
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Information Technology

Risko Ruus

Hunting Down Easter Eggs Online by Exploiting

Cross-browser Compatibility Issues: The Konami

Code Experiment

Bachelor’s thesis (6 EAP)

Supervisor: Peep Küngas, PhD

Author: …………………......…………………....... ―…..― June 2011

Supervisor: ………......………………………....... ―…..― June 2011

 Approved for defense:

 Professor: ………………….…………………....... ―…..― June 2011

TARTU 2011

2

Abstract

The Konami Code is an input combination (↑ ↑ ↓ ↓ ← → ← → B A) used initially in a

1986 video game called Gradius for the Nintendo Entertainment System. It was left there

accidentally by the developer, who used the code during testing to give the player all the

power-ups. The players discovered it, shared it and since then it has been featured in many

sequels and other video games. Today there exist several Web pages that reveal an Easter

egg when a visitor inputs the Konami Code through its computer’s keyboard. Typically the

Easter eggs are implemented using AJAX, which means that after the Konami Code is

entered, Document Object Model of the Web page is modified to reveal the Easter egg.

However, since many Web sites suffer from Cross-Browser Compatibility (CBC) issues,

the code might not function properly on all Web browsers. By using the Konami Code

scenario as a test case, we show how such CBC issues can be exploited using our tool

capable of automatically detecting Konami Codes from Web sites. In the case study we

apply our program, which uses WebDriver framework, to a list of the world’s most popular

Web sites. Our goal is to identify their CBC issues with Mozilla Firefox, Internet Explorer

and Google Chrome Web browsers with respect to the Konami Code. By exploiting our

program on the particular test scenario, we are not only capable of identifying Web sites

which use Konami Code to reveal Easter eggs, but also demonstrate that our method could

be used for reporting functional CBC issues on Web sites.

3

Table of Contents

1. Introduction ... 5

2. Background .. 7

2.1. The Difference Between Classic and Modern Web 2.0 Applications 7

2.1. Cross-Browser Compatibility Issues ... 9

2.2. AJAX ... 9

2.2.1. Usage .. 10

2.2.2. Technology ... 10

2.2.3. Automated Testing of AJAX Applications .. 11

2.2.4. WebDriver .. 13

3. The Konami Code Experiment .. 14

3.1. The Idea ... 14

3.2. Algorithm ... 15

3.2.1. Typing Arrows .. 17

3.2.2. Typing B ... 17

3.2.3. Typing A ... 17

4. Empirical Evaluation ... 19

4.1. Setup .. 19

4.1.1. Program Setup .. 19

4.1.2. Environment Setup ... 22

4.2. Results .. 22

4.2.1. List of Sites Known to Contain the Konami Code ... 22

4.2.2. World’s 100 000 Top Web Pages ... 23

4.2.3. Modified Algorithm for Web Sites with Code 3 .. 26

4.2.4. Manual Inspection of Web Sites ... 27

4.2.5. Cross-Browser Compatibility ... 27

4.2.6. Konami Code Intersection Between Different Browsers 28

4

4.2.7. List of New Web Sites Detected... 29

4.2.8. Evaluation of the Research Questions .. 29

4.3. Threats to Validity ... 30

5. Conclusions and Future Work ... 33

6. Konami koodiga veebilehtede automaatiseeritud leidmine vaadeldes nende

brauseriteüleseid erinevusi .. 34

7. References ... 36

5

1. Introduction

Konami, a Japanese video game company was developing a port for the Nintendo

Entertainment System (NES) of Gradius (Figure 1), a ―side-scrolling shooter‖
1
 released

initially in 1985 as an arcade game. Kazuhisa Hashimoto, a developer who was working on

the port for NES, found the gameplay too challenging during testing and decided to

implement a cheat code (↑ ↑ ↓ ↓ ← → ← → B A) to give the player’s space ship all

power-ups. He accidentally forgot to remove the cheat from the game’s source code and it

ended up in the final release version. It was discovered and shared among the players and

since then it has been featured in many sequels and other video games. This input

combination is known as the Konami Code and it was popularized by another classic

Konami game, Contra, released for the NES in 1988, which the players found too difficult

to complete and used the code to get an extra 30 lives
2
.

Figure 1: Screenshot from Gradius 1986 NES port with different ship power-ups

References to Konami Code have appeared in various places. For example Konami Code

can be used to get root access in the Palm Pre smartphone
3
 and typing the code on

patrickacarrell.com will display the player character animation from Contra as a hidden

Easter egg (Figure 2). The Easter egg on patrickcarrell.com is displayed correctly using

1
 http://en.wikipedia.org/wiki/Shoot_%27em_up

2
 http://en.wikipedia.org/wiki/Konami_Code

3
 http://www.engadget.com/2009/06/10/the-secret-to-palm-pre-dev-mode-lies-in-the-konami-code/

6

Mozilla Firefox 3.6 and Google Chrome 10, however, the code has no effect when viewing

the page with Internet Explorer 8.

This thesis will focus on the automatic detection of Web sites, which use Konami Code, by

exploiting the Cross-browser Compatibility (CBC) issues using these versions of Mozilla

Firefox, Internet Explorer and Google Chrome Web browsers. We try to evaluate how

many of the codes that we are able to detect are also Cross-browser compatible. Konami

Code was chosen as an example to demonstrate the highly dynamic nature of the modern

Web which is now powered by extensive client side scripting. With every user interaction,

the Document Object Model (DOM)
 4

 of the Web page might be changed to display

modified data to the visitor. WebDriver
5
 is a framework for automated testing of Web

applications, which has now been merged into the Selenium 2.0
6

 project. We use

WebDriver to automatically launch the Web browser and send the Konami Code

combination to a list of 100 000 world’s most popular Web-sites. The changes of DOM are

stored and analyzed.

This thesis presents an algorithm to analyze dynamically changing browser behavior and to

filter out sites likely to implement the Konami Code. Major changes made to the Web page

DOM, like in sites which use the Konami Code, are also common for AJAX-based Web

applications. We give a brief overview how AJAX works, how AJAX is automatically

tested by current tools and how it could be tested using newly developed methods.

Figure 2: patrickacarrell.com before and after typing the code

4
 http://www.w3.org/DOM/

5
 http://code.google.com/p/selenium/wiki/GettingStarted

6
 http://seleniumhq.org/

7

2. Background

2.1. The Difference Between Classic and Modern Web 2.0

Applications

Traditional Web applications such as described in (Ricca, et al., 2001), have been forced to

use a multi-page user interface connected by URLs since HTML was not designed with

interactive Graphical User Interfaces (GUI) in mind. The user interacts with the application

by using synchronous client request and server response interactions like represented in top

half of Figure 3. The load times are very high after each user interaction since the whole

Web page has to be reloaded. For example unchanged data is being transmitted each time a

user completed form is submitted to a Web server and also when the Web server responds

and sends the page back. This prevents the creation of more complex and interactive user-

interfaces since the systems are not responsive enough. Usually there is not any client-side

application processing and therefore the browser is inactive for most of the time and the

processing of data is done by the Web server.

The Rich Internet Application (RIA) term was first introduced in (Allaire, 2002) to

describe Web applications that would be able to include modern user interfaces. All RIAs

use a layer of code between the user inputs and server queries. This layer is responsible for

rendering of the Web user interface and for the communication with the server. Most of the

RIA technologies, like JavaFX, Microsoft Silverlight and Adobe AIR use specific

interpreters, which must be installed to a browser before the user can use the RIA features

of the Web page. Usually these plugins are proprietary and therefore non-standard.

The term Web 2.0 (OʼReilly, 2005) was proposed to describe the evolution from read-only

static Web pages into highly-interactive browsing experience, where users could create and

modify the page content themselves. Notable examples of such Web pages include:

 Wikipedia
7
 – free online encyclopedia;

 Photo sharing sites like Flickr
8
 and Picasaweb

9
;

 Social Networking sites like MySpace
10

 and Facebook
11

;

7
 http://www.wikipedia.org/

8
 http://www.flickr.com/

9
 http://picasaweb.google.com/

8

 Web services that are similar to their desktop counterparts (e.g. a text editor Google

Docs
12

, a photo editing tool Pixlr
13

).

Figure 3: Synchronous and asynchronous communication pattern interaction
14

10

 http://www.myspace.com/
11

 http://www.facebook.com/
12

 https://docs.google.com
13

 http://pixlr.com/
14

 http://www.adaptivepath.com/publications/essays/archives/000385.php

9

2.1. Cross-Browser Compatibility Issues

It is widely known that Web browsers tend to render the page content differently (Rode, et

al., 2002), (Ricca, et al., 2005). The market share of Internet Explorer 6, which is known to

account for a lot of CBC issues, is still as high as 10.97%
15

. Recent trends point to the

rising popularity of tablet personal computers and smartphones. Rise in cross-platform

variety results also in the rise of cross-browser compatibility issues.

The way the JavaScript code is handled by different Web browsers is one of the main

causes for CBC issues. A list of how DOM events are supported by different browser

vendors can be seen from QuirksMode.org
16

. To the best of our knowledge, at the time of

writing this thesis no tool that is capable of automatically detecting functional cross-

browser defects has been officially released. Although some studies (Rode, et al., 2002)

show that there exists a real need for a tool like this. (Marchetto, et al., 2009) found in their

Web fault classification experiment that CBC issues make the most populated class of

faults in Web development projects. (Mesbah, et al., 2011) have proposed and

implemented a tool that is directed towards solving this problem, however, they have not

released it to the public yet. Currently most of the tools like Browsershots
17

 and

BrowserCam
18

 are focused primarily on solving the CBC layout and appearance issues.

In modern Web applications JavaScript is used to modify HTML DOM extensively and

this may result in malformed HTML. In (Artzi, et al., 2008) it is pointed out that

malformed HTML is not always portable across all Web browsers. Normally browsers can

successfully handle malformed HTML, but while trying to automatically compensate the

outcome might result in failures. A good demonstration of this effect can be observed on a

Web site crashie8.com
19

 and also by numerous bugs in the Mozilla bug repository
20

.

2.2. AJAX

AJAX - Asynchronous JavaScript and XML (Garrett, 2005) is a set of technologies used in

a clever way to create more responsive and user-friendly dynamic Web applications. The

15

 http://marketshare.hitslink.com/browser-market-share.aspx?qprid=2
16

 http://www.quirksmode.org/dom/events/index.html
17

 http://browsershots.org/
18

 http://www.browsercam.com/
19

 http://crashie8.com – Must use IE6 – IE9. Works fine with Firefox 4 for example
20

 See defects: 269095, 320459, and 328937 at https://bugzilla.mozilla.org/show_bug.cgi?

10

main benefit of this approach is that AJAX is not server platform dependent. One can write

the client behavior in JavaScript and have it easily communicate with PHP, Java, .NET and

other server side programming languages. Modern Web browsers support all the necessary

Web standards that are required to develop RIA using AJAX.

2.2.1. Usage

RIAs are Web applications which are similar to their desktop counterparts. RIA users are

not limited to static read-only pages, but are encouraged by the technology to provide their

own custom input and create new content. AJAX provides modern Web pages with a more

interactive and responsive feel by using JavaScript for asynchronous client-server

communication to change the DOM. This method provides more powerful and complex

user-interfaces when compared to the Web pages where synchronous request-response

method is used to provide dynamic behavior requiring an entire page reload. By using delta

communication (Mesbah, et al., 2008) only small parts of a Web page can be separately

updated without the need for a full page reload. This results in faster loading times and

decreased bandwidth usage.

2.2.2. Technology

The basic components of AJAX are: HTML and CSS, DOM, XMLHttpRequest, XML

and JavaScript. HTML and CSS are used to present the information and DOM is required

to access and change the presented data. The key of AJAX lies in the XMLHttpRequest

object (Figure 4), which can be accessed in JavaScript to interact with the Web server. The

data returned by the Web server can be used to change the browser’s DOM without the

need of a full Web page reload.

Figure 4: Example JavaScript code demonstrating XMLHttpRequest usage

11

AJAX enables developers to use asynchronous communication, instead of the traditional

synchronous communication where a request is sent to the server and a response is

returned after the server has finished processing. Figure 3 illustrates the main differences

between synchronous and asynchronous communication. Traditional click-and-wait style

of navigating the Web pages can be therefore significantly changed. Requests can be sent

to a Web server without any visible change to the user and without stopping the component

execution because AJAX engine is handling the HTTP requests and responses in the

background by utilizing an event listener. Developers can use different event handlers to

change the component state in the client-side whenever an asynchronous response is

received.

Figure 5: An example screen shot of Google Suggest

By using AJAX, separate elements can be updated independently from an entire Web page

update. Every element may be linked with an event listener and once a valid action is

performed a server request is generated, response is retrieved and a particular element is

updated. Figure 5 of Google Suggest illustrates this behavior. As the user types in the

search words, a query is performed in the background and the element is updated without

the full reload of the entire Web page.

2.2.3. Automated Testing of AJAX Applications

A lot of Web applications that fit into the Web 2.0 definitions, are based on AJAX and

therefore it is vital to know how to test these rapidly growing applications. According to

12

the study (Torchiano, et al., 2009) Web applications contain 35% more defects in the

application layer than their desktop counterparts. The more interactive behavior of an

AJAX Web page is to more likely to contain errors, since the data is being transmitted

asynchronously between the client and the server, and the DOM tree is being extensively

modified. Furthermore, JavaScript is a weakly typed programming language and because

of this, fewer errors are caught during compile time.

The testing approach of classical Web applications was to issue a request for a response

from the server by using a hyperlink and then verify the resulting HTML page. This

technique, however, is not suitable for AJAX Web pages where only a single page URL

could be used for exposing the functionality behind the application and everything else on

the client side is implemented through DOM tree manipulation. The Web page might even

never be entirely reloaded. General testing techniques can be used to test the server-side of

AJAX applications and tools like JsUnit
21

 can be used to create functional tests for the

client-side JavaScript code. However, complementary testing techniques, tailored

specifically for AJAX, are required to find bugs that are hard to find using existing Web

testing techniques as suggested in (Marchetto, et al., 2008).

Currently testing tools like Selenium IDE
22

, and Sahi
23

 are used to capture and replay test

cases of AJAX applications. Unfortunately, such tests are time-consuming and labor-

intensive since a tester needs to plan, capture and maintain the test cases. Web applications

can be tested by modeling with Finite State Machines (Andrews, et al., 2005) and in

(Marchetto, et al., 2008) a way is proposed to reduce the manual labor of writing and

maintaining test cases. This is done by extracting the finite-state model of an AJAX

application and by using semantically interacting events to automatically derive test cases

for the capture and replay tools. A method used in (Wang, et al., 2008) focuses on static

analysis of the Web site source code ignoring the application’s client-side behavior, which

we know is vital to test in AJAX applications. To perform automatic testing of Web

applications (Benedikt, et al., 2002) have combined the Web spider and the automatic

filling of forms during test execution. This technique however is outdated since common

Web spiders are only capable of crawling the Web site by following URLs. Anyway, a

21

 http://www.jsunit.net/
22

 http://seleniumhq.org/projects/ide/
23

 http://sahi.co.in/w/

13

new Web spider Crawljax
24

 (Mesbah, et al., 2008), capable of crawling and testing AJAX-

powered Web sites, has been developed. Besides following URLs it is capable of

navigating through the Web site by identifying clickable elements (which may change with

every state change) that modify the state within the browser’s DOM.

2.2.4. WebDriver

WebDriver is a framework that can be used to carry out automatic testing of Web

applications in an actual browser window. WebDriver provides support for natural user

actions like ―click‖, ―hover‖ etc., and can be used with popular testing frameworks like

JUnit
25

 and TestNG
26

.

WebDriver has currently support for the following drivers:

 Mozilla Firefox (2 and above);

 Microsoft Internet Explorer (6 and above);

 Google Chrome (4.0 and above);

 Opera (released by Opera themselves)
27

;

 HtmlUnit (a GUI-less browser)
28

;

 AndroidDriver
29

 (uses the RemoteWebDriver)
30

 (2.3 and above);

 iPhone and iPad (uses UIWebView)
31

 (iOS 3.2 and above).

24

 http://crawljax.com/
25

 www.junit.org/
26

 http://testng.org/doc/index.html
27

 https://github.com/operasoftware/operadriver
28

 http://htmlunit.sourceforge.net/
29

 http://code.google.com/p/selenium/wiki/AndroidDriver
30

 http://code.google.com/p/selenium/wiki/RemoteWebDriver
31

 http://code.google.com/p/selenium/wiki/IPhoneDriver

14

3. The Konami Code Experiment

Konami Code is an input combination that can be used in a Web page, which reveals a

hidden secret, left there by the developer for the users to find. Finding an Easter egg by

accident is highly unlikely given that the code combination (↑ ↑ ↓ ↓ ← → ← → BA) is

quite long and complex. Back in the eighties a NES game controller had only arrow keys,

A and B buttons, plus an additional START and SELECT button, which were not used to

play an actual game, but were meant to start/stop the game and navigate in game start

menus. Computer keyboards however have a lot more keys and that makes finding Konami

Codes in Web sites by chance highly unrealistic.

Several Web sites describe how Konami Code can be integrated to a Web page
32

33

. There

even exists an implementation for the iPhone, but since the iPhone does not have actual

keys, the code uses directional gestures on the device screen
34

. Most of the sites currently

known to contain Konami Codes have been found by people called Konami Code ―hunters‖

or Easter egg ―hunters‖. They are mostly retro gamers who are aware of this input

sequence and sometimes try the code on some random Web site to see if it has any effect

or not. For example a popular sports news page ESPN contained an Easter egg
35

 that made

unicorns pop-up on their Web site
36

, but the owners of the site soon removed this secret

content after they became aware of it. It was probably left there on purpose by one of the

site’s Web developers. Sometimes the developers themselves have left little hints for the

―hunters‖, informing the visitor that the site may contain a Konami Code. An example of

this is a Web page Konami Code Sites
37

 which home page contains only text ―Perform the

Konami Code to access this website‖. Only people who know the combination can get

access to a list of 91 collected URLs that contain Konami Code Easter eggs.

3.1. The Idea

So far the lists of known Konami Codes have been created manually by collecting hints

from Konami Code enthusiasts. We decided to create a systematic process for finding

Konami Codes automatically. Some sites may require a slightly different combination than

the traditional Konami Code like typing an additional Enter key after the code or require

32

 http://snaptortoise.com/konami-js/
33

 http://www.yourinspirationweb.com/en/fun-with-javascript-jquery-and-konami-code/
34

 http://www.youtube.com/watch?v=qZyqpteOTUs
35

 http://www.youtube.com/watch?v=DuGubWnjiPA&feature=related
36

 http://www.joystiq.com/2009/04/27/konami-code-turns-espn-com-into-a-lisa-frank-wonderland/
37

 http://konamicodesites.com

15

typing Konami Code three times in a row. Our approach will currently focus only on

automatic detection of Web sites that use the traditional Konami Code.

The idea for automatic Konami Code detection is based on checking if the Web page DOM

has changed after the code input - if it has, then we probably have found a page which

includes a Konami Code. To automatically detect pages revealing an Easter egg after

insertion of Konami Code, a Web browser must be used for inserting the code and

inspecting changes in DOM. For example using wget to download page source files and

later doing static analysis on them might have little effect in our settings since the

JavaScript code might be included in a library and the code would not be simply visible for

inspection. Therefore it is necessary to observe the runtime behavior of the Web page

under test so that the JavaScript gets executed by the browser’s JavaScript engine.

To automate this process we decided to write our own program in Java and picked

WebDriver to control the Web browser for the following reasons:

 WebDriver supports interaction with actual browser windows;

 WebDriver has support for different Web browsers, which makes it a perfect

candidate for CBC testing;

 WebDriver is written in Java and its API is straightforward and easy to use.

3.2. Algorithm

Considering the Konami Code length, we were worried that the DOM might change

already in the midway of the input. In order to reduce the amount of false positives, we

decided to implement an algorithm that checks for changes in the DOM after only parts of

the Konami code have been typed. This approach has its strengths and weaknesses. By

sending only the arrow input first and then each letter separately we can ensure that the

DOM does not change midway. The arrow or character ―B‖ input might trigger the

execution of JavaScript which might change the HTML DOM. If we had typed the code in

one sequence and had checked the page DOM only before and after the input, we would

have had no idea if the whole sequence or only parts of the code had been the cause of the

DOM change. Algorithm 1 describes the way our program works.

16

Algorithm 1: detectKonamiCode(inputFile):

Input: inputFile contains a list of URLs that need to be tested

Output: result for each URL whether Konami Code was found or not

for i <- 1 to inputFile.length do

URL <- inputFile[i]

launchPage(URL)

initialDOM <- currentDOM

element <- findElement(By.xpath(„*“))

type(arrows(element))

afterTypingArrowsDOM <- currentDOM

 if initialDOM = afterTypingArrowsDOM then

 type(‘B’(element))

 afterTypingBDOM <- currentDOM

 if initialDOM = afterTypingBDOM then

 type(‘A’(element))

 afterTypingADOM <- currentDOM

 if intitialDOM = afterTypingADOM then

 return „No code detected“

 else return „Possible code detected“

 else return „DOM is changed after typing B“

 else return „DOM is changed after typing arrows“

inputFile – contains a list of URLs that need to be tested for Konami Code

launchPage – a method for opening an URL

currentDOM – Web site DOM at the time of capture

initialDOM – Web site DOM after the page load is complete

findElement – a method for finding a DOM element

element – an element to send the Konami Code input to

type – a method for sending an input to the element

arrows – an input sequence that consists of arrow keys

afterTypingArrowsDOM – Web site DOM after arrows have been typed

afterTypingBDOM – Web site DOM after B has been typed

aftertypingADOM – Web site DOM after A has been typed

The source code of our project can be downloaded from the Google Code repository
38

.

38

 http://code.google.com/p/the-konami-code-project/

17

3.2.1. Typing Arrows

After the Web page has been loaded, the arrow sequence (↑ ↑ ↓ ↓ ← → ← →) arrows is

sent as an input. Now, if the DOM has changed, we save the initialDOM and the

afterTypingArrowsDOM. A record is written into the report CSV file stating that

Konami Code could not be detected at particular URL. This is done because after typing

arrows the DOM had already changed, thus we cannot detect Konami Code in such sites.

We are aware that Web pages with such behavior can also contain Konami Codes, but in

order to keep the algorithm simple we decided to exclude these from further research. We

can solve this problem, by taking afterTypingArrowsDOM as the initial model and

then continue typing letters B and A. However, it is not guaranteed that the DOM could

keep on changing automatically.

3.2.2. Typing B

If DOM does not change after pressing the arrow keys, then letter ―B‖ is typed. Again a

check is made between the initialDOM and afterTypingBDOM. If the DOMs are not

identical then a record is written into the report CSV file that Konami Code could not be

detected because typing B already changed the DOM. A similar logic we applied for

pressing the arrows could be applied to search for Konami Codes among Web sites which

DOM is changed after a character input. Typing B separately is a particularly important

step to reduce false positives, because a lot of Web sites with integrated search

functionalities will start to execute AJAX to provide suggestions to the user based on the

input that was received.

3.2.3. Typing A

If both typing arrows and typing B did not produce a change in the DOM, input ―A‖ is

typed. When this results in a DOM change then a possible code has been detected and the

result is saved into the report along with the initialDOM and the aftertypingADOM.

However when the DOM has not been changed then it can be said that from the given URL

no Konami Code was found. False positives can occur for example when the DOM of a

Web page is changed starting from the second character input like described in the

previous paragraph in case of the first letter. An example of this is an online dictionary

Web site pons.eu
39

, which makes an XMLHttpRequest after a second character is typed.

Another false positive reported after our experiment was a Web site loading time

39

 http://www.pons.eu/

18

comparison application Which loads faster?
40

. Here the page DOM is changed because

typing letter ―A‖ opens ―About this project‖ iframe content. To avoid such false positives

an additional process could be used to test if the page DOM changes already after typing in

characters ―B‖ and ―A‖.

40 http://whichloadsfaster.com/

19

4. Empirical Evaluation

A case study was conducted to verify if and how Konami Codes can be automatically

detected from Web pages. The experiment was aimed at addressing the following research

questions.

RQ1 How many Konami Codes can be automatically detected from the list of world’s top

100 000 Web sites?

RQ2 What is the precision and recall of our automated method for detecting Konami

Codes?

RQ3 How many of the Web pages with Konami Codes work on different Web browsers

without CBC issues?

To evaluate these research questions, we have created a Java program that uses WebDriver

to open a Web page, send the Konami Code as a keyboard input and verify if the DOM of

the Web page changes after the set of key inputs.

4.1. Setup

4.1.1. Program Setup

Our program has been tested using WebDriver 2.0b2
41

. It can be launched using the choice

of right parameters, shown in Table 1.

It was run from the command line like this:

java -jar Controller.jar 0 0 100000 C: \\URL_source_file.csv

report.csv chrome M65

Table 1: Launch Parameters

Parameter description Example

Deprecated parameter, currently not in use 0

Starting index 0

Last index to check 100000

URL source file C:\\URL_source_file.csv

Name of the output file Report_chrome.csv

Browser to use chrome

Windows admin username M65

41

 http://seleniumhq.wordpress.com/2011/02/15/selenium-2-0b2-released/

20

We explain the last four parameters of Table 1 in more detail:

URL Source File

The URL source file must contain URLs in a CSV file format like represented in Table 2.

The first column is the id and the second is the URL.

Table 2: The contents of a sample input file

Id,URL

1,http://google.com

2,http://facebook.com

3,http://youtube.com

4,http://yahoo.com

5,http://live.com

6,http://baidu.com

7,http://wikipedia.org

The first 100 000 URLs were taken from the alexa.com’s top 1 million sites list
42

 on

23.02.2011, but they did not have a protocol in front of them. We modified the list and

added http:// as a prefix to the input file because WebDriver.get() method requires an URL

parameter type which must have a protocol.

Output Report

The program output is a CSV file (Table 3) and consists of six columns. First is the index

column which represents the URL’s popularity and second is the URL itself.

Third column contains a categorized result of the visited URL. It can have a value from six

different values which range from 0 to 5. In Table 4 possible codes with their interpretation

are summarized. Columns four and five contain two UNIX timestamps which are saved in

the initial- and final step of the algorithm so that the detection time for each URL could be

calculated. The last column is meant to hold different exceptions which are detailed in

Table 9, Table 10 and Table 11. When no exception occurred, then text ―null‖ is used.

42

 http://s3.amazonaws.com/alexa-static/top-1m.csv.zip

21

Table 3: The contents of a sample output report file

Id,URL,Code,Time before opening the Web page, Time after typing code, Exception

0,http://google.com,0,1300909931,1300909945,"null"

1,http://facebook.com,0,1300909946,1300909957,"null"

2,http://youtube.com,1,1300909959,1300909971,"null"

3,http://yahoo.com,1,1300909973,1300909990,"null"

4,http://live.com,1,1300909993,1300910005,"null"

5,http://baidu.com,0,1300910007,1300910019,"null"

6,http://wikipedia.org,0,1300910021,1300910032,"null"

Table 4: Explanation of report codes

Result code Description

0

No Code was found because after typing the code the DOM had not

changed

1

Code could not be detected because after typing the arrows the DOM had

changed

2 Code could not be detected because after typing ―B‖ the DOM had changed

3 Potential code was found, because after typing ―A‖ the DOM had changed

4

An exception occurred (The exception is added as a comment into the final

column)

5

A timeout occurred and the next URL had to be taken (the onLoad event

for the site might not have been triggered either because the URL did not

resolve to a Web page or some content was not loaded in two minutes since

the last modification of the report file)

Web Browser

The Web Browser parameter can be either ―firefox‖, ―iexplore‖ or ―chrome‖ and

will launch an instance of the currently installed Web browser - please see section 2.2.4 to

see the list of currently supported versions of these browsers. The program will launch and

start using the provided Web browser until the end of program execution. Recently Opera

released their implementation of WebDriver however our program has not been tested

using Opera and the driver is not included.

Windows Admin Username

This parameter is required because WebDriver does not remove temporary files from

―C:\Users\Admin_Username\AppData\Local\Temp‖ folder due to an issue in

22

WebDriver
43

. We experienced this behavior with all three Web browsers and at one time

during testing the machine ran out of disk space. We have set the program to delete some

folders from the Temp folder every time a page load timeout occurs (report entry 5). The

program requires the Windows user’s admin account name to get the correct folder path.

4.1.2. Environment Setup

Two test machines were used during the execution process. One was a virtual machine

provided by the university (Table 5) and the other was a personal computer (Table 6). The

machine in Table 5 ran the first 50 000 most popular URLs and the machine in Table 6 ran

the next 50 000.

Table 5: Environment of the virtual machine

Components and software Parameters and version

Processor Intel Xeon 5110 @ 1.6 GHz (2 cores)

RAM 4 GB

Java version 1.6.0_23

Mozilla Firefox version 3.6.15

Internet Explorer version 8.0.7600

Google Chrome version 10.0.648

Table 6: Environment of the personal computer

Components and software Parameters and version

Processor Intel Core 2 Duo E7200 @ 2.53 GHz (2 cores)

RAM 4 GB

Java version 1.6.0_24

Mozilla Firefox version 3.6.16

Internet Explorer version 8.0.7600

Google Chrome version 10.0.648

4.2. Results

4.2.1. List of Sites Known to Contain the Konami Code

Three initial test runs were made with each browser on a list of 64 URLs, known to

possibly contain a Konami Code, before the executing the program on 100 000 Web pages.

The 64 URLs were selected from Konami Code Sites
37

 based on the site’s info. Although

the site contains 91 unique URLs, no URLs were selected which required additional input

like typing of an Enter key.

43

 http://code.google.com/p/selenium/issues/detail?id=1131

23

At first all 64 sites were verified manually by visiting each site’s main page with three

Web browsers and typing in the Konami Code.

Table 7: Program results using 64 sample Web sites from Konami Code Sites

Result code
Firefox

manual

Average of

3 automatic

runs

IE

manual

Average of

3 automatic

runs

Chrome

manual

Average of

3 automatic

runs

Total 0 19 16 42 37.67 19 16

Total 1 N/A 7.33 N/A 14.67 N/A 10.67

Total 2 N/A 0.67 N/A 0.33 N/A 1

Total 3 45 32.67 22 9 45 34.33

Total 4 N/A 3.33 N/A 0 N/A 0.67

Total 5 N/A 4 N/A 2.33 N/A 1.33

On manual inspection we verified that the code was present in 45 Web pages. However 19

Web sites did not reveal an Easter egg on the URL’s home page. Possible reasons for this

include a required login, an additional Enter key input or the Konami Code support might

have been removed from the site altogether by now.

Firefox and Chrome reported both the same set of results, however in case of Internet

Explorer, Konami Code was not found in 47.6% of the Web sites. Using Internet Explorer

we did not find any unique URLs with Konami Code which the other two browsers did not

already contain.

Then our program was run three times using the same set of 64 URLs on all three Web

browsers to evaluate the automatic detection capabilities of our program. From Table 7 it

can be seen that the results are fairly consistent between Mozilla Firefox and Google

Chrome with correct Konami Code detection capabilities of 72.6% and 76.3% respectively

while IE managed to detect the code on 40% of the time on average.

4.2.2. World’s 100 000 Top Web Pages

World’s top 100 000 Web pages were examined using three different Web browsers in

search of Konami Codes.

Table 8 shows that 0.9% (Firefox), 1.2% (IE) and 2% (Chrome) of the Web sites checked

were reported to contain a possible Konami Code (code 3 in Table 4). This result seemed

likely to contain a lot of false positives and this was confirmed by manually inspecting a

couple of the reported URLs.

24

Table 8: Program results using 100 000 world's most popular Web sites

Result code

Mozilla

Firefox %

Internet

Explorer %

Google

Chrome %

Total 0 81582 81.58 61693 61.69 66264 66.26

Total 1 13803 13.80 24690 24.69 18651 18.65

Total 2 1148 1.15 2248 2.25 3241 3.24

Total 3 900 0.9 1241 1.24 2039 2.40

Total 4 891 0.89 4438 4.44 2462 2.46

Total 5 1676 1.68 5690 5.69 7343 7.34

Figure 6 represents the total time that took to visit every URL with each Web browser.

There is a noticeable difference in time it took to visit the first top 50 000 and second set of

50 000 URLs. This is probably related to the fact that different environments (Table 5 and

Table 6) were used to visit the first and second set of URLs.

Figure 6: Hours spent for each Web browser to visit all the URLs

Tables Table 9, Table 10 and Table 11 show different exceptions (code 4 in Table 4) that

were reported for each Web browser.

Table 9: Most common exceptions for Firefox representing 99.3% of the total exceptions

Exception Description Count

ElementNotVisibleException:

Element is not currently visible and

so may not be interacted with

Thrown to indicate that although an

element is present on the DOM, it is not

visible, and so is not able to be interacted

with.

833

StaleElementReferenceException:

Element not found in the cache

Indicates that a reference to an element is

now "stale" --- the element no longer

appears on the DOM of the page.

44

WebDriverException:

java.net.SocketException:

Connection reset

Thrown to indicate that there is an error in

the underlying protocol such as a TCP

error

8

623 654
612

350 358 325
273 296 287

Mozilla Firefox Internet Explorer Google Chrome

Total

0-50k

50k-100k

25

From Table 9 it can be seen that Mozilla Firefox reported for 833 Web pages that the

element that had been selected was not visible. This happened because WebDriver will not

allow access to such elements, since a user cannot read text in a hidden element as well.

Table 10: Most common exceptions for IE representing 99.3% of the total exceptions

Exception Description Count

WebDriverException: Unable to

find element with xpath == *

An element could not be located. This

exception happened because the Web site

content could not be loaded.

4330

ElementNotVisibleException:

Element is not displayed

Thrown to indicate that although an element

is present on the DOM, it is not visible, and

so is not able to be interacted with.

58

StaleElementReferenceException:

Element is no longer valid

Indicates that a reference to an element is

now "stale" --- the element no longer appears

on the DOM of the page.

21

The exceptions in the most populated class with 4330 occurrences reported for Internet

Explorer were caused by the Web page URL not being resolved to a Web page (Table 10).

Mozilla Firefox reported such pages with code 0 and Google Chrome with code 5 because

of the different ways these Web browsers display the information in case a Web page

could not be opened.

Table 11: Most common exceptions for Chrome representing 98.4% of the total exceptions

Exception Description Count

ElementNotVisibleException:

Element was not visible

Thrown to indicate that although an element

is present on the DOM, it is not visible, and

so is not able to be interacted with.

1648

NoSuchElementException: Was

not on a page

Caused by a known bug in ChromeDriver
44

 693

StaleElementReferenceException:

Element is obsolete

Indicates that a reference to an element is

now "stale" --- the element no longer appears

on the DOM of the page.

81

Google Chrome reported 1648 exceptions regarding elements that matched the XPath

expression, but were not visible and therefore could not be selected (Table 11). For 693

URLs a NoSuchElementException was given and on later inspection we found that this was

caused by a known bug in the current ChromeDriver
44

.

44

 http://code.google.com/p/selenium/issues/detail?id=427

26

4.2.3. Modified Algorithm for Web Sites with Code 3

In order to get more accurate results and reduce the number of false positives, we decided

to apply an additional technique to the sites reported to contain an Easter egg behind a

Konami Code.

We modified Algorithm 1 by adding a fixed time to wait after the page had been loaded

and before starting to type the arrows. To select the proper time limit we conducted an

experiment on the 64 URLs that we also used in paragraph 4.2.1 and observed URLs

which DOM changed automatically after the page had been loaded. We chose the time of

the URL which took the longest to automatically change and multiplied it by two to avoid

pages which change after even a longer wait period. The longest change was 12.5 seconds.

After the page had been loaded and the initial DOM had been saved, the program was

made to wait for 25 seconds. After the waiting period was over, the DOM was saved again

for a second time and then both DOMs were compared. If the DOMs were equal then the

algorithm resumed its usual work, otherwise the page was reported using a new code - 6.

Table 12: Program results on Web sites reported to use the Konami Code in Table 8

Result code Firefox % IE % Chrome %

Total 0 127 14.11 148 11.93 129 6.33

Total 1 10 1.11 18 1.45 3 0.15

Total 2 12 1.33 11 0.89 0 0

Total 3 41 4.55 15 1.21 25 1.22

Total 4 1 0.11 15 1.21 2 0.01

Total 5 9 1 40 3.22 167 8.19

Total 6 700 77.77 994 80.1 1713 84.02

The program, now with the forced wait time, was run with URLs reported in Table 8 as

code 3 results, as the list of input URLs. Results in Table 12 indicate that pages with

dynamic content (code 6), were the main reason why so many false positives had occurred

77.8% (Mozilla Firefox), 80% (Internet Explorer) and 84% (Google Chrome) of the total

Web sites checked for each Web browser. Then we manually observed the new code 3

results for each browser to see how many of the reported Web sites actually contained the

Konami Code.

27

Table 13: Figures after manual inspection of the reported Konami Codes in Table 12

Status Mozilla Firefox Internet Explorer Google Chrome

No code 9 5 2

Code present 32 10 23

Accuracy 78% 67% 92%

Codes total 41 15 25

After manually inspecting the sites with potential Konami Codes, we were able to conclude

that our approach was able to tell if a site contained the Konami Code 78% (Mozilla

Firefox), 66.7% (Internet Explorer) and 92% (Google Chrome) of the time.

4.2.4. Manual Inspection of Web Sites

To evaluate the approximate size of false negatives that might have been incorrectly

discarded using the automatic approach with a forced waiting time, we manually examined

URLs that were initially found as potential codes in Table 8. Summary of manual

inspection can be seen in Table 14 which shows that 60 pages with Mozilla Firefox, 18

with Internet Explorer and 35 with Google Chrome were found. This means that the

method where the program waited for 25 seconds discarded 28 (46.7%) Konami Codes

when using Mozilla Firefox, 8 (44.4%) codes when using Internet Explorer and 12 (34.3%)

codes when using Google Chrome.

Table 14: Konami Codes found using manual inspection on Web sites reported in Table 8

Web browser Mozilla Firefox Internet Explorer Google Chrome
Initially reported 900 1241 2039
No code 841 1226 2008
Code present 60 18 35

4.2.5. Cross-Browser Compatibility

To evaluate the CBC of Konami Code from the list of newly detected Web sites, we

decided to manually examine a union set of unique URLs taken from reported sites in

Table 12 and Table 13.

Table 15: CBC of the new Web sites with Konami Code

Status Mozilla Firefox Internet Explorer Google Chrome

No code 1 23 0

Code present 59 37 60

Total 60 60 60

28

From Table 15 it can be seen that Mozilla Firefox and Google Chrome reported exactly the

same set of results besides one URL which did not react to the Konami Code input in

Firefox - http://konigi.com. Also two sites did not open with IE and Chrome with http://

prefix and http://www. had to be used to test these pages for Konami Code presence. This

is because Firefox uses a feature called Domain Name Guessing and automatically adds

www to the URL. As could be already predicted by the initial test results in Table 7, pages

with IE reported significantly less codes (38.3%) than the two other Web browsers.

4.2.6. Konami Code Intersection Between Different Browsers

We also decided to examine the set of URLs reported as possible Konami Codes in Table 8

by comparing every browser combination using intersection between the sets. From Figure

7 it can be seen that the intersection of all three Web browsers contained the code 15 times

out of 16 (93.6%). This result shows that by exploiting the CBC issues it is possible to find

Konami Codes very accurately using this method. The results with intersections between

two browsers contain more Konami Codes, but are not that accurate. The intersection

Chrome ∩ Firefox contains more (39.6%) Konami Codes than the intersections IE ∩

Firefox (31.7%) and IE ∩ Chrome (19.3%). This method, which relies on the CBC of the

Web site, was also able to find Konami Codes, but is less effective when compared to the

results of our method with forced wait time (Table 13).

Figure 7: Table 8 code 3 result intersection sets for every browser combination

60

83 83

16
19

16

33

15

FF ∩ IE IE ∩ CH CH ∩ FF FF ∩ CH ∩ IE

TOTAL

CODES

29

4.2.7. List of New Web Sites Detected

We took the list of URLs from Konami Code Sites
37

 as a reference of sites known to

contain Konami Code and compared it to our findings. The sites that contain Konami Code

appear to fall into different categories with Web design, video game and programming

related Web pages standing out the most. We plan to send our complementary list to the

owners of the site.

Table 16: New Web sites detected automatically when waiting 25 seconds after page load

Web sites detected automatically

http://github.com http://bannersnack.com http://archiduchesse.com

http://amobil.no http://itler.net http://seilmagasinet.no

http://dlink.de http://the-big-bang-theory.com http://akam.no

http://godsgirls.com http://snacktools.com http://amirite.net

http://nsmb.com http://gamestar.de http://pixel2life.com

http://duelinganalogs.com http://txstate.edu http://dslvalley.com

http://bttradespace.com http://bordom.net http://episerver.com

http://iconarchive.com http://smbc-comics.com http://sparkfun.com

http://paulirish.com http://teknofil.no http://thedoghousediaries.com

http://instantshift.com http://wearehunted.com http://konigi.com

http://iapps.im http://n-styles.com http://mister-auto.com

Table 16 contains 33 automatically detected new Web sites with Konami code. 27 new

Web sites found using manual inspection are represented in Table 17.

Table 17: New Web sites detected by manually examining URLs with code 4 in Table 8

Web sites detected using manual inspection (does not contain results already in Table 16)

http://mozilla.org http://add.io http://funnyordie.com

http://glassdoor.com http://mochimedia.com http://soundclick.com

http://earticlesonline.com http://tupalo.com http://oakley.com

http://diskusjon.no http://mochiads.com http://gonintendo.com

http://jonraasch.com http://evo.com http://nvidia.it

http://voddler.com http://absoluteradio.co.uk http://purepwnage.com

http://splitbrain.org http://nvidia.fr http://bigspaceship.com

http://ideaonline.co.id http://mpsaz.org http://rifftrax.com

http://comviq.se http://contagiousmagazine.com http://texastribune.org

4.2.8. Evaluation of the Research Questions

Based on the results of our experiment we can answer the RQ1 and say that 38 (a union set

of unique URLs from the reports of all Web browsers) Web sites with Konami Code were

30

found automatically from the 100 000 world’s most popular Web sites. Additionally 27

Web sites were found semi-automatically after the manual inspection of code 3 results in

Table 8.

To answer RQ2 and calculate the precision and recall of our experiment we compared

URLs from Table 13 and Table 14. The precision and recall formulas are given as follows:

Precision =

Recall =

F-measure = 2*

We also decided to calculate the F-measure as both precision and recall measures can have

their weak points. The tp in formulas stands for count of true positives, fp for false

positives and fn for false negatives.The precision and recall is given for each browser

separately in Table 18. When comparing the precision results to the recall values then it

can be seen that our method is aimed to be more precise and reduce the number of false

positives. High precision is achieved at the expense of recall, which is lower than the

precision because of the false negatives that were discarded using the 25 second wait

period. We would not have much use for high recall when the precision would be low

since finding Konami Codes from a set that contains a lot of false positives is a labor

intensive task.

Table 18: Precision, recall and F-measure results

Measure Mozilla Firefox Internet Explorer Google Chrome

Precision 0.78 0.67 0.92

Recall 0.53 0.56 0.66

F-measure 0.63 0.61 0.77

RQ3 can be answered based on the results of Table 15. In Google Chrome the Konami

Code was found in all 60 new Web pages with Konami Code. In Mozilla Firefox the code

was found in 59 (98.3%) URLs. Internet Explorer had the lowest CBC with 37 Web sites

(61.7%). The intersection of the three Web browsers is 37 URLs. This means that 61.7% of

the Konami Codes worked properly on all three Web browsers.

4.3. Threats to Validity

Our implementation has a several limitations, some of them have been fixed already, but

were present in the version that was used when conducting the experiment.

31

 Web pages which DOM level content is modified without any user interaction are

currently ignored by our approach. For example:

o Web pages with splash screens that automatically switch content after

having displayed an intro animation clip like this page
45

.

o Pages which execute JavaScript code when the onLoad event is triggered

o Pages with dynamically changing advertisements

o Pages with social networking site toolbars that are loaded after the

browser’s onLoad event

 Due to a WebDriver limitation
46

 we are unable to detect the Konami Code in Web

pages which will display a JavaScript alert window after the code input – an

example Web site with such behavior is Absolute Bica
45

.

 Web pages which do not load completely (the body onLoad event is not triggered)

in two minutes are not checked and the next candidate URL is launched to avoid

pages which load endlessly and to keep the program working. Two minutes was

chosen based on the results of the initial test experiment of 64 URLs that is

described in paragraph 4.2.1.

 In several Web pages the element that is found to send the Konami Code input to is

not found by using our XPath expression.

WebElement element = driver.findElement(By.xpath("*"))

This happens when the element found by this XPath expression is not visible. This

problem could be avoided by first checking if the candidate element is visible and if

it is not, then another element should be selected.

 We do not know if http://www. would have been a better choice with regard to the

percentage of Web pages loaded compared to the http:// prefix that we used. The

program code could be improved so that if a Web page is not found, the program

would try to open the URL using the www prefix as well. Currently the number of

pages not loaded due to this limitation could be figured out by performing a static

analysis on the DOMs to find out the URLs that did not resolve to any Web page.

45

 http://www.absolutebica.com/

32

This retrieved list could then be run again, but now with http://www. prefix instead

of running with http://.

 Some Web sites might be programmed to display Konami Code only on a specific

browser intentionally, but in our work we consider a code that works on one Web

browser and not on another to be a CBC issue.

33

5. Conclusions and Future Work

In this thesis we have shown that Konami Code is a perfect example of modern Web

content because the user would never find an Easter egg by simply following the Web sites

classic URL navigation model. Therefore it would also be difficult to detect unexpected

behavior of modern Web pages when testing with insufficient methods and outdated tools.

Users expect identical browsing experience on all modern Web browsers and the

functional CBC issues make the testing of RIA even more daunting. We proposed an

automatic method and were able to discover 60 new Web sites with Konami Code from the

world’s top 100 000 Web pages. 33 of them were found automatically and 27 semi-

automatically by manually examining a set of initially reported URLs with each Web

browser. Our method achieved a high precision and a medium recall rate. We also tried to

detect Konami Codes using a CBC approach, which returned correct results with high

accuracy (96.3%). To evaluate the CBC of Web sites with Konami Code we conducted a

manual inspection and found that the code does not work on one Web page with Mozilla

Firefox and several Web pages with Internet Explorer. This may indicate possible similar

functional CBC issues with other modern Web sites.

For future work we would like to solve some of our program’s limitations. Our current

approach is only capable of searching for the Konami Code from a predefined URL, which

in our case was the site’s home page. However some Web sites may contain the Konami

Code in different subdomains and different states of the Web site as well. For example in

case of speccedforawesome.com the Konami code is in the forum section which can be

accessed from the site’s home page. To test for Konami Code in many different states of a

given starting URL, a Web crawler could be used together with our program’s plugin-like

implementation for Crawljax.

The list of alexa.com’s top 1 million Web sites contains an additional 900 000 URLs which

we have not checked so far. It is very likely that more Web sites with Konami Code could

be detected given that we discovered 60 new URLs from a list of 100 000, compared to the

91 Web sites currently known to contain the Konami Code on Konami Code Sites
37

.

34

6. Konami koodiga veebilehtede automaatiseeritud

leidmine vaadeldes nende brauseriteüleseid

erinevusi

Bakalaureusetöö (6 EAP)

Risko Ruus

Resümee

Käesolev bakalaureusetöö sisaldab endas automatiseeritud lahendust veebilehtedest

Konami koodi leidmiseks. Lisaks vaadeldakse tuvastatud lehekülgede ühilduvust erinevate

veebilehitsejatega.

Konami kood on sisendkombinatsioon (↑ ↑ ↓ ↓ ← → ← → B A), mis pärineb jaapani

mängutootja Konami 1986 aasta videomängust Gradius. Tänapäeval on internetis palju

veebilehti, mis sisaldavad endas samuti Konami koodi. Lehekülje külastajal on võimalik

sisestada kombinatsioon oma arvuti klaviatuurilt, mille tulemusena kuvatakse

arvutiekraanile lehe varjatud sisu. Tihtilugu on sellised veebilehed arendatud erinevate

tehnoloogiate kogumit AJAX kasutades, mis võimaldab muuta lehekülje dokumendi-

mudelit (DOM) ilma lehte uuesti laadimata. Veebilehtedel esineb aga tihti

veebibrauseriteüleseid ühilduvusprobleeme ning käesolevas töös uurimegi kui palju

automaatselt tuvastatud Konami koodiga veebilehtedest töötab nii Mozilla Firefox, Internet

Explorer kui ka Google Chrome brauseritel.

Töös viiakse läbi eksperiment alexa.com portaali andmetel põhineva 100 000 maailma

populaarseima veebilehe uurimiseks. Selleks oleme ehitanud rakenduse kasutades Java

programmeerimiskeelt ning veebilehtede testimiseks loodud raamistikku WebDriver.

Oleme seadnud üheks eesmärgiks leida nende 100 000 veebisaidi seast võimalikult palju

uusi Konami koodiga lehekülgi

Eksperimendi tulemusena leidsime automaatselt 60 uut Konami koodiga lehekülge.

Nendest 33 leidsime automaatselt ning 27 pool-automaatselt eksperimendi vahetulemuste

käsitsi läbivaatamise käigus. Antud tulemuste uurimise järel selgus, et veebilehitsejates

Mozilla Firefox ning Google Chrome töötavad Konami koodiga veebilehed võrdväärselt

hästi, kuid Internet Explorer ei suuda kuvada Konami koodiga varjatud saladust peaaegu

pooltelt tuvastatud veebilehtedelt.

35

Meie töö väärtuslikuks avastuseks võib lugeda automatiseeritud lahenduse loomist Konami

Koodide leidmiseks ning 60 uue Konami koodi sisaldava veebilehe leidmist. Varem

teadaolevad 91 URLi olid seni avastatud käsitsi ning üldsusele teada vaid 91. Lisaks näeme

neid tuvastatud veebilehti võimaliku materjalina brauseriteüleste funktsionaalsete

erinevuste põhjalikumaks uurimiseks.

Autor avaldab tänu oma juhendajale, kelle ideed ning soovitused on olnud tõeliseks abiks

käesoleva töö kirjutamisel. Samuti soovib autor tänada Oskar Grossi, kes pühendas oma

aega ja energiat töö läbivaatamisele ning parandusettepanekute tegemisele. Töö

valmimisse on panustanud hilisõhtuseid tunde ka Virge Terav, kes aitas koos autoriga

käsitsi kontrollida üle 4000 veebilehe, mille eest autor on talle südamest tänulik.

36

7. References

Allaire J Macromedia Flash MX—A next-generation rich client [Report]. - 2002.

Andrews Anneliese A., Offutt Jeff and Alexander Roger T. Testing web applications by

modeling with fsms [Journal] // Software and Systems Modeling. - 2005. - Vol. 4. - pp.

326-345.

Artzi Shay [et al.] Finding bugs in dynamic web applications [Conference]. - [s.l.] : ACM,

2008. - pp. 261-272.

Benedikt Michael, Freire Juliana and Godefroid Patrice VeriWeb: Automatically

Testing Dynamic Web Sites [Conference]. - 2002.

Garrett Jesse James Ajax: A new approach to web applications. Adaptive Path // Ajax: A

new approach to web applications. Adaptive Path. - 2005.

Marchetto Alessandro, Ricca Filippo and Tonella Paolo A case study-based comparison

of web testing techniques applied to AJAX web applications [Journal] // Int. J. Softw.

Tools Technol. Transf.. - [s.l.] : Springer-Verlag, 2008. - Vol. 10. - pp. 477-492.

Marchetto Alessandro, Ricca Filippo and Tonella Paolo An Empirical Validation of a

Web Fault Taxonomy and its Usage for Web Testing [Journal] // J. Web Eng.. - 2009. - 4 :

Vol. 8. - pp. 316-345.

Marchetto Alessandro, Tonella Paolo and Ricca Filippo State-Based Testing of Ajax

Web Applications [Conference]. - [s.l.] : IEEE Computer Society, 2008. - pp. 121-130.

Mesbah Ali and Deursen Arie van A component- and push-based architectural style for

ajax applications [Journal] // J. Syst. Softw.. - [s.l.] : Elsevier Science Inc., 2008. - Vol.

81. - pp. 2194-2209.

Mesbah Ali and Prasad Mukul Automated Cross-Browser Compatibility Testing

[Conference]. - [s.l.] : ACM, 2011.

Mesbah Ali, Bozdag Engin and Deursen Arie van Crawling AJAX by Inferring User

Interface State Changes [Conference]. - [s.l.] : IEEE Computer Society, 2008. - pp. 122-

134.

OʼReilly Tim OʼReilly -- What Is Web 2.0 [Journal]. - 2005. - 31 August 2008.

37

Ricca Filippo and Tonella Paolo Analysis and testing of Web applications

[Conference]. - [s.l.] : IEEE Computer Society, 2001. - pp. 25-34.

Ricca Filippo and Tonella Paolo Web Testing: a Roadmap for the Empirical Research

[Conference]. - [s.l.] : IEEE Computer Society, 2005. - pp. 63-70.

Rode Jochen, Rosson Mary Beth and Pérez-Quiñones Manuel A. The Challenges of

Web Engineering and Requirements for Better Tool Support [Report] / Virginia

Polytechnic Institute and State University Center for Human-Computer Interaction. - 2002.

Torchiano Marco, Ricca Filippo and Marchetto Alessandro Defect location in

traditional vs. Web applications - an empirical investigation [Conference]. - 2009. - pp.

121-129.

Wang Minghui [et al.] A Static Analysis Approach for Automatic Generating Test Cases

for Web Applications [Conference]. - [s.l.] : IEEE Computer Society, 2008. - pp. 751-754.

