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Abstract

This paper compares three different types of representations that resolve
long-distance dependency into binary representation as it is required in PCFG
parsing. Each conversion is applied to the German TIGER Treebank in the
PCFG parsing experiments. The examination of data and the labeled depen-
dency evaluation show that the choice of conversion of treebank data in the
preprocessing step can influence the F-score up to 2.83% and that each con-
version has its own advantages and limits. The result of this paper shows that
this preprocessing step is not trivial in parsing free word order languages.

1 Introduction

In order to conduct a Probabilistic Context Free Grammar (hereafter PCFG) pars-
ing, it is necessary to resolve crossing branches in the input data, because such
parsers only process context-free tree structures, where no long distance relation-
ship is allowed [11]. In the literature, crossing branches are mostly resolved by a
node-raising approach (see approaches by Kiibler [4]; Maier [6]; Kiibler et al. [5]).
Boyd [1] proposes a new approach: a node-splitting approach, i.e., mother nodes
that are associated with discontinuous daughter nodes are splitted into partial nodes
in order to resolve the discontinuity. She argues that such a node-splitting represen-
tation is better than the node-raising method, because the converted representation
retains the original syntactic information after resolving crossing branches and thus
structures are recoverable. However, no work discusses the impact of this conver-
sion step on the parsing performance so far. Nonetheless, this preprocessing step
is not trivial, given that German allows free word order and that about 30% of
the sentences in the TIGER Treebanks has one or more than one crossing branch.
Thus, in this paper, I focus on how different modifications of the TIGER Treebank
data affect the parsing results. In addition to the aforementioned two approaches, a
new approach is also considered, the node-adding approach. This method modifies
the tree structure by copying the mother node information during the conversion.
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The remainder of the paper is organized as follows. In section 2, I briefly
introduce TIGER Treebank. In section 3, I summarize the preprocessing methods
used in the experiments, and in section 4, I show the three different representations
at issue. Section 5 explains the experiment followed by evaluation and discussion.
Section 6 concludes the paper.

2 TIGER Treebank

The TIGER Treebank Release 2 contains 50 474 sentences from the German news-
paper Frankfurter Rundschau. Part-of-speech, lemma and morphological informa-
tion, phrase structures and grammatical function are annotated in the treebank.
TIGER Treebank can be searched via TIGERSearch, which returns tree diagrams
of query structures.

Among the four German treebanks that are available, NEGRA [10], TIGER
[3], and the Tiibingen Treebank of Written German (TiiBa-D/Z) [12] are treebanks
of written data. All three of them use the Stuttgart-Tiibingen-Tagset [8] for part-
of-speech annotation. TIGER, like NEGRA yet unlike TiiBa-D/Z, does not allow
unary branching and its tree structures are flatter, whereas TiiBa-D/Z presents more
hierarchy and it includes topological fields to avoid long distance dependencies and
thus no crossing branches occur in TiiBa-D/Z.

In TIGER, subjects and finite verbs are always treated as immediate daughters
of the clauses, while non-finite verbs, complements of the verb, PPs and adjuncts
are daughters under a single VP. It is also common to have topicalization or ex-
traposition in German sentences. Thus, crossing branches are used in TIGER to
account for such long-distance dependencies in German. Sentence structures in
TIGER show less hierarchy in order to avoid structural ambiguities and to elimi-
nate the need for traces. The distinction between adjuncts and arguments is shown
through labels of syntactic functions, rather than in the structure [3]. Figure 1 illus-
trates an example of TIGER trees with a discontinuous constituent, i.e., the VP Bis
dahin geheimgehalten ’until then kept secret’. Therefore, it is necessary to resolve
crossing branches by a conversion of the data representation before doing PCFG
parsing.

3 Data Preparation

Several preprocessing steps were done for the TIGER treebank data in order to pre-
pare appropriate input files that meet the requirements of the parser. LoPar [9] was
used in the experiments. It is an implementation of a parser for head-lexicalised
probabilistic context-free grammars. Among 50 474 sentences in TIGER treebank,
sentences with a length of more than 40 words were excluded in the experiments,
because they cause problems with memory load in the parsing process. 90% of the
filtered data was used as training data, 5% as development data and 5% as test data.
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QB
Bis dahin wird sie geheimgehalten
bis dahin werden sie geheimhalten
APPR PROAV VAFIN PPER VVPP
3.Sg.Pres.Ind 3.Nom.Sg.Fem Psp
Until then will she be.kept.secret

'Until then, it will be kept secret.'

Figure 1: An example of TIGER tree

POS tags along with their labels of grammatical function were extracted di-
rectly from the treebank. Because this project focuses on the effect of different
representations of crossing branches, gold standard labels were used to avoid un-
necessary noise introduced by automatic POS tagging.

Next, three converted sets of treebank data, i.e., data with node-raising, node-
splitting and node-adding, were created based on the same 90-5-5 split. In each
conversion, a virtual root node was assigned to each sentence, and punctuations
were re-attached to their local surrounding nodes.

4 Three Different Representations

4.1 Node-raising Approach

Following the node-raising approach [4] [5] [6], a script was used to detect crossing
branches and to resolve crossing branches by raising non-head sister(s) higher up
until no crossing branches were observed in the tree. After the raising conversion,
the sentence in Figure 1 is shown in Figure 2. I.e. the prepositional phrase PP,
which is the non-head daughter, is raised from the VP to the S node.

The raising approach is good in maintaining the number of nodes involved in a
tree, i.e., both Figure 1 and Figure 2 have three phrases: S, VP, PP. However, after
raising, the PP is reattached to a new, higher node; the mother node information
(i.e., the mother node of PP-MO is VP-OC) is not available in the new structure in
Figure 2. This leads to a new rule in the grammar: S-> PP VAFIN PPER VP, which
did not occur before.
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[p] [se]
(D]
Bis dahin wird sie geheimgehalten
bis dahin werden sie geheimhalten
APPR PROAV VAFIN PPER VVPP

Figure 2: Node-raising conversion

4.2 Node-splitting Approach

Unlike the node-raising approach, Boyd [1] suggests a node-splitting represen-
tation to resolve crossing branches. That is, the mother nodes of discontinuous
daughter nodes are divided into partial nodes marked with an asterisk. She argues
that such representation is easily reversible and the original structural information
can be maintained in this conversion. I replicated her idea of conversion; a script
was used to detect long distance constituents and to split nodes that involve cross-
ing branches. For the sentence in Figure 1, it is converted into the tree in Figure 3
after the splitting conversion. We can see that the node VP splits into two VP*s in
Figure 3.

s

>
HD SB

Bis dahin wird sie geheimgehalten
bis dahin werden sie geheimhalten
APPR PROAV VAFIN PPER VVPP

Figure 3: Node-splitting conversion

Boyd [1] also notes that in this node-splitting representation, it is easy to re-
cover the original structure; however, if there are discontinuous nodes that use the
same labels, or if there are nodes of the same categories that were split more than
once, it is more difficult to find the right pair of split nodes in parsing. Figure 4
shows a parsed output that has four split nodes of VP and it would be more chal-
lenging for a program to identify which two VP*s should be combined together
in order to recover the original structure. Fortunately, nodes like these can never
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be sisters in most of the data and thus such conversion is still reversible. An ad-
ditional problem is that parsers make grouping decisions in individual processes,
which means that there is no guarantee that there is always a second starred node.

s D)
dh
[or]
PP
Mit dem Bau soll 1997 begonnen werden
mit der Bau sollen 1997 beginnen werden
APPR ART NN VMFIN CARD VVPP VAINF
with the construction should 1997 begun be

'Construction should start in 1997.°'

Figure 4: A tree with more than one splitting node of the same label

4.3 Node-adding Approach

In addition to raising and splitting approaches, another possibility that has not yet
been used is to resolve crossing branches by copying the mother node information
and keep such information through additional nodes in the conversion. A script
was used to detect crossing branches, duplicate their mother node information, and
then linked the new copy of mother node with its non-head daughter to resolve
crossing branches. A similar process continued until no discontinuous constituents
were found in the structure. After this conversion, the sentence in Figure 1 is

represented as in Figure 5.
D
% &
HD SB

[eD]
Bis dahin wird sie geheimgehalten
bis dahin werden sie geheimhalten
APPR PROAV VAFIN PPER VVPP

Figure 5: Node-adding conversion
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This conversion as well as all other conversions introduces inconsistencies in
the grammar, because new and specific unary nodes are introduced into the gram-
mar. However, this method produces fewer inconsistencies than the node-splitting
approach because it does not introduce new node labels.

5 Experiment

5.1 Results

In the LoPar parsing experiments of the TIGER Treebank data, the viterbi func-
tion was used to return only the best analysis of each test sentence. Given the
viterbi output of LoPar of each conversion, a series of scripts were used to perform
the PARSEVAL measures. The evaluation was computed relative to the number of
brackets in a sentence structure and then returned precision, recall and F-score for
labeled constituents. Overall, 28% of the test sentences involved crossing branches,
and 86% of them had two crossing brackets or fewer. Table 1 shows the results of
three different conversions at issue. We can see that the node-adding approach
shows a precision slightly higher than the raising approach, but higher than the
node-splitting approach by about 3%. In other words, both the node-raising and
the node-adding approaches returned more precise parses than the node-splitting
approach. In terms of recall, the raising approach is 1.12% higher than the node-
adding version and it is 1.74% higher than the splitting version. Such differences
can be because the new node labels introduced by the node-splitting approach can-
not be estimated reliably by the parser, while the node-adding approach avoids such
a problem and therefore reaches the highest precision of all methods (In section 5.2,
I further discuss the effect of different representations of node labels).!

‘ H Precision ‘ Recall ‘ F-score ‘ ‘ H Precision ‘ Recall ‘ F-score

Raise | 60.00 | 64.49 | 62.16 Raise | 5294 | 57.73 | 55.23
Split || 5759 | 6275 | 60.06 Split | 5132 | 5352 | 5240
add | 6074 6337 | 6203 Add | 5421 | 5337 | 5378

Table 2: PARSEVAL results of sentences
Table 1: PARSEVAL results (%) with crossing branches(%)

The same evaluation process then was carried out on only sentences with cross-
ing branches (i.e., 28% of the test sentences). The results are shown in Table 2.

' As it is pointed out by a reviewer, we acknowledge that the standard evaluation measures are not
perfect and the measure used in this study is specific to one type of treebank formats. The impact on
changing the number of nodes in the structure is discussed in section 5.2. It is possible to include
other types of measures, such as a dependency evaluation (as discussed by Boyd and Meurers [2]).
However, such measures rely on extracting information from gold standard as well as the parser
output. Rehbein and van Genabith [7] showed that the conversion from gold standard constituents
is very reliable, but it is unclear how reliable it is for parser output, which may contain unexpected
structures that will lead to conversion errors. Thus, we leave the comparison of different types of
evaluation measures for future work.
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Similar to the overall results, the node-adding version shows the highest precision
and the raising approach shows the best recall among the three conversions. How-
ever, the node-splitting conversion shows a recall slightly higher than the node-
adding conversion, but it is much worse than the node-adding conversion in pre-
cision. Results are all lower than 60% and the node-raising version shows the
best F-score, 55.23%, which is 1.45% higher than the node-adding version, and
is 2.83% higher than the node-splitting version. The results show that the choice
of conversion in the preprocessing affect the parsing of sentences with crossing
branches and the difference could be up to 2.83%. For conversions that preserve
original structural information, the node-adding approach shows an F-core about
2% higher than that of the node-splitting approach. In sum, both node-raising and
node-adding conversions show better F-score than the node-splitting representa-
tion.

5.2 Rule Types

The lower scores of the splitting version may be because of the asterisk shown on
labels that leads to more unique rules and affects the frequency of rules, and in
turn influence the parsing results. I investigated this assumption by looking at the
number of rules extracted form the training data by the different methods. The
results reported in Table 3. Taking the raising approach as the baseline, we can see
that the node-splitting approach has the largest set of phrase structure rules (7.9%
more than the raising approach), which is higher than the number of rules created
by the node-adding approach (6.7% more than the raising version).

| Raise [ Split | Add |
261682 | 282315 [ 279293
+7.9% | +6.7%

Table 3: The number of phrase structure
rules in the training data

These differences also reflect on the numbers of rule types for major phrase
types. As shown in Table 4, although the exact rules in each set of representation
are not identical, in terms of the number of rule types of the major categories, the
raising and adding-node approaches have similar numbers of rule types of these
categories, but splitting-node approach creates additional rules. Numbers in paren-
theses indicate the number of rules having partial nodes. Node-splitting conversion
increases rule types of each category, and this change also affects the frequency of
rules. Table 5 shows the top five frequent rule types in each set of data. Although
both node-splitting and node-adding conversions increase the number of nodes in
the modified structure, the node-adding approach does not change the ranking of
rule frequency much, but the node-splitting approach shows more effects on the
frequency of rules and the parsing performance.
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e [V ] s |

= Frequency Split Add Raise

Raise 24 16 18 Rank Rule Type | Rule Type | Rule Type
Split || 32(8) | 21 (5) | 29 (11)

1 PP-MO VP-OC PP-MO
Add 24 16 18

2 NP-SB PP-MO VP-OC

’ H AP \ AVP \ NP \ 3 VP-OC NP-SB NP-SB
Raise 20 22 29 4 VP*-0OC NP-OA PP-MNR
Split || 27 (7) | 29 (8) | 46 (17) 5 PP-MNR | PP-MNR NP-OA
Add 20 22 29 Table 5: Top five rule types in the fre-
Table 4: Rule types quency rank
Train Test
Phrase GR Phrase GR

VP50.5 | OC519 || VP49.6 | OC51.6
PP16.3 | MO 15.1 || NP 17.3 | MO 14.9
NP 15.5 SB 8 PP 15.8 SB 8

Table 6: The most frequently modified nodes (%)

5.3 Modified Nodes

Boyd [1] reports that in the splitting conversion, VP (about 55%) and NP (about
20%) are the most frequently split nodes. In this project, a similar phenomenon
is found. Table 6 summarizes the most frequently modified phrase types and the
grammatical functions (GR). In both train and test data, VP is the most frequently
modified category (about 50%); PP and NP come as the second and the third fre-
quent categories. In terms of the grammatical function, clausal objects (OC) are
those that underwent modification most frequently (about 52%), and then modi-
fiers (MO) come as the second (about 15%), and the subject (SB) the third. Among
nodes being affected in the conversion process, words with labels of VP-OC, PP-
MO, NP-OA and PP-OP are the most common nodes that underwent changes.
This, in fact, reflects the linguistic properties of German that VPs often involve
long-distance dependency, and that PPs and objects often involve extraposition,
and thus they are the targets in the conversion process more frequently.

5.4 Errors in the Parses

In the parsing output, the most common errors are found with PP modifiers, clausal
VP objects, subjects and objects. PPs that are nominal modifiers were often parsed
as general PPs, and a general PP might be identified as nominal modifiers some-
times. NP errors were found mostly when the object precedes other NPs in the
sentence and was parsed as the subject. Constituent errors happened mostly with
the VP clausal object. These errors are not easily avoidable, since the function
viterbi is calculated based on the probability of rules, and VP-OC rules have a
dominating frequency in the data, comparing to other VP rules or clausal rules (cf.
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Table 5). Errors of PP adjunction are also predictable based on the frequency of
rules, i.e., PP-MO rules have a frequency higher than PP-MNR in all three versions.
In addition to these general parsing errors, the node-splitting conversion shows a
different problem. Since viterbi is calculated based on the probability of rules, the
parser does not know that it is necessary to match partial nodes into a complete
node in parsing. Therefore, some parses of the splitting version show more partial
nodes than necessary. Figures 6 to 8 demonstrate this problem. Figure 6 is one of
the sentences in TIGER that involves crossing branches, i.e., the VP has a PP at the
beginning of the sentence and the past participle iibriggeblieben ’left over’ at the
end of the sentence. Ideally, the crossing branches in this sentence would be re-
solved through the node-splitting conversion, as in Figure 7, where both the initial
PP and the final participle iibriggeblieben show the same mother node information,
ie., VP*-OC.

% s

NP

[mo] [in]
k] [Mo]
G @
[in] [Mo]
Nach einer Nachuntersuchung sei davon nur noch ein Prozent ,briggeblieben
nach ein Nachuntersuchung sein davon nur noch ein Prozent ,brigbleiben
APPR ART NN VAFIN PROAV  ADV ADV ART NN VVPP
Dat.Sg.Fem Dat.Sg.Fem 3.Sg.Pres.Subj Nom.Sg.Neut Nom.Sg.Neut Psp
Dat Dat Nom Nom
after a follow.up.exam was of.that only still one percent left.over

'After a follow-up exam, there was only one percent left over.'

Figure 6: An example of original TIGER trees

S
NP

[oc]
[mo] [mo]
Nach einer Nachuntersuchung sei davon nur noch ein Prozent  briggeblieben
APPR-AC ART-NK NN-NK VAFI-HD PROA-MNR ADV-HD ADV-MO ART-NK NN-NK VVPP-HD PUNCT

Figure 7: The expected splitting modification of Figure 6

However, since the probabilistic calculation of the best parse is independent of
the structure, the parser does not know it is important to match partial nodes in the
parsing. For the sentence in Figure 6, the parser returned the structure in Figure
8. We can see that it returned more smaller constituents (and this tendency is less
observable in the other two approaches). In addition, a partial node, NP*-PD, for
the word davon ’of that’” occurs in Figure 8, but there is no corresponding NP*-PD

111



partial node in the structure.

Nach einer Nachuntersuchung sei davon nur noch ei Prozent  briggeblieben
APPR-AC ART-NK NN-NK VAFI-HD PROA-MNR ADV-HD ADV-MO ART-NK NN-NK VVPP-HD PUNCT

Figure 8: The actual node-splitting parse of the sentence in Figure 6

6 Conclusion and Future Work

The results of the experiments show that the choice of a conversion algorithm influ-
ences the parsing results by up to 3%. The experiment reports a 1-2% difference in
recall, a 3% difference in precision and overall a 2% difference in the F-score when
a different modification process is chosen. Although both the node-adding and the
node-splitting conversions try to maintain the original information in the struc-
ture, the node-spitting version is recoverable, but it is harder to recover the original
trees from the node-adding conversion, since there is no indication showing which
nodes should be combined together. In terms of recoverability, the node-splitting
approach is better than the other two modifications, but in maintaining the original
structural information and in terms of the parsing performance, the node-adding
approach seems to be preferred. To further improve the parsing results, we may
consider adding morphological information. This extra information would be most
helpful to distinguish object NP from subject NP in parsing, and avoid the bias
introduced by linear order of words. Theoretically, this can also help identify PP
adjunctions. I leave these possibilities for the future work.
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