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Implementing and investigating a biologically re-
alistic neuron model

Abstract:

Calcium-based single neuron models have been shown to elicit different modes of
synaptic plasticity. In the present study one such model was implemented and its
learning behaviour studied.

Behaviour of the implemented neuron agreed qualitatively with prior work in all
regards except selectivity to correlation in input. The neuron was found to im-
plement a linear filter responding linearly to partial presentations of learned pat-
terns. Simulating probabilistic neurotransmitter release had an expected effect of
de-correlating input and was found to improve the efficiency of information trans-
fer. In the regimes explored, the neuron was found to be incapable of performing
principal component analysis. The insensitivity of results to changes in parameters
was mostly untested.

The neuron did not exhibit more advanced information processing capabilities
in the tests conducted. However, the implemented neuron model is capable of
meaningful information processing and forms a good basis for further research.

Keywords: single neuron model, numerical simulation, synaptic plasticity, unsu-
pervised learning, probabilistic neurotransmitter release

Bioloogiliselt realistliku neuroni mudeli ehitamine
ja uurimine

Liihikokkuvote:

On néidatud, et kaltsiumiioonide t661 pohinevad iiksikneuroni mudelid véimaldavad
erinevate siinaptilise plastilisuse vormide teket. Kéesolevas t60s koostati iiks selline
mudel ja uuriti mudeli 6ppimisvoimet.

Koostatud mudeli kiditumine kordas kvalitatiivselt varasemate uurimuste tulemusi,
vilja arvatud korreleeritud sisendmustrite korral. Leiti, et neuron toGtab lineaarse
filtrina, kuna opitud sisendmustrit vaid osaliselt ndhes soltub véaljund lineaarselt
opitud mustri osakaalust. T'éenéosuslik virgatsaine vabanemine vahendas oodatult
sisendmustrite korrelatsiooni ja parandas infoiilekande tohusust. Peakomponenta-
naliiiisiks neuron t66s formuleeritud viisil voimeline ei olnud. Tulemuste soltuvust
parameetrite tapsetest vadrtustest ei kontrollitud.

Neuroni voime keerulisemat infotootlust teha ei leidnud toestust. Hoolimata sellest
on koostatud neuroni mudel voimeline kasulikuks infotootluseks ja seega hea alus
edasisteks uuringuteks.

Vo6tmesonad: iiksikneuroni mudel, numbriline simulatsioon, siinaptiline plastili-
sus, juhendamiseta oppimine, toendosuslik virgatsaine vabanemine
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Introduction

Your brain is a complex organ capable of very sophisticated thought. Even though
the chess-playing supercomputer Deep Blue won the reigning world champion
Garry Kasparov, Kasparov was also able to do anything human beings do every
day, whereas the computer could only play chess. The human brain is remarkable
not for its ability to perform very well at one particular task—be it playing chess,
reading an article in Nature, preparing a six-course meal, or slam dunking in a
basketball game—it is remarkable for being able to do all of those things, and much
more.

On the other hand, gaining an understanding of the brain’s information processing
mechanisms remains one of the major scientific challenges today. A key aspect
of the brain is neural plasticity, its ability to learn over time as new knowledge
and experience are accumulated and processed. Thus, neuronal plasticity, and
specifically synaptic plasticity (change in the strength of neuronal connections)
is thought to underlie our ability for learning and memory. To understand the
dynamics of these neuronal changes, computational models are built to assess how
well they explain the brain’s behaviour as observed in experiments in neuroscience
and, more generally, how the models perform in a variety of tasks.

Artificial systems with significant capacity for learning have recently been cre-
ated using deep convolutional neural networks, performing well in activities rang-
ing from playing video games [MKS*15] to describing scenes in natural language
[KFF14]. At the same time the neuron models used in these systems are very
simple, often composing of a scalar product of the inputs and weights, and a
thresholding function. In contrast, evidence from brains has shown that each neu-
ron is a much more complex and powerful information processing unit. There is a
clear gap between the learning rules used in networks of neurons, and biophysical
mechanisms of learning at the cellular level. The primary goal of this thesis is to
help narrow this gap by studying the behaviour of a more detailed, biologically
realistic neuron model. To do so, a detailed implementation of such a model was
built and some of its learning capabilities tested.

In particular, the approach taken in this thesis is using numerical simulations to
describe the behaviour of the implemented neuron resulting from basic principles
of neuronal biophysics. This work builds on top of a plasticity model (described



as a set of differential equations) previously published in [YSBCO04] and which has
been shown to produce a range of neural plasticity phenomena.

The model allows inspection of three aspects which are of particular interest.
Firstly, the changing of neural plasticity—metaplasticity—is important for produc-
ing well-known learning phenomena. Secondly, probabilistic neurotransmitter re-
lease which causes signal transmission failure might have an effect of increasing
information transfer efficiency. Thirdly, the neuron’s ability to perform principal
component analysis (PCA), a well-known unsupervised learning algorithm, can be
tested. This is motivated by prior work showing that very simple neuron models
are capable of PCA [Oja08].

After a brief overview of the background and related work in Chapter 1 and de-
scribing the methods used in Chapter 2, Chapter 3 starts with validation of the
behaviour of the implemented model against previously published work. Then,
the neuron input-output relation is characterised for various kinds of input. As an
addition to the model, the effect of probabilistic neurotransmitter release is stud-
ied. Finally, a simple task is simulated to study the neuron’s ability to implement

PCA.



1 Background and related work

There are a few prerequisites to understanding the context of this thesis. The first
section of this chapter will give a very short overview of aspects of neuroscience re-
lated to the thesis. In the second section prior work regarding the most important
aspects of the model will be summarised.

1.1 Overview of relevant neuroscience

1.1.1 Neurobiology of the brain

The brain is the central information processing organ in animals. The computa-
tional properties of the brain arise from the heavily interconnected networks and
sub-networks of specialised cells called neurons. It has been approximated that the
human brain consists of 10* neurons with 10 inter-neuronal connections called
synapses [HH09]. This work focuses on modelling one of many different types of
neurons—pyramidal neurons.

1.1.2 Neurons as biological computation units

Every model of a brain that aspires for biophysical reality must include a way
to model the behaviour of neurons and synapses. Each neuron can be seen as a
small unit performing computation on some inputs and producing corresponding
output. There are many computational models of neurons, with the level of detail
ranging from complex multi-compartment models to very simple models such as
those used in many artificial neural networks (ANNS).

Information flow through a neuron follows a path from the inputs to the output,
with integration of information in between, as shown in Figure 1.1. A rough
mapping of the corresponding neuron anatomy is shown in the same figure.
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Figure 1.1: Schematic of a pyramidal neuron.

Input

At the synapse, information flows from the axon of the presynaptic neuron to
a dendrite of the postsynaptic neuron. When the presynaptic neuron produces
significant output, neurotransmitter molecules are released from the presynaptic
neuron into the synaptic cleft, a small gap between the presynaptic and postsy-
naptic neurons at the synapse. Neurotransmitters then bind to receptors on the
dendrite of the postsynaptic neuron causing ion channels to open. This causes ion
flow across the membrane which causes a voltage change at the dendrite of the
postsynaptic neuron. However, the neurotransmitter release is unreliable: upon
some presynaptic spikes no neurotransmitter is relased. This effect is called proa-
bilistic neurotransmitter release (PR) or synaptic failure.

Synapses can be divided into two classes: input arriving at excitatory synapses
tends to increase the activity of the postsynaptic neuron, input to inhibitory
synapses tends to decrease postsynaptic activity.

Computation

A single neuron can be viewed as an integrator of information from its inputs
over time, over different inputs, or both. At each synapse, a neuron has intrinsic
biological components that determine how much this synapse should affect the
output of the postsynaptic neuron. Synaptic weights are key parameters used in
computational modelling of such biological components, and the modification of
synaptic weights is the basis of learning in neurons and thus, in the brain.

The phenomenon of synaptic weights increasing due to learning is named long-
term potentiation (LTP), and similar decreasing is named long-term depression
(LTD). LTD and LTP are the methods the neuron uses to assign different synaptic



weights based on the long-term input to that synapse.

After the contribution of input from each synapse is known, this information must
be integrated to produce the output of the neuron. An overview of some of the
most common ways to model information integration in neurons will be given in
Section 1.2.1.

Output

Output of a neuron takes the form of action potentials (also known as spikes), rapid
increases in membrane voltage followed by a return to the equilibrium voltage.
Information about action potentials is conducted from a neuron to the dendrites
of other neurons using the axon. Axons are usually not part of single neuron
models as the output of the modelled neuron is studied in and of itself.

1.2 Prior work

There are many computational models of neurons, with the level of detail rang-
ing from complex multi-compartment models to very simple models such as those
used in ANNs. Using these models, it is possible to simulate neurons in a com-
puter and investigate the models’ behaviour in a very controlled and detailed way.
As opposed to real experiments that are hindered by many difficulties, using a
simulation approach allows detailed investigation and control of inputs and all
parameters.

Two aspects of neurons can be modelled and used in different combinations: the
mechanism for translating input signals into output (information integration) and
the mechanism for updating synaptic weights (synaptic plasticity); a summary
of prior work in these will be given in the following two sections. Prior research
into probabilistic neurotransmitter release will then be given followed by a short
overview of the literature on learning in single neuron models.

1.2.1 Models of neural information integration

Some of the best known models, from least to most detailed, are the McCulloch-
Pitts (MP) [MP43], integrate-and-fire (IF) [Abb99], and Hodgkin-Huxley (HH)
[HH52] models. In the MP model which is widely utilised in ANNs, a weighted
sum of inputs is calculated, to which a sigmoid function is applied to produce the
output of the neuron. In the IF and HH models the neuron is modelled as an
electric circuit, and then corresponding differential equations are used to calculate
the output of the neuron.

10



1.2.2 Models of synaptic plasticity

Synaptic plasticity underpins learning in a neuron. It is possible to implement
learning directly by calculating the error in the neuron’s output: the difference
between expected output (the correct label) and the neuron’s prediction. Exam-
ples of these simple phenomenological rules include Hebbian rules (summarised as
?Cells that fire together, wire together”) [Heb52], Oja’s rule (shown to produce
PCA computation regardless of its simplicity) [Oja08] and others, and are typically
used in conjunction with MP neuron models. Learning rules can also be derived
to minimise information-theoretic measures such as Fisher information [EG14].

Alternatively, learning can arise from biophysical properties of more detailed bi-
ological models of synapses. A summary of biophysical mechanisms of synaptic
plasticity is given in [Sho07]; in Section 1.2.4, calcium-based models will be looked
at in more detail.

1.2.3 Probabilistic neurotransmitter release

Recordings from hippocampal pyramidal neurons have shown synaptic transmis-
sion to be unreliable due to failure of release of neurotransmitter into the synaptic
cleft upon a single presynaptic spike [SW95]. Furthermore, the probability of suc-
cessful release p has been shown to have a wide distribution with predominant low
values (p < 0.4) in the hippocampus [MSS97].

PR with p < 1 has been shown to have a beneficial effect of increasing the
information-carrying efficiency of a single synapse, caused primarily by a decrease
in noise [Gol04]. However, [GL12] conclude that for a population of neurons, en-
coding performance is increased in the presence of weak noise and decreased in
the presence of strong noise, adding that ”several important synaptic parameters
. . . have significant effects on the performance of the population rate coding”.

1.2.4 Learning in single neuron models

Plasticity in calcium-based models

An overview of calcium-based biophysical models of synaptic plasticity is given
in [Sho07]. The model used in this work is a calcium-based model notable for
exhibiting several synaptic plasticity phenomena within one model, providing a
unified model of synaptic plasticity [SBC02]. Other unifying models have been
proposed with different underlying mechanisms and differing results.

Building on top of the [SBC02] model, it was shown in [YSBC04] that adding a
stabilisation mechanism (metaplasticity) synapses become stable, avoiding posi-
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tive feedback loops that would result in very high synaptic weights. In addition,
synaptic competition is achieved, allowing synaptic weights to "reflect the statis-
tical properties of the inputs” [YSBCO04]. This allows the neuron to learn complex
input patterns while maintaining a relatively constant range of output.

The model used in this thesis will be discussed in more detail in Section 2.1.

Unsupervised learning

A special class of learning tasks—unsupervised learning-refers to learning hidden
structure in unlabeled data.

Several single neuron models have been shown to be capable of unsupervised learn-
ing: simple artificial neurons can do PCA when trained according to the Oja rule
[Oja08], the tempotron model [GS06] is able to learn spike timing-based patterns,
the SKAN model [AGT*14] is capable of unsupervised classification of patterns.
However, none of the aforementioned models are based on biophysical principles,
and no other biophysical models have been shown to do unsupervised learning on
the single neuron level.

Having now taken a look at the state of the art, the main goals of this work can
be formulated as: (a) implementing the chosen neuron model and validating its
behaviour, (b) exploring the learning behaviour of this model, (c) finding effects of
probabilistic neurotransmitter release on behaviour, and (d) testing whether the
neuron can perform PCA.

12



2 Methods

This chapter describes in detail the methods used for simulating the chosen neuron
model in a computer. The first section summarises the most significant aspects of
the neuron model used; the most important implementation details are given in
the second section. More detailed descriptions of the performed simulations are
given in Chapter 3.

2.1 Neuron model used in simulations

In this section, an overview of the most important aspects of the model used in
simulations will be given. The neuron model follows the model of a single neuron
published in [YSBCO04]: an integrate-and-fire model of information integration
is used with a calcium-dependent model of synaptic plasticity [SBC02]. In this
model, synaptic weight changes are determined by the simulated concentration of
Ca?* ions, [Cal.

The programmatic approach is to use update rules to change the simulated values
of parameters (such as [Cal), looping over time. Such rules are applied to inputs to
calculate the values of intermediate parameters; applying relevant update rules to
these intermediate parameters one obtains the output parameters such as postsy-
naptic voltage and timings of postsynaptic spikes. Due to the way information is
represented in computers, time is discretised into time-steps of length dt regardless
of the continuous nature of the biophysical processes.

Key aspects of the model are A) a rule to update the simulated value of [Ca] as a
function of presynaptic and postsynaptic activity, and B) a rule to calculate the
change in synaptic weights as a function of [Ca]. Specifics of the [Ca] update rule
(A) are discussed in [SBCO02]; an analysis of the synaptic weight update rule (B)
is given in Section 2.1.4.

13



2.1.1 Input generation

Regardless of methods of integration and learning, it is necessary to create input
for the neuron to learn. Rather than simulating presynaptic neurons, inputs to
the model are simulated as N spike trains, one for each excitatory synapse, with a
given mean firing rate r specified independently for each synapse. Each spike train
contains one binary number per time-step: 1 if a spike occurred and 0 otherwise.

The spike trains are produced in a homogeneous Poissonian process, i.e. the
occurrence of a spike is independent of the time since the last spike, and the
average rate of spiking remains constant over time. Correlation between inputs is
achieved by specifying the correlation coefficient 0 < ¢ < 1, and using code from
[MBE™"09] to generate correlated homogeneous Poissonian spike trains. For ¢ = 1,
all synapses receive identical input; for ¢ = 0, all synapses receive independently
generated spike trains.

In all simulations, inputs to inhibitory synapses are generated as uncorrelated
Poissonian spike trains with a mean firing rate of 10Hz.
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Figure 2.1: Sample input to 30 synapses, generated for a 1000ms period with a 0.1ms
time-step. In this figure, black bars indicate timesteps at which spiketrains (running
horizontally) contain spikes. Synapses 1-10 receive 5Hz uncorrelated input, synapses 11-
20 receive 40Hz correlated input with ¢ = 0.8, synapses 21-30 receive 40Hz uncorrelated
input.

2.1.2 Integrate-and-fire model

In this section, information integration methods of the model will be examined.

For modelling the postsynaptic neuron, equations and parameters from [EK98] are
used. One parameter differs significantly in the model used in this thesis: the basal
current Iy, which causes spontaneous voltage increase, is set to 0. [EK98] utilises
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a Traub-Miles cell, which is a Hodgkin-Huxley-like model for estimating postsy-
naptic voltage. Compared to Hodgkin-Huxley, the Traub-Miles model includes a
more detailed simulation of Na® and K* currents by modelling the dependence of
the gating of abovementioned channels on postsynaptic voltage.

The core of the integrate-and-fire model used in this thesis are five currents af-
fecting postsynaptic voltage: a voltage-increasing current caused by presynaptic
spikes at excitatory synapses, a voltage-decreasing current caused by presynaptic
spikes at inhibitory synapses, Na® and K+ currents not directly affected by presy-
naptic spiking, and a leak current, which tends to return voltage to the resting
potential Vs = —65mV (membrane voltage of the neuron in absence of input).
When postsynaptic voltage Vs reaches the threshold Viyes = —55mV, a postsy-
naptic spike is recorded, and V), is set to the spiking voltage Vpix. = 40mV. In
the next time-step, Vs is returned to the reset potential V,e5er = —65mV.

As an addition to the Traub-Miles model, spike-frequency adaptation is imple-
mented following [YSBCO04]: the resting voltage is decreased by 2mV upon each
postsynaptic spike, and decays back to the baseline with a time constant of 100ms.
This temporarily increases the gap between resting and threshold voltages, requir-
ing more presynaptic input to reach the threshold and thus decreasing firing rate.

2.1.3 Model of synapses

This section contains a more detailed look into the way input spike trains are
translated into postsynaptic voltage. The total number of synapses is 120: the
neuron has 100 excitatory synapses and 20 inhibitory synapses.

Excitatory and inhibitory synapses are modelled by ion gates that are controlled by
the respective neurotransmitter molecules: glutamate and gamma-aminobutyric
acid (GABA). Upon each spike at an excitatory synapse, the opening of glutamate-
controlled ion channels at dendrites is simulated, with the degree of opening sim-
ulated as a sum of two decaying exponentials peaking at the time of spike. The
resulting ion flow through the channels tends to drive V,,s towards the excitatory
reversal potential Ve, eqe = OmV. This makes the postsynaptic neuron more likely
to produce a spike.

Similarly, upon each spike at an inhibitory synapse, the opening of GABA-controlled
ion channels is simulated, and the resulting ion flow tends to drive V., towards
the inhibitory reversal potential V¢, inn = —65mV. This makes the postsynaptic
neuron less likely to produce a spike. Compared to inhibitory synapses, spikes
at excitatory synapses have a larger relative influence on V,,s due to the higher
simulated conductivity (maximum throughput of ions) of glutamate-controlled ion
channels.

The effect of presynaptic spikes on the gating of glutamate-controlled and GABA-
controlled channels is simulated according to the model from [BEKO0S].

15



2.1.4 Plasticity

To facilitate learning, some aspect of the model needs to change: the model needs
to be plastic. The plastic part of the model will be described in this section.

In addition to components mentioned in the previous section, the extent to which
presynaptic spikes influence postsynaptic voltage is modelled by the synaptic
weights W = (W), with i denoting the number of the synapse. The modifi-
cation of these weights is the basis of learning in this model: increasing W; will
increase the effect spikes at the i-th synapse have on postsynaptic voltage, and
vice versa. In this model, only excitatory synapses are plastic, i.e. the weights of
inhibitory synapses remain unchanged.

The mechanism for modifying synaptic weights follows the Ca?*-dependent model
from [SBCO02], where the aim was to construct a model based on a minimal number
of assumptions. The model detects coincidences of presynaptic and postsynaptic
spikes: the weight of synapse ¢ will be increased if the presynaptic spike occurs right
before the postsynaptic spike (i.e. there is reason to believe the postsynaptic spike
was caused by the input), and decreased otherwise. The process of spike-timing-
dependent plasticity (STDP) captures this idea that learning should depend on
the exact timing on postsynaptic and presynaptic spikes. It was shown in [SBC02]
that the plasticity model used in this thesis implements STDP in a way similar to
what has been observed in experiments in neuroscience.

The value of [Ca] is numerically estimated independently for each synapse allowing
simultaneous potentiation at some synapses and depression at others. No dendritic
distance is simulated, i.e. the possibility that some synapses are situated further
from the soma is not taken into account.

The coincidence detection mechanism relies on N-methyl-D-aspartic acid (NMDA)
receptors. NMDA receptors control gates that can allow calcium ions to flow
into the neuron, which in turn causes an increase of the synaptic weight. The
extent to which the calcium channels open depend on two factors: concentration
of glutamate (the neurotransmitter that also causes voltage increases upon spikes
at excitatory synapses) and dendritic voltage caused by a back-propagating action
potential (BPAP). The former relays information about presynaptic spikes: if a
spike has occurred recently, the level of glutamate at the synapse is at a high
level. The latter signifies a postsynaptic spike: when the postsynaptic neuron
fires, an increase in voltage is propagated to the dendrites. The influx of calcium
is dependent on the exact timing of spikes because both glutamate concentration
and BPAP voltage decay in time.

The synaptic weights’ update depends on the level of intracellular calcium as shown
in Equation 2.1, with shapes of 2 and n shown in Figure 2.2. ) is a regularisation
parameter: it prevents weights from increasing indefinitely.
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dw;
dt

= 1([Cal;)(Q([Cal;) — AW) (2.1)

This mechanism allows the synaptic weights to increase when there has been a
suitably timed pair of presynaptic and postsynaptic spikes. However, [SBC02]
show that the same mechanism also accounts for decreasing and stable synaptic
weights through the effect of 2: at medium levels of Ca?", weights are decreased
(2 < 0.5), and at low levels of Ca®", synaptic weights remain unchanged (€2 is
constant at 0.5). The learning rate n also depends on calcium: higher levels of
Ca?* elicit larger changes in synaptic weights. \, together with the value of Q in
the range of low calcium, determine the stable point of synaptic weights.

1 i i ‘ 2 ><10'5
S 05 ’\/ | =1t
0 . . . . 0 . . . .
0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Ca®* (uM) Ca®* (uM)

Figure 2.2: A. The Q function. B. The learning rate function 7.

Metaplasticity

Metaplasticity refers to plasticity of synaptic plasticity—the dependence of plastic-
ity on the history of the previous activity of the neuron—which may play a role in
LTP, LTD, and other learning mechanisms. In the scope of this thesis it refers to
the changing of NMDA receptor (NMDAR) conductance as a function of output
voltage, which leads to changes in the calcium influx and therefore changes in the
sign and magnitude of changes in synaptic weights.

The metaplasticity mechanism follows the model of [YSBCO04], where the NM-
DAR conductance ¢ is the same for all synapses and is updated according to
Equation 2.2:

dg _

T — (k- (Voost = Veest)® + ki) g + ki gt (2.2)

Here, g; shows the total supply of NMDARs available in the internal pool of the
neuron. k, and k_ are kinetic constants describing the speed of insertion and
removal of NMDARs into synapses.

Metaplasticity can be disabled in any simulation, resulting in a constant value of
g.

17



2.2 Implementation details

The neuron model of this thesis was implemented and data analysis conducted in
MATLAB; source code is attached as an online supplementary to the thesis and
described in Appendix A. The simulations were carried out in part in the High
Performance Computing Center of University of Tartu.

For updating biological variables according to differential equations, the Euler
method is used with a 0.1ms time-step length, chosen as the highest value allowing
numerical stability. At the start of each simulation, some parameters are initialised
to previously found equilibrium values to avoid unstable behaviour.

Input is generated in 1-second blocks for ease of implementation and the release of
neurotransmitters caused by each presynaptic spike is assumed to last 1 ms. The
computational complexity is linear with respect to the total simulation time; the
computation time required for x seconds of simulated neuron time varies between
2z and 15x seconds on the machines used for simulation and depends on the
amount of input to the neuron.

Unless mentioned otherwise, learning speed was increased by a factor of 100 by
multiplying the values of learning rate n and NMDA receptor kinetic constants
ky and k_ by 100. According to [YSBCO04], the fixed points of the system do not
change upon speeding up the simulations by this factor.

18



3 Results

In this chapter, the main results of this thesis will be presented. In accordance
with the four goals of this thesis, the chapter is divided into four sections. The
neuron’s behaviour will be validated against prior work in the first section, learning
behaviour will be characterised in the second, and in the last two chapters PR and
PCA will be studied.

3.1 Validation of model behaviour

As a prerequisite to analysing more complex behaviour of the model, it is necessary
to make sure the model is implemented correctly. The simplest way to do this is to
observe the behaviour of the model under some conditions and compare the result
with previously published results on the same model in the same conditions. As
[SBCO02] and [YSBCO04] form the basis of the model, the behaviour of the model
implemented in this thesis will be compared to these two sources. Attention will
also be paid to keeping parameters and outputs in biophysically realistic ranges.

3.1.1 Input-output relationship

The input-output curve of a neuron is one of the most important characteristics,
showing the output of the neuron to a specified amount of input. The exact
magnitude of the curve is highly dependent on the specific parameters used. In
particular, EPSP amplitude has a major effect on this relationship. Figure 3.1
shows the curve for six different neurons, each with a different EPSP amplitude.
It is evident that the relationship is linear for a range of EPSP amplitudes, which
is consistent with the findings of [YSBCO04] for simulations with metaplasticity
enabled. For low values of EPSP amplitude and input rate there is no output,
indicating subthreshold activity: postsynaptic voltage never reaches the threshold
required for producing a spike.

Increasing EPSP amplitude by a factor, the curve remains linear, but output
rates are scaled up by a similar factor. This means the plausible EPSP voltage
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range is not much constrained by considering the shape of the input-output curve,
and EPSP voltage can be tuned to scale the output of the neuron according to
other considerations. The EPSP amplitude producing the closest curve to that of
[YSBCO04] lies between 1.0mV and 2.0mV. However, another crucial consideration
here is biophysical reality: for completely unstructured input (noise) at 30Hz, even
a firing rate of 40Hz is excessive. For this reason, the problem of high firing rates
was not given much weight and in further simulations, EPSP voltage was set to
3.0mV, a value found to produce higher selectivity to rate-based patterns.
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Figure 3.1: Input-output relationship of the neuron for different values of EPSP ampli-
tude parameter (shown above each plot). Each data point in a plot is one experiment, in
which input to the neuron consists of uncorrelated spike trains with mean input rate per
synapse shown on the x-axis. Due to plasticity and metaplasticity, output rate varies
until a fixed point is reached; for this reason, output rate is measured over the last 500
seconds in a 10000-second experiment.

3.1.2 Spike timing-dependent plasticity

The spike-timing-dependent plasticity curve is an important aspect of neuron mod-
els: it shows how the neuron determines the sign and magnitude of synaptic weight
updates in response to the relative timing of pre- and postsynaptic spikes. In the
model used here, two parameters significantly affect STDP curve shape: BPAP
amplitude and the amount of glutamate released on the presynaptic side upon
each spike. The shape of STDP curve using parameters from [YSBCO04] is given
in Figure 3.2A. For comparison, Figure 3.2B shows the same figure for a higher
BPAP amplitude 100mV, which is the value used in [SBC02].

Both curves are qualitatively similar to [SBC02] with two regions of LTD induction—
one at negative values of At and another in the region of At > 100ms—and a single
region of potentiation in between. However, for BPAP amplitude 100mV, the curve
is smoother and weight differences larger, indicating that BPAP amplitude can be
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Figure 3.2: A. STDP curve for BPAP amplitude at 42mV. The relative timing of pre-
and postsynaptic spikes At = tpost —tpre Is plotted on the x-axis, and the weight resulting
from a 100-second 1Hz stimulation of pre-post spike-pairs with the respective At is on
the y-axis. The dashed line shows the value to which synaptic weights converge in the
absence of postsynaptic spikes. B. STDP curve for BPAP amplitude at 100mV. Note
the change in scale.

used for tuning STDP curve as necessary. In all following simulations, BPAP
amplitude is fixed to 42mV to adhere to parameters published in [YSBCO04].

3.1.3 Metaplasticity

The simplest effect of metaplasticity studied by [YSBC04] was a slow scaling down
of weights after a fast potentiation, or scaling up of weights after a fast depression.
In both cases, the fast change is induced by regular synaptic plasticity, and the
subsequent scaling by metaplasticity. In Figure 3.3, these dynamics are visible:
after an initial quick potentiation, weights are slowly scaled down to a value where
they remain stable.

The model produces two more effects of metaplasticity observed in [YSBCO04].
Firstly, it increases the variance in weights so rather than weights being nearly
equal for all synapses, the distribution is wider. Secondly, after the observed initial
quick increase in weights, they are scaled down to a stable value.

3.1.4 Selectivity to temporal correlation

Temporal correlation between spike trains, i.e. increased probability of coincidence
of spikes, indicates underlying structure in the input. Thus, if the neuron is to
learn this structure, in the presence of two groups of inputs with only one group
correlated, the synapses of correlated inputs should be selectively potentiated. A
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Figure 3.3: Evolution of synaptic weights in a metaplasticity experiment. For weights of
excitatory synapses, both the mean (blue line) and +1 standard deviation range (grey
area) are shown. Input to all synapses was uncorrelated with a mean rate of 20Hz.

strong effect of this sort is observed in [YSBCO04], with weights of the uncorrelated
channel going to zero. However, it can be seen in Figure 3.4 that in the model used
in this thesis, selectivity to correlation is weak: the difference in weights of the two
channels is existent but small with group mean weights differing by approximately
20%. A parameter sweep was conducted, but selectivity to correlation did not
increase.

Synapse no.
Synaptic weight

0 1 2 3 4 5
Time, h

Figure 3.4: Evolution of synaptic weights over time in a selectivity experiment. Synapses
1-25 receive correlated input (¢ = 0.8) at 30Hz, synapses 26-100 receive uncorrelated
input at 30Hz. The values of synaptic weights were sampled every 100ms.

3.2 Learning patterns of input rate

As shown in Section 3.1.1, the neuron’s output rate is dependent on its input rate.
In this section, the focus will be on the neuron’s ability to learn and respond to
patterns encoded in the mean firing rates of inputs. First, it will be shown that the
neuron distinguishes between learned inputs and noise. Secondly, the neuron will
be shown to be linear upon presenting learned input patterns partially. Finally,
the effect of pattern width on learning will be studied.
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A black-box approach will be taken: parameter values will be fixed and only input
will be varied. The output will then be studied to make inferences about the
neuron’s information processing capabilities.

3.2.1 Response to learned inputs

Before investigating the neuron’s ability to learn complex input patterns, it is
necessary to ensure the neuron is capable of learning anything at all. In particular,
it should be capable of something very simple: distinguishing between a learned
pattern and random noise. To study this, a neuron was trained on a pattern
(shown in Figure 3.5A) consisting of high-rate (40Hz) input to 25 synapses, and
low-rate (10Hz) background input to all other synapses, both the pattern and the
background uncorrelated.
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Figure 3.5: Two input rate patterns. A. Synapses 1-25 receive a higher rate. B. Synapses
76-100 receive a higher rate.

After training, plasticity and metaplasticity were disabled by fixing the weights,
and two tests were run. In Test 1 the neuron received exactly the same input as in
training. As control, in Test 2 the high-rate inputs were shown to a different, non-
overlapping set of synapses, with all other synapses receiving background input
at 10Hz (as shown in Figure 3.5B). The total amount of spikes received by the
neuron in both tests remained constant. The resulting output rate in a 5-second
simulation was 64Hz for Test 1 and 44Hz for Test 2, suggesting that the neuron
fired more when it was presented with the learned input (compared to non-learned
input).

It is also important to understand the neuron’s response when input varies between
trained and untrained input. To this end, the input was alternated so that pattern
3.5A was shown in time periods ¢ € [1s,2s)U[3s,4s)U. ... In between presentations
of the trained pattern, all synapses received input at a rate of 17.5Hz (’flat’ input),
keeping the total input received by the neuron constant at all times. The resulting
instantaneous output rate, shown in Figure 3.6, clearly oscillates between a high
rate and a low rate. In addition, the mean firing rate in periods of learned input
is significantly higher. Thus, this experiment demonstrates the neuron’s ability to
switch between two modes of firing depending on whether it is presented with the
learned input.
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Figure 3.6: The evolution of firing rate over time. To find instantaneous firing rates, a
sliding time window of length L was chosen, and for each timestep t, instantaneous firing
rate was calculated as the firing rate in time window [t — %, t+ %) A. For L = 100ms,
little to no oscillation is visible. B. For L = 1000ms, a clear oscillation is seen. The
triangular shape of oscillation is caused by the method of calculating instantaneous firing
rate. The top dashed line shows mean output rate over all time periods when the neuron
was shown trained input; the bottom dashed line shows the mean over all time periods
when the neuron was shown flat input.

3.2.2 Response to partial presentation of learned inputs

An important aspect of the behaviour of a neuron is its ability to recognise par-
tial or incomplete inputs. To study this, a neuron was trained on the pattern
shown on Figure 3.5A and plasticity subsequently disabled. In the testing phase,
intensity of the learned pattern was varied and output rate recorded. The results,
given in Figure 3.7, indicate that the neuron responds linearly to changing pattern
intensity. The response is linear even when the pattern has negative intensity (the
background rate is higher than pattern rate), i.e. the neuron linearly determines
the absence of input. A control neuron trained on flat input of 17.5Hz was also
tested; the control neuron did not exhibit a strong systematic response.

In addition to varying intensity of the learned pattern, one can show partial input
by replacing some of the signal-carrying synapses with noise. For this, a neuron
was trained on input consisting of a 40-synapse high-rate (40Hz) channel, with
total input normalised to 1750Hz by choosing an appropriate input rate for the
other synapses. As shown in Figure 3.8, this neuron was tested by reducing the
number of signal-carrying synapses. Again, the neuron exhibited linear behaviour:
output rate increased linearly with the proportion of trained pattern present. For
control, a neuron trained on flat input of 17.5Hz was tested; the control neuron
did not exhibit a strong systematic response.
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3.2.3 Selectivity to patterns with different channel widths

Running any simulation of a neuron requires specifying several parameters gov-
erning the structure of the input: number of synapses, rate of firing, inter-synapse
correlation, number and size of distinct channels among others. Here the effect of
pattern width on output rate is studied.

A neuron is trained by distributing a total of 1750Hz of input among two chan-
nels: 1000Hz evenly among synapses 1...w (high-rate channel), and 750Hz evenly
among synapses w ... 100. For each value of w, a new neuron is trained, plasticity
is disabled and the neuron is tested on the training pattern. A control neuron
trained on flat input of 17.5Hz ('untrained’ neuron) is tested for each value of w
with the test pattern corresponding to w. The results for both the trained and
the untrained neurons are shown in Figure 3.9.

Evidently, the neuron has a maximal response rate at w € [20, 25]. However, rela-
tive difference between the response of a trained neuron and that of an untrained
neuron is a better measure for selectivity, as it shows the effect of learning on
output rate. This difference is largest in the range w € [10, 20], suggesting that a
pattern of input should cover a small proportion of all available synapses to elicit
maximal selectivity. It should be noted, though, that the effect of pattern width
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on output rate is low (less than 10Hz) compared to other parameters varied before.
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Figure 3.9: Learning patterns represented
in varying numbers of synapses. Each dat-
apoint shows mean output rate over 9 test
runs lasting for 5 seconds; dashed lines
show standard deviation of output rates
in these runs.
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Figure 3.10: The destructive effect of PR
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3.3 Probabilistic neurotransmitter release

The effect of probabilistic neurotransmitter release (PR) was studied by varying
the probability p of neurotransmitter release upon a presynaptic spike. For all
other simulations in this thesis, neurotransmitter is released from the presynaptic
side upon every presynaptic spike (i.e. p = 1). In contrast, neurotransmitter is
released with probability p € [0, 1] in all simulations of this section. Choosing a
value of p < 1 introduces synaptic failure into the model.

For uncorrelated Poissonian input of rate r, the only effect of PR is to decrease
input rate, resulting in an effective input rate r.yy = p - r. For correlated spike
trains PR has an effect of destroying correlation in the input, as shown in Fig-
ure 3.10. Thus, to study effects of PR unrelated to input rate correlated inputs
must be studied.

To study the effect of PR on the neuron’s input-output relation, an input-output
curve similar to those in Section 3.1.1 was produced for different values of p with
results shown in Figure 3.11. The only effect of PR for p > 0.4 is, predictably,
to decrease the rate. However, for p = 0.2, the shape of the curve is slightly
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sigmoidal, which suggests that PR causes higher input rates to have a higher
(relative) impact on the output rate, and suppresses lower input rates.
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Figure 3.11: Input-output curves for various values of p. Each data point shows output
rate in the last 5 seconds of a 100-second simulation. In all simulations, input spike
trains were correlated with ¢ = 0.4. To avoid errors in numerical integration caused by
highly correlated inputare included in this thesis, EPSP amplitude was set to 0.5 and
spike-frequency adaptation was disabled in these simulations.

Taking a wider perspective, the existence of PR in biological neurons implies that
there exists a value of p # 1, for which some measure of information transfer is at
its optimal value. Two such candidate measures are easy to test: output rate and
variance in output rate. Figure 3.12 shows the dependence of these two measures
on p. At each input rate tested both the output rate and variance (shown as
standard deviation) increase as p approaches 1, suggesting no optimal value of p
for these two measures in the interval p € [0, 1). However, at p = 0.8, mean output
rate is roughly equal to or slightly larger than output rate at p = 1. This indicates
that, for the values of parameters used, a value of p lower than 1 is useful because
a lower p causes lower energy expenditure on spiking and thus a more efficient
information transfer.

3.4 Principal component analysis task

The neuron’s ability to perform PCA, can be tested in various ways. The approach
taken in this thesis is to define two channels of input and to specify the input
to each channel independently. Channel 1 consists of half of the 100 synapses;
channel 2 contains the other half. Input to two independent channels is generated
by choosing input rates (ry,re) from a multivariate Gaussian distribution with
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Figure 3.12: The dependence of output rate on PR parameter p. For each combination
of rate and p, 10 5-second experiments were run, resulting output rates measured and
mean and standard deviation over the 10 results calculated. In all simulations plasticity
was disabled with 5 synaptic weights fixed at 1.0 and all others at 0.05. Spike-frequency
adaptation was also disabled.

means (j1, i2) = (10, 10) and covariance matrix

10 1
0_(1 0.5>

with all rates in Hz, and using intra-channel correlation ¢ = 0.5. In this setup, each
input pattern can be represented in two-dimensional space, with (rq, rs) specifying
the independent coordinates. Sampling the Gaussian distribution described above,
an ellipse forms in this input space, centered at (1, ft2).

Training a neuron on these sampled inputs is a formulation of a PCA task: if
the weight vector were to align with one of the axes of the ellipse, the neuron
could be said to recognise one of the principal components, i.e. perform PCA.
However, as shown in Figure 3.13, the weights do not align as required for success
in this setup. In informal parameter searches varying pq, us and C, no principal
components were recognised either.
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Figure 3.13: Input space and result of PCA task. The 60 blue dots represent inputs
shown to the neuron, each for 1s. The green line is the best-fit linear trend line for inputs.
The red line is the weight vector: x- and y-components are calculated as mean of channel
1 and 2 weights, respectively. Mean output rate was measured as 29Hz. Spike-frequency
adaptation was disabled and EPSP amplitude set to 0.5mV in this experiment.
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4 Discussion

This chapter is organised into three sections: first a commentary of the results
will be provided, followed by a discussion of the limitations of this thesis in the
second section and suggestions for future work in the third section.

4.1 Interpretation of results

Validation of the implemented neuron in Section 3.1 was largely successful with
results mostly agreeing with prior work. The input-output curves, STDP curve
and metaplasticity evolution look qualitatively similar to those of [SBC02] and
[YSBCO4]. A significant divergence in this thesis is a much weaker selectivity
to correlation. However, by changing the characteristics of the STDP curve (by
changing parameters affecting NMDA currents) could produce a stronger corre-
lation selection effect—a hypothesis that can be easily tested in further research.
The output rates are high compared to biological neurons, but this is affected a
lot by the specific value of EPSP amplitude used.

The neuron clearly learns and exhibits mostly linear behaviour as shown in Sec-
tion 3.2. Furthermore, the learning can be verified from the output rate of the
neuron, which suggests meaningful information processing takes place. In the con-
text of networks of neurons, ANNs often use sigmoid or rectified linear filters; due
to the neuron’s linear response to partial input, it can be said to implement a
linear filter. The results presented in 3.2.3 also suggest an optimal pattern width
for maximal learning capability.

In Section 3.3, the effect of probabilistic neurotransmitter release on the neuron’s
behaviour was found to be small but significant. For all but one tested values of
p, the results were unsurprising given the correlation-breaking and rate-reducing
effect of PR. However, it was found that PR 0.8 is, in some cases, equivalent to PR
1. For p = 0.8, PR is indeed useful, eliminating unnecessary spikes but producing
the same output rate. Given the large amount of energy used by the brain, PR
can be significantly useful even at high values of p. This is in agreement with the
conclusion of [Gol04] about PR increasing information transfer efficiency.
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The neuron did not successfully perform a PCA task in the regimes explored in
Section 3.4. However, a PCA task can be formulated in many ways, and exper-
iments with purely rate-based patterns (those of Section3.4) do not disprove the
neuron’s ability to do PCA. Rather, adjusting the STDP curve and increasing
selectivity to correlation might have a positive effect.

4.2 Limitations

Several issues must be taken into account when interpreting the results.

One of the most severe limitations of the methods of this thesis is lack of a sys-
tematic basis for choosing parameters. Even though informal parameter searches
were conducted, it is possible to do a more systematic search in parameter space
and vary more parameters. Doing so would increase confidence that the results
hold generally, not only for the specific parameter sets used.

A related issue concerns the speed of simulations. While the simulation code could
certainly be optimised in various ways, a significant increase in speed would result
from increasing the simulation time-step (0.1ms in this thesis). This would require
numerically estimating differential equations with a method other than Euler’s. A
longer time-step would allow more simulations and thus more parameter sweeps
to be conducted with the same amount of computation.

The lack of strong selectivity to correlation shown in Section 3.1.4 is another
significant limitation: without it, some learning modes are not exhibited and thus
cannot be studied. To achieve selectivity to correlation, one should do a systematic
search of parameters, especially with the goal of getting a narrower STDP curve.

Finally, throughout the work, firing rates are exceptionally high for both inputs
and output in comparison with biological neurons. The high input rates are ex-
plained by the small number of synapses used: a typical pyramidal neuron might
receive input from tens of thousands of synapses, but the neuron simulated in this
thesis only has 100 inputs. The output rate is greatly affected by EPSP voltage
(as shown in Figure 3.11) and the stable point for synaptic weights. To alleviate
the problem of high output rates, these parameters should be varied.

4.3 Future work

Studying probabilistic neurotransmitter release, an approach more grounded in
information theory might be in order: using information measures to characterise
input and output. More specifically, for some particular measure there might exist
an optimal value of probability of release p < 1, giving insight into the utility of
the PR phenomenon.
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For unsupervised learning, a more fundamental approach should be taken to find
conditions in which the neuron could implement PCA. In particular, the effect
of selectivity to correlation might influence the neuron’s ability to perform PCA.
Similarities to Oja’s rule could also be studied to inform further unsupervised
learning tasks. In addition, there are several ways to put the neuron to a PCA
task; more of these can be tested.

The plasticity of inhibitory neurons, a topic not in the scope of this thesis, could
be studied as well. Building atop of results characterising STDP in inhibitory
synapses of the mouse auditory cortex [DF15], one could implement inhibitory
plasticity in a biologically realistic way.

Finally, the neuron’s potential to implement Bayesian inference could be studied.
This could be achieved using a theoretical framework for analyzing and modelling
local plasticity mechanisms in the context of probabilistic inference [KHLM15].
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Conclusion

In this thesis, a biophysically realistic single neuron model was implemented and
investigated. In the first section of Chapter 3, the behaviour of the neuron was
found to agree with prior work with the exception of selectivity to correlated input,
which was not exhibited in our simulations. In the second section, the neuron
was found to implement a linear filter. In the last two sections, probabilistic
neurotransmitter release and a PCA task were studied, resulting in some evidence
towards the usefulness of PR and no evidence towards the neuron’s potential
capability to implement PCA in the tasks explored.

The author of this thesis was responsible for implementing and validating the
model, running simulations and analysing the resulting data. Parts of the research
questions as well as components of the neuron model used were suggested by the
SUpervisors.
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Appendix A: MATLAB code

The MATLARB scripts for simulations and data analysis performed in this thesis are
included as an online supplementary material. The material will be withheld from
publication until 26.06.2016. The online supplementary contains the following files
and folders:

e data_out/ — contains no files; all simulation results will be saved into this
folder.

e helper_functions/ — contains the n and €2 functions and ion channel gating
functions.

eta2004.m — the 7 function.
— learning_curve2004.m — the ) function.

— makePyrGatingFuns.m — creates gating functions for the pyramidal
neuron.

Mg_block.m — the magnesium gating function.

e input_generation/ — contains functions required for generating input spike
trains.

— mackeetal/ — contains code from [MBE'09]. mackeetal/lib/bivnor.c
needs to be MEX-compiled before use.

— GenerateInputSpikesMacke.m — function for generating correlated in-
put using code from [MBE*09].

— GenerateInputSpikesUncorrelated.m — function for generating un-
correlated input.

— HomoPoisSpkGenTaivo.m — function for generating homogenous Pois-
son spike trains.

— ProbabilityOfRelease.m — function for applying probabilistic neuro-
transmitter release with specified p to spike trains.

e parameters/SingleNeuron_IF_Taivo_Parameters_2004 — a script that sets
the values of most simulation parameters.

e SingleNeuron_IF_Taivo.m — the main script for simulating the neuron.
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Appendix B: Glossary

ANN artificial neural network

BPAP back-propagating action potential
EPSP excitatory postsynaptic potential
GABA gamma-aminobutyric acid

IPSP inhibitory postsynaptic potential
LTD long-term depression

LTP long-term potentiation

NMDA N-Methyl-D-aspartic acid
NMDAR NMDA receptor

PCA principal component analysis

PR probabilistic [neurotransmitter| release, probability of release

STDP spike-timing-dependent plasticity
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