
DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS
53

DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS
53

SOLVING OF LINEAR EQUATIONS,
LINEAR INEQUALITIES AND SYSTEMS

OF LINEAR EQUATIONS IN INTERACTIVE
LEARNING ENVIRONMENT

MARINA ISSAKOVA

TARTU UNIVERSITY

P R E S S

Faculty of Mathematics and Computer Science, University of Tartu, Estonia

Dissertation is accepted for the commencement of the degree of Doctor of
Philosophy (PhD) on June 15, 2007, by the Council of the Faculty of
Mathematics and Computer Science, University of Tartu.

Supervisor:

Cand. Sc., Associate Professor Rein Prank
University of Tartu
Tartu, Estonia

Opponents:
PhD, Professor Jean-Francois Nicaud
Joseph Fourier University
Grenoble, France

Cand. Sc., Associate Professor Jaak Henno
Tallinn University of Technology
Tallinn, Estonia

Commencement will take place on September 6, 2007.

ISSN 1024–4212
ISBN 978–9949–11–680–5 (trükis)
ISBN 978–9949–11–681–2 (PDF)

Autoriõigus Marina Issakova, 2007

Tartu Ülikooli Kirjastus
www.tyk.ee
Tellimus nr. 298

 5

CONTENTS

List of original publications 8
1 Introduction 10

1.1 Motivation .. 10
1.2 Related works ... 11
1.3 Problem statement .. 16
1.4 Contribution of the thesis ... 17
1.5 Structure of the thesis ... 18

2 T-algebra interactive learning environment 19
2.1 Expressions in T-algebra .. 20
2.2 Description of the problem-solution window....................................... 21
2.3 General dialogue scheme in T-algebra ... 22

2.3.1 Selection of the rule and marking the parts of expression 24
2.3.2 Entering the result of the application of the rule............................ 25

2.3.2.1 Three input modes ... 26
2.3.2.2 Additional input ... 28

2.4 Domain expert module in T-algebra environment................................ 31
2.4.1 Solution engine.. 33
2.4.2 Applications of domain expert module ... 33

2.4.2.1 Giving advice... 33
2.4.2.2 Checking the stages of the step.. 34
2.4.2.3 Checking the completion ... 37
2.4.2.4 Checking the answer.. 38
2.4.2.5 Checking the initial expression.. 39
2.4.2.6 Checking the equivalence of two expressions 39

2.5 Student statistics ... 39
2.6 The program for teachers ... 42
2.7 Implementation... 43

3 Problems and algorithms in the domain of linear equations, linear
inequalities and systems of linear equations in school textbooks and
in T-algebra 46
3.1 Problems and algorithms in school textbooks 46

3.1.1 Linear equations... 46
3.1.2 Linear inequalities.. 48
3.1.3 Systems of linear equations ... 50

3.2 Designed rules in T-algebra ... 51
3.2.1 Rule Multiply/Divide both sides .. 55
3.2.2 Rule Move terms to other side ... 61

2

 6

3.2.3 Rule Reverse sides ... 63
3.2.4 Rule Add to/Subtract from both sides .. 65
3.2.5 Rule Express variable.. 66
3.2.6 Rule Substitute variable... 69
3.2.7 Rule Add equations.. 72
3.2.8 Rule Multiply fraction with variable by number 74
3.2.9 Rule Open parentheses .. 77

3.3 Designed problem types in T-algebra .. 79
3.3.1 Problem type Move terms to correct side of equation and

combine.. 83
3.3.2 Problem type Solve linear equation... 84
3.3.3 Problem type Check the solution of inequality 85
3.3.4 Problem type Solve by elimination using addition 87

4 Conducted experiments 89
4.1 First experiment ... 89
4.2 Second experiment... 92
4.3 Third experiment ... 94

4.3.1 Comparison of student mistakes made during solving on paper
 and in T-algebra.. 97

4.3.1.1 Mistakes made during multiplying both sides of equation 98
4.3.1.2 Mistakes made during dividing both sides of equation 102
4.3.1.3 Mistakes made during moving terms to the other side of

equation ... 103
4.3.1.4 Mistakes made during reversing the equation sides 105
4.3.1.5 Mistakes made during combining like terms and during

adding/subtracting numbers... 106
4.3.1.6 Mistakes made during opening the parentheses 107

4.3.2 Conclusions... 107
4.4 Fourth experiment.. 108

4.4.1 Results of experiment.. 109
4.4.2 Conclusions ... 111

4.5 Fifth experiment .. 112
4.5.1 Results of experiment .. 114
4.5.2 Conclusions ... 118

Conclusions 120
References 122

Summary in Estonian 127

Acknowledgements 129

 7

Appendix A 130
Backus-Naur Form full description of expressions..................................... 130

Appendix B 132
Quick start to T-algebra student’s program .. 132

Appendix C 138
Full list of designed problem types ... 138

Appendix D 163
User questionnaire... 163

Appendix E 164
Problem file... 164

Curriculum Vitae 166

 8

LIST OF ORIGINAL PUBLICATIONS
1. Issakova, M. and Lepp, D. (2004). Rule dialogue in problem solving

environment T-algebra. In Proceedings TIME–2004: Montreal
International Symposium on Technology and its Integration into
Mathematics Education, 16 p., Montreal, Canada.

2. Issakova, M., Lepp, D. and Prank, R. (2005). Input Design in
Interactive Learning Environment T-algebra. In Proceedings ICALT–
2005: The 5th IEEE International Conference on Advanced Learning
Technologies, pp. 489–491, Kaohsiung, Taiwan.

3. Issakova, M. (2005). Possible Mistakes During Linear Equation Solving
On Paper And In T-algebra Environment. In Proceedings of the 7th
International Conference on Technology in Mathematics Teaching
(ICTMT7), volume 1, pp. 250–258, Bristol, UK.

4. Prank, R., Issakova, M., Lepp, D., Vaiksaar, V. and Tõnisson, E.
(2006). Problem solving environment T-algebra. In Proceedings of 7th
International Conference Teaching Mathematics: Retrospective and
Perspectives, pp. 190–197, Tartu, Estonia.

5. Prank, R., Issakova, M., Lepp, D. and Vaiksaar, V. (2006). Designing
Next-Generation Training and Testing Environment for Expression
Manipulation. In International Conference on Computational Science
(ICCS 2006), Part I, LNCS 3991, pp. 928–931, Springer-Verlag.

6. Issakova, M. (2006). Learning Linear Equation Solving Algorithm and
Its Steps in Intelligent Learning Environment. In ITS 2006 Proceedings,
LNCS 4053, pp. 725–727, Springer-Verlag.

7. Issakova, M. (2006). Intelligent Environment for Learning Linear
Equation Solving Algorithm and Its Steps. In Proceedings of the
Student Track ITS 2006, pp. 8–17, Jhongli, Taiwan.

8. Issakova, M., Lepp, D. and Prank, R. (2006). T-algebra: Adding Input
Stage To Rule-Based Interface For Expression Manipulation.
International Journal for Technology in Mathematics Education, 13(2):
89–96.

9. Issakova, M. (2006). Comparison of student errors made during linear
equation solving on paper and in interactive learning environment. In
Proceedings DES–TIME–2006: Dresden International Symposium on
Technology and its Integration into Mathematics Education 2006, 20 p.,
Dresden, Germany.

 9

10. Issakova, M. (2006). Domain Expert Module for Step-By-Step Linear
Equation Solving. In Proceedings of The 11th Asian Technology
Conference in Mathematics (ATCM 2006), pp. 193–202, Hong Kong,
China.

11. Issakova, M. (2007). Do First Year Students Know how to Solve
Simple Linear Equations? An Experiment with T-algebra. In
Proceedings of the 8th International Conference on Technology in
Mathematics Teaching (ICTMT8), 6p., Hradec Králové, Czech
Republic.

12. Prank, R., Issakova, M., Lepp, D., Tõnisson, E. and Vaiksaar, V.
(2007). Integrating rule-based and input-based approaches for better
error diagnosis in expression manipulation tasks. In Symbolic
Computation and Education, World Scientific Publishing Co., (to
appear).

3

 10

1 INTRODUCTION
This thesis belongs to the field of interactive learning environments for step-by-
step solving of expression manipulation problems, particularly for solving linear
equations, linear inequalities and systems of linear equations. The main
contribution of the thesis is design, implementation and testing of the
environment with a novel step dialogue for proper learning and diagnosis of
knowledge gaps in solving linear equations, linear inequalities and systems of
linear equations.

1.1 Motivation

Expression manipulation (incl. solving of linear equations, inequalities and
systems of linear equations, simplification of polynomials, etc.) is one of the
key skills needed for solving problems in practically all fields of mathematics.
The students solve in the school hundreds of technical exercises with fractions,
monomials, polynomials, equations, inequalities and systems of equations.
However, expression manipulation is also an element of the mathematics
curriculum that poses difficulties to many students and is relatively labour-
intensive for the teachers while the results of learning in this area are often
unsatisfactory.

One of the reasons for poor performance is repetition of incorrect solution
attempts without getting feedback. The difficulties experienced by the students
while solving the problems can be quite variable and require a thorough thought
effort from the teacher in order to understand all details. When using traditional
instruction technology, the teacher is not able to give prompt advice or draw
attention to errors in time. Thus, the mistakes are repeated many times and can
become habitual. The exercises often include a great number of details and if
the student receives the corrected solution from the teacher only a week after
the assignment, she/he may not remember her/his thoughts at the moment of
making the error or the causes of error. Sometimes even a principal error can be
regarded as an error caused by oversight and this can prevent the student from
analysis of its real causes. For the teacher, checking of assignments in this field
is very labour-intensive and she/he may not be able to discover all errors made
in written assignments. The need for quick analysis of large volumes of
information indicates that the training and testing of expression manipulation
skills could be improved by using computerized environments.

The existent environments do not entirely meet all the required principles, as
we will see in the next section. Some environments can be used only for
training (do not allow making common mistakes) and others mainly for testing
(do not provide help and precise diagnosis), but there is no single program that
would be suitable for all purposes.

 11

1.2 Related works

In this section I review the following computerized environments for expression
manipulation:

• computer algebra systems;
• systems based on computer algebra systems;
• interactive learning environments.
In these environments I observe the following points:
• what a student does in this environment and what the environment does;
• what knowledge and skills should a student have to reach the solution or

answer in this environment;
• what diagnosis and feedback the environment provides, if the student

makes a mistake.
In many countries, the schools use computer algebra systems (DERIVE

(Kutzler, 1996; Derive by Texas Instruments), Maple (Char et al., 1986; Maple
by Waterloo Maple Inc.), Mathematica (Mathematica by Wolfram Research),
etc.) to work with algebraic problems. However, these programs have not been
developed specifically for educational purposes. Generally, they use such
advanced methods for expression manipulation that the student can get only an
answer from them, and their domain expert cannot explain how this answer was
obtained and cannot demonstrate step-by-step solution of the problem. Even
systems like WIRIS (Xambo et al., 2002) that are designed and advertised
specifically for using in schools do not have sufficiently detailed commands for
construction of stepwise solutions. Computer algebra systems (CAS) are not
designed for the cases where the student solves problems, makes mistakes,
requires feedback and advice, etc.

A further step for helping students learn expression manipulation was made
in systems, which are based on CAS. Some of these systems allow, but do not
require entering stepwise solutions (for example, ActiveMath (ActiveMath by
ActiveMath Team; Melis et al., 2001; Büdenbender et al., 2002)), others ask to
enter only the answer (AiM (AiM by AiM Team; Sangwin, 2004), STACK
(STACK by Chris Sangwin; Sangwin, forthcoming)). As these systems are
based on CAS, they accept input in the language of the underlying system,
usually linear input. These systems use CAS for controlling student’s input and
providing feedback depending on the answer. These systems usually check only
whether the input is correct/incorrect/impossible and whether the problem is
solved (is sufficiently simplified or completely factorized). In the case of an
error, such systems do not provide explicit feedback and cannot highlight the
erroneous part. The help provided in these systems is restricted to showing only
the answer or solution predefined by the author of the problem.

 12

The most suitable systems for expression manipulation are interactive
learning environments. There are different kinds of interactive learning environ-
ments available with various dialogues, which allow building step-by-step
solutions. We can classify them as follows, depending on the type of dialogue
they use:

• rule-based or command-based environments;
• input-based environments.
Rule-based environments are based on the principle that the student selects

the transformation rule and in some cases a part of the expression; the
transformation itself is made by the computer. The order of selection is different
in different systems: in some systems the student should first select some part of
expression and the system offers suitable rules, in others the student should first
select the rule. In many cases it is even sufficient to select the whole expression
for the operation as the program itself selects the required operands. The
program executes all operations as a black box. In such environments, the
student learns and practices the solution algorithm, but the learning of
performing algorithm steps (details of operations) is passive, because the
computer performs more work than the user. In addition, the student is not
given the possibility to make certain mistakes; many typical mistakes are simply
impossible. The only mistakes possible are selection of unsuitable rule and
selection of unsuitable (or incorrect) part. Therefore, their domain expert
module can help when the student is stuck (is not able to choose the appropriate
rule), but it is not intended to diagnose the gaps in the student’s knowledge and
skills.

Rule-based environments have been designed since the eighties of the last
century. The earlier examples of rule-based environments are EXPRESSIONS
(Thompson and Thompson, 1987), ALGEBRALAND (Brown, 1985),
DISSOLVE (Oliver and Zukerman, 1990), Mathpert (Beeson, 1990), Aplusix
(Nicaud et al., 1999). EXPRESSIONS presents expressions in two formats: in
the usual form and as a tree. In order to perform a step, the student should select
the rule (the button) and then an operation from the tree, which defines the
expression to be transformed. The program changes the expression and the tree
accordingly. In ALGEBRALAND the student just selects the operation and
operands. Earlier versions of Aplusix environment allowed practicing facto-
rizing polynomials without making calculations, i.e., choosing action, selecting
expression and in some cases entering additional information. Most of these
systems are no longer in development with the exception of Aplusix, which is
now an input-based environment (Aplusix by IMAG-Leibniz laboratory), and
Mathpert, which was developed into MathXpert (Beeson, 2002; MathXpert by
Help With Math). In the MathXpert system, the student should first select some
expression and after that the program displays the list of rules, which can be
applied to the selected expression (or some part of it). One of the main keynotes

 13

of this system is that “It is not possible to make a mistake” (Beeson, 2002). An
analogous idea is used in the comparatively new system L’Algebrista (Cerulli
and Mariotti, 2002). In this system, the student chooses a part of the expression
and the operation – the button with axiom, but “L’Algebrista will not carry out a
transformation that is invalid” (Stacey et al., 2004). For example, the student
will not succeed if she/he wants to select a+3 in the expression 2*a+3; the
system will automatically extend the selection to the whole expression.

There are also some other systems available now, which are working in
terms of rules. In the web-based intelligent tutoring system for solving
equations AlgeBrain (Alpert et al., 1999), the student should select operands
(term can be selected by clicking on its primary operator) and operation; the
system does not allow selecting syntactically incorrect parts. The system
proposes hints and animated feedback. A similar scheme is used in the
Education Program for Gifted Youth (EPGY) (Ravaglia et al., 1998), but in this
system the student should sometimes highlight or input some additional
information. EPGY uses the kernel of Maple, but has its own semantic
machinery. The current version of Cognitive Tutor Algebra 1 (Cognitive Tutor
by Carnegie Learning Inc.) includes an equation-solving system, where the
student has to choose an operation. For some operations, the system asks to
enter some additional information (for example, number to be added to both
sides of equation), for others, the system asks whether the operation should be
carried out to the left side, to the right side or to both sides of equation. The
solving process in E-tutor: An Equation Solving Tutor (Razzaq and Heffernan,
2004) is analogous, but this small system offers dialogue-based feedback
instead of hints. The tutorial dialogues in E-tutor draw upon Ms. Lindquist
(Heffernan and Koedinger, 2000; Ms. Lindquist by Neil Heffernan), an algebra
tutor for word problems.

Some commercial products also utilize rule-based interface, for example
LiveMath (LiveMath by MathMonkeys) and The Learning Equation (The
Learning Equation (TLE) by ITP Nelson) (particularly in the incorporated
program Algebra Tiles). Even though LiveMath is described as being a CAS,
this system is rule-based in its essence, because it does not enable getting the
answer in one step; for solving the student should select a part of expression and
the operation from the menu.

Now let us describe the second kind of interactive learning environments.
Input-based systems use paper-and-pencil-like dialogue design where a
transformation step consists mainly of entering the next line. The student can
work according to the algorithm and perform the algorithm steps by himself, but
the student has the possibility to perform whatever steps and as much as she/he
wants in one step. The domain expert module of such programs usually does not
handle the solution algorithms of different types of problems and does not
check whether the student works according to the algorithm. The student is

4

 14

given the possibility to make arbitrary mistakes; input is restricted only by the
syntax of expressions. The computer is now in the same situation as the teacher
who should check a solution on the paper: there is no explicit information on
the student’s decisions about operations and operands. Without knowing what
operation was applied to what part(s) of previous expression and without
restrictions on the number of operations applied during one step, it is very hard
to diagnose errors more precisely than “expressions are not equivalent”. The
domain expert module of input-based environments usually does not provide a
precise diagnosis of the errors made.

Early input-based systems were created already in the seventies of the last
century: BUGGY/DEBUGGY system (Brown and Burton, 1978; Burton, 1982),
LMS (Sleeman and Smith, 1981), EMMA (Quigley, 1989), Algebra tutor
(Anderson et al., 1990). BUGGY was the first naive diagnostic system based on
“the Buggy model” proposed by Brown and Burton (Brown and Burton, 1978),
where student’s errors are seen as symptoms of a “bug”, a discrete modification
to the correct skills. The system tried to find one bug that could explain the
student’s answers. DEBUGGY, a development of BUGGY, took into account
that more than one bug can cause the student's errors during one step. The Leeds
Modeling System, LMS, used rules and associated mal-rules for modeling
students as they learn to solve linear equations in one variable. The student
could give an answer in one step, but could simplify the equation. The system
did not indicate whether or not the answer was correct. The tutor for solving
linear equations EMMA used an engine similar to LMS (rules and mal-rules),
but the system checked each step for correctness. If the step corresponded to a
rule or mal-rule, then student was informed about that. The student could also
get different kinds of help (a generated solution; a list of rules that are
applicable to the current state; an explanation of how the last step was
obtained). The passive tutor created by McArthur (McArthur et al., 1987) used
student input to create a reasoning tree. The student could use the menu items
Answer Ok? and Step Ok? for getting feedback. Using Step Ok? the student got
a hint whether the step is acceptable, mathematically invalid or inappropriate.
The student could also look at the step generated by the system, as well as how
this step was elaborated. Algebra tutor, an early version of Cognitive tutor
Algebra 1 (Anderson et al., 1990), also used purely entering of the result and the
program tried to figure out what step was performed and to give appropriate
feedback. But the authors of cognitive algebra tutors found that “The problem
was that the students’ error might well have occurred at some intermediate step
that the students were no longer fixated upon. It was very difficult to
communicate to the student what the problem was.” (Anderson et al., 1990,
p. 42). These systems are no longer in development.

The current version of the Aplusix program (Nicaud et al., 2004) is input-
based. The program copies the content of previous line (expression, equation or
system of equations) to the next line and the student should edit it into the result

 15

of the step. The current version of Aplusix diagnoses only the non-equivalence
of the new expression with the previous one: the program displays between two
lines the indicator of equivalence, giving the student feedback about correctness
of the step. The authors of Aplusix are developing the program further. They are
building a library of correct and incorrect rules, which can describe how one
expression was transformed by the student to the next expression, and adding
student modeling using conceptions (the models will be provided only for
teachers, not students) (Nicaud et al., 2006). They are also planning to provide
good feedback for the student from the calculated conceptions.

Nowadays there are available some systems, which use pure input for
solving. In Math-Teacher (Math-Teacher by MATH-KAL) the expressions
should be entered in the old-fashioned linear form. The program provides
feedback: correct (colored green), incorrect (colored red) or syntax error. Some
help (like hint on the last answer line) is provided. Another example of an input-
based system is Treefrog (Strickland and Al-Jumeily, 1999). In case of incorrect
input, this system colors the input red and provides a hint, indicating what the
student should do (for example, Bring the xs together), even if the input is
absolutely nonsensical. The e-learning tool for solving systems of linear
equations The Equation Solver (Passier and Jeuring, 2006) uses a set of rewrite
rules for providing feedback about syntactic errors, semantic errors and about
progression (for example, how many variables have been solved). The system
of equations is entered into ordinary textbox, i.e., linearly. The authors of this
system have made a major restriction: they assume that the student performs
one step in a step (applies only one rewrite rule per submitted system of
equations).

Some attempts were made to supplement selection by rules with entering the
result. The intermediate version of Cognitive Tutor: Algebra (Anderson et al.,
1995) was a system where the student could decompose a result calculation into
substeps recursively until primitive steps were reached. At each substep, the
student had to choose the operation that should be performed on equation, enter
the arguments to pass to this operation, and enter the result. The tutor embedded
boxes on top of boxes to indicate the levels of embedded goals. But after
evaluation the authors found that the tutor did not give positive results and
“… the major reason for the lack of effect was that there was a large difference
between the tutor interface and the interface used in class (i.e., paper and
pencil). It was just not obvious how to map the boxed representation of
algorithmic decompositions to the linear line-by-line transformations…”
(Anderson et al., 1995, p. 183).

The author of the thesis tried in real life the following of the abovementioned
systems: DERIVE, Maple, Mathematica, WIRIS, ActiveMath, AiM, STACK,
MathXpert, the current version of Aplusix, EPGY, E-tutor: An equation solving
tutor, Ms. Lindquist, LiveMath, TLE, Math-Teacher, Treefrog. Other systems

 16

are described on the basis of referred articles and the author of the thesis cannot
take responsibility for the correspondence of these articles to the reality.

Work related in some aspects to the topic of the thesis has been performed at
the University of Tartu as well, where interactive learning environments with
different step dialogues were developed for university students. In 1988–91, a
program package for exercises in mathematical logic was developed under the
instruction of the supervisor of the author (Prank, 1991). One of the programs
was an interactive environment for stepwise solution of formula manipulation
exercises in propositional logic. The first version of this program utilized a pure
input interface. The student typed on the next line a new formula (having some
copy-paste possibilities). The program checked the syntax, equivalence with the
previous line and whether the target form of the expression was reached. It was
noticed that the errors of misunderstanding the order of operations were most
difficult. After the message “not equivalent” the students corrected the mistake
easily if they had mistaken some conversion rule. But they did not understand
the message when they had converted some substring that was not a proper
subformula (for example, expressed in X⊃Y&Z the substring X⊃Y through
other operations). The program was unable to diagnose such mistakes without
explicit information about the object of conversion. In the second version
(Prank and Viira, 1991) the step dialogue was extended and a rule-based part
was added. The student had to mark some subformula and then the step was
performed depending on the working mode. The first working mode remained
the same as in the first version of the program – input. The second mode
consisted of the selection of a conversion rule from the menu. As a result, the
program was able to verify separately the selection of operand and the
performed conversion. This addition of a marking phase gave a level of
feedback that was sufficient for that group of users (second-year students) and
there was no need to make it more precise.

1.3 Problem statement

The general problem this thesis aims to solve is to design, implement and test an
environment of new kind for proper learning of linear equations, linear
inequalities and systems of linear equations as well as for assessment and
diagnosis of gaps in the knowledge and skills. This environment should

• enable to solve linear equations, linear inequalities and systems of linear
equations step-by-step and line-by-line as on paper;

• allow the student to make all the necessary decisions and calculations at
each solution step;

• leave an opportunity for the student to make the same mistakes as on
paper;

• give the possibility to learn both the algorithms and their steps in details;

 17

• contain such dialogue that allows the program to understand all decisions
made by students (chosen operation, selected operands, entered result);

• be intelligent enough to check the knowledge and skills of the student,
understand the mistakes, offer feedback and advice;

• contain such domain expert module, which would be able to not only give
an answer, but to show a solution path using the designed interface.

1.4 Contribution of the thesis

This thesis is a part of the larger project, the result of which is an interactive
learning environment for working with numerical expressions, fractions, linear
equations, inequalities, linear equation systems and polynomials. The thesis
presents the interactive learning environment T-algebra with novel design, in
which creation the author of the thesis participated. The design is novel, because
it combines two known approaches: rule-based and input-based environments.
The result of combination is named Action-Object-Input (A-O-I) scheme. It is
hard to specify the particular contributions of different members of the
T-algebra team to developing the general ideas of the A-O-I scheme. The main
contribution of the author of the thesis to this project is design and
implementation (programming) of and experiments with the rule dialogues
enabling diagnosis of mistakes, and problem types with solution algorithms for
the domain of solving linear equations, linear inequalities and systems of linear
equations.

This thesis presents the work contributed by the author to the following
design, implementation and experimenting efforts:

• division of problems solved at school in the domain of linear equations,
linear inequalities and systems of linear equations into straitened
computerized problem types;

• specification of initial and result conditions for checking by the program
for each problem type;

• construction and programming of algorithms of automatic solving needed
for generation of sample solutions and step advices for each problem type
(algorithm creates a solution, which consists of application of rules);

• creation of list of rules, which are essential for solving each problem
type, in conformity with the algorithms presented in school textbooks and
skills learned beforehand;

• supplementary investigation for clearing up typical mistakes made by
students on paper during solving of problems from the chosen domain;

• design and programming of dialogues, additional stages, initial and result
conditions, diagnosis of mistakes for each rule from the domain (all rules
are realized according to the A-O-I scheme);

5

 18

• experimental validation of created dialogues with students and teachers;
• investigation of mistakes made by school and university students during

linear equation solving in T-algebra and comparison with mistakes made
on paper;

• evaluation of the created interactive learning environment (specifically
the part dealing with the solving of linear equations).

1.5 Structure of the thesis

This thesis is based on the papers by the author presented in the List of original
publications.

Chapter 2 (T-algebra interactive learning environment) thoroughly describes
the design and general dialogue scheme of T-algebra. The first part introduces
expressions allowed in the program. The second part of Chapter 2 depicts the
problem solution window of the student’s program. The third part presents the
design of step dialogue. The fourth part of this chapter gives an overview of the
domain expert module built in T-algebra using the domain of linear equations as
an example and describes applications of the domain expert in T-algebra. The
fifth part describes different statistics calculated and saved by T-algebra. The
sixth part of this chapter gives brief introduction to the teacher’s program. The
last part describes implementation of T-algebra.

Chapter 3 (Problems and algorithms in the domain of linear equations, linear
inequalities and systems of linear equations in school textbooks and in
T-algebra) describes the domain of linear equations, linear inequalities and
systems of linear equations. First, exploration of mathematics school textbooks
is presented (definitions, algorithms, problem types). The second part of this
chapter describes the rules designed for solving linear equations, inequalities
and systems of linear equations in T-algebra. The last part represents composed
problem types and their solving algorithms in the chosen domain.

Chapter 4 (Conducted experiments) describes five different experiments
conducted by the author of the thesis to validate user interface, to evaluate
created interactive learning environment (the part of solving linear equations)
and to investigate mistakes made by school and university students during linear
equation solving in T-algebra and to compare them with mistakes made on
paper.

The thesis also contains five Appendices. Appendix A presents Backus-Naur
Form full description of expressions in T-algebra. Appendix B gives a brief
introduction to the use of T-algebra (quick start). Appendix C describes all
problem types realized in the domain of linear equations, linear inequalities and
system of linear equations. Appendix D represents a user questionnaire filled
out by students during one of the experiments. Appendix E lists the problems
used for practice in one of the experiments.

 19

2 T-ALGEBRA INTERACTIVE LEARNING
ENVIRONMENT

The goal of the thesis is to create an interactive learning environment for
solving linear equations, linear inequalities and systems of linear equations,
which would be mathematically and didactically adequate and interesting for
students. This goal was realized as a part of T-algebra interactive learning
environment, which enables step-by-step solving of algebra problems in four
areas of school mathematics:

• calculation of the values of numerical expressions;
• operations with fractions;
• solving of linear equations, inequalities and linear equation systems (my

contribution to this environment);
• simplification of polynomials.
T-algebra is developed not only for schools, but also as research tool for

compilation of research material. The environment should enable investigation
of the following main aspects: speed of work with computer in comparison with
work on paper, and mistakes made by the students when creating solutions in
the interactive learning environment in comparison with mistakes made on
paper.

The environment is being developed from 2004 by the Master’s and
Doctoral students of the Institute of Computer Science at the University of
Tartu (Marina Issakova – solving of linear equations, inequalities and linear
equation systems; Dmitri Lepp – simplification of polynomials; Vahur Vaiksaar
– operations with fractions and calculation of the values of numerical
expressions) and under the supervision of their instructors (Rein Prank – project
manager, Eno Tõnisson). The consultants for the content of the program are
mathematics teachers (great contribution was made by Mart and Maire Oja) and
the authors of textbooks for schools (Tiit Lepmann, Anu Palu). This version is
developed as a project financed by the ‘Tiger Leap’ computerization
programme for Estonian schools (Tiger Leap Foundation website).

T-algebra consists of two programs, one is for students and the other is for
the teachers. In this section I will thoroughly describe the design and general
dialogue scheme of the students’ program and give a brief introduction to the
teachers’ program on the basis of published articles (Issakova and Lepp, 2004;
Issakova et al., 2005; Issakova et al., 2006; Issakova, 2006a; Prank et al., 2006a;
Prank et al., 2006b; Prank et al., 2007).

 20

2.1 Expressions in T-algebra

The main object for the program to work with is the algebraic expression. In
this section, I will describe, which expressions are allowed in the program, i.e.,
which expressions are treated as correct.

An algebraic expression in T-algebra is defined in the following way:
elementary expressions (or basis) are integers, decimals (separator in decimal
fractions used in Estonia is "," (comma)) and variables (small letters a…z).
Expressions are composed by recursively applying different operations (unary
+, -, binary :,,, ⋅−+ (division sign used in Estonia is ":" (colon)), exponentiation
(and), common fraction (and), grouping symbols (parentheses ()
and brackets [])). In addition, more complicated expressions are realized in the
program as well: linear equations (sign =), linear inequalities (signs

>≥≤<) and systems of linear equations (sign {).

Expressions in the program must be mathematically correct and involve
various combinations of abovementioned symbols. Here are some examples of
correct expressions:

•
3
22

2
1

− (mixed numbers, e.g.,
3
22 are widely used in Estonia);

• 22)1(xx + ;
• xx −≤− 322 .
The following expressions are treated by the program as incorrect:
•

3
3 x , because a variable is not allowed in mixed numbers;

• avbcba 322 + , because a multiplication sign is required in monomial
multiplication, and constants are not permitted between variables in
monomial multiplication.

Backus-Naur Form full description of expressions in T-algebra is presented
in Appendix A.

There are no quantitative constraints placed on expressions. The program
also supports several-storied fractions and exponentiations, etc. However, some
constraints are placed on expressions by problem types. For example, when
solving linear equations all expressions have to be linear equations – they have
to contain an equality sign.

 21

2.2 Description of the problem-solution window

Figure 2.1 shows the problem solution window of the T-algebra program.

Figure 2.1. The problem-solution window of the T-algebra program

The problem-solution window has been divided into two logical parts. The
left-hand part contains a field displaying a list of problems. The list contains
expressions and formulations of problems with the number of problem in this
file. In addition, information on the problem resolution is displayed – if a
problem has been solved, this is indicated in the list by green background color
as shown in the figure. A problem, which is currently being resolved, is
displayed in a red box. The right-part of the window contains solution steps and
a virtual keyboard, the menu of possible actions and instructions for the student
in this particular situation.

The main components of the window are:
1. The program menu bar, which enables to manipulate with files (New,

Open, Save, Save as, Close) and problems (Previous, Next), open
additional windows (for example, view the error counters – categorized

6

 22

by the types of errors, or list of all errors), or choose the language of the
program.

2. Buttons, which duplicate some items from the File menu (New, Open,
Save (as)).

3. The list of problems to be resolved, which also shows the results of
problem solving. It is also possible to hide the list of problems and to
use the whole window for viewing the solution.

4. The text of the problem.
5. The resolution process for the selected problem – the sequence of steps.
6. The last expression with virtual keyboard for selecting the operands.
7. The grouped list of rules.
8. Rules for steps of linear equation solving algorithm.
9. The selected rule (differs from other rules by background).
10. The rules for manipulation with fractions.
11. The rules for simplification of expressions with 1, 0 and redundant

pluses.
12. The buttons for asking help, rollbacking the solution steps and giving

the answer.
13. Instructions to aid the problem resolution process (indicating what the

student should do next: choose the rule to apply next, mark some parts
of expression, enter something, etc.).

14. The status bar, which shows information about the user and the open set
of problems.

2.3 General dialogue scheme in T-algebra

Each solution step consists of three stages:
1. selecting a transformation rule (action);
2. marking the parts of the expression (object);
3. entering the result of the application of the selected rule (input).

Hereafter we will refer to this scheme as the Action-Object-Input scheme,
after its three stages.

Part (5) of the sample window in Figure 2.1 shows the resolution process for
solving linear equation 68 – 3x = 3 + 4(2x – 3). The solution is not yet
complete, but some steps have already been taken. At the first step, Open
parentheses was selected as the operation, and product of number and
expression in parentheses was marked. The result of multiplication was entered
in the result. At the second step, 68 and 8x were moved to other side in the same
way. During the third step, the numbers on the right side of equation were
added/subtracted. The solution path is similar to how the student would solve
this problem using pencil and paper, because T-algebra follows the solution

 23

algorithm taught at school. In T-algebra only the final and correct solution path
is displayed. If the student performed a wrong or unnecessary step (for example,
moved -3x during second step to the right side) and then took this step back, the
teacher would not see this deleted step in the solution path.

When solving this problem further on paper, the student would at first
examine the expression. She/he should decide to combine like terms. Then
she/he would underline the like terms she/he wants to combine and write the
resulting equation on the next line. When applying the Combine like terms rule
the program follows principally the pencil and paper scheme of actions. The
corresponding solution step consists of the following three stages (the first is
already completed in Figure 2.1):

1. Selecting a transformation rule – the student selects from the rule list
the rule of combining like terms – the program allows selecting any rule
without checking whether it is possible to apply such a transformation
at that stage or not.

2. Marking the parts of the expression – the student marks the terms
similar to x, using the mouse (the first like term -3x is already marked) –
the program checks whether the selected parts of the expression are
actually like terms, and it also checks whether these terms can be
combined (i.e., whether they belong to the same sum). The students do
not have to select all suitable terms at one time – the minimum selection
needed is two similar terms.

3. Entering the result of the application of the selected rule – the program
copies unchanged parts of the expression onto the next line and asks the
student to enter the resulting term or its parts depending on the solution
mode. The third stage has the greatest potential for mistakes, because
the student must apply the rule for the marked parts and enter the result.
Three different input modes were designed for each rule to achieve
better diagnosis of errors (Issakova et al., 2005). Different input modes
are described in more detail in the next section.

This example should provide an idea of the connection between the actions
of the student and the program – what is checked by the program and when. If
an error message is displayed at any checking stage during solution of a
problem, the student must first correct the error himself or let the program
correct the error in order to proceed to the next stage. For example, the student
cannot proceed further if she/he has entered a wrong coefficient of term – the
program will diagnose this standard mistake and display an appropriate error
message. For each action of the student, the program gives specific instructions
(‘Choose the rule to apply next’, ‘Select terms to combine’, etc.). The student
can cancel the step at any time. It is also possible at any stage of the step to ask
the program for help and let the program complete certain stages automatically.
During the input of the result the student can press the special button with

 24

computer image and the program will put the right answers into the boxes. The
same help button is also available when marking the operands – the program
will select appropriate operands itself (Figure 2.1). Before every step, the
student can ask the program which rule should be applied at this moment
according to the algorithm by pushing the button Hint (Figure 2.1). The same
button will indicate if the problem is solved.

You can make a brief introduction to using T-algebra with the quick start to
T-algebra student’s program presented in Appendix B.

2.3.1 Selection of the rule and marking the parts of
expression

The order of the first two stages is not fixed by the program. The student can
mark the operands before, after, or even before and after selection of the rule.
Only after confirmation of these two stages the program controls whether the
selected parts are suitable for the selected rule. The reason for that is explained
in Chapter 4 Section 4.2 (as a result of second experiment).

The set of rules displayed in the menu depends on problem type. Selections
of the rule and designed set of rules for the domain of linear equation, linear
inequalities and systems of linear equations are thoroughly described in Chapter
3 Section 3.2.

Unlike many other programs, T-algebra requires precise marking of
operands for diagnostic purposes. For example, for the operation Combine like
terms the student should mark only those terms that will be actually combined.
Accordingly, the editor of T-algebra enables to mark more than one piece of the
expression. The program allows the preceding pluses and minuses to be marked
or not, while the program will always consider that the sign was marked. The
program also allows the marking of parts as one large item if they stand next to
each other, while the program itself will divide it into parts for further
processing.

In addition to entering expressions, the expression editor also allows
marking the operands. In order to mark a part of an expression, with the
expression editor in the marking mode (see Figure 2.2), this part should be
selected (either with mouse or keyboard) just like in a regular text editor and

then the user should press the button. To remove marking, the student

would have to select the same part and press the button. Buttons
are for moving between the marked parts. When the user has finished marking
and selected operation, she/he should confirm the first two stages by pressing

the button.

 25

Figure 2.2. Expression editor of T-algebra program in the marking mode (left part – the

rule is not selected yet, right part – the rule is already selected)

2.3.2 Entering the result of the application of the rule
The Action-Object-Input scheme was first developed in the Master’s Thesis of
D. Lepp in 2003 (Lepp, 2003), which serves as a prototype of T-algebra. The
author designed the input forms separately for each conversion rule, trying to
minimize the input and requiring entering only critical information for any
particular operation. The form and number of parts that could be entered
became too varied for different rules and the user interface of the program
became too confusing. In T-algebra we try to design three fairly uniform and
standard input modes for all rules. The three input modes are named free input,
structured input and partial input. Free input mode is easily comprehensible (it
is similar to working on paper) and it can be designed for each rule. Structured
and partial input modes are more specific. The program helps the user in a
certain way, whether by indicating the structure of the result or even filling out
a part of the result.

At the third stage (Input) of each step, the student should enter some parts of
the expression that result from the previously selected operation. The program
generates the expression in the next line based on the selected rule and marked
parts, and leaves blank certain important parts of the resulting expression. When
working with paper and pencil, the students themselves have to write the whole
resulting expression. Consequently, they try to reduce the amount of routine
rewriting by making several transformations at once. The program makes the
work easier for the students by copying the parts of the expression that remain
unchanged so that the students would have to enter only the parts that were
modified. Only one transformation can be made in each step. This makes it
easier for the program to check the solutions and gives the teacher a better
overview of the student’s solution. The results can be entered on the keyboard
or on the virtual keyboard (see Figure 2.3).

7

 26

Figure 2.3. Input of the result (in free input mode)

The parts of the expression that the student has to enter are highlighted with
yellow boxes. The form and the number of user-definable parts depend on the
selected rule, marked parts and mode. While entering the results, the program
protects other parts of the expression from modification – only the highlighted
locations of the expression can be modified. This makes it easier for the
program to check the solution and, in addition to checking the equivalence
between the new expression and the previous one it also enables the correctness
of separately entered parts to be checked, thus improving the overall
responsiveness of the program to errors. The input mode is selected by the
teacher during problem composition.

2.3.2.1 Three input modes
In free input mode, the program generates one input box (or two boxes in the
case of some rules with fractions and equations) inside the expression on the
next line instead of marked parts (see Figure 2.3). The student should enter in
the box one expression replacing the whole marked part from the previous line.
Even though the name of the mode is ‘free input’, the input is still restricted to
some extent. The editor gives the student freedom in entering, but after the
input, the program checks not only the syntactical correctness of the expression
and equivalence to the previous expression, as also occurs in Aplusix (Nicaud et
al., 2004), but also the correctness of applying the rule.

For example, in Figure 2.3 the rule Combine like terms was selected and two
like terms were marked. After the input is confirmed, the program first checks
whether the entered part is syntactically correct, monomial and equivalent to the
marked parts. Finally the program checks the equivalence of the complete new
line with the previous line. If the student enters xy 22 without the leading
addition sign then the entered part is equivalent to the marked parts but the
whole expression is not. In some other rules the student should type brackets
around the entered sub-expression.

In structured input mode, the program uses the information about the actual
rule and operands, and itself predicts the structure of the required input using

 27

different input boxes for signs, coefficients, variables, exponents, etc. (see
Figure 2.4).

Figure 2.4. Structured input

The size and position of the boxes should immediately indicate to the user
what should be entered. In this mode, input into the boxes is restricted. If the
cursor is in some input box, the buttons with unavailable symbols on the virtual
keyboard are inactive and corresponding keys on the regular keyboard do not
work. For example, in Figure 2.4, where the rule Combine like terms was
selected and two like terms were marked, the program offers a structure of
monomial with six boxes in the next line. The first box is the sign input box, the
next is the coefficient input box (active in Figure 2.4) followed by boxes for
input of variables with exponents.

The program generally offers the same number of boxes for the variables of
one monomial as the number of variables in the marked parts. Variables can be
entered in arbitrary order inside one monomial, but the program requests the
user to standardize the result to some extent (for example yxy to 2xy or xy 2 in
Figure 2.4). It is possible to leave some boxes empty. For example, if the power
of the variable is 1, then the exponent box can be left empty.

When the user has finished entering, the program checks whether the new
expression is equivalent to the previous one and whether the entered parts are
equivalent to the parts computed by the computer. If the expressions are not
equivalent, the program checks the correctness of each entered part to produce a
more specific diagnosis.

Structured input mode is rule-specific (each rule requires its own input
pattern of the resulting expression) and it turned out that this mode is useless for
some rules. For example, it would be pointless to offer a structure for the result
if the applied rule was Clear parentheses, because only signs change.

The third mode (partial input) is a simplified form of the second mode,
where the program fills some boxes by itself. For example, Figure 2.5 shows the
same example as Figure 2.4, but using partial input. The program itself writes
the variables with exponents. The user should enter only the sign and coefficient
of the monomial. The program also simplifies the work of the user by

 28

converting the monomial into normal form. After the input the program checks
the correctness of the expression and its equivalence to the previous one as in
other modes.

Figure 2.5. Partial input

It turned out that there are some rules for which it is vary hard (and
unnecessary) to design boxes for both (structured and partial) input modes (see
examples in Chapter 3 Section 3.2, rules Add to/Subtract from both sides and
Substitute variable).

2.3.2.2 Additional input
While designing the rules for T-algebra we found that it is difficult to express
some rules purely in terms of Action-Object-Input dialogue (Issakova and Lepp,
2004). In order to decide which features we need to add to the dialogue, we
studied written work of the students – how and which steps they make while
solving problems on paper. We also reviewed school textbooks to find all the
rules used in the solution steps and the algorithms used for solving the
problems. In virtually every topic we found some rules where adequate
expression required modification of the dialogue. We extended the input stage
of the dialogue by adding three new features (Lepp, 2005). Each rule may use
one or several of these features at once, depending on the mode running:

• input of the rule-specific additional information;
• input of intermediate result;
• adding terms to the result.
In some rules the result of the application is not uniquely defined by the

operands but depends on some additional decision of the student. For example,
Estonian textbooks suggest writing addition of fractions with different

denominators as follows:
4 31 3 4 9

6 8 24
+

+ = . Here the students first calculate the

common denominator of the fractions being added and write it in the resulting
fraction after the equality sign. Then the students find so-called extenders
(“extenders” are numbers by which you need to multiply both numerator and
denominator of the fraction to convert the denominators to the common
denominator (this term is used in Estonian schools and textbooks (Nurk et al.,

 29

2000))) and write them to each addend. Even if this information (common
denominator) is included in the final input, it could be very difficult to guess the
case of error if the input is inconsistent. This information is also needed for
checking the extenders in intermediate input stage.

As we still want to check the students’ skills and identify the cause of errors,
this specific information has to be entered separately. A separate input window
was created for each such rule that needs additional information. When adding
fractions, the student has to input one number – the common denominator of the
selected fractions (see Figure 2.6). Similar input was used in the MathPert
system (Beeson, 1998).

Figure 2.6. Input of the rule-specific additional information for addition of fractions

with different denominators

This added window is the first new feature that can be followed by other
options or the usual input of the resulting expression. When the objects of the
rule have been selected, the program checks whether the rule is applicable to
them and after that displays this input window to the user. After the student has
made the input in this window, the program checks whether the entered
information is correct. If no errors are diagnosed, the student may proceed to the
next stage.

Looking at pencil and paper solutions of the students, we found that some
rules are applied using two input stages: first, some intermediate result is found
(for example, extenders for each fraction are found when adding fractions with
different denominators) and then the final result is written. We tried to follow
the same pattern while extending the dialogue that is used when working with
pencil and paper: at first, the common denominator is entered in an additional
window, then the extenders of the fractions are entered (Figure 2.7) and after
that the members of the final result are entered. As we wanted to keep the initial
expression unchanged with the objects selected in it, the program copies the
expression to a new line after entering the common denominator and provides

8

 30

boxes for entering extenders. The same constraints are used here as in structured
or partial input – the boxes only allow numbers to be entered.

Figure 2.7. Input of intermediate result when adding fractions with different

denominators

After the intermediate result has been entered, the program checks the
correctness of the entered parts. In the case of an error the student is given an
appropriate message and the program lets the student correct the result before
proceeding. If no error is diagnosed then the program constructs the result of
applying the rule based on all the information entered and lets the student enter
some parts of the result, depending on which solution mode is in operation.

Most rules that are used for making transformations to algebraic expressions
actually shorten the initial expression. However, the rules dealing with
polynomial multiplication lead to the growth of the expression and the structure
of added terms differs from the structure of the terms that caused this growth. In
free input mode, the student has to build the structure of the result himself. In
the particular form of structured input mode described above, we would be
giving the student too many hints on the structure of the result – she/he would
see the number and the kinds of terms in the result. We have found a better
solution.

The members of the resulting sum have the same general structure. Instead
of drawing the boxes for all terms we can draw the box for the first term and
give the possibility to add more terms dynamically by adding or removing
monomial structures. When checking the result the program checks whether an
appropriate number of terms was added and it also checks each term separately.

Figure 2.8 shows an example of adding terms to the structure of the result in
the rule of multiplying two polynomials. The result of application of this rule is
also a polynomial that the student has to construct of monomials. At first, one
monomial structure is given (Figure 2.8 on the left). Then the user can extend
the structure by pressing the appropriate button on the virtual keyboard and the
program adds one more monomial (Figure 2.8 on the right shows added
monomial, input boxes are filled with the parts of the result). This mode

 31

requires exact application of the multiplication rule only; combining similar
terms is not allowed.

Figure 2.8. Adding terms to the result in the rule of multiplying two polynomials

2.4 Domain expert module in T-algebra environment

According to Wenger (Wenger, 1987), an Intelligent Tutoring System consists
of four major components: Domain knowledge, Student model, Pedagogical
knowledge and Interface. Many studies have been conducted to build an
intelligent tutoring system based on pre-existing software (using a computer
algebra system instead of the Domain knowledge) (see (Ravaglia et al., 1998;
Sangwin, 2005)). The reason for that is “… recognition that programs like
Maple represent massive programming efforts coupled with the feeling that to
repeat such an effort would be a waste of resources” (Ravaglia et al., 1998,
p. 78). However, like Beeson we believe that “… if we start with an educational
purpose, and enunciate some simple design principles that more or less
obviously follow from that purpose, these principles have ramifications that run
through to the computational core of the system, so that it is impossible to
achieve ideal results by tacking on some additional “interface” features to a
previously existing computation system” (Beeson, 1998, p. 90). That is why we
built our own domain expert module, which we believe, is one of the
advantages of T-algebra.

According to Anderson (Anderson, 1988), the knowledge the system has of
its subject domain is one of key places for intelligence in learning systems. The
intelligence in a domain is provided by the expert module of the system. A
powerful expert module must have an abundance of knowledge. Expert modules
range from completely opaque or ‘black-box’ representations, where only the
final results are available, to fully transparent or ‘glass-box’ (or ‘white-box’
(Buchberger, 1990)) ones, where each step of reasoning can be inspected and
interpreted. On the one hand these modules serve as the source of knowledge to
be presented to the student, including generation of questions, explanations and
responses, and on the other hand they provide a standard for evaluating the
student's performance by generating comparable solutions to the problems in
the same context. The modules must also be able to detect common systematic
mistakes and any resulting gaps in the student's knowledge. The expert modules

 32

must also be able to generate sensible, and possibly multiple, solution paths to
compare intermediate steps and achieve student monitoring.

Problem types, solution algorithms and algorithm steps (rules) are described
in our domain expert module. We have implemented in the domain expert
module not only the problem types based on a known solution algorithm like
linear equation solving, but also the problems based on single solution
algorithm steps, for example, move all variable terms to the left side of equation
and all constant terms to the right, divide equation sides by variable coefficient,
multiply equation sides by the common denominator of all terms. The T-algebra
domain expert module follows the ‘glass-box’ principle and can produce step-
by-step solutions similar to pencil-and-paper ones, not only answers like ‘black-
box’ systems. It solves problems using the designed rule dialogue: it selects a
transformation rule corresponding to a certain operation in the algorithm (or
some simplification or calculation rule), selects the operands (the whole
equation or certain parts of equation) for this rule and replaces them with the
result of the operation.

The T-algebra expert module knows the algorithm for every problem type.
Algorithms in T-algebra are implemented as an ordered list of rules. Firstly, an
algorithm contains rules for simplification of expressions with 0, 1 and
redundant pluses, which are not school algorithm steps, but which the student
may use at any moment on paper, like Add/Subtract 0, Multiply/Divide by 1, etc.
Secondly, the rules for manipulation with fractions were added, for example,
Extend, Reduce, Improper fraction to mixed number, etc. And finally, an
algorithm contains rules, which correspond to pencil-and-paper algorithm steps
in such order as they should be applied in pencil-and-paper solution algorithm.
In the domain of linear equation, the expert module works according to the
following algorithm (list of rules) for linear equation solving (this is simplified
version of realized algorithm; for the full version see Chapter 3 Section 3.3):

• rules for simplification of expressions with 0, 1 and redundant pluses (not
school algorithm steps: Add/Subtract 0, Multiply/Divide by 1, etc.);

• rule for arithmetic operations and manipulation with fractions;
• rules Open parentheses and Clear parentheses;
• rule Multiply/Divide both sides for removing fractions (multiplication);
• rule Add/Subtract numbers;
• rule Combine like terms;
• rule Move terms to other side;
• rule Multiply/Divide both sides for isolating variable (division).
Figure 2.1 shows how the expert module would solve the equation according

to the algorithm described above. The T-algebra domain expert module is
cognitive faithful, i.e., it solves the problem in the same way as the student
should. However, this is not the only way to solve this equation. The expert

 33

module will accept all other solution paths as well if the student takes them. The
expert module can solve the problem from any point of the solution, not only
the initial expression. The student can take some steps and the expert module is
still able to finish the problem from there.

Figure 2.9 shows the semantic network representation of the domain
knowledge in T-algebra.

Figure 2.9. Semantic network of domain knowledge

2.4.1 Solution engine
The order in algorithm is very important, because the expert module examines
the list of rules from the beginning, finds the first rule that it can apply and
applies this rule. Then it examines this list again from the beginning and finds
and applies new (or the same) rule. This cycle continues until no more rules can
be applied or the expression/equation is in the solved form. This is the way the
expert module composes a solution path and gets an answer to the problem.

The expert module checks whether it can apply the rule by trying to find
suitable operands for this rule. If it finds operands, then it can apply the rule to
these operands. After the operands are found, the expert module calculates
necessary parts of the result depending on the input mode, puts them together
with unchanged parts and gets the new expression/equation.

2.4.2 Applications of domain expert module
In addition to solving problems, the domain expert module in T-algebra can
check the student’s solution steps and answers, give advice, etc. This section
describes the applications of our domain expert module in T-algebra.

2.4.2.1 Giving advice
There are systems that can help when the user is at a loss. Mathpert is one of
such systems. Mathpert has 3 different possibilities to help the student: the
buttons AutoFinish, AutoStep and Hint. AutoFinish finishes the solution,
AutoStep generates one step of the solution and Hint tells which rule should be

9

 34

applied next. In this environment the student can learn and practice a solution
algorithm, but the learning of algorithm steps is passive, because the program
never shows to which parts of the expression the rule should be applied (does
not show the operands for the operation) and how. We want the student always
to participate in the solution process and learn all the stages of each step;
therefore, T-algebra does not show the whole step automatically, but only the
next stage of the step.

At any stage of the step it is possible to ask the program for help and let the
program complete certain stages automatically. Before every step the student
can ask the program which rule should be applied at this moment according to
the algorithm by pushing the button Hint (Figure 2.1). The expert module will
check the current expression and problem type, find which rule should be
applied and display appropriate help message (Figure 2.10). The same button
will tell if the problem is solved.

Figure 2.10. Help message for choosing the rule

During the marking of the operands the student can press the special button
with computer image (Figure 2.1) and the program will select the appropriate
operands itself. If the student selects an impossible rule and asks for help for
marking the operands then T-algebra responds that the application of the
selected rule is impossible. The same help button is also available when
entering the result – the program will put the right answers into the boxes.

T-algebra can also generate and display the whole solution from the current
expression (the button Autosolve, see Figure 2.1), but we suggest teachers
disable this possibility in the problem file.

2.4.2.2 Checking the stages of the step
In existing input-based interactive learning systems the student can err and the
program diagnoses only the non-equivalence (like current version of Aplusix).
In rule-based systems the student can either select unsuitable rule or the student
cannot make mistakes at all. For example, in Mathpert the student cannot select
a syntactically incorrect part and even cannot select an unsuitable rule. In this

 35

environment the student first selects some part of the expression (the program
selects only syntactically correct parts) and only then the program offers
“… those operations that make sense for what you’ve selected” (Walden, 1997,
p. 35). In the last version of MathXpert the systems sometimes offers unsuitable
rules too.

In T-algebra the student is left the possibility to make mistakes at all three
stages of the step. If a mistake can be made, then T-algebra can respond to it as
well.

First, the student could err in choosing the rule. If the application of the
selected rule is impossible, the program does not immediately inform the
student about the error, because the student will not find suitable objects for
applying this rule or will make an error by choosing unsuitable objects. This
gives the student a chance to correct the error without assistance. If the user
cancels the step before confirming the marking of the parts of the expression,
the error counter does not increase. In some cases where the application of a
rule is possible but leads to a completely wrong direction (for example, in the
problem on adding a given number to inequality sides, the student is choosing
the addition rule for the second time), then the program will show appropriate
error message and will not proceed to the next stage. If the application of this
rule is simply unreasonable – leads to the right answer, but with longer solution
path (for example, in the problem on reversing the equation sides, the student is
choosing the rule for moving terms to other side), the program allows
proceeding and leaves a possibility for the teacher to evaluate the solution
process.

Secondly, the student can make mistakes in marking the parts of the
expression. First, the program checks whether a syntactically correct part of the
expression has been marked. Second, it checks whether the marked parts are
appropriate for the implementation of the selected operation (for example, the
term for combining should be a monomial). Third, the program checks whether
the marked parts are compatible with the selected rule (for example, the terms
for combining should be similar to each other). Finally, the position of operands
is checked (for example, the term for moving to other side should not be a
member of product or sum in parentheses (Figure 2.11)). When wrong parts
have been selected, the program does not permit to continue. Some rules
(especially in the field of linear equations) are applicable to the whole
expression/equation and it is not necessary to mark anything. However, the
possibility to mark is preserved. If something is marked, the program checks
whether the whole expression/equation is selected.

 36

Figure 2.11. Error message displayed when marking the operands

The input stage has the largest selection of potential mistakes, because the
student must apply the rule for the marked parts and enter the result. When the
user confirms entering, the program first checks the syntactical correctness of
the entered part and the correctness of applying the rule (whether the answer is
in appropriate form; for example, the result of combining like terms should be a
monomial). The program checks whether the entered parts are equivalent to the
parts calculated by the expert module. If the expressions are not equivalent, the
program checks the correctness of each entered part to produce a more specific
diagnosis. Finally, the program checks the equivalence of the complete new line
with the previous line (in some cases the position of operands causes additional
requirements; for example, combining like terms -3x and 5x in equation
2-3x+5x=6 the student should enter +2x even if 2x is the right answer for the
operation).

During all the checking phases at the input stage, the program tries to
determine whether the student has made a standard error, which occurs often in
student solutions (for example, changing all signs when reversing sides is a very
common mistake made by Estonian students). If the mistake is in the set of
standard mistakes implemented in T-algebra (some studies have been conducted
to collect the students’ mistakes made on paper (Hall, 2002; Issakova, 2005;
Sleeman, 1984)), then T-algebra is able to diagnose it and offer an appropriate
error message (Figure 2.12). If the mistake is not in the composed set of
standard mistakes, then T-algebra tells about the non-equivalence of
expressions/equations.

 37

Figure 2.12. Error message displayed when entering the result

2.4.2.3 Checking the completion
The solution algorithm and the form of answer depend on the problem type. The
solved form of a linear equation should be variable = number or
number = number. When the student believes that she/he has solved the
problem she/he should push the button Solved – give answer (Figure 2.1). The
program checks whether the expression is in an appropriate form. If the current
equation is not in the solved form, then the program tries to determine which
steps of the algorithm were not performed and displays the respective error
message (Figure 2.13).

Figure 2.13. Error message displayed when giving an answer

In problems based on single steps the student should not solve the equation
to the end but should practice only application of one or two rules. If the student
did not recognize the answer and tries to modify the equation further (for
example, in the problem on multiplying equation sides by common denominator
of all terms, the student tries to combine like terms after multiplying), the
program will not permit this. Each time when the student tries to choose a new
rule the program displays an error message “The problem is solved. Give an
answer”.

The domain expert module of T-algebra is intelligent enough to avoid loops
in checking the completion of the solution. It understands that the equation

10

 38

6
5

=x should be multiplied if the problem type is Multiply equation sides by

common denominator of all terms, because the answer should be without
fractions. The expert module will also suggest multiplying the equation x=

6
5 in

the same problem type. However, if the problem type is Solve linear equation, it
will never suggest multiplying these equations even though the first step in
linear equation solving according to school algorithm is to use the
multiplication property to remove fractions if present. If it would suggest
multiplying to remove fractions according to the algorithm, then dividing to
isolate variable and then again multiplying, etc., it would enter in a loop. The
program first checks the form of an answer and only then seeks the rule for
application. The equation

6
5

=x is already an answer; the sides should be

reversed to get an answer from the equation x=
6
5 .

2.4.2.4 Checking the answer
If the student pushed the button Solved – give answer and the program checked
that the equation is in appropriate form, then it means that this is the correct
solved form, because it is impossible to produce incorrect solution steps in
T-algebra. If an error message was displayed at any checking stage during
solving the problems, the student had to correct the error in order to proceed to
the next stage.

Figure 2.14. Giving an answer

However, in some problem types the student should specify some additional
properties of the answer. When solving a linear equation, the solved form of the
equation can be variable = number or number = number. In this problem type
after pushing the button Solved – give answer, a separate window with three
options (Figure 2.14) will appear where the student should select one of the
possible answers (whether the one number is solution, there is no solution, or

 39

any number is solution). After the answer is confirmed, the program will check
whether the appropriate choice was made.

2.4.2.5 Checking the initial expression
During problem composition, the problem type must be selected first and then
the initial expression must be entered. First, the initial expression should be
syntactically correct. Second, the initial expression for every problem type
should be in a known form, e.g., in the linear equation theme it must be a linear
equation. Finally, most problem types have some restrictions. For example, the
initial expression of problem type Multiply equation sides by common
denominator of all terms must contain at least one fraction to be removed, the
initial expression of combining like terms must contain like terms to combine,
etc. The domain expert module first checks whether the expression is in
appropriate form (is suitable for this problem type), then solves the problem and
can display the solution path and answer to the teacher if the appropriate button
is pressed (see Section 2.6).

2.4.2.6 Checking the equivalence of two expressions
The program uses the solution engine from domain expert module to check
equivalence of two expressions. A special algorithm is composed for that
purpose, which consists of rules that simplify the expression, for example, the
rule Combine like terms or rules for simplification of expressions with 0, 1 and
redundant pluses. 23 rules in total were selected for that algorithm. In order to
check equivalence, the program composes difference of two expressions (which
should be checked) and simplifies or solves it with the composed algorithm in
the same way as the solution engine. If this difference is zero, then two
expressions are equivalent.

This algorithm cannot be used for checking equivalence of two equations (or
inequalities or systems of equations). In T-algebra the left side and the right side
of an equation/inequality are usually checked separately. These are expressions
and their equivalence can be checked by the composed algorithm. Therefore,
the algorithm for checking the equivalence of two equations was not
implemented.

The composed checking algorithm is suitable for expressions allowed in
T-algebra. As T-algebra does not work with trigonometry and absolute value,
we could implement this simple algorithm.

2.5 Student statistics

T-algebra calculates different statistics during the solving process. This statistics
is also saved to the solution file (.lah). Calculated statistics can be viewed from
the View menu in the student’s program.

 40

First, it is possible to view Error counters and Error list. We have designed
20 different categories and divided all diagnosed error types between them. The
categories include, for example, selection of objects of wrong form, selection of
incompatible objects, errors in the form of entered subexpression, calculation
errors, errors in calculating the sign of entered subexpression, etc. For the full
list of categories, see Figure 2.15. It is possible to review statistics on all errors
made (numbers of errors of each category) (Figure 2.15) as well as error
situations themselves (the right lower part of Figure 2.15).

Figure 2.15. Error counters and description of a particular mistake

The next two items in the View menu are Counters of help usage and List of
help usage. T-algebra saves all situations when the student asks for help. We
grouped help usage into 7 categories depending on the place where help was
asked, and it is possible to review statistics on help usage in general (the
number of times that help was used in each category) (Figure 2.16) as well as
the actual situations of help usage (the right lower part of Figure 2.16).

 41

Figure 2.16. Counters of help usage and description of particular help

The last item in the View menu is Statistics of solving. From this table it is
possible to review general statistics of solving, like how many problems are
solved and how many errors were made. For the full list of calculated items, see
Figure 2.17.

Figure 2.17. Student statistics

11

 42

2.6 The program for teachers

The students solve the problems from problem files. A problem file can contain
material for some topic, one lesson/test or even only one problem. Problem files
can be created and edited in a teacher’s version of T-algebra.

The author composing a problem file chooses for each problem the
following:

1. field and type;
2. text (each type has also some default text, for instance Solve an

equation);
3. initial expression (equation, inequality, equation system) and values of

other obligatory parameters (if needed for certain problem type);
4. input mode (free, structured or partial);
5. whether hints are available for the selection of rule, marking of

operands, input of result and for demonstrating the entire solution.
Figure 2.18 demonstrates the problem composition window of the teacher’s

program, where the teacher has entered an equation.

Figure 2.18. Problem composition window of the teacher’s program

 43

When composing a problem, the teacher has a possibility to get the answer
calculated by the automated solution module of T-algebra (right lower box in
Figure 2.18) and also to see the entire demo solution in a separate tab.

It is possible also to select default values of items 4 and 5 (input mode and
hints) for the entire file and enable or disable the possibility to modify them in
the composition of concrete exercises (Figure 2.19). The author can also assign
a password to the problem file.

Figure 2.19. General settings for the problem file

2.7 Implementation

T-algebra is written in Delphi programming language (further development of
Object Pascal programming language) using Delphi integrated development
environment, also known as Borland Delphi. At the time of selecting the
programming language, Java language also was under consideration. Delphi
language was chosen because it enables to create GUI (graphical user
interfaces) more easily and quickly than Java. Furthermore, a program written
in Java language would need additional installations (Java runtime

 44

environment) by the user, which could cause some difficulties for the teachers
and students. The version of Delphi that was used is 5 (Delphi 5).

The size of the entire program at the moment is more than one hundred
thousands lines. It is hard to specify the exact number of lines written by any
one of the three authors of the code, but the authors estimate that approximately
equal parts were coded by each author. It means that the author of the thesis
wrote more than thirty thousands lines. The program consists of two separate
programs, one for students and one for teachers. The size of the compiled
students’ program (.exe file) is slightly more than two megabytes; the size of
the compiled teacher program is slightly less than two megabytes. The compiled
program can be accompanied by a text-file (.mes file) containing all user
interface messages (error messages, help messages, texts on program windows,
etc.) in a certain language. If there are several .mes files, then there is a
possibility to change the language in the program. If there are no .mes files, then
all texts are in Estonian language. Another file (.ini file) appears when the
program is used. This file contains all configuration settings (location and size
of the program window, the language used, etc.).

The most important classes in implementation are rule-classes and type-
classes. Every rule and every type are written as separate class. Rules are not
written as rewrite-rules, but as modules coded directly in the implementation
language.

Every rule-class has the following methods:
• function that returns objects, for which this rule can be applied, or nil, if

this rule can not be applied to this expression;
• procedure that checks whether the student has selected something and

whether the selected objects are suitable for application of this rule; in
cases of error it throws an exception and shows error message;

• procedure that applies the rule to objects selected by the student and
proposes the next line expression with boxes for input depending on input
mode;

• procedure that analyzes the parts of the expression entered by the student
into the boxes and compares with the parts calculated by previous
procedure; in cases of error it throws an exception and shows error
message.

If a rule requires some kind of additional input (additional input was
described in Section 2.3.2.2), the rule-class should have corresponding methods
and procedures similar to those mentioned above; for example, a function that
proposes help in additional window (rule-specific additional information) or a
function that checks the input in additional window and in cases of error throws
an exception and shows error message, etc.

 45

Different methods of rule-classes are used by the domain expert module for
its applications, for example, if the student asks help for marking objects, then
the domain expert module calls the function described above (which returns
objects) and marks these objects; the procedures that check marking and input
are used during confirmation of each stage. The solution engine also uses the
function that returns objects and the procedure that applies the rule for
composing a solution path.

Naturally, every rule-class can contain any additional help functions and
procedures.

The average size of rule-classes (written by the author of the thesis; for the
full list see Section 3.2) is 943 lines, the largest having 2396 lines (rule
Multiply/Divide both sides, Section 3.2.1) and the smallest having 252 lines
(rule Reverse sides, Section 3.2.3).

Every type-class contains the following functions and procedures:
• procedure that checks whether the expression entered in the teacher

program is suitable for selected problem type; in cases of error it throws
an exception and shows error message;

• function that returns all rules that can be used by the student in this
problem type;

• function that returns the rule that can be applied next, or -1 if the problem
is solved;

• procedure that checks whether the current expression is already in solved
form; if not, it throws an exception and shows error message.

If type includes parameters or answer should be specified (answer differs
from solved form), then type-class contains corresponding methods and
procedures; for example, a procedure that checks whether the parameter entered
in the teacher program is suitable for the chosen problem type (in cases of error
throws an exception and shows error message) or a function that checks the
answer selected in the additional window (in cases of error throws an exception
and shows error message), etc.

The function that returns the rule actually realizes the algorithm for this
problem type. This function is also used by the solution engine for composing a
solution path. Some other methods are used by the domain expert module for its
applications, for example, the procedure that checks whether the current
expression is already in solved form is used for checking completion.

Any additional help function and procedure can be written in every type-
class.

The average size of type-classes (written by author of the thesis, for full list
see Section 3.3 and Appendix C) is 330 lines, with the largest being 584 lines
(type Solve linear equation, Section 3.3.2) and the smallest 186 lines (type
Move terms to correct side of equation, Appendix C).

12

 46

3 PROBLEMS AND ALGORITHMS IN THE
DOMAIN OF LINEAR EQUATIONS, LINEAR
INEQUALITIES AND SYSTEMS OF LINEAR
EQUATIONS IN SCHOOL TEXTBOOKS AND

IN T-ALGEBRA
I have chosen the domain of linear equations, linear inequalities and systems of
linear equations for exploration and programming in T-algebra. First of all,
school textbooks in mathematics were explored, then the rules were
programmed, and finally problem types were composed. I will describe
problems and algorithms in the domain of linear equations, linear inequalities
and systems of linear equations in school textbooks and in T-algebra in this
Section on the basis of published articles (Issakova, 2006c; Issakova, 2006d).

3.1 Problems and algorithms in school textbooks

Estonian mathematics school textbooks were explored to clear up operations,
algorithms and problem types that are taught at Estonian schools. As different
teachers use different textbooks, I explored the best-known books in Estonia
(Nurk et al., 2000; Pais, 1998; Tõnso, 2002; Lepik et al., 2000; Pais, 1999;
Veelmaa, 2000; Kasemaa and Lind, 1997). Some English textbooks (Barnett
and Kearns, 1990; Barnett and Ziegler, 1989; McKeague, 1979; Zuckerman,
1976) were inspected as well, but Estonian textbooks were followed if some
differences were found.

As we had already decided that T-algebra will enable the student to solve
under the control of the program only expression manipulation (technical)
problems where the original expression/equation/inequality/system of equations
is given in the text of the problem (entered by the composer), we skipped all
other problem types (for example, problems stated in words) in our exploration
of textbooks. We also skip all graphing problems and will not describe such
problems here.

3.1.1 Linear equations
Most of Estonian textbooks (Pais, 1998; Tõnso, 2002) begin the topic of linear
equation with description of combining like terms and opening parentheses. The
following definition of like terms is given: Terms, which are the same or differ
only by numerical coefficient, are called like terms. The process of combining is
described as follows: Like terms are combined by adding their numerical
coefficients. In some English textbooks (Barnett and Kearns, 1990), combining
like terms is also described in this topic. The English textbooks present a

 47

slightly different definition of like terms: Two terms are called like terms if they
have exactly the same variable factors to the same powers. The technique of
opening parentheses is also described in Estonian textbooks: if rational number
should be multiplied with sum of terms in parentheses, then each term is
multiplied with this number and parentheses are left out.

After this subtopic is explained, the student practices the following problem
types: Combine like terms; Open parentheses; Open parentheses and combine
like terms.

After such introduction almost all textbooks explain the equation and its root
or solution: An equality involving at least one variable is called equation; A
solution or root of an equation in a single variable is a number that, when
substituted in the equation, makes the left side of the equation equal to the right
side.

In order to clarify these definitions, the following problems are solved: Is the
statement a first-degree equation in a single variable; Check whether the
number is a root (solution) of the given equation.

After that, Estonian mathematics textbooks (Nurk et al., 2000; Pais, 1998;
Tõnso, 2002) describe the basic properties of equation:

1. the sides of equation can be reversed;
2. the same quantity can be added to both sides of equation (subtracted

from both sides of equation);
3. both sides of equation can be multiplied or divided by the same nonzero

number.
From the second property it is derived that it is possible to move terms from

one side to other side of equation changing the signs of terms.
In English textbooks (Barnett and Kearns, 1990; Barnett and Ziegler, 1989;

McKeague, 1979; Zuckerman, 1976) there are no properties of equation, but
there are given the properties (axioms) of equality. There are 4 basic properties
of equality: reflexive, symmetric, transitive properties and substitution
principle, and 4 further properties of equality: addition, subtraction,
multiplication and division properties.

If a, b, and c are names of objects, then:
1. a = a – reflexive property;
2. If a = b, then b = a – symmetric property;
3. If a = b and b = c, then a = c – transitive property;
4. If a = b, then either may replace the other in any statement without

changing the truth or falsity of the statement – substitution principle.

 48

For a, b and c any real numbers:
1. If a = b, then a + c = b + c – addition property;
2. If a = b, then a – c = b – c – subtraction property;
3. If a = b, then ca = cb, c ≠ 0 – multiplication property;
4. If a = b, then a : c = b : c, c ≠ 0 – division property.

We found the following problem types (requiring application of one or two
properties) after that theme in the textbooks: Reverse equation sides; Move all
variable terms to the left side and all constant terms to the right side and then
combine like terms; Divide equation sides by variable coefficient; Divide
equation sides by common divider of all terms; Multiply both sides of the
equation by common denominator.

After equality/equation properties are given, the following linear equation
solving algorithm is presented in all (Estonian and English) textbooks:

1. Use the multiplication property to remove fractions if present.
2. Simplify the left and right sides of the equation by removing grouping

symbols and combining like terms.
3. Use the equality properties to get all variable terms on one side (usually

the left) and all constant terms on the other side (usually the right).
4. Combine like terms.
5. Isolate the variable (with a coefficient of 1), using the division or

multiplication property of equality.
Examples that equation can have exactly one solution, no solution or

infinitely many solutions (any number is solution) are presented.
At the end of this topic the solving of linear equation is practiced.

3.1.2 Linear inequalities
The scheme of learning linear inequalities is very similar to learning linear
equations. First of all, the definitions of inequality and its solutions are given.
Then the properties of inequality are listed. And finally the inequality solving
strategy is presented.

The definitions of inequality and its solutions presented in the textbooks are
the following: A statement between two expressions (numbers) separated by a
sign of inequality (<, >, ≤, ≥) is called inequality; A solution of an inequality (in
a single variable) is a number that, when substituted in the inequality, yields the
true statement. The definition of numerical inequality is presented as well: If
inequality sides consist of numbers only, then the inequality is called numerical
inequality. For each numerical inequality we can say whether it is true or false.

The problems for these definitions are: Fill in < or >; Indicate whether
numerical inequality true or false; Check whether the number is a solution of
the given inequality.

 49

The Estonian textbooks describe inequality properties using words, not
symbols:

1. Adding the same quantity to both sides of an inequality or subtracting
the same quantity from both sides of an inequality, the inequality sign is
preserved.

2. Multiplying or dividing both sides of an inequality by the same positive
number, the inequality sign is preserved.

3. Multiplying or dividing both sides of an inequality by the same negative
number, the inequality sign is reversed.

4. Reversing the sides of an inequality, the inequality sign is reversed.
English textbooks use symbols for inequality properties (the properties are

stated using “less than” (<) symbol, but they also hold for the other three
inequality symbols, i.e., if each inequality sign is reversed or if < is replaced
with ≤ and > is replaced with ≥):

For a, b, and c any real numbers:
1. If a < b, then a + c < b + c – addition property;
2. If a < b, then a – c < b – c – subtraction property;
3. If a < b and c is positive, then ca < cb – multiplication property;
4. If a < b and c is negative, then ca > cb – multiplication property;
5. If a < b and c is positive, then a : c < b :c – division property;
6. If a < b and c is negative, then a : c > b :c – division property.

From properties 3 – 6 it is derived that the order of the inequality reverses if
we multiply or divide both sides of an inequality statement by a negative
number.

The properties are not very much practiced, but we found some problems for
them: Add number to sides of inequality; Multiply both sides of inequality by
given number; Divide both sides of inequality by given number.

After properties are explained, the solving of inequality takes place. The
strategy for solving inequality is not written out entirely; only the following
instructions were found: Follow the same steps used to solve a first-degree
equation – using, of course, the addition and multiplication properties for
inequalities; Inequality solving is very similar to equation solving, only with
one essential exception: Multiplying or dividing both sides of an inequality by
the same negative number, the inequality sign should be reversed. In other
textbook two exceptions are listed, the first one is the same and the second
states: Reversing the sides of an inequality, the inequality sign should be
reversed.

At the end of this topic the problems Solve inequality are practiced.

13

 50

3.1.3 Systems of linear equations
The theme System of linear equations in Estonian textbooks (Lepik et al., 2000;
Pais, 1999; Veelmaa, 2000) begins with a definition of linear equations in two
variables: Any equation that can be written in the form ax + by = c, where x and
y are variables and a, b, and c are constants (a and b are not both 0), is called a
linear equation in two variables. In order to solve this type of equations, a
technique of expression of variable through other variable is explained: move
other variable to the other side of the equal sign away from the variable you are
solving for, so that the one variable you are solving for stands alone. Exercises
Express variable are solved in this subtopic.

Further, the definition of a system of two linear equations in two variables or
linear system (standard form) is given:





=+
=+

ndycx
mbyax

where a, b, c, d, m, and n are constants, x and y are variables, a, b, c, d are
not all 0.

The English textbooks do not use the system sign ({) and the system is
expressed as follows:

ax + by = m
cx + dy = n.
The definition of solution is also presented: The ordered pair (x, y) is called a

solution of the system if (x, y) is a solution of (or satisfies) both equations of the
system.

Next, the textbooks describe how to solve systems: solving a linear system
means finding all the ordered pairs of real numbers that satisfy both equations at
the same time. There are several methods of solving systems of this type:
solution by graphing (skipped), solution by substitution and solution by
elimination using addition.

Method Solution by substitution is described as follows:
1. Choose one of the two equations in a system and solve for one variable

in terms of the other. (Choose an equation that avoids getting involved
with fractions, if possible.)

2. Then substitute the result into the other equation and solve the resulting
linear equation in one variable.

3. Now substitute this result back into the expression found in step 1 (or
into one of the original equations) to find the second variable.

The method Solution by elimination using addition can be applied in systems
of equations where the coefficients of terms containing the same variable are
opposites. An extension of the elimination method is to multiply one or both of
the equations in a system by some number so that adding eliminates a variable.

 51

The English textbooks describe the method Solution by elimination using
addition as the replacement of systems of equations with simpler equivalent
systems (by performing appropriate operations) until a system with an obvious
solution is obtained.

A system of linear equations is transformed into an equivalent system if:
1. Two equations are interchanged.
2. An equation is multiplied by a nonzero constant.
3. A constant multiple of another equation is added to a given equation.

After each method is presented, problems suitable for practicing this method
are solved: Solve by substitution; Solve by elimination using addition; Solve
using any method.

Most of the Estonian textbooks present only systems that have exactly one
solution; this is why T-algebra also accepts only such systems.

Almost all mentioned problem types from the domain of linear equations,
linear inequalities and systems of linear equations are realized in the program.
In addition, some problem types were added after consulting with Estonian
mathematics teachers (for example, types Reverse sides of inequality, Subtract
number from sides of inequality, Multiply both sides of inequality by common
denominator). For a full list of problem types realized in T-algebra, see Section
3.3 and Appendix C.

3.2 Designed rules in T-algebra
At the first stage of each solution step in T-algebra, the student has to choose
the rule that she/he is going to apply. She/he would make the same decision also
when using paper and pencil, but in this case she/he would usually not write this
decision in the solution. When the teacher checks the solution, she/he has to
understand, which rule the student wanted to apply. It is difficult for the
program to understand what the student wanted to do if it does not have some
additional information. When the program has the information on which rule is
applied, it is able to check a number of different attributes. Firstly, such
information enables the program to estimate, whether the student knows the
algorithm used for solving this type of problems, i.e., to determine the student’s
skill of choosing the correct rule. The second advantage given to the program by
this information is that it can check more efficiently, whether the student’s
actions on the next stages of the step are correct: e.g., did the student mark the
parts of the expression that are suitable for the selected rule, did she/he enter
correct parts in the resulting expression, etc.

The textbook algorithms were followed as closely as possible in the design
of the rules. Much support in constructing the rules was provided by school
math teachers and authors of textbooks. We have tried to make the student’s
approach to solving the problems within the program parallel to the approach

 52

the student would take solving the problem on paper. We hope that such work
in the program will help the student to develop skills, which will carry over to
the work on paper.

The designed set of rules is complete, i.e., all exercises in these particular
fields are solvable with these rules. The rules in the program correspond to the
steps of school solution algorithms. The set of rules for every problem type
consists of the new rules for the algorithm, which is being learned, and of the
simplification and computation rules learned before. Let us consider the set of
rules for linear equation/inequality solving. First of all, the student can use
specific rules for equations/inequalities (these rules are used only in the
exercises of that field): Reverse sides, Move terms to other side, Add to/Subtract
from both sides, Multiply/Divide both sides. These spring from the three
properties of equation described in the Estonian schoolbooks and one derivation
from these properties (see previous section). In addition, it is possible to use
rules, which are algorithm steps, but are not specific to linear equations:
Combine like terms, Clear parentheses, Open parentheses. Next, some rules for
arithmetic operations and manipulation with fractions were added: Add/Subtract
numbers, Multiply/Divide numbers, Extend, Reduce, Improper fraction to mixed
number, Mixed number to improper fraction, Common fraction to decimal
fraction and Decimal fraction to common fraction. Finally, the student can use
rules for simplification, such as Add/Subtract 0, Multiply/Divide 0, Multiply by
1, Divide by 1, Remove denominator 1, etc.

The designed set of rules is small enough to be displayed in the menu of
possible operations at all times (see Figure 2.1), and it gives the possibility to
diagnose whether the student knows which step of algorithm to perform at the
moment, which rule to select for this step, which rule is applicable to this
equation (part of equation). In other environments the set of rules, which allows
solving the same equations as in T-algebra, is much larger. For example,
MathXpert (Beeson, 1998) has 11 specific rules for linear equations to
accomplish the same tasks as our 4 rules. These 11 rules can be easily reduced
to four by combining them together. For example, the MathXpert rules multiply
both sides by ?, divide both sides by ? and change signs of both sides (which
means multiplication or division of both sides by -1) are included in one
T-algebra rule Multiply/Divide both sides. On the one hand, with more rules the
student can indicate more precisely what she/he wants to do, for example, move
terms only from left to right or from right to left (MathXpert rules: transfer ?
left to right and transfer ? right to left) or change the signs of both sides (it is a
question, whether the student knows that she/he should multiply both sides by
-1 to change the signs), but on the other hand, with so many precise rules she/he
cannot act as solving on paper, for example, move terms from both sides
simultaneously as she/he would do on paper. The large number of rules in
MathXpert is necessary due to the opportunity to mark only one part, so the
student can not mark one term on the left and one term on the right side for

 53

moving to other side. T-algebra rule Move terms to other side allows moving
terms only from left to right, only from right to left, but also from both sides
simultaneously, because in T-algebra it is possible to mark an unlimited number
of terms of an expression and these terms can be located far from each other
(and be separated by other terms). In addition, with so many rules in MathXpert
the student cannot see all the rules at all times and cannot select an unsuitable
rule, because first the student selects some part of the expression and only then
the program offers “… those operations that make sense for what you’ve
selected” (Walden, 1997, p. 35).

Some environments (like AlgeBrain (Alpert et al., 1999), Cognitive Tutor:
Algebra 1 (Cognitive Tutor by Carnegie Learning, Inc)) offer operations only
for transforming the equation using properties of equality: addition, subtraction,
multiplication and division. There are no operations for changing the sides and
moving terms from one side to other.

We have attempted to make the rules polymorphic so that one and the same
rule could be applied to several kinds of objects. For example, the rule
Substitute variable can be used for checking the solution of linear equation
(substituting variable by given number) or for solving a system of linear
equations by substitution (substituting variable with expression expressed from
other equation). This gives the student the opportunity to apply a once learnt
rule in different expressions and even in different kinds of exercises.

Designing the rules, we have taken into account the results of researches on
students’ mistakes made on paper (Hall, 2002; Sleeman, 1984; Issakova, 2005),
and have attempted to leave an opportunity for the student to make the same
mistakes in T-algebra, but to provide the program with information about the
intentions of the student for the purposes of error diagnosis. We have also tried
to make the rules interface as transparent as possible to be sure that mistakes
made by the student are caused by misconceptions, not by poor interface design.

After a stage of a solution step is confirmed, T-algebra performs different
checks. Possibilities to make mistakes and checking principles were described
in Chapter 2 Section 2.4. Let us reiterate the checking principles for the second
and third stages of a solution step and distinguish common checks that do not
depend on the rule. After the second stage the program checks:

• performance of marking (whether some parts are marked if needed);
• syntactical correctness of marked parts;
• number of marked parts (only one needed, at least two needed, etc.,

described for every rule separately);
• form of marked parts (may differ depending on the rule, described for

every rule separately);
• in some cases, the position of marked parts (described for every rule

separately).

14

 54

After the third stage of a step, the checks depend on the input mode and on
the rule. Let me describe common checks for every input mode. I will describe
other checks, which depend on the rule, when we come to the description of
rules. Checks are performed in the order they are described here and each
subsequent check takes place only if all previous checks are successfully
passed.

In free input mode T-algebra checks:
• performance of input of the result (the boxes are not empty);
• the syntactical correctness of entered parts;
• inequality mark (in the case of inequality);
• rule specific checks, which are described for every rule separately;
• the equivalence of the entered parts to the parts calculated by the

computer (the current program version only alerts about non-equivalence
and does not perform more checks in the free input mode).

In structured input mode T-algebra checks:
• performance of input of the result (the boxes are not empty);
• syntactical correctness of entered parts;
• inequality mark (in the case of inequality);
• form of every part (may differ depending on rule, described for every rule

separately);
• the equivalence of the entered parts to the parts calculated by the

computer;
• every component of term (mark, coefficient, variable).
In partial input mode T-algebra checks:
• performance of input of the result (the boxes are not empty);
• syntactical correctness of entered parts;
• inequality mark (in the case of inequality);
• the equivalence of the entered parts to the parts calculated by the

computer.
In partial input mode, the form of every part is not checked because it is

correct by design, i.e., the student can enter into the box only constrained parts,
for example signs or numbers, which have the correct form. Every component
of term in partial input mode is checked by the equivalence of the entered parts
to the parts calculated by the computer, because entered parts are components of
term, not the whole term.

Let us take a closer look at the specific rules for linear equation/inequality
and system of linear equations in T-algebra. For every rule I give an overview
of its applications (where and for what purpose this rule can be applied) and
expressions this rule is applicable to (and constraints for expression, if any).
Then I describe what parts of the expression the student has to mark in order to

 55

apply this rule. I also present the input of additional information and input of
intermediate result if these stages are included in the application of the rule.
Finally, I write out the input of the result in three different input modes
describing only rule specific checks (common checks are described above). I
also write out instructions for every stage, which the student sees on the
program window. For one rule (first rule Multiply/Divide both sides) I also
present all error messages that the program shows to the student in case of a
mistake.

3.2.1 Rule Multiply/Divide both sides
Applications:

• the first step in linear equation/inequality solving algorithm: to remove
fractions from equation;

• the last step in linear equation/inequality solving algorithm: to isolate the
variable (with a coefficient of 1);

• multiply both sides of inequality by given number (problem type Multiply
both sides of inequality by given number);

• divide both sides of inequality by given number (problem type Divide
both sides of inequality by given number);

• multiply both sides of one equation from system of linear equations for
solving by elimination using addition.

Expression: equation, inequality, equation from system of equations.
Constraints for expression:
• parentheses should be opened/cleared before multiplication/division;
• fractions, if present, should be with integer denominator;
• multiplication sign should not be presented (products should be

calculated);
• mixed numbers should be transformed to improper fractions (mixed

numbers can be presented only if multiplication/division with -1 (or 1)
takes place) (the reason see in description of input of intermediate result).

Instruction for marking: Mark an equation/inequality for multiplying/
dividing the sides.

Marking: In the case of solving one equation/inequality, it is not necessary
to mark anything in T-algebra; this rule is applicable to the whole
equation/inequality (if expression is suitable). But the possibility to mark is
preserved. If something is marked, the program checks whether the whole
equation is selected. In the case of a system of linear equations, the one equation
should be marked.

 56

Error messages after marking:
• Selected rule cannot be applied to this expression;
• Exactly one equation or inequality should be selected;
• Before multiplication/division, parentheses should be opened;
• This rule cannot be applied to selected term(s);
• Transform all mixed numbers to improper fractions before

multiplication/division.
Instruction for input of additional information: Enter action sign and

number.
Input of additional information: The program asks to enter multiplication

or division sign and a number (common denominator, common factor,
coefficient of variable term) in a separate window (Figure 3.1). At the first step
of the algorithm the program allows multiplying the equation/inequality only by
common denominator of all fractions (left part of Figure 3.1). The common
denominator should not be the least, but it should be positive. If equation does
not contain fractions, the program allows multiplication with an arbitrary
number. If the student wants to divide the equation/inequality, which contains
only one variable term on the left side of the equation/inequality and one
constant term on the right, then the program allows dividing only by the
coefficient of variable term or its factor (right part of Figure 3.1). If
equation/inequality contains more terms, the program allows division only by
common factor of all terms (common factor should not be the greatest). In the
case of problem types Multiply (Divide) both sides of inequality by given
number the program allows to multiply/divide only by given number.

Figure 3.1. Input of additional information applying rule Multiply/Divide both sides

Error messages after input of additional information:
• Action sign and/or number are not entered;
• Multiplication/division sign is missing;
• Incorrect sign;
• Parentheses are missed;
• Error in number;
• It is possible to multiply/divide only by number;

 57

• It is not possible to divide by zero;
• Multiplication by zero can produce additional solutions;
• Equation/inequality, which contains mixed numbers, can be multiplied

only by -1;
• Number does not match the text of problem;
• Sign does not match the text of problem;
• Only multiplication/division by -1 is possible in this problem;
• Only division by -1 is possible because of appearance of fractions;
• Common denominator cannot be negative;
• Common denominator cannot be fractional;
• The number for multiplication should be common denominator;
• It is possible to divide by coefficient of variable, not multiply;
• Factor cannot be fraction;
• Divider should be coefficient of unknown or its factor;
• It is possible to multiply by common denominator, not divide;
• Divider should be mixed number (before variable);
• Divider should be fraction (before variable) or factor of its numerator;
• Common factor cannot be fractional;
• Divider should be common factor of all members.
Instruction for input of intermediate result: Enter extenders.
Input of intermediate result: If the student wants to multiply an equation

that contains fractions, then input of ‘extenders’ is required (Figure 3.2).
Extenders are numbers by which both numerator and denominator of the
fraction should be multiplied to convert the denominator to the common
denominator (used in Estonian schoolbooks). Mixed numbers should be
transformed to improper fractions beforehand, because otherwise the extenders
should be written separately for integer part and for fraction part of mixed
number, which is not used at schools.

Figure 3.2. Input of intermediate result applying rule Multiply/Divide both sides

15

 58

Error messages after input of intermediate result:
• Extender is not entered;
• Error in entered expression;
• Error in calculation of extender.
Instruction for input of result (free input mode): Enter equation/

inequality with multiplied/divided sides.
Input of result (free input mode): In the case of equation, only equality

sign and two boxes appear in the next line. The student should enter the whole
multiplied left side into the first box and the right side into the second box (left
part of Figure 3.3). In the case of inequality, three boxes are given: one for the
left side, one for inequality sign and one for the right side (right part of Figure
3.3). After the input is confirmed, the program performs common checks
described above. Before last control (the equivalence of the entered parts to the
parts calculated by the computer) the program checks whether the entered parts
are equivalent to the parts calculated by the computer with opposite marks (the
marks are changed during multiplying/dividing with positive number or the
marks are not changed during multiplying/dividing with negative number).
From the controls to be performed it is clear that in free input mode the student
can multiply/divide the sides, but she/he can also just write out the right
multiplication/division like on Figure 3.3. If the student asks for help, the
program will put the multiplied sides (and right inequality sign) to the boxes.

Figure 3.3. Input of result (free input mode) applying rule Multiply/Divide both sides

Error messages after input of result (free input mode):
• Result cannot be empty;
• One side of equation/inequality is missed;
• Inequality sign is missed;
• Error in expression;
• Error during entering inequality sign;
• Inequality sign changes by multiplication/division with negative number;

 59

• Inequality sign does not change by multiplication/division with positive
number;

• Incorrect inequality sign;
• Signs of terms change by multiplication/division with negative number;
• Signs of terms do not change by multiplication/division with positive

number;
• Error in multiplication/division of sides.
Instruction for input of result (structured input mode): Enter

equation/inequality with multiplied/divided sides.
Input of result (structured input mode): In the case of structured input,

equality sign (or box for inequality sign like in the case of free input mode) and
a number of boxes appear in the next line (Figure 3.4). There are two kinds of
boxes: small boxes are for input of signs + and –, larger boxes are for entering
numbers and variables. The number of boxes corresponds to the number of
terms in the result. The terms can be placed in the boxes in arbitrary order
within one side of equation (left part of Figure 3.4). The program performs
common checks. The form of every entered part should be monomial and this is
controlled by performing a rule specific check (form of every part). If the
student asks for help, the program will put the correct multiplied terms (and
correct inequality sign) in the boxes.

Figure 3.4. Input of result (structured input mode) applying rule Multiply/Divide both

sides

Error messages after input of result (structured input mode):
• Inequality sign is missed;
• Action sign is not entered;
• Empty left side;
• Empty right side;
• Error in term;
• Error in sign;

 60

• Error during entering inequality sign;
• Inequality sign changes by multiplication/division with negative number;
• Inequality sign does not change by multiplication/division with positive

number;
• Incorrect inequality sign;
• Error in form of term;
• Incorrect sign;
• Error in calculation;
• Incorrect term;
• Missing members on left side;
• Missing members on right side.
Instruction for input of result (partial input mode): Enter

equation/inequality with multiplied/divided sides.
Input of result (partial input mode): In the case of partial input, the same

number of boxes is given like in the case of structured input mode, but less data
should be entered. Variables are already displayed and the user should enter
only the signs and numbers (Figure 3.5). The orders of terms can be changed
only if variable part is the same. The program performs the same controls like in
the case of structured input mode.

Figure 3.5. Input of result (partial input mode) applying rule Multiply/Divide both sides

Error messages after input of result (partial input mode):
• Inequality sign is missed;
• Action sign is not entered;
• Empty left side;
• Empty right side;
• Error in term;
• Error in sign;
• Error during entering inequality sign;

 61

• Inequality sign changes by multiplication/division with negative number;
• Inequality sign does not change by multiplication/division with positive

number;
• Incorrect inequality sign;
• Error in form of term;
• Incorrect sign;
• Error in calculation;
• Incorrect term;
• Missing members on left side;
• Missing members on right side.

3.2.2 Rule Move terms to other side
Applications: move the parts containing a variable to one side of the
equation/inequality (usually the left according to the school algorithm) and
constant parts to the other side by reversing the signs of all moved parts
(additive moving).

Expression: equation, inequality, equation from system of equations.
Constraints for expression: none.
Instruction for marking: Mark in one equation/inequality the terms for

moving to other side.
Marking: In order to apply this rule, the student has to mark the terms that

she/he wants to move to the other side (Figure 3.6). Moving can take place from
both sides simultaneously. Not all terms that should be moved according to the
algorithm should be moved in one step. The program checks at the confirmation
of marking, whether at least one part is selected. After that the program checks
whether the form of selected parts is suitable for application of this rule (must
be monomials) and whether the location of selected parts is suitable (must be
member of sum, which is not part of product, parentheses etc.). In the case of
system of linear equations the program also checks whether all the selected
parts belong to one equation. When inappropriate parts have been marked, the
program displays a respective error message.

Figure 3.6. Marking stage applying rule Move terms to other side

Instruction for input of additional information: none.
Input of additional information: none.

16

 62

Instruction for input of intermediate result: none.
Input of intermediate result: none.
Instruction for input of result (free input mode): Enter the moved terms.
Input of result (free input mode): If the marking was correct, the

equation/inequality with boxes is written onto the next line. In the case of free
input, there is now one box on each side of the equation/inequality (Figure 3.7).
The student should enter the moved terms in the appropriate box. Two boxes are
displayed to leave an opportunity for the student to err. In the case of inequality
the third box for inequality sign is given in addition to two boxes. Free input
mode is similar to working on paper: the program does not prompt anything.
The program does not prompt on which side the moved term should be and how
many terms are moved to the other side. After the input is confirmed, the
program performs common checks. Additionally, T-algebra checks whether the
entered part begins with right sign (in some cases the position of the operands
causes additional requirements and check of equivalence of entered part is not
sufficient, for example, in the case on Figure 3.7 the student should certainly
enter +8u, not 8u). If the student asks for help, the program will put the moved
terms (and right inequality sign) in the boxes.

Figure 3.7. Input of result (free input mode) applying rule Move terms to other side

Instruction for input of result (structured input mode): Enter the moved
terms.

Input of result (structured input mode): In the case of structured input, the
unchanged part and a number of boxes appear in the next line (Figure 3.8). In
the case of equation there are two kinds of boxes: small boxes are for input of
signs + and –, larger boxes are for entering numbers and variables. In the case
on inequality the box for inequality sign is also given (right part of Figure 3.8).
The boxes appear on the other side of selected parts. The terms can be entered
in the boxes in arbitrary order within one side of equation, but terms should be
exactly the same, only with changed sign. Structured mode is rule specific: the
program helps the user, indicating the structure of the result. The program
prompts how many terms are moved and to which side and it is very difficult
for the student to forget some terms, because the number of boxes corresponds
to the number of moved terms. The program also reminds in a certain way about
the sign of the term, which is very important in this operation: a separate box is

 63

given for entering the sign. First, the common checks are executed (every part
should be monomial like in the rule Multiply/Divide both sides). The program
diagnoses the common mistakes, which the student would do on paper: forget
some moved term and not change the sign of a moved term, and can give
appropriate error message and show the exact position (box) of the incorrect
part.

Figure 3.8. Input of result (structured input mode) applying rule Move terms to other side

Instruction for input of result (partial input mode): Enter signs.
Input of result (partial input mode): In the case of partial input, the

equation/inequality is written onto the next line so that the selected terms have
been already moved and only the small boxes have been left blank (Figure 3.9).
The student should enter + or – signs in these boxes. The correctness of these
signs is checked when the correctness of the step is evaluated. The only mistake
that can be made in this mode is not changing the sign. The sign is most
important part in applying this rule, and in this mode the program leaves for the
student only this part of entering the result. In case of inequality the box for
inequality sign is given and the student should enter it as well.

Figure 3.9. Input of result (partial input mode) applying rule Move terms to other side

3.2.3 Rule Reverse sides
Applications: reverse equation sides (usually for getting an answer in the
following form: variable = constant, but also in all other cases); reverse
inequality sides.

Expression: equation, inequality, equation from system of equations.
Constraints for expression: none.
Instruction for marking: Mark an equation/inequality for reversing sides.

 64

Marking: To apply this rule, the student should either not mark anything or
should mark the whole equation/inequality in the same way as for the rule
Multiply/Divide both sides. In the case of a system of equations, one equation
should be marked.

Instruction for input of additional information: none.
Input of additional information: none.
Instruction for input of intermediate result: none.
Input of intermediate result: none.
Instruction for input of result (free input mode): Enter the

equation/inequality with reversed sides.
Input of result (free input mode): In free input mode, only one box is given

and the student should enter the whole equation/inequality with reversed sides
here (Figure 3.10). Of course, she/he can always use Copy-Paste to simplify
her/his work. Besides common checks T-algebra controls whether the signs of
the terms are the same (changing all signs is a very common mistake made by
Estonian students).

Figure 3.10. Input of result (free input mode) applying rule Reverse sides

Instruction for input of result (structured input mode): Enter the
equation/inequality with reversed sides.

Input of result (structured input mode): In the case of structured input
mode, three boxes are given: one for the left side, one for equation/inequality
sign and one for the right side (Figure 3.11). T-algebra performs all common
checks and also checks the sign of the terms like during free input mode.

Figure 3.11. Input of result (structured input mode) applying rule Reverse sides

Instruction for input of result (partial input mode): Enter inequality sign.

 65

Input of result (partial input mode): If solving an equation, partial input
mode is done automatically; the student does not enter anything. In the case of
inequality, the inequality sign should be entered by the student (Figure 3.12).

Figure 3.12. Input of result (partial input mode) applying rule Reverse sides

3.2.4 Rule Add to/Subtract from both sides
Applications: get all variable terms on one side (usually the left) and all
constant terms on the other side (usually the right); add given number to both
sides of inequality (problem type Add number to sides of inequality); subtract
given number from both sides of inequality (problem type Subtract number
from sides of inequality).

Expression: equation, inequality, equation from system of equations.
Constraints for expression: none.
Instruction for marking: Mark equation/inequality for adding/subtracting a

term.
Marking: The marking is accomplished in the same way as in the rules

Multiply/Divide both sides and Reverse sides.
Instruction for input of additional information: none.
Input of additional information: none.
Instruction for input of intermediate result: none.
Input of intermediate result: none.
Instruction for input of result (free input mode): Enter term for

addition/subtraction.
Input of result (free input mode): In the case of equation, the program

displays equation with two boxes, one box on each side (left part of Figure
3.13). The student should enter the term with the sign (addition or subtraction).
In the case of inequality, the box for inequality sign is added (right part of
Figure 3.13). At the end of the input, the program executes common checks and
inspects whether the entered parts are equivalent to each other. In the case of
problem types Add number to sides of inequality and Subtract number from
sides of inequality the program allows to add/subtract only for the given
number. If the student asks for help, in the case of given number addition

17

 66

to/subtraction from both sides of inequality, the program will put this number
with the correct sign (addition or subtraction) to the boxes. In other cases the
program will suggest to add/subtract all terms that should be moved to other
side (terms with variable to the left and constant terms to the right side) with
opposite signs (right part of Figure 3.13).

Figure 3.13. Input of result (free input mode) applying rule Add to/Subtract from both

sides

Instruction for input of result (structured and partial input modes):
Enter term for addition/subtraction.

Input of result (structured and partial input modes): The structured input
coincides with partial input mode (in essence structured input mode). In these
modes the program gives two boxes on each side of equation: one for the sign
and second for the term, and a box for inequality sign in the case of inequality
(Figure 3.14). The same checks are performed as in free input mode. The help
button works in the same way as in the case of free input mode.

Figure 3.14. Input of result (structured and partial input modes) applying rule Add

to/Subtract from both sides

3.2.5 Rule Express variable
Applications: express variable from equation (usually for solving literal
equations, but also used for problem type Express variable from equation and
for solving a system of equations by substitution).

Expression: equation, equation from system of equations.
Constraints for expression:
• left side of equation (or equation from system of equations) should be one

product, where all numbers should be integer and product should not be
in the form mark*variable;

 67

• right side of equation should not contain the same variable (which will be
expressed);

• right side of equation should be simplified, i.e., parentheses should be
opened/cleared, like terms should be combined;

• in the case of problem type Express variable left side of equation should
contain variable from the text of problem (variable to express).

Instruction for marking: Mark an equation to express variable.
Marking: The marking proceeds in the same way as in rules Multiply/Divide

both sides, Reverse sides and Add to/Subtract from both sides, i.e., in the case of
equation the student can skip marking or can mark, but in the case of system of
equations the student has to mark one equation (Figure 3.15).

Figure 3.15. Marking stage applying rule Express variable

Instruction for input of additional information: none.
Input of additional information: none.
Instruction for input of intermediate result: none.
Input of intermediate result: none.
Instruction for input of result (free input mode): Enter equation with

expressed variable (Right side should be fraction).
Input of result (free input mode): In the case of free input mode, two boxes

and equality sign are given on the next line (Figure 3.16). The first box (on the
left) is for input of variable and only the variable should remain on the left side.
The second box is designed for input of fraction, which is the result of
expression of variable. After input is confirmed, besides common checks
T-algebra checks whether the left side consists of just variable and whether the
right side consists of correct fraction. The right side of equation must be in the
form of fraction even if left side of equation contained a product in the form
number*variable, because this rule is Express, not Divide. If the student wants
to divide then she/he should select the rule Multiply/Divide both sides, i.e., tell
the program the correct name of operation. This rule does not allow reducing
fraction; for that purpose, T-algebra controls the equivalence of numerator and
denominator of fraction to parts calculated by the program separately.

 68

Figure 3.16. Input of result (free input mode) applying rule Express variable

Instruction for input of result (structured input mode): Enter equation
with expressed variable.

Input of result (structured input mode): In the case of structured input
mode, three boxes are given: one for input of the left side of equation (i.e.,
variable), the second for input of numerator and the last one for input of
denominator (Figure 3.17). The program tells the student that she/he should
only express, not divide giving the pattern of fraction on the right side. The
same checks are performed as in the case of free input mode.

Figure 3.17. Input of result (structured input mode) applying rule Express variable

Instruction for input of result (partial input mode): Enter the right side of
equation.

Input of result (partial input mode): The partial input mode is a simplified
form of the structured input mode, where the variable on the left side is already
displayed and the student should enter only the numerator and denominator of
fraction on the right side of equation (Figure 3.18).

 69

Figure 3.18. Input of result (partial input mode) applying rule Express variable

3.2.6 Rule Substitute variable
Applications: calculate the value of an expression containing variables
(problem type Calculate the value of literal expressions, if all variable values
are given); check the solutions of a equation; check the validity of inequality;
solve a equation system in two variables by substitution; solve a equation
system in two variables by elimination using addition after one variable is
solved.

Expression: equation, inequality, system of equations, expression with
variables.

Constraints for expression: if expression is equation/inequality, then it
should be in one variable.

Instruction for marking: Mark the variable to be replaced in this
equation/inequality/expression.

Marking: In order to carry out the operation, the student has to mark exactly
one occurrence of the variable that is to be replaced. In order to solve an
equation system, the variable should be marked in the equation in which it is to
be replaced (thus, the replacement will not take place in the other equation)
(Figure 3.19). System of equations should contain at least one other equation
where the selected variable is expressed. If checking the solution of equation or
validity of inequality in one variable, then the student can skip marking, because
the expression has only one variable. At the confirmation of the marking, the
program checks, whether the selected part is a variable (a respective message is
displayed if it is not).

18

 70

Figure 3.19. Marking stage applying rule Substitute variable

Instruction for input of additional information: Enter a number or
expression to substitute the variable.

Input of additional information: If the selected part is suitable for the
application of the rule, then in the case of structured and partial input modes a
separate window will be opened to enter the number or expression that should
replace the variable (Figure 3.20). If an expression is entered, the program
checks, whether it is a number given in the text of the problem, or in the case of
an equation system, whether the entered expression is equivalent to the right
side of the other equation, where this variable was expressed through other
variables.

Figure 3.20. Input of additional information applying rule Substitute variable

Instruction for input of intermediate result: none.
Input of intermediate result: none.
Instruction for input of result (free input mode): Enter a number or

expression to substitute the variable and multiplication sign and/or parentheses
if needed.

Input of result (free input mode): Input of additional information is
skipped in case of free input mode. If the marked part is suitable for the
application of this rule, then in the case of free input mode the program copies
the expression onto the next line of the main window. All occurrences of the
variable (in the case of an equation system, all its occurrences in the equation in
which it was marked) are replaced with empty boxes and the student has to
enter a number or expression to substitute variable (Figure 3.21). The program
allows substituting variable only by given number (in case of equation,

 71

inequality and expression with variables) or by the right side of the other
equation, where this variable was expressed (in case of a system of equations).
Besides common checks T-algebra also controls that multiplication sign or
parentheses are entered if needed, for example, when substituting a by number 4
in expression 2a it is necessary to insert a multiplication sign between the
numbers 2 and 4 to produce multiplication and not simply the number 24 (left
part of Figure 3.21).

Figure 3.21. Input of result (free input mode) applying rule Substitute variable

Instruction for input of result (structured and partial input modes):
Enter multiplication sign and/or parentheses if needed.

Input of result (structured and partial input modes): Structured and
partial input modes are identical for this rule (in essence partial input mode),
because we did not find how to design boxes for both of them for this rule.
After the input of additional information has been confirmed, the program
copies the expression onto the next line of the main window. All occurrences of
the variable (in the case of an equation system, all its occurrences in the
equation in which it was marked) are replaced with the entered expression and
some boxes are added (Figure 3.22). There are two kinds of boxes: small boxes
are for input of multiplication sign and larger boxes are for input of parentheses.
Signs and parentheses are checked on the confirmation of input.

Figure 3.22. Input of result (structured and partial input modes) applying rule Substitute

variable

 72

3.2.7 Rule Add equations
Applications: add two equations in the system of linear equations in two
variables for eliminating one variable.

Expression: system of linear equations.
Constraints for expression:
• system of linear equations should be in two variables and consist of

exactly two equations;
• linear equations should be simplified, i.e., parentheses should be

opened/cleared, fractions should be removed, like terms should be
combined, etc.;

• linear equations should be converted into normal form, i.e., linear
equation should be in the form: variable term ± variable term = constant
term or in some simplified form (one variable term can be absent);

• one variable should eliminate by addition, i.e., linear equation(s) should
be multiplied/divided for getting suitable coefficients;

• system of linear equations where both variables eliminate by one addition
does not suit.

Instruction for marking: Mark the equation that will be substituted by the
equation resulting from addition.

Marking: In order to apply this rule the student has to mark the equation
that will be substituted by the equation resulting from addition (the second
equation will be the same).

Instruction for input of additional information: none.
Input of additional information: none.
Instruction for input of intermediate result: none.
Input of intermediate result: none.
Instruction for input of result (free input mode): Enter the result of

addition.
Input of result (free input mode): In free input mode, two boxes and

equality sign are given instead of the selected equation (unselected equation is
added to make the system) (Figure 3.23). The first box is designed for input of
the left side of equation and the second one for right side. Besides common
checks T-algebra checks whether only one monomial is entered into the first
box and only one number into the second. T-algebra does not allow just writing
out the addition; the program wants a simplified result of addition. Like in case
of other rules where the result is exactly one monomial, T-algebra also checks
the sign, coefficient and variable separately to produce more precise diagnosis.
The same checks are done with the second box.

 73

Figure 3.23. Input of result (free input mode) applying rule Add equations

Instruction for input of result (structured input mode): Enter the result of
addition.

Input of result (structured input mode): In the case of structured input
mode, four boxes are given instead of the selected equation (Figure 3.24). Small
boxes are displayed for input of signs + or –. The second box on the left side is
designed for input of one monomial (the result of addition of the left sides of
equations). The second box on the right side is designed for input of one
number (the result of addition of right sides of equations). The same checks are
performed as in the case of free input mode.

Figure 3.24. Input of result (structured input mode) applying rule Add equations

Instruction for input of result (partial input mode): Enter the result of
addition.

Input of result (partial input mode): In the case of partial input mode, four
boxes are given (Figure 3.25). There are two kinds of boxes: small boxes are for
input of sign + or –, the larger boxes are for input of number. The variable is
already displayed by the program. The same checks are performed as in the case
of free or structured input modes.

19

 74

Figure 3.25. Input of result (partial input mode) applying rule Add equations

3.2.8 Rule Multiply fraction with variable by number
Applications: multiply fraction with variable by number (usually such product
appears after substitution of variable in a system of linear equations).

Expression: any expression (including linear equation, linear inequality and
system of linear equations) that contains a product of number and fraction with
variable.

Constraints for expression (for product):
• denominator of fraction should be integer number;
• numerator of fraction should not contain parentheses;
• numerator of fraction should be monomial or sum of monomials, i.e.,

should not contain multiplication and division signs;
• fraction should contain variable, other way the student should use the rule

Multiply/Divide numbers;
• product should consist of exactly one number and exactly one fraction.
Instruction for marking: Mark number and fraction with variable for

multiplication.
Marking: The student should mark the number and fraction from one

product either separately (right part of Figure 3.26) or together (left part of
Figure 3.26). Only one number and one fraction can be multiplied in one step
(one product can be simplified). On the confirmation of marking the program
checks whether selected parts are appropriate: whether exactly one number and
exactly one fraction with variable from one product are selected. Then the
program checks whether the selected product and especially the included
fraction are suitable for multiplication (see constraints above). If the fraction is
placed in parentheses, then the fraction with parentheses should be marked.

 75

Figure 3.26. Marking stage applying rule Multiply fraction with variable by number

Instruction for input of additional information: none.
Input of additional information: none.
Instruction for input of intermediate result: none.
Input of intermediate result: none.
Instruction for input of result (free input mode): Enter result of

multiplication (fraction).
Input of result (free input mode): In the case of free input mode, the one

box for inputting the whole result is given (Figure 3.27). Besides common
checks T-algebra also checks whether the result of multiplication begins with
the correct mark, if required. In free input mode T-algebra does not insist on the
multiplied result, but allows just writing out the multiplication (right part of
Figure 3.27).

Figure 3.27. Input of result (free input mode) applying rule Multiply fraction with

variable by number

Instruction for input of result (structured input mode): Enter numerator
and denominator of fraction.

Input of result (structured input mode): In structured input mode the
program proposes the structure of the result with the number of boxes on the

 76

next line (Figure 3.28). First, the small box for input of sign (+ or –) before
fraction is given. Then the pattern of fraction is given: one box for denominator
and a number of boxes for terms of numerator. The number of boxes in the
numerator corresponds to the number of terms in the result. In place of the
numerator there are two kinds of boxes: small boxes are for input of signs + and
–, larger boxes are for entering numbers and variables. The terms can be entered
in the boxes in arbitrary order within numerator. T-algebra executes common
checks and also controls the form of the terms of numerator (they should be
monomials). T-algebra allows all variants for signs of terms of numerator, of
course depending on the sign entered before fraction.

Figure 3.28. Input of result (structured input mode) applying rule Multiply fraction with

variable by number

Instruction for input of result (partial input mode): Enter numerator of
fraction.

Input of result (partial input mode): Partial input mode is similar with
structured input mode. The difference is that denominator is already displayed
and variables in the terms of numerator are given (Figure 3.29). The student
should enter the sign before fraction and signs and coefficients of terms of
numerator. The orders of terms can be changed only if variable part is the same.
The program performs the same controls as in the case of structured input mode.

 77

Figure 3.29. Input of result (partial input mode) applying rule Multiply fraction with

variable by number

3.2.9 Rule Open parentheses
This rule is a renamed and modified copy of Dmitri Lepp’s rule Multiply/Divide
polynomial by monomial. Copying and modification was needed because the
students solving linear equations and inequalities in the 7th grade do not know
yet about monomials and polynomials; they name this operation Open
parentheses. The modifications concerned all texts about mistakes (words
monomial and polynomial were excluded), structured input mode (addition of
terms was skipped, program gives the whole structure of the result), partial
input mode (the program does not give the box for input of power of variable)
and some small details.

Applications: open parentheses, i.e., multiply number and expression in
parentheses.

Expression: any expression (including linear equation, linear inequality and
system of linear equations) that contains product of number and expression in
parentheses.

Constraints for expression: none.
Instruction for marking: Mark a number and term in parentheses to be

multiplied.
Marking: In order to apply this rule the student has to mark the number(s)

and expression in parentheses (Figure 3.30). Only one product can be simplified
in one step, i.e., the number and expression in parentheses should be from the
same product – T-algebra does not allow parallel applications of the rule. Only
one expression in parentheses can be opened in one step. If the product contains
more than one such expression, the student must select only one. Expression in
parentheses should be marked together with parentheses. All this is checked by
the program when the marking is confirmed.

20

 78

Figure 3.30. Marking stage applying rule Open parentheses

Instruction for input of additional information: none.
Input of additional information: none.
Instruction for input of intermediate result: none.
Input of intermediate result: none.
Instruction for input of result (free input mode): Enter result of

multiplication.
Input of result (free input mode): In free input mode, the whole result

should be entered into a single yellow box (Figure 3.31). As in other rules,
where the result of multiplication is entered in one box and multiplied result is
the sum, T-algebra allows partial application of the rule. All common checks are
performed when the input is confirmed. If the student asks the program for help,
T-algebra will put the multiplied result in the box.

Figure 3.31. Input of result (free input mode) applying rule Open parentheses

Instruction for input of result (structured input mode): Enter result of
multiplication.

Input of result (structured input mode): In structured input mode the
structure of the result is given (Figure 3.32). The student has to fill it with the
signs and terms. The order of terms can be changed like in other rules.
T-algebra requires from the student exact application of this rule only – no
combining of like terms or other simplifications is allowed at this step. Besides
common checks the program tries to identify errors only in coefficient, sign or
in variable.

 79

Figure 3.32. Input of result (structured input mode) applying rule Open parentheses

Instruction for input of result (partial input mode): Enter missing parts of
result.

Input of result (partial input mode): In partial input mode, the student has
to fill only gaps – coefficients and signs of the resulting terms (Figure 3.33). In
partial input mode checks are the same as in structured mode.

Figure 3.33. Input of result (partial input mode) applying rule Open parentheses

3.3 Designed problem types in T-algebra

T-algebra enables the student to solve under the control of the program almost
any problem in the given fields (incl. linear equations, linear inequalities and
systems of linear equations), provided that the original expression/equation has
been given in the problem (entered by the composer). Each type of problems is
linked with a specific solving algorithm. T-algebra is able to solve the problem
by itself and help the student during solving (give advice) according to this
algorithm.

We have implemented in the domain expert module not only the problem
types based on a known solution algorithm like linear equation solving, but also
the problems based on single solution algorithm steps. For example, in addition
to linear equation solving, the section of linear equations in the program enables
to practice separate steps of equation solving algorithm: combine like terms;
open parentheses; reverse equation sides; move all variable terms to the left side
of equation and all constant terms to the right; divide equation sides by variable
coefficient; multiply equation sides by common denominator of all terms. The
algorithms for solving these problems are very simple; almost all of them

 80

consist only of applying one rule. However, these problem types allow
practicing the properties of equality/equation – single steps of equation solving
algorithm.

The domain of linear equations, linear inequalities and systems of linear
equations contains the following types:

1. problem type Combine like terms;
2. problem type Open parentheses and combine;
3. problem type Check the solution of equation;
4. problem type Reverse sides of equation;
5. problem type Move terms to correct side of equation;
6. problem type Move terms to correct side of equation and combine;
7. problem type Multiply both sides of equation by common denominator;
8. problem type Divide equation sides by variable coefficient or by

common divider;
9. problem type Solve linear equation;
10. problem type Check numerical inequality;
11. problem type Check the solution of inequality;
12. problem type Reverse sides of inequality;
13. problem type Add number to sides of inequality;
14. problem type Subtract number from sides of inequality;
15. problem type Multiply both sides of inequality by given number;
16. problem type Multiply both sides of inequality by common

denominator;
17. problem type Divide both sides of inequality by given number;
18. problem type Solve linear inequality;
19. problem type Express variable from equation;
20. problem type Solve by substitution;
21. problem type Solve by elimination using addition.

In this section I present some examples of the designed problem types,
describing:

• typical texts for this type (one problem type can allow slightly different
texts and expressions);

• expression that the program allows for selected problem type;
• constraints for expression, if any;
• what parameters should the composer enter for the program;
• rules that the student can use during solving problems of this type;
• algorithm – ordered list of rules used by T-algebra to solve problems of

this type;
• one example of generated solution;
• the solved form of problem what the program will accept;

 81

• possible answers (in some problem types the student should specify some
additional properties of the answer after the program checked that the
expression is in appropriate solved form; in such problem types I specify
what possibilities the program proposes for answer).

All problem types are described in Appendix C using the same structure.
The list of rules for some problem types can be quite long; therefore, the

rules are grouped for user convenience. First, the student can use the rules
derived from this problem type – steps of solution algorithm and rules for
arithmetic operations. Then the rules for manipulation with fractions and
simplification rules are given. The last two groups are the same for most
problem types and I present them here.

Group of rules for manipulation with fractions:
• Extend common fraction;
• Reduce;
• Decrease integer part;
• Improper fraction to mixed number;
• Mixed number to improper fraction;
• Common fraction to decimal fraction;
• Decimal fraction to common fraction;
• Move minus before fraction.
Group of rules for simplification of expressions with 0, 1 and redundant

pluses:
• Add/Subtract 0;
• Multiply/Divide 0;
• Multiply by 1;
• Divide by 1;
• Eliminate fraction with 0 in numerator;
• Eliminate denominator 1;
• Remove redundant pluses;
• Raise to power 1;
• Raise to power 0;
• Raise 1 to power;
• Raise 0 to power.
In most algorithms we use two sub-algorithms for solving “standard sub-

problems”. The first one is for trying to apply simplification rules, all 11 rules
mentioned above in sequence. The second algorithm is for combining like
terms. It was created to simplify the student’s understanding of the solution
path. If the student applies the rule Combine like terms, the program allows
combining different like terms, for example, terms with common fractions and
terms with decimal fractions (left part of Figure 3.34) or terms with unlike

21

 82

fractions, if she/he can add these numbers mentally. But if such solution step
will be generated or proposed by the program for the student, then it might be
difficult for the student to understand how the result was obtained (how these
numbers were added). Therefore, our program generates a longer solution and
transforms common fraction to decimal if possible or decimal fraction to
common and unlike fractions to similar before combining (right part of Figure
3.34). This longer way was described in a separate algorithm that can be used in
any algorithm of any problem type.

Figure 3.34. Combining like terms

This algorithm consists of the following rules:
• Decrease integer part (to get rid of the mixed number with negative

numerator, for example
5
11 − , or to avoid a mixed number where

numerator will be negative after evaluation, for example
5

321 −);

• Add/Subtract numbers;
• Common fraction to decimal fraction (if coefficients of some like terms

are decimal fractions and coefficients of all other like terms, which are
common fractions or mixed numbers, can be transformed to terminating
decimal fractions);

• Decimal fraction to common fraction (if at least one coefficient of like
term, which is common fraction or mixed number, can not be transformed
to terminating decimal fraction and coefficients of some like terms are
decimal fractions);

• Extend common fraction (for like terms with unlike fractions);
• Combine like terms;
• Reduce;
• Improper fraction to mixed number.

 83

One more remark should be made before proceeding to the description of
problem types. Several algorithms present two rules: Clear parentheses and
Open parentheses. Why do we have two rules for removing parentheses? The
rule Open parentheses was described in the previous section and it can be used
for product of number and expression in parentheses. However, in some cases
we have just expression in parentheses (for example (x+3)) or sign previous to
expression in parentheses (-(x+3)). The rule Open parentheses cannot be used
for this type of expression. In the Estonian textbooks, such operations are
described with name Clear parentheses, the same was done in T-algebra. So the
rule Open parentheses can be used for product, but the rule Clear parentheses
can be used for parentheses only or the sign and parentheses. For an example of
applications of these rules, see the description of type Open parentheses and
combine in Appendix C.

3.3.1 Problem type Move terms to correct side of
equation and combine

Typical texts: move all variable terms to the left side and all constant terms to
the right side and then combine like terms.
Expression: equation.
Constraints (for expression):

• equation should contain variable terms on the right side or constant terms
on the left side (student should move some terms);

• left side and right side of equation should be monomial or polynomial
without multiplication and division signs and without parentheses and
brackets;

• if equation is numerical, then it should be true.
Parameters: none.
Rules:

• Move terms to other side;
• Combine like terms;
• Add/Subtract numbers;
• Rules for fractions;
• Simplification rules.

T-algebra algorithm:
1. Algorithm for simplification;
2. Rule Move terms to other side;
3. Algorithm for combining.

 84

Example of generated solution:
Text of problem: Move all variable terms to the left side and all constant

terms to the right side and then combine like terms.

Solved form: equation, where all variable terms are moved to the left side and
all constant terms to the right side and after that all like terms are combined.
Answer: solved form.

3.3.2 Problem type Solve linear equation
Typical texts: solve linear equation.
Expression: equation.
Constraints (for expression): equation should be solvable (it should be
possible to get a solved form) by presented rules.
Parameters: none.
Rules:

• Reverse sides;
• Move terms to other side;
• Add to/Subtract from both sides;
• Multiply/Divide both sides;
• Clear parentheses;
• Open parentheses;
• Combine like terms;
• Add/Subtract numbers;
• Multiply/Divide numbers;
• Rules for fractions;
• Simplification rules.

T-algebra algorithm:
1. Algorithm for simplification;

 85

2. Rule Reverse sides (if linear equation is in the form: number =
 variable);

3. Rules Open parentheses and Clear parentheses;
4. Rules Multiply/Divide numbers and Move minus before fraction;
5. Rule Multiply/Divide both sides for removing fractions (multiplication);
6. Rule Mixed number to improper fraction (if mixed numbers disturb

multiplying/dividing both sides);
7. Algorithm for combining;
8. Rule Move terms to other side;
9. Rule Multiply/Divide both sides for isolating variable (division).

Example of generated solution:
Text of problem: Solve an equation.

Solved form: variable = number or number = number, where

• numbers should be transformed to normal form (reduced and transformed
to mixed numbers if needed);

• fractions/mixed numbers (if both numbers are fractions/mixed numbers
with the same sign) should be transformed to similar fractions/mixed
numbers.

Answer:
• solved form (i.e., variable = number or number = number; for example,

x = 7);
• there is no solution;
• any number is solution.

3.3.3 Problem type Check the solution of inequality
Typical texts: check if number ... is a solution of inequality.
Expression: inequality.
Constraints (for expression): inequality should be in one variable.
Parameters: value (one number) of variable to be checked.

22

 86

Rules:
• Substitute variable;
• Add/Subtract numbers;
• Multiply/Divide numbers;
• Raise number to a power;
• Clear parentheses;
• Open parentheses;
• Combine like terms;
• Rules for fractions;
• Simplification rules.

T-algebra algorithm:
1. Algorithm for simplification;
2. Rule Substitute variable;
3. Rule Raise number to a power;
4. Rules Multiply/Divide numbers and Move minus before fraction;
5. Algorithm for combining;
6. Rules Open parentheses and Clear parentheses;
7. Rule Mixed number to improper fraction (if equation is not yet in form

number = number).
Example of generated solution:

Text of problem: Check if number 3 is a solution of inequality.

Solved form: number ⊗ number, where

• ⊗ is one of inequality signs <, >, ≤, ≥;
• numbers should be transformed to normal form (reduced and transformed

to mixed numbers if needed);

 87

• fractions/mixed numbers (if both numbers are fractions/mixed numbers
with the same sign) should be transformed to similar fractions/mixed
numbers.

Answer: Number …
• is a solution;
• is not a solution.

3.3.4 Problem type Solve by elimination using addition
Typical texts: solve by elimination using addition.
Expression: system of linear equations.
Constraints (for expression):

• system of linear equations should be in two variables and consist of
exactly two equations;

• system should have exactly one solution;
• system should be solvable (it should be possible to get a solved form) by

presented rules.
Parameters: none.
Rules:

• Substitute variable;
• Add equations;
• Reverse sides;
• Move terms to other side;
• Add to/Subtract from both sides;
• Multiply/Divide both sides;
• Clear parentheses;
• Open parentheses;
• Combine like terms;
• Add/Subtract numbers;
• Multiply/Divide numbers;
• Rules for fractions and rule Common fraction to division;
• Simplification rules.

T-algebra algorithm:
1. Algorithm for simplification;
2. Rules Open parentheses and Clear parentheses;
3. Rules Multiply/Divide numbers and Move minus before fraction;
4. Rule Move terms to other side;
5. Algorithm for combining;
6. Rule Multiply/Divide both sides;

 88

7. Rule Mixed number to improper fraction (if mixed numbers disturb
multiplying/dividing both sides);

8. Rule Reverse sides;
9. Rule Substitute variable;
10. Rule Add equations;
11. Rule Multiply/Divide both sides for getting suitable coefficients (for

eliminating one variable by addition);
12. Rule Common fraction to division.

Example of generated solution:
Text of problem: Solve by elimination using addition.

Solved form:
number variablesecond

number variablefirst





=
=

.

Answer: solved form.

 89

4 CONDUCTED EXPERIMENTS
We have conducted different experiments for different purposes while
designing and programming T-algebra. I have participated in five of them.
These experiments were conducted

1. to identify the 7th grade student mistakes (during solving linear
equations) made when working with pencil and paper and their
possibility in T-algebra;

2. to validate user interface;
3. to find out the 7th grade student errors made during linear equation

solving in T-algebra and compare them with mistakes made on paper
(from the first experiment);

4. to learn about the errors made in the solution of linear equations by the
first year university students and to compare them with the errors made
by the 7th grade students in the same subject (from the third
experiment);

5. to answer the question: How does an interactive learning environment
affect the students’ learning? (to evaluate the created interactive
learning environment).

I will describe all five experiments and their results in this Chapter on the
basis of published articles (Issakova, 2005; Issakova et al., 2006; Issakova,
2006b; Issakova, 2007a; Issakova, 2007b).

4.1 First experiment

The research took place in Estonian schools in the winter of 2005. For this
research mathematics teachers composed seven tests for different topics
(numerical expressions, fractions, linear equations, inequalities, systems of
linear equations, monomials, polynomials) and for different grades (6th, 7th,
and 8th) in two variants. 93 students aged between 13 and 15 years (7th grade)
participated in the linear equations test. They had covered the topic of linear
equations in autumn 2004 and the material of the test was not new. The students
did not know about the test beforehand and had 45 minutes for solving the test.

The same types of problems were chosen for the test as realized in
T-algebra. Linear equations test contained 16 problems (composed by
mathematics teachers Mart Oja and Maire Oja). There were five types of
problems. The problems of variant A were the following:

• reverse equation sides: 1) mm 2573 +=− ; 2) 585 −= xx ;
• divide equation sides by variable coefficient: 1) 217 =x ; 2) 2,13,0 −=− y ;

3) 255 =− n ;

23

 90

• multiply both sides of the equation by common denominator: 1)
5
2

3
=

x ;

2)
3
2

4
2

=
−y ; 3)

2
1

3
2 =−

n ; 4)
15
4

5
32

3
4

=
+

−
yy ;

5)
6

13
14

1
3

32
2

2 +
−

−
=

−
−

+ xxxx ;

• move all variable terms to the left side and all constant terms to the right
side and then combine like terms: 1) xx 743 =− ; 2) 3529 +=− yy ;
3) mmm 3152532 ++−=+− ;

• solve an equation: 1) xx 82159 −=− ; 2) yy 23)13(29 −=−− ;

3)
4

5
3

3
2

13 +
=

+
−

− mmm .

The problems of variant B were the following:
• reverse equation sides: 1) 6419 += y ; 2) 9235 −=+ uu ;
• divide equation sides by variable coefficient: 1) 363 =y ; 2) 2,44,1 −=n ;

3) 357 −=− y ;
• multiply both sides of the equation by common denominator:

1)
6
1

9
2

−=
y ; 2)

4
3

6
2

=
+m ; 3)

10
73

5
=+

x ; 4)
10

32
4

3
5

2 +
=

−
−

uuu ;

5)
12

3
8

13
2

12
6

3 +
+

−
=

+
−

− nnnn ;

• move all variable terms to the left side and all constant terms to the right
side and then combine like terms: 1) 4129 =+m ; 2) 29127 −=+ ss ;
3) 1062352 ++−=−+− xxxx ;

• solve an equation: 1) 22356 +=− nn ; 2) xxx 83)32(32 −=+− ;

3) 1
15

81
3

7
5

13
−

−
=

+
−

− uuu .

The result of the test confirmed our assumptions that the students make both,
specific mistakes, which occur only during linear equation solving (for example,
in moving terms to other side), as well as mistakes related to previously studied
material (for example, in adding numbers). Let us take a closer look at specific
mistakes at two steps of linear equation solution: multiplication of equation
sides and moving terms to the other side of equation. The last column shows the
number of students who made this mistake. These tables do not reflect whether
the student made this mistake more than once. We included only the most
common mistakes in these tables. The other mistakes and mistakes at other
steps of linear equation solution are described in the third experiment in Section
4.3.

 91

Table 4.1. Mistakes in multiplying the equation sides
No Nature of mistake Example of mistake Number of

students
1 Minus sign before

fraction is taken into
account only at first term

5 3 14 2 3 4 | 15
3 5 15

20 6 9 4

y y

y y

+
− = ⋅

− + =

 51

2 Arithmetic mistake 2 32 1 | 18 4 2
9 6
y y= − ⋅ ⇒ = − 15

3 Wrong extender 3 12 3 23 2 1 3 1 3 | 24
6 2 8 12

n n n n− + − +
− = + ⋅ 13

4 Extender is multiplied
only with first term of
numerator

3 42 2 | 12 3 2 4 2
4 3

y y−
= ⋅ ⇒ − = ⋅ 10

5 Whole number is not
multiplied

2 173 | 10 2 3 7
5 10
x x+ = ⋅ ⇒ + = 9

6 One term is forgotten
(which is not fraction)

3 5 1 153 1 7 1 8 1 | 15
5 3 15

9 3 5 35 1 8

u u u

u u u

− + −
− = − ⋅

− − − = −

 6

Table 4.2. Mistakes in moving terms to the other side of equation
No Nature of mistake Example of mistake Number of

students
7 Sign is not changed

615458
641558

+=−−
+=+−

uuu
uuu 24

8 Mistake in passive
rewriting (changing
sign, forgetting term)

5312352
3152532

−+−=−+
++−=+−

mmm
mmm 18

9 One removed term is
lost 9326

23269
−=+−
−=+−

yy
yy 3

Let us consider which mistakes can be made in T-algebra. If a mistake can
be made, it means that T-algebra can respond to it as well. If the mistake is in
the set of standard mistakes, then T-algebra is able to diagnose it and offer
advice. If not, then T-algebra tells about the non-equivalence of equations.

In applying the rule Multiply/Divide both sides for multiplication the student
can make a lot of mistakes, e.g., in finding common denominator and extenders,
or in evaluating the result of multiplication. All the mistakes described in Table
4.1 can be made in T-algebra even in the most constrained input mode.
However, it is possible that the rule dialogue helps to avoid some mistakes. For
example, in the case of input of the result in some modes, the program proposes
boxes for every term of equation and the student could not to forget to write
some term (mistake No. 6). Maybe this structure of the rule would help to avoid
the mistake No. 4 too, because the program offers boxes for every term of
numerator.

 92

As a result of the research we composed the following set of error messages
in T-algebra (in applying of the rule Multiply/Divide both sides):

• Wrong extender (mistake No. 3).
• In multiplying the second term of fraction numerator minus sign before

fraction is not taken into account (or Wrong sign) (mistake No. 1).
• Extender is not multiplied with second term of numerator (or Error in

term) (mistake No. 4).
• Whole number is not multiplied with extender (or Error in calculation)

(mistake No. 5).
• Number of equation terms is changed (term is missed) (mistake No. 6).
• Mistake in evaluating the result (mistake No. 2).
Of course, programming this rule we extended this set (see Section 3.2.1).
In applying the rule Move terms to other side the student may err in marking

the parts and entering the result. In partial input the student could not forget a
term or change the sign of the term, which is not moved to the other side. In this
mode it is possible to make only mistake No. 7 from Table 4.2. In free and
structured input it is possible to make mistakes No. 7 and No. 9. It turned out
that mistakes that occur when the student does not know how to move term to
other side can be made, but mistakes that happen in the process of rewriting and
are not substantial cannot be made.

Applying the rule Move terms to other side it is possible to get the following
error messages if abovementioned mistakes are made:

• In moving terms to the other side the sign is not changed (mistake No. 7).
• Number of equation terms is changed (term is missed) (mistake No. 9).

4.2 Second experiment

In the spring of 2005 the same students from the first experiment participated in
the trial of T-algebra. T-algebra was in the development phase at that time and,
therefore, the objective of this trial was to validate only the user interface of the
program from the point of view of its usability. Two topics were chosen for that
purpose: operations with fractions and simplification of polynomials (the same
topics were covered in paper tests). In this trial, the students were given exactly
the same problems as in previously completed tests on paper. In addition, the
problem set contained some demonstration examples from other chapters. The
trial was conducted in two different classes. A 6th grade class was chosen for
the topic of operations with fractions and an 8th grade class for the topic of
simplification of polynomials. The students already had sufficient experience
with computers (using the keyboard, mouse, Windows), but it was the first time
they had seen T-algebra. The students could choose whether they wanted to sit
at the computer alone or in pairs. For operations with fractions we had 25

 93

computers occupied by the students and for simplification of polynomials 21
computers were occupied.

The sessions lasted for one hour. During the first five minutes we
demonstrated T-algebra and the solution processes in T-algebra and wrote our
general dialogue scheme on the blackboard. In the first ten minutes, the students
asked questions concerning the use of the computer (keyboard), the use of
T-algebra tools (how to mark the objects and what to enter in the boxes), and
mathematical questions about the solution steps. After that, questions
concerning the use of software disappeared. Questions about mathematics (on
operations with fractions and polynomials) continued after the first ten minutes.
Questions about which rule to select in the menu continued throughout the trial.
At that time the particular problem types were not yet implemented in our
program and the menu contained all the rules needed for the actual topic. In
most cases, the students even knew how they wanted to change the expression
but they were often unable to find the name of the necessary operation. It is
clear that we should pay attention to this issue when preparing the teachers for
using rule-based software.

We collected the records of this trial – files with data about errors made by
the students – for further study. The collected data included initial expression,
current expression, selected rule, marked objects, entered parts (in the case of an
error at the input stage) and any error messages shown to the student. We also
had some notes taken by the observers during the trial (two mathematics
teachers and the four authors of T-algebra). When reviewing the files containing
the students’ mistakes, initially we noticed almost all the students had made
mistakes in marking the objects for applying the rule. The reason was probably
that the students did not understand how to use the software – how and which
parts of the expressions had to be marked for applying the rules. The mistakes
of this type occurred two or three times in the beginning and then disappeared.
Almost all subsequent mistakes were due to a lack of mathematical knowledge
(how to calculate the result of applying the rule, arithmetic errors, etc.) – the
students made the same mistakes as they made in paper tests.

When reviewing the trial, we noticed that many students preferred to mark
the objects of the rule before selecting the rule itself (despite the “Select the
rule” instructions on the screen and the instruction “1. Select the rule. 2. Mark
the operands. 3. Enter the result” on the blackboard). At that time our program
gave no opportunity for marking more than one part in the expression before the
rule was selected – it confused some of the students and they asked questions
about that. After the trial we added the possibility to select objects for applying
the rule before the rule itself is selected. Yet the hints on selection of objects
become available only after selection of the rule. We are also planning a study
to determine which order of actions will be used the most and what could affect
the order (actual rule, location of menu on the screen, etc).

24

 94

Summarizing the results of the first trial, we can say that the time required
for learning the dialogue stages is quite short. In the first hour with T-algebra,
most of the students had solved the same number of problems that were given to
them in paper sessions. But unlike in the paper tests, the students corrected all
the mistakes they made. Error messages shown by the program were clear
enough for the students to correct the mistakes. Different input modes of
different rules were tested during the trial – all input modes were found useful.
When solving the problems, no questions were asked on why all three stages of
the dialogue are needed; the idea of the first two stages was clear to the
students. All the students (even the weakest in mathematics) were using the
program with great interest.

4.3 Third experiment

When designing the program, we have taken into account the results of known
studies of student mistakes made when working with pencil and paper (Hall,
2002; Sleeman, 1984) and have conducted our own study to identify the
mistakes made by the Estonian students (first experiment, see Section 4.1).

In the spring of 2006, I conducted a study on errors made by the students
who solved linear equations in the T-algebra environment. In this trial, the
students were given exactly the same problems as in the tests on paper (see
Section 4.1). The trial was conducted in three different classes and 83 students
of the 7th grade participated in the test. These students were different from the
participants in the first experiment, but they were from the same school and had
the same mathematics teachers. Like the students form the second experiment,
they already had sufficient experience with computers, but it was the first time
they had seen T-algebra. The sessions lasted for one hour. A scheme similar to
the second experiment was used. A demonstration of T-algebra and the solution
processes in T-algebra took place during the first five minutes; we also wrote
our general dialogue scheme on the blackboard. Then the students had ten
minutes to try T-algebra by themselves. Analogous questions like in second
experiment were asked (questions concerning the use of the computer, the use
of T-algebra tools, and mathematical questions about the solution steps). After
that, questions concerning the use of software disappeared. In the last 45
minutes the students solved the test. The structured input mode was chosen for
the test and the help in the program was denied during the test. Like in the
second experiment I collected the files with data about errors made by the
students and had some notes taken by the observers during the trial.

At the end of the session, the students filled out a questionnaire (composing
this questionnaire, the questionnaire presented in (Mitrovic and Ohlsson, 1999)
was used; see Appendix D). I evaluated usability of T-algebra analyzing these
questionnaires. The students were comfortable with the program. The majority
(60%) reported that they needed 5 to 20 minutes to start using the system; 33%

 95

needed less than 5 minutes and only 7% of the students needed more than 20
minutes to learn to use T-algebra. When asked to rate ease of use on a scale: Not
at all; Rather not; Hard to say; Rather yes; Yes, very much, half the students
(48%) chose the alternative Rather yes and 33% the alternative Yes, very much.
When asked whether they enjoyed working with T-algebra, almost equal
percentages of students chose alternative Rather yes (38%) and Yes, very much
(37%). When asked whether they would like to use T-algebra more, 65%
answered Yes and when asked whether they would recommend T-algebra to
other students, 70% said Yes. In short, a majority of the students found
T-algebra easy to learn, easy to use and enjoyable and would like to use it more.

I also asked the students did they learn something new about mathematics
from using T-algebra. 44% of the students chose the alternative Rather not on
the same scale and 24% chose Hard to say. This is because the students had
already covered the topic of linear equations in the class. I also asked them
about error messages shown in the case of mistakes. The majority found them
understandable: 44% chose the alternative Rather yes and 44% the alternative
Yes, very much. To the question, did error messages help to correct mistakes,
53% of students answered Yes, very much and 38% chose Rather yes. In short,
the students did not learn much using T-algebra, because the material was not
new to them, but the majority of the students found error messages
understandable and helpful.

The following Table 4.3 shows the results of the tests: the percentages of
problems solved correctly, wrongly, etc.

Table 4.3. Results of the tests
Test Correct

answer
Wrong
answer

Half
solution

Blank Wrong solution, right
answer (cribbed?)

Paper 45.38 % 32.95 % 5.16 % 16.3 % 0.2 %
T-algebra 96.69 % impossible 0.98 % 2.33 % impossible

If the student gave an answer in T-algebra and the program checked that the
equation is in appropriate form, it means that this is the correct answer because
it is impossible to produce incorrect solution steps in T-algebra. If an error
message was displayed at any checking stage during problem solving, the
student had to correct the error in order to proceed to the next stage.
Additionally, it is impossible in T-algebra to proceed with the wrong solution
and then give the right answer.

Although the program requires the student to enter more information (to
choose the rule and to mark the parts for the rule) than she/he would write
during solving on paper, the study showed that students solved more problems
with computer than on paper (the percentage of half-solutions and blank
exercises was lower) in the same time period. We have some explanations for
that. First, the program generates the expression in the next line based on the

 96

selected rule and marked parts, and leaves blank certain important parts of the
new expression. When solving problems at school with paper and pencil, the
students always have to write an expression of the same length to the next line.
The program makes the work easier for the students by copying the parts of the
expression that remain unchanged so that the students would have to enter only
the parts that were modified. The other reason is that the teachers request
checking the solution of linear equations when solving on paper (fifth type of
problems – solve an equation). This checking stage is omitted in T-algebra,
because the program does not permit incorrect solutions as stated above. Still,
the test included only three problems of this type. Another very important point
is that the students managed to correct all their mistakes by themselves during
this time period.

Now let us take a look at the results of the tests grouped by the types of
problems.

Table 4.4. Results of the tests on paper grouped by the types of problems
Type Correct

answer
Wrong
answer

Half
solution

Blank Wrong solution,
right answer
(cribbed?)

Type Reverse
(paper)

19.02 % 79.89 % 0 % 1.09 % 0 %

Type Divide
(paper)

70.29 % 17.75 % 2.54 % 9.42 % 0 %

Type Multiply
(paper)

32.61 % 30.33 % 1.09 % 36.3 % 0 %

Type Move
(paper)

55.8 % 23.91 % 14.13 % 6.16 % 0 %

Type Solve
(paper)

46.38 % 35.87 % 5.8 % 10.87 % 1.09 %

Table 4.5. Results of the tests in T-algebra grouped by the types of problems
Type Correct

answer
Wrong
answer

Half
solution

Blank Wrong solution,
right answer
(cribbed?)

Type Reverse
(T-algebra)

96.99 % impossible 1.81 % 1.2 % impossible

Type Divide
(T-algebra)

96.39 % impossible 1.61 % 1.61 % impossible

Type Multiply
(T-algebra)

98.55 % impossible 0.24 % 1.2 % impossible

Type Move
(T-algebra)

97.19 % impossible 0.4 % 2.41 % impossible

Type Solve
(T-algebra)

92.77 % impossible 1.61 % 5.62 % impossible

 97

As we can see, the most difficult problem type on paper is Reverse sides
(Table 4.4). This is probably because the theme of linear equations was already
learned and the students remember the best and practice the most the equation-
solving algorithm and this step is omitted in the algorithm. Students act as if
solving the equation to the end and move all variable terms to the left side and
all constant terms to the right side; or they might reverse the equation sides, but
change the signs too, as during moving.

The most successful type on paper is Divide equation sides by variable
coefficient (Table 4.4), because the most attention is paid to solving the equation
to the end and this operation is the last step in the equation-solving algorithm
and students remember it very well.

In T-algebra all types were solved successfully (Table 4.5), only some
students did not manage to solve the test to the end. The percentage of the blank
exercises of the type Solve an equation is the highest, because these exercises
were in the end of the test.

4.3.1 Comparison of student mistakes made during
solving on paper and in T-algebra

The result of the tests confirmed our assumptions that students make both,
specific mistakes, which occur only during linear equation solving (for example,
in moving terms to other side), as well as mistakes related to previously studied
material (for example, in adding numbers). Let us take a closer look at the
mistakes made during solving on paper and compare them with the mistakes
made during solving in T-algebra. The errors statistics is presented in the tables
grouped by steps during which they were made. Columns named % paper and
% T-algebra show the percentage of students who made this mistake. Columns
named No. mistakes show the average number of mistakes of this kind per
student who made this mistake. The numbers in the column No. mistakes paper
should be compared only with numbers in the column No. mistakes T-algebra.
The numbers within a column can not be compared between themselves,
because these tables do not reflect how many possibilities for making some kind
of mistake were in the test, for example, if there was only one possibility to
make the mistake number 6 from Table 4.6, the average number of these
mistakes is also one, but if there were four possibilities to make the mistake
number 1 from Table 4.6, the average number of these mistakes is 2.57. The fat
line in the tables isolates the mistakes that were diagnosed only in the T-algebra
environment.

25

 98

4.3.1.1 Mistakes made during multiplying both sides of
equation

The first thing that can be noticed in Table 4.6 is that the average number of
mistakes in T-algebra is smaller than the average number of mistakes on paper.
We think that showing the error message immediately is the cause of that. For
example, let us consider the mistake number 1 from Table 4.6. The student errs
with the sign and immediately gets the respective error message. Next time, the
student errs with the sign and gets the error message again. Then the third time
the student already pays more attention in the similar situation (when the minus
sign is before fraction and two terms are in the numerator of fraction) and does
not make the mistake. This was also noticed by observers during the test.

Let us take a look at the mistake number 2 from Table 4.6. The percentage of
students who made this mistake is much higher in T-algebra than on paper. In
T-algebra, the students must enter the extender (‘extenders’ are numbers by
which you need to multiply both the numerator and denominator of the fraction
to convert the denominators to a common denominator – this term is used in the
Estonian schools and textbooks (Nurk et al., 2000)) for every term of equation
(for every fraction and also for every number which is not fraction). Reviewing
the paper tests, we noticed that the students often do not write the extender for a
number, which is not fraction, and this causes the mistake number 5 from Table
4.6. In T-algebra, the student could not proceed if some extender is not entered;
this increases the number of students who made the mistake number 2
(reviewing the records, we found that almost half of wrong extenders are

written for whole number, for example 30|
10
73

5

3|
10|

6|

⋅=+
x). However, after

finding the right extender for whole number the students do not forget to
multiply them and, consequently, nobody made the mistake number 5 from
Table 4.6 in T-algebra.

The next mistake from Table 4.6 that is worth examining is the mistake
number 7. Nobody made this mistake in T-algebra. We think that this is the
result of the design of the rule dialogue (structured input mode) in T-algebra. In
order to enter the result of application of the rule Multiply/Divide both sides, the
program gives an equality sign and a number of boxes to the user (Figure 3.4
from Section 3.2.1). There are two kinds of boxes: small boxes are for input of
signs + and –, larger boxes are for entering numbers and variables. The program
prompts how many terms are in the result and it is very difficult for the student
to forget some terms, because the number of boxes corresponds to the number
of terms in the result of multiplication.

The mistake number 9 from Table 4.6 surprised us, but after a precise
analysis of paper tests, we found that sometimes students just do not write the
common denominator on paper, but act correctly further. In T-algebra the

 99

student must write the common denominator, so we drew the conclusion that
some students do not know how to find a common denominator, but somehow
they know how to remove fractions from the equation. On paper, they just skip
writing the common denominator, but it is not possible to act like that in
T-algebra.

The mistakes number 12-17 were diagnosed only in T-algebra. The mistakes
number 15, 16, 17 can not be diagnosed on paper at all, because the students do
not write/explain on paper what they are doing and often do not mark the parts
for operation. The mathematics teachers consider the choice of the rule in
T-algebra as a good opportunity to teach students the correct names of the
operations, because the students often know how they should solve, but they do
not know how to describe what they are doing. The same seems to apply to
precise marking of operands for the selected rule.

We still do not know the reasons for mistakes 12, 13 and 14 and why they
appear only in T-algebra. These mistakes need to be examined more carefully
during the next studies. The mistake 12 is very strange, because the program
writes what the student should enter and even offers a separate box for the sign
(Figure 3.1 from Section 3.2.1) and we do not know why the students leave it
blank.

We assume that mistake number 13 can be caused by the location of
extenders (right from the fraction, near the second term of the numerator, see
Figure 3.2 from Section 3.2.1), but exactly the same notation is used during
solving on paper and in textbooks, and this does not cause mistakes on paper.

 100

Table 4.6. Mistakes in multiplying both equation sides
No

Nature of
mistake

Example of mistake %
paper

No. mis-
takes
paper

%
T-al-
gebra

No. mis-
takes
T-al-
gebra

1 Minus sign
before
fraction is
taken into
account only
at first term

5 3 14 2 3 4 | 15
3 5 15

20 6 9 4

y y

y y

+
− = ⋅

− + =

52.69 % 2.57 63.86 % 1.9

2 Wrong
extender

24|
12

3
8

13
2

12
6

3

2|3|

12|3|

⋅
+

+
−

=

=
+

−
−

nn

nn

12.9 % 4.75 26.5 % 1.86

3 Extender is
multiplied
only with
first term of
numerator

823

12|
3
2

4
2 4|3|

=−

⋅=
−

y

y 11.83 % 2.18 4.82 % 1.25

4 Arithmetic
mistake

153
12466

12|
4

5
3

3
2

13

3|

4|6|

+=
=−−−

⋅
+

=

=
+

−
−

m
mm

m

mm

11.83 % 1.18 18.07 % 1.2

5 Whole
number is
not
multiplied

732

10|
10
73

5

1|2|

=+

⋅=+

x

x 7.53 % 1.29 0 % 0

6 Minus sign
before
fraction is
not taken
into account

34

18|
6
1

9
2 3|2|

=

⋅−=

y

y 7.53 % 1 8.43 % 1

7 One term is
forgotten
(which is not
fraction)

uuu

u

uu

8135539

15|1
15

81
3

7
5

13

15|
1|

5|3|

−=−−−

⋅−
−

=

=
+

−
−

6.45 % 1 0 % 0

8 The result is
written with
common
denominator 15

65

15|
5
2

3

3|5|

=

⋅=

x

x

5.38 % 3.6 1.2 % 1

 101

No

Nature of
mistake

Example of mistake %
paper

No. mis-
takes
paper

%
T-al-
gebra

No. mis-
takes
T-al-
gebra

9 Wrong
common
denominator

10|
10

32
4

3
5

2
⋅

+
=

−
−

uuu 4.3 % 4 26.5 % 1.95

10 Variable is
omitted

65
15

65
5
2

3

3|5|

=
−

=

or

x 3.23 % 3 10.84 % 1.11

11 Multiplied,
but the sign
is division

1581
35539

15|:1
15

81
3

7
5

13

15|
1|

5|3|

−−=
=−−−

−
−

=

=
+

−
−

u
uu

u

uu

2.15 % 1 13.25 % 1.64

12 Multiplica-
tion sign is
omitted

12|
3
2

4
2

=
−y 0 % 0 16.87 % 1.07

13 Extender is
multiplied
only with
second term
of numerator

94

12|
4
3

6
2 3|2|

=+

⋅=
+

m

m 0 % 0 13.25 % 1.73

14 The sign of
second term
of numerator
is changed

124618
2448248

48|
12

3
8

13
2

12
6

3

4|6|

24|8|

+++=
=−−+

⋅
+

+
−

=

=
+

−
−

nn
nn

nn

nn

0 % 0 12.05 % 1.8

15 Selected the rule Multiply/Divide
numbers

0 % 0 9.64 % 1

16 Selected the rule Extend 0 % 0 4.82 % 1
17 Only one side of equation is selected

for applying the rule
0 % 0 4.82 % 1

26

 102

4.3.1.2 Mistakes made during dividing both sides
of equation

Like in the case of mistake number 9 from Table 4.6, the increase in students
who made the mistake number 2 from Table 4.7 and the increase in the average
number of these mistakes are caused by the required input of the divider (on
paper, the students often skip this part). In addition, this can be caused by the
number of boxes that are given for entering the divider. The student gets two
boxes (Figure 3.1 from Section 3.2.1). Maybe the students do not understand
that they write two signs side by side, because they are in different boxes (the
separate box is given for entering division sign). We made the conclusion that
during the next study we should try giving only one box for entering the sign
and number, then we could say whether this increase was caused by the number
of boxes or not.

The increase in the average number of mistakes number 1 and 3 can be
explained by the fact that T-algebra requires correction of the mistake right after
the mistake was made. Reviewing the record files, we noticed that some
students do not know how to correct the mistake and just try different
possibilities and make not one mistake like on paper, but two or three mistakes
before they discover the right answer. This can be noticed particularly in the
mistake number 3 from Table 4.7. The students have problems in dividing the
decimal numbers. When they write 0.4 for the result and get the error message,
they try to give for answer the number 0.3 or 0.04 and different other numbers
and only after that offer the number 4 for the answer.

The mistake number 4 from Table 4.7 probably has the same explanation as
mistake number 12 from Table 4.6, but we did not prove it yet.

Mistake number 5 from Table 4.7 is impossible in T-algebra. The student
could not proceed further with the wrong divider and give the right answer.
Therefore, all the attempts to write a wrong divider were counted as mistake
number 6 from Table 4.7 in T-algebra. This can explain the increased
percentage of students who made the mistake number 6 in T-algebra.

The mistakes number 8–10 from Table 4.7 were and can be diagnosed only
in T-algebra like mistakes 15-17 from Table 4.6. Almost all number 9 mistakes
were made by selecting the right side of the equation, which was just a number,
for dividing. Apparently, the students thought that they should just divide the
right side of the equation with the coefficient of variable, and they did not
understand that the left side should be divided as well. They probably thought
that they do not have to divide the left side if they simply do not write the
coefficient before the variable.

 103

Table 4.7. Mistakes in dividing both equation sides
No Nature of

mistake
Example of mistake %

paper
No. mis-

takes
paper

%
T-al-
gebra

No. mis-
takes
T-al-
gebra

1 Mistake in
sign 2

)4(|:84
−=

−−=−
y

y 26.88 % 1.16 24.1 % 1.45

2 The
parentheses
(in divider)
are omitted

5
5:|255

−=
−=−

n
n 23.66 % 1.32 45.78 % 1.68

3 Arithmetic
mistake 4.0

)3.0(|:2.13.0
=

−−=−
y

y 19.35 % 1 36.14 % 1.4

4 Division sign
is omitted 2

)8(|168

−=

−=−

n

n 5.38 % 2.4 14.46 % 1.17

5 Wrong
divider (right
answer)

2
)2(|:84

=
−−=−

y
y

3.23 % 1 impossi

ble
impossi

ble

6 Wrong
divider

3|:217 =x 2.15 % 2 8.43 % 1.29

7 Variable is
omitted 31

7|:217
=

=x 1.08 % 1 7.23 % 1.67

8 Selected the rule Multiply/Divide
numbers

0 % 0 31.33 % 1.38

9 Only one side of equation is selected
for applying the rule

0 % 0 9.64 % 1.38

10 Selected the rule Reduce 0 % 0 3.61 % 1

4.3.1.3 Mistakes made during moving terms to the other
side of equation

Like in the case of mistake number 1 from Table 4.6, we may notice that the
average number of mistakes number 1 from Table 4.8 in T-algebra is lower than
the average number of mistakes on paper. We believe that this is because of the
displayed error message and directing attention to the mistake and its location
(box). Similarly, in the case of mistake number 1 from Table 4.7, we may notice
that the percentage of the students who made this mistake in T-algebra is lower,
because the program reminds in a certain way about the sign of the term, which
is very important in this operation: a separate box is given for entering the sign
(see Figure 3.8 from Section 3.2.2).

The mistake number 2 is not possible in T-algebra. The program copies the
unchanged parts automatically and the student could not err in passive
rewriting. We assume that the loss of this mistake is not essential.

 104

The mistakes number 3 and 4 from Table 4.8 were not made in T-algebra
probably because of the offered structure for the result. The program shows the
unchanged part and a number of boxes in the next line (Figure 3.8). The boxes
appear on the opposite side to the selected parts. The program prompts how
many terms are moved and to which side and it is very difficult for the student
to forget some terms and it is impossible to write terms to both sides, because
the number of boxes corresponds to the number of moved terms.

Mistakes 6, 7 and 8 were diagnosed only in T-algebra. The mistake 8 is
actually not a mistake in moving terms to other side, but a mistake in opening
parentheses. Some students understand 3(2x+3) like addition between 3, 2x and
3, as if it would be written 3+(2x+3). This mistake was found during checking
the paper tests and it is presented in Table 4.12 (mistake number 3). However,
in T-algebra this mistake was discovered during the selection of the parts for the
rule Move terms to other side and presented here, in Table 4.8.

Table 4.8. Mistakes in moving terms to the other side of equation
No Nature of

mistake
Example of mistake %

paper
No. mis-

takes
paper

% T-al-
gebra

No. mis-
takes
T-al-
gebra

1 Sign is not
changed 615458

641558
+=−−
+=+−

uuu
uuu 29.03 % 2.11 14.46 % 1.5

2 Mistake in
passive rewri-
ting (changing
sign, forget-
ting term)

5312352
3152532
−+−=−+
++−=+−

mmm
mmm

26.88 % 1.96 impos-
sible

impos-
sible

3 One removed
term is lost 9326

23269
−=+−
−=+−

yy
yy 5.38 % 1 0 % 0

4 The terms are
moved and
left on the
same side

uu
uu

uu

89353151
89

15813539

+−−+−=
=+

−−=+− 2.15 % 2 impos-
sible

impos-
sible

5 Removed term
is changed 1549

4129
−=
=+

m
m 1.08 % 1 14.46 % 1.25

6 Selected the rule Reverse sides 0 % 0 10.84 % 1.11
7 All terms are selected for moving, but

only part of them are moved
0 % 0 8.43 % 1.29

8 All selected
terms are not
suitable for
moving

xxx 83)32(32 −=+− 0 % 0 2.41 % 1

 105

4.3.1.4 Mistakes made during reversing the equation sides
In Table 4.9, we may see that the percentage of the students who made the
mistakes 1-3 in T-algebra is much lower than that of the students who made
these mistakes on paper. Some students tried to reverse sides during the first 15
minutes (introduction to T-algebra), made mistakes and discovered how to
reverse sides correctly during this time. Therefore, during the test they solved
these problems correctly without mistakes. We can also see that the average
number of mistakes is smaller in T-algebra than on paper. The students made
mistakes during solving the first problem of this type. They understood how to
reverse sides and almost did not err during solving the second problem of this
type. We think that this is a sign of the good influence of T-algebra on the
students.

The mistake number 5 from Table 4.9 arose from the dissatisfaction of the
program with the answer. When the students thought that they should move all
variable terms to the left side and all constant terms to the right side to reverse
sides, they had the opportunity for that. The rule Move terms to other side was
available and the students used it successfully. Then they gave an answer, but
the program said that the sides are not reversed completely. They did not
understand why and acted like during solving linear equation to the end (tried to
combine like terms). Yet the program did not accept that and then students tried
one more time to combine and gave the combined answer but with different
coefficients or different signs, so the average number of these mistakes is higher
than one. Observing the files, we noticed that some students were stuck at this
moment and they left the solution as it was (did not solve to the end).

Table 4.9. Mistakes in reversing the equation sides
No Nature of mistake Example of

mistake
%

paper
No. mis-

takes
paper

% T-al-
gebra

No. mis-
takes
T-al-
gebra

1 All variable terms
are moved to the
left side and all
constant terms to
the right side

7523
2573
+=−

+=−
mm

mm 58.06 % 1.8 26.5 % 1.09

2 Signs are partially
changed 7325

2573
+=−
+=−

mm
mm 17.2 % 1.31 8.43 % 1

3 Signs are changed
mm
mm

3725
2573

−=−−
+=− 15.05 % 2 4.82 % 1

4 Only one side of equation is selected
for applying the rule

0 % 0 12.05 % 1.1

5 All terms are
combined u

uu
312

3925
=−

−−=− 0 % 0 10.84 % 1.78

27

 106

4.3.1.5 Mistakes made during combining like terms and
during adding/subtracting numbers

The mistakes in combining like terms and adding/subtracting numbers are
presented in Tables 4.10 and 4.11. As we can see, the percentage of students
who made these mistakes in T-algebra is higher than that of the students who
made these mistakes on paper. We do not know whether it happens because of
the software use or simply because the students who participated in the second
test (the students participating in T-algebra and paper tests were different) did
not know how to add/subtract numbers.

As in above cases, the increase in the average number of mistakes is caused
by the program requirement to correct the mistake.

Mistake number 4 from Table 4.10 shows that the students are confused by
terminology. They could combine numbers (numbers are similar terms), but
they could not add/subtract numbers from similar terms – monomials.

Table 4.10. Mistakes in combining like terms
No Nature of

mistake
Example of mistake %

paper
No. mis-

takes
paper

%
T-al-
gebra

No. mis-
takes
T-al-
gebra

1 Wrong
coefficient 43

473
=−

=−
x

xx 11.83
%

1 28.92
%

1.41

2 Wrong sign
2412

335151859
=−

++−=+−
u

uuu

9.68 % 1.11 10.84
%

1.22

3 Variable is
omitted 44

473
=−

=− xx 2.15 % 1 0 % 0

4 Selected the rule Add/Subtract
numbers

0 % 0 9.64 % 1

Table 4.11. Mistakes in adding/subtracting numbers
No Nature of

mistake
Example of mistake %

paper
no mis-
takes
paper

%
T-al-
gebra

no mis-
takes
T-al-
gebra

1 Wrong sign
67

3952
=−

+−=−−
y

yy 11.83
%

1.18 14.46
%

1

2 Arithmetic
mistake 242

12297
−=−

−=−
s

ss 7.53 % 1.29 32.53
%

1.37

 107

4.3.1.6 Mistakes made during opening the parentheses
The mistakes 1 and 2 from Table 4.12 were made by fewer students in
T-algebra than on paper. We believe this is because the program always gives
boxes for the parts that are changing (Figure 3.32 from Section 3.2.9), so the
students do not forget to multiply the second term from the parentheses and the
program also reminds about the sign by giving a separate box for it.

Mistake number 3 was diagnosed in applying the rule Move terms to other
side and displayed in Table 4.8 (mistake number 8).

It is difficult to say anything about the average numbers of mistakes from
Table 4.12, because in the test there was only one place, where the rule Open
parentheses could be applied, so the average number of mistakes is always 1.

Table 4.12. Mistakes in opening parentheses
No Nature of

mistake
Example of

mistake
%

paper
No. mis-

takes
paper

%
T-al-
gebra

No. mis-
takes
T-al-
gebra

1 Minus sign
before parent-
heses is taken
into account
only at first term

yy
yy

23269
23)13(29

−=−−
−=−− 29.03

%
1 19.28

%
1

2 Number before
parentheses is
multiplied only
with first term
from
parentheses

xxx
xxx

83362
83)32(32

−=+−
−=+− 6.45 % 1 1.2 % 1

3 Not multiplied,
but added 312923

23)13(29
+++−=+

−=−−
yy

yy

5.38 % 1 impossi
ble

imposs
ible

4 Arithmetic
mistake xxx

xxx
83662

83)32(32
−=−−

−=+− 2.15 % 1 1.2 % 1

4.3.2 Conclusions
The results of questionnaire showed that T-algebra is easy to learn, easy to use
and enjoyable and the students want to use it more. The students also judged
error messages as understandable and helpful.

Although the program requires the student to enter more information than
she/he would write during solving on paper, the study showed that the students
solved more problems with computer than on paper in the same time period.
Very important result is that the students managed to correct all their mistakes
by themselves during this time.

 108

As we have seen, in most cases the average number of mistakes per student
who made this mistake in T-algebra is smaller than on paper. Immediate display
of the error message and indication of the error location make the students think
and be more careful. The increase in the average number of mistakes in some
places can be explained by the fact that T-algebra requires correction of
mistakes. The student does not know how to correct the mistake and just tries
different possibilities and makes not one mistake like on paper, but two or three
mistakes before she/he discovers the right answer.

T-algebra helps to diagnose mistakes in places where some intermediate
result, which can be skipped on paper, needs to be entered in T-algebra. On
paper, the students take advantage of this opportunity and leave the result blank
if they are not sure in it. The need to enter the intermediate result causes the
increase in the number of students to whom this mistake was diagnosed, but
helps to prevent other mistakes, which are caused by this misunderstanding.

Mistakes in selecting the rule and marking the parts for the selected rule can
be diagnosed in T-algebra explicitly without any efforts, but on paper the
diagnosis of these mistakes is very labor-intensive, because the students do not
write/explain on paper what they are doing and often do not mark the parts for
the operation. The mathematics teachers consider the choice of the rule in
T-algebra as a good opportunity to teach the students the correct names of the
operations, because the students often know how they should solve, but do not
know how to describe what they are doing. The same seems to apply to precise
marking of operands for the selected rule.

During the study, we found some kinds of mistakes, which were made in
T-algebra, but never exist on paper. Unfortunately, we still do not know the
reason for these mistakes and they will be the objects of careful study next time.

4.4 Fourth experiment

Since 1998, admission to Estonian universities takes place on the basis of the
results of state examinations, which are held at the schools during the last
school year. The Faculty of Mathematics and Computer Science at the
University of Tartu in Estonia selects students according to the summary of the
results of three exams: mathematics, essay in mother tongue and foreign
language. The universities themselves have no admission examinations. During
last year’s lectures in the Faculty of Mathematics and Computer Science several
lecturers noticed that the ability of many students to pass the first year courses
(like Mathematical Analysis, Algebra and Geometry, Programming) has
decreased. I decided to organize a research on the first year students’ knowledge
of elementary algebra (like linear equation solving) using T-algebra. This
research can help our lecturers to get to know the gaps in student knowledge to
adjust their courses.

 109

Exactly the same tests like in the first and third experiments (see Sections
4.1 and 4.3) and the scheme of experiment like in the third experiment (one
hour sessions: five minutes for demonstration of T-algebra, ten minutes for
trying T-algebra, 45 minutes for test; see Section 4.3) were used in the study on
the first year students’ mistakes in autumn 2006. The trial was conducted in
three groups of different curricula: Computer Science, Mathematics, and
Mathematical Statistics, and 46 students participated in it. The trial was carried
out during one lesson of course Introduction to Computer Applications, the
students were all 1st year students of these curricula who came to this lesson at
this day (i.e., the student were not specifically selected).

4.4.1 Results of experiment
The following Table 4.13 shows the results of the tests: the percentage of
problems solved correctly, the percentage of unfinished solutions, etc.

Table 4.13. Results of the tests
Participants Correct answer Half solution Blank

7th grade students 96.69 % 0.98 % 2.33 %
1st year students 99.21 % 0.14 % 0.27 %

Only one student from the Statistics curriculum did not solve the test to the
end. She/he did not manage to solve all problems of type Divide equation sides
by coefficient of variable. She/he tried five times to apply the rule
Multiply/Divide numbers instead of rule Multiply/Divide both sides and did not
succeed. It is interesting that when solving the equation to the end she/he
applied the rule Multiply/Divide both sides for dividing correctly. The difficulty
was probably caused by the text of the exercise (Divide equation sides by
coefficient of variable); it is likely that the student did not understand what the
coefficient of variable is and how to divide by it.

Now consider mistakes made during solving linear equations. Table 4.14
shows the average number of mistakes per student.

Table 4.14. The average number of mistakes per student
 1st year Statistics Mathematics Informatics 7th grade

Average number of
mistakes per student

4.93 7.38 3.78 5 10.69

The assumption that the first year students make mistakes caused by the

material learned after the 7th grade was not confirmed. The only mistake caused
by the new material was made by one student who did not multiply the
numerator with the extender, but raised numerator to a power of extender

(815|
5
2

3
5

3|5|

=→⋅= xx).

28

 110

Many mistakes of different kinds were made, but the following Table 4.15
presents only the mistakes that were made by more than ten percent of the first
year students to demonstrate the common gaps in student knowledge.

Table 4.15. Mistakes made during solving linear equations
No Nature of

mistake
Example of mistake 1st

year
Statis-

tics
Mathe-
matics

Infor-
matics

7th
grade

1 The parentheses
(in divider) are
omitted

5
5:|255

−=
−=−

n
n 58.7

%
75 % 66.67

%
45 % 45.78

%

2 During multiplica-
tion minus sign
before fraction is
taken into account
only at first term

5 3 14 2 3 4 | 15
3 5 15

20 6 9 4

y y

y y

+
− = ⋅

− + =

 32.61
%

25 % 22.22
%

45 % 63.86
%

3 Selected the rule Multiply/Divide numbers for
dividing both sides of equation

23.91
%

50 % 27.78
%

10 % 31.33
%

4 Selected the rule Reverse sides for moving
terms to other side

21.74
%

25 % 22.23
%

20 % 10.84
%

5 Arithmetic
mistake in
multiplying 15312466

12|
4

5
3

3
2

13 3|4|6|

+=−−−

⋅
+

=
+

−
−

mmm

mmm 17.39
%

0 % 11.11
%

30 % 18.07
%

6 Division sign is
omitted 2

)8(|168

−=

−=−

n

n 15.21
%

25 % 22.22
%

5 % 14.46
%

7 Sign is not
changed during
moving to other
side

615458
641558

+=−−
+=+−

uuu
uuu 13.04

%
12.5
%

5.56 % 20 % 14.46
%

8 Removed term is
changed 1549

4129
−=
=+

m
m 13.04

%
50 % 5.56 % 5 % 14.46

%
9 Wrong extender in

multiplying

24|
12

3
8

13
2

12
6

3

2|3|

12|3|

⋅
+

+
−

=

=
+

−
−

nn

nn

10.87
%

12.5
%

11.11
%

10 % 26.5 %

10 Arithmetic
mistake in
dividing

4.0
)3.0(|:2.13.0

=
−−=−

y
y 10.87

%
12.5
%

11.11
%

10 % 36.14
%

11 Arithmetic
mistake in
combining like
terms and in
adding /
subtracting
numbers

242
12297

−=−
−=−

s
ss 10.87

%
25 % 5.56 % 10 % 32.53

%

 111

The mistakes number 1 and 6 are caused by the required input of the divider
in T-algebra. We saw the same during the experiment with the 7th grade
students. On paper, they just skip writing the divider, but it is not possible to act
like that in T-algebra.

The mistakes number 3 and 4 show that the students do not know the correct
names of the operations. At school, the students do not write/explain on paper
what they are doing. The 7th grade and 1st year students often know how they
should solve, but they do not know how to describe what they are doing. The
mathematics teachers consider the choice of the rule in T-algebra as a good
opportunity to teach the students to explain what they are doing.

The experiment showed that the students made many arithmetic mistakes
(mistakes number 5, 10, 11) and some mistakes in sign (mistakes number 2 and
7). The rate of such mistakes was lower among the 1st year students than among
the 7th grade students, but it was still too high. Mistake 8 shows that students
made the same amount mistakes in rewriting, which is probably caused by low
attention level.

There are also some mistakes that were made by the 7th grade students, but
were not made by the 1st year students. Very few students made mistakes in
sign (except mistakes 2 and 7 from Table 4.15):

• mistake in sign in dividing (2.17% of 1st year students, 24.1% of 7th
grade students);

• wrong sign in combining (2.17% of 1st year students, 10.84% of 7th
grade students);

• wrong sign in evaluating (4.35% of 1st year students, 14.46% of 7th
grade students);

• in opening parentheses minus sign before parentheses is taken into
account only at first term (2.17% of 1st year students, 19.28% of 7th
grade students).

4.4.2 Conclusions
T-algebra helped to identify the gaps in the knowledge of elementary algebra
among the students. We saw that the students have some gaps in the knowledge
of correct names of operations and have some problems with things that they
could skip on paper (like divider). The experiment also showed that the students
make a fairly large number of arithmetic mistakes and some mistakes in sign.
But the first year students do not make mistakes caused by the material learned
later (after the 7th grade) and also do not err in sign in most cases.

 112

4.5 Fifth experiment

Before distribution of T-algebra to all Estonian schools, I organized an
experiment to clarify how the program affects the learning results. The study
was carried out in the winter 2007. Seven classes (126 students) of 7th grade
(13 years old) from four different Estonian schools participated in the
experiment. Classes of two schools, where there was more than one 7th grade
class, were divided into experimental classes and control classes. The remaining
two schools participated as experimental classes. After division we had 2
control classes and 5 experimental classes. Classes from schools with more than
one 7th grade class were taught by the same teacher.

The topic of linear equations was chosen for experiment and the experiment
began when the topic was explained and practiced in the schools. The
experiment consisted of four 45-minute sessions. In the first session, the
students solved a pre-test on paper. In the next two sessions, the students
practiced solving the problems of the same topic (linear equations). The
experimental groups practiced solving these problems with T-algebra, while the
control groups practiced solving exactly the same problems using traditional
instruction technology – paper and pencil. In the last session, the students
solved a post-test on paper. Teachers had exact instructions what, when and
how to do and the same materials (pre-test, problems for practicing and post-
test) for all teachers were prepared.

Pre-test was solved in both groups using paper and pencil. Pre-test was
organized right after linear equation solving was learned, before other themes.
During the pre-test the students could not use any assistance materials. A test in
two variants was composed by one of mathematics teachers (Janika Kaljula),
who participated in the experiment. The other teacher (Sirje Pihlap) advised
assigning points to each problem. Test contained 17 problems (6 types of
problem) and it was possible to earn 39 points in total. The problems (with
maximum points) of variant A were the following:

• check if number 5 is solution of equation)1(72)13(210 −−=−− yyy
(3 p.);

• reverse equation sides: 1) 7324 += y (1 p.); 2) 6714 −=+ uu (1 p.);
• divide equation sides by variable coefficient: 1) 484 =y (1 p.);

2) 9,33,1 −=n (1 p.); 3) 459 −=− y (1 p.);

• multiply both sides of the equation by common denominator: 1)
6
5

8
3

−=
n

(2 p.); 2)
8
5

4
3

=
+k (2 p.); 3)

12
54

6
=+

n (2 p.); 4)
6

54
5

2
10
3 −

=
+

−
mmm

(2 p.); 5)
6

5
4

52
12

13
9

3 −
+

+
=

+
−

+ xxxx (2 p.);

 113

• move all variable terms to the left side and all constant terms to the right
side and then combine like terms: 1) 246 =+ b (2 p.); 2) 45116 −=+ mm
(2 p.); 3) 1193475 ++−=−+− xxxx (2 p.);

• solve an equation: 1) 21347 +=− mm (4 p.); 2) yyy 47)43(25 −=+−

(5 p.); 3)
14

1231
7

53 −
=−

− xx (6 p.).

The problems of variant B were the following:
• check if number -4 is solution of equation)2(3)1(32 −=−− xxx ;
• reverse equation sides: 1) ss 3456 +=− ; 2) 473 −= yy ;
• divide equation sides by variable coefficient: 1) 205 =x ; 2) 4,26,0 −=− y ;

3) 497 =− n ;

• multiply both sides of the equation by common denominator: 1)
7
2

4
=

x ;

2)
4
3

5
3

=
−y ; 3)

3
1

4
3 =−

m ; 4)
16
3

8
53

2
3

=
+

−
yy ;

5)
3

52
9

2
2

13
6

1 +
−

−
=

−
−

+ xxxx ;

• move all variable terms to the left side and all constant terms to the right
side and then combine like terms: 1) xx 974 =− ; 2) 2638 +=− yy ;
3) mmm 5245143 ++−=+− ;

• solve an equation: 1) xx 818127 −=− ; 2) yy 21)12(310 −=−− ;

3) 1
3

2
5

32
−=

+
−

− uu .

The students got the mark (score) according to the following scale:
5: > 35 points (90% - 100 %);
4: > 27 points and <= 35 points (70% - 90 %);
3: > 19 points and <= 27 points (50% - 70%);
2: > 11 points and <= 19 points (30% - 50%);
1: <= 11 points (0% - 30%).
During the next two mathematics lessons, the experimental groups practiced

solving similar problems using T-algebra in computer class. The practice took
place immediately after the pre-test in the next mathematics lesson and linear
equations were not taught in the ordinary class between pre- and post-tests. The
students received the corrected pre-test before practice. The students had seen
and tried T-algebra before in learning other topics, so teachers did not have to
explain the environment to the students. T-algebra was installed and problem
file was copied to computers, so students did not waste time on this. The
problem file contained 40 problems (see the full list in Appendix E) chosen
from the files composed during T-algebra course by teachers. The structured

29

 114

input mode was chosen for the problems, because it gives the students more
detailed error messages. The button Autosolve was disabled in all problems; in
some problems (approximately a half), other help functions (for choosing a rule,
for marking the operands, for entering the result) were also disabled (the
problems with denied help are marked in the list in Appendix E). After the first
lesson the students saved the solutions to a solution file and continued solving
in the next lesson. After the second lesson the students saved solutions, the
teachers gathered them and sent to us for examination.

While the experimental groups practiced solving using T-algebra, the control
groups solved exactly the same problems (see Appendix E) using paper and
pencil. During lessons the students solved the problems in their notebook and
somebody wrote solution to the blackboard. The teacher showed and corrected
mistakes in the solutions on the blackboard, but did not explain anything new
and did not correct solutions in the notebooks.

During the fourth consecutive lesson, both groups solved a post-test using
paper and pencil. Arrangement of the post-test was the same as in pre-test. The
tests from the first experiment (see Section 4.1) were used for the post-test, but
one problem was added: check if number -3 is solution of equation

)2(4)1(23 −=−− xxx (in variant A); check, if number 4 is solution of equation
)1(73)12(312 −−=−− mmm (in variant B). The students got the same variant

like in the pre-test (if a student had variant A in the pre-test, then she/he had
variant A in the post-test as well). Of course the students could not use any
assistance materials, least of all the corrected pre-test.

After the experiment I gathered papers of the pre- and post-tests and files
with solutions in T-algebra for analysis.

4.5.1 Results of experiment
After analysis of papers and files, the students who had missed at least one
lesson were excluded and works of 115 students remained. Further tests were
analyzed and students whose result of pre-test was less than 11 points were
excluded, because in the preconditions of the experiment we assumed that topic
has been taught to the students, i.e., the student can get at least 30% of the
points. I wanted to evaluate how T-algebra affects practicing after the topic has
been explained by the teacher, not how it influences learning new material.
While all other students had some basic knowledge about linear equations, these
students (who got less than 30%) did not. After that, works of 106 students
remained; 76 of them had participated in the experimental group and 30 in the
control. The following Table 4.16 shows the results (average number of points)
of pre- and post-test in both (experimental and control) groups. As we can see,
the average number of points in pre-test is almost equal in experimental and
control groups. This difference is not statistically significant (unpaired t-test
t = 0.0368, p = 0.97) and the groups can be considered as equal.

 115

Table 4.16. Results (average number of points) of the tests
 Experimental Control

Pre-test 29.4 29.3
Post-test 31.3 29.9

Table 4.16 shows that the knowledge of students from experimental group is
statistically significantly improved (paired t-test t = 3.571, p < 0.01), but no
statistically significant difference (improvement) can be found in the points
earned by the control group (paired t-test t = 1.2024, p > 0.05). This shows that
even short use (2 lessons) of T-algebra affects the results of learning.

The next Table 4.17 shows which percent of problems were solved correctly,
which percent wrongly, which percent of problems were left with half (correct)
solutions and which percent just blank.

Table 4.17. Results of the tests
Test Correct

answer
Wrong
answer

Half
solution

Blank

Experimental pre-test 59.7 % 32.3 % 5.3 % 2.7 %
Control pre-test 60.1 % 35.6 % 3.8 % 0.5 %
Experimental post-test 68.5 % 27.7 % 2.7 % 1.1 %
Control post-test 65.0 % 28.8 % 5.2 % 1.0 %

The following Table 4.18 shows the percentage of students from
experimental group with different scores in pre- and post-tests. As we can see,
the percentage of students with highest score has grown. The percentage of
students with score 4 remained the same and the percentage of students with
low scores (3 and 2) has decreased.

Table 4.18. Division of students (from experimental group) between scores in pre- and
post-tests

 % Students
with scores 5

% Students
with scores 4

% Students
with scores 3

% Students
with scores 2

Pre-test 25 % 38 % 24 % 13 %
Post-test 39.5 % 38 % 14.5 % 8 %

While checking the post-test of the experimental group, I noticed that one
experimental student emulated the writing style of T-algebra. The operation
Multiply/Divide both sides has a slightly different appearance in Estonian
textbooks and in students notebooks. The students perform this operation in two
rows using paper and pencil and as a result we can see following solution:

65

15|
5
2

3

3|5|

=

⋅=

x

x

 116

But the application of this rule in T-algebra consists of marking the equation
(first row), input of additional information – common denominator (separate
window), then input of intermediate result – extenders (second row) and finally
input of result – multiplied equation (third row) (see Figure 3.4 in Section
3.2.1). The mentioned student was not able to solve the problems of type
Multiply both sides in the pre-test. In the post-test he solved all problems of this
type successfully, but writing in three rows, so that his result (in all five
problems) was as follows:

65
5
2

3

15|
5
2

3
3|5|

=

=

⋅=

x

x

x

This picture was very unusual on paper, so we drew the conclusion that even
two hours with T-algebra affect the students. Of course, long-term experiments
can confirm or refute this assumption.

Now let us see in detail the mistakes made in pre- and post-tests in
experimental (exp in Table 4.19) and control groups (con in Table 4.19). Table
4.19 shows the percentage of students who made this mistake in pre-test, in
post-test and the last columns show the percentage of the students who made
this mistake in pre-test and then in post-test in both groups. Many different
kinds of mistakes were made, but Table 4.19 presents only the mistakes that
were made in the pre-test by more than ten percents of the students in both
groups (experimental and control). This restriction was introduced to enable
comparison of mistakes in pre- and post-tests (if only some students in one or
another group made some mistakes than it is very hard to say something about
the influence of T-algebra). This Table 4.19 does not reflect whether the student
made this mistake more than once (either in pre-test or in post-test).

 117

Table 4.19. Mistakes made in pre- and post-tests in experimental and control groups
Pre-test Post-test Pre-test in

post-test
No Nature of

mistake
Example of mistake

%
exp

%
con

%
exp

%
con

%
exp

%
con

1 Minus sign
before fraction
is taken into
account only at
first term

5 3 14 2 3 4 | 15
3 5 15

20 6 9 4

y y

y y

+
− = ⋅

− + =

55 56 29 46 52 82

2 Arithmetic
mistake in
combining and
in evaluating

242
12297

−=−
−=−

s
ss 46 50 21 33 45 67

3 In problem Check if number is a
solution the equation is solved

40 30 19 10 48 33

4 In problem Reverse sides all variable
terms are moved to the left side and all
constant terms to the right side

32 23 8 10 24 43

5 In opening
parentheses
minus sign
before
parentheses is
taken into
account only at
first term

yy
yy

23269
23)13(29

−=−−
−=−− 22 46 10 40 47 85

6 Mistake in sign
in dividing 2

)4(|:84
−=

−−=−
y

y 21 20 7 7 31 33

7 Arithmetic
mistake in
dividing

4.0
)3.0(|:2.13.0

=
−−=−

y
y 17 14 9 7 53 50

8 Sign is not
changed during
moving to
other side

615458
641558

+=−−
+=+−

uuu
uuu 16 20 8 10 50 50

9 Whole number
is not
multiplied 732

10|
10
73

5

1|2|

=+

⋅=+

x

x 15 23 3 10 18 43

30

 118

As we assumed, T-algebra affects some error types. We can see that the
students from the experimental group made fewer mistakes in sign of second
term (mistakes number 1 and 5) in the post-test. The same was observed in the
third experiment and we think that showing the error message immediately and
directing attention to the mistake and its location (box) are the cause of that.
However, T-algebra does not affect mistakes in sign, which are not connected to
second term, like mistakes in sign in dividing and during moving to other side
(mistakes 6 and 8). The mistake number 6 was not affected by T-algebra in the
third experiment either.

A decrease in the number of students from the experimental group who
made the mistake number 9 was also predictable. The same was noticed in the
third experiment (see Section 4.3). The students often do not write on paper the
extender for a number, which is not fraction, but T-algebra does not allow
proceeding if some extender is not entered. However, after finding the right
extenders for the whole number the students do not forget to multiply them.
This causes the reduction of this mistake in the post-test.

T-algebra can also affect learning of algorithms. The students from the
experimental group made the mistake number 4 (in problem Reverse sides) less
frequently than the students from the control group. Experimental students
made the mistake number 3 (in problem Check if number is a solution) in the
post-test more often than the control students, because the teachers request
checking the solution of linear equations when solving on paper (sixth type of
problems – solve an equation). Therefore, the students solving equation on
paper also practice checking the solution. This checking stage is omitted in
T-algebra, because the program does not permit incorrect solutions.
Consequently, the percentage of the students from the control group who made
this mistake decreased, because they had more practice with this type than the
experimental students.

It is hard to say whether T-algebra affects arithmetic mistakes or not. The
students from the experimental group made the mistake number 2 less
frequently than the students from the control group, but the frequency of the
mistake number 7 was equal (and even slightly higher). We assumed that
T-algebra will not affect arithmetic mistakes and we hope long-term
experiments will explain the decrease in the frequency of the mistake number 2.

4.5.2 Conclusions
As we saw in the post-test, the students from the experimental group did better
than the students from the control group (the average number of points in the
pre-test was almost equal in experimental and control groups). This shows that
even short use (2 lessons) of T-algebra affects the results of learning. We also
saw a progress of the students from the experimental group to a higher score in
the post-test.

 119

The experiment showed that even two hours with T-algebra affect the
students’ writing style on paper. However, this observation needs a long-term
experiment for confirmation or refutation.

Finally, we saw that T-algebra affects some error types, i.e., the students
from experimental group made fewer mistakes of certain types (like mistakes in
sign of second term in opening parentheses and in multiplying fractions).
However, this short period of use of T-algebra gave strange results for
arithmetic mistakes; we hope to find an explanation for the change in these
mistakes from the long-term experiment.

 120

CONCLUSIONS
Expression manipulation (incl. solving of linear equations, inequalities and
systems of linear equations) is an area in the mathematics curriculum where
computers can offer help in learning. The aim of this thesis was to create an
interactive learning environment for solving linear equations, linear inequalities
and systems of linear equations. This goal was realized as a part of the
T-algebra interactive learning environment, which enables step-by-step solving
of algebra problems in four areas of school mathematics.

We have succeeded in creating a rule dialogue (Action-Object-Input scheme)
in T-algebra that gives the student the possibility to learn both solution
algorithms and their steps in a similar manner to solving the problem on paper.
The design of the rules and rule dialogue is the most important part in T-algebra
that distinguishes it from other environments. The designed three-stage dialogue
in T-algebra enables the student to make the same mistakes in T-algebra as on
paper and the program to give understandable feedback about mistakes. The
dialogue has also several advantages for precise diagnosis of student mistakes.
T-algebra can diagnose separately incorrect choice of operation, wrong
selection of operands for the chosen operation and erroneous application of the
selected operation.

In addition to computing only the answers, the domain expert module of
T-algebra is able to produce step-by-step solutions similar to pencil-and-paper
solutions. We have succeeded in creating in T-algebra a domain expert module
that is intelligent enough to check the knowledge and skills of the student (the
student’s solution steps and answers), understand the student’s mistakes, offer
feedback and give advice.

The author of the thesis conducted several experiments that showed that the
students find T-algebra easy to learn, easy to use and enjoyable and want to use
it more. The students also judge the error messages as understandable and
helpful. The time required for learning the dialogue stages is quite short and the
solution dialogue is intuitively understandable for the students.

The conducted experiments showed that the students solve more problems
with computer than on paper in the same time period and manage to correct all
their mistakes by themselves during this time. The experiments also
demonstrated that even a short use (2 lessons) of T-algebra for supplementary
practice (when the topic had been learned) affects the results of learning. The
knowledge of the students from the experimental group (who used T-algebra)
was statistically significantly improved, but no statistically significant
difference (improvement) could be found in the score of the control group (who
did not use T-algebra and solved the same problems on paper). Furthermore,
T-algebra affects some error types, i.e., after using T-algebra the students make
fewer mistakes of certain type (e.g., mistakes in sign) on paper as well.

 121

Obviously our decisions and ideas need some years of practical classroom
trials before they can be finally confirmed. Starting from the school year
2006-2007, tens of teachers in Estonian schools use T-algebra for practice. The
results of the school trials and teacher experiences will contribute to and support
further development of T-algebra.

We already have some ideas how we can improve T-algebra in the future.
First, in the current free input mode, only the equivalence of the entered parts to
the parts calculated by T-algebra is checked. In next versions of T-algebra, the
program should perform more detailed diagnosis in the free input mode as well.
Second, the mode chosen by the teacher cannot be changed during solving in
the current version. In the future the program should automatically change the
mode to more detailed one (structured or even partial) if the student is in
trouble. Moreover, the current design of some rules and algorithms slightly
differs from that used in the school. The future development should minimize
this difference. A possibility for automatic assessment of student solutions
could be added in the next versions as well. This can be done by assigning
weights to each solution step in the algorithm and penalties for each error type
and for asking hints from the program.

31

 122

REFERENCES
1. ActiveMath by ActiveMath Team. Available at

http://www.activemath.org/demo.php. Visited on 17.05.2007.
2. AiM by AiM Team. Available at http://maths.york.ac.uk/moodle/aiminfo/. Visited

on 17.05.2007.
3. Alpert, S.R., Singley, M.K. and Fairweather, P.G. (1999). Deploying Intelligent

Tutors on the Web: An Architecture and an Example. International Journal of
Artificial Intelligence in Education, 10(2): 183–197.

4. Anderson, J.R. (1988). The expert module. In Handbook of Intelligent Training
Systems, pp. 21–53, Erlbaum.

5. Anderson, J.R., Corbett, A.T., Koedinger, K. and Pelletier, R. (1995). Cognitive
tutors: Lessons learned. The Journal of Learning Sciences 4: 167–207.

6. Anderson, J.R., Boyle, C.F., Corbett, A. and Lewis, M.W. (1990). Cognitive
modelling and intelligent tutoring. Artificial Intelligence, 42: 7–49.

7. Aplusix by IMAG-Leibniz laboratory. Available at
http://aplusix.imag.fr/en/index.html. Visited on 16.05.07.

8. Barnett, R.A. and Kearns, T.J. (1990). Intermediate Algebra: Structure and Use.
4th ed. McGraw-Hill.

9. Barnett, R.A. and Ziegler, M.R. (1989). College Algebra. 4th ed. McGraw-Hill.
10. Beeson, M. (2002). MathXpert: un logiciel pour aider les élèves à apprendre les

mathématiques par l'action. Sciences et Techniques Educatives, 9(1–2). English
translation ‘MathXpert: Learning Mathematics in the 21st Century’ available at

 http://www.mathcs.sjsu.edu/faculty/beeson/Papers/English-ste/English-ste.html.
Visited on 10.05.2007.

11. Beeson, M. (1998). Design Principles of Mathpert: Software to support education
in algebra and calculus. In Computer-Human Interaction in Symbolic Computation,
pp. 89–115, Springer-Verlag.

12. Beeson, M. (1990). Mathpert: a computerized learning environment for algebra,
trigonometry, and calculus. International Journal of Artificial Intelligence in
Education, 1(4): 65–76.

13. Brown, J.S. (1985). Process versus Product: A perspective on tools for communal
and informal electronic learning. Journal of Educational Computing Research, 1:
179–201.

14. Brown, J.S. and Burton, R.R. (1978). Diagnostic models for procedural bugs in
basic mathematical skills. Cognitive Science, 2: 155–192.

15. Buchberger, B. (1990). Should Students Learn Integration Rules? ACM SIGSAM
Bulletin, 24(1): 10–17.

16. Burton, R.R. (1982). Diagnosing bugs in a simple procedural skill. In Intelligent
Tutoring Systems, pp. 157–183, Academic Press.

17. Büdenbender, J., Frischauf, A., Goguadze, G., Melis, E., Libbrecht, P. and Ullrich,
C. (2002). Using Computer Algebra Systems as Cognitive Tools. In ITS 2002,
LNCS 2363, pp. 802–810, Springer-Verlag.

 123

18. Cerulli, M. and Mariotti, M.A. (2002). L'Algebrista: un micromonde pour
l'enseignement et l'apprentissage de l'algèbre. Science et techniques éducatives, 9:
149–170.

19. Char, B.W., Fee, G.J., Geddes, K.O., Gonnet, G.H. and Monagan, M.B. (1986). A
tutorial introduction to MAPLE. Journal of Symbolic Computation, 2(2): 179–200.

20. Cognitive Tutor by Carnegie Learning, Inc. Available at
http://www.carnegielearning.com/. Visited on 02.05.2007.

21. Derive by Texas Instruments. Available at
http://education.ti.com/educationportal/sites/US/productDetail/us_derive6.html.
Visited on 15.05.2007.

22. Hall, R. (2002). An Analysis of Errors Made in the Solution of Simple Linear
Equations. Philosophy of Mathematics Education Journal, 15.

23. Heffernan, N.T. and Koedinger, K.R. (2000). Intelligent Tutoring Systems are
Missing the Tutor: Building a More Strategic Dialog-Based Tutor. In Proceedings
of the AAAI Fall Symposium on Building Dialogue Systems for Tutorial
Applications, pp. 14–19.

24. Issakova, M. (2007a). Do First Year Students Know how to Solve Simple Linear
Equations? An Experiment with T-algebra. In Proceedings of the 8th International
Conference on Technology in Mathematics Teaching (ICTMT8), 6 p., Hradec
Králové, Czech Republic.

25. Issakova, M. (2007b). How does an interactive learning environment affect the
students’ learning? In Proceedings of First Central- and Eastern European
Conference on Computer Algebra- and Dynamic Geometry Systems in Mathe-
matics Education (CADGME), Pecs, Hungary, (to appear).

26. Issakova, M. (2006a). Domain Expert Module for Step-By-Step Linear Equation
Solving. In Proceedings of The 11th Asian Technology Conference in Mathematics
(ATCM 2006), pp. 193–202, Hong Kong, China.

27. Issakova, M. (2006b). Comparison of student errors made during linear equation
solving on paper and in interactive learning environment. In Proceedings DES–
TIME–2006: Dresden International Symposium on Technology and its Integration
into Mathematics Education 2006, 20 p., Dresden, Germany.

28. Issakova, M. (2006c). Learning Linear Equation Solving Algorithm and Its Steps
in Intelligent Learning Environment. In ITS 2006 Proceedings, LNCS 4053, pp.
725–727, Springer-Verlag.

29. Issakova, M. (2006d). Intelligent Environment for Learning Linear Equation
Solving Algorithm and Its Steps. In Proceedings of the Student Track ITS 2006,
pp. 8–17, Jhongli, Taiwan.

30. Issakova, M. (2005). Possible Mistakes During Linear Equation Solving On Paper
And In T-algebra Environment. In Proceedings of the 7th International Conference
on Technology in Mathematics Teaching (ICTMT7), volume 1, pp. 250–258,
Bristol, UK.

31. Issakova, M. and Lepp, D. (2004). Rule dialogue in problem solving environment
T-algebra. In Proceedings TIME–2004: Montreal International Symposium on

 124

Technology and its Integration into Mathematics Education, 16 p., Montreal,
Canada.

32. Issakova, M., Lepp, D. and Prank, R. (2006). T-algebra: Adding Input Stage To
Rule-Based Interface For Expression Manipulation. International Journal for
Technology in Mathematics Education, 13(2): 89–96.

33. Issakova, M., Lepp, D. and Prank, R. (2005). Input Design in Interactive Learning
Environment T-algebra. In Proceedings ICALT–2005: The 5th IEEE International
Conference on Advanced Learning Technologies, pp. 489–491, Kaohsiung,
Taiwan.

34. Kasemaa, P. and Lind, A. (1997). Mathematics textbook for V–IX grades (in
Estonian). Koolibri.

35. Kutzler, B. (1996). Introduction to DERIVE for Windows. Gutenberg-Werbering
GmbH.

36. Lepik, M., Nurk, E., Telgmaa, A. and Undusk, A. (2000). Mathematics for VIII
grade (in Estonian). Koolibri.

37. Lepp, D. (2005). Extended Solution Step Dialogue In Problem Solving
Environment T-algebra. In Proceedings of the 7th International Conference on
Technology in Mathematics Teaching (ICTMT7), volume 1, pp. 267–274, Bristol,
UK.

38. Lepp, D. (2003). Program for exercises on operations with polynomial. In
Proceedings of the 6th International Conference Technology in Mathematics
Teaching (ICTMT6), pp. 365–369, Volos, Greece.

39. LiveMath by MathMonkeys. Available at http://www.livemath.com/. Visited on
08.05.2007.

40. Maple by Waterloo Maple Inc. Available at http://www.maplesoft.com/. Visited on
15.05.2007.

41. Mathematica by Wolfram Research. Available at http://www.wolfram.com/.
Visited on 09.05.2007.

42. Math-Teacher by MATH-KAL. Available at http://www.mathkalusa.com. Visited
on 08.05.2007.

43. MathXpert by Help With Math. Available at http://www.helpwithmath.com/.
Visited on 10.05.2007.

44. McArthur, D., Stasz, C. and Hotta, J. (1987). Learning problem-solving skills in
algebra. The Journal of Educational Technology Systems, 15(3): 303–324.

45. McKeague, C.P. (1979). Intermediate Algebra. Academic Press.
46. Melis, E., Andrès, E., Büdenbender, J., Frischauf, A., Goguadze, G., Libbrecht, P.,

Pollet, M. and Ullrich, C. (2001). ActiveMath: A Generic and Adaptive Web-
Based Learning Environment. International Journal of Artificial Intelligence in
Education, 12: 385–407.

47. Mitrovic, A. and Ohlsson, S. (1999). Evaluation of a Constraint-Based Tutor for a
Database Language. International Journal of Artificial Intelligence in Education,
10: 238–256.

48. Ms. Lindquist by Neil Heffernan. Available at http://www.algebratutor.org/.
Visited on 11.05.2007.

 125

49. Nicaud, J.F., Chaachoua, H. and Bittar, M. (2006). Automatic Calculation of
Students’ Conceptions in Elementary Algebra from Aplusix Log Files. In ITS 2006
Proceedings, LNCS 4053, pp. 433–442, Springer-Verlag.

50. Nicaud, J.F., Bouhineau, D. and Chaachoua, H. (2004). Mixing microworld and
CAS features in building computer systems that help students learn algebra.
International Journal of Computers for Mathematical Learning, 5: 169–211.

51. Nicaud, J.F., Bouhineau, D., Varlet, C. and Nguyen-Xuan, A. (1999). Towards a
product for teaching formal algebra. In Proceedings of Artificial Intelligence in
Education, pp. 207–217.

52. Nurk, E., Telgmaa, A. and Undusk, A. (2000). Mathematics for VII grade (in
Estonian). Koolibri.

53. Oliver, J. and Zukerman, I. (1990). DISSOLVE: A system for the generation of
human oriented solutions to algebraic equations. In Proceedings of AI’88, LNCS
406, pp. 91–107, Springer-Verlag.

54. Pais, E. (1999). Mathematics for VIII grade (in Estonian). Avita.
55. Pais, E. (1998). Mathematics for VII grade (in Estonian). Avita.
56. Passier, H. and Jeuring, J. (2006). Feedback in an interactive equation solver. In

WebALT 2006 Proceedings, pp. 53–68, Eindhoven, Netherlands.
57. Prank, R. (1991). Using Computerised Exercises on Mathematical Logic.

Informatik-Fachberichte, 292: 34–38, Springer-Verlag.
58. Prank, R. and Viira, H. (1991). Algebraic Manipulation Assistant for Propositional

Logic. Computerised Logic Teaching Bulletin, 4(1): 13–18.
59. Prank, R., Issakova, M., Lepp, D., Tõnisson, E. and Vaiksaar, V. (2007). Inte-

grating rule-based and input-based approaches for better error diagnosis in
expression manipulation tasks. In Symbolic Computation and Education, World
Scientific Publishing Co., (to appear).

60. Prank, R., Issakova, M., Lepp, D. and Vaiksaar, V. (2006a). Designing Next-
Generation Training and Testing Environment for Expression Manipulation. In
International Conference on Computational Science (ICCS 2006), Part I, LNCS
3991, pp. 928–931, Springer-Verlag.

61. Prank, R., Issakova, M., Lepp, D., Vaiksaar, V. and Tõnisson, E. (2006b). Problem
solving environment T-algebra. In Proceedings of 7th International Conference
Teaching Mathematics: Retrospective and Perspectives, pp. 190–197, Tartu,
Estonia.

62. Quigley, M. (1989). A Simple Algebra Tutor. Journal of Artificial Intelligence in
Education, 1(1): 41–52.

63. Ravaglia, R., Alper, T., Rozenfeld, M. and Suppes, P. (1998). Successful
pedagogical applications of symbolic computation. In Computer-Human
Interaction in Symbolic Computation, pp. 61–88, Springer-Verlag.

64. Razzaq, L.M. and Heffernan, N.T. (2004). Tutorial Dialog in an Equation Solving
Intelligent Tutoring System. In ITS 2004 Proceedings, LNCS 3220, pp. 851–853,
Springer-Verlag.

65. Sangwin, C.J. (forthcoming). Assessing Elementary Algebra with STACK.
International Journal of Mathematical Education in Science and Technology.

32

 126

66. Sangwin, C.J. (2005). Making Mathematical Distinctions In CAA With Computer
Algebra. In Proceedings of the 7th International Conference on Technology in
Mathematics Teaching (ICTMT7), volume 1, pp. 292–299, Bristol, UK.

67. Sangwin, C.J. (2004). Assessing mathematics automatically using computer
algebra and the internet. Teaching Mathematics and its Applications, 23(1): 1–14.

68. Sleeman, D. (1984). An Attempt to Understand Students’ Understanding of Basic
Algebra. Cognitive Science, 8: 413–437.

69. Sleeman, D. and Smith, M.J. (1981). Modelling student’s problem solving.
Artificial Intelligence, 16(2): 171–187.

70. Stacey, K., Chick, H. and Kendal, M. (eds.) (2004). The Future of the Teaching
and Learning of Algebra: The 12th ICMI Study. Kluwer Academic Publishers.

71. STACK by Chris Sangwin. Available at http://www.stack.bham.ac.uk/. Visited on
17.05.2007.

72. Strickland, P. and Al-Jumeily, D. (1999). A Computer Algebra System for
improving student's manipulation skills in Algebra. The International Journal of
Computer Algebra in Mathematics Education, 6(1): 17–24.

73. The Learning Equation (TLE) by ITP Nelson. Available at
http://www.thomsonedu.com/tle/. Visited on 08.05.2007.

74. Thompson, P. and Thompson, A. (1987). Computer presentations of structure in
algebra. In Proceedings of the Eleventh Annual Meeting of the International Group
for the Psychology of Mathematics Education, volume 1, pp. 248–254.

75. Tiger Leap Foundation website. Available at
http://www.tiigrihype.ee/?setlang=eng. Visited on 02.05.2007.

76. Tonisson, E., Issakova, M., Lepp, D. and Prank, R. (2006). Intelligent problem
solving environment T-algebra. In Proceedings DES–TIME–2006: Dresden
International Symposium on Technology and its Integration into Mathematics
Education 2006, 14 p., Dresden, Germany.

77. Tõnso, T. (2002). Mathematics for VII grade (in Estonian). Mathema.
78. Veelmaa, A. (2000). Mathematics for VIII grade (in Estonian). Mathema.
79. Walden, J. (1997). Mathpert Calculus Assistant: User’s Guide. Mathpert Systems,

an Imprint of Recognix.
80. Wenger, E. (1987). Artificial Intelligence and Tutoring Systems. Morgan Kauf-

mann Publishers.
81. Xambo, S., Eixarch, R. and Marques, D. (2002). WIRIS: An Internet platform for

the teaching of mathematics in large educational communities. Contributions to
Science, 2(2): 269–276.

82. Zuckerman, M.M. (1976). Intermediate algebra. W. W. Norton & Company.

 127

SUMMARY IN ESTONIAN

Lineaarvõrrandite, lineaarvõrratuste ja lineaarsete
võrrandisüsteemide lahendamine interaktiivses

õpikeskkonnas
Kokkuvõte

Algebralised ülesanded (sh. lineaarvõrrandite, lineaarvõrratuste ja lineaarsete
võrrandisüsteemide lahendamine) on matemaatika ainekavas teema, mis tekitab
paljudele õpilastele raskusi ja mis on küllalt töömahukas õpetajate jaoks.
Õpilastel ülesannete lahendamise ajal tekkivad probleemid on küllalt erinevad
ja vajavad õpetajalt pikemat süvenemist, et detailidest aru saada. Traditsiooni-
lise õppetehnoloogia korral ei jõua õpetaja anda kogu klassile õigeaegselt
nõuandeid ega juhtida tähelepanu tehtud vigadele. Suurte andmemahtude kiire
analüüsi vajadus näitab, et komputeriseeritud lahenduskeskkondade kasutamine
võib parandada algebraliste ülesannete lahendamise oskust ja selle oskuse
testimist.

Olemasolevad süsteemid ei vasta kõikidele nõuetele korraga. Mõnesid
süsteeme võib kasutada ainult õpetuseks (need süsteemid ei lase teha palju
vigu), teisi ainult kontrollimiseks (need süsteemid ei paku abi ja vigade
diagnoosi). Praeguseks praktiliselt veel polegi maailmas lahendamise kesk-
kondi, mis vastaksid kõikidele nõuetele täielikult.

Käesoleva väitekirja eesmärk ongi disainida, realiseerida ja testida uut liiki
keskkonda, mis aitaks õppida lineaarvõrrandite, lineaarvõrratuste ja lineaarsete
võrrandisüsteemide lahendamist ning hinnata ja diagnoosida lünkasid õpilaste
teadmistes ja oskustes.

Väitekiri on üks osa suuremast projektist, milles on loodud programm
sammukaupa ülesannete lahendamiseks neljas matemaatika valdkonnas:
arvuliste avaldiste väärtuste arvutamine, tehted murdudega, lineaarvõrrandite,
võrratuste ning lineaarsete võrrandisüsteemide lahendamine, hulkliikmete liht-
sustamine. Väitekiri tutvustab uudse disainiga interaktiivset õpisüsteemi
T-algebra, mille loomises osales väitekirja autor. Disain on uudne, sest see
kombineerib kahte teatud lähenemist: reeglipõhist ja sisestamispõhist. Ühenda-
mise tulemust on nimetatud Tegevus-Objekt-Sisestamine (Action-Object-Input)
skeemiks. Väitekirja autori peamine panus selle projekti jaoks on lineaar-
võrrandite, lineaarvõrratuste ja lineaarsete võrrandisüsteemide valdkonna reeg-
lite dialoogide ja ülesannete tüüpide disainimine koos vigade diagnoosiga,
programmeerimine ja katsetamine.

T-algebra autoritel õnnestus luua selline skeem, mis lubab õppida nii
lahendamise algoritme kui ka erinevate reeglite rakendamist. Reeglite ning
reeglite dialoogide disain on kõige tähtsam osa T-algebras, mis eristab teda

 128

teistest keskkondadest. Disainitud kolmeetapiline dialoog T-algebras annab
õpilasele võimaluse teha samu vigu nagu ka paberil lahendades ja programmile
piisavalt informatsiooni, et diagnoosida tehtud vigu ning pakkuda arusaadavat
tagasisidet ja abi. T-algebra valdkonna ekspert oskab mitte ainult näidata vas-
tust, aga ka luua paberil kirjutatud lahendustega sarnaseid sammukaupa
lahendusi.

Väitekirja autor korraldas mitu eksperimenti, mis näitasid, et õpilased
arvavad, et T-algebrat on lihtne õppida, lihtne ja nauditav kasutada ja et õpi-
lased tahavad seda rohkem kasutada. Samuti õpilased leidsid, et veateated on
arusaadavad ja kasulikud. Dialoogi õppimiseks vajalik aeg on üsna lühike ja
lahendusdialoog on õpilasele intuitiivselt arusaadav.

Eksperimendid näitasid, et õpilased lahendavad sama ajaga arvuti taga
rohkem ülesandeid kui paberil ja jõuavad selle aja jooksul ise kõik vead ära
parandada. Eksperimendid näitasid samuti, et isegi T-algebra lühike kasutamine
(2 tundi) täiendõppeks (kui teema on juba ära õpitud) mõjutab õppetulemusi.
Katserühma õpilastel (kes kasutasid T-algebrat) suurenesid teadmised katse
käigus statistiliselt oluliselt, kuid kontrollrühma õpilastel (kes ei kasutanud
T-algebrat) olulist muutust ei toimunud. Samuti T-algebra mõjutab teatud
vigade tüüpe, st peale T-algebra kasutamist õpilased teevad teatud sorti vigu
(näiteks märgivigu) vähem ka paberil.

 129

ACKNOWLEDGEMENTS
I would like to thank my parents, my brother and my husband Dmitri Lepp who
gave me the opportunity to concentrate on my PhD thesis. I would also like to
thank all my friends for their support.

I wish to thank my supervisor Rein Prank for pleasant cooperation. I thank
my colleague Eno Tõnisson who encouraged me not to give up in difficult
moments. I am also grateful to Piret Luik for helping me in statistical analysis.

I would like to thank the mathematics teachers Mart Oja and Maire Oja for
their cooperation and their students for solving different tests. Many thanks also
to mathematics teachers Sirje Pihlap, Urve Olesk, Eha Kuld and Janika Kaljula
and their students for participating in the experiment. I thank Tiina Lasn for
giving me permission to use her 1st year students for experiment.

I thank translator Alar Helstein for correcting my English.
I was supported by the ‘Tiger Leap’ computerization programme for

Estonian schools as they financed the T-algebra project. I was partially
supported by the Estonian Science Foundation under grants No. 5272 and No.
7180. I was furthermore partially supported by the targeted financing project
No. SF0182712s06 “The methods, environments, and applications for solving
large and complex computational problems”.

I was supported by the Estonian Information Technology Foundation and
Estonian Doctoral School in Information and Communication Technologies.

33

 130

APPENDIX A

Backus-Naur Form full description of expressions

Backus-Naur Form full description of expressions in T-algebra is following:
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<non-zero digit> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<integer> ::= <non-zero digit> | <digit> | <non-zero digit> <integer>
<power> ::= ^ <integer> | ^ + <integer> | ^ - <integer>
<decimal separator> ::= , | .
<zero> ::= 0 | 0 <zero>
<decimal> ::= <integer> <decimal separator> <integer> | <integer>

<decimal separator> <zero> <integer>
<number> ::= <integer> | <integer> <power> | <decimal> | <decimal>

<power> | <numerical fraction> | <mixed number>
<numerical atom> ::= <numerical parentheses> | <numerical parentheses>

<numerical atom> | <numerical parentheses> <number> |
<numerical parentheses> <number> <numerical atom>

<numerical term> ::= <number> | <numerical atom> | <number> <numerical
atom>

<numerical mul div> ::= <numerical term> | <numerical term> * <numerical mul
div> | <numerical term> : <numerical mul div>

<numerical sign mul
div> :: =

+ <numerical mul div> | - <numerical mul div>

<numerical non-sign
sum sub> ::=

<numerical mul div> | <numerical mul div> + <numerical
non-sign sum sub> | <numerical mul div> - <numerical
non-sign sum sub>

<numerical sum sub>
::=

<numerical non-sign sum sub> | <numerical sign mul
div> | <numerical sign mul div> + <numerical non-sign
sum sub> | <numerical sign mul div> - <numerical non-
sign sum sub>

<numerical
parentheses> ::=

[<numerical sum sub>] | (<numerical sum sub>) |
[<numerical sum sub>] <power> | (<numerical sum
sub>) <power>

<numerical fraction> ::= <numerical sum sub> / <numerical sum sub>
<mixed number> ::= <integer> <numerical fraction>
<letter> ::= a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u

| v | w | x | y | z
<variable> ::= <letter> | <letter> <power>

 131

<atom> ::= <variable> | <parentheses> | <variable> <atom> |
<parentheses> <atom> | <parentheses> <number> |
<parentheses> <number> <atom>

<term> ::= <number> | <atom> | <number> <atom>
<mul div> ::= <term> | <term> * <mul div> | <term> : <mul div>
<sign mul div> :: = + <mul div> | - <mul div>
<non-sign sum sub> ::= <mul div> | <mul div> + <non-sign sum sub> | <mul div>

- <non-sign sum sub>
<sum sub> ::= <non-sign sum sub> | <sign mul div> | <sign mul div> +

<non-sign sum sub> | <sign mul div> - <non-sign sum
sub>

<parentheses> ::= [<sum sub>] | (<sum sub>) | [<sum sub>] <power> |
(<sum sub>) <power>

<fraction> ::= <sum sub> / <sum sub>
<equation inequality
signs> ::=

= | < | > | <= | >=

<equation inequality>
::=

<sum sub> <equation inequality signs> <sum sub>

<system> ::= <equation inequality> & <equation inequality> |
<equation inequality> & <system>

<expression> ::= <system> | <equation inequality> | <sum sub>

 132

APPENDIX B

Quick start to T-algebra student’s program

This document was used in T-algebra workshop during DES–TIME
conference (Tonisson et al., 2006).

1. Run the program T-algebra (double click the program icon).
Description of the program window:

2. Open file with exercises:

o From the File menu choose Open or click the button Open file.
3. Choose the file equation_trial.yls:

o On the left side you will see all exercises of this file.

 133

4. Choose the first exercise (Solve an equation (free) 2x+3=x-6). For that,
double click the left mouse button on the problem expression.

o One click on the exercise makes the line around the exercise
blue.

o Double click on the exercise makes the line around the exercise
red and the exercise is opened on the right.

34

 134

5. Solve an equation:

o The general scheme of solving in T-algebra:
1) Choose the rule (tell the program what you intend to do);
2) Look at the instructions (the program shows what you

should do next);
3) Mark the necessary parts (tell the program which parts you

will modify);
4) Look at the instructions;
5) Enter the necessary parts (tell the program what is the

result).
o Solution process of this equation 2x+3=x-6:

1) Choose the rule Move terms to other side;
2) Mark 3 (or +3) with the mouse (the background should be

blue);

3) Press the button , the background of 3 (or +3)
becomes green;

4) Mark x with the mouse (the background should be blue);

 135

5) Press the button , the background of x becomes green

;

6) Confirm the choice – press the button ;
7) The box(es) and virtual keyboard appear on the next line;

8) If something went wrong (wrong rule, wrong parts) and

you want to go back, press the button ;
9) Enter the result of moving in the boxes;

10) Confirm the input – press the button ;

11) If something went wrong (wrong rule, wrong parts) and

you want to go back, press the button Step back;
12) Choose the next rule (Combine like terms);
13) Mark like terms, confirm the choice;
14) Enter a wrong result in the box: -x. The program will

display an error message and highlight the wrong part with
red background. It is impossible to press the OK button for

 136

three seconds; during this time you should read the error
message;

15) Correct the mistake, confirm the input;
16) It is possible to ask the program for help at each step and at

each stage of the step (try all the possibilities):
i. You can ask the program which rule should be applied

next – the button Hint (choose the rule Add/Subtract
numbers);

ii. You can ask help for marking the parts – button
(confirm the choice);

iii. You can ask help for entering the result – button
(confirm the choice);

17) If the exercise is solved, tell it to the program:
i. Press the button Solved – give answer;

ii. Choose the right answer and press the OK button;

18) The background of the text of this exercise on the left

panel becomes green.

 137

6. The input stage in the program can proceed in three different modes:

1) free input: only one box for the whole result ;
2) structured input: several boxes for entering the result,

separate boxes for sign, coefficient and/or variable,

exponent ;
3) partial input: the program fills out some parts of the result

and leaves empty boxes only for most important parts:
sign, coefficient, exponent .

7. The first exercise was in free input mode, the second is in structured
input mode and the last is in partial input mode. Solve these equations,
compare how the solving process is handled, what parts should be
entered.

NB! The virtual keyboard shows, what is possible to enter into the selected
box.

For example:

Only numbers should and can be entered in this box (coefficient box).

35

 138

APPENDIX C

Full list of designed problem types

In this appendix I represent the full list of designed problem types in the domain
of linear equation, linear inequality and system of linear equations using the
structure of description presented in Section 3.3. The examples described in
Section 3.3 are repeated here as well (to present a full list in one place).

Problem type Combine like terms
Typical texts: combine like terms.
Expression: sum of monomials.
Constraints (for expression):

• sum should contain like terms;
• parentheses can be only around one monomial.

Parameters: none.
Rules:

• Combine like terms;
• Add/Subtract numbers;
• Clear parentheses;
• Rules for fractions;
• Simplification rules.

T-algebra algorithm:
1. Algorithm for simplification;
2. Algorithm for combining;
3. Rule Clear parentheses.

 139

Example of generated solution:
Text of problem: Combine like terms.

Solved form: simplified monomial or simplified sum of monomials, where all
like terms are combined and all parentheses are cleared.
Answer: solved form.

Problem type Open parentheses and combine
Typical texts: open parentheses (if like terms will not appear in one sum); open
parentheses and combine like terms.
Expression: any expression (including linear equation, linear inequality and
system of linear equations).
Constraints (for expression): expression should contain parentheses (or
brackets) that can be opened or cleared, i.e., expression should contain either
product consisting of number and parentheses or just expression in parentheses.
Parameters: none.
Rules:

• Clear parentheses;
• Open parentheses;
• Combine like terms;
• Add/Subtract numbers;
• Multiply/Divide numbers;
• Rules for fractions;
• Simplification rules.

 140

T-algebra algorithm:
1. Algorithm for simplification;
2. Rule Open parentheses;
3. Rule Clear parentheses;
4. Rule Multiply/Divide numbers;
5. Algorithm for combining.

Example of generated solution:
Text of problem: Open parentheses and combine like terms.

Solved form: expression, where all parentheses and brackets are opened or
cleared and all like terms are combined.
Answer: solved form.

Problem type Check the solution of equation
Typical texts: check if number … is a solution of equation.
Expression: equation.
Constraints (for expression): linear equation should be in one variable.
Parameters: value (one number) of variable to be checked.
Rules:

• Substitute variable;
• Add/Subtract numbers;
• Multiply/Divide numbers;
• Raise number to a power;
• Clear parentheses;
• Open parentheses;
• Combine like terms;
• Rules for fractions;

 141

• Simplification rules.
T-algebra algorithm:

1. Algorithm for simplification;
2. Rule Substitute variable;
3. Rule Raise number to a power;
4. Rules Multiply/Divide numbers and Move minus before fraction;
5. Algorithm for combining;
6. Rules Open parentheses and Clear parentheses;
7. Rule Mixed number to improper fraction (if equation is not yet in the

form number = number).
Example of generated solution:

Text of problem: Check if number 4 is a solution of equation.

Solved form: number = number, where

• numbers should be transformed to normal form (reduced and transformed
to mixed numbers if needed);

• fractions/mixed numbers (if both numbers are fractions/mixed numbers
with the same sign) should be transformed to similar fractions/mixed
numbers.

Answer: Given number …
• is a solution;
• is not a solution.

Problem type Reverse sides of equation
Typical texts: reverse equation sides.
Expression: equation.
Constraints (for expression): if equation is numerical, then it should be true.
Parameters: none.

36

 142

Rules:
• Reverse sides;
• Move terms to other side;
• Multiply/Divide both sides;
• Simplification rules.

T-algebra algorithm:
1. Algorithm for simplification;
2. Rule Reverse sides (if equation is not changed yet);
3. Rule Multiply/Divide both sides (if equation is equivalent to given

equation where all signs are changed to opposite);
4. Rule Move terms to other side (to get all terms on the correct side if

some part of terms was already moved to other side).
Example of generated solution:

Text of problem: Reverse equation sides.

Solved form: equation with changed sides.
Answer: solved form.

Problem type Move terms to correct side of equation
Typical texts: move all variable terms to the left side and all constant terms to
the right side.
Expression: equation.
Constraints (for expression):

• equation should contain variable terms on the right side or constant terms
on the left side (student should move some terms);

• left side and right side of equation should be monomial or polynomial
without multiplication and division signs and without parentheses and
brackets;

• if equation is numerical, then it should be true.
Parameters: none.
Rules:

• Move terms to other side;
• Simplification rules.

 143

T-algebra algorithm:
1. Algorithm for simplification;
2. Rule Move terms to other side.

Example of generated solution:
Text of problem: Move all variable terms to the left side and all constant

terms to the right side.

Solved form: equation where all variable terms are moved to the left side and
all constant terms to the right side.
Answer: solved form.

Problem type Move terms to correct side of equation and
combine

Typical texts: move all variable terms to the left side and all constant terms to
the right side and then combine like terms.
Expression: equation.
Constraints (for expression):

• equation should contain variable terms on the right side or constant terms
on the left side (student should move some terms);

• left side and right side of equation should be monomial or polynomial
without multiplication and division signs and without parentheses and
brackets;

• if equation is numerical, then it should be true.
Parameters: none.
Rules:

• Move terms to other side;
• Combine like terms;
• Add/Subtract numbers;
• Rules for fractions;
• Simplification rules.

T-algebra algorithm:
1. Algorithm for simplification;
2. Rule Move terms to other side;
3. Algorithm for combining.

 144

Example of generated solution:
Text of problem: Move all variable terms to the left side and all constant

terms to the right side and then combine like terms.

Solved form: equation where all variable terms are moved to the left side and
all constant terms to the right side and after that all like terms are combined.
Answer: solved form.

Problem type Multiply both sides of equation by common
denominator

Typical texts: multiply both sides of the equation by common denominator.
Expression: equation.
Constraints (for expression):

• equation should contain common fraction(s) or mixed number(s);
• equation should not contain parentheses or brackets;
• fractions should be with integer denominator;
• equation should not contain multiplication sign;
• if equation is numerical, then it should be true.

Parameters: none.
Rules:

• Multiply/Divide both sides;
• Multiply/Divide numbers;
• Mixed number to improper fraction;
• Simplification rules.

T-algebra algorithm:
1. Algorithm for simplification;
2. Rule Multiply/Divide numbers;
3. Rule Mixed number to improper fraction (if mixed numbers disturb

multiplying/dividing both sides, see the Section 3.2.1);
4. Rule Multiply/Divide both sides.

 145

Example of generated solution:
Text of problem: Multiply both sides of the equation by common

denominator.

Solved form: simplified (using simplifying rules and rule Multiply/Divide
numbers) multiplied equation without common fractions and mixed numbers.
Answer: solved form.

Problem type Divide equation sides by variable coefficient or
by common divider

Typical texts: divide equation sides by variable coefficient; divide equation
sides by common divider.
Expression: equation.
Constraints (for expression):

• equation should be in the form variable term = constant term (where
variable term should not be just variable, i.e., should contain coefficient
and/or sign) or terms should have common divider;

• equation should not contain parentheses or brackets;
• if equation is numerical, then it should be true.

Parameters: none.
Rules:

• Multiply/Divide both sides;
• Mixed number to improper fraction;
• Reduce;
• Multiply/Divide numbers;
• Improper fraction to mixed number;
• Simplification rules.

37

 146

T-algebra algorithm:
1. Algorithm for simplification;
2. Rule Mixed number to improper fraction;
3. Rule Multiply/Divide both sides;
4. Rule Multiply/Divide numbers;
5. Rule Reduce;
6. Rule Improper fraction to mixed number.

Example of generated solution:
Text of problem: Divide equation sides by variable coefficient.

Solved form: equation in the form variable = constant term (where constant
term is transformed to normal form) or equation where terms do not have a
common divider.
Answer: solved form.

Problem type Solve linear equation
Typical texts: solve linear equation.
Expression: equation.
Constraints (for expression): equation should be solvable (it should be
possible to get a solved form) by presented rules.
Parameters: none.
Rules:

• Reverse sides;
• Move terms to other side;
• Add to/Subtract from both sides;
• Multiply/Divide both sides;
• Clear parentheses;
• Open parentheses;
• Combine like terms;
• Add/Subtract numbers;
• Multiply/Divide numbers;

 147

• Rules for fractions;
• Simplification rules.

T-algebra algorithm:
1. Algorithm for simplification;
2. Rule Reverse sides (if linear equation is in the form: number =

variable);
3. Rules Open parentheses and Clear parentheses;
4. Rules Multiply/Divide numbers and Move minus before fraction;
5. Rule Multiply/Divide both sides for removing fractions (multiplication);
6. Rule Mixed number to improper fraction (if mixed numbers disturb

multiplying/dividing both sides);
7. Algorithm for combining;
8. Rule Move terms to other side;
9. Rule Multiply/Divide both sides for isolating variable (division).

Example of generated solution:
Text of problem: Solve an equation.

Solved form: variable = number or number = number, where

• numbers should be transformed to normal form (reduced and transformed
to mixed numbers if needed);

• fractions/mixed numbers (if both numbers are fractions/mixed numbers
with the same sign) should be transformed to similar fractions/mixed
numbers.

Answer:
• solved form (i.e., variable = number or number = number; for example,

x = 7);
• there is no solution;
• any number is solution.

 148

Problem type Check numerical inequality
Typical texts: check the validity of numerical inequality.
Expression: numerical inequality.
Constraints (for expression): none.
Parameters: none.
Rules:

• Add/Subtract numbers;
• Multiply/Divide numbers;
• Raise number to a power;
• Clear parentheses;
• Open parentheses;
• Combine like terms;
• Rules for fractions;
• Simplification rules.

T-algebra algorithm:
1. Algorithm for simplification;
2. Rule Raise number to a power;
3. Rules Multiply/Divide numbers and Move minus before fraction;
4. Algorithm for combining;
5. Rules Open parentheses and Clear parentheses;
6. Rule Mixed number to improper fraction (if equation is not yet in form

number = number).
Example of generated solution:

Text of problem: Check the validity of numerical inequality.

Solved form: number ⊗ number, where

• ⊗ is one of inequality signs <, >, ≤, ≥;
• numbers should be transformed to normal form (reduced and transformed

to mixed numbers if needed);

 149

• fractions/mixed numbers (if both numbers are fractions/mixed numbers
with the same sign) should be transformed to similar fractions/mixed
numbers.

Answer: Given inequality is
• true;
• false.

Problem type Check the solution of inequality
Typical texts: check if number ... is a solution of inequality.
Expression: inequality.
Constraints (for expression): inequality should be in one variable.
Parameters: value (one number) of variable to be checked.
Rules:

• Substitute variable;
• Add/Subtract numbers;
• Multiply/Divide numbers;
• Raise number to a power;
• Clear parentheses;
• Open parentheses;
• Combine like terms;
• Rules for fractions;
• Simplification rules.

T-algebra algorithm:
1. Algorithm for simplification;
2. Rule Substitute variable;
3. Rule Raise number to a power;
4. Rules Multiply/Divide numbers and Move minus before fraction;
5. Algorithm for combining;
6. Rules Open parentheses and Clear parentheses;
7. Rule Mixed number to improper fraction (if equation is not yet in form

number = number).

38

 150

Example of generated solution:
Text of problem: Check if number 3 is a solution of inequality.

Solved form: number ⊗ number, where

• ⊗ is one of inequality signs <, >, ≤, ≥;
• numbers should be transformed to normal form (reduced and transformed

to mixed numbers if needed);
• fractions/mixed numbers (if both numbers are fractions/mixed numbers

with the same sign) should be transformed to similar fractions/mixed
numbers.

Answer: Number …
• is a solution;
• is not a solution.

Problem type Reverse sides of inequality
Typical texts: reverse inequality sides.
Expression: inequality.
Constraints (for expression): if inequality is numerical, then it should be true.
Parameters: none.
Rules:

• Reverse sides;
• Move terms to other side;
• Multiply/Divide both sides;
• Simplification rules.

 151

T-algebra algorithm:
1. Algorithm for simplification;
2. Rule Reverse sides (if inequality is not changed yet);
3. Rule Multiply/Divide both sides (if inequality is equivalent to given

inequality where signs of all terms are changed to opposite);
4. Rule Move terms to other side (to get all terms on the correct side if

some part of terms was already moved to other side).
Example of generated solution:

Text of problem: Reverse sides of inequality.

Solved form: inequality with changed sides.
Answer: solved form.

Problem type Add number to sides of inequality
Typical texts: add number ... to both sides of inequality.
Expression: inequality.
Constraints (for expression): numerical inequality should be true.
Parameters: number, which has to be added to both sides of inequality.
Rules:

• Add to/Subtract from both sides;
• Add/Subtract numbers;
• Combine like terms;
• Clear parentheses;
• Rules for fractions;
• Simplification rules.

T-algebra algorithm:
1. Rule Add to/Subtract from both sides (one time if inequality is not

changed yet);
2. Algorithm for simplification;
3. Algorithm for combining;
4. Rule Clear parentheses.

 152

Example of generated solution:
Text of problem: Add number 3 to both sides of inequality.

Solved form: simplified inequality with number added to both sides.
Answer: solved form.

Problem type Subtract number from sides of inequality
Typical texts: subtract number ... from both sides of inequality.
Expression: inequality.
Constraints (for expression): if inequality is numerical, then it should be true.
Parameters: number that has to be subtracted from both sides of inequality.
Rules:

• Add to/Subtract from both sides;
• Add/Subtract numbers;
• Combine like terms;
• Clear parentheses;
• Rules for fractions;
• Simplification rules.

T-algebra algorithm:
1. Rule Add to/Subtract from both sides (one time if inequality is not

changed yet);
2. Algorithm for simplification;
3. Algorithm for combining;
4. Rule Clear parentheses.

 153

Example of generated solution:
Text of problem: Subtract number 9 from both sides of inequality.

Solved form: simplified inequality with subtracted number from both sides.
Answer: solved form.

Problem type Multiply both sides of inequality by given
number

Typical texts: multiply both sides of inequality by number … .
Expression: inequality.
Constraints (for expression):

• inequality should not contain parentheses or brackets;
• if inequality is numerical, then it should be true.

Parameters: number by which both sides of inequality have to be multiplied
(not zero; if fractions are presented in inequality then this number should be
positive common denominator).
Rules:

• Multiply/Divide both sides;
• Multiply/Divide numbers;
• Mixed number to improper fraction;
• Simplification rules.

T-algebra algorithm:
1. Algorithm for simplification;
2. Rule Multiply/Divide numbers;
3. Rule Mixed number to improper fraction (if mixed numbers disturb

multiplying/dividing both sides);
4. Rule Multiply/Divide both sides.

39

 154

Example of generated solution:
Text of problem: Multiply both sides of inequality by number -3.

Solved form: simplified multiplied inequality.
Answer: solved form.

Problem type Multiply both sides of inequality by common
denominator

Typical texts: multiply both sides of inequality by common denominator of all
terms.
Expression: inequality.
Constraints (for expression):

• inequality should contain common fraction(s) or mixed number(s);
• inequality should not contain parentheses or brackets;
• if inequality is numerical, then it should be true.

Parameters: none.
Rules:

• Multiply/Divide both sides;
• Multiply/Divide numbers;
• Mixed number to improper fraction;
• Simplification rules.

T-algebra algorithm:
1. Algorithm for simplification;
2. Rule Multiply/Divide numbers;
3. Rule Mixed number to improper fraction (if mixed numbers disturb

multiplying/dividing both sides);
4. Rule Multiply/Divide both sides.

 155

Example of generated solution:
Text of problem: Multiply sides of inequality by common denominator of all

terms.

Solved form: simplified (using simplifying rules and rule Multiply/Divide
numbers) multiplied inequality without common fractions and mixed numbers.
Answer: solved form.

Problem type Divide both sides of inequality by given number
Typical texts: divide both sides of inequality by number … .
Expression: inequality.
Constraints (for expression):

• inequality should not contain parentheses and brackets;
• inequality should not contain common fractions, decimal fractions and

mixed numbers;
• if inequality is numerical, then it should be true.

Parameters: number by which both sides of inequality have to be divided (not
zero).
Rules:

• Multiply/Divide both sides;
• Mixed number to improper fraction;
• Reduce;
• Multiply/Divide numbers;
• Improper fraction to mixed number;
• Simplification rules.

T-algebra algorithm:
1. Algorithm for simplification;
2. Rule Mixed number to improper fraction;

 156

3. Rule Multiply/Divide both sides;
4. Rule Multiply/Divide numbers;
5. Rule Reduce;
6. Rule Improper fraction to mixed number.

Example of generated solution:
Text of problem: Divide both sides of inequality by number 2.

Solved form: simplified divided inequality.
Answer: solved form.

Problem type Solve linear inequality
Typical texts: solve linear inequality.
Expression: inequality.
Constraints (for expression): inequality should be solvable (it should be
possible to get a solved form) by presented rules.
Parameters: none.
Rules:

• Reverse sides;
• Move terms to other side;
• Add to/Subtract from both sides;
• Multiply/Divide both sides;
• Clear parentheses;
• Open parentheses;
• Combine like terms;
• Add/Subtract numbers;
• Multiply/Divide numbers;
• Rules for fractions;
• Simplification rules.

T-algebra algorithm:
1. Algorithm for simplification;

 157

2. Rule Reverse sides (if inequality is in the form: number ⊗ variable,
where ⊗ is one of inequality signs <, >, ≤, ≥);

3. Rules Open parentheses and Clear parentheses;
4. Rules Multiply/Divide numbers and Move minus before fraction;
5. Rule Multiply/Divide both sides for removing fractions (multiplication);
6. Rule Mixed number to improper fraction (if mixed numbers disturb

multiplying/dividing both sides);
7. Algorithm for combining;
8. Rule Move terms to other side;
9. Rule Multiply/Divide both sides for isolating variable (division).

Example of generated solution:
Text of problem: Solve inequality.

Solved form: variable ⊗ number or number ⊗ number, where

• ⊗ is one of inequality signs <, >, ≤, ≥;
• numbers should be transformed to normal form (reduced and transformed

to mixed numbers if needed);
• fractions/mixed numbers (if both numbers are fractions/mixed numbers

with the same sign) should be transformed to similar fractions/mixed
numbers.

Answer:
• solved form (variable ⊗ number or number ⊗ number (where ⊗ is one of

inequality signs <, >, ≤, ≥); for example, x < -2);
• there is no solution;
• any number is solution.

40

 158

Problem type Express variable from equation
Typical texts: express variable … from equation.
Expression: equation.
Constraints (for expression): it should be possible to get solved form from
equation by presented rules.
Parameters: variable that has to be expressed from equation.
Rules:

• Reverse sides;
• Move terms to other side;
• Add to/Subtract from both sides;
• Multiply/Divide both sides;
• Express variable;
• Clear parentheses;
• Open parentheses;
• Combine like terms;
• Add/Subtract numbers;
• Multiply/Divide numbers;
• Rules for fractions;
• Simplification rules.

T-algebra algorithm:
1. Algorithm for simplification;
2. Rules Open parentheses and Clear parentheses;
3. Rules Multiply/Divide numbers and Move minus before fraction;
4. Rule Multiply/Divide both sides for multiplication;
5. Rule Mixed number to improper fraction (if mixed numbers disturb

multiplying/dividing both sides);
6. Algorithm for combining;
7. Rule Move terms to other side;
8. Rule Express variable;
9. Rule Multiply/Divide both sides for division.

 159

Example of generated solution:
Text of problem: Express variable y from equation.

Solved form: variable from the text = expression without this variable.
Answer: solved form.

Problem type Solve by substitution
Typical texts: solve by substitution.
Expression: system of linear equations.
Constraints (for expression):

• system of linear equations should be in two variables and consist of
exactly two equations;

• system should have exactly one solution;
• system should be solvable (it should be possible to get a solved form) by

presented rules.
Parameters: none.
Rules:

• Substitute variable;
• Reverse sides;
• Move terms to other side;
• Add to/Subtract from both sides;
• Multiply/Divide both sides;
• Express variable;
• Clear parentheses;
• Open parentheses;
• Multiply fraction with variable by number;
• Combine like terms;
• Add/Subtract numbers;
• Multiply/Divide numbers;
• Rules for fractions;

 160

• Common fraction to division;
• Simplification rules.

T-algebra algorithm:
1. Algorithm for simplification;
2. Rules Open parentheses and Clear parentheses;
3. Rules Multiply/Divide numbers and Move minus before fraction;
4. Rule Multiply fraction with variable by number;
5. Rule Multiply/Divide both sides;
6. Rule Mixed number to improper fraction (if mixed numbers disturb

multiplying/dividing both sides of equation);
7. Algorithm for combining;
8. Rule Move terms to other side;
9. Rule Substitute variable;
10. Rule Express variable;
11. Rule Reverse sides;
12. Rule Common fraction to division.

Example of generated solution:
Text of problem: Solve by substitution.

Solved form:
number variablesecond

number variablefirst





=
=

.

Answer: solved form.

 161

Problem type Solve by elimination using addition
Typical texts: solve by elimination using addition.
Expression: system of linear equations.
Constraints (for expression):

• system of linear equations should be in two variables and consist of
exactly two equations;

• system should have exactly one solution;
• system should be solvable (it should be possible to get a solved form) by

presented rules.
Parameters: none.
Rules:

• Substitute variable;
• Add equations;
• Reverse sides;
• Move terms to other side;
• Add to/Subtract from both sides;
• Multiply/Divide both sides;
• Clear parentheses;
• Open parentheses;
• Combine like terms;
• Add/Subtract numbers;
• Multiply/Divide numbers;
• Rules for fractions;
• Common fraction to division;
• Simplification rules.

T-algebra algorithm:
1. Algorithm for simplification;
2. Rules Open parentheses and Clear parentheses;
3. Rules Multiply/Divide numbers and Move minus before fraction;
4. Rule Move terms to other side;
5. Algorithm for combining;
6. Rule Multiply/Divide both sides;
7. Rule Mixed number to improper fraction (if mixed numbers disturb

multiplying/dividing both sides);
8. Rule Reverse sides;
9. Rule Substitute variable;
10. Rule Add equations;

41

 162

11. Rule Multiply/Divide both sides for getting suitable coefficients (for
eliminating one variable by addition);

12. Rule Common fraction to division.
Example of generated solution:

Text of problem: Solve by elimination using addition.

Solved form:
number variablesecond

number variablefirst





=
=

.

Answer: solved form.

 163

APPENDIX D

User questionnaire

The questionnaire presented in (Mitrovic and Ohlsson, 1999) was used to
compose this questionnaire.

1. How much time did you need to learn to use T-algebra?

a. Less than 5 minutes b. 5 to 20 minutes c. More than 20 minutes

2. Do you find T-algebra easy to use?

a. Not at all b. Rather not c. Hard to say d. Rather yes e. Yes, very much

3. Did you learn something new about mathematics from using T-algebra?

a. Not at all b. Rather not c. Hard to say d. Rather yes e. Yes, very much

4. Did you enjoy learning with T-algebra?

a. Not at all b. Rather not c. Hard to say d. Rather yes e. Yes, very much

5. Would you like to use T-algebra more?

a. No b. Do not know c. Yes

6. Would you recommend T-algebra to other students?

a. No b. Do not know c. Yes

7. Do you find error messages understandable?

a. Not at all b. Rather not c. Hard to say d. Rather yes e. Yes, very much

8. Did error messages help to correct mistakes?

a. Not at all b. Rather not c. Hard to say d. Rather yes e. Yes, very much

9. What did you like in particular about T-algebra?

10. What did you dislike about T-algebra?

11. Did you encounter any software problems or crashes?

a. No b. Yes

 164

APPENDIX E

Problem file

Problem file used in the fifth experiment.
1. Check if number 10 is solution

of equation

2. Check if number 4 is solution

of equation

3. Check if number -2 is solution

of equation (help denied)

4. Reverse equation sides

5. Reverse equation sides

6. Reverse equation sides (help

denied)

7. Reverse equation sides (help

denied)

8. Divide equation sides by

variable coefficient

9. Divide equation sides by

variable coefficient

10. Divide equation sides by

variable coefficient (help
denied)

11. Divide equation sides by

variable coefficient (help
denied)

12. Divide equation sides by
common divider

13. Multiply equations sides by

common denominator of all
terms

14. Multiply equations sides by

common denominator

15. Multiply equations sides by

common denominator of all
terms

16. Multiply equations sides by

common denominator of all
terms

17. Multiply equations sides by

common denominator of all
terms (help denied)

18. Multiply equations sides by

common denominator of all
terms (help denied)

19. Multiply equations sides by

common denominator of all
terms (help denied)

 165

20. Multiply equations sides by
common denominator of all
terms (help denied)

21. Move all variable terms to the

left side and all constant terms
to the right side and then
combine like terms

22. Move all variable terms to the

left side and all constant terms
to the right side and then
combine like terms

23. Move all variable terms to the

left side and all constant terms
to the right side and then
combine like terms

24. Move all variable terms to the

left side and all constant terms
to the right side and then
combine like terms

25. Move all variable terms to the

left side and all constant terms
to the right side and then
combine like terms

26. Move all variable terms to the

left side and all constant terms
to the right side and then
combine like terms (help
denied)

27. Move all variable terms to the

left side and all constant terms
to the right side and then

combine like terms (help
denied)

28. Solve an equation

29. Solve an equation

30. Solve an equation

31. Solve an equation

32. Solve an equation

33. Solve an equation

34. Solve an equation

35. Solve an equation (help

denied)

36. Solve an equation (help

denied)

37. Solve an equation (help

denied)

38. Solve an equation (help

denied)

39. Solve an equation (help

denied)

40. Solve an equation (help

denied)

16542

 166

CURRICULUM VITAE
Marina Issakova

Citizenship: Estonian Republic

Born: July 14, 1980, Tallinn, Estonia

Marital status: married

Address: Loopealse 20, Ülenurme alevik, Tartumaa, Estonia

Contacts: phone: +372 55 650931

 e-mail: marina.issakova@ut.ee

Education

1986–1990 Tallinn Secondary School No. 56

1990–1998 Lasnamae Russian High School

1998–2001 University of Tartu, Bachelor in Computer Science (cum laude)

2001–2003 University of Tartu, MSc in Computer Science

2003–… University of Tartu, PhD studies in Computer Science

Professional employment

2004–… University of Tartu, part-time assistant lecturer of software
systems

2005 University of Tartu, part-time software engineer

2006–… University of Tartu, part-time research fellow

Scientific work

The main fields of interest are interactive learning environments and the use of
computers in mathematics education.

 167

CURRICULUM VITAE
Marina Issakova

Kodakondsus: Eesti Vabariik

Sünniaeg ja -koht: 14. juuli 1980, Tallinn, Eesti

Perekonnaseis: abielus

Aadress: Loopealse 20, Ülenurme alevik, Tartumaa, Eesti

Kontakt: tel.: +372 55 650931

 e-post: marina.issakova@ut.ee

Haridus

1986–1990 Tallinna 56. Keskkool

1990–1998 Lasnamäe Vene Gümnaasium

1998–2001 Tartu Ülikool, informaatika bakalaureus (cum laude)

2001–2003 Tartu Ülikool, informaatika magister (MSc)

2003–… Tartu Ülikool, doktoriõpe informaatika erialal

Erialane teenistuskäik

2004–… Tartu Ülikool, osalise koormusega tarkvarasüsteemide assistent

2005 Tartu Ülikool, osalise koormusega programmeerija

2006–… Tartu Ülikool, osalise koormusega teadur

Teadustegevus

Peamine uurimisvaldkond on interaktiivsed õpisüsteemid ja arvutid mate-
maatikahariduses.

 168

DISSERTATIONES MATHEMATICAE
UNIVERSITATIS TARTUENSIS

 1. Mati Heinloo. The design of nonhomogeneous spherical vessels, cylindri-

cal tubes and circular discs. Tartu, 1991, 23 p.
 2. Boris Komrakov. Primitive actions and the Sophus Lie problem. Tartu,

1991, 14 p.
 3. Jaak Heinloo. Phenomenological (continuum) theory of turbulence. Tartu,

1992, 47 p.
 4. Ants Tauts. Infinite formulae in intuitionistic logic of higher order. Tartu,

1992, 15 p.
 5. Tarmo Soomere. Kinetic theory of Rossby waves. Tartu, 1992, 32 p.
 6. Jüri Majak. Optimization of plastic axisymmetric plates and shells in the

case of Von Mises yield condition. Tartu, 1992, 32 p.
 7. Ants Aasma. Matrix transformations of summability and absolute sum-

mability fields of matrix methods. Tartu, 1993, 32 p.
 8. Helle Hein. Optimization of plastic axisymmetric plates and shells with

piece-wise constant thickness. Tartu, 1993, 28 p.
 9. Toomas Kiho. Study of optimality of iterated Lavrentiev method and

its generalizations. Tartu, 1994, 23 p.
10. Arne Kokk. Joint spectral theory and extension of non-trivial multiplica-

tive linear functionals. Tartu, 1995, 165 p.
11. Toomas Lepikult. Automated calculation of dynamically loaded

rigidplastic structures. Tartu, 1995, 93 p. (in Russian).
12. Sander Hannus. Parametrical optimization of the plastic cylindrical shells

by taking into account geometrical and physical nonlinearities. Tartu, 1995,
74 p.

13. Sergei Tupailo. Hilbert’s epsilon-symbol in predicative subsystems of
analysis. Tartu, 1996, 134 p.

14. Enno Saks. Analysis and optimization of elastic-plastic shafts in torsion.
Tartu, 1996, 96 p.

15. Valdis Laan. Pullbacks and flatness properties of acts. Tartu, 1999, 90 p.
16. Märt Põldvere. Subspaces of Banach spaces having Phelps’ uniqueness

property. Tartu, 1999, 74 p.
17. Jelena Ausekle. Compactness of operators in Lorentz and Orlicz sequence

spaces. Tartu, 1999, 72 p.
18. Krista Fischer. Structural mean models for analyzing the effect of

compliance in clinical trials. Tartu, 1999, 124 p.

 169

19. Helger Lipmaa. Secure and efficient time-stamping systems. Tartu, 1999,
56 p.

20. Jüri Lember. Consistency of empirical k-centres. Tartu, 1999, 148 p.
21. Ella Puman. Optimization of plastic conical shells. Tartu, 2000, 102 p.
22. Kaili Müürisep. Eesti keele arvutigrammatika: süntaks. Tartu, 2000, 107 lk.
23. Varmo Vene. Categorical programming with inductive and coinductive

types. Tartu, 2000, 116 p.
24. Olga Sokratova. Ω-rings, their flat and projective acts with some applica-

tions. Tartu, 2000, 120 p.
25. Maria Zeltser. Investigation of double sequence spaces by soft and hard

analitical methods. Tartu, 2001, 154 p.
26. Ernst Tungel. Optimization of plastic spherical shells. Tartu, 2001, 90 p.
27. Tiina Puolakainen. Eesti keele arvutigrammatika: morfoloogiline ühesta-

mine. Tartu, 2001, 138 p.
28. Rainis Haller. M(r,s)-inequalities. Tartu, 2002, 78 p.
29. Jan Villemson. Size-efficient interval time stamps. Tartu, 2002, 82 p.
30. Eno Tõnisson. Solving of expession manipulation exercises in computer

algebra systems. Tartu, 2002, 92 p.
31. Mart Abel. Structure of Gelfand-Mazur algebras. Tartu, 2003. 94 p.
32. Vladimir Kuchmei. Affine completeness of some ockham algebras. Tartu,

2003. 100 p.
33. Olga Dunajeva. Asymptotic matrix methods in statistical inference

problems. Tartu 2003. 78 p.
34. Mare Tarang. Stability of the spline collocation method for volterra

integro-differential equations. Tartu 2004. 90 p.
35. Tatjana Nahtman. Permutation invariance and reparameterizations in

linear models. Tartu 2004. 91 p.
36. Märt Möls. Linear mixed models with equivalent predictors. Tartu 2004.

70 p.
37. Kristiina Hakk. Approximation methods for weakly singular integral

equations with discontinuous coefficients. Tartu 2004, 137 p.
38. Meelis Käärik. Fitting sets to probability distributions. Tartu 2005, 90 p.
39. Inga Parts. Piecewise polynomial collocation methods for solving weakly

singular integro-differential equations. Tartu 2005, 140 p.
40. Natalia Saealle. Convergence and summability with speed of functional

series. Tartu 2005, 91 p.
41. Tanel Kaart. The reliability of linear mixed models in genetic studies.

Tartu 2006, 124 p.

43

42. Kadre Torn. Shear and bending response of inelastic structures to dynamic
load. Tartu 2006, 142 p.

43. Kristel Mikkor. Uniform factorisation for compact subsets of Banach
spaces of operators. Tartu 2006, 72 p.

44. Darja Saveljeva. Quadratic and cubic spline collocation for Volterra
integral equations. Tartu 2006, 117 p.

45. Kristo Heero. Path planning and learning strategies for mobile robots in
dynamic partially unknown environments. Tartu 2006, 123 p.

46. Annely Mürk. Optimization of inelastic plates with cracks. Tartu 2006.
137 p.

47. Annemai Raidjõe. Sequence spaces defined by modulus functions and
superposition operators. Tartu 2006, 97 p.

48. Olga Panova. Real Gelfand-Mazur algebras. Tartu 2006, 82 p.
49. Härmel Nestra. Iteratively defined transfinite trace semantics and program

slicing with respect to them. Tartu 2006, 116 p.
50. Margus Pihlak. Approximation of multivariate distribution functions.

Tartu 2006, 82 p.
51. Ene Käärik. Handling dropouts in repeated measurements using copulas.

Tartu 2006, 99 p.
52. Artur Sepp. Affine models in mathematical finance: an analytical

approach. Tartu 2006, 147 p.

