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Gesture Detection Software for Human-Robot Collaboration 

Abstract: 

With robots becoming more complex machines with more actions available at their disposal,             

it becomes harder for humans to control them without prior training. I propose a gesture               

detection system which uses OpenPose and ROS (Robot Operating System) to control mobile             

robotic platforms. Output from OpenPose is normalized into a joint angle form, which is also               

used to describe gestures in the system. Proposed normalization method in combination with             

the capability to change described gestures in a separate YAML configuration file makes the              

whole system scalable for a developer who can add, remove or modify gestures described by               

angle notation. The developed system is able to detect static gestures and was tested on three                

sets, each consisting of 5 gestures to control a Clearpath Jackal mobile robot.  

Keywords: gesture detection, human-robot collaboration, OpenPose, ROS 

 

CERCS: T120 - Systems engineering, computer technology, T121 - Signal processing, T125            

- Automation, robotics, control engineering 

Žestituvastus tarkvara inimese ja roboti koostööks 

Lühikokkuvõte: 

Robotid on muutumas tehniliselt aina keerukamaks ning nende abil on võimalik täita üha             

enam ülesandeid. Ka robotite juhtimine on inimestele muutumas väga keeruliseks.          

Käesolevas lõputöös luuakse kehakeele-põhine süsteem, mis kasutab tarkvarateeke OpenPose         

ja ROS, et juhtida mobiilset robotplatvormi. OpenPose’i väljund normeeritakse nurkade          

esitlusele, milles on kirjeldatud ka kasutatavad žestid. Loodud süsteem on skaleeritav, sest            

normeeritud kujul žeste saab robotsüsteemi arendaja vastavalt vajadusele lisada, muuta ja           
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eemaldada YAML-tüüpi konfiguratsioonifailis. Valminud lahenduse demostreerimiseks      

implementeeriti kolm erinevat 5-žestilist komplekti, mille abil juhiti Clearpath Jackal          

mobiilset robotit. 

Võtmesõnad: žestituvastus, inimene ja roboti koostöö, OpenPose, ROS 

 

CERCS: ​T120 - Süsteemitehnoloogia, arvutitehnoloogia, T121 - Signaalitöötlus , T125 -           

Automatiseerimine, robootika, juhtimistehnika 
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1. ABBREVIATIONS 

ANN - Artificial Neural Network 

CNN - Convolutional Neural Network 

COCO - Common Objects in Context 

DTW - Dynamic Time Warping 

HD - High Definition 

HMM - Hidden Markov Model 

KF - Kalman Filter 

KNN - K-Nearest Neighbor 

MPII - Max Planck Institute of Informatics 

PF - Particle Filter 

RF - Radio Frequency 

RGB - Red Green Blue 

ROS - Robot Operating System 

SVM - Support Vector Machine 

UGV - Unmanned Ground Vehicle 

YAML - Yet Another Markup Language 
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2. INTRODUCTION 

Robots are becoming increasingly complex, having different sensors, actuators, etc. Such           

systems require complex controller devices to have the control over every part of the robot               

and. These controllers are hard to use without some prior training. This can become a               

problem during emergency situations, where it is dangerous to send people, such as             

Fukushima or Chernobyl disasters. It is better to send robots, but it takes time to train the                 

specialist in, for example, nuclear physics how to control some complex robot. More natural              

and fluent ways of communication can make training faster.  

Alternative ways to communicate with computers and robots are being developed, such as             

voice recognition or gesture detection systems. Gesture detection systems are able to detect             

and recognize humans' gestures as commands for the robot and trigger the corresponding             

action. These systems have a problem, that all detected gestures are predefined and robot              

operators might have no control over which gestures to use. This leads to the fact that in the                  

end operators will anyway need time to remember all control gestures. 

To solve this problem and make gesture control more fluent and natural I propose a gesture                

detection system, which uses joint angles as a description factor for gestures and is able to                

change the gesture set without the change of code.  
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3. LITERATURE REVIEW 

Controlling robots and systems alike via body and hand gestures has shown to be a viable                

alternative to keyboard or joystick based controls, as gestures provide much more degrees of              

freedom and give a more natural way of commanding the robot ​[1]​. Voice commands are also                

proven to be a viable method to control the robot ​[2]​, but voice limits control of a robot to a                    

specific language, which limits the user group to those, who know the language of a system.                

Gestures, on the other hand, require only a human body, which makes them more universal in                

a sense of possible users. That are the reasons why gesture detection systems are being               

developed. But gestures themself also can be used differently and can be described multiple              

ways. 

3.1. Gestures 

Gestures are expressive, meaningful body motions involving physical movements of the           

fingers, hands, arms, head, face, or body ​[3]​. Gestures are generally categorized into three              

types: 

1. hand and arm gestures: hand signals and sign languages 

2. head and face gestures: emotions, direction of gaze, facial expression, head movement 

3. body gestures: full body motion 

Meaning behind a gesture can be described by the following factors ​[3]​: 

● spatial information: surroundings of gesture 

● pathic information: how the gesture is made (the path it takes) 

● symbolic information: sign, made by gesture 

● affective information: emotions behind the gesture 
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Also gestures can be described by how many time frames they need to be described: 

● Static gestures - gestures, which need only one time frame to be fully described, for               

example indicating a direction by pointing the arm in according direction. 

● Dynamic gestures - gestures, which need a sequence of time frames to be fully              

described, for example waving a hand. 

3.2. Robots controlled by gestures 

Different robotic systems with availability of gesture control were created over the years. For              

example in ​[4] every part of the system, starting from the glove and finishing with the robot                 

arm itself was developed completely from scratch with a goal to create the robot and control                

it wirelessly with a device, which is not the controller (Fig. 1). But the current trend is to use                   

cameras and image processing to create gesture controlled systems, because almost any            

device has a camera with HD resolution or higher. One of such systems is presented in ​[5]​,                 

where with the help of image processing a simulated robot was controlled in real time with                

hand gestures, such as can be seen in Fig. 2. Similar approach is used in ​[6]​, where hand                  

gestures were used as a way to make UGV move to one of predetermined directions. There                

also exist much more complex solutions, with usage of machine learning algorithms and             

more complex sensors, than a camera, such as ​[7]​, where researchers used Microsoft Kinect              

V2 to build a robust system, which is the prototype to a safely controlled robot arm, which                 

can work independently, but operator can take control any time and use hand gestures to               

manually control movement of a robot or to create a new task for it. (Fig. 3). Current systems                  

tend to be proof of concepts, which shows that gestures are a viable way in human-robot                

communication and can be a more natural way of commanding a robot.  
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(a) (b) 

Figure 1.​ ​Example of gesture detection based application consisting of glove (a) and 
controllable by it robot arm (b) ​[4] 

 

 

Figure 2. ​Workspace set-up, used in ​[7]​ to interact with robot arm with gestures to make a 
safer environment for a human with control over some distance. Human operator stands in 

front of the Kinect V2 camera 
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3.3. General design of gesture detection systems 

Gesture processing in its core is an information processing task, which can be described by a                

four-stage model given in Fig 3 ​[8]​. First, information is recorded by the sensor, the next step                 

is to extract only information required for decision making, which is the next step. In the last                 

step, this decision triggers certain response action. 

 

Figure 3.​ ​Four-stage model of human information processing ​[8]​. First, we receive information 

from the sensor. After that we pick and store necessary information. Next step is to make a decision, 

what this information represents and after that react accordingly. 

In ​[9] this model was extended to generally describe the process of gesture recognition for the                

Human-Robot Collaboration field in five steps (Fig 4): 

1. Sensor Data Collection. Acquiring the information, received by the sensor or the            

system of multiple sensors. This step describes the choice of sensors for recording the              

information about the human. 

2. Gesture Identification. Recognizing the gesture in the received data. 

3. Gesture Tracking (Optional. In case detection of dynamic gestures is necessary).           

Track the location of the gesture to understand, if the gesture belongs to the same               

person. 

4. Gesture Classification. From data, received on steps 2 and 3, classify gestures into             

known gestures. 

5. Gesture mapping. Translating received results into command for the robot. 
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Figure 4​. Process model of gesture recognition for human-robot collaboration ​[9] 

As each step of the gesture detection pipeline (Fig. 4) has several approaches on how they                

can be done, the following subsections will cover possible solutions for each step. 

3.3.1. Sensors 

The raw input data for detecting gestures is generally collected either from wearable or              

non-wearable sensors.  

Wearable devices are glove-based (Fig. 5a), band-based (Fig. 5b and Fig. 5c) and marker              

solutions (Fig. 6a and Fig. 6b). Glove-based devices consist of a glove with multiple sensors,               

which can detect: position in space, orientation and flexing of fingers ​[1]​. Band-based sensors              

are referred to as wristband solutions, which use tomography to measure the impedance of              

the hand in the wristband region. Each hand gesture has its own unique impedance values,               

which can be measured and analysed ​[10]​. Marker system utilizes a combination of one or               

more cameras (Fig. 6a) and special markers (Fig. 6b), attached to the human body, which               

needs to be tracked. Depending on the type of the camera, output can be 2D RGB image with                  
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certain color representing the tracked body parts ​[11]​, or it can be 3D RGB image, which                

gives point cloud image ​[12]​. Marker based tracking systems are commonly used to create             

CGI characters with real mimics and movements (Fig. 7) ​[13]​. 

 

 

(b) 

 

(a) (c) 

Figure 5: ​(a) ​Example of glove device from ​[14]​. (b) ​Example of band (wristband) device 

from ​[10]​ ​worn on arm (b) and wrist (c) with corresponding reconstructed images of interior 

limb structure​. 
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(a) (b) 

Figure 6. ​Example of camera setup for motion capture with markers (a) and markers, 
attached to a plate, which stick to a human body (b) ​[15]​. 

 

 

  

(a) (b) 

Figure 7.  ​Example of usage of Motion Capture in movies ​[13]​. In (a) an actor in motion 
capture costume is acting as Gollum. With the help of motion capture costume CG Gollum 

(b) acting is made. 

Non-wearable devices can be based on 4 different sensor solutions: RGB camera (Fig 8a),              

stereo camera (Fig 8b), depth camera (Fig 8c) and radio frequency (RF) based sensors (Fig.               

8d). The RGB camera's output is a regular 2D RGB (Fig 9a) image. Idea, which lies behind                 

stereo cameras, is a way how people perceive depth. It is 2 cameras, taking each their own                 

image (Fig 8b), which can be later used to construct a point cloud image. Depth sensors are                 
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non-stereo depth sensing devices ​[9]​. The output of a depth camera is always a depth image.                

In contrast with an ordinary RGB image, where each pixel value represents a color intensity,               

in depth image each pixel value represents a distance from a camera (Fig 8c). RF-based               

(radars) sensors are referred to the devices, which use radio frequency to detect objects ​[16]​.               

Because certain RF can pass through objects, it is possible to use RF to track the person even                  

through walls, as it was done in ​[16]​.   
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(a) 

 
 

(b) 

 
 

(c) 

 

 

 

(d) 

 

 Figure 8. ​Camera and output image from it (a); stereo camera and output in 
poincloud form ​[17]​ (b); depth camera and output depth images (darker - further) 

(c); Radar sensor and it’s output in top-down view ​[18]​ (d).  
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3.3.2. Gesture identification 

The role of gesture identification task is to process the data captured by the sensors to extract                 

relevant gesture information for the next gesture detection stage. Output of this step might              

differ, depending on the used type of sensor, but the current trend is to output keypoints                

which contain the information of different parts of the human body, such as shoulders,              

elbows and palms. 

In glove-based and band-based sensors, the amount of data is defined by the amount of               

sensors connected to the glove, meaning that gesture identification step is already done             

during the creation of the glove sensor. On the other hand, non-wearable and marker based               

sensors provide data that requires extensive filterings as a person does not occupy the whole               

image and takes only a portion of it. There are several ways to extract the necessary                

information from this raw data, where each method works with any non-wearable sensor             

output, if not stated so. First method is identification by color, which is used with RGB                

images and can not be used with depth images as they don’t represent colors or RF sensors                 

output which the location of detected points. It can be used to extract the information about                

the limb, by knowing its color ​[19]​. It is also used in combination with markers, as they are                  

always of contrast color. ​[11]​. 

Next method is model-based, where all necessary body parts are constructed into a body              

model. Later this model is fitted into the input image and information about found body parts                

becomes output ​[20], [21]​. With emergence of depth sensors, this method also started using              

3D models to make it more robust and efficient for detecting body parts ​[22]​. Similar to that                 

approach is usage of local features. Idea behind it is to divide the whole image into small                 

regions without any correlation to body parts. After that some predetermined local features,             

such as high contrast or detected blob size, are found in every region and identification is                

made, based on the information about these local features ​[23]​. Next way of extracting              

information is motion. In ​[24] such method was used to identify gestures on the image with                

static background. In ​[16] this solution was used in combination with an RF transmitter to               

detect and track the person through walls. Recent trend in gesture identification is to use               
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machine learning algorithms ​[9]​. These algorithms at some point outputs keypoints of            

necessary joints ​[25]–[27]​. 

OpenPose 

One of the machine learning solutions is OpenPose. It is an open-source real-time system for               

multi-person 2D pose detection, including body, foot, hand and facial keypoints ​[28]​. This             

software is free for non-commercial use [28], making it good identification software for the              

research, related to gesture recognition. OpenPose takes 2D RGB images as input and outputs              

detected keypoints location, associated with the joints of a person. OpenPose achieves            

multi-person real-time tracking by utilizing Part Affinity Field (PAF), which helps to            

combine all detected keypoints in multiple sets, where each set is a different person. PAF               

describes a limb by a set of vectors, which contain information about the location of limb                

joints (Fig. 10). OpenPose also supports multiple body models with different number of             

keypoints in each model (Fig. 9). The MPII (Max Planck Institute of Informatics) is one of                

the datasets with labeled human body models used for training machine learning algorithms             

for gesture identification. MPII model consists of 15 keypoints annotating ankles, knees, hips,             

shoulders, elbows, wrists, necks, torsos and head tops. COCO (Common Objects in Context)             

is a dataset of labeled images with human beings being one of labeled objects. Human body                

model was labeled for the COCO keypoint challenge, where the task is to create gesture               

identification software with output in a form of body keypoints. The COCO body model is               

similar to the MPII model, but also describes facial keypoints (eyes, ears and nose). Also               

OpenPose developers expanded the COCO body model with a more detailed foot model and              

called the modified version BODY_25. 
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Figure 9.​ ​Three different body models, originating from different datasets ​[28]​. MPII - 

Max Planck Institute for Informatics dataset. COCO - Common Objects in COntext ​[29] 

dataset. 

 

 

Figure 10.​ ​Example how PAF looks. Vectors (orange) describe the location of left shoulder 

and left elbow ​[28]​. 

3.4.3. Gesture tracking 

Gesture tracking is a process of tracking the gesture over multiple time frames and making               

sure that identified gesture belongs to the same person as in the previous frame. This step is                 

required for dynamic gestures, as they require multiple time frames to be described. This step               

is unnecessary for gesture recognition with wearable sensors, as the sensor is worn by the               
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operator during the gesture detection cycle, meaning that the information from those sensors             

is always about the same person. 

In ​[9] tracking is defined as the process of finding temporal correspondences between data              

frames, which is done by comparing the current frame with the prediction, made from              

previous frames. The prediction is generally achieved by utilizing algorithms such as mean             

shift, Kalman Filter (KF) and Particle filter (PF). Mean shift tries to find the same region of                 

mean point (coordinate point from RF sensors or pixels from camera tipes) values from the               

previous frame in the new frame ​[30]​. KF returns the predicted position by combining              

information from multiple time frames ​[31]​, to which the current frame can be compared. PF               

is able to keep track of multiple identified people at the same time considering different               

features on the image as particles and giving them a weight, thus showing how important this                

particle is for description of the tracked object. With this it becomes possible to find the same                 

person in multiple pictures by finding the same particles. ​[32]​. 

3.4.4. Gesture classification 

Gesture classification is a task where identified gestures are given a specific meaning, e.g., an               

identified upright hand motion is classified as a stop signal. Gesture classification is generally              

achieved with the help of machine learning algorithms, such as K-Nearest Neighbors (KNN),             

Hidden Markov Model (HMM), Support Vector Machine (SVM), Dynamic Time Warping           

(DTW) and Artificial Neural Networks (ANN). 

KNN finds the closest match between the provided example data and the received one ​[33]​. 

HMM is an unobservable Markov chain with input states (X) and transition probabilities             

between them (a), which gives output probabilities (b) and output observations (O) (Fig.11)             

[34]​. Because HMM keeps track of transitions between states, it is used for dynamic gesture               

recognition ​[35]​.  

SVM (Fig. 12) consists of data, which should be segregated and hyperplane, which divides              

the space into two regions, representing the desired groups and segregates the data into these               

two groups ​[37]​. 
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DTW is an algorithm that aligns the input and example sequences without depending on time               

[38]​. DTW has been extensively applied for voice recognition, but it can be generally used to                

compare any sequences of data. In ​[39] this algorithm was used on all body keypoints (model                

is similar to MPII on Fig. 7, with 2 more keypoints for feet) with giving weight for all                  

keypoints sequences depending on the gesture, so that DTW results would take only             

necessary keypoints into account to classify each gesture.  

ANNs consist of one or multiple layers of connected artificial neurons (Fig. 13a). Input layer               

brings the data into the network, the hidden layer performs calculations in neurons of that               

layer, and the output layer is the last layer, where output from each neuron is observed. Each                 

neuron is a function with multiple inputs and outputs. In (Fig. 13b) example neuron will take                

values of x1 and x2 as inputs and perform mathematical operation which is summation in this                

case and output the result to the next NN layer ​[40]​. Connection between neurons and               

functions they contain is determined during the training phase. 

 

Figure 11.​ ​Example of Hidden Markov Model ​[41] 
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Figure 12.​ ​Example of Support vector machine, consisting of hyperplane, which segregates 

objects into two groups and segregated objects ​[37] 

 

 

 

(a) (b) 

Figure 13. ​Illustrated structure of an Artificial Neural Network (a) and Example of 
Artificial Neuron (b) ​[40] 
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3.4.5. Gesture mapping 

Last step of the whole process is to send the classified gesture to the robot and translate it into                   

a set of commands. 

Classified gesture is sent to the robot control script, where the next action is executed based                

on the received gesture. Gestures can be used to manually control a robotic arm ​[4] or UGV                 

[6]​, or to trigger a set of actions ​[5]​. 

It is desirable to reuse developed gesture detection systems for different robots, meaning that              

it should be written with a universal and highly used robotic system in mind. 

For that purpose there exists a Robot Operating System (ROS). ROS is a data distribution               

software framework, which allows multiple computers to exchange information between each           

other as messages with predefined variable types ​[42]​. Figure 14 shows how messages are              

described in ROS as an example of message type “Point”, which describes the position of               

point in space. Every variable in message type is described by giving variable type and then                

the name of variable. 

 

Figure 14. ​ROS message definition for geomtry_msgs/Point 

ROS allows programs to communicate with each other even when running on different             

computers and being written in different programming languages. The fact that ROS            

multi-lingual allows many already developed non ROS programs to be adapted to ROS,             

commonly referred to as wrapping. . For example, Table 1 presents the wrappers for              

OpenPose.  
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Wrapper Quality of documentation Latest commit 

firephinx  1 Covers installation of wrapper and on what versions 
of software and drivers it was tested. Has short 

description on how to work with it and solutions for 
common problems 

29.04.2019 

stevenjj  2 Covers which version of OpenPose was tested.  Has 
installation manual and explains how to work with it 

29.11.2017 

solbach  3 Covers installation of wrapper 07.06.2017 

ims-robotics  4 no available documentation 29.05.2018 

ravijo  5 Has links to ROS wrappers for supported cameras 
and OpenPose. Doesn’t have operating systems and 
hardware list, with which the wrapper would work.  

10.10.2019 

 

Table 1.​ ​ROS-wrappers for OpenPose compared by documentation coverage and last commit 

to the project (information checked at 17.10.2019). 

  

1 https://github.com/firephinx/openpose_ros 
2 https://github.com/stevenjj/openpose_ros 
3 https://github.com/solbach/openpose-ros-tue 
4 https://github.com/ut-ims-robotics/openpose-ros 
5 https://github.com/ravijo/ros_openpose 
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4. REQUIREMENTS 

4.1 Objective 

The objective of this thesis is to create a gesture classification software, which integrates              

OpenPose for gesture-based control of robots. 

4.2 System requirements 

4.2.1 Functional requirements 

1) A camera is used for gesture detection 

2) Gesture classification that is able to detect at least 5 gestures 

3) New gestures that need to be detected can be defined without changing the source              

code 

4) Ability to detect static gestures 

5) The gestures can be used to send all the basic steering commands (e.g., move forward,               

steer left, steer right, turn left, turn right, move backwards, and stop) to a mobile               

robot. 

6) The gesture detection should not take more than 200 ms 

7) Should be able to run on middle grade consumer PC (intel i5 processor, nvidia GTX               

1050 graphics card) or higher 

4.2.2 Non-functional requirements 

1) OpenPose ver 1.5.1 or higher 

2) ROS Kinetic or newer 

3) Ubuntu 16.04 or newer 
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4.2.3 Gesture requirements 

Three sets of gestures were made. First set of gestures is based on aircraft marshalling ​[43]                

(table 2)​. ​Second set of gestures is based on cycling signals ​[44] (table 3). Third set of                 

gestures was made by the author as part of the thesis (table 4).  
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Command Original command picture Command as static gesture 

Forward 

  

Left 

  

Right 

  

Stop 

  

Slow down 
(or Backward) 

  
Table 2. ​Set of gestures, based on aircraft marshalling signals. First column describes the              

meaning of gesture (with a possible alternative for robot control). Second column shows             

the original gestures. Third column shows versions modified for static gesture recognition. 
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Command Original command picture Command as static gesture 
Right 

 
 

Right (Alternative) 

 
 

Left 

 
 

Left (alternative)  

 
Stop (Backward) 

 

 

 
Table 3. ​Set of gestures, based on cyclist hand signals. First column describes the meaning               

of gesture (with a possible alternative for robot control), Second column shows the original             

gestures. Third column shows real life examples. 
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Command Command as static gesture 

Left 

 

Right 

 

Stop 

 

Forward 

 

Backward 

 
Table 5. ​Set of gestures, made from combining gestures from two previous sets into a custom                

control set. First column describes the meaning of gesture. Second column shows how the              

following gesture should look like. 
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5. INTEGRATION AND BENCHMARKING OF OPENPOSE IN ROS 

The fundamental requirement for this thesis is the integration of OpenPose in a ROS-based              

system for controlling a robot. In order to assess the capabilities and limitations of OpenPose               

for such a task, the quality of available ROS wrappers was evaluated and the performance of                

OpenPose was benchmarked on different computational systems commonly deployed in          

robotics. 

5.1 Quality of ROS wrappers for OpenPose 

When OpenPose was initially released, several wrappers were made, but during the lifetime             

of OpenPose, its API was changing and some wrappers didn't work with the newer versions               

of OpenPose. This means that it is essential for the wrapper to be as recent as possible to be                   

sure that it works. It is also preferable, that wrapper has good documentation and installation               

instructions, so it is possible to set up for a user, who has no prior experience with ROS.                  

Wrapper should also work with 2D RGB image ROS topics. 

Wrapper Issues Advantages 

firephinx Models other then BODY_25 doesn’t 
work: 

user needs to find a way to publish images 
through ROS topics 

Updated; Has a good manual; All 
values that can be changed for 

OpenPose can be changed in the 
wrapper. Works on recent versions 

of OpenPose. 

stevenjj was not tested on any versions other than 
1.0.0 (no hands detection); no support for 

BODY_25 

Was not tested, so unknown 

solbach not understandable how to install through 
manual; was not tested on any versions 
other than 1.0.0 (no hands detection); no 

support for BODY_25 

Was not tested, so unknown 

ims-robotics repository didn’t download properly Was not tested, so unknown 
ravijo Support versions 1.5.0 and higher. Right 

now only works with intel realsense 
cameras 

most recent wrapper. Doesn’t 
consume a lot of computing power 

for 3d body detection. 
Table 6. ​Quality of existing ROS wrappers for OpenPose 

(information checked at 17.10.2019) 
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5.2 Benchmarking OpenPose 

OpenPose was tested on several computer specifications to see how the configuration of the              

system affects the gesture recognition performance (Table 7). First column describes the            

system, the second one describes configuration of OpenPose. Different body models and net             

resolutions, to which the input image is downscaled, were tested. Net resolution is a              

resolution of an image, which is processed inside a neural network. The higher the net               

resolution, the higher the accuracy of body keypoints estimation can be expected, as the              

processed image is more detailed. -1 in net resolution means that ratio is configured              

automatically by openpose to best fit the aspect ratio of input image (144x-1 will mean               

144x80 pixels if input image aspect ratio is 16x9). In the third column are output frame rate                 

results for different OpenPose configurations on different computer specifications.  
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Tested PC 

Condition 

(BODY_25 - 25 keypoints, COCO - 17 keypoints; 

Stock - net resolution 656x368, BODY_25) Results 

i7 8700, 

16GB RAM, 

GTX1070Ti 

GPU mode stock  15-16 FPS 

GPU mode stock with face and hand 5-6 FPS 

CPU_ONLY 656x368 mode only body BODY_25 0.1 FPS 

i5 7300HQ 

8GB RAM 

CPU_ONLY mode net_resolution 128x96 COCO 

6.3 FPS 

accuracy is low, 

(random objects are 

detected as human) 

CPU_ONLY mode net_resolution 128x96 

BODY_25 1.1 FPS 

CPU_ONLY mode net_resolution -1x256 COCO 1 FPS 

NVidia Jetson 

TX2 

GPU mode stock  1.5 FPS 

net resolution 128x96 COCO model 8 FPS 

net resolution 128x96 BODY_25 12.5 FPS 

net resolution 144x-1 BODY_25 9.3 FPS 

net resolution -1x256 BODY_25 3 FPS 

Nvidia Jetson 

Nano 

GPU mode stock Computer froze 

net resolution 128x96 BODY_25 

7.0 FPS 

accuracy is low 

(random objects 

detected as human) 

net resolution 144x-1 BODY_25 5.8 FPS 

net resolution -1x256 BODY_25 Computer froze 

NUC net_resolution -1x128 COCO 2.2 FPS 

Table 7. ​Results of benchmarking OpenPose on different computers and different CNN            

net_resolutions 
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6. DESIGN 

The gesture based robot control system, proposed for this work, is depicted in Fig. 14.               

Camera records the person making a gesture in front of it and a ROS wrapper for usb                 

connected cameras (usb_cam) publishes the captured images on a ROS topic           

“usb_cam/image_raw”. The OpenPose ROS wrapper, having subscribed to        

“usb_cam/image_raw” topic, receives the images, calculates the keypoints and publishes          

them on “/openpose_ros/human_list” topic. After that classification software (classifier)         

subscribes to the topic with keypoints to take them and obtains user defined reference              

gestures from a YAML file. These keypoints are used to classify the gesture into one of                

predetermined commands from a YAML file. After that classified gesture is published to             

"openpose_ros/found_pose" topic, to which robot control script is subscribed to it and take             

the command and make the robot move accordingly. 
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Figure 14. ​Overview of proposed gesture based robot control system 

6.1 Camera 

ROS package usb_cam requires Video4Linux (v4l),which is a collection of drivers and API             

for cameras to work with linux. Any camera, which is supported by v4l will work in the                 

system. 

6.2 OpenPose 

Firephinx OpenPose ROS wrapper was chosen for this work, as at the moment of creating the                

system it was the only wrapper, which was working with the up-to-date version of OpenPose               

and supported 2D images. This wrapper subscribes to the image topic and uses received              

images as input for OpenPose is able to to receive images. Wrapper also receives the output                
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from OpenPose and creates the topic, to which it publishes the keypoints of all detected               

people in the image in the format, shown in Figure 15. OpenPoseHumanList message type              

consists of four message types. OpenPoseHumanList message describes the number of           

humans on each input image frame and after that each human is described by the next                

message type. Order of description is by how long the detected person was on the frame,                

meaning that the person who was detected for the longest consecutive time will be the first to                 

be described in OpenPoseHuman. Described features are: 

● number of detected keypoints of body/face/hands 

● location of body and face on the image in the form of bounding box 

● location of all keypoints on the picture 

 

Figure 15. ​Structure of message sent by OpenPose ROS wrapper 

Body keypoints are stored in the set, consisting of 25 pixel coordinates with detection              

probability value. Coordinates are ordered the same way as the OpenPose provided keypoints             

, seen in Figure 16. 
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Figure 16. ​The order of OpenPose keypoints ​[45] 

6.3 Classifier 

 

Figure 17. ​Design of the gesture classifier. 

Classifier takes the detected keypoints and outputs the classified arm gesture. Figure 17             

shows the workflow how it is done. When the classifier is launched, it parses the YAML file                 

with reference gestures (Fig. 19) to obtain the reference gestures information. After that ROS              
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gesture publisher and keypoint subscriber are initialized and keypoints from the received            

message are extracted. After that the extracted keypoints are converted into joint angles.             

These joint angles and parsed information are used to classify the gesture. Result of this               

process is published on the ROS topic.6.3.1 Normalization with joint angles 

As keypoints from OpenPose are pixel coordinates, it means that size of the person and               

coordinates will vary depending on the position of the human in the frame. For that reason                

this information should be normalised. As the normalization method classifier uses joint            

angles, which do depend on relative position of keypoints. 

Keypoints to joint angles 

To classify arm gestures, four joints are  require and to describe them 7 keypoints are needed:  

1 - Neck 

2 - Right Shoulder 

3 - Right Elbow 

4 - Right Wrist 

5 - Left Shoulder 

6 - Left Elbow 

7 - Left Wrist 

Figure 18 shows how the aforementioned 7 keypoints are transformed into joint angles. First              

step is to create a pair of vectors, whose axis origin is the keypoint, which describes the                 

location of the joint itself. In case of arm gestures, this will be the following pairs: 

1.1 - Right Shoulder-Neck 

1.2 - Right Shoulder-Right Elbow 

2.1 - Right Elbow-Right Shoulder 

2.2 - Right Elbow-Right Wrist 

3.1 - Left Shoulder-Neck 

3.2 - Left Shoulder - Left Elbow 

4.1 - Left Elbow - Left Shoulder 

4.2 - Left Elbow - Left Wrist 

By using the following pairs of vectors the joint angle is calculated as shown in equation 1.  
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 tan( )α = a v v  + v v1x* 2x 1y* 2y

v v  − v v1x* 2y 1y* 2x  (1) 

Where v​1 describes the x and y coordinates of the first vector in pair and v​2 describes the x                   

and y coordinates of the second vector in pair. 

By doing this operation on all the pairs, we get 4 angles: 

1 - right_shoulder 

2 - right_elbow 

3 - left_shoulder 

4 - left_elbow 

 

 

 

Figure 18. ​Workflow of calculating the angle. Visualization of calculating the joint angles. 
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6.3.2 Reference Gestures YAML Notation 

For the classifier to classify the gesture, file with reference gestures and their names is               

provided. File is written in YAML markup language and has the following format of              

description (Fig 19): 

Gestures ​show the YAML parser, where to look for gestures. ​Gesture_name describes the             

name for the following gesture and what will be returned, if this gesture is detected. 

Angle_value_degress - ​float value, which describes the angle, which joint should have. Can             

be any float value in between 0 - 360 degrees. 

Error_value_dergees ​- float value, describing, how inaccurate can the operator make the            

gesture. The bigger the value, the bigger inaccuracy is tolerated. To ignore the joint, anything               

bigger than 180 should be placed. 

 

 

Figure 19. ​Structure of the reference gestures YAML file 

39 



6.3.3 Classifying the gesture 

Together with reference angles, measured angles are taken into the KNN-inspired part of the              

classifier. 

Idea behind the algorithm is to compare measured joint angles with reference angles of each               

gesture and choose the one with highest similarity. Nearest neighbor in this case is reference               

angles and K is equal to one. 

The whole process is consisting of one nested loop (Fig. 20). Before the loop is created, 3                 

variables are generated. First one is float with value 0 (​S1​), second one is float with value                 

bigger than 720 (​S2​) and the third one is string with value “nothing” or any other text, which                  

classifier should output if there is no gesture (​detected_gest​). 

(​S1​) will store the mean error value for the currently checked gesture, (​S2​) will store the                

calculated mean error value for the currently chosen gesture and (​detected_gest​) will            

store the name of this gesture. 

First loop is started and s1 will reset to 0 every loop iteration. We take the first set of                   

reference angles (​reference_angles​) and error values (​error_values​) from the and          

start the second loop, where we find how different are the reference angle value and               

measured angle value. Variable (​ignored angles​) is created to keep track of how many              

joint angles were ignored during the second loop. During every iteration of the first loop is                

reset to 0. 

Second loop starts and the first elements from (​angle_values​), (​reference_angles​) and           

(​error_values​) are taken:(​m_angle​), (​ref_angle​), (​ref_error​). 

First, (​ref_error​) value is checked. If it is bigger than 180, (​ignored angles​) is              

increased by one and the next iteration of the second loop is started immediately. 

Difference between reference angle and measured angle is calculated (​error​). To exclude            

the problem, where angle 0 and 359.9 are too far away in calculation, but in reality they are                  

close, we check if the calculated difference is bigger than 180. If yes, then we subtract the                 
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calculated difference from 360 and get the real difference between angles. If not, we already               

have the real difference. 

After that (​error​) is compared to (​ref_error​). If (​error​) is bigger, the next iteration of               

the first loop is started immediately. Else (​error​) is added to (​S1​) and the next iteration of                 

the second loop is started. 

After the second loop is finished, (S1) is divided by the number of angles, which were                

checked (​checked_angles​) to get an average error (​average_error​). This         

(​average_error​) value is compared to (S2) value. If (​average_error​) is smaller, (S2)            

will be overwritten by (​average_error​) and (​detected_gest​) will be overwritten by the            

name of gesture, which was checked in the current loop iteration. 

Next iteration of the loop is started and the whole process continues for the next reference                

gesture in the list. 

When the first loop is finished, (​detected_gest​) is sent to the publisher.  
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gestures_name = set of gesture names 

gesture_values = nested set of angle values for each gesture 

gesture_errors = nested set of error values for each angle in each gesture 

angle_values = set of calculated angle values 

S1 = 0.0 

S2 = 180.0 

detected_gest = “nothing” 

 

for i in size(gesture name) 

{ 

S1 = 0.0 

reference_angles = set number i from gesture_values 

error_values = set number i from gesture_errors 

ignored angles = 0 

for j in size(ref_angles) 

{ 

m_angle = element number j from angle_values 

ref_angle = element number j from reference_angles 

ref_error = element number j from error_values 

if ref_error > 180 

{ 

ignored angles = ignored angles + 1 

go to next iteration of second for loop 

} 

error = absolute(m_angle - ref_angle) 

if error > 180 

{ 

error = 360 - error 

} 

if error > ref_error 

{ 

S1 = 0.0 

go to next iteration of first for loop 

} 

S1 = S1 + error 

} 

checked_angles = size(ref_angles)-ignored angles 

average_error = s1/checked_angles 

if average_error < s2 

{ 

S2 = average_error 

detected_gest = element number i from gestures_name 

} 

} 

return detected_gest 

Figure 20. ​Design of KNN-based part of gesture classifier 
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7. RESULTS 

7.1 System setup 

All tests were done on the system with i5 7300HQ laptop CPU, 8GB of RAM and GTX 1050                  

with 2GB of video memory. Camera resolution was 1280x720 and frame rate was 30 FPS. 

Operating system was Ubuntu 16.04 with ROS Kinetic and OpenPose version 1.5.1. 

Because of the amount of video memory, net resolution for OpenPose was lowered to              

224x128 to be able to run. 

The implemented classifier code with gesture sets can be found on GitHub  6

7.2 Test results for proposed system: 

OpenPose framerate - 10 FPS 

New gesture was detected every 100 ms seconds. 

Classifier work time - 256 - 324 nanoseconds. 

Tables 8-10 represent the output of OpenPose and gesture classifier for three proposed             

gesture sets.  

6 https://github.com/ut-ims-robotics/openpose_gesture_control 
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Name of the gesture Output From OpenPose Output from classifier 
Forward 

 
 

Left 

 
 

Right 

  
Stop 

  
Slow down 

(or Backward) 

 
 

Table 8. ​Result of gesture detection for the first set of gestures with output from OpenPose, 
classifier and movement from robot 
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Name of the gesture Output From OpenPose Output from classifier 
Left 

 
 

Left (alternative) 

  

Right 

 
 

Right (alternative) 

 
 

Stop (Backward) 

 
 

Table 9. ​Result of gesture detection for the first set of gestures with output from OpenPose, 
classifier and movement from robot 
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Name of the gesture Output From OpenPose Output from classifier 
Left 

 
 

Right 

 
 

Stop 

  
Forward 

 

 

Backward 

  
Table 10. ​Result of gesture detection for the first set of gestures with output from OpenPose, 
classifier and movement from robot 
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7.3 Discussion 

The implemented gesture classification system was able to classify all required gestures, but             

OpenPose had problems with detection of limb intersections, as can be seen on the test of the                 

last gesture set. This problem becomes even bigger if the intersection is not in front of the                 

camera. That is the reason that the stop signal from air marshalling was changed to be done                 

not above the head, but on the chest. Possible solutions for this problem is to move the                 

camera higher. Air Marshals show those signals to the pilots, who are always located higher               

than him. Second option is to run OpenPose on a more powerful system, which would be able                 

to handle higher net resolutions, so the intersection would be visible for OpenPose. But this               

situation also showed that the proposed normalization method still provides enough           

information for gestures to be detected. We can see that as long as the direction of the limb is                   

detected correctly, angles will be calculated also correctly and the result will be correct. 

Main bottleneck of the tested system was hardware, which was not able to run OpenPose.               

Because of this combination OpenPose was able to have only 10 FPS, which meant that new                

keypoints were published only every 100 milliseconds. Classifier by itself didn’t use any             

complex algorithms and required only up to 324 nanoseconds, but classified gesture was             

published only every 100 milliseconds, which is the publish rate of OpenPose. The best              

option to increase speed and not lose in accuracy is to use more powerful hardware for                

openpose to run, but eventually the first limiting factor will be the framerate of the camera,                

and the next limiting factor will be the bandwidth of how fast ROS messages can be                

published. 

Current set of gestures is limited by arms. Proving that joint angles can actually be used to                 

describe gestures, the next step is apply this description method on hand gestures. Currently              

there are two obstacles for implementation of hand gesture detection. First one is hardware              

requirements for finger detection in OpenPose. As an example, test system, which was used              

in this thesis, is not able to run OpenPose with hand gesture identification because there is not                 

enough video memory. Second problem is that it is significantly harder to find orientation of               

the hand without a depth image. 
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Second problem is that the classifier cannot detect dynamic gestures. KNN can not be used               

alone for dynamic gestures, as it works only with one time frame, and another algorithm               

should be used. With current normalization method angle values can be recorded in the              

sequence. Possibly good options here will be DTW and HMM. DTW is used for sequence               

matching for years and stored sequence changing joint angles values can be used to determine               

if the following movement is not random and has a meaning. HMM can become suitable               

because it can keep track of state transitions, which allows HMM to be built on top of already                  

existing KNN and to use it as an input to keep track of dynamic gestures. 
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8. SUMMARY 

Outcome of the thesis is constructed gesture detection system, which uses an RGB camera in               

combination with OpenPose and allows the user to steer the UGV robot with predetermined              

gestures. Gestures in the system are described by angle values of joints, which are needed to                

make the gesture. Predetermined gestures can be changed without the need to change source              

code. Gesture detection system can control any robot, which uses ROS for communication             

and control.  

  

49 



9. BIBLIOGRAPHY 

[1] T. G. Zimmerman, J. Lanier, C. Blanchard, S. Bryson, and Y. Harvill, “A hand gesture 
interface device,” p. 4, 1987. 

[2] Xiaoling Lv, Minglu Zhang, and Hui Li, “Robot control based on voice command,” in 
2008 IEEE International Conference on Automation and Logistics​, Qingdao, China, 
Sep. 2008, pp. 2490–2494, doi: 10.1109/ICAL.2008.4636587. 

[3] S. Mitra and T. Acharya, “Gesture Recognition: A Survey,” ​IEEE Trans. Syst. Man 
Cybern. Part C Appl. Rev.​, vol. 37, no. 3, pp. 311–324, May 2007, doi: 
10.1109/TSMCC.2007.893280. 

[4] S. Verma, “Hand Gestures Remote Controlled Robotic Arm,” p. 6. 
[5] J. L. Raheja, R. Shyam, U. Kumar, and P. B. Prasad, “Real-Time Robotic Hand Control 

Using Hand Gestures,” in ​2010 Second International Conference on Machine Learning 
and Computing​, Feb. 2010, pp. 12–16, doi: 10.1109/ICMLC.2010.12. 

[6] H. Kumar, V. Honrao, S. Patil, and P. Shetty, “Gesture Controlled Robot using Image 
Processing,” ​Int. J. Adv. Res. Artif. Intell.​, vol. 2, no. 5, 2013, doi: 
10.14569/IJARAI.2013.020511. 

[7] O. Mazhar, B. Navarro, S. Ramdani, R. Passama, and A. Cherubini, “A real-time 
human-robot interaction framework with robust background invariant hand gesture 
detection,” ​Robot. Comput.-Integr. Manuf.​, vol. 60, pp. 34–48, Dec. 2019, doi: 
10.1016/j.rcim.2019.05.008. 

[8] R. Parasuraman, T. B. Sheridan, and C. D. Wickens, “A model for types and levels of 
human interaction with automation,” ​IEEE Trans. Syst. Man Cybern. - Part Syst. Hum.​, 
vol. 30, no. 3, pp. 286–297, May 2000, doi: 10.1109/3468.844354. 

[9] H. Liu and L. Wang, “Gesture recognition for human-robot collaboration: A review,” 
Int. J. Ind. Ergon.​, vol. 68, pp. 355–367, Nov. 2018, doi: 10.1016/j.ergon.2017.02.004. 

[10] Y. Zhang and C. Harrison, “Tomo: Wearable, Low-Cost Electrical Impedance 
Tomography for Hand Gesture Recognition,” in ​Proceedings of the 28th Annual ACM 
Symposium on User Interface Software & Technology - UIST ’15​, Daegu, Kyungpook, 
Republic of Korea, 2015, pp. 167–173, doi: 10.1145/2807442.2807480. 

[11] A. Bellarbi, S. Benbelkacem, N. Zenati-Henda, and M. Belhocine, “Hand gesture 
interaction using color-based method for tabletop interfaces,” in ​2011 IEEE 7th 
International Symposium on Intelligent Signal Processing​, Floriana, Malta, Sep. 2011, 
pp. 1–6, doi: 10.1109/WISP.2011.6051717. 

[12] N. S. Pollard, J. K. Hodgins, M. J. Riley, and C. G. Atkeson, “Adapting human motion 
for the control of a humanoid robot,” in ​Proceedings 2002 IEEE International 
Conference on Robotics and Automation (Cat. No.02CH37292)​, May 2002, vol. 2, pp. 
1390–1397 vol.2, doi: 10.1109/ROBOT.2002.1014737. 

[13] L. Karreman, “The Motion Capture Imaginary: Digital renderings of dance knowledge,” 
2017. 

[14] M. A. Ahmed, B. B. Zaidan, A. A. Zaidan, M. M. Salih, and M. M. bin Lakulu, “A 
Review on Systems-Based Sensory Gloves for Sign Language Recognition State of the 
Art between 2007 and 2017,” ​Sensors​, vol. 18, no. 7, p. 2208, Jul. 2018, doi: 
10.3390/s18072208. 

[15] D. Robertson, “Vicon Motion Capture.” Jul. 18, 2013. 
[16] F. Adib and D. Katabi, “See through walls with WiFi!,” p. 12. 
[17] “Producing 3D point clouds with a stereo camera in OpenCV,” ​Stackable​, Apr. 27, 

50 

https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS


2014. 
https://erget.wordpress.com/2014/04/27/producing-3d-point-clouds-with-a-stereo-camer
a-in-opencv/ (accessed May 17, 2020). 

[18] “mmWave sensors in robotics: enabling robots to ‘sense & avoid.’” Accessed: May 10, 
2020. [Online]. Available: 
https://training.ti.com/sites/default/files/docs/mmwave_in_robotics_part1_1.pdf. 

[19] J. Letessier and F. Bérard, “Visual tracking of bare fingers for interactive surfaces,” in 
Proceedings of the 17th annual ACM symposium on User interface software and 
technology  - UIST ’04​, Santa Fe, NM, USA, 2004, p. 119, doi: 
10.1145/1029632.1029652. 

[20] H. Hamer, K. Schindler, E. Koller-Meier, and L. Van Gool, “Tracking a hand 
manipulating an object,” in ​2009 IEEE 12th International Conference on Computer 
Vision​, Kyoto, Sep. 2009, pp. 1475–1482, doi: 10.1109/ICCV.2009.5459282. 

[21] I. Oikonomidis, N. Kyriazis, and A. A. Argyros, “Markerless and Efficient 26-DOF 
Hand Pose Recovery,” in ​Computer Vision – ACCV 2010​, vol. 6494, R. Kimmel, R. 
Klette, and A. Sugimoto, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 
744–757. 

[22] I. Oikonomidis, N. Kyriazis, and A. Argyros, “Efficient model-based 3D tracking of 
hand articulations using Kinect,” in ​Procedings of the British Machine Vision 
Conference 2011​, Dundee, 2011, pp. 101.1-101.11, doi: 10.5244/C.25.101. 

[23] D. Weinland, R. Ronfard, and E. Boyer, “A survey of vision-based methods for action 
representation, segmentation and recognition,” ​Comput. Vis. Image Underst.​, vol. 115, 
no. 2, pp. 224–241, Feb. 2011, doi: 10.1016/j.cviu.2010.10.002. 

[24] R. Cutler and M. Turk, “View-based interpretation of real-time optical flow for gesture 
recognition,” in ​Proceedings Third IEEE International Conference on Automatic Face 
and Gesture Recognition​, Nara, Japan, 1998, pp. 416–421, doi: 
10.1109/AFGR.1998.670984. 

[25] F. Zhang, X. Zhu, H. Dai, M. Ye, and C. Zhu, “Distribution-Aware Coordinate 
Representation for Human Pose Estimation,” ​ArXiv191006278 Cs​, Oct. 2019, Accessed: 
Feb. 18, 2020. [Online]. Available: http://arxiv.org/abs/1910.06278. 

[26] M. Kocabas, S. Karagoz, and E. Akbas, “MultiPoseNet: Fast Multi-Person Pose 
Estimation Using Pose Residual Network,” in ​Computer Vision – ECCV 2018​, vol. 
11215, V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, Eds. Cham: Springer 
International Publishing, 2018, pp. 437–453. 

[27] J. Zhang, Z. Chen, and D. Tao, “Human Keypoint Detection by Progressive Context 
Refinement,” ​ArXiv191012223 Cs Eess​, Oct. 2019, Accessed: Apr. 28, 2020. [Online]. 
Available: http://arxiv.org/abs/1910.12223. 

[28] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, “OpenPose: Realtime 
Multi-Person 2D Pose Estimation using Part Affinity Fields,” ​ArXiv181208008 Cs​, May 
2019, Accessed: Feb. 18, 2020. [Online]. Available: http://arxiv.org/abs/1812.08008. 

[29] T.-Y. Lin ​et al.​, “Microsoft COCO: Common Objects in Context,” ​ArXiv14050312 Cs​, 
Feb. 2015, Accessed: Apr. 30, 2020. [Online]. Available: 
http://arxiv.org/abs/1405.0312. 

[30] D. Comaniciu, V. Ramesh, and P. Meer, “Real-time tracking of non-rigid objects using 
mean shift,” in ​Proceedings IEEE Conference on Computer Vision and Pattern 
Recognition. CVPR 2000 (Cat. No.PR00662)​, Hilton Head Island, SC, USA, 2000, vol. 
2, pp. 142–149, doi: 10.1109/CVPR.2000.854761. 

[31] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” ​J. Basic 

51 

https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS


Eng.​, vol. 82, no. 1, pp. 35–45, Mar. 1960, doi: 10.1115/1.3662552. 
[32] K. Okuma, A. Taleghani, N. de Freitas, J. J. Little, and D. G. Lowe, “A Boosted Particle 

Filter: Multitarget Detection and Tracking,” in ​Computer Vision - ECCV 2004​, vol. 
3021, T. Pajdla and J. Matas, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, 
pp. 28–39. 

[33] L. E. Peterson, “K-nearest neighbor,” ​Scholarpedia​, vol. 4, p. 1883, 2009. 
[34] L. R. Rabiner, “A tutorial on hidden Markov models and selected applications in speech 

recognition,” ​Proc. IEEE​, vol. 77, no. 2, pp. 257–286, Feb. 1989, doi: 10.1109/5.18626. 
[35] J. McCormick, K. Vincs, D. Creighton, S. Hutchison, and S. Nahavandi, “Teaching a 

Digital Performing Agent: Artificial Neural Network and Hidden Markov Model for 
recognising and performing dance movement,” p. 6. 

[36] S.-Z. Yu, “Hidden semi-Markov models,” ​Artif. Intell.​, vol. 174, no. 2, pp. 215–243, 
Feb. 2010, doi: 10.1016/j.artint.2009.11.011. 

[37] C. Cortes and V. Vapnik, “Support-vector networks,” ​Mach. Learn.​, vol. 20, no. 3, pp. 
273–297, Sep. 1995, doi: 10.1007/BF00994018. 

[38] M. Müller, “Information Retrieval for Music and Motion. Chapter 4: Dynamic Time 
Warpind,” 2007. 

[39] “Gesture Recognition using Skeleton Data with Weighted Dynamic Time Warping:,” in 
Proceedings of the International Conference on Computer Vision Theory and 
Applications​, Barcelona, Spain, 2013, pp. 620–625, doi: 10.5220/0004217606200625. 

[40] S. S. Haykin and S. S. Haykin, ​Neural networks and learning machines. Introduction​, 
3rd ed. New York: Prentice Hall, 2009. 

[41] M. Elmezain, A. Al-Hamadi, J. Appenrodt, and B. Michaelis, “A Hidden Markov 
Model-based continuous gesture recognition system for hand motion trajectory,” in 
2008 19th International Conference on Pattern Recognition​, Tampa, FL, USA, Dec. 
2008, pp. 1–4, doi: 10.1109/ICPR.2008.4761080. 

[42] M. Quigley ​et al.​, “ROS: an open-source Robot Operating System,” p. 6. 
[43] “Aircraft marshalling,” ​Wikipedia​. Nov. 09, 2019, Accessed: Apr. 30, 2020. [Online]. 

Available: 
https://en.wikipedia.org/w/index.php?title=Aircraft_marshalling&oldid=925358314. 

[44] “CAA National.” https://www.caa.ca/bike/on-the-road-cyclists/riding-skills-tips/ 
(accessed May 19, 2020). 

[45] “OpenPose github webpage,” ​GitHub​. 
https://github.com/CMU-Perceptual-Computing-Lab/openpose (accessed Apr. 29, 
2020). 

  

52 

https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS
https://www.zotero.org/google-docs/?e8EgiS


NON-EXCLUSIVE LICENCE TO REPRODUCE THESIS AND MAKE 

THESIS PUBLIC 

I, Igor Rybalskii, 

(author’s name) 

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to reproduce,              

for the purpose of preservation, including for adding to the DSpace digital archives until the               

expiry of the term of copyright, 

Gesture Detection Software for Human-Robot Collaboration, 

(title of thesis) 

 

supervised by Robert Valner and Karl Kruusamäe. 

(supervisor’s name) 

 

2. I grant the University of Tartu a permit to make the work specified in p. 1 available to the                    

public via the web environment of the University of Tartu, including via the DSpace digital               

archives, under the Creative Commons licence CC BY NC ND 3.0, which allows, by giving               

appropriate credit to the author, to reproduce, distribute the work and communicate it to the               

public, and prohibits the creation of derivative works and any commercial use of the work               

until the expiry of the term of copyright. 

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2. 

4. I certify that granting the non-exclusive licence does not infringe other persons’ intellectual              

property rights or rights arising from the personal data protection legislation. 

 

author’s name ​Igor Rybalskii 

20/05/2020 

 

53 


