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Analysis of Efficient Neural Architecture Search via Parameter Shar-
ing

Abstract:

Deep learning based approaches have improved the state of the art performance of
systems in various tasks such as language modeling, computer vision, object recognition,
and image segmentation. Every task in deep learning requires custom architectures
tailored specifically for that task. This resulted in high demand of domain experts
for deep learning who can craft novel architectures. With the cost of domain experts
rising and computational expenses falling, automating the neural architecture design is
considered as an alternative.

The concept of neural architecture search has been introduced to tackle this prob-
lem. Neural architecture search can be considered a subset of automated machine
learning(AutoML) domain [HKV18].

In this thesis, we have looked at a state of the art neural architecture search tech-
nique "Efficient neural architecture search via parameter sharing"(ENAS) [PGZ™18].
ENAS was introduced by Google Brain and it was a major improvement over its prede-
cessor "Neural architecture search with Reinforcement learning"(NAS) [ZL16]. ENAS
use a controller to sample the architectures from a search space which are later selected
based on the measure defined by ENAS performance estimation strategy. Due to the
impressive performance of ENAS, there has been research to apply ENAS and similar
parameter sharing techniques in critical areas like medicine and diagnostics [GS19]. The
motivation behind this thesis is to speed up and analyze the learning behavior of ENAS.

In this work we have analyzed the learning process of ENAS, evaluated ENAS
performance estimation strategy and applied transfer learning on ENAS controller. We
found that architectures do not improve with ENAS controller training via various
experiments. We conclude that training of ENAS controller is not necessary and discuss
limitations of ENAS performance estimation strategy.

Keywords:
Neural architecture search, deep learning, reinforcement learning, AutoML, machine
learning, transfer learning.
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Efektiivse neuroniarhitektuuri otsingu analiiiis parameetrite jagamise
kaudu

Liihikokkuvote:

Stigavoppepohised lihenemised on parandanud tehnika taset mitmesugustes iiles-
annetes nagu keele modelleerimine, raalnigemine, objekti tuvastamine ja pildi segmen-
teerimine. Iga siigavOppe lilesanne nduab spetsiaalselt selle iilesande jaoks kohandatud
arhitektuuri. Selle tottu on suur ndudlus siigavOoppe domeeniekspertide jérele, kes suuda-



vad uudseid arhitektuure luua ja kisitseda. Domeeniekspertide tasu tdusu ja arvutuslike
kulutuste languse tottu peetakse alternatiiviks tehisndrvivorgu arhitektuuri disainimise
automatiseerimist.

Selle probleemi lahendamiseks on kasutusele voetud nérviarhitektuuri otsingu kont-
septsioon. Tehisndrvivorgu arhitektuuri otsingut voib pidada automatiseeritud masindppe
(AutoML) domeeni alamhulgaks. [HKV 18]

Kiesolevas to6s on uuritud uusimat nirvivorgu arhitektuuri otsingutehnikat "Efek-
tiivne nérviarhitektuuri otsing parameetrite jagamise kaudu"(ENAS)[PGZ" 18]. Google
Brain tutvustas ENAS-i ja see oli suur areng vorreldes eelkidijaga ,,Nérviarhitektuuri
otsing stiimuldppega” (NAS) [ZL16]. ENAS kasutab kontrollerit, et votta otsinguruumist
arhitektuuride valim, millest omakorda valitakse arhitektuurid ENAS-i tulemuslikkuse
hindamise strateegias médratletud meetme alusel. ENASi muljetavaldava joudluse tottu
on uuritud ENAS-i ja sarnaste parameetrite jagamise tehnikate rakendamist olulistes
valdkondades nagu meditsiin ja diagnostika [GS19]. Selle t66 motivatsioon on kiirendada
ja analiiiisida ENAS-i opikditumist.

Selles t60s on analiiiisitud ENAS-i dppeprotsessi, hinnatud ENAS-i tulemuslikkuse
hindamise strateegiat ja rakendatus iilekandedpet ENAS-1 kontrolleril. Erinevate katsete
kiigus leiti, et arhitektuurid ei muutu ENAS-i kontrolleri treenimise abil paremaks. Jarel-
dati, et ENAS-i kontrolleri treenimine ei ole vajalik ja arutleti ENAS-i tulemuslikkuse
hindamise strateegia piiranguid.

Votmesonad:
Neural architecture search, deep learning, reinforcement learning, AutoML.
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1 Introduction

Machine learning has enabled us to achieve remarkable performance improvements in
tasks related to computer vision, speech synthesis, language, and machine translation.
This progress was achieved through complex architectures of deep neural networks
like AlexNet [KSH12] in computer vision and BERT [DCLT18] in natural language
processing.

One of the most crucial and important tasks for achieving this state of the art
performance is research into novel architectures of deep neural networks. These novel
architectures are carefully handcrafted by domain experts with years of experience. Find-
ing novel architectures for new tasks can be highly human-intensive. As an example
for computer vision, most of the current state of the art systems for image classification
tasks are trained on standard academic datasets like CIFAR-10 [Kri09] or IMAGENET
[DDS*09]. Using the same architectures for different datasets might not always be an
optimal solution, so we need different architectures for different tasks. As deep learning
is widely adopted in a wide range of application domains, the supply of the deep learning
experts is not sufficient according to the demand. Hence a need of systems to automate
neural network design arises.

To automate classical machine learning various methods were introduced like
bayesian optimization, evolutionary strategies, and meta-learning. This automation
helped to achieve state of the art accuracy on classification problems. Though for Neural
networks automation remained a challenge due its complex and compute-intensive nature.

Neural architecture search was introduced to tackle this problem. Neural architec-
ture search is the process to automate architecture engineering, hence reducing the human
efforts in designing architecture by hand. Due to the wide search space and enormous
permutations and combinations of architecture choices it is a highly computational and
time-intensive task. Efficient Neural architecture search via parameter sharing (ENAS)
[PGZ*18] was introduced to counter these limitations of neural architecture search.

Our motivation behind this work is to speed up ENAS. In this work we analyzed
the ENAS technique, validated its performance as well as applied transfer learning on
ENAS. Our research started with applying transfer learning to ENAS for both image
classification and language modelling and then after observing the behaviour of controller
in our experiments we decided to change our research direction and analyze the ENAS
technique in general. In this work we have not included results from language modeling
experiments as the authors of ENAS announced in May’2019 that their implementation
of language modeling is incorrect hence we have also removed those results from this
work to avoid any misleading conclusions.



In this thesis, we look at the need of neural architecture search, history of neural
architecture search, current state of the art of neural architecture search in Section 2.
In Section 3 we will discuss elements of neural architecture search. We review the
ENAS technique, parameter sharing, and architecture construction approach in Section
4. A series of experiments are performed which provide insights into ENAS as well
as performance evaluation of transfer learning with ENAS and ENAS performance
evaluation strategy are described in Section 5. In Section 6 the results of experiments are
discussed. The thesis is concluded in Section 7.



2 Background

Neural networks are being used in a range of application domains like language modeling,
computer vision and time series forecasting. Due to the diverse nature of these tasks one
cannot design a single universal neural network which can fit on every task. Sometimes,
neural network design has to be altered even if the application domain remains the same
but the dataset changes. For example in the area of image classification the state of the art
architecture on IMAGENET [DDS'09] is different from the state of the art architecture
for Caltech-256 [GHP0O7]. One way to overcome this problem is to construct a large
neural network which can fit on every dataset but that comes with it’s own problems like
computational overkill to train a huge network. As all the state of the art architectures
are constructed for academic datasets like CIFAR-10 or IMAGENET, an architecture
designed for these datasets might not perform well for a dataset which might consist of
images of different nature. With the cost of deep learning experts rising and computa-
tional expenses falling, automating the neural architecture design is a viable option.

The idea of automating neural architecture search was first proposed by Geoffrey
et al. [MTHS89] by using evolutionary strategies, later works used similar evolutionary
strategies [ASP94][YL96][Kit90] to automate the design of neural networks. Though
these approaches were not popular due to lack of interest in the field of neural networks
itself. As deep learning got adopted widely the interest in the field grew. Today, neural
architecture search can be considered as a subset of automated machine learning (Au-
toML). A typical Neural architecture search pipeline looks like the one described in
Figure 1. The user supplies the data to the neural architecture search model, the neural
architecture search model designs a model optimized for the particular dataset, and the
final model can be trained from scratch by supplying it with data again.

The idea of using machine learning methods to determine neural network archi-
tectures has been popularized by the seminal work of Zoph et al. [ZL16], who have
demonstrated that Neural Architecture Search (NAS) is able to find networks that outper-
form the best human designed neural architectures. Their approach used reinforcement
learning at its core to find a neural network design. NAS also incorporated modern
design elements like skip connections, batch normalization and rectified linear units. The
most obvious drawback of the NAS method is its resource consumption, as the learning
process involves generating a large number of deep neural networks, whose performance
is evaluated by fully training them with the given training dataset and evaluating them
with the test set, which takes several hours or even days per candidate architecture. This
approach uses 450 GPUs for 3-4 days to find an optimal architecture for CIFAR-10.

There is a large body of follow-up work studying techniques to speed up the search
process. Much attention has been gained by Pham et al.[PGZ* 18], who have proposed



"Efficient Neural Architecture Search"(ENAS) method based on the idea to design the
search space such that each candidate network is a subgraph of a joint network. The
weights of the joint network are trained while an architecture generator (controller) is
trained to select the best sub-network for the given dataset. Using this approach, the
authors were able to improve the time complexity from thousands of GPU days to less
than a single GPU day for the CIFAR-10 dataset while reaching a performance similar to
the NAS [ZL16] results. We have discussed the ENAS approach in detail in Section 4.

Numerous alternative methods to ENAS have been presented as well. Suganuma et
al.[SSN17] are among the authors who have provided evolutionary methods for finding
neural architectures. The search method described by Liu et al. [LZS*17] starts with
evaluating simpler architectures and gradually makes them more complex, using a surro-
gate function to predict the performance of candidate architectures. Liu et al. [LSY 18])
employ a continuous relaxation of the network selection problem, which enables the
search procedure to use gradients to guide the search. A continuous search space is also
employed by Luo et al. [LTQ™ 18]. Here a model is trained to estimate the performance
of an architecture based on a representation in a continuous space, providing a gradient
based on which the architecture can be improved. A comprehensive survey of neural
architecture methods has been published by Elsken et al. [EHH18].

One-shot approaches for finding neural architectures have been described in several
recent works. Brock et al. [BLRW 18] have proposed to have the weights of candidate
neural architectures generated by a hypernetwork that is trained only once. A sim-
pler mechanism inspired by the ENAS approach has been presented by Bender et al.
[BKZ"18]. Here the joint network containing all weights is first trained, and then the
validation accuracy using these weights is used to predict the performance of candidate
architectures. Instead of using a reinforcement learning based controller, the candidate
architectures are generated by random search. While the latter two approaches are still
applying search techniques which enumerate many possible architectures, our finding in
Section 6 supports the hypothesis that a single architecture generated at random from
an appropriate search space has competitive performance to architectures resulting from
search processes.

Our findings in Section 6 are consistent with the very recent results of Adam et
al.[AL], who have analyzed the behavior of the ENAS controller during search and
found that its hidden state does not encode any properties of the generated architecture,
providing an explanation of the observation made by Li et al. [LT19] that ENAS does
not perform better than simple random architecture search. Our work is complementing
this line of research by providing an experimental study of the learning progress of
ENAS, demonstrating that the good performance of ENAS is already achieved before



any controller training takes place.

Data ‘ model
., = _____/'
™, 4 N
f Training Neural f Meural
|architecture from scratch «————————  Network |
| with data 4 . design /

ot -

Figure 1. Basic neural architecture search pipeline



3 Neural architecture search

3.1 Elements of neural architecture search

To describe more about neural architecture search we use the terminology stated in Elsken
et al. [EHH18] According to that, neural architecture search methods can be separated in
3 different components search space, search strategy and performance estimation strategy.

Architectures

h J

i
Search space —hl search strategy

performance
estimation strategy

A

performance of architectures

Figure 2. 3 Elements of Neural architecture search

1. Search space: The search space for the neural architecture search consists of the
possible architectures which can define a neural network. As this search space
can consist of vast number of possible combinations, one can incorporate prior
knowledge and domain expertise to reduce the size of the search space. For
example, one might limit the search space to convolutions and skip connections
in image classification tasks as we already know that they are state of the art in
this task. Similarly, we can limit search space to recurrent cells for language tasks.
Though limiting this search space can result in human bias, which may prevent
novel architectures from being discovered that go beyond human knowledge and
expertise.

2. Search Strategy: The search strategy is defined as the algorithm used to explore
the search space. We need to select an optimal search strategy which can find an
optimal architecture quickly but also avoid getting stuck in the local minima.

3. Performance estimation strategy: Performance estimation strategy refers to
the measure of success for our neural architecture search. The search strategy
supplies architectures to the performance estimation strategy and the performance
estimation strategy evaluates architectures and gives result back to search strategy.

In Figure 2 we can see how these three elements operate together.

10



3.2 Search space

We discuss different search spaces from recent works and our search space in this section.

A simple search space can be described as chain-structured neural networks. Chain-
structured neural network can be described as a sequence of n layers, where layer i
receives its input from a previous layer i-1 and serves as an output for layer i+1. Here
layer 1 and n are input and output layer of the neural network. This search space can
further be parameterized by

1. The number of layers

2. The set of layer operations, for example convolution, max pooling or average
pooling.

3. The set of hyperparameters associated with layer operation, for example stride
length.

Recent work on neural architecture search also incorporates modern design el-
ements like skip connections. Skip connections provide search space with branched
networks hence provides more degrees of freedom.

Motivated by repeated motifs in hand-crafted architectures, a new design philoso-
phy of dubbed cells or blocks came. Here rather than searching the whole architecture,
the neural architecture search method will search for cell blocks and final architecture can
be constructed by stacking these blocks in a predefined manner. As shown in Figure 3
the cells are constructed to form a block and then this block can be repeated to construct
the entire architecture. This search space has two different advantages compared to full
architecture search.

1. The search space size is exponentially reduced as the cells are comparably small.

2. Cells are easily transferable to another dataset by adapting the number of cells
used within the model.

The cell-based search was later incorporated in Efficient neural architecture search
via parameter search (ENAS) [PGZ" 18], Our work is closely related to ENAS; hence
we will utilize the same search space as ENAS.

3.3 Search strategy

Various kind of search strategies can be utilized to explore the search space for neural
architecture search, including random search, bayesian optimization, reinforcement
learning agents, evolutionary methods and gradient-based methods. As our work is

11
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Figure 3. An example of a cell based architecture, here we can see that the cells are
iteratively repeated to construct a final neural architecture

closely related to ENAS our search strategy is the same. ENAS frames the neural
architecture search problem as a reinforcement learning problem.

In reinforcement learning, we have an agent which takes action, the choice of
actions are based on reward maximization. In the case of neural architecture search the
generation of neural architectures can be considered to be the agent action and the search
space takes the place of the action space. The reward signal is the performance of the
neural architecture on unseen or validation data. In ENAS our agent is an LSTM [HS97]
which sequentially samples a string that in turn encodes a neural architecture. The agent
is trained with REINFORCE policy gradient algorithm [Wil92]. We have described this
process in Section 4.

3.4 Performance estimation strategy

The search strategy for neural architecture search is dependent on the signal from
our performance estimation strategy. It can be described as a measure to judge the
neural architecture A sampled by our search strategy. Let search strategy S samples
an architecture A, a simple search strategy would be to train this architecture from
scratch and measure its accuracy on unseen data. However, this approach is often
infeasible as training each architecture from scratch is computationally extensive. Hence
the requirement for more efficient performance estimation strategy arises. Current
performance strategies can be classified into 4 major categories as described by Elsken

12



et al.

[EHH18].

. Lower fidelity estimates: In lower fidelity estimation strategies the training time

is reduced by training the network for fewer epochs on a subset of data or down-
scaled data. These estimations can prove to be helpful in reducing training time
but can create a bias on selecting a neural network. This technique can be es-
pecially problematic when the predictive performance difference between cheap
approximations and a full evaluation is large.

. Learning curve extrapolation: Learning curve extrapolation techniques have

been quite common in the area of AutoML. In these estimation techniques, neural
architecture performance is measured by training only on few epochs and selecting
the neural architectures with a better initial learning curve. However as neural
architecture performance is not always linear in fashion, therefore, there is a
probability of selecting a neural architecture which can prove to be inefficient at
the later part of the learning curve and eliminating a neural architecture with better
performance, hence getting stuck at a relatively high local minimum.

. Weight inheritance/ network morphisms: In these estimation techniques, rather

than training from scratch, the models are warm started by inheriting weights from
a larger parent model. These techniques have proven to be quite efficient, however,
they can make architectures very large and lead to very complex architectures for
simple problems.

. One shot models/ weight or parameter sharing: These estimation techniques

treat all the network architectures as a subgraph of one large directed acyclic
graph and share the weights between architectures that have edges of this DAG
in common. These shared weights exponentially reduce the computational cost
of training the neural architectures. ENAS also uses weight sharing based perfor-
mance estimation strategy.

13



4 ENAS

Efficient Neural Architecture search received considerable attention due to its ability
to find well performing architectures within a considerably short span of time. ENAS
was a significant improvement over NAS [ZL16]. NAS used over 450 GPUs for 3-4
days to find the architecture for CIFAR-10 and Pentree bank. In NAS all the sampled
architectures were trained from scratch and after evaluation, their weights were thrown
away. According to Pham et al. [PGZ"18] ENAS improved efficiency of NAS by
"forcing all child models to share weights", hence avoiding to train each model from
scratch to convergence. By using similar search strategy but implementing a search
space and parameter sharing restriction, ENAS improved significantly over NAS and
achieved the comparable performance in around 1 GPU day(to search the architecture)
for CIFAR-10 and Pentree bank. In this section we discussed the components of ENAS,
its search space, search strategy and performance estimation strategy. ENAS uses two
kind of search spaces:

1. Macro search space
2. Micro search space

We have dedicated separate subsections to each search space to describe them in a
clearer way.

4.1 Parameter sharing approach

ENAS uses parameter sharing approach. To enable this parameter sharing, all the
architectures are treated as a subgraph of a single directed acyclic graph. This DAG can
be considered as a superset of all the child models sampled by ENAS. In Figure 4 we
can see a simple DAG defining an entire search space and two architectures sampled
from that search space. The nodes of the graph represent local computations and the
edges of the graph represent flow of information. Hence if the computation between two
nodes is already done at one point while sampling an architecture then that computation
or weight can also be used during the training of another architecture. Therefore two
architectures in Figure 4 share the common parameters with each other. This parameter
sharing approach is the main factor behind ENAS efficiency as it overcomes the major
drawback of NAS. In NAS all the architectures were trained from scratch to estimate the
performance and then their weights were discarded for next controller iteration. ENAS
saves those weights and shares them whenever the nodes are sampled again from the
DAG. So if an edge is common among architectures they share the same tensor. One
question arises here is that if we train the architectures separately then the weights will
be different because the architectures are different in topology and sharing weights will
make everything suboptimal. Though that turns out to be false in case of ENAS, to justify

14



Figure 4. DAG for ENAS, Here let the first graph(top) be the entire search space of all the
possible architectures. From this DAG two different architectures were sampled(down
left and down right). Different colored edges represent different connections in the
architectures. Though these architectures are different but they still share the weights of
the common edges between the two graphs.

this efficiency Pham et al. [PGZ" 18] claims that the motivation behind this approach is
multitask learning, where different tasks are given to the neural network and the sampled
neural architectures tends to generalize well due to this approach. Though there are
no theoretical proofs which proves that parameter sharing can find the local optimum
but this approach is still being used in the state of the art neural architecture search
techniques like DARTS [LSY 18] and Neural Arhictecture Optimization [LTQ™18].

4.2 ENAS search strategy

ENAS uses a controller for sampling the architectures within the search space. The
controller for ENAS is an LSTM with 100 hidden units. This LSTM samples architec-
tures via softmax classifiers in an autoregressive manner, which means it predicts one
hyperparameter at a time, conditioned on previous predictions. For ENAS there are two
sets of learnable parameters.

* Weights of the controller:
 Shared parameters for the child models in the DAG: w

The training happens in two alternating phases, the first phase trains shared param-
eters w of the child models and the second phase trains the parameters 6 of the controller.

15



For Image classification tasks shared parameters w are trained on 45000 training images,
separated into mini-batches of size 128. Where the gradient V,, is computed using
backpropagation. The parameters of the controller  are trained for a fixed number of
steps, we set that number to 2000 in accordance to the original experimental settings by
Pham et al. [PGZ118].

4.2.1 Training shared parameters

To train the shared parameters the controller policy is fixed. Then the stochastic gradient
descent is applied on shared parameters to minimize the expected loss function, The
gradient is computed using Monte Carlo estimate method:

1 M

Voo [£(mw)] & 2_; VoL (m;,w) (1
Here :

~ 7(m; @) : Controller’s policy for the model with it’s parameters

E,or [£(m;w)] : Expected Loss function

L(m;w): Standard cross entropy loss computed on a training data with a a model

sampled from 7 (m; 6)

This estimate of the gradient has a higher variance than standard stochastic gradient
descent where m is fixed. The surprising fact discovered by Pham et al. [PGZ 18] is
that M = 1 woks fine. So shared parameters can be updated from any single model
m sampled from ~ 7(m; ). The shared parameters w are trained during an entire pass
through the data.

4.2.2 Training controller parameters

To train controller parameters 6, shared weights w are fixed. The weights of the controller
are updated to maximize the expected reward E,,., [R(m,w)] by employing Adam
optimizer. The gradient for Adam optimizer is calculated using REINFORCE [Wil92]
with a moving average baseline to reduce variance. To understand this training process
we will discuss framing neural architecture search as a reinforcement learning problem.
The reward R(m,w) is calculated using the holdout validation set. Using validation set
pushes ENAS to find the architectures which generalize well. Though as this validation
set accuracy acts like a reward signal for the controller, there might be a possibility of
controller overfitting on the validation dataset.

16



4.3 Macro search space

Macro search space in ENAS consists of the entire architecture search space where the
controller samples the entire architecture design.

In ENAS macro architecture for a neural network with N layers consists of N parts,
indexed by 1, 2, 3, ..., N. i consists of:

* Anumberin [0, 1, 2, 3, 4, 5] that specifies the operation at layer i-th, corresponding
to conv 3x3, separable conv 3x3, conv 5x5, separable conv 5x5, average pooling,
max pooling.

* A sequence of 1 - 1 numbers, each is either O or 1, indicating whether a skip
connection should be formed from the corresponding past layer to the current
layer.

An example of architecture sampled from macro search space for a 24 layer convo-
lution neural network looks like this:
(2]
[50]
[100]
[3110]
[30011]
[100001]
[0000000]
[3000000 1]
[400001000]
[4101010101]
[11100101111]
[510101010001]
[1001100101000]
[21010100011000]
[300110001011001]
[2001011010011011]
[40011010000110101]
[500011010111110000]
[1010001101001000000]
[10000111000010001111]
[41101101100110000001 1]
[510100101010001010101 0]
[51111011000111111101111]
[111101100000101110000101]

17



Here the first number in the array represents the type of operations and next number
represents whether we want a skip connection with previous layers or not.

4.4 Designing architectures in macro space

To design convolution network the the controller samples two operations from macro
search space:

¢ Previous nodes to connect to

» Computation operations to use

conv e sep 1] 3 | conv 5x5

3x3 : max 3x3 [ 1 ]:" 2 3%3 T T
T T T f = softmax softmax i

softmax softmax softmax softmax ‘ ‘

D ) J \J

Figure 5. ENAS controller sampling procedure on macro search space, here we can see
our controller sampled operations and skip connections layer by layer.

An example of ENAS controller sampling architecture from macro search space of
shown in . Let’s say we have 4 nodes to sample:

1. The first node is sampled as conv 3x3.
2. Second node is sampled as a max 3x3 with skip connection to node 1.

3. Third node is sampled with operation sepconv 3x3 and skip connections with node
1 and 2.

4. Fourth node is sampled with operation conv 5x5 and skip connection with node 1
and node 3.

18
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Figure 6. Sampled macro architecture by ENAS controller; Architecture sampled by
ENAS controller as described in Figure 5

Final architecture for above example can be seen in Figure 6. The corresponding DAG is
shown in Figure 7

Complexity: Previous node connection allows possibility of skip connections. So
at layer n there are already n-1 layers are sampled which gives possibility to connect to
previous layers leading upto 2"~! decisions. For the operations the controller has option
of 6 operations as described in section 3.1 . Making these decisions for a total N times so
that we can sample N layers. As all decisions are independent of each other this fives us
6L x 2(L=1/2 networks in the search space.
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Figure 7. Corresponding DAG for macro architecture described in Figure 6, the red edges
corresponds to the activated connections

4.5 Micro search space

The idea of micro search was first proposed by Zoph et al. [ZVSL17]. The idea behind
micro search is to construct a best possible convolution layer(or "cell") instead of the
entire convolution neural network architecture. The overall architecture of the networks
are manually predetermined. The convolution network consist of convolution cells
repeated many times. This network was termed as NASNet[ZVSL17], though efficient
this network still required 2000 GPU-hours to search an architecture for CIFAR-10
dataset.

To describe micro search in simple terms, we can think neural network as a set of building
blocks. Blocks are repeated to construct the architecture. The blocks consist of N "cells"
and every cell is made up of B nodes. An output from a block is treated as input to the
other block. Similar process happens with the cells and nodes. A simple representation
of a block is shown in Figure 8. In Figure 9 we can see the entire neural network
constructed with 3 blocks. This idea was later incorporated into ENAS by Pham et al.
[PGZ"18]. Instead of designing an entire neural network, ENAS controller can sample
smaller modules then connect them together to form a large network. ENAS again uses
parameter sharing with micro search to increase the efficiency. The controller search
strategy and the performance estimation strategy remains the same for micro search as it
was in macro search.

For micro search ENAS computational graph consists of B set of nodes. Here B is the
number of computations inside the cell. The first two nodes sample are treated as inputs
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Figure 8. Structure of a block generated with micro search. The block with N = 3
consist of 3 convolution cell and 1 reduction cell.

to the cell. These inputs can be the output from the previous cells or first 2 sampled
nodes. For remaining B — 2 nodes the ENAS controller makes two decisions:

* To use the previous two nodes as the inputs to the current node
* QOperations applied to the two sample nodes

The micro search space consist of cells which act as a building blocks to the final
architecture. In ENAS micro architecture can be described as a set of two cells which
form a block and then that block is iteratively repeated. In ENAS the controller sampled
2 arrays every iteration, the first array described the convolution cell and the second array

input —

Convolution
cell
Reduction
cell
Convolution
cell
Reduction
cell
Convolution
cell
Reduction
cell
Softmax

> > >
= = =

Figure 9. A simple neural network architecture constructed with 3 blocks, each block
consist of NV convolution cells and 1 reduction cell.
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described the reduction cell.

The cell architecture sampled by controller looks like this:
[03102100213100130151]

[10101110102032213440]

Here the array is in the formation of first index, first operation, second index, second
operation. The indexes can be any previous index. The operations can be between [0, 1
,2,3 ,4] corresponding to separable conv 3x3, separable conv 5x5, average pooling, max
pooling and identity respectively.

4.6 Designing convolution cells

The cell design procedure is as follow, let’s say B = 4 for our experiments here.
Every cell will contain 4 operations, out of which 2 operations will be chosen from the
previously sampled nodes. The controller does the following steps to sample a single
cell block:

a\rg 3x3 5Ep 3x3

sep 5x5 id 3
sortmax smtmax
sortmax softmax

_7—.___'__/

4

Figure 10. Micro architecture search by ENAS controller

1. Node 1 and 2 are input nodes so no computations are required from controller side
here. let 0; and o be the output from these nodes. Node 1 and node 2 can either
be single operations or independent cells.

2. Atnode 3: the controller samples two previous nodes and two operations. In Top
Left, it samples node 2, node 2, separable_conv_5x5, and identity.

3. The previous step leads to 03 = sep_conv_5x5(0y) + id(02).

4. At node 4: the controller generates a skip connection with node 3, node 1,
and sample operations avg_pool_3x3, and sep_conv_3x3. This leads to o4 =
avg_pool_3x3(03) + sep_conv_3x3(01).
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5. Since all nodes other than o4 were used as inputs to another node, the loose end,
04, 1s now the cell’s output. To deal with multiple loose ends, ENAS concatenates
the loose ends along the depth dimension.Finally all the concatenated loose ends
together forms the final cell output.

Reduction cell: A reduction cell can also be constructed from the search space
by sampling the computational graph from the search space and applying stride 2 to all
operations. This helps in reducing the spatial dimensions of the input bu a factor of 2.
ENAS samples the reduction cell conditioned on the convolution cell. This sampling
makes the controller run for 2(B — 2) blocks.

Figure 10 represents the procedure we described in a visual way, Figure 11 is the
final cell architecture sampled by the controller and Figure 12 is the corresponding DAG.

Complexity: As in micro search space the controller can sample two nodes from
1 — 1 previous nodes and all the decisions are independent. For designing cells the
complexity for micro search space drops down to (5 x (B — 2)!)* which is way less than
macro search space.

4.7 ENAS performance estimation strategy

ENAS uses weight sharing based performance estimation strategy. As we mentioned
earlier that ENAS samples architectures from a DAG with shared with node edges sharing
weights. After every epoch controller samples, 10 architectures and ENAS evaluates
those architectures based on a hold out validation set and sends that as a reward signal
back to the controller. In case of our image classification task the performance estimate
is the accuracy on the validation dataset.
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Convolution
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Figure 11. Final cell architecture sampled by the controller for micro search

5 Experimental setup

For our experiments we used the same settings as the authors described here (https://github.com/melodyguan/
. We used CIFAR-10 and CIFAR-100 datasets for our experiments.

1. CIFAR-10: CIFAR-10 dataset consist of 50,000 training image and 10,000 test
images. it’s a very standard dataset used for image classification benchmarks.

2. CIFAR-100: CIFAR-100 dataset is just like CIFAR-10 except it has 100 classes
containing 600 images each. There are 500 training images and 100 testing images
for each class.
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Figure 12. Corresponding DAG for Micro architecture search, the red edges represents
the activated connections.

Using CIFAR-100 allows us to independently evaluate ENAS as it has not been
tested on CIFAR-100. CIFAR-100 dataset is much more challenging dataset due to lesser
number of training images per class.

For ENAS uses following data pre-processing and augmentation techniques:
1. Subtracting channel mean and dividing the channel standard deviation
2. Centrally padding the training images to 40 X 40
3. Randomly cropping them to 32 X 32 then randomly flipping them horizontally.

The hyper parameters for our macro search are as follows:
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Hyperparameter Value
batch size 128
number of child layers 24
number of output filters 96
child L2 Regularization rate 0.00025
number of child branches 6
cell layers 5
child keep probability 0.90
child max learning rate 0.05
child minimum learning rate 0.0005
controller entropy weight 0.0001
controller training steps 50
controller learning rate 0.001

The hyper parameters for our micro search are as follows:

Hyperparameter Value
batch size 160
number of child layers 15
number of output filters 36
child L2 Regularization rate 0.00025
number of child branches 5
cell layers 5
child keep probability 0.80
child max learning rate 0.05
child minimum learning rate 0.0005
controller entropy weight 0.0001
controller training steps 50
controller learning rate 0.001

5.1 Transfer learning experiments

Transfer learning refers to the idea that one model trained for one task can be reused on
other similar tasks with some fine-tuning. Our main idea at the beginning of this research
was to apply transfer learning on ENAS controller to get more efficient performance
from ENAS. Usually, transfer learning is very efficient for warm starting the model by
initializing it with weights from a pre-trained model on a task. In this setting, we trained
an ENAS controller on the CIFAR-10 dataset and then transferred that controller weights
to the more challenging CIFAR-100 dataset.

We first trained the controller for 310 epochs as recommended by authors on
CIFAR-10 on macro search space. We saved the file in pickle format and then initialized
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the controller for CIFAR-100 task with saved weights.

CIFAR 10 CIFAR 100

- Weight transfer
Controller IIIIIIIIIIIIIIIIIIIIII*‘ Controller

EMAS EMAS

Figure 13. Transfer learning of ENAS controller

For our experiments we trained the architectures from scratch sampled by controller
at epoch 310, 155 and 100.
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def _create_params(self):
initializer = tf.random_uniform_initializer(minval=-0.1, maxval=08.1)
with tf.variable scope(self.name, initializer=initializer):
with tf.variable_ scope("lstm"):
self.w_lstm = []
for layer_id in xrange(self.lstm_num_layers):
with tf.variable scope('"layer {}".format(layer_id)):
w = tf.get_variable(

"w", [2 * self.lstm_size, 4 * self.lstm_size])
self.w_lstm.append(w)

self.g_emb = tf.get_variable("g_emb", [1, self.lstm_size])
if self.search_whole channels:
with tf.variable scope('"emb"):
self.w_emb = tf.get variable(
"w", [self.num_branches, self.lstm_size])
with tf.variable_scope("softmax"):
self.w_soft = tf.get variable(

"w", [self.lstm_size, self.num_branches])
else:

self.w_emb = {"start": [], "count": []}
with tf.variable scope('"emb"):
for branch_id in xrange(self.num_branches):
with tf.variable_scope("branch_{}".foermat(branch_id)):
self.w_emb["start"].append(tf.get variable(
"w start", [self.out_filters, self.lstm_size]));
self.w_emb["count"].append(tf.get_variable(
"W _count", [self.out filters - 1, self.lstm_size]));

self.w _soft = {"start": [], "count": []}
with tf.variable_scope("softmax"):
for branch_id in xrange(self.num_branches):
with tf.variable_scope("branch {}".format(branch_id)):
self.w_soft["start"].append(tf.get_variable(
"w_start", [self.lstm_size, self.out_filters]));
self.w_soft["count"].append(tf.get variable(
"w count", [self.lstm_size, self.out filters - 1]));

with tf.variable_scope("attention"):

self.w attn_ 1 = tf.get variable("w 1", [self.lstm_size, self.lstm size])
self.w_attn_2 = tf.get_variable("w 2", [self.lstm size, self.lstm size])
self.v_attn = tf.get_variable("v", [self.lstm_size, 1])

Figure 14. Structure of ENAS controller
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def _create_params(self):
df = load_df()

with tf.variable_scope(self.name):
print('restoring values')
with tf.variable_scope("lstm"):
self.w_1stm = []
for layer_id in xrange(self.lstm_num_layers):
with tf.variable_scope("layer_{}".format(layer_1id)):
w = tf.variable(initial_value = df.loc['controller/lstm/layer_{}/w'.format{layer_id)]['val’'] )
self.w_lstm.append(w)
self.g_emb = tf.variable(initial_value = df.loc['controller/g_emb']['val'])
if self.search_whole_channels:
with tf.variable scope("emb"):

self.w_emb = tf.Variable(initial value = df.loc['controller/emb/w']['val'])
with tf.variable_scope("softmax"):
self.w_soft = tf.variable(initial value = df.loc['controller/softmax/w']['val'])

else:
self.w_emb = {"start": [], "count": [1}
with tf.variable scope("emb"):
for branch_id in xrange(self.num_branches):
with tf.variable scope("branch {}".format(branch_id}):
self.w_emb["start"].append(tf.get_variable(
"w start", [self.out filters, self.lstm size]));
self.w_emb["count"].append(tf.get_variable(
"w count", [self.out filters - 1, self.lstm size]));

self.w_soft = {"start": [], "count": []1}
with tf.variable_scope("softmax"):
for branch_id in xrange(self.num branches):
with tf.variable_scope("branch_{}".format(branch_id}):
self.w soft["start"].append(tf.get variable(
"w_start", [self.lstm_size, self.out_filters]));
self.w_soft["count"].append(tf.get variable(
"w_count", [self.lstm_size, self.out_filters - 1]));

with tf.variable_scope("attention"):
self.v_attn = tf.Variable(initial_value = df.loc[ 'controllerfattention/v']['val'])

self.w_attn_1 = tf.variable(initial_value = df.loc['controller/attention/w_1']J['val'])
self.w_attn_2 = tf.variable(initial_value = df.loc['controllerfattention/w_2']['val'])

Figure 15. Transferred ENAS controller, here we can see that all the layer initialisation
for LSTM were replaced by dataframe values stored from the last controller training on
CIFAR-10
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5.2 Learning curve experiment

For learning curve evaluation we trained ENAS controller for 310 epoch as recommended
by authors for finding the best architecture. Then we took sampled architectures at epoch
1 and epoch 310. We trained these architectures from scratch on CIFAR-10 and CIFAR-
100 datasets. We had 3 runs for macro search space and 2 runs for micro search space.
This experiment is performed to evaluate architectures sampled at different epoch by the
controller and checking for the performance variance of these sampled architectures at
initial and final epochs.

5.3 Performance estimation strategy experiment

For evaluation of the performance estimation strategy for ENAS we trained architectures
sampled on epoch 155 from scratch. ENAS controller samples 10 architectures every
epoch. We took 5 architectures sampled at epoch 155 with various validation accuracy
and trained them from scratch. Our reason for choosing epoch 155 is to avoid the
phenomenon that all ENAS sampled architectures might give the best possible accuracy
when sampled by the controller at the last epoch. At epoch 310 the difference between the
validation accuracies of different architectures is very small, at epoch 155 the difference
between the validation accuracies is large(20 percent), hence an epoch in the middle of
the training is chosen. This experiment is performed to find out any correlation between
our performance metric performance estimation strategy and actual performance of the
architectures.
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6 Results

6.1 Transfer learning

Now we compare the results from our transfer learning experiments with ENAS trained
from scratch

Dataset Search Space | Sampled epoch | Transfer applied | Accuracy
CIFAR-100 macro 310 NO 80.55
CIFAR-100 macro 100 NO 80.78
CIFAR-100 macro 155 NO 80.33
CIFAR-100 macro 310 YES 80.35
CIFAR-100 macro 100 YES 80.19
CIFAR-100 macro 155 YES 80.39

Table 1. Performance of architectures trained by CIFAR-100. The controller was trained
for macro search space for 100, 155 an 310 respectively in case of both transfer learning
and ENAS.Before testing, the architectures were retrained for 310 epochs.

Here we can notice some unexpected results as the architectures sampled at epoch
100 and 155 gave the same performance as compared to the final architectures while
training from scratch as well as in transfer learning. These results became our motivation
to conduct learning curve evaluation for ENAS controller.

We also noticed that for CIFAR-10, ENAS samples final architectures only consist-
ing of convolution operations but for CIFAR-100 it samples the architectures involving
pooling operations and convolution operations. Though after the controller transfer
ENAS only sampled convolution operations for CIFAR-100, which concludes that the
ENAS transfer was successful. We also notice in Figure 16 and Figure 17 that learning
curve of every architecture sampled by ENAS for CIFAR-100 follows the same learning
curve. This phenomenon should be inspected in future work.

6.2 Learning curve evaluation

For CIFAR-10 and CIFAR-100 we trained architectures with highest validation accuracy
sampled at initial epoch and final epoch by the controller. We observed that there is no
significant difference between the accuracy of trained architectures in both cases. We ran
it several times and observed no significant difference except for a few outliers which
might occur due to random weight initialization.
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Figure 16. Learning curve of sampled architectures for both ENAS and transfer learning
with ENAS for epoch 155

The analysis of the learning curve leads to the conclusion that ENAS controller does
not learn from its past actions as the architecture sampled on the first epoch performed as
good as the architecture sampled on the final epoch. Also, the fact the search space is
highly constrained and almost every model sampled has the capacity to fit both CIFAR-10
and CIFAR-100.

We were not able to train architecture sampled from micro search space for CIFAR-
10 due to various GPU errors.

We notice that there is no significant difference in initial and final architectures
in both macro and micro search. This leads up to question the use of controller and
search strategy in general in case of ENAS. As it might be possible that the architecture
construction procedure is so sophisticated that any random controller can lead to a good
architecture.

One might question that a 24 layer network is too big for these datasets, hence any
network with skip connections in the constrained search space will perform equally well.
To avoid that, we also conducted experiments with 12 layer networks. We noticed some
decrease in accuracy with 12 layer architectures but the behaviour of ENAS for 12 layer
was similar to ENAS with 24 layers.
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Figure 17. Learning curve of sampled architectures for both ENAS and transfer learning
with ENAS for epoch 100

6.3 Performance estimation strategy evaluation

All architectures were trained from scratch for 310 epochs, which were sampled at epoch
155 with different validation accuracy and gave the same final accuracy on CIFAR-100.
This raises some serious question about the validity of performance estimation strategy.
In Table 3 we can see the results from this experiment, sampled epoch is the number
of epoch controller was trained for and gave the following validation accuracy of the
architectures.

In Figure 18 we take a snapshot of the macro search space controller for CIFAR-
100 at training epoch 155 out of 310 and compare the validation accuracies (used for
further controller training) of some generated architectures and test accuracies of the
same architectures after having re-trained them. We infer from Figure 18 that there
is no positive correlation between these two metrics, and thus we cannot expect that
the validation accuracy with shared weights represents a useful training feedback for
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Dataset

Search Space

Sampled epoch

Accuracy

CIFAR-10

macro

1

96.69
95.80
95.71

CIFAR-10

macro

310

95.38
95.81
95.76

CIFAR-100

macro

80.75
77.12
80.55

CIFAR-100

macro

310

80.39
80.07
80.47

CIFAR-100

micro

79.59
77.67

CIFAR-100

micro

310

80.50
80.02

Table 2. Performance of architectures trained by ENAS for CIFAR-10 and CIFAR-100.
For the macro search space, both the was trained for 310 epochs. For the micro search
space, the it was trained for 150 epochs. Before testing, the architectures were re- trained
for 310 epochs. Table cells with multiple numbers correspond to multiple runs of the

same experiment.

controller improvement.

Dataset | Sampled epoch | Validation accuracy | Final accuracy
CIFAR-100 155 41.41 80.33
CIFAR-100 155 32.81 81.11
CIFAR-100 155 17.97 80.81
CIFAR-100 155 21.09 80.50
CIFAR-100 155 28.12 81.12

Table 3. Results from the analysis of performance estimation strategy
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Figure 18. Scatter plot showing validation accuracy using the shared weights (x-axis) and
the test accuracy of the architecture after re-training architecture for 310 episodes. Each
point represents a neural architecture generated by the ENAS controller after having been
trained for 155 episodes using the macro search space.

7 Conclusion

In this thesis we have analyzed the learning curve for ENAS controller, ENAS perfor-
mance estimation strategy, and applied transfer learning to the ENAS controller. Our
experimental results suggests to question the search strategy and performance strategy of
ENAS and similar techniques.

‘We conclude this thesis in three sections, where we will evaluate ENAS search
space, search strategy and performance estimation strategy.

1. Analysis of Search space: Our experimental results which are consistent with
the findings by [LT19] indicate that the ENAS search space is the main contributor
to its an impressive performance. Even an untrained controller can result in a good
accuracy for given dataset. This performance can be attributed to a carefully crafted
search space consisting of elements like convolution operations, pooling operation
and skip connections. In the future work we will measure the performance of
ENAS with more diverse elements like dilated convolution, highway networks etc
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2. Analysis of search strategy: The ENAS search strategy turns out to be ineffec-
tive in finding better architectures. Our research questions the learning process of
the controller itself, as after training for 310 epochs the controller does not sam-
ple architectures with better performance than the architectures sampled initially.
Instead of finding an optimized architecture ENAS controller seems to overfit on
the validation dataset and its shared parameters of DAG. From our research, we
cannot conclude that a trained controller samples better architectures for CIFAR-10
and CIFAR-100 tasks. As described in Adam et al. [AL], ENAS controller can
lead to biased sampling. As the ENAS training loop alternates between training
shared parameters and then training the controller parameters, previously sampled
architectures which are sampled again performs better because of improvement
in shared parameters. This phenomenon leads to less diverse architectures as the
ENAS controller will prefer the architectures which have more shared weights and
less new weights or connections. This leads to a trained controller which samples
less diverse architectures than a random controller. This can be noticed in the
training for CIFAR-10 as the controller only samples convolution operations and
stops sampling pooling operations.

3. Analysis of performance estimation strategy: The performance estimation
strategy in ENAS proves to be ineffective for evaluation of architectures. As we
observed in our experiments, almost all architectures with different validation
accuracy gave the same final accuracy.This raises a question on the validity of the
weight sharing based performance estimation strategies, as architectures which
share more weights will be rewarded higher as compared to other diverse architec-
tures. This can lead to the conclusion that weight sharing in general can lead to
bias in architecture search, which will lead to sampling of similar operation again
and again to increase its reward. A systematic study on the predictive power of the
validation error using shared weights will shed more light on the effectiveness of
this speedup-technique in general.

ENAS was a major improvement over NAS [ZL16], though our experiments and
analysis provided us with some interesting insights about ENAS and what works and
what does not. This analysis was necessary as ENAS and other techniques are now being
used in critical areas like medicine and diagnostics [GS19].A systematic study on the
predictive power of the validation error using shared weights will shed more light on the
effectiveness of this speedup-technique in general. Our results motivate future studies of
one-shot neural architecture design as a pragmatic and efficient alternative to architecture
search.

Finally, the methodology applied in this work can be applied to evaluate the
learning progress of other neural architecture search methods like DARTS [LSY 18],
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Neural architecture optimization [LTQ™ 18] and Progressive neural architecture search
[LZS*17] to validate their performance and claims.
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Appendix

I. Glossary

1. LSTM: Long short-term memory

2. NAS: In thesis it’s referred to "Neural architecture search with reinforcement
learning" [ZL16]

3. ENAS: Efficient neural architecture search via parameter sharing [PGZ*18]
4. AutoML: Automated machine learning

5. DAG: Directed acyclic graph
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