
University of Tartu
Faculty of mathematics and computer

science
Institute of computer science

Specialty of computer science

Pavel Tomozov

Crossword Construction using Constraint
Satisfaction and Simulated Annealing

Bachelor thesis (6 EAP)

Supervisor: Mare Koit

Author: …..................................... …. mai 2013
Supervisor: …..................................... …. mai 2013

Allowed to defense
Professor: …..................................... …. mai 2013

Tartu 2013

Table of contents
Introduction..3
1. Background and problem statement...3

1.1 About Crosswords..3
1.2 History of algorithms...5
1.3 State of the problem...5
1.4 Similar problems..6

1.4.1 N queens problem or more common eight queens problem.....................................6
1.4.2 Four colour map theorem ..6
1.4.3 Sudoku..7

2. Program and algorithms description...8
2.1 Program description...8
2.2 Algorithms description...9

2.2.1 Constraint Satisfaction Method..9
2.2.2 Greedy algorithm...15
2.2.3 Implementation of CSP for crossword construction..15
2.2.4 Simulated annealing...17
2.2.5 Simulated annealing implementation...19

3. Analysis..20
3.1 Test cases..20
3.2 Test results and analysis...20

4. Future plans..21
5. Conclusion..21
6. Addendum...21
6. Ristsõna koostamine kasutades CSP ja SA...22
7. References..23
8. Non-exclusive licence to reproduce thesis and make thesis public......................................24

2

Introduction
The main goal of this thesis is to create a crossword generating program, which uses two
different algorithms, and then carry out an analysis of its effectiveness. The material will be
used in the Artificial Intelligence I course in order to demonstrate students AI problems and
their possible solutions, precisely constraint satisfaction method and simulated annealing.
And also show the difference in their work and compare their effectiveness.

Chapter I begins with some general words about a crossword and algorithms, giving short
remark on their history and development. Then the chapter proceeds to the short thesis
description (why it is done, what the purposes and goals to achieve are). In the paragraph 1.4
there will be given some examples of similar problems and their possible solutions.

Chapter II will deal with program and its work description, giving a closer look at what
program is capable of. In the second part a detailed description of algorithms that program
uses will be given , from general to specific.

Chapter III gives an overview of the analysis. It begins with general description of test cases
in paragraph 3.1. In paragraph 3.2 the results of these test along with the results of the
analysis, algorithms effectiveness comparison will be presented.

Chapter IV contains the author's thoughts on the future development of the program.

Chapter V gives a brief overview of the work done and the results achieved.

The short overview of the thesis in Estonian language is provided in the end.

Program, user guide, tested grids and dictionaries are provided on the DVD.

1. Background and problem statement

1.1 About Crosswords

Crossword puzzles are said to be the most popular and widespread word game in the world,
yet have a short history. The first crosswords appeared in England during the 19th century.
They were of an elementary kind, apparently derived from the word square, a group of words
arranged so the letters read alike vertically and horizontally, and printed in children's puzzle
books and various periodicals. In the United States, however, the puzzle developed into a
serious adult pastime.

The first known published crossword puzzle was created by a journalist named Arthur Wynne
from Liverpool, and he is usually credited as the inventor of the popular word game.
December 21, 1913 was the date then this game appeared in a Sunday newspaper, the New
York World. Wynne's puzzle (see Figure 1 below) differed from today's crosswords in the
way that it was diamond shaped and contained no internal black squares. During the early
1920's other newspapers picked up the newly discovered pastime and within a decade
crossword puzzles were featured in almost all American newspapers. During this period
crosswords began to assume their familiar form. Ten years after its rebirth in the States it
crossed the Atlantic and re-conquered Europe.

3

The first appearance of a crossword in a British publication was in Pearson's Magazine in
February 1922, and the first Times crossword appeared on February 1st 1930. British puzzles
quickly developed their own style, being considerably more difficult than the American
variety. In particular the cryptic crossword became established and rapidly gained popularity.
[18] Currently there exist four major crossword types: American, British, Swedish (or
Scandinavian) and Japanese-style crosswords, which differ in grid construction, clue types
and filling rules (with respect to the language). Note: the program made for this thesis is
capable of constructing American, British and Japanese-style grids.

With the appearance of computers and the internet crossword became even more easily
accessible, but on the other hand less popular. There are several reasons for such loss of
popularity. First of all, the design of the puzzle itself is not very suitable for the computer
screen, especially for the mobile devises. The whole grid with clues will not fit on the screen
forcing user to scroll up and down numerous times, which is not a pleasant activity. Secondly,

4

Figure 1 : First crossword [19]

internet offers a variety of other spare-time activities that attract people more than crossword
solving. As a proof take a look at how many people play “Farm Frenzy” or “Angry Birds”
and compare with a number of people solving crosswords. Thirdly, crossword is a difficult
puzzle, that requires knowledge in different areas, thus scaring away even more people.

In conclusion, crossword puzzle is a good spare-time activity, which unfortunately is not that
widespread now as it was in the past.

1.2 History of algorithms
An algorithm is a specific set of instructions for carrying out a procedure or solving a
problem, usually with the requirement that the procedure terminates at some point. Specific
algorithms sometimes also go by the name method, procedure, or technique. The word
"algorithm" is a distortion of al-Khwārizmī, a Persian mathematician who wrote an influential
treatise about algebraic methods. The process of applying an algorithm to an input to obtain
an output is called a computation.

Until 1920 all algorithms were considered to be concrete and positive, thus no formal
definition existed. It was given in 1936 by Alan Turing and Alonzo Church and now is known
as Church-Turing thesis, which states that a function is algorithmically computable if and
only if it is computable by a Turing machine (or by using λ-calculus, or by using recursive
functions). As a side remark, Church-Turing thesis is actually a hypothesis, since it has not
been formally proven, but now it is near-universe accepted. This thesis allowed scientists to
determine whether there exists an algorithm for solving given task or not, and if it exists,
show how it can be computed [10,17].

Concerning computer algorithms, the first such algorithm was written by Ada Lovelace in
1842. It was an algorithm for analytical engine to compute Bernoulli numbers. But at that
point of time there was no way to confirm if this algorithm worked properly and if it worked
at all. The major steps were taken after first computers appeared in late 1940s [16]. Over the
next couple decades a lot of different algorithms, that are now widely used, were designed.
For example, such algorithms known to anyone acquainted with computer science like:
Kruskal's algorithm, Dijkstra's algorithm, quicksort, A* and many others. Although it might
seem that with so many algorithms we can solve any problem, it is not so. There are tasks
which ca not be solved algorithmically and tasks for which algorithm has not been found yet
or its absences confirmed.

1.3 State of the problem
The main goal of this thesis is to create a program that allows constructing crosswords, using
two different algorithms. Given a grid and a text file with words (dictionary), the program
should search for suitable words from a dictionary to fill the grid. The program should be able
to complete this task in two different ways, in this case using constraint satisfaction method
(CSM) with greedy algorithm and simulated annealing.

This task is considered to be a NP-complete problem, it is both in the set of NP and NP-hard
problems. The abbreviation NP stands for non-deterministic polynomial time. A formal
definition [4] :

A decision problem C is NP-complete if:

1) C is in NP

2) Every problem in NP is reducible to C in polynomial time

5

The concept of NP-completeness was introduced in 1971 by Stephen Cook, though the term
NP-complete did not appear in his article. The name “NP-complete” was popularized by
Alfred Aho, John Hopcroft and Jeffrey Ullman in their textbook [8]. The solution to any NP-
complete problem is an algorithm that runs in superpolynomial time and it is unknown,
whether there exists a faster algorithm or not. But the certain techniques, such as
approximation, randomization, restriction, parametrization or heuristic, can be applied to give
a rise to substantially faster algorithms. However, it still remains unclear whether all
problems in NP can be solved as fast as they can be verified (in polynomial time) or there are
some problems that ca not be solved in polynomial time, but whose solution can be verified in
this time. This problem is called P versus NP problem and considered to be one of the major
unsolved problems in computer science [4].

Afore-mentioned algorithms were chosen mainly for educational purposes, since construction
of the fastest algorithm is not a goal of this work. Along with other similar Artificial
Intelligence problems, like N queens problem, map colouring and Sudoku solving (which is
also NP-complete problem), crossword construction is a good example of simple, yet
nontrivial task.

The choice of CSM with greedy algorithm is obvious. If there are no constraints, the program
will simply try to fill each entry by placing up to all, and that means also the words that are
of inappropriate length, words in vocabulary until it finds first suitable or runs out of words.
For example, by putting constraints on words length and already filled letters, the
construction time can be drastically reduced.

The simulated annealing was chosen with intention to show that the same problem can be
solved in different ways and also to illustrate the difference in algorithm processing and its
effectiveness. In addition, simulated annealing is quite similar to greedy algorithm, thus
making their comparison a bit easier, but more interesting.

1.4 Similar problems
In this section some examples of Artificial Intelligence problems will be given, which can be
solved in a similar way.

1.4.1 N queens problem or more common eight queens problem
This is a problem of placing eight (n) chess queens on 8x8 (nxn) chessboard, so that there are
no two queens sharing the same row, column or diagonal. The eight queen puzzle was
designed by the chess player Max Bezzel in a year 1848. In 1850 the first solution was
provided by Franz Nauck, who also generalized the problem to n queens. Over the years
different solutions were developed using different techniques, such as constraint
programming, logic programming and genetic algorithms.[6]

The algorithm design for solving this problem is quite similar to the crossword construction
algorithm. It can be done with naïve brute-force search, but will require large amount of time
and resources. Also it will not give any results for bigger n. It can be refined by restricting
each queen placement to a single row or column. Also the solution can be found by using
other algorithm work result (n rook placement on nxn board) and putting an additional
constraint (diagonal attack) on it.

1.4.2 Four colour map theorem
The theorem states that, given any plane separated on arbitrary number of contiguous regions,

6

called map, at most four colours are required to colour this map in such way, that no two
adjacent (regions are adjacent if they share a common border) regions are of the same colour.
The five colour version of this theorem was proven in 1890 by Heawood, whereas the four
colour theorem itself was proven in 1976 by Kenneth Appel and Wolfgang Haken. This was
the first major theorem, which was proven using a computer.[5]

From this theorem comes a very common exercise in algorithm design. Given an arbitrary
map, colour it with four colours, such that non two adjacent regions are of the same colour.
This task can be solved by using CSP and forward checking.

1.4.3 Sudoku
The logical puzzle, which goal is to place numbers from 1 to 9 into 9x9 grid in such way, that
every row, column and 3x3 sub-grid contains all digits from 1 to 9. An initial grid typically
has some digits written, which results in the unique solution. First Sudoku-like puzzles
appeared in late 19th century, more precisely on November 19, 1892 the first such puzzle was
published and on July 6th, 1895 the improved version of it. The modern version of Sudoku
was first published in 1979, but popularization began only in 1986 from Japan and became
worldwide in 2005.[1]

Sudoku can be solved by using a simple brute-force algorithm that undoubtedly takes a lot of
time and resources. On the other hand, it can be solved with the help of constraint
programming and backtracking algorithm or as an alternative to constraint an exact cover can
be used.

7

2. Program and algorithms description
In this chapter detailed description of the program and algorithms implied will be given.

2.1 Program description
The program was written in Java, an object-oriented programming language. Java was chosen
since it is one of the most popular programming languages at this point of time and is used in
teaching object-oriented programming at University of Tartu. Also it allows designing
considerably intuitive user interface, which is an important part of this program because of
the grid construction.

The program is capable of constructing a crossword grid on a field of arbitrary nxm size. By
pressing a “New” button a user can set these parameters in a pop-up window. After it is done,
an empty field of a set size is created and a user can then make entries in it by clicking on the
initial point and then on the end point. When created, entries are coloured grey, while the rest
of the grid is black and can not be filled with any symbols. The program as well allows a user
to save created grids in .cw format file and, as follows, load saved grids if it is needed. This
option contributes to faster testing and eases-up the demonstration.

After grid is created a user should press the dictionary button and choose a dictionary from
which his grid will be filled with words. The program works with dictionaries in .txt format,
where every word appears on a new line. After dictionary is chosen it is loaded in memory
and ready to use. The size of dictionary is not limited, but user must keep in mind that more
input data always leads to more time and system resources required to complete the task.

Once a grid is done and a dictionary is loaded a user should press the “Solve” button and
choose a method with which the grid shall be filled. If his choice is CSM, then a user should

8

Figure 2: A program in work

choose the corresponding entry in the first drop box. For simulated annealing a user should
do exactly the same. Then a user should choose heuristic (if needed). After that the program
proceeds to work. If it is possible to fill the given grid with words from a chosen dictionary,
the program will end its work with a filled grid and no additional messages. Otherwise, a pop-
up window will appear reporting that algorithm failed to fill the given grid, thus one must
create a new grid or change a dictionary.

2.2 Algorithms description
In this section a detailed description of implemented algorithms will be given.

2.2.1 Constraint Satisfaction Method
Often referred to as constraint satisfaction problem (CSP). As it may be inferred from the
name, this set of problems deals with constraints. These constraints are not different from
those we encounter in a real world. Constraints surround us every day, such as temporal
constraints (managing work and home life), or tangible constraints (making sure we do not go
over budget), and we figure the ways to deal with them to varying success. If we are not
satisfied with the result and run into problems, especially with solutions that may work, but
due to our limited capacity to deal with a large amount of data, can not be resolved. This is an
area where computers, and more specifically, constraint satisfaction problems (CSPs), are
necessary.

Like most problems in artificial intelligence (AI), CSPs are solved through search. What
makes CSPs unique, however, is the structure of the problem. Unlike other AI problems, there
is a standard structure to CSPs that allows general search algorithms using heuristics (with
knowledge about the structure of the problem and not necessarily domain-specific
knowledge) to be implemented for any CSP. In addition to this, all CSPs are also
commutative - they can be searched in any order and still give the same result. These special
and defining characteristics make CSPs both interesting and worthwhile to study.

CSPs are very useful, when dealing with temporal or combinatorial problem, solving logical
puzzles, among other things. Further some examples of CSPs application in various areas are
given:

– Operations research (scheduling, timetabling)

– Bioinformatics (DNA sequencing)

– Electrical engineering (circuit layout)

– Telecommunications (CTVR @ 4C)

– Hubbell telescope/Satellite scheduling

Generally speaking, CSPs are a rather recent formulation. There is not extensive published
literature on the subject, but they are widely studied and their applications will continue to
increase.

The formal definition of CSP includes variables, their domains and constraints. Assume that
we have a set of variables [X1, X2, … Xn]. Each variable has a domain [D1, D2, … Dn], such
that all variables Xi have a value in their respective domain Di. There is also a set of
constraints [C1, C2, … Cn], such that constraint Ci restricts (puts a constraint on) the possible

9

values in the domains of subset of some variables. A solution to a CSP is an assignment of
every variable with some value in its domain, such that every constraint is satisfied.
Therefore, each assignment (a state change or step in a search) of a value to a variable must
be consistent: it must not violate any of the constraints [11].

As in any AI search problem, there can be multiple solutions (or none). To address this, a CSP
may have a preference of one solution over another using some preference constraints (as
opposed to all absolute constraints), want all solutions, or the optimal solution, given by an
objective function. Optimizing a CSP model will be explained later in the thesis.

This explanation of constraint programming will only touch on problems that have finite
domain variables. This means that the domains are a finite set of integers, as opposed to a
real-valued domain that would include an infinite number of real-values between two bounds.

As mentioned, the structure of the CSP is the most important part of it since the same
algorithms can be used to search any CSP. Since we know that the structure is standard across
all CSPs, we can take a look at heuristics that are able to operate on all different types of
problems. However, this does not mean that all algorithms are equally tractable and efficient
on all sorts of problems. Currently, the decision of the use of an algorithm for a certain
problem is determined empirically.

A constraint is considered as n-ary if it involves n variables. So if a constraint affects just a
single variable, it is considered as unary. Unary constraints can be dealt with as a
preprocessing step. Constraints that involve two variables are binary constraints and are of
particular interest for two reasons. The first reason is that they can be modeled as a constraint
graph, where the nodes of the graph represent the variables and an edge connects two nodes if
a constraint exists between the two variables. The second reason is that a constraint of higher
arity (the number of variables involved in a constraint) can always be reduced to a set of
binary constraints. However, it does not mean that this is always a good idea. In some cases,
the number of binary constraints for a problem can be exponential, thus creating an
intractable model. More complex constraints, with arity > 2, are called global constraints. A
simple example of a global constraint is the Alldifferent constraint; this constraint forces all
the variables it touches to have different values (Note: It is easy to see how this particular
global constraint could be decomposed into many "not equal" binary constraints.) [11].

Deciding on the variables to be included in a model of your problem is usually not too
difficult: there are the obvious variables that must be assigned values for a solution to exist
(decision variables) and variables that help to make the problem more efficient or contribute
to some objective function. While tricks can be used (such as was earlier when the queens
were represented as rows) to increase performance, they are just that.

A part of any search algorithm is choosing a variable that has not been instantiated yet and
assigning it a value from its domain. There are both static and dynamic variable ordering
heuristics available to decide “how” to choose this next variable. One such heuristic is MRV
(minimum-remaining values), which comes from the fail-first principle. The MRV heuristic
selects from the set of unassigned variables the next variable with the fewest remaining
values in its domain [11]. Essentially this allows us to discover a dead end sooner than we
would have and as a result reduce the overall size of our search tree. This heuristic becomes
much more useful when dealing with a problem with noticeable variances in the cardinality of
domains, both during the preprocessing and (dynamically) as the search progresses.

Another heuristic for variable ordering, often used as a tie-breaker is the degree heuristic.
This heuristic attempts to choose the unassigned variable that is involved in the most
constraints with other unassigned variables. This reduces the number of children of each node

10

in the search tree by decreasing the domain sizes of other variables.

After we have a variable, we must assign it a value. The way in which we choose values, or
value ordering, is also important because we want to branch as often as possible towards a
solution (though value ordering is a waste of time if we are looking for all solutions). The
most popular heuristic for choosing a value is LCV, or least-constraining value. The idea is to
choose the value that would eliminate the fewest values in the domains of other variables and
thus hopefully steer the search away from a dead end [11]. In other words, it leaves the most
possible number of values to by assigned further on.

Searching a CSP involves firstly choosing a variable and then assigning a value to it. In a
search tree, each node is a variable and branches leading away from that node are the
different values that can be assigned to that variable. Therefore, a CSP with n variables will
generate a search tree of depth n. Successors are generated for only the current variable and
the state of the problem is appended each time the search branches.

If we consider a simple depth-first search on a CSP (Figure 3), we realize that because of the
constraints we have imposed, at some point during our search we may be unable to instantiate
a variable because its domain is empty. In the case that we arrive at a node where the goal test
returns false (there are still unassigned variables) and there are no branches leading away
from that node, we must go backward. This is called backtracking and it is the most basic of
searches for CSPs. A variable is assigned a value and then the consistency of that assignment
is checked. If the assignment is not consistent with the state of the problem, another value is
assigned. When a consistent value is found, another variable is chosen and this is repeated. If
all values in the domain of a variable are inconsistent, the algorithm will backtrack to the
previous assignment and assign it a new value [11].

When backtracking search chooses a value for a variable, it checks to see whether that
assignment is consistent with the constraints on given problem. It is clearly not very efficient.
Consider a simple graph-colouring problem. If there is an edge between two nodes, then once
we assign a colour to one of these nodes, we know that choosing the same colour for the other
will not be consistent; therefore, we must temporarily remove the values from the domains of

11

Figure 3: An example of backtracking for 4-queens problem [14]

yet unassigned variables that are not consistent with the current problem state with the new
assignment.

The forward checking algorithm does just this. Every time an assignment is made to a
variable, all other variables connected to the variable (that is currently being instantiated) by
constraints are retrieved and the values in their domains which are inconsistent with the
current assignment are temporarily removed [11] (Figure 4). In this way the domain of a
variable can become empty and another value must be chosen for the current assignment. If
there are no values left with which to assign the current variable, the search may need to
backtrack, in which case those values that were temporarily removed as a result of the
original assignment are reinstated to their respective domains. Forward checking is able to
predict, in a sense, what assignments will lead to a failure and can act accordingly by pruning
branches. It will, of course, encounter these inconsistencies much sooner than backtracking,
especially when used in conjunction with the fail-first heuristic described earlier.

Local search for AI problems involves making a complete assignment of variables and then
switching (flipping) a value for a variable and checking to see if we have found a solution. It
is not different in constraint programming. Assignments are made to all our variables, but
these assignments will not be consistent with the constraints on the problem. In local search,
each node in the search tree is a complete assignment, with branches involving flipping
different variables within the complete assignment until a solution is found. Local search
works very well for some types of CSPs. The most popular heuristic for local search in CP is
min-conflicts. When min-conflicts flips one of the variables in the assignment, it will choose
a value for that variable that results to the minimum number of conflicts with other
assignments. Thus we have some idea of progress in our local search. The min-conflicts
algorithm pseudocode presented below [11] :

 algorithm MIN-CONFLICTS
 input: csp, a constraint satisfaction problem
 max_steps,the number of steps allowed before giving up
 current_state, an initial assignment of values for the variables
in the csp
 output: a solution set of values for the variable or failure
 for i=1 to max_steps do
 if current_state is a solution of csp then return current_state
 var <-- a randomly chosen variable from the set of conflicted
variables CONFLICTED[csp]

12

Figure 4: An example of forward checking for 4-
queens problem [14]

 value <-- the value v for var that minimizes
CONFLICTS(var,v,current,csp)
 set var = value in current_state
 return failure

Forward checking utilizes a basic notion of consistency: an assignment to a variable is
consistent with other assignments given a set of constraints. K-consistency is a term that
defines the extent to which constraints are propagated. By definition, a CSP is K-consistent if
for any subset of k - 1 variables in the problem, and for any consistent assignment to those
variables, a consistent value can be assigned to any Kth variable.

In addition to a problem being K-consistent, it can also be strongly K-consistent, which means
it is consistent for K and all weaker consistencies less than K. The benefit of a strongly K-
consistent problem is that we will never have to backtrack. As with most things CSP,
determining the correct level of consistency checking for a given problem is done empirically.
Below, popular (node, arc and path) consistencies are discussed [11].

Node consistency is the weakest consistency check and simply assures that each variable is
consistent with itself; if a variable is assigned a value, the value must be in that variable
domain[11].

Arc consistency (AC, 2-consistency) is the most popular consistency and can be used either
as a preprocessing step, or dynamically as a part of the maintaining arc consistency (MAC)
algorithm. The simple definition of arc consistency is: given a constraint CXY between two
variables X and Y, for any value of X, there is a consistent value that can be chosen for Y
such that CXY is satisfied, and vice versa. Thus, unlike forward checking, arc consistency is
directed and is checked in both directions for two connected variables. This makes it stronger
than forward checking. Also note than any k-consistent problem can be reduced to a set of arc
consistencies.

When applied as a preprocessing step, arc consistency removes all values from domains that
are inconsistent with one another. If it is applied dynamically as MAC, the same algorithm
that is used to check AC for preprocessing is applied after every variable instantiation during
the search.

One of the most popular algorithms for arc consistency is AC-3 (Arc Consistency Algorithm
#3), developed by Alan Mackworth in 1977. This algorithm has the worst-time complexity of
O(ad3) and space complexity of O(a), where a is the number of arcs and d is the size of the
largest domain [11].

The easiest way to think about path consistency is to consider a triangle, with three points
labeled a, b, and c where edge(a, c) is not a solid line. It represents a problem where there
are constraints between a and b, and b and c. Path consistency considers triples of variables,
so that while a and c are not explicitly constrained, there is a constraint induced on them
through the transitive nature of their constraints involving b [11]. Thus our triangle is an easy
representation of this relationship. If the constraints are that a > b and b > c, it is clear that
there is an implicit constraint between a and c, such that a > c. 3-consistency, though
obviously stronger than arc consistency, is not generally used. While arc consistency checks
pairs of variables for consistency, path consistency must check all triples of variables for a
large problem, it is easy to see that the number of combinations is potentially huge. In the
worst-case time, the complexity is O(d3, n3).
Studying the phase transition for a type of problem allows us to locate where the

13

fundamentally hard CSP and SAT problems are. In the context of a CSP, constraint tightness
refers to the number of instances where, given a constraint between two variables X and Y,
the pair of values for X and Y are inconsistent. A phase transition is a phenomenon that is
observed by considering the graph of search effort against constraint tightness for many
instances of a problem as the constraint tightness of the problem increases from 0 to 1. As this
happens, the CSP will move from the part of the problem space that is underconstrained and
where there are many solutions to a space that is overconstrained and where problems are not
satisfiable.

The transition between the soluble and insoluble regions is referred to as the mushy region; a
term coined by B Smith and is populated both with problems that have a solution and those
that do not: it is in this region that the peak search effort is spent trying to find a solution that
exists with low probability. Because of this, phase transitions are important in the study of
NP-complete problems and can give some understanding, whether a problem is likely to be
easy or difficult. Phase transitions are not algorithm-specific.[12]

While modeling a CSP, it is common that one may encounter symmetry. Symmetry is defined
as an assignment, which is equivalent to another assignment; in other words, the assignments
are interchangeable [11]. If you consider these instances, it is easy to see that if one of these
assignments is consistent, then they all are. Hence it is possible to have classes of equivalent
solutions where different symmetrically equivalent assignments can be interchanged and one
can be assured a solution can be found for this "different" problem.

It is important to take notice of symmetries because they can be used to shorten search time
(by not searching symmetrically equivalent branches). "Breaking" symmetries or, as this is
called, can often be the difference in whether a problem is tractable or not. In order to exploit
this feature, additional constraints (called symmetry-breaking constraints [11]) must be added
to the model. These constraints (which are model-specific) must make sure that if one
assignment does not work, all symmetrically equivalent sets of assignments are automatically
ruled out (Figure 5).

14

Problems which must be optimized for a given constraint, represented by an objective
function, are solved in the same way as other CSPs. When a solution is encountered, it will be
associated with it some "ranking" value for the objective function. The search continues to
find all solutions and then chooses the solution with the most optimal value. It can be said that
for every solution found, if for some objective function the value is more optimal than the
previous one found, that solution is saved until all solutions have been found. This idea is also
referred to preferred constraints.

The most common objective functions are minimize and maximize. These functions try to
minimize a given constraint (or variable) or maximize it. An example of a constraint is a
linear equation between two variables, x and y. The constraint may be that x + y > 100, but
we want to maximize this constraint for x or y, so that we find the largest value(s), which
satisfy the all the constraints of the problem.

Scheduling problems are obvious places where objective functions will pop-up. As an
example, we could look at the person who works at a grocery store that is open from 7am to
2am. Certainly, that person would not want to work one night from 6pm-2am and then the
next morning from 7am-3pm. Using an objective function to create a schedule where all shifts
are covered by employees, but minimizing the number of consecutive night-morning shifts
would certainly be very useful.

Branch and bound is an optimizing method for solving CSPs that are too large (whether it be
in the number of variables and constraints or the complexity of the constraints) to search all
the solutions. The idea borrows from that of partitioning; the first solution to the problem is
found (and along with it, some evaluation) and a constraint is added on the objective function
to form a "subproblem" of the original so that the subproblem will be searched for the first
solution found again and repeated until some optimal solution for a minimizing/maximizing

15

Figure 5: Example of symmetry in 4-queens problem [15]

function is found or there are no more solutions left. The creation of a new subproblem from
the original is the branching part of the algorithm, while the bounding is the use of the
evaluation for a solution to bound the new constraint. While this approach to large problems
that need to be optimized is practical for real constraints like time and space, it is also more
efficient. Once you have a bound, the search can stop before finding a solution if it knows
that the evaluation will not be as low as one previously found.

2.2.2 Greedy algorithm
A greedy algorithm is an algorithm that follows the problem solving heuristic of making a
locally optimal choice at each stage with hope of finding a global optimum. In many
problems, a greedy strategy does not, in general, produce an optimal solution, but nonetheless
a greedy heuristic may yield locally optimal solutions, which then can be used to find a
globally optimal solution.
In general, greedy algorithms have five components [2]:

1. A candidate set, from which a solution is created
2. A selection function, which chooses the best candidate to be added to the solution
3. A feasibility function, that is used to determine better candidates
4. An objective function, which assigns a value to a solution, or a partial solution
5. A solution function, which will indicate when we have discovered a complete solution

Greedy algorithms produce good solutions for the problems with following properties:
1. There is no need to reconsider algorithms decision
2. A problem has an optimal structure (an optimal solution to the problem contains

optimal solutions to the sub-problems)

2.2.3 Implementation of CSP for crossword construction
CSP implementation is not that hard. Constraints are defined as follows: to fill the entry word
must be of the same length, if entry contains any letters at some positions, then the candidate
word must also contain these letters at the same positions. Thus, the search space, and as a
result time, for finding every candidate word is reduced. As can be noticed there are no
complex constraints defined. Generally, defining constrains for a problem is intuitive.

The search algorithm itself applies greedy heuristic search. Heuristics defined in this method
are consonant count and pairwise distance. Consonant counting heuristic defines candidate
word cost by counting the number of consonants in it. The more consonants in a candidate
word, the higher its cost (following code illustrates this heuristic).

 for(int i = 0; i < ls.length(); ++i) {

 char c = ls.charAt(i);

 if(c != 'a' && c != 'e' && c != 'i' && c != 'o' && c != 'u' && c != 'y')

 count++;

 }

 return count;

Here ls stands for a candidate word and count is the cost of this word, which will be used by
algorithm to make a decision.

16

The pairwise distance heuristic uses the principle of hamming distance. It counts the numeric
difference between the first word's letters and the second ones. This number is then added to
the considered word cost. The operation continues until all candidates are considered. The
following code shows this heuristic implementation :

 public static int getHammingDistance(String s1, String s2) {

 int d = Math.abs(s1.length() - s2.length());

 int commonLength = Math.min(s1.length(), s2.length());

 for(int i = 0; i < commonLength; ++i) {

 d += Math.abs(Character.getNumericValue(s1.charAt(i)) -
Character.getNumericValue(s2.charAt(i)));

 }

 return d;

 }

 @Override

 public int getCost(String s) {

 int cost = 0;

 for(String m : matched) {

 cost += getHammingDistance(s, m);

 }

 return cost;

 }

The first part of this code computes the hamming distance between two words. First of all, it
makes sure that words of different length were not considered as words of the same length
(e.g. clear and clearly). Then it proceeds to count the hamming distance as it was described
earlier. The second part computes the cost of the considered word, s responds to this word in
code.

Based on the chosen heuristic, greedy algorithm then takes an optimal solution, the one with
highest cost, at each step (in this case a step is filling one entry). As a result, this algorithm
does not guarantee that the found solution is optimal (that there is no better solution).

2.2.4 Simulated annealing
Simulated annealing is a technique for combinatorial optimization problems, such as
minimizing functions of very many variables. Because many real-world design problems can
be cast in the form of such optimization problems, there is intense interest in general
techniques for their solution. Simulated annealing is one such technique which has recently
appeared, it was introduced independently by Kirkpatrick, Gellat and Vecchi in 1983, by

17

Cerny in 1985 and is an adaptation of the Metropolis-Hastings algorithm, a Monte Carlo
method to generate a sample states of a thermodynamic system, invented by Rosenbluth and
published by Metropolis in 1953, with an unusual pedigree: it is motivated by an analogy to
the statistical mechanics of annealing solids.[7,9,13] To understand why such a physics
problem is of interest, consider how to coerce a solid into a low energy state. A low energy
state usually means highly ordered state, such as a crystal lattice; a relevant example here is
the need to grow silicon in the form of highly ordered, defect-free crystals for use in
semiconductor manufacturing. To accomplish this, the material is annealed: heated to a
temperature that permits many atomic rearrangements, and then cooled carefully, slowly, until
the material freezes into a good crystal. Simulated annealing techniques use an analogous set
of “controlled cooling” operations for nonphysical optimization problems, in effect
transforming a poor, unordered solution into highly optimized, desirable solution. Thus,
simulated annealing offers an appealing physical analogy for the solution of optimization
problems, and more importantly, the potential to reshape mathematical insights from the
domain of physics into insights for real optimization problems.

Interest in such solution techniques is intense because few important combinatorial
optimization problems can be solved exactly in a reasonable time. Many optimization
problems arising in practice are NP-complete: all known techniques for obtaining an exact
solution require an exponentially increasing number of steps as the problems become larger.
Hence, emphasis has been directed toward heuristic techniques for solving these important
problems. The difference between a heuristic and an algorithm is that a heuristic is not
guaranteed to get the optimum answer: heuristics are designed to give an acceptable answer
for typical problems in a reasonable amount of time. In practice, however, the terms
algorithm and heuristic are often used interchangeably. Moreover, simulated annealing is not
an algorithm in the sense that it prescribes a mechanical sequence of computations to solve a
specific problem, for example, in the sense that Gaussian elimination is an algorithm for
matrix inversion. Rather, annealing is a strategy or style for solving combinatorial
optimization problems. Specifically, simulated annealing is a heuristic solution strategy
applicable to a wide variety of optimization problems.

The main idea of simulated annealing is: given an arbitrary initial state s consider at random
its neighbour state s', if a new state is better than the initial, then go there, otherwise use
probability function P to decide, whether go there or not. This operation is repeated until an
acceptable state is reached or algorithm used allowed number of steps. Eventually, a
probability of going to a worse state decreases (similar to temperature cooling).

The neighbours of a state are new states of the problem that are produced by changing a given
state in some well-defined way. The way in which the states are changed is called “move”.
Moves usually result in minimal changes of the last state in order to help the algorithm keep
the better parts of the solution. Simple heuristics proceed by taking the best neighbour after
the best neighbour and stop when they have reached a solution which has no neighbours that
are better solutions (e.g. greedy algorithm). The problem of this approach is that the
neighbours of a solution found this way may not have any better states among them, however,
this does not mean that there is no better solution. That is why the best solution found this
way is called “local optimum”,while actual best solution – “global optimum”. Compared to
that, simulated annealing accepts worse solutions as well (with some probability P()), in order
to avoid getting stuck in “local optimum”. As a result, if the algorithm is run for an infinite
amount of time, the global optimum will be found.

A probability of making a transition (move) from the current state s to a new state s' is
specified by an acceptance probability function P(e, e', T), where e=E(s) and e=E(s') are the
energies of the states, and T is a global time variable called the temperature. States with

18

smaller energy are preferred. The probability function P must be positive even when e'>e.
This feature prevents thr method from becoming stuck at a local minimum that is worse than
the global one.

When T tends to zero, the probability P must tend to zero if e'>e and to a positive value
otherwise. For relatively small values of T, the method will favor moves that go “downhill”
and avoid those that go “uphill”. With T=0 the method reduces to the greedy algorithm,
which makes only the downhill transitions. Originally, the probability P was equal to 1 when
e'<e, the algorithm moved downhill when it found the way to do so, despite the temperature.
This condition is not essential for the method to work, but is still used in many descriptions
and applications of simulated annealing.

The function P is usually chosen in such way that the probability of accepting a worse move
decreases while the difference e'-e increases, so that no large moves uphill are made. This is
an alternative requirement, to the previous one, for this method to work.

The temperature T plays a major role in defining probability P, precisely, the higher is the
value of T, the higher is the probability P of changing a state to a worse one and other way.
Temperature initially starts at high values, gradually decreasing with each algorithm step to
zero. In this way, the system is expected to wander initially towards a broad region of the
search space containing good solutions, ignoring small features of the energy function; then
drift towards low-energy regions that become narrower and narrower; and finally move
downhill.

The following pseudocode illustrates simulated annealing [3] :
s s0; e E(s) // ← ← Initial state, energy.
sbest s; ebest e // ← ← Initial "best" solution
k 0 // ← Energy evaluation count.
while k < kmax and e > emax // While time left & not good
enough:
 T temperature(k/kmax) // ← Temperature calculation.
 snew neighbour(s) // ← Pick some neighbour.
 enew E(snew) // ← Compute its energy.
 if P(e, enew, T) > random() then // Should we move to it?
 s snew; e enew // ← ← Yes, change state.
 if enew < ebest then // Is this a new best?
 sbest snew; ebest enew // ← ← Save 'new neighbour' to 'best
found'.
 k k + 1 // ← One more evaluation done
return sbest // Return the best solution found.

In order to apply the simulated annealing to a specific problem, one must fix the following
parameters: the state space, the energy function E(), the candidate generator neighbour(), the
acceptance probability function P(), initial temperature and annealing schedule temp(). Each
of those parameters has a significant influence on effectiveness of the method. Unfortunately,
there are no universal choices for those parameters. One must set them empirically, using
some general guidelines.

Simulated annealing may be modeled as a random walk on a search graph, whose vertices are
all possible states and edges are the candidate moves. An essential requirement is that the
diameter of the search graph has to be small. For each edge (s,s') of the search graph a
transition probability must be defined (probability that the SA algorithm will move form the
current state s to s'). This probability depends on the current temperature, order in which
candidate moves are generated and acceptance probability function P(). The specification of
neighbour(), P(), and temp() is partially redundant. In practice, it is common to use the same

19

acceptance function P() for many problems, and adjust the other two functions according to
the specific problem.

2.2.5 Simulated annealing implementation
Simulated annealing is implied as it was described earlier. It selects a random neighbour of
the current state. If it is a better solution, algorithm takes it as a current solution, otherwise it
accepts it with some probability defined by the following function :

Math.exp((cost - currentSolutionCost) / t);

Where cost responds to the considered neighbour's cost and t is temperature. Both current and
candidate solutions are evaluated by the TargeFunction, which implies pairwise distance
heuristics. New candidates are found using chosen heuristic function, consonant or hamming
distance heuristic (both described in CSP implementation). Eventually temperature decreases
as well as the probability of accepting bad candidates. Temperature schedule is defined by the
following code :

 public boolean done() {

 return next < minimum;

 }

 public double nextTemperature() {

 double result = next;

 next *= alpha;

 return result;

 }

Where alpha is a temperature decreaser and minimum is the temperature, reaching which an
algorithm stops its work with solution it got to this point (if it got any). The danger here is
that a temperature schedule is not defined well enough, the algorithm may not find an optimal
solution in reasonable time (high initial temperature or slow cooling) or it may stuck in local
optimum (low initial temperature or cooling too fast). As it was mentioned earlier, these
parameters can only be determined empirically.

20

3. Analysis

3.1 Test cases
To determine algorithm effectiveness, one should run tests with different input data. In this
case, input data is represented by grids and dictionaries of different size. For this thesis three
different grids of size 10x10 (test2, test3, test4) and one grid of size 5x13 (test1) were made.
Test2 grid has ten words, which have double interceptions. Test3 grid has six isolated words.
Test4 grid has nine words and only single interceptions (one word intercepts only with one
another). Test1 grid has nine words and is an example of a “non-standard” grid.

Three dictionaries were used in test, one containing 190 words (small), second – 999 (mid)
and last one containing 58112 words (big). Grids were built in such way, that allows to show
the difference between algorithm operation time and trace some dependencies in their work
efficiency. Dictionaries were chosen to show how algorithm operation time depends on input
data amount.

The tested grids and dictionaries are provided with program on the DVD.

3.2 Test results and analysis
The results of tests are provided in the table below. They illustrate operation time of program
using different combinations of input date (grids, dictionaries), algorithms (CSP with greedy
search, simulated annealing) and heuristics (consonant count, pairwise distance). The results
are provided in seconds.

Algorithm/Grid test
1

test
1

test
1

test
2

test
2

test
2

test
3

test
3

test
3

test
4

test
4

test
4

CSP1 0,8 0,3 61,2 0,4 8,2 215,
7

0,06 0,07 3,6 0,3 7,8 1

CSP2 0,08 31,8 0,5 1,8 * * 0,07 0,1 3,7 0,08 90 1,2
SA1 1,3 0,8 62,2 1 8,1 232,

3
0,5 0,5 32,6 0,4 7,9 3

SA2 0,3 32,2 3,2 2,1 * * 0,5 0,5 31,7 0,3 90,5 4,4
Dictionaries sma

ll
mid big sma

ll
mid big sma

ll
mid big sma

ll
mid big

Table 1: Test results (in seconds)

In this table CSP1 responds to CSP with greedy algorithm using consonant count heuristic,
CSP2 is the same method, but with pairwise difference heuristic, SA1 is simulated
annealing with consonant count heuristic and SA2 – same method with pairwise difference
heuristic (the detailed description of algorithms and heuristics is given is sections 2.2.3 and
2.2.5). * means that program could not find a solution in reasonable amount of time.

As one may see, given the same input parameters, simulated annealing method takes more
time to find a solution, than CSP with greedy algorithm. This may be explained by the fact
that SA has to perform additional actions, such as probability and temperature computations.

21

As it was expected, with more quantity of input data both algorithms operation time
increases, but besides the input size, there are other parameters that have impact on
algorithms operation time. These parameters are a grid structure (its size also impacts the
operation time, but it is similar to the dictionary size), a dictionary structure and its content.

A grid structure increases operation time in the following way: the more interceptions are
there, especially multi-interceptions (one word intercepts with two or more other words), the
more time it will take to fill it,and vice versa. Also, SA works slower than greedy algorithm,
with disconnected grids. That might be explained by the fact, that greedy algorithm just puts
the first suitable word into entry, while SA tries to find an optimal solution for each entry.

A dictionary structure, precisely how words are sorted, also impacts the operation time. Time
will increase, if the words considered by algorithm to have a highest cost are at the end of the
dictionary, thus making the algorithm to consider all possible candidates, and the other way
around.

A dictionary content will increase algorithms operation time if there is a lot of words of the
same length, in addition, if they have the same number of consonants (for consonant count
heuristic) or are quite of similar structure (for pairwise difference heuristic), the operation
time will increase even more, thus making algorithms to consider large numbers of
candidates, and vice versa.

4. Future plans
The program at its current state is a simple demonstration of possible solutions for crossword
construction. There are a lot of improvements to be done and new features to add. First of all,
optimize and improve algorithm, experiment with simulated annealing probability and
temperature, add a dictionary sort with respect to each heuristic. Then improve the user
interface, in particular grid part, so that it looks like a common crossword, published on
paper. Also, for better understanding of algorithms work, visualization can be done, precisely;
show how the algorithm is choosing the candidate words from a dictionary and then is placing
them into the grid.

5. Conclusion
As a result of this thesis, a simple demonstrative program, that constructs crosswords using
CSP with greedy algorithm and SA, was created. Efficiency of both algorithms was tested,
compared and analysed. Conclusions about what might influence their operation time were
made. Detailed algoritm descriptions along with some examples were provided. All together,
it makes this thesis acceptable as a good educational material for Artificial Intelligence I
course.

6. Addendum
All additional materials are provided on a DVD.

22

7. Ristsõna koostamine kasutades kitsenduste
rahuldamist ja libalõõmutamist

Selle töö eesmärk on luua programm, mis koostab ristsõnu, kasutades kahte meetodit:
kitsenduste rahuldamist (KR) ahne algoritmiga ja libalõõmutamist (LL), ning võrrelda nende
meetodite efektiivsust. Tööd hakatakse kasutama õppematerjalina aine Tehisintellekt I
õpetamisel.

Ristsõna koostamine on üks tehisintellekti probleemidest, mis kuulub NP-täielike klassi.
Seega hea lahenduse leidmine nõuab palju ressursse ja aega. Aga eksisteerivad meetodid, mis
võimaldavad lahenduse leidmise aega vähendada. Nende hulgas on ka KR ja LL.

KR kasutades seatakse antud ülesandele kitsendusi, mis teevad lahendamise lihtsamaks.
Ristsõna koostamisel kehtivad järgmised kitsendused:
1.Sõna ei saa olla lühem, kui ruutude järjend, kuhu seda pannakse.
2.Sõna ei saa olla pikem, kui ruutude järjend, kuhu seda pannakse.
3.Kui järjendis on mõned tähed juba olemas, siis sõna, mis pannakse sellesse järjendisse, peab
neid tähti sisaldama täpselt nendel samadel positsioonidel ja ei saa sisaldada mingeid teisi
tähti nendel positsioonidel.

Kui sõna rahuldab neid tingimusi, siis teda võetakse vastu ning ahne algoritm otsustab,
kasutades heuristilist funktsiooni, kas see sõna on parim lahendus selles olukorras.Niiviisi
püüab programm lõpliku sammude hulgaga optimaalse lahenduseni jõuda.

LL töötab nii: antud on suvaline algseisund s, leida tema naaberseisund s', kui uus seisund on
jooksvast seisundist parem, siis valida see, aga kui leitud seisund on jooksvast seisundist
halvem, siis kasutada tõenäosus funktsiooni P, et otsustada, kas valida seda seisundit või
mitte. Sellist operatsiooni korratakse kuni rahuldav lahendus on leitud või algoritm on juba
teinud lubatud arvu samme. Tõenäosus, et algoritm valib uueks seisundiks halvema seisundi
väheneb aja jooksul (kooskõlas nn temperatuuri alanemisega).

Meetodeid on testitud ja võrreldid, kasutades erinevaid heuristikuid.
Programm on kirjutatud keeles Java ja lisatud tööle DVD-l.

23

8. References
1.Christian Boyer “Sudoku's French ancestors”, Pour la Science, 2007.

2.T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, 3rd edition,
MIT, 2009.

3. S. Edelkamp, S. Schrödl, Heuristic search theory and application, Elsevier, 2012.

4. M.R. Garey, D.S. Johnson Computers and Intractability: A Guide to the Theory of NP-
completeness, W.H. Freeman & Company, 1979.

5. P.J. Heawood "Map-Colour Theorem", Quarterly Journal of Mathematics, Oxford 24: 332–
338, 1890.

6. E.J. Hoffman, J.C. Loessi, R.C. Moore Construction for the Solution of the m Queens
Problem. Mathematics Magazine, Vol. XX (1969), p. 66–72.

7. S. Kirkpatrick, C. D. Gelatt Jr., M. P. Vecchi, (1983). Optimization by simulated annealing.
Science, 220, p. 671-680

8. Donald Knuth, T. Larrabee, P.M. Roberts, Mathematical Writing § 25, 1989.

9. N. Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller,Edward
Teller, (1953). "Equation of State Calculations by Fast Computing Machines". The Journal of
Chemical Physics 21 (6): 1087

10. R. Prank. Matemaatiline loogika ja algoritmiteooria. TÜ kirjastus, 2004.

11. S. Russell, P. Norvig Artificial Intelligence A modern approach 3rd edition, Pearson
Education , 2009.

12. B. Smith. “Phase Transition and the Mushy Region in Constraint Satisfaction Problems.”
Proceedings of ECAI-94, pages 100-104, 1994.

13. V .Černý, (1985). "Thermodynamical approach to the traveling salesman problem: An
efficient simulation algorithm". Journal of Optimization Theory and Applications 45: 41–51.

14. Constraint Propagation.

http://ktiml.mff.cuni.cz/~bartak/constraints/propagation.html

15. The N-Queens Problem.

http://csc.columbusstate.edu/bosworth/SearchProblems/N_Queens.htm

16. Ada Lovelace, World's First Computer Programmer, Celebrated With Google Doodle

http://www.huffingtonpost.com/2012/12/10/google-doodle-ada-lovelace_n_2270668.html

17. Turing Machines.

http://plato.stanford.edu/archives/win2012/entries/turing-machine/

18. Inventor of the Week Archive.

http://web.mit.edu/invent/iow/crosswordhome.html

19. Fun's Word-Cross Puzzle

http://upload.wikimedia.org/wikipedia/commons/3/32/First_crossword.png

All links were last checked on 13.05.2013

24

http://ktiml.mff.cuni.cz/~bartak/constraints/propagation.html
http://upload.wikimedia.org/wikipedia/commons/3/32/First_crossword.png
http://web.mit.edu/invent/iow/crosswordhome.html
http://plato.stanford.edu/archives/win2012/entries/turing-machine/
http://www.huffingtonpost.com/2012/12/10/google-doodle-ada-lovelace_n_2270668.html
http://csc.columbusstate.edu/bosworth/SearchProblems/N_Queens.htm

9. Non-exclusive licence to reproduce thesis and
make thesis public

I Pavel Tomozov

(date of birth: 12.02.1990),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public, including
for addition to the DSpace digital archives until expiry of the term of validity of the
copyright, and

1.2. make available to the public via the web environment of the University of Tartu,
including via the DSpace digital archives until expiry of the term of validity of the
copyright,

Crossword Construction using CSP and SA.

supervised by Mare Koit,

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual property
rights or rights arising from the Personal Data Protection Act.

Tartu , 13.05.2013

25

	Introduction
	1. Background and problem statement
	1.1 About Crosswords
	1.2 History of algorithms
	1.3 State of the problem
	1.4 Similar problems
	1.4.1 N queens problem or more common eight queens problem
	1.4.2 Four colour map theorem
	1.4.3 Sudoku

	2. Program and algorithms description
	2.1 Program description
	2.2 Algorithms description
	2.2.1 Constraint Satisfaction Method
	2.2.2 Greedy algorithm
	2.2.3 Implementation of CSP for crossword construction
	2.2.4 Simulated annealing
	2.2.5 Simulated annealing implementation

	3. Analysis
	3.1 Test cases
	3.2 Test results and analysis

	4. Future plans
	5. Conclusion
	6. Addendum
	7. Ristsõna koostamine kasutades kitsenduste rahuldamist ja libalõõmutamist
	8. References
	9. Non-exclusive licence to reproduce thesis and make thesis public

