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 INTRODUCTION 
 

Biological diversity enhances resilience, stability, productivity and ultimately 
functioning of ecosystems (Loreau et al. 2002). Understanding diversity pat-
terns and structure of biological communities and the underlying processes is 
the cornerstone of ecology and biogeography. The processes can include both 
intrinsic dispersal-related traits (neutral processes) and extrinsic environmental 
factors (niche-based processes). The interaction of these processes differentially 
determines the operating factors at various spatial scales and consequently 
causes the scale dependence of diversity patterns (Wittaker et al. 2001; Cottenie 
2005). At local scales, the balance between species formation, predation, com-
petitive exclusion and adaptation structures the biological communities, where-
as history, biogeography, range expansion, climate, evolution and extinction 
play important roles in structuring metacommunities at larger (i.e. regional to 
global) scales (Ricklefs 1987). Therefore, the underlying processes and the 
relative role of spatial factors differ over various geographical scales (Wiens 
1989; Levin 1992). The importance of spatial scale in ecological studies is in-
creasingly recognized (e.g. Chase & Leibold 2002; Diniz-Filho et al. 2002; Bor-
card et al. 2004; Rahbek 2005). 

Latitudinal and altitudinal gradients are two well-known systems in eco-
logical and biogeographical studies. These provide complementary options for 
understanding the relative effects of historical and contemporary (i.e. climatic, 
edaphic and biotic) factors on biodiversity (Rahbek 2005). Large-scale studies 
of biodiversity along these gradients can also provide insights into the response 
of communities to future climate change (Parmesan & Yohe, 2003; Harley 
2011; Nogués-Bravo & Rahbek 2011). Along with elevation, temperature 
changes abruptly and therefore montane ecosystems provide a suitable model to 
address the latitudinal pattern of diversity, removing the effect of historical 
factors. Ecological study of biodiversity of macroorganisms along altitudinal/ 
latitudinal gradients dates back to Alexander Von Humboldt (1807), and many 
studies subsequently have examined diversity patterns of macroorganisms, 
demonstrating that diversity generally peaks at lower latitude and altitude (Lo-
molino et al. 2006). In contrast, due to their minute size and limited methodo-
logy in the past, microorganisms have only recently received attention by eco-
logists and biogeographers because of the recent advances in molecular identifi-
cation methods (Fierer & Lennon 2011). For a long time it was a common as-
sumption that in microorganisms “everything is everywhere, but, the environ-
ment selects” (cf. Baas Becking 1934), indicating the cosmopolitan distribution 
of microbes. Although some exceptional groups may follow this rule and 
distribute randomly (e.g. root endophytes, Queloz et al. 2011; soil Bacteria, Chu 
et al. 2010), there is a strong evidence that most microbial communities are 
spatially structured (Green et al. 2004) and show biogeographic patterns (Mar-
tiny et al. 2006). To address diversity patterns of microorganisms, a growing 
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number of studies have been performed along altitudinal and latitudinal gra-
dients (e.g. Bryant et al. 2008; Amend et al. 2010; Fierer et al. 2011).  

Mycorrhiza (In Greek. ‘mykes’, fungus; ‘rhiza’, root) is one of the main 
belowground components of terrestrial ecosystems, which is a mutualistic as-
sociation that occurs between a fungus and plant roots. In a mycorrhizal 
association, the plant partner provides carbon for its fungal partner and receives 
dissolved nutrients in return (Smith & Read 2008). Ectomycorrhiza is a type of 
mycorrhiza, where fungal hyphae grow inbetween root epidermal/cortical cells 
(termed as a ‘Hartig net’) and form a dense hyphal sheath around the root tip 
(termed as a ‘mantle’). Traditionally, studies on ectomycorrhizal (EcM) fungi 
relied on their aboveground sexual structures – fruit-bodies – that do not reflect 
fungal communities belowground (e.g. Gardes & Bruns 1996; Dahlberg et al. 
1997; Horton & Bruns 2001) because some groups do not fruit (e.g. Ceno-
coccum) or form conspicuous fruit-bodies (e.g. Thelephorales, Sebacinales). 
The early belowground investigation of EcM fungi was based on morphology 
(morphotyping; based on colour, texture, and shape of the root tips) and ana-
tomy (anatomotyping; based on anatomy on mantel layers and emanating 
hyphae) of EcM root tips for species identification (Agerer 1987–2002). Aside 
from the potential of neglecting morphologically similar species, this method 
was very time consuming. The combination of morphotyping and molecular 
analysis of root tips presents an advanced methodology of community studies 
(Tedersoo et al. 2003). Molecular techniques for species-level identification 
mainly rely on internal transcribed spacer (ITS) region of nuclear ribosomal 
DNA (Gardes & Bruns 1996; Kõljalg et al. 2005).  

Studies on diversity and community composition of EcM fungi have 
bloomed in the past decade due to the methodological advances (Taylor 2008). 
Recent introduction of new generation sequencing methods and high-through-
put identification in fungal studies (Tedersoo et al. 2010a) has further advanced 
the methodology and accelerated analysis. Most of the research which has been 
carried out in Europe and Northern America demonstrate that EcM fungi form 
diverse communities and play essential roles in many temperate ecosystems 
(e.g. Horton and Bruns 2001; Tedersoo et al. 2006). For a long time, the com-
mon belief was that EcM is scarce in tropics; however, recent studies have 
reported that ectomycorrhiza is an important mutualistic type in tropical eco-
systems (Peay et al. 2010; Tedersoo & Nara 2010; Smith et al. 2011).  

Similarly to other soil organisms (Ettema & Wardle 2002), EcM fungi also 
can be both vertically (along the vertical gradient of soil profile) or horizontally 
structured (Lilleskov et al. 2004). Vertical spatial distribution of EcM fungi 
have been addressed in several studies (e.g. Dickie et al. 2002; Tedersoo et al. 
2003; Lindahl et al. 2007). These studies demonstrate that depending on sub-
strate, EcM fungi can occupy different niches along the depth gradient. In 
contrast to vertical distribution, only a few attempts have been made to examine 
horizontal spatial distribution (further referred to simply as ‘spatial distri-
bution’) of EcM fungi. Lilleskov et al. (2004) examined the spatial structure of 
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EcM fungal communities in eight Northern American temperate forests and 
found that fungal communities are spatially autocorrelated at distance of < 3 m. 
Spatial autocorrelation of EcM fungi can be ascribed with spatially structured 
environmental factors (e.g. soil nutrients; Toljander et al. 2006), species com-
petition (Kennedy 2010), aggregation of offspring around parents (resulting 
from spore production or vegetative growth of mycelia), patchy occurrence of 
EcM fungi, soil microsites, competition, and distribution of host tree species. In 
addition, dispersal limitation of EcM fungi (Peay et al. 2007; Bahram et al. 
2012) can also play important role in their species aggregation and spatial struc-
ture. Therefore, one can predict that spatial structure of EcM fungal commu-
nities can vary in different ecosystems. Most of the community studies have 
been performed at the local scale (but see Lilleskov et al. 2002; Cox et al. 2010; 
Ostonen et al. 2011) in temperate areas; therefore, little is known about the spa-
tial structure of EcM fungi across different ecosystems and geographical scales. 

This thesis addresses spatial structure of EcM fungal diversity and com-
munity composition from a local scale (one individual tree; II) to a global scale 
(V), and for the first time provides information on the belowground EcM fungal 
diversity in the Hyrcanian forests of Iran (I), Yasuni National Park (IV), 
wooded savannas and rain forests of Continental Africa and Madagascar (III). 
Besides, it sheds light on the altitudinal and latitudinal diversity patterns of EcM 
fungi (I, V, respectively).  

 
In my thesis, the following alternative hypotheses were postulated: 
 Species richness of EcM fungi declines towards higher altitude (I) and 

latitude (V) similar to the general diversity patterns of macroorganisms. 
 Climate affects EcM fungal richness and community composition at regional 

and global scales (I, V). 
 Spatial structure of  EcM fungal communities is stronger in tropical forests, 

compared with temperate ecosystems, due to the patchy distribution of host 
trees and lower heterogeneity of putative determinants of EcM fungal 
community i.e. host, soil and climate (III, VI, VI). 

 Species richness of EcM fungi of an individual tree is comparable to a forest 
site (II).  

 Intraspecific ITS variation of Cenococcum geophilum is high even at the 
scale of an individual host tree (II).  
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MATERIAL AND METHODS 

Sampling sites and study design 

Most studies were intended to test the ecological hypotheses and simultaneously 
document the richness of EcM fungi in poorly investigated regions. Sampling of 
three studies were performed in the Hyrcanian (Caspian) forests of northern Iran 
(I), wooded savannas and rain forests of Continental Africa and Madagascar 
(III) and Yasuni National Park of Ecuador (IV) (Fig.1; 2). The temperate 
deciduous trees such as Fagus orientalis Lipsky, Carpinus betulus L. and 
Quercus castaneifolia C.A.Mey. are the dominant plants covering the mountain 
slopes of the southern Caspian sea (Alborz mountain range) in northern Iran (I). 
In wooded savannas and rain forests of Continental Africa and Madagascar with 
Fabaceae and Phyllanthaceae as dominant and with some members of 
Dipterocarpaceae, Sarcolaenaceae or Asteropeiaceae as subdominant EcM hosts 
(III). Yasuni National Park, northeastern Ecuador (IV), is one of the most 
diverse forest sites on Earth in terms of tree species richness (including EcM 
hosts Coccoloba, 9 spp.). Depending on the ecological hypotheses and local 
field conditions, sampling design differed in studies I–IV (see each article for 
details). In addition to the poorly known regions, one study was performed in a 
hemiboreal mixed forest in Järvselja, southeastern Estonia (II). In this site, 
sampling was performed around an isolated individual aspen (Populus tremula 
(L.) Karst.) tree. The sampling design was spatially explicit and the samples 
were taken regularly from junctions of a grid with 2 m intervals. For 
metastudies (V, VI), datasets of suitable published or unpublished studies were 
used.  
 
 

 
Fig. 1. Location map of original sampling areas represented by symbols: triangles (I), 
square (II), circles (III), diamond (IV).  
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In studies I–IV, soil samples (15 × 15 cm to 10 cm depth) were processed and 
prepared for molecular analysis within 48 hours at maximum. Roots were 
washed in tap water to remove soil and debris. Root tips were separated into 
morphotypes based on the morphological features of root tips, including the 
color, shape and presence of cystidia, extraradical hyphae and rhizomorphs. 
From each unique morphotype, at least two root tips per sample were trans-
ferred to CTAB extraction solution (1% cetyltrimethylammonium bromide, 100 
mM Tris-HCl (pH 8.0), 1.4 M NaCl, 20 mM ethylenediaminetetraacetic acid) 
for molecular analysis.  
 
 

 
 
Fig. 2. Representative views of the study sites: A) an altitudinal transect, view from the 
top of mountain (I); B) a Fagus Orientalis forest (I); C) a boreal mixed forest (the 
Populus Tremula tree is in the center) (II); D) a tropical rain forest, the Yasuni National 
Park (IV); and E) a tropical rain forest, Cameroon (III).  
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Molecular analysis (I–IV) 

One or more healthy root tips from each morphotype per sample were subjected 
to DNA extraction using a Qiagen DNeasy 96 Plant Kit (Qiagen, Crawley, West 
Sussex, UK) as recommended by the manufacturer. The primer ITSOF-T (5’-
cttggtcatttagaggaagtaa-3’), in combination with reverse primers LB-W (5’-
cttttcatctttccctcacgg-3’), ITS4 (5’-tcctccgcttattgatatgc-3’) or ITS2 (5’-gctgcgttctt 
catcgatgc-3’), was used to amplify the ITS region. For low quality sequences, 
which were preliminarily identified as EcM, PCR was repeated using taxon-
specific primers as described in Tedersoo et al. (2008) and study III. The PCR 
products were run on a 1% agarose gel stained with ethidium bromide by 
electrophoresis and visualized under UV light. PCR products were purified 
using Exo-Sap enzymes (Sigma, St Louis, MO). When PCR failed to yield a 
reliable ITS sequence, the nuclear 28S (nuLSU) rRNA gene was amplified 
using primers LR0R (5’-acccgctgaacttaagc-3’) and TW13 (5’-ggtccgtgttt 
caagacg-3’). Primers ITS5 (5’-ggaagtaaaagtcgtaacaagg-3’), ITS4 and ctb6 (5’-
gcatatcaataagcggagg-3’) were used for sequencing of ITS and nuLSU regions. 
Preliminary morphological host identification of roots was confirmed based on 
plant plastid trnL intron sequence using TrnC (5’-cgaaatcggtagacgctacg-3’) and 
TrnD (5’-ggggatagagggacttgaac-3’) as PCR primers and TrnD as a sequencing 
primer. PCR instructions were adopted from Tedersoo et al. (2006), including 
an initial 3 min at 95 C, 35 cycles of 30 sec at 95, 30 sec at 55 C and 1 min at  
72 C. Using Sequencher software (Version 4.9; GeneCodes Corp., Ann Arbor, 
MI), raw sequences were edited, trimmed and assembled into contigs. Mole-
cular species were separated based on 97% ITS sequence similarity threshold 
and identified using MegaBLAST and BLASTn searches against the Inter-
national Sequence Databases (INSD: NCBI, EMBL, DDBJ) and fungal rDNA 
ITS sequence database (UNITE) (Abarenkov et al. 2010a) as implemented in 
the PlutoF workbench (Abarenkov et al. 2010b). Unique sequences were sub-
mitted to EMBL and UNITE.  
 
 

Data analysis 

Species were categorized into phylogenetic lineages according to Tedersoo et 
al. (2010b) to determine dominant lineages (based on species richness) in diffe-
rent ecosystems (I, II, III, IV), to create a phylogenetic community matrix (V) 
and to evaluate spatial autocorrelation within these higher-level taxonomic 
groups (II, VI). Bray-Curtis and Euclidean similarity indices were used to 
generate distance matrices for community composition and environmental 
factors, respectively. Fisher’s Exact test followed by Benjamini-Hochberg cor-
rection was used to evaluate host or habitat (topography or soil horizon) pre-
ference of the dominant fungal species (III, IV). Multivariate analysis of 
variance (Adonis) was used to search for main determinants of community 
variation among the putative factors as implemented in Vegan package of R 
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(Oksanen et al. 2007; R Core Development Team 2007). Community dissimila-
rity between plots was visualized in Global Nonmetric Multidimensional 
Scaling (GNMDS) graphs. Putative factors were fitted onto GNMDS graphs 
using the envfit function in Vegan. In addition, Mantel test was used to examine 
the correlations between community variation and a focal environmental vari-
able. Partial Mantel test was used for similar reason, but this method accounts 
for other variables. To account for the presence of different host trees in 
altitudinal plots of study I, a community distance matrix for host trees was used 
in Mantel test (instead of dominant host as fixed categorical variable in Adonis). 
Mantel and Partial Mantel tests were performed in the Ecodist package (Goslee 
& Urban 2007) of R.  

Autocorrelation of individual species, lineages and species richness was 
tested by determining Moran’s I and correlograms as implemented in the Ape 
package (Paradis et al. 2004) of R. To account for spatial autocorrelation in 
community structure and species richness, Principal Coordinates of Neighbour-
hood Matrix (PCNM) vectors (Borcard & Legendre 2002) were created based 
on spatial distance matrix using Vegan (I, III, V, VI). This approach allows the 
incorporation of proxies of geographical distance as spatial explanatory vari-
ables, which represent all the scales that can be perceived by the data, in 
ordination and regression analyses (Borcard et al. 1992; Borcard et al. 2004). 
Significant PCNM vectors were forward-selected in Packfor package and used 
in regression (I) or multivariate (III, V, VI) analyses. These vectors were used in 
Adonis to determine the effect of spatial (III) and environmental factors (V) on 
community variation while accounting for other variables following Oksanen 
(2009). This approach enables control for spatial effect while testing the effect 
of environmental variables. The spatial autocorrelation in species richness was 
controlled by the use of the spatial eigenvector mapping (SEVM) method that 
follows the truncation process of the PCNM method. The extracted significant 
eigenvector was used in model selection procedure as spatial component (I). In 
study V, spatial autocorrelation (which its significance was determined by 
Likelihood Ratio tests) in richness was controlled by including a spatial com-
ponent as Gaussian spatial correlation structure, which was constructed based 
on range parameter and nugget of variograms. The relationship between the 
response and each explanatory variable was visualized to determine the type of 
relationship, i.e. linear, unimodal, exponential and Gaussian. In different data-
sets, autocorrelation range and average community dissimilarity were deter-
mined based on distance-decay curves (VI). Autocorrelation range is the dis-
tance at which community variation is dependent on geographical distance. 
Rarefied species accumulation curves, their ± 95% confidence intervals (CI), 
and minimum total richness estimators (ICE, Chao2 and Jacknife2) were 
calculated using EstimateS (Colwell 2006). By constructing GLS models, 
model comparisons and model selections were performed to test main deter-
minants of species richness (I, V); best models were chosen based on the 
corrected Akaike information criterion (AICs) values as implemented in the 
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nlme package (Pinheiro et al. 2011) of R. For study VI, dependent variables 
used in model selection included species richness, autocorrelation range, 
average community dissimilarity and the explained proportion of community by 
spatial vectors. Multicollinearity between variables was checked based on the 
Variance Inflation Factor (VIF) values. Variables with high VIF (>10) and thus 
highly correlated variables were dropped from model selection. After model 
averaging, the significant variables were detected based on the averaged Beta 
coefficient (variables were significant when their coefficient and its 95% 
confidence intervals excluded zero-values).  
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RESULTS AND DISCUSSION 
 
The main findings of the studies I–VI are given in bullet points and briefly dis-
cussed and interpreted thereafter. 

 
 Species richness of EcM fungi declines with increasing altitude (I). The 

observed pattern in EcM fungi is consistent with the general altitudinal 
pattern of diversity in macroorganisms (Lomolino et al. 2006). Recent stu-
dies have reported contrasting altitudinal diversity patterns for macro and 
microorganisms, when addressing both groups simultaneously (Bryant et al. 
2008; Wang et al. 2011; Fierer et al. 2011). In addition, contrasting patterns 
have also been observed among microbial groups. A study on a single 
bacterial phylum of (Acidobacteria) revealed a declining altitudinal diversity 
pattern (Bryant et al. 2008), whereas another study on aquatic bacteria and 
diatoms reported a reverse pattern (Wang et al. 2011). On the other hand, a 
recent study on bacteria collected from soil and leaves demonstrated no 
diversity pattern with increasing altitude (Fierer et al. 2011), and another 
study reported a hump-shape pattern for soil bacteria (Singh et al. 2011). The 
latter study demonstrated that even within bacteria, diversity of different 
phyla show contrasting relationships with altitude. Taken together, these 
findings indicate that different microbes may not follow a general altitudinal 
trend, and various factors may interplay with climate in determining micro-
bial diversity along altitudinal gradients (Fierer et al. 2011). This suggests 
that biogeographical patterns of microbes may be fundamentally different 
from macroorganisms (V).  

 At a global scale, EcM fungal richness does not follow the general 
latitudinal diversity gradient (V). Our global study on belowground diver-
sity of EcM fungi revealed that species richness has a hump-shaped (uni-
modal) relationship with temperature and latitude after accounting for other 
variables (i.e. sampling variables and environmental factors), and it peaks in 
warm temperate forests while falls in tropics, which contrasts with general 
latitudinal pattern of diversity in macroorganisms (Lomolino et al. 2006). At 
the global scale, temperature - rather than distance from the equator – 
was the main determinant of EcM fungal richness. Diversity of most 
organisms on the planet is generally positively correlated with temperature 
(Hillebrand 2004). However, our analyses revealed that EcM fungal richness 
has a unimodal relationship with temperature. High temperature and thereby 
high biological activity at fine scale in tropical soil reduce the amount of 
organic matter that may consequently result in the impoverishment of niches 
for soil microbes (Wardle 2002).  

 Climate affects diversity of EcM fungi along altitudinal gradient at the 
local and regional scale (I). Diversity of EcM fungi was lower at high 
altitude. This indicates that low temperature at high altitudes limit recruitment 
of rare species, which are present at lower altitude. Alternatively, high 
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temperature leads to greater productivity that in turn can boost fungal diversity 
at lower altitudes (Druebert et al. 2009). The declining pattern can be mostly 
ascribed to decrease in the proportion of singletons and doubletons at high 
altitudes. Moreover, excluding altitude, temperature was the main determinant 
of species richness based on the best GLS model. This finding provides 
additional evidence for the significant effect of temperature on species 
richness of EcM fungi at the global scale (V). Nevertheless, the relationship 
between temperature and richness was linear at the regional scale compared to 
the unimodal relationship at the global scale (V). This discrepancy might 
result from the absence of truly tropical conditions in mountain bases of the 
Hyrcanian forests. Similarly to our results, Bryant et al. (2008) and Wang et al. 
(2011; 2012) also pointed to temperature as the main explanatory factor for 
observed patterns of altitudinal diversity in bacteria. 

 Host plant is the key determinant of EcM fungal community composi-
tion both at the regional and global scale. It largely determines the EcM 
fungal community composition even in a highly heterogeneous eco-
system (i.e. an altitudinal gradient) (I). Host family was also the main 
determinant of EcM fungal phylogenetic community at the global scale 
(V). These results were consistent with other studies performed at local 
scale, which demonstrated a strong host effect in structuring fungal com-
munity (Ishida et al. 2007; Tedersoo et al. 2008; Morris et al. 2009). Plants 
can drive belowground communities through affecting soil nutrient con-
centrations (e.g. litter or exudate quality or quantity) or through their specific 
or preferential pathogenic/mutualistic associations (Wardle 2002). Although 
most EcM fungal species are capable of colonizing multiple hosts (host-
generalist species), some only associate with certain host species (host-
specific species; Molina et al. 1992). Majority of the known host specific 
fungal taxa belong to Suillus and Rhizopogon, which are restricted to the 
Pinaceae family. Although most EcM fungi that associate with Fagales seem 
to be generalist, these trees might have different effects on soil nutrients 
which can specialize their mutualistic partners (Toljander et al. 2006; Morris 
et al. 2008). We found no correlation between community variation and soil 
variables in study I, probably because of pooling of soil samples in each plot 
that may have lowered the spatial resolution.  

 Climatic variables and the underlying altitude affect community com-
position of EcM fungi (I). Following host, altitude was the second main 
determinant of community composition along the altitudinal gradient. Altitu-
de effect can be attributable to climatic factors that had the highest corre-
lation with altitude among the examined factors. Temperature was most 
strongly correlated with the community variation at local scale and pre-
cipitation had a stronger effect at regional scale. Based on our results, most 
EcM fungal species were present in different altitudinal ranges; however, 
some had a narrow range and only were present in certain altitudes. Taken 
together, these results suggest that while majority of EcM fungal species 
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may have wide temperature optima, some have low temperature breadth. 
Climatic variables had also a significant effect in structuring phylogene-
tic community of EcM fungi at the global scale (V). Similarly, tempera-
ture has been determined as the main determinant of the community struc-
ture of some other groups of fungi along altitudinal gradients (soil micro-
fungi, Widden 1987; wood decomposing fungi, Meier et al. 2010).  

 EcM fungal community structure is scale dependent (II, V, VI). The 
effects of host and altitude were stronger at local than regional scale (I). At 
larger scale (i.e. regional, continental and global scales), fungal communities 
diverge due to dispersal limitation (Peay et al. 2007), and spatial factors play 
a stronger role, blurring the effect of other factors. Spatial processes play a 
significant role in structuring species community composition at the re-
gional scale (I) and phylogenetic community at the global scale (V). At 
larger scale (continental to global scale) historical factors such as geo-
graphical distribution of host plant families and long-term co-evolution 
between hosts and EcM fungi (Hoeksema 2010) may determine the EcM 
fungal community (Pritsch et al. 2010; Tedersoo et al. 2010b).  

 Diversity of EcM fungi is relatively low in one of the most biologically 
diverse sites on Earth, the Yasuni National Park (IV). In spite of high 
richness of plant species including EcM host trees, species richness of fungi 
was relatively low in the Yasuni National Park. Many of the fungal species 
of the Nyctaginaceae family had a strong genus-level host preference or 
specificity. In addition, the fungal community displayed a strong spatial 
autocorrelation. Strong spatial structure and possibly existence of large 
genets can increase competitive exclusion, which in turn reduces diversity 
(Ricklefs et al. 1987).  

 Environmental variables (host species and soil horizon) play a negligible 
role in structuring EcM fungal community in Afrotropical forests, 
owing to the strong effect of spatial factors (III). EcM fungal community 
in Afrotropical forests showed a strong spatial autocorrelation, similar to that 
in Yasuni National Park (IV). In a recent study, Smith et al. (2011) also 
pointed to a strong spatial effect, rather than host effect, in a Neotropical 
rainforest. Lower host specificity or preference might be beneficial for host 
trees to associate with mycobionts in tropical ecosystems where EcM fungal 
diversity is relatively lower compared to temperate ecosystems.  

 Autocorrelation range of communities was significantly larger in tropi-
cal forests, compared with temperate forests (VI). Stronger spatial auto-
correlation in the tropics can result from greater dispersal limitation of 
mycobionts because of patchy host distribution and larger patch sizes of soil 
nutrients. The habitat selectivity among fungal species and isolation of 
suitable host and soil patches may render EcM mycobionts dispersal limited 
(Peay et al. 2007). The spatial autocorrelation range of fungal communities 
corresponds to the patchiness of soil properties, which is stronger in tropical 
ecosystems. Alternatively, larger autocorrelation range can partly result from 
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the dominance of /russula-lactarius lineage with relatively large genets 
(Lilleskov et al. 2004; Riviere et al. 2006) in tropics. 

 At the global scale, the spatial turnover of EcM fungal phylogenetic 
communities was stronger along the latitudinal than longitudinal gra-
dient (VI). This result indicates that climate and biomes, which are mostly 
distributed along the latitudinal gradient, play a key role in spatially 
structuring the fungal communities. In addition, significant autocorrelation 
in phylogenetic community of EcM fungi at the global scale (V, VI) lends 
further support for the role of dispersal limitation in their phylogeographic 
history (Tedersoo et al. 2010b). 

 Temperature and level of disturbance are the most important deter-
minant of spatial autocorrelation in EcM fungal communities across 
different ecosystems (VI). This further supports the significant contribution 
of climate in spatial structuring of EcM fungi. Lower heterogeneity of puta-
tive niche-based factors on EcM fungal community composition (i.e., host, 
climate and soil) and perhaps stronger relative role of neutral processes may 
lead to greater spatial aggregation of species. In addition, the rate of spatial 
turnover was greater in tropical compared to temperate ecosystems, mainly 
due to lower host density at small scales. Taken together, our findings sug-
gest that spatial processes may play a stronger role in tropical ecosystems, 
and that neutral processes, compared to habitat heterogeneity, can have 
greater importance in structuring tropical EcM fungal communities. 

 Based on extrapolations, a single tree individual may potentially host 
hundreds of EcM fungal species that is comparable to the discovered 
richness in the whole forest sites (II). We found 123 species from a single 
Populus tremula tree individual, which is comparable to all hosts taken together 
in other studies performed at larger areas, but making a similar sampling effort 
(i.e. forest site: Tedersoo et al. 2006; Courty et al. 2008; Morris et al. 2009). 
Besides species richness, the major components of community composition 
were also similar to what other studies have found from multiple hosts and 
larger area in temperate forests (Tedersoo et al. 2006), with /tomentella-
thelephora, /cortinarius, /inocybe, /russula-lactarius and /sebacina as the most 
species-rich lineages and Cenococcum geophilum as the most common species.  

 Dozens of genetic individuals of EcM fungi may colonize a single tree 
(II). Cenococcum geophilum is an asexual fungus that is the most common 
amongst EcM mycobionts in many temperate forests (Horton & Bruns 
2001). Because of asexual lifestyle, multiple ITS genotypes of C. geophilum 
can be found in small sites, providing evidence for the presence of many 
genetic individuals (Douhan et al. 2005). The observation of multiple genets 
of a single albeit dominant species allows the extrapolation that a single tree 
may establish EcM symbiosis simultaneously with more than one thousand 
fungal individuals. A better understanding of intraspecific diversity can 
provide insights into processes underlying community structure and func-
tional complementarity of EcM fungi (Johnson et al. 2012).  
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CONCLUSIONS 
 
The following conclusions and working hypotheses can be inferred from my thesis:  
 Spatial processes play an important role in structuring community compo-

sition of EcM fungi from local to global scales (I–VI). 
 Spatial autocorrelation range of EcM fungal communities at local scales can 

be larger than what has been reported before (III, VI). Insights into the 
intraspecific variations, functional traits (e.g. enzyme activity) and inter-
actions with other soil organisms can shed more light on underlying mecha-
nisms of spatial distribution of EcM fungi at fine scales.  

 Spatial processes may play stronger role in structuring EcM fungal commu-
nities in tropical forests, compared with temperate forests. 

 Ectomycorrhizal fungi do not follow the common biogeographic patterns of 
macroorganisms, i.e. the latitudinal gradient of diversity (V). 

 Temperature and precipitation have the strongest effect on EcM fungal 
diversity and community composition at the regional to global scales (II, V). 
The effects of temperature and probably precipitation are unimodal. The 
negative effect of extreme climatic conditions is attributable to environmen-
tal stress that filters out more demanding species.  

 Rare species of community are more vulnerable to environmental changes (I).  
 High diversity of EcM fungal species and individuals associated with an 

individual tree indicates that mycorrhizal networks are more inclusive than 
previously expected (II).  

  Despite many efforts in the past decade, EcM fungi in many regions are still 
under investigated, particularly tropical montane and southern temperate 
ecosystems (V).  
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SUMMARY 
 

Biological diversity enhances resilience, stability, productivity and ultimately 
functioning of ecosystems. Understanding diversity patterns and the underlying 
processes is the main goal of ecology and biogeography. The relative roles of 
niche-based and neutral processes can differ over various geographical scales, 
which lead to the scale dependence of diversity patterns. The diversity of 
macroorganisms generally increases towards the equator due to larger area, 
higher annual temperature and humidity as well as temporally more stable 
climatic conditions. Similar trend of environmental variation can also be 
observed with decreasing altitude. Such environmental conditions result in 
contrasting patterns of diversity along both latitudinal and altitudinal gradients. 
Research in biogeography has mostly been carried out on macroorganisms, but 
much less is known about microorganisms. Ectomycorrhizal (EcM) fungi are 
one of the key microbial groups in many forest ecosystems, supplying nutrients 
to their host plants and contributing to nutrient cycling. In this thesis, I 
examined the species richness and community structure of EcM fungi across 
different spatial scales. The following alternative hypotheses were postulated: 1) 
EcM fungal diversity decreases towards the poles and higher altitude; 2) climate 
is the main determinant of fungal diversity at both the regional and global 
scales; 3) spatial structure of EcM fungal communities is more pronounced in 
tropical forests, mainly due to patchy distribution of host plants; and 4) an 
individual host tree may support a highly diverse community of EcM fungi. The 
main results and conclusions are the following: 1) spatial processes are 
important in structuring EcM fungal communities at both local, regional and 
global scales; 2) the range of spatial autocorrelation in fungal communities is 
greater than reported previously; 3) contrary to macroorganisms, EcM fungi do 
not follow latitudinal pattern of diversity, which could be ascribed to the poor 
habitat conditions and more recent evolution of host trees in tropical 
ecosystems; 4) both average temperature and precipitation affect EcM fungal 
diversity at the regional and global scales, with extreme values causing abiotic 
stress and thus leading to the exclusion of rarer species; and 5) a single tree 
individual may potentially host hundreds of EcM fungal species that is 
comparable to the discovered diversity across the whole forest sites, indicating 
that mycorrhizal networks are highly complex on the plant perspective.  
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SUMMARY IN ESTONIAN 
 

Ektomükoriisat moodustavate seente biogeograafia erinevates 
ruumiskaalades  

 

Suurem organismide elurikkus soodustab koosluste produktiivsust, stabiilsust ja 
erinevate interaktsioonide kaudu ka funktsionaalsust. Teadaolevalt kasvab 
makroorganismide liigirikkus ekvaatori suunas. See on suurim aladel, kus 
esineb palju soojust ja niiskust ning kliima on ajalooliselt võrdlemisi stabiilne. 
Kuna troopilised kooslused erinevad parasvöötme kooslustest ka ajaloolis-bio-
geograafiliselt, rakendatakse laiuskraadi elurikkuse gradiendi uurimiseks sageli 
kõrgusgradienti. On leitud, et prokarüootide elurikkus ei pruugi järgida makro-
organismide makroökoloogilisi mustreid. Mikro- ja makroorganismide ruumili-
ne levik ei lange kokku ka lokaalsel skaalal, kuna makroorganismid opereerivad 
ruumilisel skaalal, mis erineb mikroobide omast mitme suurusjärgu võrra.  

Käesolevas töös vaatlen ektomükoriisat moodustavate seente liigirikkust 
erinevas ruumilises skaalas ja otsin nende levikumustrite põhjuseid. Ekto-
mükoriisaseened on majanduslikult oluliste puuliikide juursümbiondid, mis 
varustavad oma peremeestaimi mulla toitainetega. Need seeneliigid ei suuda 
ilma peremeestaimeta looduslikult kasvada. Ektomükoriisaseente määramiseks 
juurtelt kasutatakse viimasel 15 aastal molekulaarseid meetodeid. Nende mee-
todite töömahukus ja varasemalt ka maksumus on siiani oluliselt raskendanud 
seente ja teiste mikroorganismide makroökoloogiliste mustrite uurimist. 

Oma doktoritöös testisin järgmisi alternatiivseid hüpoteese: 1) ektomüko-
riisaseente liigirikkus kahaneb pooluste ja suuremate kõrguste suunal; 2) kli-
maatilised tingimused on peamised seente liigirikkuse mõjutajad regionaalsel ja 
globaalsel skaalal; 3) väikeseskaalalised ruumilised mustrid on tugevamalt 
eristunud troopilistes kooslustes, kuna peremeestaimed on vähearvukamad; 4) 
ühe puuindiviidiga seotud ekomükoriisaseente liigirikkus ja liigisisene isendite 
hulk võib olla väga kõrge. 

Doktoritöö peamised tulemused ja järeldused on järgmised: 1) ruumilistel 
protsessidel on tähtis roll ektomükoriisaseente koosluste struktureerimises nii 
lokaalsel, regionaalsel kui ka globaalsel skaalal; 2) seenekoosluste ruumiline 
autokorrelatsioon võib esineda üle suurema vahemaa, kui seda on varem 
näidatud; 3) erinevalt makroorganismidest esineb ektomükoriisaseentel unimo-
daalne seos laiuskraadiga, mida tõenäoliselt põhjustavad peremeestaimede 
(männiliste) kõrgem evolutsiooniline vanus, peremeestaimede suurem osakaal ja 
mullatekkeprotsesside suurem komplekssus ning aeglus parasvöötme metsades; 
4) regionaalsel ja globaalsel skaalal mõjutavad ektomükoriisaseente liigirikkust 
aasta keskmine temperatuur ja sademete hulk. Nende ekstreemsed väärtused 
põhjustavad abiootilist stressi ja läbi selle koosluste vaesumist eelkõige haruldaste 
liikide arvel; 5) üks puuindiviid võib ektomükoriisat moodustada samaaegselt 
mõnesaja seeneliigi ja kümnete sama seeneliigi indiviididega. See tõendab, et 
taimeindiviidid on seotud mitmekesise ning komplekse mükoriisaseente võrgus-
tikuga. Viimase teaduslik uurimine on algusjärgus. 
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