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Abstract

Due to the increasing popularity of cheap digital photography equipment,
personal computing devices with easy to use cameras, and an overall im-
provement of image capture technology with regard to quality, the amount
of data generated by people each day shows trends of growing faster than the
processing capabilities of single devices. For other tasks related to large-scale
data, humans have already turned towards distributed computing as a way
to side-step impending physical limitations to processing hardware by com-
bining the resources of many computers and providing programmers various
different interfaces to the resulting construct, relieving them from having to
account for the intricacies stemming from it’s physical structure. An example
of this is the MapReduce model, which - by way of placing all calculations
to a string of Input-Map-Reduce-Output operations capable of working in-
dependently - allows for easy application of distributed computing for many
trivially parallelised processes. With the aid of freely available implemen-
tations of this model and cheap computing infrastructure offered by cloud
providers, having access to expensive purpose-built hardware or in-depth un-
derstanding of parallel programming are no longer required of anyone who
wishes to work with large-scale image data. In this thesis, I look at the issues
of processing two kinds of such data - large data-sets of regular images and
single large images - using MapReduce. By further classifying image pro-
cessing algorithms to iterative/non-iterative and local/non-local, I present a
general analysis on why different combinations of algorithms and data might
be easier or harder to adapt for distributed processing with MapReduce.
Finally, I describe the application of distributed image processing on two ex-
ample cases: a 265GiB data-set of photographs and a 6.99 gigapixel image.
Both preliminary analysis and practical results indicate that the MapReduce
model is well suited for distributed image processing in the first case, whereas
in the second case, this is true for only local non-iterative algorithms, and
further work is necessary in order to provide a conclusive decision.
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Chapter 1

Introduction

Along with the development of information technology, a constant stream
of new applications for solving humanity’s problems has also appeared. As
we possess more computing power, we can tackle more and more resource-
intensive problems such as DNA sequencing, seismic imaging and weather
simulations. When looking at these subjects, a common theme emerges:
all of these involve either analysis or generation of large amounts of data.
While personal computers have gone through a staggering increase in power
during the last 20 years, and the processing power even within everyday ac-
cessories - such as smartphones - is very capable of solving problems that
were unfeasible for supercomputers only a couple of decades ago, analysing
the amount of data generated by newest generation scientific equipment is
still out of reach in some areas. Moreover, as processor architectures are
reaching their physical limitations with regard to how small individual logic
gates and components can get, using distributed computing technologies has
become a popular way to solve problems which do not fit the confines of a sin-
gle computer. Supercomputers, GRID-based systems and computing clouds
are an example of this approach. Since the fields of distributed computing
and image processing are too broad to fully cover in this thesis, this work
will focus on the latter of the three with regard to image processing.

Due to the increasing popularity of personal computers, smart televisions,
smartphones, tablets and other devices carrying a full-fledged operating sys-
tem such as Android, iOS or Windows 8, and due to the capability of these
devices to act as producers of many kinds of content instead of being passive
receivers (like radio and television, for example), there is a need to be able
to process that content. Photos need to be resized, cropped and cleaned up,
and recorded sound and video need to be shaped into a coherent whole with
the aid of editing software. These procedures however may not be something
that is best tackled on the same device that was used for recording, because
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of limiting factors in processing power, storage space and - in some cases -
battery life. However, with the widespread availability of wireless internet or
high-throughput cell phone networks, any of the aforementioned devices can
simply upload their data to a more capable computer in order to do necessary
processing.

In many cases the recorded media will be consumed using a different de-
vice (for example, viewing holiday photos taken with your smartphone on
your computer or smart TV). Therefore, it can be argued that both the
steps of transferring media from the recording device and processing it are
inevitable anyway. Facebook and YouTube both provide a good example of
this scenario: the user can upload their media in more or less in an unpro-
cessed format and the frameworks take care of resizing and re-encoding the
media so that it can be consumed by users. However, since these services are
very popular, as a consequence the amounts of data that is needed to process
are also huge. For example, 72 hours of video data is uploaded to YouTube
every minute [47]. Even without going into details of video compression or
the processing pipelines involved, it is easy to see how even a day’s worth
of uploads (103 680 hours) quickly becomes unfeasible to compute without
resorting to distributed computing.

For solving processing tasks involving data of this scale, engineers at
Google (the parent company of YouTube) designed the MapReduce model of
distributed computing, of which Apache Hadoop is the most popular open
source implementation. It is well known that using the MapReduce model
is a good solution for many problems, however judging from the work done
in the field of distributed computing with regard to image processing, the
suitability of the model for this application is not very well known. In this
thesis I will describe the MapReduce model, it’s implementation in the form
of Hadoop, and explore the feasibility of using this technology for doing large
scale image processing.

The rest of this work is structured as follows. In the next sections I will
describe in more detail the terminology and the problem at hand, chapter 2
will give a brief overview of previous work in this area, describe the MapRe-
duce model and Hadoop. Chapter 3 will focus on describing the two practical
use cases, and finally chapters 4 and 5 present an overview of the results and
propose future research directions.

1.1 Problem statement
Before going deeper into details, I will first specify the size of data I con-

sider to be large-scale with with regard to this work. This requires some
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grossly simplified description of the architecture of shared amongst all mod-
ern computers. It is common knowledge that a computer consists of a pro-
cessor, memory and a hard drive. The processor performs calculations on the
data stored in memory, which has previously been read from a hard drive. It
is important to note here that since very many computers are also connected
to the Internet, the hard drive in question may reside in a different physical
location than the processing unit and memory. Now, it is also known that
the data transfer speed between the processor and memory is generally or-
ders of magnitude faster than between memory and hard drive. Similarly,
reading from a local hard drive is faster than accessing data from storage in
a different computer, due to overhead added by having to communicate over
a network.

Therefore, as the size of the data to be processed by one algorithm in-
creases so that the computer no longer can hold all the information in mem-
ory, there is a significant decrease in processing speed. Similarly, if the data
does not fit on the local hard drive, the processing speed drops due to hav-
ing to wait for it to be sent in from another computer. While this can be
alleviated somewhat by using buffering techniques, the general rule remains
the same: it’s best if the problem fits within memory, worse if it fits on the
local hard drive and worst if the data has to be read across the network.
Processing a large image is an example of such a problem.

In this case we are dealing with a microscope image with a resolution of
86273 by 81025 pixels (roughly 6.99 gigapixels), where each pixel is made up
of 3 values - red, green and blue. Assuming that each of these values is stored
as a 32-bit precision floating point number, the total memory consumption
of storing this data in an uncompressed way can easily be calculated:

86273 ∗ 81025 ∗ 3 ∗ 32 bits = 78.12 gigabytes.

At the time of writing this document, most commodity computers do not
have the required memory to even store this amount of data, and certainly
not to perform any sort of processing with an overhead dependent on the
input size, and even though there do exist specialised computers with enough
memory for solving this issue, they are significantly more expensive to acquire
and maintain. However, our aim is to find out whether it is possible to process
this kind of images using commodity computers in such a way that all the
necessary data is stored within memory.

The second case involves a data set of 48469 images totalling 308 GiB (the
average image here is a JPEG2000 file around 6.5MiB in size). While the size
of the data set is small enough to fit on regular hard drives, and processing
the images individually is not a problem, because the average size remains
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around 13 megapixels, thus requiring roughly only 40 MiB of memory, which
is orders of magnitude less than was the case with the large image. In this
case, the issue is not so much being able to fit the problem within memory,
but rather about being able to process the data quickly enough. Here we
depend on the processor - it does not matter how many more images you
can fit inside the memory since generally the processor can only work on one
image at a time. In reality, this depends on how many cores the processor has
and how well the algorithm can take advantage of that, but even with many
cores, going through all of the data can be very time-consuming. Therefore,
the problem to solve in this case is how to process this data set in an efficient
way.

In this section I have established that processing the aforementioned
classes of large images or large data sets of regular images can not be done
on a single personal computer, because in the first case, they do not fit into
memory, and in the second case one computer can not process them fast
enough. Neither of these issues can be expected to be solved by advances in
computing power, because CPUs are already reaching their theoretical phys-
ical limitations and the scale of data is increasing faster than the processing
capabilities of single commodity computers.

A solution for these problems is turning towards distributed computing,
where limitations of a single computer are overcome by combining the re-
sources of many computers to perform one large task. While this approach
is not new - supercomputers and computing clusters have existed for many
years already - it is only recently that techniques of using commodity com-
puters for distributed processing have gained popularity. In the following I
will explain more thoroughly how these technologies could be used to solve
image processing tasks.

1.1.1 Distributed image processing

Since this thesis is focused on using the MapReduce model for performing
image processing, I will now describe some of the issues that stem from
the limitations of this model with regard to images. I will also restrict the
problem space to 2-dimensional colour images. This may not seem like much
of a change at first, as it is probably the most common definition for an
image, yet it allows us to disregard issues related to videos, 3-dimensional
meshes and other types of image data that is also studied in the field of image
processing. Finally, I will further divide image processing problems into four
classes: iterative local and non-local algorithms and non-iterative local and
non-local algorithms.

Generally speaking, the MapReduce parallel computing model follows
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what can be called a divide-and-conquer strategy of parallelised computing.
That is, instead of joining together physical resources like processing power,
memory and hard drive storage in order to allow the processing software to see
these combined devices as one monolithic entity, the problem is divided into
independent parts which are then processed separately - usually in different
physical or virtual computers - and later joined together to form the output.
More detailed discussion of MapReduce is presented in section 2.2. In the
following I will explain how this affects the parallelisation of image processing
algorithms.

Local, with regard to image processing, denotes that the computation
is performed as a series of small calculations on fixed subsets of the image:
typically this means that the value of a pixel in focus is re-calculated using
the values of it’s neighbouring pixels. It is easy to see how problems like this
can be parallelised by virtue of splitting the image into parts, performing the
processing, and later putting it back together. Gaussian blurring, which I
will briefly describe during the course of this work, is an example of a local
processing algorithm. Contrary to local, non-local problems involve larger
parts of the image. A good example of non-local processing is object recogni-
tion. For example, in order for a trained character recognition algorithm to
be able to recognise the letter "A" from an image, it’s search window needs
to be big enough to encompass the whole letter (see figure 1.1). The solution
of splitting the image into parts to allow for parallel processing now requires
special attention in order to avoid splitting objects into unrecognisable frag-
ments, and in the worst case could be entirely inapplicable if the object to
be classified takes up the whole image.

Figure 1.1: Differences between local (left) and non-local (right) processing.
Red represents the pixel in focus, the X-s represent the pixels whose data
the algorithm needs to access.
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The distinction between iterative and non-iterative algorithms is simpler:
a non-iterative algorithm only processes the image a small, constant number
of times to achieve the desired effect, whereas an iterative algorithm requires
multiple passes, and often the output image of a previous pass becomes the
input of the next pass. Observing the data requirements for what simply
seems an iterative local algorithm, it is easy to see that even though the
resulting values for pixels in the first pass only depend on their close neigh-
borhood, from the second iteration on, those adjacent pixels have had their
values adjusted according to their neighborhoods, which in turn are changed
according to their neighbors and so on (see figure 1.2). While the extent of
this influence depends on the algorithm in question, the algorithm itself is -
strictly speaking - non-local.

Figure 1.2: Illustration of the data requirements of iterative local processing.
The top row represents first local computations of the first iteration. The
diagram on the bottom shows the requirements at the start of the second
iteration. Arrows encode a ’depends on’ relationship: the value from which
the arrow originates depends on the value the arrow is pointing at.

Therefore, we can establish four classes of image processing problems:
local, non-local, iterative local and iterative non-local. We can now look
back at the example cases brought up previously and see what issues would
arise if we attempted to parallelise local and non-local algorithms on these
images.
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In the first case of processing a 6.99 gigapixel image, it immediately be-
comes obvious that parallelising a non-local type of algorithm is going to be
a non-trivial task, as we lack even the ability to store it in memory on regular
computers. Even when assuming that the algorithm can continue to function
if the input image is split to pieces, if communication is also required between
the computers working on separate pieces, then there is a good chance that
network speed will become a bottleneck and slow down the computation.

The second case, however, is far more suited for processing with the
MapReduce model. Even though the total size of the data is several times
bigger than in the previous case, since it consists of comparatively small im-
ages which easily fit into memory even when taking any algorithm-specific
overhead into account. Moreover, because we do not have to split any im-
ages into pieces or worry about communication between worker computers,
classification of the algorithms into the aforementioned four groups does not
matter. Therefore, looking at the issues with regard to analysing this sort of
data lets us make conclusions that apply to a wider range of problems.

At this point it is important to note that we have so far silently as-
sumed that all the algorithms we classify only require one image as an input.
Speaking from the perspective of distributed processing, this means we as-
sume that the algorithm only requires data from one image at a time. For
example, with this clause we exclude any processing that needs to compare
two or more images with each other from this discussion. The reason be-
hind this will become clear further on in this text, as it is somewhat related
to the implementation of the MapReduce model in Apache Hadoop and our
approach to parallelising image processing tasks by dividing images into man-
ageable pieces. Briefly and informally, it can be summarised as follows: if
an algorithm requires access to more images than the local storage of the
computer allows, communication between computers is needed. However,
since a MapReduce calculation has only one step where the computing nodes
exchange information, the only way to satisfy this need without resorting to
another processing model is to run the MapReduce calculations themselves
iteratively (note that when speaking about iterative image processing algo-
rithms, I mean that all the iterations will be done within one MapReduce
calculation). This, in turn, has been shown by Satish Srirama et al. to
be very slow in actual performance, especially as the number of iterations
increases [38].

1.1.2 Why use MapReduce?

In the previous sections, I have presented some general analysis with
regard to the general feasibility of using the MapReduce model of distributed
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computing to solve image processing tasks. In this part I will summarise the
main motivation behind choosing MapReduce and it’s implementation in the
form of Apache Hadoop, and briefly outline alternative ways how one could
approach distributed image processing.

First, what are the alternatives? Batch processing on the PC is feasible
for only small amounts of data, and since only a part of this data fits into
memory at given time, computation will suffer from a decrease in speed
due to slow hard drive access. Trying to counter this by running the batch
process on several computers simultaneously is a solution, but it creates a
need for job monitoring, mechanisms for data distribution and means to
ensure that the processing completes even when some computers experience
failures during work. This is more or less exactly the problem that both
Google MapReduce and Apache Hadoop were designed to solve. Another
approach is treating the problem like a traditional large-scale computing
task which requires specialised hardware and complex parallel programming.
Cluster computers built on graphics processing units (GPU) are an example
of this, and while maintaining a purpose-built computer cluster has been
shown to be a working solution for many kinds of problems, it is interesting
to know whether the same issues can be tackled with simpler and cheaper
systems without much decrease in efficiency.

1.2 Summary
In conclusion, the main motivation behind using MapReduce (and more

specifically Apache Hadoop) for image processing can be summed up in the
following: as performing image processing is something that has already be-
come a popular application of computing technology for an increasing amount
of people, and because these tasks often require more processing capability
than ordinary computers have, there is a need to turn towards distributed
computing. On the other hand, since the MapReduce model implemented
by Hadoop is currently one of the more popular such frameworks, it is a log-
ical choice for trying to solve these processing issues, as it is freely available,
provides a reliable platform for parallelising computation and does not have
any requirements with regard to specialised hardware or software.
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Chapter 2

Background

In this chapter I will describe and summarise relevant work that has
been done in the field of distributed image processing, then describe the
MapReduce computing model with regard to Apache Hadoop and Hadoop
Distributed Filesystem.

2.1 Relevant work
In order to gauge the relevance of addressing the problems brought up in

the previous chapter, I will provide a brief overview of previous work sharing
the themes of image processing and distributed computing in no particular
order.

In Web-Scale Computer Vision using MapReduce for Multimedia Data
Mining [43], Brandyn White et al. present a case study of classifying and
clustering billions of regular images using MapReduce. No mention is made of
average image dimensions or any issues with not being able to process certain
images because of memory limitations. However, a way of pre-processing im-
ages for use in a sliding-window approach for object recognition is described.
Therefore one can assume that in this approach, the size of images is not an
issue, because the pre-processing phase cuts everything into a manageable
size. The question still remains whether a sliding window approach is ca-
pable of recognizing any objects present in the image that do not easily fit
into one analysis window, and whether the resource requirements for image
classification and image processing are significantly different or not.

An Architecture for Distributed High Performance Video Processing in
the Cloud [31] by Rafael Pereira et al. outlines some of the limitations of the
MapReduce model when dealing with high-speed video encoding, namely it’s
dependence on the NameNode as a single point of failure (however a fix is
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claimed at [8]), and lack of possibility for generalization in order to suit the
issue at hand. An alternative - optimized - implementation is proposed for
providing a cloud-based IaaS (Infrastructure as a Service) solution. However,
considering the advances of distributed computation technology within the
past two years (the article was published in 2010) and the fact that the
processing of large images was not touched upon, the problem posed in this
work still remains.

A description of a MapReduce-based approach for nearest-neighbor clus-
tering by Liu Ting et al. is presented in Clustering Billions of Images with
Large Scale Nearest Neighbor Search [1]. This report focuses more on the
technicalities of adapting a spill-tree based approach for use on multiple ma-
chines. Also, a way for compressing image information into smaller feature
vectors is described. With regards to this thesis, again the focus is not so
much on processing the images to attain some other result than something
intermediate to be used in search and clustering.

In Parallel K-Means Clustering of Remote Sensing Images Based on
MapReduce [22], Lv Zhenhua et al. describe using the k-means algorithm
in conjunction with MapReduce and satellite/aerophoto images in order to
find different elements based on their color (i.e. separate trees from build-
ings). Not much is told about encountering and overcoming the issues of
analyzing large images besides mentioning that a non-parallel approach was
unable to process images larger than 1000x1000 pixels, and that the use of
a MapReduce-based parallel processor required the conversion of TIFF files
into a plaintext format.

Case Study of Scientific Data Processing on a Cloud Using Hadoop [49]
from Zhang Chen et al. describes the methods used for processing sequences
of microscope images of live cells. The images and data in question are rela-
tively small - 512x512 16-bit pixels, stored in folders measuring 90MB - there
were some issues with regard to fitting into Hadoop DFS blocks which were
solved by implementing custom InputFormat, InputSplit and RecordReader
classes. No mention was made about the algorithm used to extract data
from the images besides that it was written in MATLAB and MapReduce
was only involved as a means distribute data and start the MATLAB scripts
for processing.

Using Transaction Based Parallel Computing to Solve Image Process-
ing and Computational Physics Problems [16] by Harold Trease et al. de-
scribes the use of distributed computing with two examples - video process-
ing/analysis and subsurface transport. The main focus is put on the speci-
fications of the technology used (Apache Hadoop, PNNL MeDICI), whereas
there is no information presented on how the image processing parts of the
examples given were implemented.
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In Distributed frameworks and parallel algorithms for processing large-
scale geographic data [17], Kenneth Hawik et al. describe many problems
and solutions with regard to processing large sets of geographic information
systems’ (commonly known as GIS) data in order to enable knowledge ex-
traction. This article was published in 2003, so while some of the issues have
disappeared due to the increase in computing power available to scientists,
problems stemming from the ever-increasing amount of data generated by
different types of monitoring technologies (such as ensuring distribution of
data to computation nodes and storing big chunks of data in memory) still
remain. Also, considering that the Amazon EC2 [19] web service came online
just in 2006, it is obvious that one can not make an apt comparison whether
or not a MapReduce-based solution in 2012 is better or not for large-scale
image processing than what was possible using grid technology in 2003.

A Scalable Image Processing Framework for gigapixel Mars and other ce-
lestial body images [33] by Mark Powell et al. describes the way NASA han-
dles processing of celestial images captured by the Mars orbiter and rovers.
Clear and concise descriptions are provided for the segmentation of gigapixel
images into tiles, how these tiles are processed, and how the image process-
ing framework handles scaling and works with distributed processing. The
authors used the Kakadu JPEG2000 encoder and decoder along with the
Kakadu Java Native Interface to develop their own processing suite. The
software is proprietary and requires the purchase of a license to use.

Ultra-fast processing of gigapixel Tissue MicroArray images using high
performance computing [42] by Yinhai Wang et al. talks about speeding
up the analysis of Tissue MicroArray images by substituting human expert
analysis for automated processing algorithms. While the images sizes pro-
cessed were measured in gigapixels, the content of the image (scans of tissue
microarrays) was easily segmented and there was no need to focus on being
able to analyse all of the image at once. Furthermore, the work was all done
on a specially built grid high performance computing platform with shared
memory and storage, whereas this thesis is focused on performing processing
on a Apache Hadoop cluster.

While the above shows that there has been a lot of work in this area the
question remains whether (and how well) Hadoop is suited for large scale
image processing tasks, because as evidenced by this brief overview, there
are only a few cases where image processing has been done with MapReduce.
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2.2 MapReduce
MapReduce is a programming model developed by Google for processing

and generating large datasets used in practice for many real-world tasks
[7]. In this section, I will focus on describing the general philosophy and
methodology behind this model, whereas the following part will describe in
more detail one of the more popular implementations of the model - Hadoop
- which is also used for all the practical applications featured in this work.

The basic idea behind MapReduce is based on the observation that a
lot of processing tasks involving large amounts of data (i.e. terabytes or
more) need to deal with the issues of distributing the data across a network
of computers to ensure that the available memory, processor and storage
are maximally utilised, and it would be easier if programmers could focus
on writing the processing part that is actually different per task. To achieve
this, the developer has to define only two functions - Map and Reduce - while
everything else is handled by the implementation of the model. In reality,
many more functionalities and parameters are provided for fine-tuning the
system in order to help the model to better conform to the task at hand,
however the core functionality can not be changed. Essentially, a MapReduce
computation can be described as the following series of steps:

1. Input is read from disk, converted to Key-Value pairs.

2. TheMap function processes each pair separately, and outputs the result
as any number of Key-Value pairs.

3. For each distinct key, the Reduce function processes all Key-Value pairs
with that Key, and - similarly to Map - returns any number of Key-
Value pairs.

4. Once all input pairs have been processed, the output of the Reduce
function is then written to disk as Key-Value pairs.

It is important to note here that the MapReduce model simply specifies
a very general structure with a focus on how data is put through calculation,
but not what the different steps of the computation do with the data - it is
expected that the user specifies this for all four steps. To illustrate this con-
cept, a simple example of a MapReduce algorithm counting the occurrences
of words in text documents is presented in figure 2.1. In every step, the Key-
Value pairs are processed independently, and therefore this processing can
be distributed amongst a group of computers. Commonly, this is referred to
as a cluster and the individual computers that belong to it are called nodes.
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Sheet3

Page 1

Input Map Reduce Output

Key Value Key Value Key Value Key Value

1 A B C D  A 1 A 1+1+1 A 3

2 A C A  B 1 B 1+1 B 2

3 B D D E C 1 C 1+1 C 2

 D 1 D 1+1+1 D 3

A 1 E 1 E 1

C 1

A 1

B 1

D 1

D 1

E 1

Figure 2.1: A simple example of the MapReduce computation model, inspired
by the WordCount example provided in the Apache Hadoop Getting Started
tutorial. A text file is first converted into pairs of line number and its content
(Input), then the Map function splits these pairs further so that the reducer
receives one pair per occurrence of a word. The objective of the Reduce
function is then to count the individual occurrences and finally output the
total per each distinct word.

An important aspect of a MapReduce computation is also communica-
tion. Since every Map and Reduce task is designed to operate independently,
communication between instances of the algorithm is not possible, except in
the step where output from the Map phase is sent to Reduce. Here, all Key-
Value pairs are grouped together by Key and the Reduce function can then
process all Values together. However, short of starting another MapReduce
computation whose input is the previous one’s output (essentially making
one MapReduce computation correspond to one iteration of the algorithm),
there is no way to achieve communication between any given pair of Map
or Reduce tasks. It is easy to see that if the start-up time of a MapReduce
computation is significant, certain algorithms that need to take advantage of
this sort of communication will suffer a decrease in performance.

Let us now analyse the adaptation of algorithms to the MapReduce model
with regard to the four classes of image processing algorithms described ear-
lier in this text. First, we see it is easy to adapt local non-iterative compu-
tations to this model. To do this, we simply define our Input step so that
each image is represented by one Key-Value pair (in the case of large images,
we split them to pieces beforehand). Then, the Map phase applies the algo-
rithm, and results are returned by the Output step. Here, the Reduce step is
defined as an identity function, meaning that it returns it’s own input. The
case is similar with local iterative algorithms, although - as discussed before -
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the approach of partitioning large images into manageable blocks will affect
the results of the algorithm and may therefore be inapplicable. However,
in some cases, this loss may be outweighed by gains in performance when
compared to sequential processing.

Adapting both iterative and non-iterative non-local image processing al-
gorithms to MapReduce is also straightforward when the images in question
are small enough fit into memory. With bigger images, however, the issue be-
comes more complex, as this is the only scenario in which two processing tasks
working on different pieces of the same image would need to communicate
with each other. Due to these characteristics, these algorithms may require
several MapReduce computations to complete and - as described above - can
therefore be unsuitable for adaptation to the model, unless drastic changes
are made. Due to these reasons and technical limitations of the Hadoop
framework with regard to this sort of algorithms, I do not consider any such
algorithms in this work.

2.2.1 Apache Hadoop

Hadoop is an open-source framework for distributed computing, written
in Java and developed by the Apache Foundation and inspired by Google’s
MapReduce [44]. It has been in development since 2005 and - at the time of
writing this work - is one of the most popular freely available applications of
it’s kind. As the framework is already being used for large-scale data analysis
tasks by many companies such as Facebook and Yahoo, and at the same time
is easily adapted for use with any kind of hardware, ranging from a single
computer to large data center, it is the best candidate for image processing on
the MapReduce model. In the following, I will attempt to describe the basics
of Hadoop’s implementation in general and with regard to image processing.
Since much of this topic is also covered in the Yahoo! Hadoop Tutorial, I am
not going to explain the subjects of cluster set-up and writing MapReduce
programs in much detail.

A typical Hadoop cluster consists of a master node and any number of
computing nodes. The purpose of the master is to interact with users, mon-
itor the status of the computing nodes, keep track of load balancing and
handle various other background tasks. The computing nodes deal with
processing and storing the data. The execution of a MapReduce program
(alternatively, a MapReduce job) can briefly be summed up in the following
steps:

1. The user uploads input data to the Hadoop Distributed File System
(HDFS), which in turn distributes and stores it on the computing nodes.
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2. The user starts the job by specifying the MapReduce program to exe-
cute along with input-output paths and other parameters.

3. The master node sends a copy of the program along with it’s parameters
to every computing node and starts the job.

4. Computing nodes start the Map phase first by processing data on their
local storage, fetching more data from other nodes if necessary and
possible (this decision is up to the master node).

5. After all Map tasks are finished, their output is sorted in a way, that
for every distinct Key, a Reduce task processes all the pairs with that
Key.

6. Once the Reduce phase is finished and it’s output has been written
back to HDFS, the user then retrieves the resulting data.

In reality, this process is much more complicated due to procedures nec-
essary for ensuring optimal performance and fault tolerance, among other
things. A good example of this complexity is the time it takes for a MapRe-
duce job to initialise: roughly 17 seconds. It is easy to see that this makes
Hadoop unsuitable for any real-time processing and greatly reduces it’s effi-
ciency when considering approaches that involve iterating jobs. As Hadoop
has hundreds of parameters for improving job efficiency, this subject is broad
enough to warrant a study on its own. As discussed in previous parts, with
regard to image processing we are mostly concerned with memory require-
ments and formatting the data to facilitate optimal processing.

Hadoop provides a fairly straightforward implementation of the MapRe-
duce model. In order to write a complete a MapReduce job, a programmer
has to specify the following things:

• A InputFormat class, which handles reading data from disk and con-
verting it to Key-Value pairs for the Map function.

• A Mapper class, which contains the map function that accepts the
Key-Value pairs from InputFormat and outputs Key-Value pairs for
the Reduce function.

• A Reducer class with a reduce function that accepts the Key-Value
pairs output from the Mapper class and returns Key-Value pairs.

• A OutputFormat class, which takes Key-Value pairs from the Reducer
and writes output to disk.
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Since the framework already comes with some basic implementations for
all these classes, in very trivial cases, the programmer will just have to pick
the ones that they need, and - assuming the Hadoop cluster is already set
up - package the code into a Java Archive file (.jar), upload it to the master
node and start the job. In reality, the Map and Reduce classes are usually
custom-written for the task at hand, whereas customising InputFormat, Out-
putFormat and other helper classes is only necessary when the data is not
readable using the pre-made classes. As Hadoop MapReduce jobs are them-
selves Java programs that can also be run independently (usually for testing
purposes) without a previously set up computing cluster, and Hadoop places
no restrictions with regard to the use of external libraries, the natural way to
writing MapReduce jobs is using the Java programming language. However,
the framework also provides a way to use functions written in essentially any
language through the use of Hadoop Streaming and Pipes utilities [12, 21].
Furthermore, as demonstrated in the second use case scenario later in this
work, the framework can simply be used to fulfill the role of distributing data,
balancing loads and executing the scripts that handle the actual processing.

Hadoop Distributed File System

One of the integral parts of a Hadoop cluster is the Hadoop Distributed
File System (HDFS). Inspired by the Google File System, it’s purpose is to
provide a fault-tolerant storage structure capable of holding large amounts
of data, allow for fast access of said data, and provide a way for MapReduce
to perform computations on the same location as the data [4, 14].

An important aspect of HDFS with regard to image processing is it’s
approach in storing files in blocks. Namely, while the block size of a regular
file system - such as ext3 - is 1 to 8 kilobytes depending on the configuration,
with HDFS, the default is 64 megabytes [46]. There are two reasons for
this design: as the blocks are written to physical storage in a contiguous
manner, they can also be read with minimal disk seeking times, and because
the file system is geared towards storing very large files, a larger block size
ensures that storage of meta-data such as read/write permissions and physical
locations of individual blocks creates less overhead.

Block size is somewhat important with regard to processing images, since
if an image that is too big is uploaded to HDFS, there is no guarantee that all
of it’s blocks would be stored in the same physical location. Since a Map or
Reduce task would then have to retrieve all of it’s blocks before processing,
the idea behind executing tasks that are local with regard to the data is lost:
the speed of reading input data now depends on the network. Therefore, in
order to ensure optimal processing speed, images should fit inside the HDFS
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block size. This is not a problem with most regular images, as it is easily
possible to configure the cluster with a block size of even 128 megabytes or
more, however increasing this parameter past a certain point may not have
the desired effects. Also, as discussed before, processing very large images
sets considerable memory requirements to the computers. For these reasons,
splitting large images into manageable parts is the best solution.

On the other hand, when dealing with a data-set of many small images,
simply uploading them to HDFS results in the creation of a separate block
for each file. Since a given Map or Reduce task operates so that it uses it’s
defined InputFormat to read data one block at a time, having many small
blocks increases the overhead with regard to these operations. In these cases,
it is standard practice to first store the data using a SequenceFile. This file
format is specifically geared towards storing Key-Value pairs which MapRe-
duce operates on, and when loaded to HDFS, these files are automatically
split into blocks, so that each block is independently readable. There is a
caveat, however, with regard to the files that are located on the "edge" of
the split. In order to illustrate this, I uploaded a SequenceFile with 3 images
- 30 megabytes each - to HDFS with a configured block size of 50 megabytes.
Quering the uploaded file with the Hadoop fsck tool, I found that instead
of writing the file as three blocks, each containing a full image, it was split
into two blocks, so that one image ended up divided into two. This could
negatively affect the performance of a job, since a Map or Reduce task would
need to read both blocks to assemble the full image.

Most results presented in this thesis were attained with Hadoop version
0.20.2. While - at the time of writing this - there are several more current
stable releases available, this choice was made because of the need to analyse
the log files of completed MapReduce jobs using the Starfish Log Analyzer,
developed by Herodotou et al. [18]. To find out whether there are any drastic
changes in performance in newer versions of Hadoop, some tests were also
run with version 1.0.3, however no significant improvement was found.

2.3 Summary
In this chapter, I have described some of the relevant work done in the

area of distributed image processing, and outlined some of the aspects that
this thesis aims to fulfill. I also provided a brief description of MapReduce,
Hadoop and the Hadoop Distributed File System, and talked about some of
the more important characteristics of these technologies with regard to image
processing.
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Chapter 3

Image processing with
MapReduce in practice

In this chapter, I will describe two example use cases inspired by real-
world image processing problems. The first one deals with the application of
an image processing pipeline geared towards object and text recognition on
a photography data-set. In the second scenario, I describe running a local
non-iterative algorithm on a single large image. In essence, these examples
cover both general cases of large scale image processing: a data-set of regular
images too big to process on a single computer, and an image with dimensions
great enough to warrant distributed processing.

Since this thesis is aimed towards exploring the feasibility of distributed
image processing using MapReduce, it should be noted the practical examples
presented in the following text are meant to be a proof of concept, not robust
and effective solutions for clearly defined problems. The following should be
treated more as a broad description as to how to approach solving these sorts
of problems using MapReduce and Hadoop.

3.1 Processing a large data set of regular im-
ages

In this section, we look at the subject of distributed image processing
in the example case of a large data-set of regular-sized images. The data
set consists of 48675 JPEG encoded images (a total of 265GB) taken across
the span of 9 years at the Portus archaeological excavation site near Rome,
Italy [25]. As the purpose of this data set is to provide a visual documentation
of the activities of the project as thoroughly as possible, the subject matter
of the photographs is rather varied: a random selection of images would
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probably contain examples of aerial photos, pictures of locations untouched
by excavations and of areas already dug up and processed, among other
things. In order to be able to use this in further work, it is necessary to
organise it into a more logical structure and equip individual images with
meta-data which can later be used to build indexes and allow searching.
However, as the size of data grows, so does the amount of work necessary to
file everything where it belongs.

Since traditionally there has been no easily-adaptable solution for doing
this, the task of analysis and classification of all this information has fallen on
humans. On the other hand, taking into account the advances in image pro-
cessing techniques and general increase in available computing power, there
may be ways to speed up this sort of processing, especially with regard to
things that have in recent times been shown to be possible using computers,
such as object and text recognition. From the perspective of a human, these
are often trivial and repetitive tasks, and therefore should be automated. In
the following, I will provide some examples of these images and outline some
of the ways data- and image processing technologies could help solve these
issues.

In order to proceed into specific approaches of extracting meaningful
data, it is first important to look at some of the tasks which could be au-
tomated in the analysis and processing of this data-set. While methods of
computer vision allow fairly complicated tasks to be solved, such as generat-
ing 3-dimensional models from single still images and utilising the internet
for training object recognition models, in this case, our focus is much sim-
pler [35,39]. Discussing this matter with the archaeologists working with this
data, and later condensing the list of issues that could feasibly be solved (both
with regards to my understanding of the capabilities of current technology
and the amount of resources at my disposal), I decided on the following:

• Automatic tagging by meta-data.

• Recognising the presence of certain objects of interest in the pho-
tographs.

• Performing optical character recognition on photographed text.

Before going into the specifics of solving these three tasks, it is important
to note that since the aim of this thesis is to estimate the feasibility of using
Apache Hadoop for large-scale image processing tasks, the solutions provided
here should be viewed as proof-of-concept and be used only as starting points
for more efficient realisations. However, with regard to providing some esti-
mate as to whether using MapReduce for these sorts of problems, they should
suffice.
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Classification by Exif meta-data and folder structure

Figure 3.1: A photo of random scenery. Extracting any useful information
from here with image processing is practically impossible at the current state
of technology.

The first and probably the easiest way to approach the task of classifying
and structuring a data set of this size is by taking advantage of all the infor-
mation already present in the form of meta-data defined by the exchangeable
image file format standard (Exif) [10]. A simple example -already imple-
mented in many pieces of photo management software - is grouping photos
according to the creation date, which is a common meta-data tag. Moving
further, it is a reasonable assumption that the initial step of sorting images
has already taken place when the photographer moved the photos from the
internal memory of the camera to a directory on their computer’s file system.
This means that even if only one image in a given subdirectory of the dataset
has some specific tag-value pair (for instance tying the images to some spe-
cific geographic location), it could easily be added to all the other images in
that subfolder, potentially reducing the workload of a human, who then has
to only tag one image of a given group.

However, this only solves part of the problem, because we are also inter-
ested in grouping photos by geographic location and - ultimately - content.
As the pictures are taken with cameras that do not possess a receiver that
allows them to automatically tag images with geospatial coordinates, nor can
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they provide any useful description of photo content aside from the raw data
itself, this information has to be extracted by either automatic or manual
processing of image data.

Information extraction by object and text recognition

Figure 3.2: A photo of an archaeological find with an accompanying descrip-
tion on a printed piece of paper. Images like this are good candidates for
optical text recognition, because the text is clearly recognisable.

Extracting Exif meta-data and making assumptions about the classifica-
tion of images based on their location in the file system is connected with
image processing only because the Exif standard deals with image files - this
processing does not take the actual pixel data into account. However, as
seen in figures 3.2 and 3.3, there is definitely some information stored within
this data that could be feasibly extracted programmatically. In the case of
the first example - a photo of what appears to be a unearthed Roman coin
- we would be interested in extracting the text on the paper and storing in
within the Exif meta-data structure of that image. On the second image, the
same sort of data is written by hand on a small blackboard, accompanied
by markers to allow a human observer determine both the size of the object
and the direction in which the photo was taken. It is important to note
that this task is conceptually be split in two: trying to determine whether
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the objects are present in the image and if they are, attempting to extract
the information they encode. The idea behind this approach is that even if
we fail to automatically retrieve all the necessary data, knowledge that the
image (or a certain part of the image) contains something of interest already
helps narrow down the amount of images a human worker has to process.

Figure 3.3: A photo of an excavation site with a chalkboard and measuring
artifacts. Extracting useful information from pictures like this is more diffi-
cult than is the case in figure 3.2, because of recognition of handwritten text
is complicated.

Implementation in MapReduce

As I mentioned before, in this case, the Hadoop framework is used mostly
to ensure the distribution of data, whereas the processing itself is handled by
a shell script which is executed from within the MapReduce job. This solu-
tion carries the additional overhead of having to write individual images back
to the local file system of the computing nodes, as reading data straight from
HDFS is non-trivial to implement in a shell script. However, this method al-
lowed me to quickly develop a working distributed image processing pipeline,
as I could simply chain together different existing tools without having to
adapt anything into Java. The first step in defining the MapReduce program
for this task was figuring out the proper InputFormat to use. In this case,
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following the SequenceFile approach described earlier, I packaged the 48675
image files into 196 Key-Value collections, where the Key was set as the full
path of the file with regard to the data-set, and Value as simply the contents
of the file as a byte array.

The function of the Mapper in this case can be summarised to this: it
writes the image to local storage, extracts Exif meta-data, starts the external
shell script which runs the image through the processing pipeline, reads any
output from the script, and returns all meta-data as Values. The Reducer
simply sorts the data for a given image and formats it, so that the final
output is written to disk in text format, and could further be treated as a
table of comma separated values (CSV). For meta-data extraction, I used
the metadata-extractor Java library [24]. In the following paragraphs, I will
explain more about the function of the shell script, which does most of the
heavy lifting with regard to image processing in this scenario.

Image processing pipeline

The main aim of the image processing pipeline is to provide a proof-of-
concept solution to the tasks of recognising certain objects and extracting
information by way of optical character recognition (OCR). As mentioned
before, this is by no means a working solution that is ready to be applied in
real world situations. However, a superficial analysis of the results suggests
that, with some optimisation and tuning, it is suitable for extracting some
information out of the data-set. The following is a rough description of each
of the steps in the process:

1. The find_obj script performs object recognition and returns a list of
matching pixel coordinates in the target image. In case of several pixels,
the average is calculated. If no pixels were returned, halt processing.

2. Thresholding and labeling on the target image in order to convert it to
a list of regions.

3. Erosion to eliminate regions that are too small.

4. Dilatation to bring the regions that remain back to their original size.

5. Calculate bounding boxes for all the remaining regions.

6. Based on the pixel coordinates from step 1, select the region that is
located at these coordinates. If there is no region, halt processing.

7. The top left and bottom right pixel coordinate of the selected region
specifies the area to extract from the target image.
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8. Perform OCR using the Tesseract command line tool on the cropped
part and write results into a text file.

Figure 3.4: Screenshot of the original find_obj from OpenCV examples used
to recognise the tablet from the photo.

In practice, I used this script to try and find the tablet shown in figure 3.5.
If the tablet was found, the script attempts to extract the region containing
it, and if that succeeds as well, it tries to recognise the handwritten text.
For the first step, I adapted the find_obj example by Liu Liu from the Open
Computer Vision library (OpenCV) [26], in order to retrieve the coordinates
of matches in the target image. The script uses the library’s implementation
of Speed-Up Robust Feature (SURF) descriptor to find points in the target
image that are similar to points in the query image [3]. An example can be
seen in figure 3.4.
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Figure 3.5: The query image used for object recognition.

Having found at least one matching point, we note that the image prob-
ably contains the object we are searching for. In this case, we move on to
the next phase of processing: trying to extract the part of the image with
the tablet. To achieve this, I used a sequence of operations implemented as
command line tools in the Pandore library [28]. Processing starts by first
segmenting the image two regions by pixel value (thresholding - figure 3.6b)
and assigning a different label to each separate region (labeling - figure 3.6c).
After this, the script applies morphological processing in the form of erosion
- a process which "erodes" the edges of regions and causes some of them to
disappear (see figure 3.6d) - and dilatation, which is the reverse of erosion,
in order to restore the size of the remaining regions.

The final step in this phase is to calculate bounding boxes for the regions
(figure 3.6f). Now, if a region is found to encompass the pixel coordinates
returned by find_obj, the script extracts the area defined by this region from
the original image. If the script succeeded in extracting a region of the image,
the Tesseract OCR tool is used to try and perform any text extraction [36].

3.1.1 Results

Since the data-set consists of images much smaller in size than the default
HDFS block size of 64 megabytes, I first converted the data into a set of
SequenceFiles (see section 2.2.1), which took about half an hour on a Intel
Core 2 CPU 4300 @ 1.80GHz x 2 PC with 4GiB of memory and a Samsung
HD204UI hard drive running at 5400 rpm. While I did not explicitly measure
how long it took to upload all files to HDFS, but I estimate that time spent
was around 4-5 hours, and the time of transferring data from my computer to
the master node of the Hadoop cluster in the Amazon EC2 cloud around 20

26



hours. However, it is important to note here that the transfer times depend
on link speed.

Processing the SequenceFiles with a 16-node Hadoop cluster running ver-
sion 0.20.2 took 12,5 hours (∼ 0.9 seconds per image on average), with 8
worker nodes, this number increased to 24,2 (∼ 1.8 seconds per image).
Since this trend probably continues as the size of the cluster decreases, we
can assume a total execution time of roughly 194 hours (at ∼ 14 seconds per
image) - roughly 8 days - to process all 48675 photos in the data-set on a
single m2.xlarge instance.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3.6: Step-by-step example of the extracting the region containing the
tablet.
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3.2 Processing a large image using a local non-
iterative algorithm

In this section, I will describe a practical application of distributed image
processing in the scenario of applying a local non-iterative algorithm on a
image with large spatial dimensions. The rest of this section is structured
as follows: first, a description of the image itself and the motivation behind
the task. Further on, I will outline the divide-and-conquer approach used in
splitting the image into manageable pieces, briefly describe the specifics of the
MapReduce implementation of the algorithm and how it’s performance was
measured and compared with it’s non-distributed (sequential) counterpart.

3.2.1 Description of the data and use case

As already briefly mentioned in the introduction of this work, the image
in question is a photograph taken by a microscope, with a width and height of
86273 and 81025 pixels, respectively, and stored in a GeoTIFF container [23].
The subject matter is a group of cells, and the objective of image processing
in this case is to somehow programmatically count the number of nuclei in
the image. One probable step in such an image processing computation is to
smooth colours in the image while accenting the edges in order to allow for
more easier detection of nuclei. The fast O(1) bilateral filter algorithm is a
local, non-iterative way of accomplishing this, and therefore a good candidate
for applying on the image even when it has been partitioned in order to fit
into memory of all the nodes in the Hadoop cluster.

3.2.2 Bilateral Filter

In the context of this thesis, I will refer to the bilateral filter as a smooth-
ing filter that attempts to preserve edges while reducing noise in the image. It
has previously been described by Aurich and Weule, Tomasi and Manduchi,
and Smith and Brady [2, 37, 40]. This section will describe both the naive
and optimised implementations with regard to performance and resource re-
quirements and provide a brief overview of it’s common uses. The following
descriptions are adapted from course notes by Paris et al. [30]. In the interests
of simplicity and also due to differences between real-world implementations
of these algorithms with regard to processing images with more than one
color channel, the formulations here will apply only to images with a single
number as the pixel value (i.e. monochrome images). In general, however, it
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(a) (b)

Figure 3.7: On the left - a 512 by 512 pixel detail of the microscope image.
On the right - results of fast O(1) bilateral filtering with σs, σr = 10. The
dark spots are the nuclei of the cells, which are now more defined on the
processed image, allowing for easier object recognition.

can be assumed that given a multichannel image, the algorithm will simply
process each channel separately.

As already mentioned in the preceding text, I will restrict the focus of this
thesis to the field of image processing to two-dimensional color images. The
following will not be a description of how images are acquired through the use
of scanning or digital cameras, therefore it is assumed here that the reader
is familiar with the notions of pixels, 2-dimensional coordinate notation and
representing color using red, green and blue values. Therefore I will start
with the following formal definition: I consider the image I with width x and
height y as a collection of pixels p, such that

I = { pi,j| i ∈ [1, x], j ∈ [1, y] }, and
pi,j = (ri,j, gi,j, bi,j),

where ri,j, gi,j and bi,j are respectively the red, green and blue values of the
pixel at x-coordinate i and y-coordinate j. From this definition it is more
or less straightforward to estimate the minimal memory requirements for
storing an image with known dimensions when the programming language
and data type for storing individual color values is also chosen. Since this
thesis deals with Java, and image processing algorithms tend to prefer floating
point values (which are 32 bits in Java) in the interests of precision, we can
estimate the memory consumption M of an image with dimensions x and y
as follows:
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M = x ∗ y ∗ 3 ∗ 32 bits.

As image processing algorithms tend to operate on uncompressed images,
using this sort of calculations provides a way of estimating the memory re-
quirements from the time complexity of the processing tasks. Therefore the
size of compressed the image file (for example JPEG or PNG) is only very
loosely correlated with the time it takes to process that image, as the effi-
ciency of compression algorithms depends on the information content of the
image itself, whereas the estimation method described above only takes into
account the spatial dimensions of the image.

Gaussian blur

One of the simplest local algorithms in image processing is Gaussian blur
(also known as Gaussian smoothing). It’s most common application is noise
reduction. An example can be seen in figure 3.8. The bilateral filter algorithm
described later on in this thesis is an improvement of Gaussian blur with
regard to edge-preservation capability. A formal description can be found in
algorithm 1.

Data: I - input image, O - output image, σ - filter range, h - height of
the input image, w - width of the input image

for x = 1, 2, ...w do
for y = 1, 2, ...h do

O(x, y) = 0
for xσ = x− σ...x+ σ do

for yσ = y − σ...y + σ do
O(x, y)+ = I(xσ, yσ)Gσ(‖(xσ, yσ)− (x, y)‖)

end
end

end
end

Algorithm 1: Gaussian blur.

Here, I(x, y) and O(x, y) signify pixels of input and output images at
width and height coordinates x and y respectively, ‖(xσ, yσ)− (x, y)‖ repre-
sents the distance between the pixel being processed and the pixel at (xσ, yσ).
Gσ(x) is the Gaussian function
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(a) (b)

(c)

Figure 3.8: An example of Gaussian blur with σ = 10 (b) and Fast O(1)
Bilateral Filter (c) with σs = 100, σr = 10 applied to the Lenna test image
(a) [45].

Gσ(x) =
1√
2πσ2

exp(− x2

2σ2 ).

Essentially, what happens to each pixel during the course of this algo-
rithm, is that their values are re-calculated as a weighted sum of their neigh-
boring pixels, and σ specifies the range of this neighborhood. This is best
visualised by thinking of pixels as cells and the image as the table - the
σ-neighborhood of pixel I(x, y) then is the group of cells extending σ rows
above and below, and σ columns before and after the cell in focus (see fig-
ure 3.8). Due to the characteristics of Gaussian distribution, as the distance
‖(xσ, yσ)−(x, y)‖ between pixels increases, the weight decreases. This means
that pixels further away contribute less to the new value of the pixel currently
in focus, and pixels outside the σ-neighborhood of the pixel do not affect it’s
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value at all. It is important to note here that the actual values of the pixels
do not affect the calculations of the weights at all, and the Gσ(x) can be
pre-calculated as a matrix of weights, bringing the time complexity of the
algorithm to O(n), where n is the amount of pixels in the image.

Naive bilateral filter algorithm

The improvement introduced to the Gaussian filter by the bilateral filter
is an additional weight term which takes into account the values of the σ-
neighborhood of the pixel (see figures 3.8 and 3.7 for an example). This
requires the addition of another cycle over all the pixels in the image and
leads us to the formulation presented in algorithm 2.

Data: I - input image, O - output image, σ - filter range, h - height of
the input image, w - width of the input image

for x = 1, 2, ...w do
for y = 1, 2, ...h do

O(x, y) = 0
norm = 0
for xσ = x− σ...x+ σ do

for yσ = y − σ...y + σ do
norm+ = Gσs(‖(xσ, yσ)− (x, y)‖)Gσr(I(xσ, yσ)− I(x, y))
O(x, y)+ =
I(xσ, yσ)Gσs(‖(xσ, yσ)− (x, y)‖)Gσr(I(xσ, yσ)− I(x, y))

end
end
O(x, y) = O(x,y)

norm

end
end

Algorithm 2: Naive bilateral filter.

Fast O(1) bilateral filter algorithm

Since the bilateral filter in it’s previously defined form has a time com-
plexity of O(|I|2) (with |I| as the number of pixels in the image), it is easy to
see that it is a feasible approach for only smaller images, as processing time
grows quadratically as the image size increases. Therefore, in order to pro-
vide a relevant evaluation of distributed image processing with regard to large
images, I selected an existing implementation of an optimised bilateral filter
algorithm, described by Chaudhury et al. in "Fast O(1) bilateral filtering
using trigonometric range kernels" [6]. The authors also provide an existing
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Java implementation in the form of an ImageJ plug-in, which I adapted into
a Hadoop MapReduce program in order to be able to directly compare se-
quential and distributed performance [34]. In order to avoid confusion, the
"O(1)" notation here does not refer to the time complexity of the bilateral
filter algorithm in question, but rather refers to it’s use of constant-time
spatial averaging techniques.

3.2.3 Practical approach

Figure 3.9: A diagram illustrating the concept of partitioning. Bright blue
signifies the overlap necessary to calculate all the X-s on the left and right
parts. Later the pieces can be merged and the overlap discarded.

Due to the size of the image in question, the first step in the processing
chain was to split it into parts small enough to fit into HDFS blocks, but
big enough to maximally take advantage of the processing power: as each
Map or Reduce task requires some resources to start and shut down, it is
in our interests to minimise the number of these tasks. When running my
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experiments, I used a Hadoop cluster set up with a HDFS block size of 64
megabytes. Therefore, when splitting the big image into parts (each a PNG
file), I used the following reasoning:

• A standard image of three color channels, 64 megabytes can hold values
of 64 ∗ 1024 ∗ 1024 ∗ 8/24 ∼= 22369621 pixels, which is roughly an image
of 4729 by 4729 pixels.

• Since this calculation is for estimating storage requirements for raw
data, it can be safely assumed that even in the worst case scenario,
PNG compression will not perform worse.

• Therefore, a choice of 4500 by 4500 pixels should be close to optimal,
regardless of the content of the image.

Before partitioning the image based on this idea, it is also necessary to
take into account the characteristics of the processing we are about to apply.
Namely, we have to ensure that the results of this divide-and-conquer type
approach are identical to the results we would attain by processing the image
without partitioning. In this case, we are dealing with a local non-iterative
algorithm, therefore this is relatively straightforward: we only have to make
sure that adjacent parts of the image have an overlap big enough, so that
when the algorithm calculates new values for pixels at the edge of the partial
images, it still has the values of their neighboring pixels. For example, in the
case of applying Gaussian blur with a radius of 5, the initial image should
be partitioned so that individual pieces have an overlap of at least 5 pixels.
In the spirit of this analysis, I split the 6.99 gigapixel photo into pieces using
the algorithm presented in figure 3.
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Data: w - input width, h - input height, o - overlap, b - piece
height/width, fx - width offset, fy - height offset

for fx = 0, 1, ...w do
if fx + b > w then

tmpwidth = w − fx
end
else

tmpwidth = b
end
for fy = 0, 1, ...h do

if fy + b > h then
tmpheight = w − fy

end
else

tmpheight = b
end
extract_part(fx, fy, tmpwidth, tmpheight)
fy+ = b

end
fx+ = b

end
Algorithm 3: Pseudocode of the partitioning script used to split the image
into smaller pieces.

As a result, the original image was converted into 380 parts of varying size
both in terms of dimensions and storage: the biggest piece with dimensions
4500 by 4500 and 30.4 megabytes in size, and the smallest piece being roughly
913 kilobytes with a width of 1381 and height of 601 pixels. This concludes
the part of pre-processing the data in preparation of uploading it to the
Hadoop Distributed File System. To extract the pieces from the GeoTIFF
container into individual PNG files, I used the Geospatial Data Abstraction
Library (GDAL) in conjunction with a script written in Python specially for
this purpose [13].

Implementation with Hadoop

Having partitioned the image into pieces that fit into memory, the next
step is to design a MapReduce program to operate on this data. Since, by
specifying overlaps and fitting the pieces within the HDFS block size during
the partitioning phase, we have already ensured that each instance of the
algorithm has it’s necessary data locally available. Also, since we can easily
perform all necessary computations in the Map phase, there is no need for a
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Reducer - Hadoop can be configured to simply write output to storage after
the Map phase. Therefore, in this case, the MapReduce program consists
only of three definitions: InputFormat, Mapper and OutputFormat. Their
respective purposes are straightforward: read blocks from HDFS and convert
them to Java objects that contain the name, dimensions and pixel values of
the block’s contents (one block contains one piece of the complete image),
process these pieces with the fast O(1) bilateral filter, and finally convert
the resulting objects back to PNG files and write to HDFS. Similarly to the
other practical example presented in the previous section, the Key is the
filename of the image (the filenames signifying which piece of the full image
they represent), and the Value is a Java object containing the image.

Testing

Instance type m1.small
Memory 1.7 GiB

CPU 1 virtual core with 1 EC2 Compute Unit
Local storage 160 GB

Platform 64-bit
Instance type m2.xlarge

Memory 17.1 GiB
CPU 2 virtual cores with 3.25 EC2 Compute Units each

Local storage 420 GB
Platform 64-bit

Figure 3.10: Parameters of the m1.small and m2.xlarge instance types ac-
cording to the Amazon EC2 official web page [20]. One EC2 Compute Unit
can be thought of as the equivalent of a 1.0-1.2 GHz 2007 Opteron or 2007
Xeon processor.

All tests were run on a Hadoop cluster with one m1.small virtual machine
as the master node and m2.xlarge virtual machines as computing nodes on the
Amazon EC2 cloud (see figure 3.10 for details on the instance types). With
regard to the configuration of the Hadoop cluster, most parameters remained
set to the default values both in runs with version 0.20.2 and 1.0.3. The only
exceptions were setting the HDFS block size to 64 megabytes, and setting
the maximum memory for Map and Reduce tasks to 15 000 megabytes. The
choice of m2.xlarge instances for computing nodes was directly influenced
by the requirements of the algorithm - all attempts to run the tests with
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m1.small instances failed because there was not enough memory available.
Using m2.xlarge eliminated these problems and due to the number of cores,
also allowed simultaneous processing of two images. In the following, I will
present the results of testing the fast O(1) bilateral filter algorithm in various
configurations.

The principal results of testing can be seen in figure 3.12. In order to best
compare the MapReduce adaptation of the algorithm to it’s performance as
a stand-alone ImageJ plugin, I wrote a shell script which started an Im-
ageJ macro to sequentially process all the parts of the original image in a
m2.xlarge instance. Since the technical parameters of the instance were iden-
tical to the computing nodes’, this gives us a good estimate of how much the
Hadoop framework affected the speed of the computations. As can be seen
from the chart in figure 3.12, the decrease in speed is noticeable, but small.
Considering that Hadoop also provides fault-tolerance, load balancing and
handles the distribution of data all by itself, it can be argued that this sort
of approach to image processing has justified itself, and could reliably used
as a solution for similar problems.

The results of comparing performance between Hadoop version 0.20.2 and
1.0.3 can be seen in figure 3.11.

Number of nodes Wall time, 0.20.2 (s.) Wall time, 1.0.3 (s.)
8 3031.2 3286.9
16 1557.2 1693.4

Figure 3.11: Comparison in processing time between a cluster running on
Hadoop version 0.20.2 and 1.0.3. In the latter case, the result is an average
of five test runs.

3.3 Discussion
With regard to the time spent working on the practical part of this thesis,

I spent around a month experimenting with various approaches for applying
the bilateral filter detailed in section 3.2.2, including implementing the naive
algorithm (see section 3.2.2) and another optimisation by Paris and Durand
[29]. The version of bilateral filter by Paris and Durand was unsuitable for
two reasons: the example code was written in C++ and would only perform
filtering on monochrome images. While it would have been perfectly possible
to counter these problems by utilising Java Native Interface (JNI) and re-
writing the example to work with multichannel images, in the light of already
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having a complete implementation in Java by Chaudhury et al., I opted for
using that instead [27].

When dealing with the data-set of archaeological images, the difficult as-
pect was specifying the purpose of the processing. At the time I received
the data, it was only partially structured, meaning that some portions of the
data was nicely organised and tagged, whereas others were not. Therefore,
measuring the efficiency of meta-data extraction was essentially impossible,
as I did not have any ideally organised data-set to compare my results to,
and neither did I have time to manually organise it. So, in the interests of
providing at least some rough idea as to whether or not extracting informa-
tion from the photos is within the processing capability of a regular Hadoop
cluster of 8 or 16 computing nodes, I spent two weeks on implementing and
testing the proof-of-concept pipeline detailed in section 3.1.

The general analysis involved in adapting an existing image processing
solution to MapReduce using Hadoop can be summed up by the following:

• Pre-processing input: since there are many different file formats
and representations for images, and not all of those can easily be read
- either because of the lack of existing InputFormats, freely available
Java libraries, or due to memory restrictions - transforming the data to
a form more suitable for processing is important in achieving satisfying
results. When using Hadoop, this involves fitting the data inside the
block size of HDFS, either by packaging into SequenceFiles or dividing
to smaller pieces, and choosing a storage format which requires minimal
conversion before the actual processing.

• Choice of algorithm: due to restrictions by the design of the MapRe-
duce model, using the most straightforward implementations may yield
results that are below expectations. Therefore, when considering al-
gorithms to use, an important aspect is to consider how well they
fit within the pipeline of Input-Map-Reduce-Output. In the case
of Hadoop, if an algorithm requires node-to-node communication, it
should be transformed to a more suitable form. If that is not possible,
the use of MapReduce in this scenario is probably not a good idea, and
should only be considered when there are no better alternatives.

• Hardware: when using a cluster of virtual machines to perform
MapReduce computations, choice of correct machine parameters is rel-
evant as well. For instance, computing nodes with more processor cores
work better with algorithms that take advantage of multiple threads
and are able to work on several Map or Reduce tasks simultaneously.
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• Software compatibility: technically, Hadoop can be integrated with
any kind of software capable of running on the same platform, but
this usually comes with a price of having additional points of failure
and more resources claimed by processing overhead. Therefore, it is
not strictly important if all processing is performed in a MapReduce
program written in Java, or a mixture of tools and technologies from
Hadoop Pipes and Streaming to simple shell scripts.

3.4 Summary
In this chapter, I have described two example scenarios of applying

MapReduce-based distributed image processing on both cases of large-scale
data-sets (large set of regular images, one large image). While the solutions
described are mainly geared to be proof-of-concept, they mimick the charac-
teristics of some real-world tasks that would be attempted on these data-sets,
and can therefore be used as a rough estimate when considering adapting any
similar tasks to this model of distributed computing.
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Actual speed-up Theoretical speed-up

Number of nodes Wall time (s.) Theoretical speed-up Actual speed-up
Sequential 22763.9 1 1

1 23879.5 1 0.95
2 11944.6 2 1.91
4 6534.2 4 3.48
8 3031.2 8 7.51
16 1557.2 16 14.62

Figure 3.12: A comparison of processing time with regard to speed-up due to
parallelisation. The left column represents the number of computing nodes
in the cluster. The result is an average of ten runs with 8 and 16 nodes, five
runs with 2 and 4 nodes and two runs with 1 node. Sequential represents the
result attained by a stand-alone script calling ImageJ and running the Fast
O(1) Bilateral Filter plugin on all pieces of the image.
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Chapter 4

Conclusions

In this thesis, I have described an approach to distributed image pro-
cessing using the MapReduce model, along with two examples of practical
application using the Apache Hadoop framework. I have also provided a
general classification of image processing algorithms and explained some of
the basic issues that should be taken into account when considering methods
of parallelisation. When discussing all of these subjects, I have focused on
two-dimensional images with three color channels, which is essentially the
vast majority of data that is commonly thought of as an "image". Finally,
I also make a distinction between the tasks of processing a large data-set
of regular-sized images and one large image with regard to the previously
defined classes of algorithms.

First, in the case of working with a data-set of regular images, there
are almost no insurmountable issues with adapting any kind of algorithm
to the MapReduce model. The divide-and-conquer approach of splitting
up the data-set for independent processing works well in frameworks such
as Hadoop, and - as shown in the practical example - there are almost no
technical barriers for integrating MapReduce programs with software written
in any language, as the list of supported platforms for Hadoop includes Linux,
Windows, BSD, Mac OS/X and OpenSolaris [11]. It is to be noted, though,
that in my analysis, I did not consider any algorithms which require more
than one image as input. This definition excludes, for example, clustering
algorithms which need to compare images to each other. Another restriction
stems from the Hadoop framework itself: no matter the size of input data,
the start-up time of a job remains at roughly 17 seconds.

When moving on to the case of processing images with dimensions large
enough to require special attention regardless of the nature of the task it-
self, the applicability of MapReduce is less feasible. With local non-iterative
algorithms, it is enough to partition the input, process the pieces, and then
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assemble the final output image. The other three cases are not so trivial:
the communication requirements of these algorithms imply running many
MapReduce jobs in rapid succession. As mentioned in the previous para-
graph, it is the delay in initiating a MapReduce job that makes this approach
unattractive for any algorithm involving many short iterations. With algo-
rithms that have less iterations or iterations that last longer, adaptation to
MapReduce might be an option.

In conclusion, I would say that when considering the feasibility of using
MapReduce as a means for large-scale distributed image processing, the na-
ture of the data determines the algorithms that can be used. With a data-set
of many regular images, there are almost no issues to speak of, as paralleli-
sation of the processing in this case is simply a more fault-tolerant, efficient
and automated way of dividing up the data amongst several computers, do-
ing the calculations and later merging the result back together. In the case
of working with a large image that does not fit into the memory of one sin-
gle computer, the only approach here is to divide it into parts. However,
this approach leads to a decrease in performance in case of algorithms that
require communication.
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Chapter 5

Future work

As for future work, perhaps the most obvious starting point is looking
into ways of processing large images with iterative local and non-local algo-
rithms, because although adapting these algorithms into MapReduce using
Hadoop seems to be difficult at first glance, depending on the algorithm, the
issues could be solved by using implementations of MapReduce that are more
suitable for iterative processing, such as Twister, HaLoop or Spark [5, 9, 48].
It is also probable that these kinds of algorithms would benefit more from
models of distributed computing that are more geared towards allowing com-
munication between computing nodes, such as Bulk Synchronous Parallel and
Message Passing Interface [15, 41].

Another unexplored aspect of this thesis has to do with the choice of
Amazon EC2 instance types used for testing. Namely, a common technique
in speeding up image processing algorithms involves the use of Graphical
Processing Units (GPU), also present in most commonly available personal
computing devices [32]. In the practical parts of this thesis, however, I ran
no tests at all on the GPU-equipped instances Amazon provides, instead fo-
cusing on image processing that only makes use of the "regular" processor,
or Central Processing Unit (CPU). While it is unlikely that using GPU pro-
gramming techniques in distributed image processing significantly affects the
main conclusions of this thesis, as it does not solve the computing nodes’
need to communicate, looking into this subject may allow for processing of
significantly more amounts of data, potentially turning some large-scale tasks
into small-scale.
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Resümee (Eesti keeles)

Suuremahuline pilditöötlus MapReduce baasil

Magistritöö (30 EAP)

Karl Potisepp

Jälgides tänapäeva tehnoloogia arengut ning odavate fotokaamerate üha
laialdasemat levikut, on üha selgem, et ühe osa üha kasvavast inimeste tek-
itatud andmete hulgast moodustavad pildid. Teades, et tõenäoliselt tuleb
neid andmeid ka töödelda, ning et üksikute arvutite võimsus ei luba ko-
hati juba praegu neid mahukamate ülesannete jaoks kasutada, on inimesed
hakanud uurima mitmete hajusarvutuse mudelite pakutavaid võimalusi. Üks
selline on MapReduce, mille põhiliseks aluseks on arvutuste üldisele kujule
viimine, seades programmeerija ülesandeks defineerida vaid selle, mis toimub
andmetega nelja arvutuse faasi - Input, Map, Reduce, Output - jooksul.
Kuna sellest mudelist on olemas kvaliteetseid vabavara realisatsioone, ning
mahukamateks arvutusteks on kerge vaeva ja vähese kuluga võimalik rentida
vajalik infrastruktuur, siis on selline lähenemine pilditöötlusele muutunud
peaaegu igaühele kättesaadavaks.

Antud magistritöö eesmärgiks on uurida MapReduce mudeli kasutatavust
suuremahulise pilditöötluse vallas. Selleks vaatlen eraldi juhte, kus tegemist
on tavalistest piltidest koosneva suure andmestikuga, ning kus tuleb töödelda
ühte suuremahulist pilti. Samuti jagan nelja klassi vahel kõik pilditöötlusal-
goritmid, nimetades need vastavalt lokaalseteks, iteratiivseteks lokaalseteks,
mittelokaalseteks ja iteratiivseteks mittelokaalseteks algoritmideks. Kasu-
tades neid jaotusi, kirjeldan üldiselt põhilisi probleeme ja takistusi, mis või-
vad segada mingit tüüpi algoritmide hajusat rakendamist mingit tüüpi pil-
tandmetel, ning pakun välja võimalikke lahendusi.

Töö praktilises osas kirjeldan MapReduce mudeli kasutamist Apache
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Hadoop raamistikuga kahel erineval andmestikul, millest esimene on 265GiB-
suurune pildikogu, ning teine 6.99 gigapiksli suurune mikroskoobifoto. Es-
imese näite puhul on ülesandeks pildikogust meta-andmete eraldamine, ka-
sutades selleks objekti- ning tekstituvastust. Teise andmestiku puhul on üle-
sandeks töödelda pilti ühe kindla mitteiteratiivse lokaalse algoritmiga. Kuigi
mõlemal juhul on tegemist vaid katsetamise eesmärgil loodud rakendustega,
on mõlemal puhul näha, et olemasolevate pilditöötluse algoritmide MapRe-
duce programmideks teisendamine on küllaltki lihtne, ning ei too endaga
kaasa suuri kadusid jõudluses.

Kokkuvõtteks väidan, et tavapärases mõõdus piltidest koosnevate and-
mestike puhul on MapReduce mudel lihtne viis arvutusi hajusale kujule viies
kiirendada, kuid suuremahuliste piltide puhul kehtib see enamasti ainult mit-
teiteratiivsete lokaalsete algoritmidega.
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