameters
are relatively similar. The three remaining panels describe the magnitude of the two loop
radiative corrections n�1 and n�2 appearing on Figures 4.4 and 4.5 as well as the magnitude
of the compensation factor resulting from the three loop diagram on Figure 4.6.

The correlation plots of the effective input parameters and the resulting d-type quark
masses and mixing angles are shown on Figure 4.8. The first panel on 4.8 depicts the
dependence of the d-quark mass on ��A . Again, two regions for the values of ��A can be
distinguished depending on the dominant contribution to <3. Interestingly, if the mass
of the down quark exceeds 5 MeV, then necessarily ��A > 1. This means that above 5
MeV the mass of the d-quark must be predominantly sourced by the .�11 element of the
Yukawa matrix. Naturally, the effect of the quark mixing on <3 must then be smaller. In
fact, as the top right panel of Figure 4.8 shows, the parameter Y�1 regulating .�12 indeed
decreases with the increase of <3 after <3 exceeds 5 MeV. On the two bottom panels,
the dependence of the mixing angles on the effective input parameters responsible for
the corresponding loop corrections are shown. In both cases a clear positive correlation
between those parameters can be seen, meaning that enhancing higher-order loop effects
increases the mixing of d-quarks.
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Figure 4.7: The correlation plots between effective input parameters given in Table 4.3

4.4.2 Matching the Effective Parametrization with Fundamental

Theory

Previously, an effective field theory approach was used in order to constrain the parameters
responsible for the generation of the Yukawa couplings at the low energy regime. In this
section, analytical expressions for the two- and three-loop amplitudes will be employed to
constrain the parameters associated to the dark sector.16 The relevant amplitudes for this
task are given in Appendix E. The exact details of the calculation of these amplitudes
can be found from [4] and so in this section only the information important for this
thesis have been outlined. In order to understand the expansion of the 2-loop amplitudes
given in Appendix E, it is crucial to remember that these amplitudes mark a hierarchy
of three different mass scales that enable an expansion in powers of the different scales.
In more detail, one can distinguish between the mass scales of the dark fermion (<&),

16This section is entirely based on the work presented in [4].
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Figure 4.8: Selected correlation amongst the down-quark masses, the CKM parameters
and the effective input parameters.

the messenger sector (<() and the dark flavon (<�).17 The requirement for a stable
dark matter candidate from the dark sector enforces <& < <(, while not imposing any
other restrictions on the hierarchy of the scales.18 In fact, although the loop functions
are sensitive to the relative size of <( and <� there is no way to a priori determine
whether <� > <( or <� < <(. Thus, following [4] the choice <� = <( has been made to
simplify the following discussion. Furthermore, in the following all dimensionless couplings
have been parametrized by j and the flavon trilinear coupling with the messenger fields
has been parametrized by `� = d<� . In this way, the asymptotic expansion in terms of
G& =

<&
<�

and the loop suppression factor ! = 16c2 can be used to investigate the size of
the Yukawa couplings as a function of the effective parameter �� and the ratio of the two
mass scales <� and <&. The plots needed for this analysis have been reproduced by using
the code provided by the authors of [4] with their permission. The results can be found
from Figure 4.9.

From Figure 4.9 and Figure 4.7 it is clear that in order to generate the effective parameters
n�1 and n�2 of the observed size, the mass scales of the dark fermions and the flavon are
constrained to lie rather close to each other. Moreover, it can be seen that the trilinear
coupling `� takes a sizeable value relative to the dark flavon mass. If one wishes to
further increase the strength of the rescaled Yukawa couplings .�12,23/H1 at a fixed value of

17To first order the messenger fields can be approximated as a having a universal mass scale.
18More details are given in Section 4.5.
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Figure 4.9: Values of the off-diagonal Yukawa couplings (rescaled by H1 to make contact
with the effective parametrization from the previous section) generated by the two-loop
amplitudes given in Appendix E as a function of �� and the mass hierarchy between the
messenger sector and the dark fermions. All dimensionless coupling constants are set to
1/2, while the dark flavon trilinear coupling d = `�/<� is set at the reported values.

�� without affecting the relative size of the mass scale, then the trilinear coupling may
further have to be increased as shown on Figure 4.9. Finally, using the formulae given in
Appendix E the validity of modelling three loop amplitudes as a product of two two-loop
amplitudes that was inherent in the effective parametrization may also be checked. Indeed,
the requirement .�13 ≈ �

�.�12.
�
13 can always be satisfied with a suitable choice of <�

E'
. Given

that E' can be constrained for example by collider experiments, this observation may place
further bounds on <� .
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4.5 Phenomenological Implications

In this section, the phenomenological implications of the LR symmetric model used
throughout this chapter are briefly described.

Lower bound on E'

Since the ,±
'
has not yet been experimentally observed, it is natural to expect the lower

bound on E' to lie above the TeV scale. In fact, by assuming that the lightest messenger
mass <− is greater the mass of the heaviest dark fermion "&C , it can be shown that the
lower bound for E' is given by19 [3]

E' ≈
8<2

C

_E!

(
16c2

62
!,'

)
1

b
, (4.75)

where b is the mixing parameter first introduced in equation (4.58). By using equation
(4.60), it is clear that, if b → 0, the Yukawa couplings also approach zero, so that for
smaller mixing values b, large values of E' are needed in order to generate the Yukawa
couplings, as is also evident from equation (4.75).

4.5.1 The d-Parameter

The d - parameter of the EW sector is defined as

d =
"2
,!

"2
/!

cos2 \,
. (4.76)

In the SM d = 1, and any deviation from this value for extensions of the SM may have
important phenomenological implications. In fact, in [3] it has been shown, that in the
LR symmetric extension of the SM presented in this chapter, d = 1, up to corrections of

order O
((
E!
E'

)2
)
. Since

(
E!
E'

)2
≈ 10−8, these contributions are negligible.

The Strong CP Problem

The strong CP problem involves a delicate fine-tuning issue between a parameter of
Quantum Chromodynamics (QCD) and a parameter of the flavour sector. In detail, the

19In particular, this result holds if b << 1.
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physical CP-violating parameter contributing to the electric dipole moment of the neutron
is given by [58]

\̄ = \ + arg(det"), (4.77)

where \ and " refer to the QCD phase resulting from non-trivial vacuum configurations,
and to the mass matrix of quarks of all generations respectively, both resulting from the
Lagrangian of the form [59]

L&�� =
\62

B

32c2
�0`a�̃0`a + @!"@' . (4.78)

In the above equation, @! and @' denote a vector composed of quarks of all generations,
and

�̃0`a = YUV`a�
0UV, (4.79)

where 0 = 1, .., 8. On the other hand the phase of the determinant \@ = arg(det") is
related to the global * (1) symmetry resulting from the decomposition of the overall global
symmetry of the Lagrangian * (3) = (* (3) ×* (1) for vanishing quark masses. As shown
in [58], by using (4.77), these two parameters can be combined into a single effective
Lagrangian:

L(CA>=6�? = \̄
UB

8c
�0`a�̃

0`a (4.80)

Since the effective neutron dipole moment resulting from this Lagrangian is given by
[58, 60]

3= ≈
4\̄<@

"2
#

, (4.81)

the experimental observations constrain \̄ ≤ 10−9. [58] Thus, the measurements of the
neutron dipole moment seemingly require a delicate fine tuning between two unrelated
parameters of the SM. Commonly, this problem is solved by introducing a new anomalous
symmetry * (1)%& known of as the Peccei-Quinn symmetry. [61] The new symmetry solves
the strong CP problem by rotating away the CP-violating parameter \̃ at a price of
introducing a new field - the axion - which appears as the pseudo Nambu-Goldstone boson
after the breaking of * (1)%&. [58] Alternatively, the strong CP problem can also be solved
within the formalism of the LR symmetric theories. [62, 63] In this thesis, only a sketch of
the solution to the strong CP problem provided by LR symmetric theories is given. More
details are outlined in [4]. In order to illustrate the idea without unnecessary technicalities
only the first generation of quarks is considered. The mass terms of the first generation
quarks in the Lagrangian are given by [4]

L<0BB = 48\@<@ @̄!@' + 4−8\@<@ @̄'@! , (4.82)
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where the possible complex phase of the mass is explicitly written out. Clearly if one
invokes the requirement of LR symmetry, one has \& = 0, for otherwise the Lagrangian
would not be symmetric under the interchange of left-and right-handed fields. Thus, the
small value of \̃ can be explained by the small value of a single parameter \ and no fine
tuning between \ and \@ is needed.

Dark Matter

As the name suggests, the dark sector contains fields that can be associated to dark matter.
The integral condition in this regard is the stability of the dark matter candidates. As it
turns out, the flavon field allows for the decay of the heaviest dark fermions &*3 and &�3

to lighter states. [4] The exact allowed decay channels are

&*3 → &*2 +&*2 + &̄*1 (4.83)

&�3 → &�2 +&�2 + &̄�1 (4.84)

and the subsequent decay:
&*2 → &*1 +&�2 + &̄�1 , (4.85)

assuming that the dark fermions associated with the down-sector are lighter than the dark
fermions associated with the up-sector, mimicking the hierarchy of the Yukawa couplings
for the SM. From the discussion, it is clear that the dark sector consists of 3 stable dark
matter candidates: &�1 , &�2 and &*1 . These considerations place the bounds of the
heaviest stable dark matter particle in the O(100GeV) range.

64



Summary

The SM is a successful physical theory of the microscopic world, describing the properties
and interactions of the fundamental fermions and gauge bosons. The interactions of
the fundamental fermions and the gauge bosons follow naturally from requiring local
gauge invariance under the (* (3)2 × (* (2)! ×* (1). gauge group, while the experimentally
observed masses of the gauge bosons and the fermions are generated by the Higgs mechanism
after the SSB of the (* (2)! ×* (1). symmetry. In order to introduce the Higgs mechanism,
a new scalar field, known as the Higgs field, is needed. Using the Higgs field, all fermion
masses can be introduced via introducing the Yukawa couplings, which are experimentally
determined fixed parameters. Although the Yukawa couplings allow to recover all the
experimentally observed masses of fermions, the SM offers no explanation to the large
hierarchy for these couplings across the different flavours of fermions, which can be
experimentally observed as the large difference between the orders of magnitude of the
masses of quarks and leptons of different flavours as well as the spread in the mixing angles
of quarks. This thesis focused explicitly of the flavour hierarchy in the quark sector to
address potential extensions of the SM. As a first example, the Froggat-Nielsen mechanism
was briefly summarized, explaining the quark flavour hierarchy as resulting from the
introduction of a new * (1)� and new scalar fields. However, due to the high dimensionality
of the operators that are needed to generate the Yukawa terms in the Froggat-Nielsen
approach, the novel work carried out in this thesis focused on an alternative mechanism.
In detail, the SM gauge group was extended to (* (3)2 × (* (2)! × (* (2)' ×* (1). ×* (1)�
and new scalar and fermionic fields were introduced. With these modifications, the Yukawa
couplings could not anymore be included in the Lagrangian at tree level but instead had
to be radiatively generated after integrating out the heavy messenger and dark fermion
fields. During the preparation of this thesis, I contributed to the development of the theory
mainly by determining the spectra of the quark masses and mixing angles that could be
generated by this model, thus constraining the range of the free parameters responsible
for the radiative mechanism. It was shown, that all observed values of the physical quark
masses and mixing angles can indeed be generated with the radiative mechanism, and
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that the resulting free parameters remain in the perturbative range, as is necessary for a
consistent formulation of the theory. Finally, some novel phenomenological implications of
the LR symmetric radiative Yukawa coupling generation mechanism were investigated.
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Appendix A

Spontaneous Symmetry Breaking

A.1 The Nambu-Goldstone Theorem

Spontaneous Symmetry Breaking (SSB) occurs when the ground state of a system does
not respect the symmetries of the system. The easiest example of SSB is the isotropic
alignment of the spins of a ferromagnet at the ground state. For the case of field theories,
the Goldstone theorem states that for each spontaneously broken continuous symmetry,
there is a massless particle. [66] In this section of the Appendix, the Goldstone theorem
will be proved, following the method of Peskin and Schroeder. [12]

A generic Lagrangian containing = scalar fields q0 with 0 = 1, .., = can be written
as1

L = Kinetic Terms −+ (q). (A.1)

The vev-s of the fields q0 are given by

m

mq0
+

���
q0 (G)=q00

= 0 (A.2)

Expanding the potential around the vev, it follows that

+ (q) = + (q0) +
1

2
(q − q0)0 (q − q0)1

(
m2

mq0mq1
+

)
q0

+$ (3). (A.3)

1For the case of the Higgs mechanism, n = 4.
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By diagonalizing the Hessian matrix(
m2

mq0mq1
+

)
q0

= <2
01, (A.4)

the squared masses of the q0 can be found. Moreover, these eigenvalues are guaranteed
to be non-negative, since equation (A.2) refers to the minimum of the potential + (q).
Thus, in order to prove Goldstone’s theorem within a classical field theory setting, it is
enough to show that every broken continuous symmetry of equation (A.1) gives rise to a
zero eigenvalue of the Hessian in equation (A.4). In general, an infinitesimal continuous
symmetry transformation can be written as

q0 → q0 + UΔ0 (q). (A.5)

The SSB occurs, when the ground state of the system does not respect the original
symmetry of the Lagrangian. Since the ground state configuration is given by constant
fields, as defined in (A.2), the invariance condition can be set as

+ (q0) = + (q0 + UΔ0 (q)) . (A.6)

To a first order in U

+ (q0 + UΔ0 (q)) = q0 + UΔ0 m

mq0
+ (q) +$ (U0). (A.7)

Therefore, combining equations (A.7) and (A.6)

Δ0 (q) m
mq0

+ (q) = 0. (A.8)

Finally, differentiating with respect to q1 and setting q = q0 yields

0 =

(
mΔ0

mq1

)
q0

(
m+

mq0

)
q0

+ Δ0 (q0)
(

m2

mq0mq1
+

)
q0

. (A.9)

The first term in (A.9) vanishes due to equation (A.2). This means that the second term
must also be equal to zero. If the symmetry is unbroken, then q0 is unchanged, and
Δ (q0) = 0. If, on the other hand, the symmetry is broken by the ground state, then
Δ0 (q) ≠ 0 and the corresponding eigenvalue of the Hessian matrix in equation (A.4) is
zero, proving Goldstone’s theorem.
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For a specific example, it is useful to consider the Higgs mechanism.2 Using the Hermitian
basis, the potential can be written as

+ (q) = −`
2

2

(
q2

1 + q
2
2 + q

2
3 + q

2
4

)
+ _

4

(
q2

1 + q
2
2 + q

2
3 + q

2
4

)2
. (A.10)

The unitary gauge is defined by the following ground state configurations

〈q1〉 = 0 〈q2〉 = 0 〈q3〉 = E 〈q4〉 = 0. (A.11)

Thus, using the relation `2 = _E2, it follows that the only nonvanishing mass matrix
eigenvalue is given by

<2
33 =
√

2_E, (A.12)

representing the mass of the Higgs boson. The rest of three fields q1,q2 and q4 are
the massless Goldstone bosons, that can be reinterpreted as longitudinal modes of the
gauge bosons. The connection between the longitudinal modes of the gauge bosons
and the Goldstone boson is further emphasized by the Goldstone’s boson equivalence
theorem, which states that at high energy the amplitude for an emission or absorption of
a longitudinally polarized gauge boson becomes equal to the amplitude of the emission or
absorption of the Goldstone boson that was interpreted as the longitudinal mode of the
gauge boson. This theorem was first proved in [67].

2Chapter 2 deals with the Higgs mechanism in detail.
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Appendix B

Diagonalizing a General Complex
Matrix

B.1 Biunitary Transformations

Every nondegenerate complex matrix can be diagonalized via a biunitary transformation.
This is proved in this section following [68]. Consider a complex nondegenerate matrix
M.1 Clearly, (

""†
)†
= ""†. (B.1)

Since ""† is Hermitian, it has real eigenvalues <2 and it can be diagonalized by a unitary
matrix + . Thus,

""† = +<2+† with <2
8 9 = <

2
8 X8 9 . (B.2)

Then, " can be diagonalized by the following transformation

+†"* = +†""†+<−1 = <2<−1 = <, (B.3)

where * and *† are the matrices that diagonalize "†". It remains to show that
* ≡ "†+<−1 is unitary. Indeed,

*†* = <−1+†""†+<−1 = 1. (B.4)

Hence, the biunitary transformation can be performed by using the two matrices * and + .
In flavour physics applications, these are sometimes denoted as +� and +* .

1Meaning 34C (") ≠ 0.
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Appendix C

Symmetries and Conserved Quantum
Numbers

C.1 Noether’s Theorem for Global Symmetries of the

Lagrangian

It is a well-known fact, first proven by E.Noether, that to each continuous symmetry
transformation of the Lagrangian there is a conserved current.1 For the simplest case of
* (1) symmetry, if the Lagrangian is invariant under the following rephasing of the fields

k(G) → 48\k(G) (C.1)

which can be infinitesimally written as2

XkA = 8kAX\ Xk∗A = −8k∗A X\, (C.2)

then the conserved current is given by

9 ` = 8
∑
A

(
mL

m
(
m`kA

)kA − k∗A mL
m

(
m`k

∗
A

) ) . (C.3)

1More details about the topics covered in this section are covered in [69], [70] and [71].
2The space-time coordinates have been left implicit.
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Using the current conservation condition m` 9 ` = 0 and the Gauss’ Theorem, it follows
immediately that

& ≡
∫

33G 90(G) = 8
∫

33G

(∑
A

mL
m (m0kA)

kA − k∗A
mL

m (m0k
∗
A )

)
(C.4)

defines a conserved charge. Equation (C.4) will be used in the next two sections to infer
the conservation of lepton and baryon numbers.

C.2 The Conservation of Lepton Numbers

From the form of equation (C.3), it is clear that the only term of the Lagrangian contributing
to the Noether current in the leptonic sector is given by,

L#>4Cℎ4A!4? =
∑
8=4,`,g

(
!̄8!W

`m`!8! + 4̄8'W`m`48'
)
. (C.5)

By rephasing all the lepton fields belonging to the same generation in the same way, i.e.,

a0! → 48i0a0! 40! → 48i040! 40' → 48i040', (C.6)

it follows from equation (C.3) that the conserved current is given by

9
`
0 = ā0!W

`a0! + 4̄0!W`40! + 4̄0'W`40' = ā0!W`a0! + 4̄0W`40 . (C.7)

Thus, the conserved lepton numbers can be defined by 3

!0 =
1

3
8

∫
33G (ā0! (G) W`a0! (G) + 4̄0 (G) W`40 (G)) . (C.8)

By using mutually orthogonal spinors, Dℎ and Eℎ with ℎ = ±1 the Fourier expansions of
the massive Dirac field, [31]

40 (G) =
∫

33?

(2c)3 2�

∑
ℎ=±1

0ℎ (?) Dℎ (?) 4−8?G + 1ℎ† (?) Eℎ (?) 48?G (C.9)

and the massless Dirac field, [31]

a! (G) =
∫

33?

(2c)3 2�

[
0− (?) D−4−8?G + 1+† (?) E+ (?) 48?G

]
(C.10)

3With normalization chosen such that
∑
0=4,`,g !0 = 1.
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one can find the normally ordered number operator : #0 : for each flavour. In detail, since
W0W0 = �,

: !0 : =
8

3

∫
33G

(
a
†
0!
a0! + 4†040

)
. (C.11)

Then, from the mutual orthogonality of Dℎ and Eℎ,

: !0 : =
8

3

∫
33?

(2c)3 2�

33?′

(2c)3 2�′

∫
33G

[
0−† (?) D−48?G0− (?) D−4−8?G

+1+ (?) E+4−8?G1+†E+48?G
]

+ 8
3

∫
33?

(2c)3 2�

33?′

(2c)3 2�′

∫
33G

[
0ℎ† (?) Dℎ48?G0ℎ (?) Dℎ4−8?G

+1ℎ (?) Eℎ4−8?G1ℎ†Eℎ48?G
]

(C.12)

Using the properties of the delta function, the above equation can be rewritten as

: !0 : =
8

3

∫
33?

(2c)3 2�
34?′X (p − p′) X

(
?′0

2 − �′2
)
48(?0−?′0)[

0−† (?) D−0− (?) D− + 1+ (?) E+1+†E+
]

+ 8
3

∫
33?

(2c)3 2�
34?′X (p − p′) X

(
?′0

2 − �′2
)
48(?0−?′0)[

0ℎ† (?) Dℎ0ℎ (?) Dℎ + 1ℎ (?) Eℎ1ℎ†Eℎ
]

(C.13)

Finally, using the anticommutativity of the fermion raising and lowering operators,
integrating over ?′ and using the orthonormality of Eℎ and Dℎ, the lepton number operator
in normal order can be written as

: !0 : =
8

3

∫
33?

(2c)3 2�

[
0−†a0 (?) 0

−
a0
(?) − 1+†a0 (?) 1

+
a0
(?)

]
+ 8

3

∫
33?

(2c)3 2�

[
0ℎ†40 (?) 0

ℎ
40
(?) − 1ℎ†40 (?) 1

ℎ
40
(?)

]
.

(C.14)

Analogous result can be proved for the conservation of baryon number by following the
derivation above.
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Appendix D

Minimal Flavour Violation

The majority of the current experimental data indicates that the flavour changing processes
only occur through the quark mixing sourced by the quark mixing matrix. [72] Thus, it is
somewhat natural to hypothesize that all observed flavour- and CP-violating processes
are related to the SM Yukawa structure. [73] Then, not only can the non-observation of
beyond the SM phenomena in flavour changing processes be explained, but different FCNC
processes can also be related to each other through the same non-diagonal structure. [73]

As an illustration of the above discussion, first the Lagrangian of the SM from
equation (1.2) is considered. The invariance of the SM Lagrangian under global * (3)5

transformations is only broken explicitly by the Yukawa terms. [73] Nevertheless the
Lagrangian of the quark sector can be made symmetric under a smaller global subgroup
�� = (* (3)&! ⊗ (* (3)D' ⊗ (* (3)3' , by formally promoting the Yukawa matrices to
non-dynamic spurion fields which transform nontrivially under �� . Concretely, the
��-symmetry can be restored if the quantum numbers of .* and .� under �� are given
by .� (3̄, 3̄, 1) and .* (3̄, 1, 3̄). The MFV criterion on an effective field theory then requires
that the Yukawa coupling terms and all higher dimensional operators constructed from
SM fields must also be formally �� invariant. Furthermore, the manifest �� symmetry
means that the spurion fields .* and .� can be rotated under �� such that, [73]

.� = _� .* = +
†_* , (D.1)

where _� and _* are diagonal matrices. Since the top Yukawa coupling is much larger than
the other Yukawa coupling, the only relevant non-diagonal contribution FCNC processes
is, [73]

_�� = (.*.†*)8 9 ≈ _
2
C+
∗
38+3 9 . (D.2)
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MFV can also be applied to Minimal Supersymmetric Models (MSSM). In this case, the
MFV imposes that the soft mass term appearing in squark sector of the Lagrangian is
universal. [73] Although the corresponding physical squark masses are not universal, the
mass splitting is rather constrained by the MFV requirement. More importantly, however,
the FCNC processes are only mediated by the CKM matrix of the SM, consistent with
experimental observations. The application of MFV to MSSM turns out to be rather
illuminating for applying MFV on the LR symmetric radiative models, as the scalar
messengers (*,�

!,'
carry the same gauge quantum numbers as squarks of MSSM, allowing

for a clear motivation for applying MFV in Chapter 4.
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Appendix E

The Analytical Functions for the
Non-Diagonal Yukawa Couplings

In this section of the Appendix, the analytical calculations for the non-diagonal Yukawa
couplings of the down-sector have been given. As the formulae are entirely adopted
from [4], and because the exact details are not relevant for the purpose of the thesis, the
mathematical subtleties of the calculation are not discussed in this Appendix. Following [4],
the analytical formulae of the off-diagonal Yukawa couplings are expressed by asymptotic
expansions in terms of a mass ratio G& =

<&
<�

, an overall heavy mass scale <( = <� and
the loop suppression factor ! = 16c2. All dimensionless couplings appearing in Equations
(4.54) and (4.68) have been accounted for by a single dimensionless parameter j. In order
to allow for a verification of the results of [4] that were reported in Section 4.4.2, the
expansion has been given up to the eight order in G&.

<�E'!
2j4d.�12 ≈

<�

E'

!2

j4
.�23

= 112(−27(2 + c2 − 6) + 1

4
(45(2 − c2 + 2)G2

&

+G4
& (45(2 +

11

3
log G& −

c2

2
− 179

36
)

+G6
& (99(2 + 4 log2(G&) +

353

30
log G& −

c2

3
− 17353

900
)

+G8
& (

693(2

4
+ 18 log2(G&) +

976

35
log G& +

3c2

4
− 911367

19600
) + O

(
G10
&

)
(E.1)
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<�E'
!3

j5d2
.�13 = −

1

24
G& (459(2 − 112Z (3) + c2)

−
G3
&

8640
(−9120$(2

Y + 15(196992(2 + 912)1
Y − 45432Z (3) + 7655))

−
G3
&

8640
(4320(−27(2 + c2 − 6) log G& + 361c4 + 30165c2)

−
G5
&

38880
(−98400$(2

Y + 1080(846(2 + 12c2 − 203) log G&

−
G5
&

38880
(27102114(2 + 147600)1

Y − 4948920Z (3) + 3895c2 + 228981c2 + 782769)

+
G7
&

24494400
(−175778400$(2

Y + 60480 log G&) (−224325(2 − 10260 log G& + 2565c2 + 11234)

+
G7
&

24494400
(−1252502190(2 + 263667600)1

Y − 3233475000Z (3) + 6957895c4)

+
G7
&

24494400
(740318925c2 + 3458071731) + O

(
G9
&

)
.

(E.2)
In the equations above, the vev of �' is given by E'√

2
and the special functions are given by

(2 ≡
4

9
√

3
�;2

(c
3

)
(E.3)

$(2
Y = −763

32
− 9c
√

3 ln2 3

16
− 35c3

√
3

48
+ 195

16
Z (2) − 15

4
Z (3)

+57

16
Z (4) + 45

√
3

2
�;2(

c

3
) − 27

√
3�<

[
!83

(
4−8c/6
√

3

)] (E.4)

)1
Y = −

45

2
− c
√

3 ln2 3

8
− 35c3

√
3

216

−9

2
Z (2) + Z (3) + 6

√
3�;2

(c
3

)
− 6
√

3�<

[
!83

(
4−8c/6
√

3

)] (E.5)

�;2(G) = �< [!82(48G)] (E.6)

The Riemann zeta functions and the polylogarithms are denoted by Z (#) and !8# (G)
respectively. Details about the Riemann zeta function and the polylogarithms can be
found from [74, 75].
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Appendix F

The Masses and mixings of the Higgs
Fields in the Radiative model

In this section of the Appendix, I have reproduced the calculations made in [3], in order to
illustrate the diagonalization procedure for the mixing of the two Higgs fields. Compared
to [3] the calculation presented here results in a slightly different mixing matrix for the
Higgs fields. To that end, the consistency of the results is thoroughly checked. The
calculations were carried out, using the Mathematica programming languages. The scripts
that I wrote for this task, are presented on Figures F.1 and F.2.

Due to the smallness of the n =
E!
E'
, the eigenvalues of the mass squared matrix

appearing in (4.29) can be expanded as a series in n . Keeping terms up to order O(8), the
squared mass eigenvalues are given by

<2
1 = 2_!n

2E2
'

(
1 − _!

_'
n4

)
+ O

(
n8

)
<2

2 = 2_'E
2
'

(
1 +

_2
!

_2
'

n6

)
+ O

(
n8

)
.

(F.1)

The orthogonal matrix *, diagonalizing the mass matrix, in equation 4.29 is given by,

* =
©­­«

1 − n6_2
!

2_2
'

− n8_3
!

_3
'

−
(
n3 _!

_'
+ n5 _

2
!

_2
'

+ n7 _
3
!

_3
'

)
n3 _!

_'
+ n5 _

2
!

_2
'

+ n7 _
3
!

_3
'

1 − n6_2
!

2_2
'

− n8_3
!

_3
'

ª®®¬ (F.2)
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Then, using equations (F.1) and (F.2), it can be easily checked that

*)"2* = diag(<2
1, <

2
2) + O

(
n8

)
*)* = � + O

(
n8

)
. (F.3)

The mass eigenstates ℎ1, ℎ2 are thus given in terms of the gauge eigenstates by(
ℎ1

ℎ2

)
≈ *

(
ℎ!

ℎ'

)
. (F.4)
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Masses  of Higgs 
In[8]:= $Assumptions =

lambdaL ∈ Reals && lambdaR ∈ Reals && eps ∈ Reals && lambdaL > 0 && lambdaR > 0 && eps > 0;

In[9]:= (*Mass Squared Matrix of the Higgs sector*)

M2 = {{lambdaL * eps^2, -lambdaL * eps^3}, {-lambdaL * eps^3, lambdaR}};

(* Finding the Eigenvalues*)

eigenval = Eigenvalues[M2];

(*The first eigenvalue expanded in eps^2*)

m1[x_] := eigenval[[1]] /. {eps^2 → x^2};

m12 = FullSimplify[Series[m1[x], {x, 0, 6}]] /. {x → eps};

(*The second eignevalue expanded in eps^2*)

m2[y_] := eigenval[[2]] /. {eps^2 → y^2};

m22 = FullSimplify[Series[m2[y], {y, 0, 6}]] /. {y → eps};

(*Displaying the eigenvalues as a list, with higher order terms truncated*)

{Normal[m12], Normal[m22]}

Out[15]= eps2 lambdaL -
eps6 lambdaL2

lambdaR
,
eps6 lambdaL2

lambdaR
+ lambdaR

Figure F.1: The code for calculating the masses of the Higgs fields
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Mixings of Higgs
In[34]:= (*Calculating eigenvectors *)

eigvec = Eigenvectors[M2];

(*Normalizing the eigenvectors and expanding the components in series *)

eigvec1 = Normalize[eigvec[[1]]];

eigvec11 = Series[eigvec1[[1]], {eps, 0, 8}];

eigvec12 = Series[eigvec1[[2]], {eps, 0, 8}];

(* The first eigenvector is v1, the second is given by an orthogonal eigenvector v2*)

v1 = Normal[{eigvec11, eigvec12}] // Simplify;

v2 = Cross[v1];

(*Constructing the rotation matrix *)

Ort = Transpose[{v1, v2}];

OrT = Transpose[Ort];

(*Checking orthogonality*)

identity = OrT.Ort // Simplify // Expand;

(*Deleting the O8 terms from the matrix elements*)

id11 = identity[[1, 1]] /. eps^b_ /; b ≥ 8 → 0;

id12 = identity[[1, 2]] /. eps^b_ /; b ≥ 8 → 0;

id21 = identity[[2, 1]] /. eps^b_ /; b ≥ 8 → 0;

id22 = identity[[2, 2]] /. eps^b_ /; b ≥ 8 → 0;

(* Resulting identity matrix, up to order eight in epsilon*)

idres = {{id11, id12}, {id21, id22}} // MatrixForm

(*Checking diagonalization*)

mdiag = OrT.M2.Ort // Simplify // Expand;

(* Deleting the O8 terms from the matrix elements*)

md11 = mdiag[[1, 1]] /. eps^b_ /; b ≥ 8 → 0;

md12 = mdiag[[1, 2]] /. eps^b_ /; b ≥ 8 → 0

md21 = mdiag[[2, 1]] /. eps^b_ /; b ≥ 8 → 0;

md22 = mdiag[[2, 2]] /. eps^b_ /; b ≥ 8 → 0;

(* The resulting matrix is indeed the diagonal matrix of eigenvalues as required *)

DiagEig = {{md11, md12}, {md21, md22}} // MatrixForm

Out[45]//MatrixForm=

 1 0
0 1



Out[51]//MatrixForm=

eps2 lambdaL - eps6 lambdaL2

lambdaR
0

0 eps6 lambdaL2

lambdaR
+ lambdaR

2     MassHiggs.nb

Figure F.2: The code for calculating the mixings of the Higgs fields
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Appendix G

Chiral symmetry breaking via Dark
Sector

In Chapter 4 the ChSB mechanism responsible for generating the dark fermion masses
was introduced. The formula for the propagator contributing to the self-energy correction
of the dark fermions was given by equation (4.4) as reported in [49]. In this section, I
provide my own independent calculation of this result.

The action of the gauge field of * (1)� is given by

( =

∫
34G

[
−1

4
�`a�

`a + 1

2Λ2
(mU�U`) (mV�`V )

]
(G.1)

Using the definition
�`a = m` �̄a (G) − ma �̄` (G), (G.2)

and integrating by parts, the first term in the action becomes,1

(1 =

∫
34G

1

2
[−ma (�` (G)ma�` (G)) + �` (G)mama�` (G)

+ma (�` (G)m`�a (G)) − �` (G)mam`�a (G)] .
(G.3)

1From hereon, �̄` is written as �` with the understanding that in this chapter �` stands for the dark
photon.
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Since the fields vanish at infinity, using the 4-dimensional Stokes’ theorem yields

(1 =

∫
34G

[
1

2
�` (G)m2�` (G) − 1

2
�` (G)mam`�a (G)

]
=

∫
34G

[
1

2
�` (G)6`am2�a (G) −

1

2
�` (G)mam`�a (G)

]
.

(G.4)

In a completely analogous way, the second term of the action can be integrated by parts
twice, using again 4-dimensional Stokes’ theorem and the fact that the fields must vanish
at the infinity. The result is

(2 =

∫
34G

1

2Λ2

[
�` (G)6`am4�a (G) − �` (G)m2m`ma�a (G)

]
. (G.5)

Thus, the action can be written as

( =

∫
34G

[
1

2
�` (G)6`a

(
m2 + 1

Λ2
m4

)
− mam`

(
1 + 1

Λ2
m2

)
�a (G)

]
. (G.6)

In order to illustrate the calculation of the propagator, the path integral approach is used.
More details on the useage of the path integral formalism on the quantization of fields
can be found for instance in [12]. The identity for n-dimensional vectors H, � and for a
= × =-dimensional matrix �

∫ ∞

−∞

(
Π=8=1

3H8√
2c

)
4−

1
2 H
) �H+H) � =

4
1
2 �
) �−1�

(34C�)1/2
, (G.7)

may be generalized to the case of continuum resulting in∫
D�` exp

{
−

∫ [
34G

1

2
�` (G)$`a�a (G) − �` (G)�` (G)

]}
=

∫
D�`

exp
{
−

∫
34G

[
1
2�

` (G)Δ`a (G − H)�a (H)
]}

√
34C$`a

.

(G.8)

Here,

$`a = 6`a
(
m2 + 1

Λ2
m4

)
− mam`

(
1 + 1

Λ2
m2

)
, (G.9)

and
$`aΔ

da (G − H) = Xd`X(G − H). (G.10)
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The functional determinant is defined by � = 0:

1
√
34C$`a

=

∫
D�` exp

{
−1

2

∫
34G�` (G)$`a�a (G)

}
. (G.11)

Thus, the generating functional can be written as

/ [�] =
√
34C$`a

∫
D�` exp

{
−8

∫
34G

[
1

2
�` (G)Δ`a (G − H)�a (H)

]}
(G.12)

The identification of Δ with the propagator of the dark photon field can be easily made by
using (G.12) and the defintion of the propagator of the dark photon field Δ`a

�

Δ
`a

�
≡ 〈0| ) (�` (G)�a (H)) |0〉 = − X2/ [�]

X� (G)X� (H)

����
�=0

(G.13)

Hence, the dark photon propagator is given by[
6`a

(
m2 + 1

Λ2
m4

)
− mam`

(
1 + 1

Λ2
m2

)]
Δ d` (G − H) = 8Xd`X(G − H), (G.14)

where 8 on the right hand side arises from the factor of 8 in the generating functional in
equation (G.12). Using the appropriate Fourier transforms

Δ (G − H) =
∫

34:

(2c)4
Δ̃ (:)48: (G−H) (G.15)

and

X(G − H) =
∫

34:

(2c)4
48: (G−H) , (G.16)

equation (G.14) becomes[
6`a

(
−:2 + :

4

Λ2

)
+ :a:`

(
1 − :

2

Λ2

)]
Δ̃ (:)d` = 8Xd` . (G.17)

However, this equation does not have a solution.2 The reason that equation
(G.17) has no solution is related to the gauge invariance, namely invariance under
�̃` (:) → �̃` (:) + U(G):`. In particular, the action in equation (G.6), when evaluated in

2This can be easily seen by using an Ansatz Δda = 8(�(:2,Λ2)6da + �(:2,Λ2):d:a), which leads to a
contradiction 1

:2
= 0. Equivalently, the operator on the left hand side acting on Δda in equation (G.17)

has a zero determinant.
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Fourier space vanishes for all �̃` (:) = U(:):`. Thus the generating functional defined by

/ [�] =
∫
D�` exp

{
8

∫
34G(L + �`�`)

}
(G.18)

is divergent. In order to solve this issue, a gauge must be chosen. The process of fixing
the gauge in the path integral approach was proposed by Faddeev and Popov. [76] Due to
constraints in space, the exact details are omitted but can be easily found from several
resources, for instance from [12]. Essentially, in order to fix the gauge an additional gauge

fixing term, here chosen to be
(
m`�

`

2b

)2
, must be added to the Lagrangian. After adding

the gauge fixing term to the action and integrating by parts as before, a new equation for
the propagator is obtained:[

6`a

(
m2 + 1

Λ2
m4

)
− mam`

(
1 − 1

b
+ 1

Λ2
m2

)]
Δ da (G − H) = 8Xd`X(G − H). (G.19)

Thus, in Fourier space, the equation becomes[
6`a

(
:4

Λ2
− :2

)
− :a:`

(
1 − 1

b
+ :

2

Λ2

)]
Δ̃ (:)da = 8Xd` . (G.20)

This equation can be solved by considering the most general second-rank tensor built from
the metric and :`.

�ad = 8�(:2,Λ2, b)6da + 8�(:2,Λ2, b):a: d . (G.21)

Then, the 8Xd` term on the right hand side can only result from 6da6`a.3 Thus,

86da6`a�(
:4

Λ2
− :2) = 8Xd` . (G.22)

Hence,

� = − Λ2

:2(Λ2 − :2)
. (G.23)

The rest of the terms therefore need to cancel out.

− 8Λ2

:2(Λ2 − :2)
: d:a

(
1 − 1

b
− :

2

Λ2

)
+ �6`a

(
:4

Λ2
− :2

)
: d:a

+:`:a: d:a�
(
1 − 1

b
− :

2

Λ2

)
= 0.

(G.24)

3From hereon, the functional dependence of A and B on :2, Λ2, b is left understood.
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Therefore,

�: d:`

(
:4

Λ2
− :2

)
+ �:2: d:`

(
1 − 1

b
− :

2

Λ2

)
= − :

2�

b
=

8Λ2

:2(Λ2 − :2)

(
1 − 1

b
− :

2

Λ2

)
,

(G.25)

leading to

� =
−8Λ2

:2(Λ2 − :2)

(
− 1

:2
(1 − b) − b

Λ2

)
. (G.26)

Thus, using equations (G.23) and (G.26) together with (G.21), equation (4.4) can be
recovered. Another interesting property of the higher-derivative term in equation (G.1)
is that the self-energy correction to the dark fermion propagator, induced by the gauge
field of * (1)� is finite. This is a typical example of Lee-Wick theories where ghosts with
negative norm cancel out the infra-red divergences. [53, 49]. To illustrate this property
explicitly, and to explain the origin of (4.5), I will provide my own independent calculation
of (4.5) from (4.4). As mentioned in Section (4.2), the gauge dependent terms do not
contribute to the self-energy correction evaluted at the physical pole mass < of the dark
fermions. Moreover as can be seen from the dark fermion Lagrangian, equation (4.3),
the Feynman rules of the dark-fermion - dark photon interaction mimick those of the
quantum electrodynamics of the SM.4

In order to simplify the calculation, the gauge independent part of the propagator of (4.4)
can be divided into two parts.

−8Λ2

:2(Λ2 − :2)
6`a =

(
− 8
:2
+ 8

:2 − Λ2

)
6`a . (G.27)

The first term of the above equation, depicted on the LHS of Figure 4.1, then yields the
following term for the self-energy correction

− 8Σ1(/?, <) = (86)2
∫

34:

(2c)4

(
− 8

(: − ?)2

)
W`6`a

8(/: + <)Wa
:2 − <2

(G.28)

where : denotes the momentum of the virtual dark fermion, ? denotes the incoming
off-shell momentum of the dark fermion, and 6 is the coupling constant of * (1)� . The
Dirac structure can be easily simplified:

W`W` = W
`Wa6`a = 6`a

(
1

2
W`a + 1

2
W`a

)
=

1

2
26`a6

`a = 4. (G.29)

4The Feynman rules of [12] are used throughout this section.
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Secondly,

W` (/: + <)Wa6`a = W` (/: + <)W` = W`:UWUW` + 4<

= :U (26`U − WUW`)W` + 4< = 2/: − 4/: + 4< = 4< − 2/:.
(G.30)

Thus,

− 8Σ1(/?, <) = −62

∫
34:

(2c)4
4< − 2/:

(: − ?)2(:2 − <2)
. (G.31)

Using Feynman parametrization, the last equation can be rewritten as follows

−8Σ1(/?, <) = −62

∫
34:

(2c)4

∫ 1

0
3G

4< − 2/:
((: − ?)2G + (1 − G) (:2 − <2))2

= −62

∫
34:

(2c)4

∫ 1

0
3G

4< − 2/:
((: − ?G)2 − Δ)2

,

(G.32)

where Δ = ?2G(G − 1) + <2(1 − G). Shifting the integration variable ; = : − ?G, Σ1(/?, <)
becomes

− 8Σ1(/?, <) = −62

∫
34;

(2c)4

∫ 1

0
3G

4< − 2(/; + /?G)
(;2 − Δ)2

. (G.33)

The linear term in ; in the numerator vanishes because it is antisymmetric under ; → −;,
while ;2 is symmetric under this transformation. Hence, the integral becomes simply

−8Σ1(/?, <) = −62

∫
34;

(2c)4

∫ 1

0
3G

4< − 2/?G
(;2 − Δ)2

= −62

∫ 1

0
3G

(
4< − 2/?G

) ∫ 34;

(2c)4
1

(;2 − Δ)2

(G.34)

After carrying out Wick rotation the integral becomes5

−8Σ1(/?, <) = −862

∫ 1

0
3G

(
4< − 2/?G

) ∫ 34;�

(2c)4
1

(;2
�
+ Δ)2

= −862c2

∫ 1

0
3G

(
4< − 2/?G

) ∫ ∞

0

3;2
�

(2c)4
;2
�

(;2
�
+ Δ)2

,

(G.35)

where ;� denotes the norm of a 4-component Euclidean vector as opposed to the Minkowski
4-vector ;.

5Details on Wick rotation and Feynman parametrization can be found from [12].
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The integral can be easily evaluated by shifting the integration variable ;2
�
→ ;2

�
+ Δ:

−8Σ1(/?, <) = −862c2

∫ 1

0
3G

(
4< − 2/?G

) ∫ ∞

Δ

3;2
�

(2c)4

(
;2
�

;4
�

− Δ
;4
�

)
= −862 c2

(2c)4

∫ 1

0
3G

(
4< − 2/?G

) (
lim
;2
�
→∞

ln ;2� − lnΔ − 1

) (G.36)

The second contribution to the self-energy correction depicted on the right hand side of
Figure 4.5 differs only by the overall sign and the denominator of the propagator. Thus,
most of the results derived above can be adopted. The correction can be written as

− 8Σ2(/?, <) = 62

∫
34:

(2c)4
4< − 2/:

((: − ?)2 − Λ2) (:2 − <2)
. (G.37)

Using Feynman parametrization

−8Σ2(/?, <) = −62

∫
34:

(2c)4

∫ 1

0
3G

4< − 2/:
(((: − ?)2 − Λ2)G + (1 − G) (:2 − <2))2

= −62

∫
34:

(2c)4

∫ 1

0
3G

4< − 2/:
((: − ?G)2 − Δ2)2

,

(G.38)

where,
Δ2 = ?

2G(G − 1) + Λ2G + <2(1 − G). (G.39)

Then the integral has the same form as in equation (G.32) and by analogy the derivation is
completely identical to equation (G.36) up to the negating the sign in front and identifying
Δ → Δ2. Hence,

− 8Σ2(/?, <) = 862 c2

(2c)4

∫ 1

0
3G

(
4< − 2/?G

) (
lim
;2
�
→∞

ln ;2� − lnΔ2 − 1

)
(G.40)

Thus, adding equations (G.36) and (G.40)

− 8Σ(/?, <) = −8(Σ1(/?, <) + Σ2(/?, <)) = 8
62c2

(2c)4

∫ 1

0
3G

(
4< − 2/?G

)
ln
Δ

Δ2
(G.41)

Defining U = 62

4c and using the definitions of Δ and Δ2 this can be written as

− 8Σ(/?, <) = 8
U

2c

∫ 1

0
3G

(
2< − /?G

)
ln

?2G(G − 1) + <2(1 − G)
?2G(G − 1) + Λ2G + <2(1 − G)

, (G.42)
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or

Σ(/?, <) =
U

2c

∫ 1

0
3G

(
2< − /?G

)
ln
(<2 − ?2G) (1 − G) + Λ2G

(<2 − ?2G) (1 − G)
. (G.43)
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