

http://mc.manuscriptcentral.com/fems

FEMS MICROBIOLOGY LETTERS

The Rcs phosphorelay modulates the expression of plant cell wall degrading enzymes and virulence in Pectobacterium carotovorum subsp. carotovorum

Journal:	FEMS Microbiology Letters	
Manuscript ID:	FEMSLE-07-02-0178.R1	
Manuscript Type:	Research Letter	
Date Submitted by the Author:	23-Apr-2007	
Complete List of Authors:	Andresen, Liis; Institute of Molecular and Cell Biology, Department of Genetics Koiv, Viia; Institute of Molecular and Cell Biology, Department of Genetics Alamäe, Tiina; Institute of Molecular and Cell Biology, Department of Genetics Mae, Andres; Tartu University Institute of Molecular and Cell Biology, Genetics	
Keywords:	phytopathogenic bacteria, two component system, Rcs phosphorelay, mutants	
	·	

ScholarOne Support 1-434/817-2040 ext 167

Page 1 of 31

1 of 31	FEMS Microbiology Letters		
1 2	The Rcs phosphorelay modulates the expression of plant cell wall degrading		
3	enzymes and virulence in Pectobacterium carotovorum subsp. carotovorum		
4	Liis Andresen, Viia Kõiv, Tiina Alamäe and Andres Mäe*		
5			
6			
7	Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu,		
8	Estonian Biocenter, 23 Riia Street, Tartu 51010, Estonia		
9			
10	Keywords: phytopathogenic bacteria, two-component system, mutants, Rcs phosphorelay		
11			
12	Running title: Rcs phosphorelay in the virulence of Pcc		
13			
14	*corresponding author: Andres Mäe; 23 Riia Street, Tartu 51010, Estonia; Phone: + 372		
15	7 375013; Fax: + 372 7 420286; Email: <u>amae@ebc.ee</u> .		
16			
	ScholarOne Support 1-434/817-2040 ext 167		

1		
2 3 4	17	ABSTRACT
5	18	
7 8 9	19	Production of plant cell wall degrading enzymes, the major virulence factors of soft-rot
10 11	20	Pectobacterium species, is controlled by many regulatory factors. Pectobacterium
12 13	21	carotovorum subsp. carotovorum SCC3193 encodes a Rcs phosphorelay system that
15 16	22	involves two sensor kinases, $RcsC_{Pcc}$ and $RcsD_{Pcc}$, and a response regulator $RcsB_{Pcc}$ as
17 18	23	key components of this system, and an additional small lipoprotein RcsF_{Pcc} . This study
19 20 21	24	indicates that inactivation of $rcsC_{Pcc}$, $rcsD_{Pcc}$ and $rcsB_{Pcc}$ enhances production of
22 23	25	virulence factors with the highest effect detected for $rcsB_{Pcc}$. Interestingly, mutation of
24 25 26	26	$rcsF_{Pcc}$ has no effect on virulence factors synthesis. These results suggest that in
20 27 28	27	SCC3193 a parallel phosphorylation mechanism may activate the $RcsB_{Pcc}$ response
29 30	28	regulator which acts as a repressor supressing the plant cell wall degrading enzyme
31 32 33	29	production. Enhanced production of virulence factors in Rcs mutants is more pronounced
34 35	30	when bacteria are growing in the absence of plant signal components.
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60		Sebelar-One Surgert 1 121/217 2040 ert 467
		ScholarOne Support 1-434/817-2040 ext 167

31	INTRODUCTION

Many pathogenic bacteria use phosphorelay signaling cascades in the form of twocomponent systems (TCS) to sense environmental stress and transmit the information inside the cell. A prototypical TCS consists of two proteins, a sensor kinase and a response regulator (for a review see Stock *et al.*, 2000). Sensor kinases sense environmental signals and activate/deactivate respective response regulators through modulating their state of phosphorylation.

Pectobacterium carotovorum subsp. *carotovorum* (*Pcc*) is a phytopathogenic member of *Enterobacteriaceae* causing soft-rot disease in a wide range of economically important crops (Pérombelon, 2002). Elicitation of soft-rot disease requires production of plant cell wall degrading enzymes (PCWDE), also called virulence factors (Pirhonen et al., 1991; Heikinheimo et al., 1995; Mäe et al., 1995; Marits et al., 1999; Mattinen et al., 2004). Coordinated production of pectinolytic enzymes and other virulence factors at a precise stage of infection process is necessary to escape plant defense, adjust to the environment and obtain nutrients from infected plant tissue. Several studies have documented that production of PCWDE is coregulated by plant signals, quorum sensing signals molecules (N-acyl homoserine lactones), various transcriptional factors as well as posttranscriptional regulators (Chatterjee et al., 1995; Harris et al., 1998; Liu et al., 1998; 1999; Cui et al., 1995; 1999; 2001; 2005; Burr et al., 2006; Sjöblom et al., 2006). According to current knowledge, *Pcc* employs at least two different global TCSs, the ExpS-ExpA (Eriksson et al., 1998), and the PmrA-PmrB (Hyytiäinen et al., 2003) to modulate the expression of virulence genes in response to environmental signals.

FEMS Microbiology Letters

Page 4 of 31

53	In human pathogens Salmonella typhi, Salmonella enterica, Yersinia
54	enterocolitica and enterohemorrhagic Escherichia coli, rapid adjustment to the
55	environment and regulation of the virulence largely relies on Rcs phosphorelay systems
56	(Virlogeux et al., 1996; Garcia-Calderon et al., 2005; Tobe et al., 2005). The Rcs
57	phosphorelay was initially identified as a positive regulator of the cps genes, involved in
58	biosynthesis of capsular exopolysaccharides (EPS) in E. coli (Gottesman et al., 1985).
59	This system has certain unique features, compared to a classical TCS. The Rcs
60	phosphorelay is known to consist of three proteins: RcsC (a hybrid sensor which has a
61	histidine kinase and a receiver domains but lacks a phosphotransmitter domain), RcsB (a
62	response regulator), and RcsD (a phosphotransmitter) (Fig. 1(a); Gottesman & Stout,
63	1991; Takeda et al., 2001; Clarke et al., 2002). In addition, a lipoprotein RcsF has been
64	shown to contribute to the Rcs phosphorelay (Majdalani et al., 2005). The core of this
65	system, RcsB, is a classical cytoplasmic response regulator composed of a receiver and a
66	DNA binding domains (Francez-Charlot et al., 2003). At present, physiological signals
67	activating the Rcs phosphorelay are not clear yet.
68	Although the regulatory role of Rcs phosphorelay in human pathogens has been

Although the regulatory role of Rcs phosphorelay in human pathogens has been studied extensively, relatively little work has been done to characterize significance of this system in bacterial soft-rot disease caused by pectobacteria. Previous studies have confirmed that EPS synthesis in *Erwinia amylovora* and *Pantoea stewartii* are Rcsdependent (Kelm *et al.*, 1997; Wehland *et al.*, 1999).

In search for regulatory mutants of *Pcc*, we isolated a class of mutants that produced a high basal level of PCWDE. Subsequent study revealed that the mutants carried disruptions in $rcsB_{Pcc}$, $rcsC_{Pcc}$, and $rcsD_{Pcc}$ genes that constitute a central signal

- transduction pathway of the Rcs-system in *Pcc*. The results of present study propose a
 - 77 model according to which the *Pcc* Rcs phosphorelay suppresses production of PCWDE
 - 78 mainly during non-infective growth outside the host plant.

79 METHODS

80 81	Bacterial strains, vectors and growth conditions
82	Strains and plasmids used in this study are listed in Table 1. <i>Pectobacterium carotovorum</i>
83	subsp. <i>carotovorum</i> strains were grown at 30°C and <i>Escherichia coli</i> was grown at 37°C.
84	The composition of LB medium and minimal salts medium have been described in
85	previous publications (Miller, 1972; Laasik et al., 2005). When required, media were
86	supplemented with 0.4% (w/v) polygalacturonic acid (PGA; Sigma) and antibiotics were
87	added as follows: ampicillin (Amp) 150 μ g ml ⁻¹ , kanamycin (Km) 100 μ g ml ⁻¹ and
88	chloramphenicol (Cm) 25 µg ml ⁻¹ .
89	
90	DNA manipulations
91	Standard DNA techniques described in Sambrook et al. (1989) were used. To analyze the
92	DNA sequences flanking the transposon, arbitary PCR method was used as described by
93	Caetano-Anolles (1993). The first round of PCR was performed using an arbitrary primer
94	ARB1 5'-GGCCACGCGTCGACTAGTACNNNNNNNNGATAT-3' paired with the
95	proximal primer of the miniTn5Cm OE_{ext} 5'-GGGACTCCTCAAAGCCGAATTG-3'.
96	The second round of PCR was performed using a primer ARB2 5'-
97	GGCCACGCGTCGACTAGTAC-3' paired with the distal primer of the miniTn5Cm
98	OEint 5'-GCCGCACTTGTGTATAAGAGTCAG-3'. DNA and protein homology
99	searches in GenBank, EMBL and SWISS-PROT databases were performed using the
100	BLASTN, BLASTX and FASTEMBL programs (University of Wisconsin Genetic
101	Computer Group). Protein domain limits were predicted using PROSITE database of
102	protein families and domains (release 19.36; http://au.expasy.org/prosite).

103	Transmembrane domains of RcsC and RcsD were identified using the TMpred program
104	(http://www.ch.embnet.org/software/TMPRED_form.html).
105	GenBank accession numbers for nucleotide sequences of the $rcsDBC_{Pcc}$ region
106	and $rcsF_{Pcc}$ are EF415648 and EF415647, respectively.
107	
108 109	Isolation and construction of mutant strains
110	Strains SCC6605 (<i>rcsB_{Pcc}</i> ::Tn5- <i>gusA</i>), SCC6011 (<i>rcsD_{Pcc}</i> ::Tn5- <i>gusA</i>) and SCC6024
111	($rcsC_{Pcc}$::Tn5-gusA) were selected from a pool of transposon mutants generated as
112	described by Marits et al (1999). The mutant SCC6026 (rcsF _{Pcc} ::Cm) was generated as
113	follows. Primers rcsFalg 5'-TTCAATACTCGCTCTTTGA-3' and rcsFD 5'-
114	GACTCATTGTGCAGAGAC-3' for $rcsF$ gene were designed using the genome
115	sequence of Erwinia carotovora subsp. atroseptica
116	(http://www.sanger.ac.uk/Projects/E_carotovora/) and the obtained DNA fragment was
117	cloned into plasmid pTZ57R/T. The cloned DNA fragment was sequenced to obtain the
118	<i>rcsF</i> sequence of <i>Pcc</i> . The mutant SCC6026 was constructed using λ Red system
119	described by Datsenko & Wanner (2000) using primers rcsFP1 5'-
120	ATAGCAACCGGCTACGCCACTAACGGTTTGGCATTCATGTAGGTGTAGGCTG
121	GAGCTGCTTC-3' and rcsFP2 5'-
122	TAGCTATGTCGCTGACAGGCTGTTCTTTATTTCAGAAGCCACCATATGAATAT
123	CCTCCTTAG-3', which contained the <i>cat</i> (Cm ^R) gene from pKD3 flanked on either side
124	by 42 nt homologous to the upstream and downstream regions of $rcsF_{Pcc}$.
125	The mutant SCC6027 (<i>rcsD</i> _{Pcc} 52::Cm) was made using λ Red system (Datsenko &
126	Wanner, 2000) using primers yojNP1 5'-

FEMS Microbiology Letters

127	ACATCCGCTGACGACTATTGCCCAAGGTATACAGAAACGCATCGATACTTGT
128	GTAGGCTGGAGCTGCTTC-3' and yojNP2 5'-
129	AATTGCGCTAATGTTGGCGTCGCTAGCGGACGGTTCACTGTTCAGACTGCCAT
130	ATGAATATCCTCCTTA-3' and the pKD3 plasmid as a template.
131	
132	Construction of pMW119::rcsB _{Pcc}
133	The functional $rcsB_{Pcc}$ gene was amplified from the chromosome of the wild-type strain
134	SCC3193 using primers rcsBL 5'-GATGCGACGCAGGAGGGAGAACAGA-3' and
135	rcsC1 5'-CCGTGTGAGTTTGCACCGCATGA-3'. The obtained PCR product was
136	cloned into <i>Sma</i> I-digested pMW119 to yield pMW119:: $rcsB_{Pcc}$. In this construct, $rcsB_{Pcc}$
137	has 365 bp upstream of its translational start and is oriented in the opposite direction with
138	regard to the <i>lacZ</i> in the multicloning site.
139	
140	Construction of pLACFw-rcsF _{Pcc}
141	The <i>rcsF</i> gene of <i>Pcc</i> was amplified from the chromosome of the wild-type strain
142	SCC3193 using the primers rcsFalg 5'-TTCAATACTCGCTCTTTGA-3' and Fstop 5'-
143	TAGAGGATCTGATTGAAAAC-3'. The resulting PCR product was cloned into Smal-
144	digested pMW119 under the control of the $lacZ$ gene promoter to yield pLACFw- $rcsF_{Pcc}$
145	and opposite to the <i>lacZ</i> promoter to yield pLACRev- <i>rcsF</i> _{Pcc} . In these constructs $rcsF_{Pcc}$
146	has 43 bp upstream of its translational start.
147	
148	
149	

150	Motility assay
151	Motility was evaluated on soft-agar LB plates (0.3 % agar). A sample (1 ml) of overnight
152	culture of each strain was used to make a dilution in M9 medium to an $OD_{600}=2.0$.
153	Diluted cultures were stabbed into the centre of soft-agar plates using a sterile inoculation
154	needle. Plates were incubated at 30°C for 48 h.
155	
156	EPS production assay
157	Production of exopolysaccarides was measured using a phenol-sulphuric method
158	described in Dubois et al (1956).
159	
160	Enzyme assay
161	Semiquantitative agarose plate assay for extracellular protease (Prt) production was
162	performed as described by Chatterjee et al (1995). The protease activity on agarose plates
163	was evaluated according to the halo, the size of which is proportional to the amount of
164	secreted enzyme. The extracellular activities of polygalacturonase (Peh) and pectate lyase
165	(Pel) were assayed as described previously by Pirhonen et al (1991). The quantitative
166	determination of protease (Prt) activity is described in Marits et al (2002).
167	
168	Potato tuber assay
169	The potato tuber assay used in this study has been described in Eriksson et al (1998).
170	Results were scored after 36 h by cutting the tubers in halves and weighing the macerated
171	tissue removed from the sites of inoculation.
172	

174	

175 Identification of Rcs phosphorelay components in *Pcc*

To identify new regulators of virulence that modulate the expression of PCWDE genes, the wild-type *Pectobacterium carotovorum* subsp. *carotovorum* SCC3193 was subjected to transposon mutagenesis. From the constructed mutant pool of ca 10 000 clones, three mutants, that produced larger halos around the colonies on milk plates compared to the parental strain, were selected for further investigation. The nucleotide sequences of DNA regions flanking the transposon insertion were determined and found to be homologous to *rcsB*, *rcsC* and *rcsD* genes, described as components of the Rcs phosphorelay in E. coli (Chen et al., 2001). The organization of the $rcsB_{Pcc}$, $rcsC_{Pcc}$ and $rcsD_{Pcc}$ genes and location of the transposon in corresponding mutants is shown on Fig. 1(b). The truncation of RcsD_{Pcc} after the residue L814 may not completely impair its function. To eliminate possibility of the synthesis of a truncated protein that may be stable and manifest an unusual phenotype, we constructed a new mutant of $rcsD_{Pcc}$ with the insertion of Cm resistance marker after the residue T52. The resulting strain SCC6027 was used in further study. To explore the presence of a *rcsF* homologue in *Pcc* strain SCC3193, we analyzed the sequence data of *Erwinia carotovora* subsp. atroseptica (Eca) strain SCRI1043 (http://www.sanger.ac.uk/Projects/E carotovora) and designed the primers for PCR identification of a potential homologue of *rcsF*. A DNA fragment amplified from *Pcc* SCC3193 exhibited 94% identity to *rcsF* of *Eca* SCRI1043. To study the role of $rcsF_{Pcc}$ in PCWDE production, a respective null mutant was constructed.

\leq			
2			
4			
4			
5			
6			
7			
1			
8			
9			
1	\cap		
į.	7		
1	1		
1	2		
1	3		
1	4		
1	5		
1	0		
1	0		
1	7		
1	8		
1	9		
ว	ñ		
	1		
2	1		
2	2		
2	3		
2	Δ		
<u>_</u>	E		
_	C		
2	6		
2	7		
2	8		
2	0		
	3		
3	0		
3	1		
3	2		
2	2		
0	1		
3	4		
3	5		
3	6		
3	7		
2	0		
2	0		
3	9		
4	0		
4	1		
4	2		
т	2		
+	3		
4	4		
4	5		
4	6		
1	7		
+	1		
4	8		
4	9		
5	0		
5	1		
5	'n		
2	2		
5	3		
5	4		
5	5		
Ē	Â		
5	0		
C	1		
5	8		
5	9		
~	0		

All truncated genes (*rcsB*, *rcsC*, *rcsD* and *rcsF*) were transduced back into the wild-type strain using generalized transducing phage T4GT7. In semiquantitative plate assay all transductants showed protease production similar to their parental mutant strain.

199 Characterization of the Rcs phosphorelay components of *Pcc*

200 Comparison of the sequence of RcsB_{Pcc} from *Pcc* to those from *E. coli* and *E.* 201 *amylovora* revealed 94% and 91% similarity (Bereswill & Geider, 1997; accession: 202 CAA70978). In silico analysis of the $RcsB_{Pcc}$ amino acid sequence predicts the protein to 203 be a response regulator as it contains a receiver domain with conserved aspartate in 204 position D56 and a potential DNA binding domain with helix-turn-helix motif at 144-208 205 aa. Upstream of the $rcsB_{Pcc}$, the $rcsD_{Pcc}$ was revealed. Its deduced sequence of 897 amino 206 acids shows 61% similarity to *E. coli* RcsD protein (accession: ZP 00717815). Like 207 RcsD of *E. coli*, RcsD_{Pcc} contains a pseudo-His-kinase domain, followed by a typical 208 phosphotransmitter domain (Takeda et al., 2001). 209 According to the predicted structure, the $RcsC_{Pcc}$ protein was suggested to be a 210 hybrid sensor kinase. The deduced amino acid sequence of RcsC_{Pcc} showed 73% 211 similarity to RcsC of *E. coli* (accession: YP 670158). Sequence comparison between the 212 RcsC of E. coli and the RcsC_{Pcc} showed high similarity between the histidine kinase and 213 receiver domains (88% and 85% similarity, respectively), while the input domain was 214 less conserved (61% similarity).

The predicted 136 aa $rcsF_{Pcc}$ gene product showed 72% identity and 84% similarity to the *E. coli* outer membrane lipoprotein RcsF that transfers the signal to the sensor RcsC (accession: P69411; Majdalani *et al.*, 2005). Similarity was the highest **FEMS Microbiology Letters**

within the C-terminus constituting a periplasmatic domain (Castanié-Cornet *et al.*, 2006).
Outer membrane domain which localizes in the N-terminus of the processed RcsF (after
the removal of the signal peptide), shows only 24% similarity with the RcsF of *E. coli*(accession: P69411).

223 Influence of $rcsB_{Pcc}$, $rcsC_{Pcc}$, $rcsD_{Pcc}$ and $rcsF_{Pcc}$ mutations on PCWDE synthesis and 224 cell motility

Quantitative spectrophotometric assays were performed to assess the increase in polygalacturonase (Peh), pectate lyase (Pel) and protease (Prt) synthesis in $rcsB_{Pcc}$, $rcsC_{Pcc}$, $rcsD_{Pcc}$, 52, and $rcsF_{Pcc}$ mutants of Pcc under uninduced and induced (0.4% PGA) added) conditions. Differences in enzyme activities of the mutants compared to the wild-type strain were the largest at $OD_{600} \sim 1.5$ of the culture when bacteria entered the late exponential growth phase. As shown in Fig. 2, expression of PCWDE was clearly elevated in the *rcsB_{Pcc}* mutant: under uninduced growth conditions the Peh level was about 18 times, the Pel level about 9 and the Prt level about 19 times higher compared to the wild-type strain. In the $rcsC_{Pcc}$ mutant, the Peh, Pel and Prt levels were considerably less affected than in the $rcsB_{Pcc}$ mutant: the Peh level was about 9 times, the Pel and Prt levels about 4 times higher than in the parental strain. In the $rcsD_{Pcc}$ 52 mutant, the Peh level was about 9 times, the Pel and Prt levels about 4 times higher compared to the parental strain.

All three studied enzymes were also expressed at elevated levels upon induction, with the $rcsB_{Pcc}$ mutant showing a 1.9-fold increase in Pel production, 2-fold increase in Peh production and 3.6-fold increase in Prt production (Fig. 2). The $rcsC_{Pcc}$ mutation

caused 1.4-fold increase in the induced production of Pel and Peh and 2.3-fold increase in Prt production (Fig. 2). The *rcsD_{Pcc}*52 mutation resulted in 1.5-fold enhancement of Pel and Peh, and 2.4-fold enhancement of Prt activity under induced conditions (Fig. 2). When we introduced a plasmid copy of the $rcsB_{Pcc}$ (pMW119:: $rcsB_{Pcc}$) into the $rcsB_{Pcc}$ mutant, all three studied enzymes were reduced to the wild-type level under all conditions tested (data not shown). Inactivation of the $rcsF_{Pcc}$ did not affect production of the enzymes either in

uninduced or induced conditions (Fig. 2). We overexpressed the $rcsF_{Pcc}$ to find out whether it is a component of the Rcs phosphorelay in Pcc. Multicopy $rcsF_{Pcc}$ (pLACFw $rcsF_{Pcc}$) was able to reduce the protease production in the wild-type strain while had no effect on protease activity of different Rcs phosphorelay mutants (Fig. 3).

The homologous Rcs phosphorelay in *E. coli* is known to control genes that mediate EPS production and flagella synthesis (Gottesman et al., 1985; Francez-Charlot et al., 2003). The $rcsB_{Pcc}$ mutant showed moderate increase in motility in a plate assay compared to the wild-type strain. (Fig. 4). When a plasmid copy of the $rcsB_{Pcc}$ (pMW119::rcsB_{Pcc}) was introduced into the wild-type strain, its motility was reduced (Fig. 4). No differences in motility between the $rcsC_{Pcc}$, $rcsD_{Pcc}$, 52 and $rcsF_{Pcc}$ mutants and corresponding parental strain were found under any conditions tested. Also,

inactivation of $rcsB_{Pcc}$, $rcsC_{Pcc}$, $rcsD_{Pcc}$ or $rcsF_{Pcc}$ had no effect on EPS production in Pcc strain SCC3193 (data not shown).

The Rcs phosphorelay affects the pathogenicity of *Pcc* **FEMS Microbiology Letters**

Page 14 of 31

2 3 4	264	Previous studies have established positive correlation between the level of
5 6	265	exoenzymes and the virulence of Pcc (Pirhonen et al., 1993; Chatterjee et al., 1995;
7 8 9	266	Marits <i>et al.</i> , 1999). To characterize the virulence of $rcsB_{Pcc}$, $rcsC_{Pcc}$, $rcsD_{Pcc}$ 52 and
10 11	267	$rcsF_{Pcc}$ insertion mutants, potato tuber maceration experiments were carried out. Results
12 13	268	on the Fig. 5 show the average weight of diseased tissue removed from 10 separately
15 16	269	infected potato tubers. As regulation of virulence through Rcs-system essentially relies on
17 18	270	RcsB_{Pcc} response regulator, the $rcsB_{Pcc}$ mutant caused more extensive maceration of
19 20 21	271	potato tubers than $rcsC_{Pcc}$ and $rcsD_{Pcc}$ 52 mutants (Fig. 5). Introduction of
22 23	272	pMW119:: $rcsB_{Pcc}$ into the $rcsB_{Pcc}$ mutant restored virulence of the mutant to the wild-
24 25	273	type level (Fig. 5). The maceration capacity of $rcsC_{Pcc}$ and $rcsD_{Pcc}$ 52 mutants was
20 27 28	274	moderately increased, whereas the $rcsF_{Pcc}$ mutant did not show any difference in tissue
29 30	275	maceraration capacity compared to the wild-type strain SCC3193 (Fig. 5). These results
31 32 33	276	are in accordance with the PCWDE production profile of the mutants (Fig. 2).
34 35 36		
37 38		
39 40		
41 42 43		
44 45		
46 47		
48 49		
50 51		
52		
53 54		
54 55		
56		
57		
58 59		
60		
		ScholarOne Support 1-434/817-2040 ext 167

277	
278	DISCUSSION
279	The cascades governing gene expression in mammalian and plant pathogens have
280	been shown to act through specialized signal transduction pathways.
281	In this study we identified the Rcs phosphorelay from a plant pathogen
282	Pectobacterium carotovorum subsp. carotovorum. Previous work has shown that in E.
283	coli, the Rcs phosphorelay represses the genes required for flagella biogenesis (Francez-
284	Charlot et al., 2003), while activates those needed for capsular biosynthesis (Gottesman
285	et al., 1985) and stress tolerance (Davalos-Garcia et al., 2001; Boulanger et al., 2005). In
286	Salmonella typhi, the Rcs phosphorelay differentially modulates the expression of
287	invasion proteins, flagellin and Vi antigen in response to changes of environmental
288	osmolarity (Virlogeux et al., 1996; Arricau et al., 1998; Mouslim et al., 2004; Delgado et
289	al., 2006). Occurrence of homologues of Rcs phosphorelay genes also in Erwinia
290	amylovora (Bereswill & Geider, 1997), suggests that this phosphorelay may represent a
291	common pathway to regulate environmental signal-dependent gene expression. The data
292	presented here show that the Rcs-system is also an important component of regulatory
293	network that modulates expression of virulence factors in <i>Pcc</i> .
294	Studying on the role Rcs phosphorelay in regulation of PCWDE production, we
295	analysed three mutants of <i>Pcc</i> in which $rcsB_{Pcc}$, $rcsC_{Pcc}$, and $rcsD_{Pcc}$ genes were
296	insertionally inactivated. In these mutants lacking functional Rcs-system, expression of
297	Peh, Pel and Prt was increased compared to the parental strain under all conditions tested.
298	As shown in Fig. 2, the $rcsB_{Pcc}$ mutant showed 18-fold increase in Peh production, 9-fold
299	increase in Pel production and 19-fold increase in Prt production in uninduced conditions.

Differences between individual enzyme activities may reflect different role of $RcsB_{Pcc}$ in regulation of each enzyme tested. These findings are in accordance with available evidence, albeit indirect, that the genes for PCWDE in *Pcc* may be differently regulated by the same global regulator (Chatterjee *et al.*, 1995; Heikinheimo *et al.*, 1995; Marits *et* al., 1999; 2002). For example Chatterjee et al. (1995) demonstrated that Peh, Pel and Prt-producing systems in *Pcc* responded differently to inactivation of a global negative regulator RsmA_{Pcc}. Interestingly, the $rcsF_{Pcc}$ disruption had no phenotypic effect with regard to PCWDE production (Fig. 2). RcsF has been described as an outer membrane protein playing a critical role in signal transduction from cell surface to RcsC in E. coli (Majdalani *et al.*, 2005). The failure to observe a visible effect of $rcsF_{Pcc}$ mutation on PCWDE production in *Pcc* suggests that RcsF_{Pcc} is not a necessary component of the Rcs phosphorelay under applied conditions. In *E. coli*, it has been shown that not all Rcs phosphorelay activating signals pass through RcsF (Castanie-Cornet et al., 2006). However, overproduction of RcsF in the wild-type strain Pcc but not in rcsC_{Pcc}, rcsD_{Pcc} and $rcsB_{Pcc}$ 52 mutants was able to repress protease production (Fig. 3). This supports the possibility that RcsF is still a member of the Rcs phosphorelay though the actual signal sensed by RcsF remains unknown. Our data also agree with those by Majdalani et al. (2002) showing that overproduction of RcsF affects the expression of RcsB-dependent promoters.

In $rcsC_{Pcc}$ and $rcsD_{Pcc}52$ mutants production of PCWDE responsible for plant tissue maceration was less elevated than in the $rcsB_{Pcc}$ mutant (Fig. 2). There are two possibilities to explain this phenomenon. First, RcsB may be phosphorylated by a pathway other than RcsC/RcsD. Fredericks *et al.* (2006) have observed that RcsB of *E*.

 FEMS Microbiology Letters

coli can be activated independently of RcsC by accepting a phosphoryl group from acetylphosphate, and Castanié-Cornet et al. (2007) have shown that RcsB can regulate target gene expression independently of the RcsC/RcsD pathway. Alternatively RcsB can have partial activity in unphosphorylated state. Further study is needed to verify these hypothesis. Interestingly, although the basal level of all tested enzymes was increased in all three mutants, we still observed the inducing effect of PGA (Fig. 2). Therefore PGA may induce PCWDE production via *rcs*-independent mechanism(s). The activator function of PGA depends on its degradation products which interact with different regulators. For example, Liu *et al.*, (1999) demonstrated that pectin breakdown products cause $KdgR_{Pcc}$ to dissociate from its binding site thereby elevating the production of PCWDE. As enhanced motility and increased production of PCWDE both contribute to the virulence of *Pcc* we expected the $rcsB_{Pcc}$ mutant to be more virulent on potato tubers than the wild-type. The effect on virulence was less pronounced in $rcsC_{Pcc}$ and $rcsD_{Pcc}$ 52 mutants compared to the $rcsB_{Pcc}$ mutant (Fig. 5) that agrees with their mutant phenotypes of PCWDE production and motility (Fig. 2 and Fig. 4). Irrespective of the mechanism of action of the Rcs system in *Pcc*, it is certainly an important global regulatory system affecting multiple PCWDE production in that plant pathogen. Coordination of environmental sensing and expression of virulence genes is crucial for successful infection. Further investigation is required to answer the question whether the response regulator $RcsB_{Pcc}$ of the Rcs-system regulates the expression of PCWDE genes by binding directly to their promoters or it controls the expression of its target genes by regulating the expression of another global regulator.

346	
347	AKNOWLEDGEMENTS
348	This research was supported by the Estonian Science Foundation (Grant TBGMR510B
349	and No.7082).
350	
351	REFERENCES
352	Arricau N, Hermant D, Waxin H, Ecobichon C, Duffey PS & Popoff MY (1998) The
353	RcsB-RcsC regulatory system of Salmonella typhi differentially modulates the expression
354	of invasion proteins, flagellin and Vi antigen in response to osmolarity. Mol Microbiol
355	29:835-850
356	Bereswill S & Geider K (1997) Characterization of the rcsB gene from Erwinia
357	amylovora and its influence on exopolysaccaride synthesis and virulence of the fire blight
358	pathogen. J Bacteriol 179: 1354-1361.
359	Boulanger A, Francez-Charlot A, Conter A, Castanie-Cornet MP, Cam K & Gutierrez C
360	(2005) Multistress regulation in Escherichia coli: expression of osmB involves two
361	independent promoters responding either to sigmaS or to the RcsCDB His-Asp
362	phosphorelay. J Bacteriol 187: 3282-3286.
363	Burr T, Barnard AM, Corbett MJ, Pemberton CL, Simpson NJ & Salmond GP (2006)
364	Identification of the central quorum sensing regulator of virulence in the enteric
365	phytopathogen, Erwinia carotovora: the VirR repressor. Mol Microbiol 59: 113-125.
366	Caetano-Anolles G (1993) Amplifying DNA with arbitrary oligonucleotide primers. PCR
367	Methods Appl 3: 85-94.
368	Castanié-Cornet MP, Cam K & Jacq A (2006) RcsF is an outer membrane lipoprotein
369	involved in the RcsCDB phosphorelay signaling pathway in Escherichia coli. J Bacteriol
370	188: 4264-4270.
371	Castanie-Cornet MP, Treffandier H, Francez-Charlot A, Gutierrez C & Cam K (2007)
372	The glutamate-dependent acid resistance system in Escherichia coli: essential and dual
373	role of the His-Asp phosphorelay RcsCDB/AF. Microbiology 153: 238-246.

374	Chatterjee A, Cui Y, Liu Y, Dumenyo CK & Chatterjee AK (1995) Inactivation of rsmA
375	leads to overproduction of extracellular pectinases, cellulases, and proteases in Erwinia
376	carotovora subsp. carotovora in the absence of the starvation/cell density-sensing signal,
377	N-(3-oxohexanoyl)-L-homoserine lactone. Appl Environ Microbiol 61: 1959-1967.
378	Chen MH, Takeda S, Yamada H, Ishii Y, Yamashino T & Mizuno T (2001)
379	Characterization of the RcsC>YojN>RcsB phosphorelay signaling pathway involved
380	in capsular synthesis in Escherichia coli. Biosci Biotechnol Biochem 65: 2364-2367.
381	Clarke DJ, Joyce SA, Toutain CM, Jacq A & Holland IB (2002) Genetic analysis of the
382	RcsC sensor kinase from Escherichia coli K-12. J Bacteriol 184: 1204-1208.
383	Cui Y, Chatterjee A & Chatterjee AK (2001) Effects of the two-component system
384	comprising GacA and GacS of Erwinia carotovora subsp. carotovora on the production
385	of global regulatory rsmB RNA, extracellular enzymes, and harpinPcc. Mol Plant-
386	Microbe Interact 14: 516-526.
387	Cui Y, Chatterjee A, Liu Y, Dumenyo CK & Chatterjee AK (1995) Identification of a
388	global repressor gene, rsmA, of Erwinia carotovora subsp. carotovora that controls
889	extracellular enzymes, N-(3-oxohexanoyl)-L-homoserine lactone, and pathogenicity in
890	soft-rotting Erwinia spp. J Bacteriol 17: 5108-5115.
91	Cui Y, Mukherjee A, Dumenyo CK, Liu Y & Chatterjee AK (1999) rsmC of the soft-
392	rotting bacterium Erwinia carotovora subsp. carotovora negatively controls extracellular
393	enzyme and harpin(Pcc) production and virulence by modulating levels of regulatory
394	RNA (rsmB) and RNA-binding protein (RsmA). J Bacteriol 181: 6042-6052.
395	Cui Y, Chatterjee A, Hasegawa H, Dixit V, Leigh N & Chatterjee AK (2005) ExpR, a
396	LuxR homolog of Erwinia carotovora subsp. carotovora, activates transcription of rsmA,
397	which specifies a global regulatory RNA-binding protein. J Bacteriol 187: 4792-4803.
398	Datsenko KA & Wanner BL (2000) One-step inactivation of chromosomal genes in
399	Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97: 6640-6645.
400	Davalos-Garcia M, Conter A, Toesca I, Gutierrez C & Cam K (2001) Regulation of osmC
401	gene expression by the two-component system rcsB-rcsC in Escherichia coli. J Bacteriol
402	183: 5870-5876.

403	Delgado MA, Mouslim C & Groisman EA (2006) The PmrA/PmrB and
404	RcsC/YojN/RcsB systems control expression of the Salmonella O-antigen chain length
405	determinant. Mol Microbiol. 60:39-50.
406	Dubois M, Gilles KA, Hamilton JK, Rebers PA & Smith F (1956) Colorimetric method
407	for determination of sugars and related substances. Analytic Chem 8: 350-356.
408	Eriksson AR, Andersson RA, Pirhonen M & Palva ET (1998) Two-component regulators
409	involved in the global control of virulence in Erwinia carotovora subsp. carotovora. Mol
410	Plant-Microb Interact 11: 743-752.
411	Francez-Charlot A, Laugel B, Van Gemert A, Dubarry N, Wiorowski F, Castanie-Cornet
412	MP, Gutierrez C & Cam K (2003) RcsCDB His-Asp phosphorelay system negatively
413	regulates the <i>flhDC</i> operon in <i>Escherichia coli</i> . Mol Microbiol 49: 823-832.
414	Fredericks CE, Shibata S, Aizawa S, Reimann SA & Wolfe AJ (2006) Acetyl phosphate-
415	sensitive regulation of flagellar biogenesis and capsular biosynthesis depends on the Rcs
416	phosphorelay. <i>Mol Microbiol</i> . 61:734-747.
417	Garcia-Calderon CB, Garcia-Quintanilla M, Casadesus J & Ramos-Morales F (2005)
418	Virulence attenuation in Salmonella enterica rcsC mutants with constitutive activation of
419	the Rcs system. <i>Microbiology</i> 151: 579-588.
420	Gottesman S & Stout V (1991) Regulation of capsular polysaccharide synthesis in
421	Escherichia coli K12. Mol Microbiol 5: 1599-1606.
422	Gottesman S, Trisler P & Torres-Cabassa A (1985) Regulation of capsular
423	polysaccharide synthesis in <i>Escherichia coli</i> K-12: characterization of three regulatory
424	genes. J Bacteriol 162: 1111-1119.
425	Harris SJ, Shih YL, Bentley SD & Salmond GP (1998) The hexA gene of Erwinia
426	carotovora encodes a LysR homologue and regulates motility and the expression of
427	multiple virulence determinants. Mol Microbiol 28: 705-717.
428	Heikinheimo R, Flego D, Pirhonen M, Karlsson MB, Eriksson A, Mäe A, Kõiv V &
429	Palva ET (1995) Characterization of a novel pectate lyase from Erwinia carotovora
430	subsp. carotovora. Mol Plant Microbe Interact 8: 207-217.
431	Hyytiainen H, Sjoblom S, Palomaki T, Tuikkala A & Palva ET (2003) The PmrA-PmrB
432	two-component system responding to acidic pH and iron controls virulence in the plant
433	pathogen Erwinia carotovora ssp. carotovora. Mol Microbiol 50: 795-807.

Page 21 of 31

434	Kelm O, Kiecker C, Geider K & Bernhard F (1997) Interaction of the regulator proteins
435	RcsA and RcsB with the promoter of the operon for amylovoran biosynthesis in <i>Erwinia</i>
436	amylovora. Mol Gen Genet 256: 72-83.
437	Laasik E, Ojarand M, Pajunen M, Savilahti H & Mäe A (2005) Novel mutants of <i>Erwinia</i>
438	<i>carotovora</i> subsp. <i>carotovora</i> defective in the production of plant cell wall degrading
439	enzymes generated by Mu transpososome-mediated insertion mutagenesis. <i>FEMS</i>
440	Microbiol Lett 243: 93-99.
441	Liu Y, Cui Y, Mukherjee A & Chatterjee AK (1998) Characterization of a novel RNA
442	regulator of <i>Erwinia carotovora</i> ssp. <i>carotovora</i> that controls production of extracellular
443	enzymes and secondary metabolites. <i>Mol Microbiol</i> 29: 219-234.
444	Liu Y, Jiang G, Cui Y, Mukherjee A, Ma WL & Chatterjee AK (1999) kdgRPcc
445	negatively regulates genes for pectinases, cellulase, protease, HarpinPcc, and a global
446	RNA regulator in Erwinia carotovora subsp. carotovora. J Bacteriol 181: 2411-2421.
447	Mäe A, Heikinheimo R & Palva ET (1995) Structure and regulation of the Erwinia
448	carotovora subspecies carotovora SCC3193 cellulase gene celV1 and the role of cellulase
449	in phytopathogenicity. Mol Gen Genet 247: 17-26.
450	Majdalani N, Heck M, Stout V & Gottesman S (2005) Role of RcsF in signaling to the
451	Rcs phosphorelay pathway in Escherichia coli. J Bacteriol 187: 6770-6778.
452	Marits R, Kõiv V, Laasik E & Mäe A (1999) Isolation of an extracellular protease gene
453	of Erwinia carotovora subsp. carotovora strain SCC3193 by transposon mutagenesis and
454	the role of protease in phytopathogenicity. <i>Microbiology</i> 145: 1959-1966.
455	Marits R, Tshuikina M, Pirhonen M, Laasik E. & Mäe A (2002) Regulation of the
456	expression of prtW::gusA fusions in Erwinia carotovora subsp. carotovora. Microbiol
457	148: 835-842.
458	Mattinen L, Tshuikina M, Mäe A & Pirhonen M (2004) Identification and
459	characterization of Nip, necrosis-inducing virulence protein of Erwinia carotovora subsp.
460	carotovora. Mol Plant Microbe Interact 17: 1366-1375.
461	Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, N
462	Y: Cold Spring Harbor.
463	Mouslim C, Delgado M & Groisman EA (2004) Activation of the RcsC/YojN/RcsB
464	phosphorelay system attenuates Salmonella virulence. Mol Microbiol 54: 386-395.

465	Pérombelon MCM (2002) Potato diseases caused by soft rot erwinias: an overview of
466	pathogenesis. Plant Pathol 51: 1-12.
467	Pirhonen M, Saarilahti H, Karlsson M-B & Palva ET (1991) Identification of
468	pathogenicity determinants of Erwinia carotovora subspecies carotovora by transposon
469	mutagenesis. Mol Plant-Microb Interact 4: 276-283.
470	Pirhonen M, Flego D, Heikinheimo R & Palva ET (1993) A small diffusible signal
471	molecule is responsible for the global control of virulence and exoenzyme production in
472	the plant pathogen Erwinia carotovora. EMBO J 12: 2467-2476.
473	Pirhonen M, Heino P, Helander I, Harju P & Palva ET (1988) Bacteriophage T4 resistant
474	mutants of the plant pathogen Erwinia carotovora. Microb Pathog 4: 359-367.
475	Sambrook J, Maniatis T & Fritsch EF (1989) Molecular cloning: A laboratory manual,
476	2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
477	Sjöblom S, Brader G, Koch G & Palva ET (2006) Cooperation of two distinct ExpR
478	regulators controls quorum sensing specificity and virulence in the plant pathogen
479	Erwinia carotovora. Mol Microbiol 60: 1474-1489.
480	Stock AM, Robinson VL & Goudreau PN (2000) Two-component signal transduction.
481	Annu Rev Biochem 69: 183-215.
482	Takeda S, Fujisawa Y, Matsubara M, Aiba H & Mizuno T (2001) A novel feature of the
483	multistep phosphorelay in <i>Escherichia coli</i> : a revised model of the RcsC> YojN>
484	RcsB signalling pathway implicated in capsular synthesis and swarming behaviour. Mol
485	Microbiol 40: 440-450.
486	Tobe T, Ando H, Ishikawa H, Abe H, Tashiro K, Hayashi T, Kuhara S & Sugimoto N
487	(2005) Dual regulatory pathways integrating the RcsC-RcsD-RcsB signalling system
488	control enterohaemorrhagic Escherichia coli pathogenicity. Mol Microbiol 58:320-333.
489	Virlogeux I, Waxin H, Ecobichon C, Lee JO & Popoff MY (1996) Characterization of the
490	rcsA and rcsB genes from Salmonella typhi: rcsB through tviA is involved in regulation of
491	Vi antigen synthesis. J Bacteriol 178: 1691-1698.
492	Wehland M, Kiecker C, Coplin DL, Kelm O, Saenger W & Bernhard F (1999)
493	Identification of an RcsA/RcsB recognition motif in the promoters of exopolysaccharide
494	biosynthetic operons from Erwinia amylovora and Pantoea stewartii subspecies
495	stewartii. J Biol Chem 274 :3300-3307.

Strains and plasmids	Relevant genotype	Source or reference
Strains		
P. carotovorum ssp. carotovo	rum	
SCC3193	Wild-type	Pirhonen et al., (1988
SCC6605	$rcsB_{Pcc}$:: Tn5-gusA	This study
SCC6011	rcsD _{Pcc} :: Tn5-gusA	This study
SCC6024	rcsC _{Pcc} :: Tn5-gusA	This study
SCC6026	$rcsF_{Pcc}$:: Cm ^R	This study
SCC6027	$rcsD_{Pcc}52$:: Cm ^R	This study
E. coli		
DH5a	supE4, $\Delta lacU169$, (lacZ $\Delta M15$),	BRL (San Diego, CA
	hasdR17, recA1, endA1, gyrA 96, thi-	
	1, relA1	
Plasmids		
pTZ57R/T	Amp ^R ; cloning vector	Fermentas
pMW119	Amp ^R ; cloning vector	Eurogentec
pMW119:: <i>rcsB_{Pcc}</i>	Vector pMW119 containing $rcsB_{Pcc}$	This study
	gene with additional 365 bp upstream	
	from start codon in the SmaI site	
pLACFw- <i>rcsF</i> _{Pcc}	Vector pMW119 containing $rcsF_{Pcc}$	This study
	gene with additional 43 bp upstream	
	from start codon in the SmaI site under	

pLACRev- <i>resF_{Pcc}</i> Vector pMW119 containing <i>resF_{Pcc}</i> This study gene with additional 43 bp upstream from start codon opposite direction to <i>lacZ</i> gene promoter in the <i>Smal</i> site Derivative of pANTSγ that contains Datsenko & Wanne an FRT(FLP recognition target)- (2000) flanked Cm ^R (cat) gene from pSC140 miniTn5Cm ^R :: <i>gusA</i> Marits <i>et al.</i> , (1999) 197			the control of <i>lacZ</i> gene promoter	
pPRG miniTn5Cm ^R ::gusA Marits et al., (1999)		pLACRev- <i>rcsF</i> _{Pcc}	Vector pMW119 containing $rcsF_{Pcc}$	This study
pKD3 Derivative of pANTSγ that contains Datsenko & Wanne an FRT(FLP recognition target)- (2000) flanked Cm ^R (cat) gene from pSC140 miniTn5Cm ^R ::gusA Marits et al., (1999) 197			gene with additional 43 bp upstream	
pKD3 Derivative of pANTSγ that contains Datsenko & Wanno an FRT(FLP recognition target)- (2000) flanked Cm ^R (cat) gene from pSC140 miniTn5Cm ^R ::gusA Marits et al., (1999) 197			from start codon opposite direction to	
pKD3 Derivative of pANTSγ that contains Datsenko & Wanne an FRT(FLP recognition target)- (2000) flanked Cm ^R (cat) gene from pSC140 miniTn5Cm ^R ::gusA Marits et al., (1999) 197			<i>lacZ</i> gene promoter in the <i>Smal</i> site	
an FRT(FLP recognition target)- (2000) flanked Cm ^R (cat) gene from pSC140 miniTn5Cm ^R :: <i>gusA</i> Marits <i>et al.</i> , (1999) 97		pKD3	Derivative of pANTSy that contains	Datsenko & Wanne
pPRG miniTn5Cm ^R :: <i>gusA</i> Marits <i>et al.</i> , (1999) 197			an FRT(FLP recognition target)-	(2000)
pPRG miniTn5Cm ^R .: <i>gusA</i> Marits <i>et al.</i> , (1999) 197			flanked Cm ^R (cat) gene from pSC140	
		pPRG	miniTn5Cm ^R ::gusA	Marits et al., (1999)
	97			

ScholarOne Support 1-434/817-2040 ext 167

49	8
49	Fig. 1. Model of Rcs phosphorelay in <i>Enterobacteriaceae</i> (a) Schematic representation of
50	0 the Rcs phosphorelay system in <i>E. coli</i> . S - unknown environmental signal for Rcs
50	phosphorelay; INPUT – the predicted input domains of RcsD and RcsC; KIN – the
50	2 histidine kinase domain; Htp – phosphotransmitter domain of RcsD; R – receiver
50	domains; HTH- helix-turn-helix DNA binding domain of RcsB; ① and ① indicate the
50	4 histidine and aspartate residues important for the phosphate transfer. Note that histidine
50	5 residue important for autophosphorylation is missing in the KIN domain of RcsD. (b) The
50	6 organization of the genes coding for main components of the Rcs phosphorelay in Pcc .
50	7 indicates localization of the transposon miniTn5Cm ^R :: $gusA$ in $rcsC_{Pcc}$, $rcsD_{Pcc}$ and
50	8 $rcsB_{Pcc}$ mutants. $^{\circ}$ indicates localization of Cm ^R insertion in the $rcsD_{Pcc}$ 52 mutant.
50	9
51	Fig. 2. Expression of plant cell wall degrading enzymes in different <i>Pcc</i> mutant strains.
51	1 Cultures were grown in M9 minimal medium containing 0.4% glycerol (uninduced
51	2 conditions) and in M9 medium plus 0.4% PGA (induced conditions). The production of
51	polygalacturonase (Peh), pectate lyases (Pel) and protease (Prt) by the <i>rcs</i> mutants and
51	4 wild-type strain in uninduced (a, b, c) and induced (e, f, g) conditions. Growth of
51	bacterial cultures followed by measurement of OD_{600} in uninduced (d) and induced (h)
51	6 conditions. \blacksquare - $rcsB_{Pcc}$ mutant; \Box - $rcsD_{Pcc}$ 52 mutant; \bullet - $rcsC_{Pcc}$ mutant; \circ - $rcsF_{Pcc}$
51	7 mutant; \blacktriangle - wild-type. All values are averages of three independent experiments with
51	8 standard deviations less than 10% in all cases.
51	9
52	Fig. 3. Multicopy <i>rcsF</i> was introduced into the wild-type and different <i>rcs</i> mutants, and
52	1 protease production was observed on milk-containing agar plates.
52	2
52	Fig. 4. Motility of $rcsB_{Pcc}$ mutant was tested on 0.3% agar. (a) wild-type; (b) $rcsB_{Pcc}$
52	mutant ; (c) wild-type (pMW119:: $rcsB_{Pcc}$). The agar plates were photographed 48 h after
52	5 the inoculation.
52	6
52	Fig. 5. The virulence of <i>rcs</i> mutants and wild-type strain on potato tubers. The maceration
52	capacity of mutants was compared with that of the wild-type strain SCC3193. Tubers

- 530 incubation at 28°C and 100% humidity. Average amounts (± standard deviation) of
- 531 macerated tissue collected from 10 different potato tubers are shown.

