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INTRODUCTION 

Ribosomes are large ribonucleoprotein particles responsible for carrying out 
protein synthesis – a fundamental process in every cell of every organism. Like-
wise, the synthesis of ribosomes themselves is a fundamental process. Histori-
cally, eubacterium Escherichia coli has served as the model organism for study-
ing the structure, functioning, and synthesis of ribosomes. 

Synthesis of bacterial ribosomes is a complex process that starts with riboso-
mal RNA transcription, includes a plethora of chemical and conformational 
alterations to both its RNA and protein components, and through interwoven 
assembly pathways ultimately yields functional ribosomes capable of participat-
ing in protein synthesis (for comprehensive reviews see: Kaczanowska & 
Ryden-Aulin, 2007; Wilson & Nierhaus, 2007; Shajani et al., 2011). Multiple 
rare genetic disorders have been attributed to defects in ribosome biogenesis 
(Freed et al., 2010). 

Post-transcriptional enzymatic modification of ribosomal RNA is an integral 
and conserved part of ribosome synthesis. Most modified nucleosides are lo-
cated near the functionally important regions of the ribosome (Decatur & 
Fournier, 2002; Ofengand & Del Campo, 2004). Notwithstanding their conserv-
ation and strategic localization, the function of the modified nucleosides re-
mains a mystery for the most part. Understanding of the substrate recognition 
and catalysis mechanisms of the ribosomal RNA modification enzymes is an 
essential stepping stone for creating a complete picture of the processes that 
govern the synthesis of ribosomes in cells.  

First part of this thesis gives an overview of the bacterial ribosome structure 
and synthesis with special attention being paid to ribosomal RNA modifications, 
their synthesis and significance. The catalysis and the substrate recognition 
mechanism of two main types of modification enzymes, the pseudouridine syn-
thases and the methyltransferases, is covered in more detail. 

The experimental part of the thesis focuses on two ribosomal RNA modifica-
tion enzymes, the pseudouridine synthase RluD and the methyltransferase 
RlmH, both of which modify a functionally important part of the ribosome, the 
stem-loop 69. RlmH was first identified by us as the pseudouridine specific 
methyltransferase modifying 70S ribosomes exclusively (Ref. I and Ref. II). 
The kinetic parameters of RlmH and RluD were determined (Ref. II) and will be 
discussed in the overall context of the ribosome biosynthesis. Finally, the 
sensitivity of RlmH to mutations in its substrate stem-loop 69 (Ref. III) and in 
RlmH protein itself will be discussed in respect to substrate recognition and 
modification catalysis mechanism.  
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REVIEW OF LITERATURE 

Ribosome is the macromolecular machine responsible for a key process in every 
organism - decoding of the genetic information stored in the genome and medi-
ated via messenger RNAs into the amino acid sequence of proteins. Ribosomes 
of eukaryotes are larger and structurally more complex than bacterial and ar-
chaeal ribosomes. However, ribosomes from all three domains of life exhibit 
extraordinary phylogenetic conservation of the core structural and functional 
features. All ribosomes are made up of two unequal subunits containing riboso-
mal ribonucleic acid (rRNA) and ribosomal proteins (r-proteins), with rRNA 
featuring the decoding and the peptidyltransferase activity and r-proteins play-
ing a supporting role (Noller et al., 1992; Cech, 2000; Nissen et al., 2000; Steitz 
& Moore, 2003; Zhang et al., 2009; Ben-Shem et al., 2011). 

Rod-shaped Gram-negative bacterium Escherichia coli (commonly abbrevi-
ated E. coli) is due to its long history of laboratory culture and the ease of 
manipulation the most extensively studied prokaryotic model organism and 
serves also as the reference organism for ribosome research. However, the 
thermophilic bacterium Thermus thermophilus (Schluenzen et al., 2000; 
Wimberly et al., 2000; Yusupov et al., 2001; Korostelev et al., 2006; Selmer et 
al., 2006; Jenner et al., 2010), the poly-extremophilic bacterium Deinococcus 
radiodurans (Harms et al., 2001), and the halophilic archaeon Haloarcula 
marismortui (Ban et al., 2000; Nissen et al., 2000) have also contributed signifi-
cantly to the understanding of the various structural aspects of prokaryotic ribo-
somes. On the other hand, atomic resolution structures of the first eukaryotic 
ribosomes, those of yeast Saccharomyces cerevisiae and Tetrahymena 
thermophila, were determined not long ago (Ben-Shem et al., 2010; Ben-Shem 
et al., 2011; Klinge et al., 2012). 
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1. STRUCTURE AND FUNCTION OF THE 
BACTERIAL RIBOSOME 

Bacterial ribosome with its molecular weight of approximately 2.5 megadaltons 
and a diameter of about 210 Å sediments as a 70S particle and is formed of the 
large subunit (LSU) and the small subunit (SSU), sedimenting as 50S and 30S 
particles, respectively (Tissieres & Watson, 1958; Ramakrishnan, 2002) (Figure 
1 and 3). S is the Svedberg unit for the sedimentation velocity when subjected 
to a centrifugal force and is defined as 10-13 seconds. Based on the numerous 
available atomic resolution structures (Schluenzen et al., 2000; Wimberly et al., 
2000; Harms et al., 2001; Yusupov et al., 2001; Schuwirth et al., 2005; 
Korostelev et al., 2006; Selmer et al., 2006; Zhang et al., 2009; Jenner et al., 
2010), all bacterial ribosomes consist of roughly two-thirds of RNA and one-
third of protein. E. coli LSU is composed of two rRNA molecules, 23S (2904 
nt) and 5S (120 nt) rRNA, and 33 L-proteins (L1-L36), while SSU is composed 
of 16S (1542 nt) rRNA and 21 S-proteins (S1-S21) (Figure 1) (for reviews see: 
Kaczanowska & Ryden-Aulin, 2007; Wilson & Nierhaus, 2007; Steitz, 2008; 
Shajani et al., 2011). Each component is present as a single copy, with the 
exception of two copies of the L12 protein and two copies of its N-terminally 
acetylated derivative, L7 (Hardy, 1975). 
 
 

 
Figure 1. Components of the bacterial ribosome. R-proteins (assortment of colors) and 
rRNAs (grey) are depicted separately and in the context of the large subunit (LSU) and 
the small subunit (SSU). Illustration adapted from Wilson Lab Homepage 
(http://www.lmb.uni-muenchen.de/wilson/). 
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The sequences of the rRNAs from thousands of organisms are available by now 
(Cole et al., 2003; Wuyts et al., 2004; Pruesse et al., 2007) and although the 
size and the primary sequences vary considerably, the secondary structures are 
comparable in all organisms. The secondary structure of rRNAs is made up of 
short helical segments connected by single-stranded regions of loops and bulges 
(Figure 2). Stem-loop (hairpin) structures are common motifs in rRNA second-
ary structure (Figure 2 and 4). 16S rRNA can be divided into four domains (5’, 
central, 3’ major, and 3’minor) and 23S rRNA into six domains (I-VI) (Noller et 
al., 1981; Noller & Woese, 1981) (Figure 2). The 3’ end of 16S rRNA contains 
the anti-Shine-Dalgarno sequence that base-pairs with the Shine-Dalgarno se-
quence present in many messenger RNAs. 5S rRNA is considered the seventh 
domain of LSU.  
 
 

 
Figure 2. Secondary structure of E. coli rRNAs. 16S rRNA (A) 5’, central, 3’ major, 
and 3’ minor domains are indicated by dark blue, pink, green, and yellow, respectively. 
23S rRNA (B) domains I-VI are also indicated by different colors. Location of 23S 
rRNA stem-loop 69 (H69) is indicated by an arrow. 5S rRNA is not shown. Illustration 
adapted from (Decatur & Fournier, 2002). 
 
The secondary structure motifs of rRNA are tightly packed together and stabi-
lized by a myriad of tertiary interactions into a complex three-dimensional 
rRNA scaffold (Holbrook, 2008). Coaxial stacking plays a major role in dictat-
ing the overall architecture of the rRNA scaffold. In addition, the 2’-hydroxyl 
groups of riboses, A-minor interactions, pseudoknots, and more than 20 types of 
non-canonical base pairs are involved in stabilization of the rRNA tertiary struc-
ture (Noller, 2005). Magnesium ions (Mg2+) play an important part by interact-
ing with phosphate groups from remote secondary structure elements bringing 
them together in the tertiary structure. There are also numerous monovalent 
cations bound to specific locations neutralizing the negative charge of the rRNA 
backbone phosphate groups (Klein et al., 2004a). 
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While the domains of SSU are able to fold (Weitzmann et al., 1993; Samaha 
et al., 1994; Agalarov et al., 1998; Yusupov et al., 2001) and move (Frank & 
Agrawal, 2000; Schuwirth et al., 2005; Zhang et al., 2009) relatively inde-
pendently of each other, the domains of the 23S rRNA are intricately interwo-
ven with the L-proteins as well as each other to form a more monolithic LSU 
particle (Schluenzen et al., 2000; Wimberly et al., 2000; Harms et al., 2001). 
Majority of the r-proteins are located on the surface of the subunits, they are 
relatively small, basic (average isoelectric point is ~10), and either globular in 
structure or contain extensions that penetrate into the interior of the subunits to 
fill the gaps between the rRNA secondary structure elements (Schluenzen et al., 
2000; Wimberly et al., 2000; Harms et al., 2001; Yusupov et al., 2001; 
Schuwirth et al., 2005; Korostelev et al., 2006; Selmer et al., 2006). Therefore, 
the primary function of the r-proteins seems to be the stabilization of highly 
compact rRNA structures (Klein et al., 2004b; Wilson & Nierhaus, 2005). 

The translation process is not within the scope of this thesis and is thus re-
viewed only briefly from the structural aspects to provide the necessary back-
ground. The two ribosomal subunits perform different functions in protein 
synthesis (reviews of translation: Ramakrishnan, 2002; Moore & Steitz, 2003; 
Bashan & Yonath, 2008; Steitz, 2008; Schmeing & Ramakrishnan, 2009). The 
SSU is responsible for the association with the messenger RNA (mRNA) during 
translation initiation and contains the decoding center (DC), where interactions 
between codons in the mRNA and the anticodons of transport RNAs (tRNAs) 
determine which amino acid is to be incorporate into the polypeptide chain next 
(Figure 3C). The peptidyltransferase center (PTC) of the LSU (Figure 3B) cata-
lyzes two reactions: i) the peptide bond formation between the amino acid at-
tached to the tRNA in the A-site (aminoacyl-tRNA) and the nascent peptide 
chain attached to the tRNA in P-site (peptidyl-tRNA) during translation elonga-
tion, and ii) the hydrolysis of nascent peptide from P-site tRNA during transla-
tion termination. Just below the PTC begins the polypeptide exit tunnel, which 
provides the nascent peptides with a stable path through the LSU.  
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Figure 3. Structure of the bacterial ribosome. 70S ribosome with mRNA and A-, P-, 
and E-site tRNAs (A). “Split” view of the LSU (B) and SSU (C) from the subunit inter-
face side displaying the mRNA, tRNAs, decoding center (DC), peptidyltransferase cen-
ter (PTC), and the structural landmarks (in brown for LSU and in blue for SSU). 
Illustration adapted from (Frank et al., 1995; Schmeing & Ramakrishnan, 2009). 
 
Upon translation initiation, the two subunits associate - become connected via a 
complex network of molecular interactions between the protruding structures of 
the subunits, termed inter-subunit bridges (Frank et al., 1995; Yusupov et al., 
2001; Maiväli & Remme, 2004; Hennelly et al., 2005; Schuwirth et al., 2005). 
Some of the inter-subunit bridges are composed entirely of RNA, while others 
have at least one protein component. First type of bridges are for the most part 
located in the central region of the subunit interface, while the latter type of 
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bridges are located mostly peripherally (Yusupov et al., 2001; Schuwirth et al., 
2005; Korostelev et al., 2006; Selmer et al., 2006). The interface between the 
two subunits is relatively free of r-proteins and provides the binding surface for 
various substrates and ligands, including the three binding sites (A-, P-, and E-
sites) for tRNAs (Figure 3A). Rearrangement of the inter-subunit bridges during 
the translation elongation cycle is integral to the coordinated action between the 
DC of SSU and PTC of the LSU as well as to translocation of the mRNA/tRNA 
complex precisely one codon at the time relative to the ribosome (Yusupov et 
al., 2001; Chan et al., 2006; Zhang et al., 2009; Jenner et al., 2010). Protein 
synthesis is hence a cyclic and dynamic process of the ribosome undergoing a 
series of coordinated motions (Frank & Agrawal, 2000; Zhang et al., 2009; 
Jenner et al., 2010; Dunkle et al., 2011). Subunits remain together during 
translation elongation cycles and finally separate in conjunction with the release 
of the finished polypeptide (Ramakrishnan, 2002; Bashan & Yonath, 2008; 
Steitz, 2008; Schmeing & Ramakrishnan, 2009). 

rRNA is the key component of the ribosome, being crucial for all aspects of 
translation. For example, the 23S rRNA has a central role in peptide bond for-
mation as a number of its residues serve to fix the tRNA substrates for the react-
ion (entropic catalysis) and participate in the proton shuttle network during the 
peptidyl group transfer (Cech, 2000; Nissen et al., 2000; Steitz & Moore, 2003; 
Moore & Steitz, 2010). Nonetheless, in addition to being important for the 
stabilization of rRNA tertiary structure as mentioned above, r-proteins are 
known to assist various steps of translation such as mRNA binding (S1), decod-
ing and fidelity of translation (S4, S5, and S12), and fixing the tRNAs in 
orientation facilitating peptide bond formation (S7, S11, L5, L16, and L27), just 
to name a few (comprehensive review of the functions of r-proteins in Wilson & 
Nierhaus, 2005). Some r-proteins have an essential function in the biogenesis of 
ribosomal subunits (discussed in chapter 2.1.), but are dispensable for function 
after the ribosome is fully assembled (Wilson & Nierhaus, 2005). Taken to-
gether, r-proteins are necessary for the optimal functioning of the ribosome and 
even small improvements in the speed and accuracy of translation can result in 
strong selective advantages for the cells. 

 
 

1.1 Stem-loop 69 

Stem-loop 69 (H69) is a universally conserved secondary structure element 
(23S rRNA nucleotides 1906-1924 according to E. coli numbering) in domain 
IV of the LSU (Figures 2). Furthermore, the sequence of H69 is highly con-
served as well (Cannone et al., 2002). Accordingly, many point mutations in 
H69 cause strong growth defects in E. coli and are known to inhibit translation 
(Liiv et al., 2005), reflecting the functional importance of H69. In fact, H69 has 
been shown to be involved in various steps of translation such as: subunit 
association (O'Connor & Dahlberg, 1995; Maiväli & Remme, 2004; Gutgsell et 
al., 2005; Liiv et al., 2005; Ali et al., 2006; Hirabayashi et al., 2006), initiation 
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(Hirabayashi et al., 2006; Kipper et al., 2009), ensuring translational fidelity 
(O'Connor & Dahlberg, 1995; Liiv et al., 2005; Hirabayashi et al., 2006; 
O'Connor, 2007; Kipper et al., 2009; O'Connor, 2009; Ortiz-Meoz & Green, 
2011), elongation (Liiv et al., 2005; Kipper et al., 2009), translocation (Bashan 
et al., 2003), termination (Ali et al., 2006; O'Connor, 2009; Kipper et al., 2011; 
Ortiz-Meoz & Green, 2011), and ribosome recycling (Agrawal et al., 2004; 
Wilson et al., 2005; Ali et al., 2006). In addition, H69 has been implicated in 
ribosome biogenesis (Gutgsell et al., 2005; Liiv et al., 2005). Deleting H69 is 
lethal to E. coli in vivo but, unexpectedly, ribosomes lacking the entire H69 
maintain the ability to translate natural mRNAs in vitro (Ali et al., 2006).  

A curious characteristic of the H69 is its high content of modified nucleo-
sides (MN) (Ofengand & Bakin, 1997). E. coli H69 (Figure 4) contains three 
MN, two pseudouridines (Ψ) at positions 1911 and 1917, and a N3-methylated 
pseudouridine (m3Ψ) at position 1915 (Bakin & Ofengand, 1993; Kowalak et al., 
1996). Ψ1911 is highly but not completely conserved, lacking in archaea and 
yeast, for example; Ψ1915 has been found in all organisms examined, except 
for archaeon Sulfolobus acidocaldarius; and Ψ1917 is believed to be universally 
conserved in cytoplasmic ribosomes (Ofengand, 2002), as well as proposed to 
be important for ribosome functioning (Hirabayashi et al., 2006). Other bases 
besides Ψ are tolerated at positions 1911 and 1915 (Del Campo et al., 2005; 
Hirabayashi et al., 2006). Methylation of the N3 position of Ψ located in H69 
and corresponding to position 1915 in E. coli 23S rRNA, has been described in 
bacterial and chloroplast ribosomes (Ofengand & Bakin, 1997; Del Campo et 
al., 2005).  
 

 
Figure 4. The sequence and secondary structure of the E. coli 23S rRNA stem-loop 69 
(H69) showing key interactions within H69 itself, with 16S rRNA helix 44 (h44), A- 
and P-site tRNAs, and protein factors (RFs and RRF). Pseudouridine and N3-methyl-
pseudouridine are marked with Ψ and m3Ψ, respectively. Tertiary interactions within 
H69 are indicated by dotted blue lines. H69 contacts with A- and P-site tRNAs, h44, 
RFs, and RRF are shown by arrows. 
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Chow and co-workers have extensively studied the influence of the MN on the 
stability and the conformation of H69; and conclude that Ψs at positions 1915 
and 1917 have a destabilizing effect on H69 structure; whereas Ψ at position 
1911 has a stabilizing effect (Meroueh et al., 2000). The N3-methylation of 
Ψ1915 causes a slight increase in the thermodynamic stability but does not 
cause any substantial changes in the overall structure of H69 (Chui et al., 2002). 
Collectively, Ψs lead to increased base stacking in H69 (Desaulniers et al., 
2008). Furthermore, Ψ but not U at position 1917 can form the non-canonical 
reversed Hoogsteen base pair with A1912 (Figure 4) (Sakakibara & Chow, 
2012) seen in the crystal structure of E. coli 70S ribosomes (Schuwirth et al., 
2005). The same might be true for the Ψ at position 1911 and its involvement in 
the non-canonical reversed Hoogsteen base pair with A1919 (Figure 4) 
(Sakakibara & Chow, 2012). Therefore, the presence of Ψs is clearly important 
for the formation and the stability of the tertiary structure of H69. The 
aforementioned reversed Hoogsteen base pair with A1912 formed by Ψ1917 but 
not by U1917, is important for interactions between ribosomal subunits (dis-
cussed below), implicating Ψ at 1917 as a modification involved in subunit 
association (Sakakibara & Chow, 2012). Accordingly, ribosomes lacking Ψs in 
H69 exhibit reduced subunit association in vitro (Gutgsell et al., 2005).  

H69 extends from the LSU and, upon translation initiation, contacts the tip 
of 16S rRNA helix 44 (h44) immediately adjacent to the DC of SSU, forming 
the central inter-subunit bridge, B2a (Mitchell et al., 1992; Yusupov et al., 
2001; Hennelly et al., 2005; Schuwirth et al., 2005). Reflecting the high 
conservation of H69, bridge B2a is present in ribosomes from all three domains 
of life as well as in the organelle ribosomes (Mears et al., 2002). B2a is among 
the first inter-subunit bridges to form (Hennelly et al., 2005) and essential for 
70S formation (Maiväli & Remme, 2004). Also, B2a plays an important role in 
maintaining the subunit association as the SSU rotates relative to the LSU dur-
ing translocation (Frank & Agrawal, 2000; Dunkle et al., 2011). 

The orientation of H69 within the 70S ribosome (Yusupov et al., 2001; 
Schuwirth et al., 2005; Selmer et al., 2006; Zhang et al., 2009) differs from the 
one seen in the free LSU (Harms et al., 2001). Namely, in the 70S ribosomes, 
the tip of H69 stretches about 13 Å towards the SSU, whereas in the free LSU, 
it makes more contacts with the LSU itself. The other notable difference be-
tween the H69 structures of LSU and 70S is the positioning of A1913. While 
A1913 is in a stacked conformation within the loop in the free LSU, it is in a 
flipped-out conformation in the 70S ribosomes.  

In the atomic resolution structure of the E. coli vacant 70S ribosomes 
(Schuwirth et al., 2005), several interactions between the LSU H69 and the SSU 
h44 can be seen (Figure 4). The widened reversed Hoogsteen base pair between 
Ψ1911 and A1919, bridged by the 2’-hydroxyl of A1918, allows A1918 and 
A1919 to form an A-A dinucleotide platform which projects A1919 into the 
minor groove of h44 near the bases U1406 and U1495, where it also interacts 
with the base of G1517. N1 position of A1919 directly interacts with the 2’-OH 
position of U1495 (Figure 4). A1912, which stacks on A1918 and forms a 
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distorted reversed Hoogsteen base pair with Ψ1917, projects into the minor 
groove of the base pair C1407 and G1494 in h44 of 16S rRNA (Figure 4). The 
involvement of H69 positions A1912 and A1918 in the formation of the bridge 
B2a is in agreement with the interference of 70S formation in vitro caused by 
chemical modifications at the aforementioned positions (Maiväli & Remme, 
2004). Also, single base substitutions of A1912 and A1919 have strong negative 
effects on growth rate of E. coli and cell-free translation (Liiv et al., 2005; 
Kipper et al., 2009). Furthermore, using systematic genetic selection of 
functional sequences in the loop of H69, A1912 was determined to be essential 
(Hirabayashi et al., 2006). These findings are in good agreement with the 
central role of A1912, A1918, and A1919 in tertiary interactions within H69 
and with SSU. Noller and coworkers showed that disrupting the bridge B2a by 
discarding H69 altogether is sufficient to prevent subunit association in the 
absence of tRNA (Ali et al., 2006). 

Compared to the vacant 70S ribosome structure discussed above, in the 
Thermus thermophilus (T. thermophilus) 70S ribosomes complexed with 
mRNA and tRNAs in the classical sites (Selmer et al., 2006), the entire H69 is 
shifted slightly toward the SSU. A1913 is seen to protrude into a pocket be-
tween the h44 of SSU and the A-site tRNA, instead of being inserted into the 
minor groove of h44, and to form a hydrogen bond (H-bond) between its N1 
and the 2’-hydroxyl of ribose 37 of the A-site tRNA anticodon stem-loop (Fig-
ure 4) (Selmer et al., 2006). The base of A1913 is oriented toward the 16S 
rRNA bases A1492 and A1493 that flip out during the decoding to interact with 
tRNA and mRNA (Ogle et al., 2001). Structures of the ribosome in the 
intermediated states of ratcheting reveal that A1913 of H69 and A1493 of h44 
adopt different conformations depending on the tRNA occupancy in the A-site 
(Zhang et al., 2009). Also, the H69 itself undergoes at least a 7 Å movement 
during ratcheting (Valle et al., 2003; Dunkle et al., 2011). Ribosome structures 
with A-site tRNA in pre- and post-accommodation states show the tip of H69 
(positions 1913-1915) contacting A-site tRNA D-stem (Schmeing et al., 2009; 
Schuette et al., 2009). The stem region of H69 (positions 1908-1909 and 1922–
1923) makes minor groove interactions with the D-stem of P-site tRNA (Figure 
4) (Korostelev et al., 2006; Selmer et al., 2006). A1913 has been proposed to 
monitor the incoming aminoacyl tRNAs as it interacts slightly differently with 
cognate and near-cognate tRNAs (Selmer et al., 2006; Jenner et al., 2010). So, 
A1913 of H69 likely participates directly in the decoding process and the 
conformational change in the H69 upon A-site tRNA binding may offer a way 
to signal the LSU GTPase center before tRNA accommodation (Selmer et al., 
2006; Jenner et al., 2010). Indeed, several groups have proposed that H69 forms 
a part of the signal transmission pathway between the DC of SSU and the PTC 
of LSU (Rodnina et al., 2002; Bashan et al., 2003; Cochella & Green, 2005; 
Frank et al., 2005; Ortiz-Meoz & Green, 2011). 

Cryo-electron microscopy and X-ray crystallographic studies show that H69 
contacts various translation factors: elongation factor G (EF-G), release factors 
(RFs), ribosome recycling factor (RRF), and ribosome modulation factor (RMF) 
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(Agrawal et al., 2000; Klaholz et al., 2004; Yoshida et al., 2004; Weixlbaumer 
et al., 2007; Korostelev et al., 2008; Laurberg et al., 2008; Pai et al., 2008; 
Weixlbaumer et al., 2008; Korostelev et al., 2010). Also, hydroxyl radical 
footprinting studies indicate that H69 contacts regions of SSU that overlap with 
the binding site of the translation initiation factor 3 (IF3) (Dallas & Noller, 
2001) suggesting that H69 may be competing with IF3 for binding to the SSU 
during the translation initiation. The involvement of H69 in translation termina-
tion and ribosome recycling has been studied in more detail.  

The termination of protein synthesis occurs through a specific recognition of 
a stop codon in the A-site of the ribosome by a release factor (RF), which then 
triggers the hydrolysis of the nascent protein chain from the P-site tRNA 
(Capecchi, 1967). In bacteria, there are two RFs (RF1 and RF2) with overlap-
ping specificity (Scolnick et al., 1968). In the co-crystal structures of T. thermo-
philus 70S ribosomes with RF1 and RF2, H69 is seen to be located between the 
domains II and III of RFs (Laurberg et al., 2008; Weixlbaumer et al., 2008; 
Korostelev et al., 2010). The tip of H69, more specifically the 2’-hydroxyl of 
C1914 and the backbone phosphates of m3Ψ1915 (Figure 4), contact the switch 
loop of RFs during stop codon recognition (Laurberg et al., 2008; Weixlbaumer 
et al., 2008). A1913 projects into the minor groove of h44 and base stacks with 
A1493; this interaction is believed to prevent the extrusion of A1493 involved 
in decoding and to promote RF binding to the ribosome. The interaction of 
A1913 with A1493 has been shown to induce a conformational change in RFs, 
which probably leads to the hydrolysis of the peptidyl-tRNA linkage (Laurberg 
et al., 2008; Weixlbaumer et al., 2008). Consistent with the structural data, 
mutations in H69 or the lack of H69 altogether, strongly impair the RF-
mediated peptide release (Ali et al., 2006; Korostelev et al., 2010). Interactions 
around Ψ1917 position appear to be most important for a conformation of H69 
that can properly interact with RFs (Kipper et al., 2011), which is in not 
surprising given the universal conservation of Ψ1917 and its involvement in 
tertiary interactions within H69 (discussed above). Interestingly, H69 Ψs appear 
to affect the RF1- and RF2-dependent peptide release differently, stimulating 
RF2 exclusively (Kipper et al., 2011). Also, the stem of H69 appears to be 
critical specifically for the recognition of UGA stop codons by RF2 (Ortiz-
Meoz & Green, 2011). These findings underline the differences between the 
RF1- and RF2-dependent stop codon recognition and peptide release. 

Pedersen and co-workers (Ejby et al., 2007) showed that the mutant pheno-
type of E. coli associated with the lack of H69 Ψs, namely the slow growth rates 
in vivo and the reduced subunit association in vitro (Raychaudhuri et al., 1998), 
can be rescued by a single point mutation (glutamic acid to lysine substitution at 
the position 172) in RF2 protein at a site close to H69 in co-crystal structure 
(Weixlbaumer et al., 2008). Based on this and the finding that the lack of Ψs in 
H69 causes a defect in RF2-mediated peptide release (Kipper et al., 2011), it 
seems that at least one of the Ψs in H69 is involved in translation termination by 
RF2, and that most if not all of the defects seen in the strain lacking Ψs in H69 
are mostly due to errors in translation termination (Ejby et al., 2007). However, 
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a recent study by O’Connor and Gregory demonstrates that the slow growth, 
impaired subunit association, and increased stop codon read-through pheno-
types associated with the lack of H69 Ψs is limited to the E. coli K-12 strain 
already carrying a mutant RF2 protein and does not occur with other E. coli 
strains even when they do lack Ψs in H69 (O'Connor & Gregory, 2011). RF2 in 
K-12 strain contains a threonine instead of an alanine at position 246 rendering 
RF2 less active in peptide release (Mora et al., 2007). Also, the SSU r-protein 
S7 is different in K-12 strain (Schaub & Hayes, 2011). The less efficient RF2-
dependent translation termination in K-12 strain due to variant RF2 and S7 pro-
teins is apparently tolerated as long as the cell still possesses all three Ψs in H69. 
However, when Ψs are lacking from H69, the accumulation of otherwise 
moderate termination defects apparently passes a threshold and leads to defects 
in downstream processes that result in significantly reduced cellular viability. In 
conclusion, although the role of Ψs in translation termination is still enigmatic, 
H69 itself is indispensable for efficient termination by RFs. 

At the end of translation, ribosome recycling factor (RRF) together with 
elongation factor G (EF-G) disassembles the ribosome post-termination com-
plex into free subunits, mRNA and tRNA, so they can be used in the next round 
of translation (Hirokawa et al., 2005). Co-crystal structure with 70S ribosomes 
shows E. coli RRF contacting H69 loop nucleotides C1914-Ψ1917 (Pai et al., 
2008). Upon RRF binding, the tip of H69 moves away from the SSU by about 8 
Å, thereby disrupting the bridge B2a and dissociating the subunits (Pai et al., 
2008). Accordingly, the recycling of subunits is affected by the binding of 
aminoglycoside antibiotics to the H69 thereby preventing the movement of H69 
toward RRF (Borovinskaya et al., 2007). Noller and co-workers showed that 
H69 deletion results in the loss of requirement for RRF in ribosome recycling 
(Ali et al., 2006). Taken together, these findings implicate H69 in ribosome 
recycling. 
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2. RIBOSOME BIOGENESIS IN BACTERIA 

In accordance with the vast and intricate molecular architecture, the biogenesis 
of the ribosome is a highly complex and energy intensive process. All of its 
components must be transcribed (and r-proteins also translated), processed, 
modified, folded, and assembled efficiently and accurately into functional ribo-
somes (Kaczanowska & Ryden-Aulin, 2007; Connolly & Culver, 2009; Shajani 
et al., 2011).  

The rRNA genes are organized into operons (Deutscher, 2009). In E. coli, 
seven rRNA operons are present, all of which have a similar overall structure 
and nearly identical sequences of the rRNA genes (Nomura & Morgan, 1977; 
Condon et al., 1995; Kaczanowska & Ryden-Aulin, 2007; Deutscher, 2009). 
Each rRNA operon is transcribed as a primary transcript containing 16S, 23S, 
and 5S rRNA sequences in that order together with leader, spacer, trailer, and 1-
3 tRNA sequences (Ginsburg & Steitz, 1975; Hayes et al., 1975). The organi-
zation of the 16S, 23S, and 5S genes into one operon ensures the production of 
equimolar amounts of the three rRNA species. Depending on the operon, one or 
several tRNAs are also part of the primary transcript, located between the 16S 
and 23S sequences and downstream of the 5S rRNA (Srivastava & Schlessinger, 
1990; Kaczanowska & Ryden-Aulin, 2007; Deutscher, 2009). Most of the genes 
of the r-proteins are also organized into operons (Nomura & Morgan, 1977).  

Ribosome assembly, rRNA nucleolytic processing and chemical modifica-
tion of ribosomal components will be discussed in the following chapters in 
more detail. However, it should be kept in mind that the various processes of 
ribosome biogenesis are intimately intertwined and interdependent. Meaning 
that essentially all of the rRNA maturation reactions occur in the context of the 
assembling ribosome.  

 
 

2.1 Assembly 

Ribosome assembly is the process of r-protein binding to rRNA molecules lead-
ing to conformational changes and to the emergence of ribosome precursor 
particles of increasing size and compactness.  

All of the information required to assemble a functional ribosome is encoded 
in the sequence of the rRNAs and r-proteins. This is demonstrated most ele-
gantly by the reconstitution of functionally active ribosome subunits in vitro 
from purified rRNA and r-proteins, albeit using conditions far from physiologi-
cal ones, namely high magnesium ion concentrations and long incubations at 
elevated temperatures (Traub & Nomura, 1968; Held et al., 1973; Nierhaus & 
Dohme, 1974; Dohme & Nierhaus, 1976). The extensive in vitro reconstitution 
experiments done mostly in the 70’s and 80’s by Nomura’s group on SSU, and 
Nierhaus and co-worker on LSU, have provided the corresponding assembly 
maps that illustrate the hierarchical and cooperative nature of the r-protein 
binding with rRNAs (Mizushima & Nomura, 1970; Held et al., 1974; Rohl & 
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Nierhaus, 1982; Herold & Nierhaus, 1987). While the assembly maps illustrate 
the interdependence of r-proteins for their incorporation into the ribosomal 
particles, they do not necessarily reflect the temporal sequence of the individual 
assembly steps, or the physical proximity of r-proteins in the subunits.  

Using pulse-chase coupled with quantitative mass spectrometry, Williamson 
and co-workers determined the binding kinetics of the individual S-proteins 
during the SSU in vitro reconstitution (Talkington et al., 2005). The binding 
parameters of S-proteins suggest that the SSU assembly proceeds via numerous 
local transitions, an assembly landscape, rather than through a global rate-limit-
ing step and a small number of discrete intermediates. A few years later, by 
mapping the changes in the structure of the 16S rRNA after the addition of  
S-proteins using time-resolved hydroxyl radical footprinting, Woodson and co-
workers demonstrated that the early SSU assembly in vitro is not strictly 
cooperative, nucleating simultaneously from different points along the 16S 
rRNA and yielding many early assembly intermediates which is in good agree-
ment with the assembly landscape model (Adilakshmi et al., 2008). They also 
showed that the 16S rRNA nucleotides interacting with the same S-protein are 
protected at different rates, indicating that RNA-protein interactions are reor-
ganized during the assembly (Adilakshmi et al., 2008). More recently, using a 
high-throughput strategy for capturing electron microscopy images, Williamson 
and co-workers succeeded to visualize the heterogeneous population of the 
assembly intermediates arising from SSU reconstitution in vitro (Mulder et al., 
2010), further illustrating that assembly can proceed through alternative path-
ways.  

Studying the ribosome assembly in vivo has proven to be a rather compli-
cated task. First off, assembly in vivo occurs within a couple of minutes (Lin-
dahl, 1975), which is a significantly shorter time than is required for the in vitro 
reconstitution. Assembly intermediate particles are not abundant under normal 
growth conditions (Lindahl, 1975), but can accumulate in response to deletions 
or mutations in certain genes and in the presence of antibiotics. In a few cases, 
r-protein content and abundance of the in vivo assembly intermediates have 
been measured (Charollais et al., 2003; Sharpe Elles et al., 2009; Sykes et al., 
2010). While many similarities between the r-protein content of the in vitro 
reconstitution and in vivo assembly intermediates exist, there also seem to be a 
fair amount of discrepancies (Shajani et al., 2011). The existence of multiple 
assembly pathways have also been implied from the in vivo studies (Bubunenko 
et al., 2006; Sykes et al., 2010). Supposedly allowing ribosome biogenesis to 
bypass steps blocked by mutations or deficiencies of the essential assembly 
proteins. E. coli can survive without the protein S15 (Bubunenko et al., 2006) or 
L24 (Franceschi & Nierhaus, 1988), central players according to the SSU 
(Mizushima & Nomura, 1970; Held et al., 1974) and LSU (Rohl & Nierhaus, 
1982; Herold & Nierhaus, 1987) assembly maps, respectively. Apparently, in 
vivo assembly displays high plasticity, as might be expected from the assembly 
landscape model derived from in vitro experiments (Talkington et al., 2005). 
The main difference between in vitro reconstitution of ribosomal subunits and 
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in vivo assembly is that the latter is coupled to the transcription of the primary 
rRNA transcript (Lewicki et al., 1993). 

The overall picture of ribosome assembly emerging from both in vitro and in 
vivo studies is the following. The SSU and the LSU rRNAs are synthesized as 
one primary transcript (Srivastava & Schlessinger, 1990) and the ribosome 
assembly is initiated before the transcription is completed (Lewicki et al., 1993; 
Besancon & Wagner, 1999). While the primary rRNA transcript is still being 
synthesized, local secondary structure motifs start to form, creating binding 
sites for r-proteins. Unlike DNA-binding proteins, r-proteins bind to their sub-
strate rRNAs by recognizing higher-order structural features rather than the 
primary sequence and most interactions are formed with the sugar-phosphate 
backbone (Brodersen et al., 2002; Klein et al., 2004). Each r-protein not only 
stabilizes the rRNA within its immediate binding site, it also stimulates struc-
tural changes in adjacent regions of rRNA which help to recruit other r-proteins 
to the complex (Shajani et al., 2011; Woodson, 2011). Therefore, r-proteins 
appear to stage the order of rRNA folding during the ribosome assembly. 
Nearly one-third of E. coli L-proteins display RNA chaperone activity (Semrad 
et al., 2004; Wilson & Nierhaus, 2005) which is likely necessary to avoid ki-
netic traps leading to improperly folded ribosomes. Especially the N-terminal 
extensions of r-proteins are believed to participate in ribosome assembly (Klein 
et al., 2004; Guillier et al., 2005). 

In line with the coupling to transcription, assembly appears to proceeds in 
the 5’–3’ direction (Zimmermann et al., 1972; de Narvaez & Schaup, 1979; 
Powers et al., 1993; Talkington et al., 2005; Adilakshmi et al., 2008; Bunner et 
al., 2010; Mulder et al., 2010). However, the ordered transcription of rRNA 
domains is not obligatory as E. coli strains with circularly permuted 16S and 
23S genes are viable (Kitahara & Suzuki, 2009). Contrary to the earlier views 
arising from the assembly maps, it now seems that the assembly of the riboso-
mal subunits is not restricted to a single rate-limiting step or pathway but rather 
proceeds through multiple pathways with similar activation barriers 
(Bubunenko et al., 2006; Shajani et al., 2011; Woodson, 2011). The multiple 
parallel assembly pathways generate a wide variety of intermediate particles 
that have distinct r-protein compositions (Sykes et al., 2010). 

Besides being coupled to the rRNA transcription, the in vivo assembly is 
intertwined with nucleolytic processing and modification of rRNA and r-pro-
teins, and aided by numerous assembly factors (Kaczanowska & Ryden-Aulin, 
2007; Connolly & Culver, 2009; Shajani et al., 2011). 

 
 

2.2 rRNA processing 

rRNA processing is the set of enzymatic nucleolytic events needed to convert 
the precursor rRNA (pre-rRNA) molecule into SSU and LSU rRNAs with 3’ 
and 5’ ends found in native ribosomes. As already mentioned, the SSU and the 
LSU rRNAs are transcribed together in a single transcript, the pre-rRNA 
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(Kaczanowska & Ryden-Aulin, 2007; Deutscher, 2009; Shajani et al., 2011). 
Sequences flanking both the 16S and 23S rRNAs form double helical structures 
that are recognized and cleaved by ribonuclease III (RNase III) before the 
transcription of the pre-rRNA is completed, consequently, the complete pre-
rRNA transcript is not present in E. coli wild-type (WT) cells (Robertson et al., 
1968; Dunn & Studier, 1973; Nikolaev et al., 1974; Gegenheimer & Apirion, 
1975; Ginsburg & Steitz, 1975; Gegenheimer et al., 1977; Young & Steitz, 
1978; Bram et al., 1980). RNase III cleavages of the pre-rRNA result in the 
release of pre-16S and pre-23S rRNA molecules together with the 3’ terminal 
part of the transcript, that contains the 5S rRNA sequence and additional se-
quences for one or two tRNAs (Deutscher, 2009). Although not directly 
dependent on r-protein binding (Birenbaum et al., 1978), the sequence specific-
ity of the RNase III cleavage reaction changes in their presence (Allas et al., 
2003). Somewhat surprisingly, RNase III cleavages are not absolutely essential 
processing steps since E. coli strains lacking this endonuclease are still viable, 
albeit being unable to complete the processing of 23S rRNA (King et al., 1984; 
King et al., 1986; Srivastava & Schlessinger, 1990). 

The pre-16S rRNA contains 115 and 33 additional nt (nucleotides) in its 5’ 
and 3’ ends, respectively, whereas the pre-23S rRNA has 3 or 7 additional nt in 
its 5’ and 7 to 9 additional nt in its 3’ ends (Srivastava & Schlessinger, 1990; 
Deutscher, 2009). Final processing of the 5’ end of the 16S rRNA requires the 
combined action of two endonucleases, RNase E and RNase G (Li et al., 1999b). 
While the processing of the 3’ end of the 16S rRNA has not yet been elucidated, 
it most likely consist of a single endonucleolytic cleavage event (Deutscher, 
2009). The exonuclease RNase T is mainly responsible for the final processing 
of the 23S rRNA 3’ end (Li et al., 1999a). The RNase responsible for the 5’ end 
processing of the 23S rRNA has not been identified yet but its action is likely 
endonucleolytic and independent of the 23S rRNA 3’ end processing (Deutscher, 
2009). The pre-5S rRNA is released from the 3’ terminal fragment of the pre-
rRNA transcript by RNase E (Misra & Apirion, 1979; Roy et al., 1983). The 
additional 3 nt at each end of the pre-5S rRNA are removed by RNase T and by 
a still unknown RNase (Feunteun et al., 1972; Li & Deutscher, 1995). As is the 
case with the 23S rRNA, the processing of the 5S rRNA 5’ and 3’ ends is likely 
independent of each other (Deutscher, 2009). 

SSU containing pre-16S rRNA is inactive in translation (Lindahl, 1973; 
Wireman & Sypherd, 1974; Lindahl, 1975) indicating that the final processing 
of 16S rRNA has to occur before the association of SSU with the LSU during 
translation initiation. In mature SSU the 5’ and 3’ ends of the 16S rRNA are far 
apart (Schluenzen et al., 2000; Wimberly et al., 2000) whereas in the pre-16S 
rRNA the additional nt at the ends are base paired, this additional secondary 
structure may either directly or indirectly prohibit LSU binding . Furthermore, 
the 3’ end of the 16S rRNA contains the anti-Shine-Dalgarno sequence, block-
ing its interaction with the Shine-Dalgarno sequence in mRNAs could also in-
hibit translation initiation. Hence, the final processing of the 16S rRNA ends 
triggers the activation of SSU. Since the 16S rRNA processing is coupled to 
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SSU assembly, the final processing steps guarantee that only correctly assem-
bled SSU can associate with LSU and initiate translation (Deutscher, 2009). 
Final processing of the LSU rRNAs is not required for ribosome activity and 
appears to take place after the 70S ribosomes are formed, probably during the 
translation initiation complex formation, or during the first cycles of translation 
(Kaczanowska & Ryden-Aulin, 2007; Deutscher, 2009). This is based on the 
observations that the RNase T dependent processing of the pre-23S and pre-5S 
is likely a very late event in ribosome biogenesis (Li & Deutscher, 1995; Li et 
al., 1999a), pre-23S and pre-5S rRNAs can be found in polysomes (Ceccarelli 
et al., 1978; Sirdeshmukh & Schlessinger, 1985; Srivastava & Schlessinger, 
1988, 1990), and that the final processing of the 5S rRNA ends is inhibited by 
protein synthesis inhibiting antibiotic chloramphenicol (Deutscher, 2009).  

Thus, as already mentioned, the rRNA maturation events generally occur in 
the context of the assembling ribosome (King et al., 1986; Deutscher, 2009). 
The close connection between rRNA processing and ribosome assembly is sup-
ported by the isolation of assembly precursor particles containing rRNAs with 
immature ends from numerous E. coli assembly deficient strains (Charollais et 
al., 2003; Charollais et al., 2004; Kaczanowska & Ryden-Aulin, 2007; Peil et 
al., 2008). 

 
 

2.3 rRNA modification 

In all organisms, specific sets of standard ribonucleotides in rRNA are cova-
lently modified during ribosome biogenesis. The phylogenetic conservation of 
the rRNA modifications indicates that they emerged early in the evolution of the 
translational machinery. Pseudouridylations (Ψs) and various methylations 
represent the two major types of rRNA modifications and there is a correlation 
between the overall complexity of an organism and the number of modified 
nucleosides (MN) in its rRNAs (Maden, 1990; Decatur & Fournier, 2002; 
Czerwoniec et al., 2009; Cantara et al., 2011). There are 36 naturally occurring 
rRNA MN in E. coli: 16S rRNA contains 11 MN, 10 methylations and one Ψ; 
23S rRNA contains 25 MN, 13 methylations, 9 Ψs, one methylated Ψ (m3Ψ), 
one dihydrouridine (D), and one 5-hydroxycytidine (ho5C) (Table 1). 
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Table 1. Modified nucleosides in E. coli rRNAs(1) 

Position Modification(2) Enzyme(3) Alternative 
name(s) 

In vitro 
substrate(5)

In vivo assembly 
stage(7) 

16S 
rRNA 

     

516 Ψ RsuA YejD pre-SSU early, 
intermediate  

527 m7G RsmG GidB SSU intermediate 

966 m2G RsmD YhhF SSU late 

967 m5C RsmB YhdB, 
Fmu, RrmB

16S rRNA early 

1207 m2G RsmC YjjT SSU late 

1402 m4Cm RsmH / 
RsmI 

MraW / 
YraL 

SSU stochastic 

1407 m5C RsmF YebU SSU late 

1498 m3U RsmE YggJ SSU late 

1516 m2G RsmJ YhiQ SSU late 

1518 m6
2A RsmA KsgA SSU late 

1519 m6
2A RsmA KsgA SSU late 

      

23S 
rRNA 

     

745 m1G RlmA RrmA, 
YebH 

23S rRNA early 

746 Ψ RluA YabO 23S rRNA early 

747 m5U RlmC RumB, 
YbjF 

 early 

955 Ψ RluC YceC 23S rRNA early 

1618 m6A RlmF YbiN pre-LSU early, 
intermediate 

1835 m2G RlmG YgjO 23S rRNA early 

1911 Ψ RluD YfiI, SfhB LSU late 

1915 m3Ψ RluD / 
RlmH(4) 

YfiI, SfhB / 
YbeA(4) 

LSU / 
70S(6) 

late / very late(6) 
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Position Modification(2) Enzyme(3) Alternative 
name(s) 

In vitro 
substrate(5)

In vivo assembly 
stage(7) 

1917 Ψ RluD YfiI, SfhB LSU late 

1939 m5U RlmD RumA, 
YgcA 

23S rRNA intermediate 

1962 m5C RlmI YccW 23S rRNA early 

2030 m6A RlmJ YhiR 23S rRNA early 

2069 m7G RlmKL YcbY  early, 
intermediate 

2251 Gm RlmB YjfH  intermediate 

2445 m2G RlmKL YcbY 23S rRNA early 

2449 D RldA    

2457 Ψ RluE YmfC 23S rRNA early 

2498 Cm RlmM YgdE 23S rRNA intermediate 

2501 ho5C RltA    

2503 m2A RlmN YfgB  early 

2504 Ψ RluC YceC 23S rRNA early 

2552 Um RlmE RrmJ, FtsJ, 
MrsF 

LSU, 70S late 

2580 Ψ RluC YceC 23S rRNA early 

2604 Ψ RluF YjbC 23S rRNA, 
LSU 

early 

2605 Ψ RluB YciL 23S rRNA early 

(1)Data taken from the RNA Modification Database (Cantara et al., 2011), Modomics – A Data-
base of RNA Modifications (Czerwoniec et al., 2009), and 3D Ribosomal Modification Maps 
Database (Piekna-Przybylska et al., 2008), unless otherwise indicated. 
(2) mx

yN refers to a methylation (m) of the rRNA nucleotide N at the x of the base position (y is 
the number of methylations), whereas Nm indicates a methylation of the ribose at the 2’ position 
of nucleotide N. Ψ, D, and ho5C are pseudouridine, dihydrouridine, and 5-hydroxycytidine, 
respectively. 
(3) According to unified nomenclature (Ofengand & Del Campo, 2004a; Andersen & Douthwaite, 
2006). Modification enzymes whose genes have not been identified yet are in Italic. 
(4) Ref. I 
(5) Reviewed in (Ofengand & Del Campo, 2004a) and (Siibak & Remme, 2010). 
(6) Ref. II 
(7) The in vivo assembly stage of the modification synthesis according to (Siibak & Remme, 2010). 
 
In both prokaryotes and eukaryotes, mapping all of the methylations and Ψs 
onto the three-dimensional structures of the SSU and the LSU reveals that they 
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concentrate around the active sites of the ribosome, namely, the mRNA and 
tRNA binding sites on the SSU, the PTC and the entrance of the polypeptide 
exit tunnel on the LSU, and the sites of subunit-subunit interactions (Figure 5) 
(Bakin & Ofengand, 1993; Brimacombe et al., 1993; Ofengand et al., 2001b; 
Decatur & Fournier, 2002; Ofengand & Del Campo, 2004a). This is clearly 
illustrated by the three conserved MN present in the strategically located H69 of 
the LSU (chapter 1.1). Based on the clustering around the functionally im-
portant regions of the ribosome, MN are believed to be important for ribosome 
biogenesis, ensuring the stability of the ribosome, and for various aspects of 
ribosome functioning (discussed in chapter 3). Again, this is illustrated well by 
the H69 MN as discussed in chapter 1.1 and chapter 3.4. 
 
 

 
Figure 5. Distribution of modified nucleosides in the bacterial ribosome. Sites of 
methylation (depicted in red) and pseudouridylation (depicted in yellow) are shown on 
the E. coli SSU (A) and LSU (B). rRNA and r-proteins are shown as ribbons in light 
and dark blue, respectively. In (A) a green ribbon indicates the path of mRNA through 
the SSU, whereas in (B) the antibiotic chloramphenicol (green) bound to PTC of the 
LSU is shown. Adapted from (Wilson & Nierhaus, 2007). 
 
In bacteria, each rRNA MN is made by a specific modification enzyme (ME) – 
a protein that contains both the catalytic site for a particular modification reac-
tion and the specificity center for a given rRNA substrate. Synthesis of the more 
complex MN such as m4Cm and m3Ψ requires multiple ME and some ME such 
as RsmA (most familiarly known as KsgA), RluD and RluC are responsible for 
synthesizing the same MN at more than one position in rRNA (Table 1). 
Interestingly, in case of the E. coli RlmKL protein, the m7G2069 is first intro-
duced to the 23S rRNA by its RlmK domain, followed by the m2G2445 synthe-
sis by its RlmL domain (Wang et al., 2012). However, phylogenetic analysis 
suggests that separated RlmK and RlmL methyltransferases are found in other 
bacteria (Wang et al., 2012). In contrast, eukaryotes and archaea use a small 
nucleolar RNA (snoRNA) guided rRNA modification mechanism that allows 
the use of a limited number of modification (Ψ and ribose 2’-O-methylation) 
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specific proteins to introduce the majority of the rRNA MN (Kiss-Laszlo et al., 
1996; Bachellerie & Cavaille, 1997; Ni et al., 1997; Tollervey & Kiss, 1997; 
Kiss, 2001; Decatur & Fournier, 2002). The emergence of alternative mecha-
nisms for creating the same type of modifications further underlines their im-
portance.  

All of the rRNA pseudouridine synthases (PS) and methyltransferase (MT) 
have been identified in E. coli (Table 1). For the most part, the rRNA ME have 
been identified by the corresponding gene deletion/complementation analyses 
and have not been characterized in great detail. However, in vitro experiments 
using purified ME have determined that some MN can be synthesized using the 
protein-free rRNAs or even rRNA fragments as substrates, while the synthesis 
of other MN requires the presence of at least some if not all of the r-proteins 
(Table 1) (Ofengand & Del Campo, 2004a; Siibak & Remme, 2010). It is possi-
ble that the ME that require the presence of r-protein(s) actually require a cer-
tain rRNA structure that only forms upon the binding of certain r-protein(s). 
The shortcoming of most of the ME in vitro assays is the limited set of sub-
strates analyzed, usually just the naked rRNA versus the mature subunits iso-
lated from the ME deletion strains were tested. Furthermore, in many cases the 
reported activities of the ME were quite low (Hager et al., 2004; Basturea & 
Deutscher, 2007). It is credible that the true substrates of the ME are in fact the 
ribosome subunit assembly intermediate particles that have proven to be diffi-
cult to test in vitro. Also, it is possible that additional proteins such as ribosome 
assembly factors may facilitate the rRNA modification process in cells. None-
theless, in general, the substrate specificities of ME determined in vitro are in 
very good agreement with the assembly dependence of the rRNA modification 
synthesis in vivo, as determined by the rRNA modification pattern of ribosome 
subunits at different assembly stages. Accordingly, ME were divided into three 
classes: early, intermediate, and late assembly specific enzymes (Table 1) 
(Siibak & Remme, 2010). Consequently, the modification of the 16S rRNA 
during the assembly of SSU seems to be mainly a late assembly event, whereas 
the modification of the 23S rRNA during the LSU assembly seems to be mainly 
an early event. The explanation for this tendency could be that the SSU is 
smaller than the LSU and, in the latter case, many substrate nucleotides in 
rRNA cannot be accessed by the ME later on in the LSU assembly pathway. 
That in turn would mean that most of the 23S rRNA ME only have a limited 
time window to modify their targets. All in all, it is believed that the MN are 
added gradually throughout the assembly of both subunits and that the main 
criteria for the temporal order of the MN synthesis, is the physical accessibility 
of the substrate. While the r-proteins can help to create the recognition sites for 
the ME, they can also inhibit the rRNA modification by blocking the modifica-
tion site. The dual role of the r-proteins in rRNA modification is illustrated by 
S7 and S19, which are necessary for RsmD activity but inhibit RsmB activity 
(Weitzmann et al., 1991). Indisputably, the rRNA modification process is inti-
mately linked to the progression of the ribosome assembly and defects in the 
assembly process can likely lead to undermodification of rRNAs.  
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Although the ME are present in low abundance in the cell, the entire process 
of rRNA modification is astonishingly efficient in spite of the short time win-
dow during ribosome biogenesis (Winkler, 1998). This indicates that the ME 
process their substrates rapidly and/or channel the substrate through multi-enzy-
matic complexes. The latter may be more relevant for those MN whose synthe-
sis involves several enzymatic events. However, not much is known about the 
engagement of ME in multi-enzymatic complexes.  

All bacterial rRNA ME must be able to specifically recognize their sub-
strate(s) and to catalyze their respective modification reactions, two processes 
inextricably linked. Energy derived from the binding to the rRNA likely fuels 
both the recognition or discrimination of substrates and the catalysis of the 
modification reaction (Garcia & Goodenough-Lashua, 1998). Most rRNA ME 
have a modular structure made up of RNA binding domain(s) and a catalytic 
core domain (Byrne et al., 2009). The RNA binding domains are used to target 
certain rRNA regions through sequence and/or structure specificity and bring 
them in the correct orientation and proximity to catalytic domains for modifica-
tion reactions to occur. The overall structures, catalytic mechanisms, and sub-
strate specificities of the two main types of rRNA ME, PS and MT, will be 
discussed in more detail. 

 
 

2.3.1 Pseudouridine synthases 

Pseudouridine (Ψ), also known as the „fifth nucleoside“, was identified over 
fifty years ago (Davis & Allen, 1957; Cohn, 1960) and is the most abundant 
MN found in a number of RNA species (tRNA, rRNA, tmRNA, snRNA, and 
snoRNA) in all three domains of life (Czerwoniec et al., 2009; Cantara et al., 
2011). Ψs result from the enzymatic isomerization of genetically encoded uri-
dines in RNA molecules and the enzymes responsible for catalyzing the 
isomerization reaction are called pseudouridine synthases (PS). E. coli RNA PS 
fall into five families, called RsuA, RluA, TruA, TruB, and TruD, after the first 
identified members (Gustafsson et al., 1996; Koonin, 1996; Kaya & Ofengand, 
2003; Ofengand & Del Campo, 2004a). Despite minimal sequence similarities, 
they all share a common core fold found exclusively in PS, as well as similar 
active site structures (Ferre-D'Amare, 2003; Kaya et al., 2004; Ofengand & Del 
Campo, 2004a). Thus, all PS have probably evolved from a common ancestor 
(Mueller, 2002). The 11 Ψs in E. coli rRNAs are made by seven PS belonging 
to RluA and RsuA families (Table 2), two of the most closely related families of 
PS (Ofengand et al., 2001b; Mueller, 2002; Ofengand, 2002; Ofengand & Del 
Campo, 2004a). The RsuA family contains RsuA, RluB, RluE, and RluF, each 
responsible for a single Ψ in either 16S rRNA or 23S rRNA; RluA, RluC, and 
RluD belong to the RluA family (Table 2). RluC and RluD each make three Ψs 
in the 23S rRNA, whereas RluA, in addition to introducing one Ψ to the 23S 
rRNA, also synthesizes Ψs in four tRNAs (Table 2) (Huang et al., 1998; 
Ofengand, 2002).  
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Table 2. E. coli rRNA pseudouridine synthases1. 

PS 
family 

PS Substrate RNA 
and base 

Catalytic 
aspartic acid 

N-terminal 
domains 

C-terminal 
domains 

RsuA RsuA 16S rRNA U516 102 S4-like  

RluE 23S rRNA U2457 69 S4-like  

RluF 23S rRNA U2604 107 S4-like CT domain 

RluB 23S rRNA U2605 110 S4-like CT domain 

RluA RluA 23S rRNA U746 
and tRNA U32 

64   

RluC 23S rRNA U955, 
U2504, and U2580 

144 S4-like CT subdomain 

RluD 23S rRNA U1911, 
U1915, and U1917 

139 S4-like CT subdomain 

1 Data taken from the RNA Modification Database (Cantara et al., 2011) and Modo- 
mics – A Database of RNA Modifications (Czerwoniec et al., 2009). 
 
RsuA and RluA family PS share three conserved sequence motifs: I, II, and III 
(Koonin, 1996; Ofengand & Del Campo, 2004a). Motif II forms the active site 
loop and contains the only universally conserved amino acid residue, aspartic 
acid, among all PS (Koonin, 1996; Huang et al., 1998; Conrad et al., 1999; 
Raychaudhuri et al., 1999; Del Campo et al., 2001; Gutgsell et al., 2001; 
Ofengand & Del Campo, 2004a). Site-directed mutagenesis experiments have 
established that the aforementioned aspartic acid residue is essential for the 
catalytic activity of all rRNA PS (Table 2) (Ramamurthy et al., 1999a; Ferre-
D'Amare, 2003; Ofengand & Del Campo, 2004a). Various RNA-binding do-
mains are linked to the conserved catalytic core domain resulting in PS with 
different substrate specificities. Most of the rRNA PS have N-terminal domains 
that resembles the one found in r-protein S4 and several PS exhibit the presence 
of C-terminal (CT) (sub)domains (Table 2) (Aravind & Koonin, 1999; 
Ofengand & Del Campo, 2004b).  
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Figure 6. Pseudouridine synthesis and chemical differences between U and Ψ. The ura-
cil base in U is linked through its N1 position to the C1’ position of ribose and U pos-
sesses one H-bond acceptor (a) and one donor (d). Isomerization results in the uracil 
base being rotated 180° through the N3-C6 diagonal axis. In Ψ, the C5 position of uracil 
is linked to the C1’ position of ribose and Ψ possesses one more H-bond donor at the 
N1 position compared to U. Illustration adapted from (Charette & Gray, 2000). 
 
Ψ synthesis is energetically favored and does not require any cofactors (Lane et 
al., 1995; Ferre-D'Amare, 2003; Hamma & Ferre-D'Amare, 2006). Given the 
high degree of structural conservation, it is likely that all PS share the same 
catalytic mechanism, involving the breakage of the standard C1’-N1 glycosyl 
bond between the uracil base and the ribose, rotation of the base by 180° 
through the N3-C6 axis with respect to the ribose while still enzyme-bound, and 
formation of the non-canonical C1’-C5 glycosyl bond (Figure 6). The exact 
chemical mechanism and the function of the conserved aspartic acid are still not 
conclusively established (Mueller & Ferre-D’Amare, 2009).  

 
 

2.3.2 Methyltransferases 

All E. coli rRNA MT use S-adenosyl-L-methionine (SAM) as the methyl group 
donor and belong to either class I or class IV of the five classes of SAM-
dependent MT (Schubert et al., 2003; Ofengand & Del Campo, 2004a). There is 
no significant sequence or structural conservation across all five MT classes that 
likely result from a convergent evolution (Schubert et al., 2003). Class I MT 
(RFMT) that feature the ancient Rossmann-fold in their SAM binding domain, 
dominate among the rRNA MT (Table 3), as well as among all known SAM-
dependent MT methylating a wide variety of substrates (DNA, RNA, proteins, 
and small molecules) (Schubert et al., 2003). Much less conservation is noticed 
at the sequence level, where only a few conserved motifs are present, most of 
them being a part of the SAM binding pocket located in the N-terminus of the 
catalytic domain (Schubert et al., 2003). Many RFMT have additional N- and 
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C-terminal domains (Table 3) presumably used for substrate recognition 
(Ofengand & Del Campo, 2004a). 

The remainder of the known rRNA MT (called SPOUT MT based on their 
homology to the SpoU and TrmD MT) belong to the class IV (Table 3). The 
unique characteristic of the SPOUT MT is a structural core made up of six 
parallel β-strands, with the final three (~30 amino acids in length) folded into a 
very deep topological knot, known as the deep trefoil knot (Schubert et al., 
2003; Tkaczuk et al., 2007). The trefoil knot structure contains catalytic resi-
dues confirming its structural importance (Michel et al., 2002; Schubert et al., 
2003). The other intriguing feature of this group of MT is that the active site is 
located at the interface of the homodimer with both monomers making substan-
tial contributions to both the active site and the SAM binding cleft (Schubert et 
al., 2003; Tkaczuk et al., 2007). Consequently, dimerization is believed to be 
essential for the MT activity, which is also supported by the finding that all of 
the SPOUT MT are dimers (Tkaczuk et al., 2007). Yet, different SPOUT MT 
exhibit different modes of dimerization, in the dimers formed by RlmB and 
RsmE, the two monomers are oriented in a nearly perpendicular way, while in 
the case of RlmH, they are antiparallel (Tkaczuk et al., 2007). The conserved 
SAM-binding loop is located in the C-terminal trefoil knot region of the cata-
lytic domain (Tkaczuk et al., 2007). Additionally, RlmB and RsmE have r-pro-
tein L30-like and PUA subdomains, respectively, linked to the N-terminus of 
the catalytic domains (Table 3) (Tkaczuk et al., 2007). These N-terminal addi-
tions are believed to be required for substrate binding. Crystal structures in 
complex with co-factors show that the two classes of rRNA MT differ in the 
mode of SAM binding: the RFMT bind SAM in an extended conformation, 
whereas the SPOUT MT bind SAM in a bent conformation (Schubert et al., 
2003; Hou & Perona, 2010). Also, the ribose of SAM adopts the 2’-endo 
conformation in complex with RFMT and the 3’-endo conformation in complex 
with SPOUT MT (Schubert et al., 2003).  

 
Table 3. E. coli rRNA methyltransferases1. 

MT 
family 

MT Substrate RNA and 
base 

Substrate atom2 N-terminal 
domain 

C-terminal 
domain 

RFMT RsmA A1518, A1519 exocyclic N6  α-helical 

RsmB C967 exocyclic C5 NusB-like, 
N1 central 

 

RsmC G1207 exocyclic N2 RFD  

RsmD G966 exocyclic N2   

RsmF C1407 exocyclic C5   

RsmG G527 endocyclic N7   

RsmH C1402 exocyclic N4   
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MT 
family 

MT Substrate RNA and 
base 

Substrate atom2 N-terminal 
domain 

C-terminal 
domain 

RsmI C1402 2’O   

RsmJ G1516 exocyclic N2   

RlmA G745 endocyclic N1 Zn-finger  

RlmC U747 exocyclic C5   

RlmD U1939 exocyclic C5 OB and Fe4S4 
domain 

 

RlmE U2552 2’O   

RlmF A1618 exocyclic N6   

RlmG G1835 exocyclic N2   

RlmI C1962 exocyclic C5   

RlmKL G2069, G2445 endocyclic N7 
exocyclic N2 

THUMP  

RlmM C2498 2’O   

RlmN A2503 endocyclic C2   

SPOUT RsmE U1498 endocyclic N3 PUA  

RlmB G2251 2’O L30e-like  

RlmH3 Ψ19154 endocyclic N3   

1Data taken from the RNA Modification Database (Cantara et al., 2011) and Modo- 
mics – A Database of RNA Modifications (Czerwoniec et al., 2009). 
2 Carbon (C), nitrogen (N), and oxygen (O). 
3 Ref. I 
4 Ref. II 
 
The driving force for the methyl transfer reaction is the electrophilic character 
of the methyl group attached to the positively charged sulfur atom of the SAM. 
The catalytic mechanisms proposed for the various rRNA MT share a common 
theme involving a nucleophilic attack on the methyl group of SAM by a nega-
tively polarized methyl-acceptor atom of the substrate. However, the activation 
of the nucleophiles prior to the nucleophilic attack can be achieved in a variety 
of ways. The predominant difference between the various methylation reactions 
catalyzed by rRNA MT is the chemical nature of the atom being methylated 
(endo- and exocyclic carbon and nitrogen atoms, and ribose 2’ oxygen atoms) 
(Table 3) (Schubert et al., 2003). Thus, the main question is: how do the rRNA 
MT activate the diverse substrate atoms for the nucleophilic attack? In many 
cases, the atom being methylated is sufficiently nucleophilic that binding of 
both the substrate nucleotide and the co-factor SAM, and the correct orientation 
of the two in respect to each other probably suffices to catalyze the reaction 
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(Garcia & Goodenough-Lashua, 1998). In other cases, a general base in the MT 
is required to deprotonate the potential nucleophile (Schubert et al., 2003). 
Methylation of the endocyclic carbon atom in case of 23S rRNA m2A2503 by 
RlmN is chemically more challenging and requires the radical-SAM mechanism 
(Toh et al., 2008; Yan et al., 2010). 

S-adenosylhomocysteine (SAH) is formed when the methyl group of SAM is 
transferred to an acceptor and SAH product inhibition is a general characteristic 
of the SAM dependent MT (Garcia & Goodenough-Lashua, 1998). It has been 
suggested that the activities of various MT may be regulated by the relative 
levels of SAM and SAH in the cell (Garcia & Goodenough-Lashua, 1998).  

 
 

2.3.3 Substrate recognition 

High-resolution crystal structures of several rRNA ME (RluA, RluF, and 
RlmD) in complex with their rRNA substrates have been determined and en-
lighten the mechanisms of substrate recognition employed by rRNA ME (Lee et 
al., 2005; Hoang et al., 2006; Alian et al., 2009). The observed rRNA-ME 
interactions correlate well with the general principles known to be sheared by 
other RNA binding proteins such as tRNA ME.  

Firstly, the binding site for the negatively charged RNA is usually a posi-
tively charged concave on protein surface enriched in arginine and largely de-
void of aspartic acid and glutamic acid residues (Byrne et al., 2009). Electro-
static interactions are effective over longer distances than other intermolecular 
interactions and are therefore likely involved in the initial attraction of the oppo-
sitely-charged molecules in solution.  

Secondly, non-polar van der Waals interactions and hydrogen bonds (H-
bonds) are a crucial part of ME-rRNA interactions (Byrne et al., 2009). Alt-
hough the energy provided by a single van der Waals interaction is relatively 
small, significant stabilization is achieved by numerous van der Waals interac-
tions along the entire protein-RNA interface. Non-polar cavities on protein sur-
faces are often employed to tightly fit the substrate bases (Byrne et al., 2009). 
The specificity of such cavities is enhanced by distinct patterns of H-bonding 
groups and by steric exclusion. The bases of RNA are rich in H-bond donors 
and acceptors allowing the identification of any given base by its H-bonding 
properties (Byrne et al., 2009). In case of RNA, the sugar phosphate backbone 
(2’-OH of ribose, in particular) provides a possibility to stabilize the interac-
tions with proteins through H-bonding in a RNA sequence-independent manner 
(Byrne et al., 2009). From the protein side, amide and carboxyl groups of the 
polypeptide main chain, as well as various groups present in the side chains of 
most of the amino acids can be involved in the H-bonding interactions with 
RNA (Byrne et al., 2009). In addition, water-mediated H-bonds provide a 
means to partially shield the negatively charged amino acid side chains located 
at the protein-RNA interfaces (Byrne et al., 2009). On the other hand, aromatic 
amino acids (tyrosine, tryptophan, and phenylalanine) located at the interface 
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can interact with the unpaired RNA bases through stacking interactions (Byrne 
et al., 2009).  

Thirdly, while both the induced fit and the rigid body docking mechanisms 
are common among the RNA binding proteins, structural studies on the rRNA-
ME complexes have revealed that while the rRNA substrates are extensively 
remodeled, the ME themselves are not and display only minor structural 
changes upon the complex formation (Lee et al., 2005; Hoang et al., 2006; Ellis 
& Jones, 2008; Alian et al., 2009). Conformational changes in rRNA are likely 
needed to increase the affinity for ME and for the ME to gain access the sub-
strate base that is often found to be buried within the RNA molecule (Byrne et 
al., 2009). Indeed, the base flipping mechanism has been shown for all of the 
rRNA ME whose co-crystal structures with their substrates have been solved to 
rotate the target base around its flanking phosphodiester bonds such that the 
base projects into the catalytic pocket of the ME (Lee et al., 2005; Hoang et al., 
2006; Alian et al., 2009). Binding to ME presumably provides the energy for 
the conformational changes in rRNA. Hence, rRNA ME most likely rely on the 
dynamics of the substrate as a method of substrate recognition (Lee et al., 2005; 
Hoang et al., 2006). As the ability of RNA to adopt a certain conformation de-
pends upon its sequence, substrate recognition in case ME can occur without a 
large number of direct contacts to conserved bases in rRNA (Byrne et al., 2009). 
Alternatively, given the flexibility of RNA molecules, it is possible that an 
ensemble of RNA conformers exists and that the ME bind a conformer which is 
complementary to their active site. However, this mechanism requires fast 
conformational transitions in rRNA. 

The two aspects of the substrate recognition mechanisms are: how do the 
ME recognize the correct nucleotide within the rRNA molecule; and how do 
they recognize the correct atom within that nucleotide? Recognition of the tar-
get atom within the substrate nucleotide is likely to be inextricably linked to the 
mechanism of the specific modification reaction. Binding and orientation of the 
substrate base will likely dictate which atom will be suitably positioned for the 
attack on the methyl group of SAM (Garcia & Goodenough-Lashua, 1998).  

Particularly intriguing is the structural basis for the substrate nucleotide 
selection that is, elucidating the mechanism by which the specificity of a ME is 
limited to a single site in a particular RNA among the myriad of different RNAs 
in the cell, or broadened to multiple sites in the same or different RNAs. For 
instance, while RluA modifies two different RNAs (23S rRNA and tRNA) at 
positions that share local sequence and structural similarity (Wrzesinski et al., 
1995; Raychaudhuri et al., 1999), RluC substrate uridines (955, 2504, and 
2580) in 23S rRNA are neither in a common sequence and/or structural context 
nor are they close in the tertiary structure of the LSU (Ofengand & Del Campo, 
2004a). RluD, on the other hand, is specific to three uridines (1911, 1915, and 
1917) in the loop region of H69 of 23S rRNA (Leppik et al., 2007). RluF and 
RluB recognize 23S rRNA adjacent uridines (U2604 and U2605, respectively) 
that reside in a stem region and carry out the same modification reaction, yet are 
specific for their respective sites (Del Campo et al., 2001). The structural fea-
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tures of RluF and RluB responsible for the substrate selectivity must be highly 
specialized, since they are two of the most closely related PS in the RsuA fam-
ily. RsmA, on the other hand, methylates two adjacent adenosines in the 16S 
rRNA and is able to methylate either of the two in the absence of the other, rul-
ing out any obligate order of methylation (Cunningham et al., 1990). In accord-
ance, the active site of RsmA appears to be able to accommodate only one 
adenosine at the time (O'Farrell et al., 2004). The specificity of the RlmKL for 
G2069 in order to synthesize m7G and for G1225 in order to synthesize m2G in 
23S rRNA comes from its modular structure consisting of two RFMT domains. 
The two different methylation reactions are catalyzed by different domains and 
occur independently of each other (Wang et al., 2012).  

Given the fact that the target nucleotides of ME are found in a wide variety 
of structural contexts in both single- and double-stranded regions of rRNA, the 
mode of substrate recognition is more than likely to be idiosyncratic for each 
ME. Evolution appears to have taken the path of modularizing rRNA ME so 
that rather universal catalytic domains perform very specific reactions by being 
combined with specific RNA recognition and binding domains (Byrne et al., 
2009). While some ME seem to have a strict requirement for the sequence/ 
structure near its target nucleotide others do not and likely recognize sequence 
and/or structural features outside the immediate vicinity of its target nucleotide. 
The requirements for an RNA substrate to be able to “refold” into the unusual 
conformation and to form specific H-bonds with the ME are powerful con-
straints that help explain the high specificity of the rRNA ME. Though the 
dynamics of the ME itself is also likely important for rRNA-ME complex 
formation. 

 
 

2.4 r-protein modification 

As is the case with rRNA, r-protein modifications have been observed in all 
three domains of life. To date, eleven r-proteins are known to be post-
translationally modified in E. coli (Arnold & Reilly, 1999; Polevoda & Sherman, 
2007) (Table 4). R-protein modifications consist mainly of methylations and 
acetylations. R-protein L7 is in fact the acetylated version of L12 and the ratio 
between the two of them depends on the growth rate (Ramagopal & Subrama-
nian, 1975). The pattern of r-protein methylation appears to be highly similar in 
bacteria (Polevoda & Sherman, 2007). Furthermore, L3 and L12 are methylated 
in both prokaryotes and eukaryotes, though the methylation sites differ. 
Methylating the N-terminal amino acids of r-proteins is more common in bacte-
ria (Polevoda & Sherman, 2007). As do E. coli rRNA MT the r-protein MT also 
use SAM as the methyl group donor. Methylation of r-proteins is believed to be 
irreversible and the extent of methylation can be complete or incomplete 
(Polevoda & Sherman, 2007).  
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Table 4. Post-translational modifications of E. coli r-proteins1.  

r-protein Modification Position of 
modification 

Modification 
enzyme 

References 

S5 acetylation Ala 1 RimJ  

S6 glutamic acid 
residues 

C-terminus RimK Kino et al., 2011 

S11 methylation Ala 1   

 isoaspartate2    

S12 β-methylthiolation Asp 88 RimO Anton et al., 2008; 
Strader et al., 2011 

S18 acetylation Ala 1 RimI  

L3 methylation Gln 150 PrmB  

L7/L12 acetylation Ser 1 RimL Miao et al., 2007 

 methylation Lys 81   

L11 3 trimethylations Ala 1, Lys 3, 
Lys 39 

PrmA  

L16 methylation Met 1   

 unknown Arg 81   

L33 methylation Ala 1   

1 according to (Arnold & Reilly, 1999; Kaczanowska & Ryden-Aulin, 2007; Polevoda 
& Sherman, 2007) unless otherwise stated 
2 partial modification 
 
R-protein modification may take place either on free r-proteins before their 
incorporation into ribosomes or during/after the ribosome assembly. The 
methylation of L3, L7, and L11 likely occurs prior to their incorporation into 
the ribosome (Polevoda & Sherman, 2007). The substrate recognition and 
modification mechanism of PrmA, responsible for trimethylating multiple posi-
tions in L11 (Table 4), is particularly intriguing. Methyl group addition appears 
to be sequential and does not require the dissociation of PrmA from L11 
(Cameron et al., 2004). Unlike the r-protein methylations mentioned above, the 
E. coli specific β-methylthiolation likely occurs when the S12 is already assem-
bled into the SSU (Polevoda & Sherman, 2007; Strader et al., 2011). 

Similarly to rRNA modifications (discussed in chapter 3), the functional role 
of most of the r-protein modifications is unclear. None of the known r-protein 
ME (Table 4) appear to be essential as deleting or mutating the corresponding 
genes usually do not cause major changes in bacterial phenotypes 
(Kaczanowska & Ryden-Aulin, 2007; Polevoda & Sherman, 2007).  
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The only modification known to lead to a change in phenotype when absent 
is the methylation of L3. Namely, the PrmB deficient E. coli strain exhibits 
cold-sensitivity and reduced growth rate, it also accumulates subunit precursors 
and abnormal ribosomal particles and the native subunits are forming slower 
(Colson et al., 1979; Lhoest & Colson, 1981). However, once assembled, the 
ribosomes containing unmodified L3 display protein synthesis parameters simi-
lar to native ribosomes. It has been suggested that the PrmB protein may act as 
a ribosomal assembly factor (Lhoest & Colson, 1981). Interestingly, over-
expressing the S5 acetyltransferase RimJ suppresses the growth defects and 
anomalous ribosome profile exhibited by a S5 mutant strain, however, it is not 
dependent on the acetyltransferase activity of the Rim J protein (Roy-Chaudhuri 
et al., 2008). Additionally, RimJ appears to associate with the pre-SSU (Roy-
Chaudhuri et al., 2008). These findings suggest that RimJ protein has two func-
tions in ribosome biogenesis in E. coli; it is an r-protein ME as well as a ribo-
some assembly factor.  

In summary, the fact that many r-proteins are modified, and that several con-
tain more than one modification, indicates their significance for ribosome struc-
ture, assembly, and/or function. Modifications alter the charge distribution,  
H-bonding, and steric properties of r-proteins, and thus may affect the 
efficiency and specificity of r-protein binding to the rRNA or optimize the 
binding sites for various players of translation (Polevoda & Sherman, 2007). 
Alternatively, r-protein modifications may play an important role in controlling 
the life span of r-proteins within living cells or be a way of signaling the 
physiological state of the cell.  

 
 

2.5 Assembly factors 

Functional bacterial ribosome subunits can be reconstituted in vitro from puri-
fied rRNA and r-proteins without the presence of any additional factors, how-
ever, long incubations at above physiological temperatures and unphysiological 
ion concentrations are needed (chapter 2.1). Long RNA molecules can form in 
addition to their native structure a multitude of non-native structures (Weeks, 
1997). Once misfolded structures form, they are often very stable and the transi-
tions from kinetically trapped intermediates to the native conformations are 
slow (Weeks, 1997). Regardless, in rapidly growing E. coli cells, it only takes a 
couple of minutes to synthesize new ribosomes (Lindahl, 1975). The surpris-
ingly effective rRNA folding during ribosome biogenesis is likely achieved 
with the help of an ever increasing number of proteins collectively known as 
assembly factors, especially in eukaryotic cells where hundreds of assembly 
factors have been described (Hage & Tollervey, 2004). Assembly factors could 
limit the number of alternative conformations by facilitating proper rRNA fold-
ing and r-protein-rRNA interactions, thereby avoiding the accumulation of 
kinetically trapped intermediates. Also, assembly factors may reduce the activa-
tion energies of rate-limiting reactions in ribosome synthesis (Kaczanowska & 
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Ryden-Aulin, 2007; Wilson & Nierhaus, 2007; Shajani et al., 2011). Assembly 
factors contain many classes of functionally different proteins including RNA 
helicases, ribosome-dependent GTPases, heat-shock proteins, and RNA chaper-
ones. It should be mentioned that most of the assembly factors are not essential, 
except for under stress conditions, consistent with the notion that ribosome 
assembly can take different paths, bypassing steps that are inefficient or blocked 
(discussed in chapter 2.1). 

 
 

2.6 Regulation 

The growth of bacteria directly depends on their capacity for protein synthesis. 
An increase in total protein synthesis can be achieved only by increasing the 
number of ribosomes per cell (Kaczanowska & Ryden-Aulin, 2007). The frac-
tion of cellular matter and energy devoted to the synthesis of ribosome is 
substantial, more so in rapidly growing bacteria that contain more ribosomes 
per unit cell mass than slowly growing bacteria. For example, a rapidly growing 
E. coli cell can contain up to 70 000 ribosomes, which constitute as much as 
50% of its dry mass (Bremer & Dennis, 1996; Nomura, 1999). Correspondingly, 
approximately 50% of the total energy production of a cell is consumed by ribo-
some biogenesis (Condon et al., 1995; Bremer & Dennis, 1996). Also, it is 
known that the transcription of rRNA operons accounts for more than 50% of 
the total RNA synthesis in rapidly growing cells (even though rRNA operons 
only account for about 0.5% of the total genome), but only 2 to 5% of total 
rRNA is contained in assembling ribosomes (Lindahl, 1975; Condon et al., 
1995; Kaczanowska & Ryden-Aulin, 2007). Obviously, the synthesis of new 
ribosomes must be highly coordinated, fast, and efficient. Indeed, it is estimated 
that ribosome biogenesis in WT E. coli takes approximately 2-5 minutes at 
37°C, and that most of the time required, is spent at a stage where the precursor 
particles have already attained their final sedimentation coefficients (Lindahl, 
1975). In fact, the final maturation of LSU seems to be the rate limiting step 
under optimal growth condition of E. coli (Peil et al., 2008; Rene & Alix, 2011; 
Roy-Chaudhuri et al., 2010). 

The main aspects of the regulation of ribosome biogenesis are: ensuring the 
stoichiometry between rRNA and r-proteins (and among r-proteins themselves) 
as virtually all of the ribosomal components in the cell are found in ribosomes; 
and adaption of ribosomal synthesis to the nutritional environment (Kacza-
nowska & Ryden-Aulin, 2007). In bacteria, there is an intricate network of 
regulatory mechanisms involved in the synthesis of ribosomal components: 
rRNA synthesis is regulated by stringent control, growth rate control, transcrip-
tion antitermination, upstream activation, and feedback control; r-protein 
synthesis in controlled in addition to transcription regulation also by transla-
tional feedback (Condon et al., 1995; Kaczanowska & Ryden-Aulin, 2007). For 
example, stringent control results in immediate shut-down of rRNA and tRNA 
synthesis in response to amino acid or energy starvation; growth rate control 
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leads to adjustments in rRNA and tRNA synthesis in response to changes in the 
nutritional environment; and the antitermination system is thought to maintain 
the transcription elongation rate and processivity that is optimal for both speed 
and folding of the pre-rRNA transcript (Gausing, 1977; Heinrich et al., 1995; 
Pfeiffer & Hartmann, 1997; Kaczanowska & Ryden-Aulin, 2007). A too-high 
transcription elongation rate has been shown to result in an improper folding of 
the rRNA transcript and misassembly of the LSU (Lewicki et al., 1993). The 
rate of r-protein synthesis depends on the availability of rRNA (Condon et al., 
1995; Kaczanowska & Ryden-Aulin, 2007). In E. coli, most of the r-protein 
genes are clustered into operons that often include genes for translation elonga-
tion factors and for RNA polymerase subunits (Keener & Nomura, 1996). The 
main mechanism of regulating the stoichiometry of production of individual  
r-proteins in response to the available amount of rRNA is the translational feed-
back control, where one of the r-proteins in the operon serves not only as a 
structural component of the ribosome, but also controls the expression of itself 
and other genes in the same operon (Zengel & Lindahl, 1994). 



42 
 
 

3. FUNCTION OF rRNA MODIFICATIONS 

The classical way to determine the function of MN is to block their synthesis 
and monitor the ensuing changes in the phenotypes. The phenotypes of the 
rRNA MT and PS deletion strains range from severe growth retardation and 
translational defects to a lack of any observable phenotype. However, growth 
defects that only appear when the ME deletion strains must compete with E. coli 
WT cells, or lack of phenotypes altogether, are by far prevalent. The only ME 
whose loss results in major phenotypic defects in E. coli are RsmA, RlmE, 
RlmA, and RluD (discussed below in more detail). In fact, irrespective of the 
conservation and localization of MN in functionally important regions of the 
ribosome (discussed in chapter 2.3), not a single one of them has been found to 
be absolutely essential for viability in E. coli. Furthermore, the SSU with 
significant functional activity can be reconstituted in vitro using completely 
unmodified 16S rRNA, implying that MN are not essential for either the assem-
bly or the activity of the SSU (Krzyzosiak et al., 1987). In E. coli, the in vitro 
reconstitution of LSU using completely unmodified 23S rRNA is extremely 
inefficient (Green & Noller, 1996; Semrad & Green, 2002), although it has been 
shown that the 23S rRNA MN are not essential for the assembly or the activity 
of the LSU in other bacteria (Green & Noller, 1996, 1999; Khaitovich et al., 
1999). Nonetheless, MN are known to alter the chemical properties and the 
structures of the RNA regions embedding them, and are believed to be im-
portant for fine-tuning the intra- and intermolecular interactions involved in 
rRNA folding, stability, and/or ribosome functioning.  

For instance, base methylations lead to increased hydrophobicity and stack-
ing of the nucleosides, and may also increase the steric hindrance, alter the  
H-bonding ability and the charge distribution within the purine and pyrimidine 
rings (Agris, 1996). Methylations of the 2’-O-positions of riboses increase the 
hydrophobicity and the stability of RNA and may protect sensitive rRNA re-
gions against RNases (Kowalak et al., 1994; Lane et al., 1995; Schroeder et al., 
2004). 

Although Ψ is a structural isomer of uridine (Cohn, 1960), the presence of an 
additional imino (NH) group at position 1 of the base (Figure 6) significantly 
alters the chemical properties of RNA (Newby & Greenbaum, 2001). 
Conformational studies of free Ψ nucleoside indicate that there is a higher de-
gree of rotational freedom for the base in the C-C glycosyl bond compared to  
N-C glycosyl bond of uridine and therefore a greater conformational flexibility 
for Ψ is anticipated (Charette & Gray, 2000). However, when present in helical 
regions of RNA, while the N3 of Ψ participates in H-bonding interactions with 
adenosines much like uridine; the extra H-bond donor at N1 of Ψ has been ob-
served to participate in water-mediated H-bonds with the sugar-phosphate back-
bone 5’-oxygens of both the Ψ itself and the preceding residue (Arnez & Steitz, 
1994; Charette & Gray, 2000). This H-bonding to the backbone locks the Ψ 
base in the anti conformation, rigidifies the nearby RNA backbone, and en-
hances the base stacking interactions by favoring a 3’-endo conformation of the 
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ribose, all in all, contributing to the stability of RNA (Davis, 1995; Schroeder et 
al., 2004). Ψs in the single stranded regions of rRNA may employ the extra  
H-bond donor at N1 for tertiary interactions with its phosphate backbone, with 
other regions of the rRNA or with certain ribosome binding proteins; and have 
been shown to either stabilize or to destabilize rRNA structures depending on 
their context (Charette & Gray, 2000; Meroueh et al., 2000). The context-
dependent stabilizing/destabilizing effect of Ψ in the 23S rRNA H69 is dis-
cussed in chapter 1.1.  

Dihydrouridine (D) is known to increase the local RNA flexibility by favor-
ing the inherently more flexible 2’-endo sugar conformation and thereby caus-
ing a complete destacking of bases in its vicinity (Dalluge et al., 1996). The 
location of D in the 23S rRNA just two residues away from the putative peptide 
transfer site (Nissen et al., 2000) suggests that D may be there to provide the 
necessary flexibility in vivo (Ofengand & Del Campo, 2004a).  

 
 

3.1 Translation 

Alterations of local rRNA structures arising from MN could influence the rate 
and accuracy of decoding and proofreading during translation by facilitating 
interactions with tRNA and mRNA, and by promoting catalytic efficiency in 
peptide bond formation. In accordance, majority of the rRNA MN have been 
found to cluster around the DC and the PTC of the ribosome (discussed in chap-
ter 2.3). 

While the reconstituted SSU lacking all rRNA MN is functional in all of the 
partial reactions of protein synthesis in vitro, including codon recognition, it 
was only 50% as active as the SSU reconstituted from natively modified rRNA 
suggesting a functional role for at least some of the 16S rRNA MN in transla-
tion (Cunningham et al., 1991). Varshney and co-workers have shown that a 
decrease in the intracellular levels of SAM resulting in the deficiency of rRNA 
methylations influences the initiator tRNA selection in the P-site of the ribo-
some (Das et al., 2008). Furthermore, by analyzing initiator tRNA selection in 
the 16S rRNA MT deletion strains, they showed that the most prominent effect 
was caused by the lack of dimethylations at the positions A1518 and A1519 in 
the 3’ terminal helix of the 16S rRNA close to the anti-Shine-Dalgarno se-
quence (Das et al., 2008). Moreover, the efficiency of RRF-mediated ribosome 
recycling was adversely affected (Seshadri et al., 2009). RsmA, the MT 
responsible for these methylations, has been shown to interact with the same 
region of the SSU as LSU and initiation factor 3 (IF3) (Xu et al., 2008). 
Varshney and co-workers proposed that the aforementioned methylations have a 
role in the IF3-mediated translation initiation (Das et al., 2008), which is in 
good agreement with the observation that the SSU lacking RsmA-dependent 
methylations display decreased association with LSU in vitro and need more 
IF3 for optimal binding of the initiator tRNA (Poldermans et al., 1979b). Based 
on the atomic resolution structure of the SSU from the rsmA deletion strain of  
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T. thermophilus, it has been suggested that the methylations synthesized by 
RsmA play a direct role in establishing a fully active SSU conformation by 
facilitates the formation of a packing interaction between two 16S rRNA helices 
in the vicinity of the DC required for correct formation of both the A- and  
P-sites (Boehringer et al., 2012). Also, m2G966 (RsmD) and m5C967 (RsmB) in 
16S rRNA have been suggested of being involved in IF3 binding and translation 
initiation (Saraiya et al., 2008). In case of the rsmD/rsmB double deletion strain, 
both the AUU initiator codon usage in vivo and initiation efficiency in vitro are 
reduced, in addition, the level of IF3 is decreased (Sergiev et al., 2011). A dele-
tion of RsmH, the MT responsible for m4C1402, resulted in increased efficiency 
of non-AUG initiation and decreased UGA read-through rate (Kimura & Suzuki, 
2010). Clearly, SSU MN influence both efficiency and fidelity of translation 
initiation and decoding, most likely by altering interactions with the tRNA and 
mRNA. 

As already mentioned, in vitro reconstitution of translationally active LSU 
using completely unmodified 23S rRNA is inefficient in E. coli system (Green 
& Noller, 1996). On the other hand, the Thermus aquaticus LSU reconstituted 
from unmodified 23S rRNA are active in peptide bond synthesis, however, the 
activity is significantly reduced compared to LSU reconstituted with native 23S 
rRNAs (Khaitovich et al., 1999). As no MN in either of the bacterium comes 
within 10 Å of the catalytic site of the ribosome (Voorhees et al., 2009), their 
direct participation in peptide bond synthesis is unlikely. However, MN in the 
surrounding regions could affect peptide bond synthesis indirectly by helping to 
correctly position the A- and P-site tRNAs for efficient catalysis. Base pairing is 
predicted to occur between the acceptor end of the P-site tRNA and the univer-
sally conserved Gm2251 in 23S rRNA synthesized by RlmB (Voorhees et al., 
2009). Gm2251 is essential for the formation of the functional P-site as the 
dominant lethal phenotype of G2251 substitutions has been attributed to a defi-
ciency in peptidyl transferase activity (Green et al., 1997). However, deletion of 
rlmB gene did not exhibit any observable effect on bacterial growth even when 
the rlmB deletion strain had to compete with WT E. coli cells undermining the 
importance of Gm2251 modification in translation (Lovgren & Wikstrom, 
2001). In contrast, the phylogenetically conserved Um2552 in E. coli 23S rRNA 
synthesized by RlmE has been confirmed to alter the conformation of the A-site 
region of the ribosome (Blanchard & Puglisi, 2001). In accordance, the E. coli 
rlmE deletion strain displays impaired cell growth, decreased protein synthesis 
rate in vitro, and increased translational accuracy, all attributed solely to the 
lack of Um2552 modification (Bugl et al., 2000; Caldas et al., 2000b; Hager et 
al., 2002; Tan et al., 2002; Widerak et al., 2005). The exact mechanism of how 
Um2552 affects the translational accuracy is unknown. However, it is 
speculated that U2552 in 23S rRNA could be unmethylated under some 
circumstances when it is advantageous for the cell to improve its translational 
accuracy at the expense of the translation rate and that RlmE could belong to a 
protein quality control pathway (Widerak et al., 2005). 
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Several rRNA MN cluster at the entrance to the polypeptide exit tunnel. The 
additional hydrophobic and hydrophilic properties of the MN at specific sites of 
the tunnel wall were proposed to modulate the functional interactions with the 
nascent polypeptide chain (Decatur & Fournier, 2002; Ofengand & Del Campo, 
2004a). Recently, Mankin and co-workers demonstrated that the methylation of 
A2503 in 23S rRNA is important for nascent peptide recognition and relaying 
the signal from the exit tunnel to the PTC leading to ribosome stalling 
(Vazquez-Laslop et al., 2010).  

 
 

3.2 Antibiotic resistance 

Large varieties of antibiotic agents are known to bind to ribosomes and inhibit 
protein synthesis (Poehlsgaard & Douthwaite, 2005). Post-transcriptional modi-
fication, foremost methylation, of specific rRNA nucleotides can interfere with 
the binding of antibiotics to their target sites on the ribosome and thereby confer 
antibiotic resistance. Most of the rRNA methylations implicated in antibiotic 
resistance are synthesized by specific MT often encoded by a plasmid or a 
transposon and expressed only when the antibiotic is present, in contrast to 
genome encoded rRNA MT responsible for “house-keeping” MN (Poehlsgaard 
& Douthwaite, 2005). For instance, dimethylation of A2058 of the 23S rRNA 
confers macrolide resistance (Kovalic et al., 1994; Vester & Douthwaite, 1994) 
and methylation of A1408 of the 16S rRNA confers resistance to some specific 
aminoglycosides (Macmaster et al., 2010). An extra methyl group added by MT 
Cfr to the C8 position of already naturally modified m2A2503 renders cells re-
sistant to an array of antibiotics (Kehrenberg et al., 2005). Acquisition of such 
MT genes by pathogens is one of the major causes of clinical resistance to a 
number of antibacterial drugs.  

However, the “house-keeping” MN can also confer antibiotic resistance or 
sensitivity as observed in the cases where the lack of modifications affects 
antibiotic susceptibility of the cells. For example, the lack of the m6

2A at posi-
tion 1518 and 1519 in 16S rRNA confers resistance to kasugamycin (Helser et 
al., 1972; Poldermans et al., 1979a), the lack of a conserved m7G527 (RsmG) in 
16S rRNA confers moderate streptomycin resistance (Okamoto et al., 2007), 
and the lack of Ψ2457 (RluE) in 23S rRNA confers moderate resistance to 
erythromycin (Nichols et al., 2011). In contrast, the lack of Ψ2504 (RluC) in 
23S rRNA was found to significantly increase the susceptibility to a number of 
peptidyl transferase inhibitors (Toh & Mankin, 2008) and the lack of m2G966 
(RsmD) in 16S rRNA to confer high tetracycline sensitivity (Nichols et al., 
2011). Hence, modification of rRNAs may have evolved as an intrinsic re-
sistance mechanism protecting bacteria against natural antibiotics. Co-evolution 
of antibiotic biosynthesis and corresponding resistance mechanisms might have 
led to the global spread of rRNA ME genes protecting bacteria from antibacte-
rial agents which were in use by bacteria billions of years ago. Modern antibiot-
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ics could be the products of evolution driven by the development of resistance 
caused by rRNA MN (Sergiev et al., 2011). 

 
 

3.3 Small subunit biogenesis 

While functional SSU can be in vitro reconstituted using unmodified 16S rRNA, 
the conditions required are more extreme than those for native 16S rRNA, the 
SSU particles are more varying in size, and their activity in protein synthesis is 
only about half that of a modified control SSU (Krzyzosiak et al., 1987; 
Cunningham et al., 1991) suggesting that MN in 16S rRNA, while not essential, 
facilitate the assembly of SSU. RsmA dimethylates A1518 and A1519 in the 
16S rRNA generating two of the few modifications conserved throughout 
evolution (Poldermans et al., 1979; Formenoy et al., 1994; O'Farrell et al., 
2006). Although RsmA is universally conserved and essential in eukaryotes, it 
is not essential in E. coli (Lafontaine et al., 1994; Connolly et al., 2008). 
Nevertheless, its deletion in E. coli results in a cold-sensitive phenotype, altered 
ribosome profile displaying virtually no polysomes and more free subunits, and 
defects in 16S rRNA processing (Connolly et al., 2008). Overexpressing RsmA 
protein in the rsmA deletion strain partially rescues the growth defect at low 
temperatures, but also leads to an even more pronounced increase in free SSU. 
However, at 37°C, overexpression of RsmA protein has a negative effect on 
growth rate and causes an accumulation of pre-16S rRNA in both E. coli WT 
and rsmA deletion strains (Connolly et al., 2008). Interestingly, overexpressing 
a MT-inactive RsmA protein is more deleterious than overexpressing the native 
RsmA protein, causing a dramatic increase in free SSU (Connolly et al., 2008). 
Both the native and the MT-inactive RsmA proteins associate with the SSU, but 
binding with the mutant RsmA is much stronger, implying that the MT activity 
is required for the release of RsmA (Connolly et al., 2008). RsmA methylates 
the 16S rRNA in the context of a nearly mature SSU (Desai & Rife, 2006). 
Culver and co-workers proposed a model whereby methylation activates the 
release of the RsmA allowing for the SSU assembly to proceed and the final 
maturation of the 16S rRNA to take place (Connolly et al., 2008). As RsmA 
interacts with the same region of SSU as LSU and IF3 (Xu et al., 2008), it is 
conceivable that it inhibits the incorporation of immature SSU into 70S ribo-
somes. Indeed, cryo-electron microscopy structure of RsmA in complex with 
SSU reveals that RsmA recognizes the SSU in a translationally inactive confor-
mation and that the dissociation of RsmA is required for the formation of the 
translationally active conformation (Boehringer et al., 2012). Apparently, 16S 
rRNA methylation and the subsequent dissociation of RsmA controls conforma-
tional changes in pre-SSU required for final rRNA processing and initiation 
complex formation (Boehringer et al., 2012). The direct role of RsmA-depend-
ent modifications in establishing the active SSU conformation is discussed in 
chapter 3.1. The RsmA case illustrates how MN in a functionally important 
region of the ribosome can be linked to its biogenesis. Hence, the methylation 
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of 16S rRNA by RsmA provides a quality control mechanism of SSU biogene-
sis sequestering incompletely assembled SSU from being involved in translation. 
This may explain the high conservation of this particular rRNA modification 
(Connolly et al., 2008).  

 
 

3.4 Large subunit biogenesis 

Assembly of the LSU depends more on MN as compared to the SSU. Re-
constitution of E. coli LSU using in vitro transcribed unmodified 23S rRNA has 
very low efficiency (Green & Noller, 1996; Khaitovich et al., 1999; Semrad & 
Green, 2002). Also, inhibiting methylation by ethionine leads to formation of 
functionally inactive LSU particles lacking r-protein L16 and showing reduced 
amounts of several other r-proteins (Alix et al., 1979). Nevertheless, most of the 
23S rRNA MN are not essential as only seven MN close to the PTC must be 
present for in vitro reconstitution of functional LSU (Green & Noller, 1996). 
Furthermore, in vivo LSU assembly requires only Um2552 and the three Ψs in 
H69 (Caldas et al., 2000b; Gutgsell et al., 2005). 

Um2552 in E. coli 23S rRNA is synthesized by RlmE (Caldas et al., 2000a). 
Ribosomes isolated from the rlmE deletion strain display in addition to the de-
creased protein synthesis rate in vitro and the increased translational accuracy 
(mentioned in chapter 3.1) also severe ribosome assembly defects with notable 
increase in free subunits and accumulation of pre-LSU rRNA containing pre-
23S rRNA, resulting in a slow growth phenotype (Bugl et al., 2000; Caldas et 
al., 2000b; Tan et al., 2002; Hager et al., 2004; Widerak et al., 2005). Solely the 
lack of Um2552 modification is responsible for the observed growth, ribosome 
assembly, and translational defects as a catalytically inactive RlmE is not able 
to rescue the rlmE deletion strain (Hager et al., 2002). On the other hand, 
overexpression of two different ribosome-dependent GTPases can rescue the 
slow-growth phenotype of rlmE deletion strain, presumably by overcoming the 
destabilizing effects of the absent modification by stabilizing the 70S ribosome 
(Tan et al., 2002). Intriguingly, some second-site mutation(s) in other parts of 
the genome are also able to rescue the rlmE deletion strain without the re-
appearance of the Um2552 modification (Tan et al., 2002). The essentiality of 
the Um2552 modification in 23S rRNA for effective translation was one of the 
first indications that the defects seen in ribosome assembly could be due to the 
global errors in translational apparatus leading to an imbalance in rRNA and r-
protein ratio.  

The three highly conserved Ψs in the H69 of 23S rRNA (chapter 1.1) are all 
synthesized by RluD (Huang et al., 1998; Raychaudhuri et al., 1998; Ofengand, 
2002). RluD deficient E. coli strain was shown to exhibit severely reduced 
growth rate and massive defects in ribosome biogenesis, namely, a reduction in 
70S ribosomes, accumulation of free subunits, and appearance of pre-LSU and 
pre-SSU containing pre-23S and pre-16S rRNA, respectively (Gutgsell et al., 
2001; Ofengand et al., 2001b; Gutgsell et al., 2005). Given the fact that a 
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catalytically inactive RluD protein could not alleviate the growth defect and the 
abnormal ribosome profiles, Ofengand and co-workers proposed that the H69 
Ψs themselves are important for ribosome biogenesis (Gutgsell et al., 2005). 
However, second-site mutation(s) arising elsewhere in the genome can alleviate 
the growth and assembly defects of rluD deletion, without restoring the H69 Ψs 
(Raychaudhuri et al., 1998; Gutgsell et al., 2005). Current view about the 
involvement of H69 Ψs in ribosome assembly arose from the findings that 
inactivation or lack of RluD prompted misreading of stop codons and that a 
point mutation in RF2 can suppress the growth defects associated with the rluD 
deletion strain (Ejby et al., 2007; O'Connor & Gregory, 2011). These findings 
point to the function of H69 Ψs in translation termination (discussed in more 
detail in chapter 1.1). Hence, errors in the biogenesis of the ribosome subunits 
in the rluD deletion strain could be explained as being an indirect consequence 
of global errors in cellular translation as seems to be the case with the rlmE 
deletion strain discussed above. Moreover, RluD deficient cells seem to spend 
twice the energy to produce the same amount of biomass and display higher 
expression of heat-shock proteins compared to WT cells, further suggesting 
errors in global translation (Ejby et al., 2007). However, as already mentioned 
in chapter 1.1, the deleterious effect caused by the lack of H69 Ψs is restricted 
to the E. coli K-12 strain carrying variant RF2 and S7 proteins (O'Connor & 
Gregory, 2011; Schaub & Hayes, 2011). This finding, while further supporting 
the role of H69 Ψs in translation termination, also illustrates that the initial im-
pact of the lack of H69 Ψs was slightly overestimated. Nonetheless, the strong 
conservation of the H69 Ψs indicates that their presence may be essential under 
some more stringent growth conditions. 

In some cases however, it appears that the ME themselves play a role in 
ribosome biogenesis and/or functioning independently of the MN they synthe-
size (discussed in chapter 2.3). This is exemplified by RlmA responsible for 
m1G745 in 23S rRNA, deletion of rlmA gene results in the E. coli cells growing 
40% slower in rich medium, 20% reduction in translation elongation rate, and 
an increase in free ribosomal subunits (Gustafsson & Persson, 1998). These 
defects disappeared when the rlmA gene was reintroduced from a plasmid and 
were due to the absence of RlmA protein itself rather than to the lack of the 
corresponding methylation, since mutating G745 to C, U, or A caused no 
growth defects (Liu et al., 2004). Furthermore, an as yet unidentified second-
site mutation in rlmA deletion strain restores nearly WT growth rate without 
restoring the m1G745 modification (Liu et al., 2004). Hence, RlmA protein may 
possess a second function important for cells independent of its MT activity, 
such as being a part of the ribosome quality control or being an assembly 
chaperone. 
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3.5 Fine-tuning ribosome structure and function 

Conservation of MN between very distant species and clustering around the 
functionally important regions of the ribosome, not to mention the energetic and 
metabolic cost of their synthesis, strongly argues for a functional role of the 
rRNA MN. Also, it seems unlikely that the two distinct mechanisms in bacteria 
and eukaryotes for forming the rRNA MN would have evolved unless important 
for cell survival. In accordance, rRNA ME are believed to be a part of the mini-
mal set of molecules required for life (Koonin, 1996; Anantharaman et al., 
2002; Ferre-D'Amare, 2003). The roles of a few rRNA MN in ribosome assem-
bly and functioning in E. coli have been demonstrated, yet in the majority of 
cases, the functional significance of the rRNA MN remains obscure.  

The co-clustering of hydrophobic methylations and hydrophilic Ψs at the 
interface of ribosomal subunits where mRNA, tRNA, and translation factors are 
bound, suggests their combined role in creating the optimal binding sites for 
these ligands. It appears that most individual MN confer a subtle and not easily 
demonstratable benefit, and only by the full ensemble of MN working in 
cooperation, a significant benefit for the cell is gained. It might even be the case 
that some of the MN have no function at all. Indeed, due to the relatively broad 
specificity of certain multi-site ME, it is possible that they catalyze the for-
mation of a MN in several locations of an rRNA molecule, only one of which is 
functionally relevant and others are tolerated as a benign artifact of accidental 
homology of the substrate. It is also possible that the real significance of the 
rRNA MN is not fully revealed under the “mild” growing conditions used in the 
analyses of most of the ME deletion strains. In nature, a mutant strain that arises 
would have to compete with WT cells for survival in an environment where 
nutrients and energy are periodically supplied and exhausted. More strict grow-
ing conditions, such as using minimal media and various stress conditions, as 
well as analyzing the survival of ME deletion strains in stationary phase and in 
competition studies in mixed cultures with WT strains and other bacterial spe-
cies, might provide more insight into the biological significance of the rRNA 
MN. 

In conclusion, the variety of MN with diverse chemical properties provides 
the ribosome with a broader range of possible interactions between different 
rRNA regions, tRNAs, mRNAs, translation factors, and various ligands by 
influencing the local rRNA conformation and by fine-tuning the translation pro-
cess. While most of the rRNA MN are individually dispensable, together they 
ensure the production of accurate and efficient ribosomes. 
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RESULTS AND DISCUSSION 

Objectives 

Modified nucleosides (MN) are found in functionally important regions of all 
ribosomes (chapter 2.3). However, the physiological role of the MN remains 
largely enigmatic (chapter 3). One possible way to study the functional roles of 
the MN is to identify the corresponding modification enzyme (ME) genes and 
to characterize the phenotypes of the ME deletion strains. In addition, for the 
characterization of the ME themselves, it is important to determine the features 
of both the ribosomes and the ME involved in the substrate recognition and the 
catalytic mechanism. Also, it is interesting to infer how the rRNA modification 
process fits into the overall ribosome biogenesis and functioning.  

In present study we aspired: 
1. to identify the gene encoding for the E. coli 23S rRNA m3Ψ methyl-

transferase and to shed light onto the functional role of the m3Ψ modi-
fication 

2. to determine the substrate specificity of the m3Ψ methyltransferase 
3. to determine the kinetic parameters of the stem-loop 69 modification en-

zymes 
4. to describe the substrate recognition and the methyl group transfer reaction 

mechanisms of the m3Ψ methyltransferase 
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1. IDENTIFICATION OF THE PSEUDOURIDINE 
METHYLTRANSFERASE RlmH (REF. I) 

The strategically located stem-loop 69 (H69) of 23S rRNA contains three modi-
fied nucleosides in E. coli: pseudouridines (Ψs) at positions 1911 and 1917, and 
a methylated pseudouridine (m3Ψ) at position 1915 (chapter 1.1 and Figure 4). 
While the pseudouridine synthase (PS) RluD was known to be responsible for 
the synthesis of all three Ψs in H69 (Huang et al., 1998; Raychaudhuri et al., 
1998), the gene encoding for the methyltransferase (MT) responsible for intro-
ducing a methyl group to the N3 nitrogen of Ψ at position 1915 was previously 
not known. 

In order to identify the gene encoding for the 23S rRNA m3Ψ1915 MT, we 
selected as candidates 11 genes (ybiN, ymfD, yafE, yafS, yjhP, yjtD, yfiF, yibK, 
ybeA, ygdE, and smtA) annotated as putative RNA MT in E. coli. The 
corresponding deletion strains (Ref. I Figure 2) were ordered from the KEIO 
collection containing single gene knockouts of all non-essential genes in the E. 
coli K-12 strain background (Baba et al., 2006). Total rRNA was extracted from 
the putative RNA MT deletion strains and from E. coli WT strain (MG1655), 
and monitored for the methylation status at the 23S rRNA position 1915 by 
primer extension analysis followed by separation of cDNAs using poly-acryla-
mide gel electrophoresis (PAGE). Methylation at the N3 position of both uri-
dine (U) and Ψ perturbs Watson–Crick base-pairing and results in a strong re-
verse transcriptase stop. 

In case of the WT strain and all but one putative RNA MT deletion strains, a 
strong stop signal corresponding to the position 1915 of 23S rRNA was ob-
served (Ref. I Figure 2 lanes 1–12), indicating the presence of a methyl group at 
N3 of the base. The only analyzed rRNA not exhibiting a strong stop signal at 
the corresponding position was extracted from the cells lacking the ybeA gene 
(Ref. I Figure 2 lane 9) suggesting that the ybeA gene encodes for the m3Ψ1915 
MT. In order to exclude the possibility that some unknown second-site muta-
tion(s) in the KEIO collection’s ybeA deletion strain are responsible for the loss 
of methylation at 23S rRNA position 1915, the effect of replacing the ybeA gene 
with the kanamycin resistance cassette was also tested in the genetic 
background of the E. coli WT MG1655 strain. The absence of the m3Ψ1915 
methylation is evident from both the primer extension analysis (Ref. I Figure 2 
lane 18) and the reversed phase high pressure liquid chromatography (RP-
HPLC) analysis of the nucleosides of the H69 region (Ref. I Figure 3B and 
Table 1) of the newly constructed ybeA deletion strain. In RP-HPLC analyses, 
an RNA fragment comprising nucleotides 1777–1922 of the 23S rRNA derived 
from oligonucleotide-directed RNase H excision was used. Retention times of 
the MN in 23S rRNA fragment under the conditions used are: 4.9 minutes (Ψ), 
11.2 minutes (m3Ψ), 23.2 minutes (m3U), and 32.2 minutes (m2G) according to 
(Gehrke & Kuo, 1989). Obtained amounts of nucleosides were presented in 
relation to the 100% value of the corresponding nucleosides in the WT probe. 
As the m3U was not detected in the WT probe, the fraction of the m3U in 
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following experiments was calculated with respect to the maximum theoretical 
amount of m3U in the corresponding RNA fragment (Ref. II Figure 1 and  
Table 1).  

It should be noted that the deletion of the ybeA gene does not have a detecta-
ble effect on the bacterial growth rate in rich medium either at 25°C, 37°C, or 
42°C (data not shown). Introducing a recombinant ybeA gene (encoding for N-
terminally His6-tagged YbeA protein) from an isopropyl-β-D-thiogalactopyra-
noside (IPTG) inducible plasmid restored the WT-like methylation pattern in 
the H69 region of 23S rRNA in the ybeA deletion strain as revealed by primer 
extension analysis, although a slight increase in the read-through past position 
1915 was visible (Ref. I Figure 2 lane 19). In good agreement, the RP-HPLC 
analysis of the nucleoside composition revealed that the plasmid born recombi-
nant YbeA restores the methylation in the ybeA deletion strain, introducing the 
m3Ψ modification to about half of the ribosomes (Ref. I Figure 3C and Table 1) 
even though the protein is present in much larger quantities than in the WT cells 
(data not shown). 

All in all, these results unambiguously establish the YbeA protein as the 
methyltransferase responsible for methylating Ψ1915 in E. coli 23S rRNA to 
m3Ψ. The involvement of the YbeA protein in the 23S rRNA m3Ψ1915 synthe-
sis was confirmed independently by Purta and co-workers using MALDI mass 
spectrometry (Purta et al., 2008). In agreement with the accepted convention 
(Ofengand & Del Campo, 2004a; Andersen & Douthwaite, 2006), we proposed 
to rename the YbeA protein to RlmH (rRNA large subunit methyltransferase H). 

RlmH was the first pseudouridine methyltransferase to be identified and is 
likely to be the only one existing in bacteria, as m3Ψ1915 is the only methylated 
Ψ in bacterial RNAs described to date (Czerwoniec et al., 2009; Cantara et al., 
2011). In archaea and eukaryotes, on the other hand, m1Ψ, Ψm, and m1acp3Ψ, 
but no m3Ψ have been found (Czerwoniec et al., 2009; Cantara et al., 2011). 
Since then, it has been established that Nep1 (Emg1) is the MT responsible for 
the synthesis of m1Ψ in S. cerevisiae SSU 18S rRNA (Leulliot et al., 2008; 
Taylor et al., 2008) and TrmY is the MT responsible for m1Ψ54 in Haloferax 
volcanii tRNAs (Chatterjee et al., 2012; Wurm et al., 2012). RlmH, Nep1, and 
TrmY all belong to the intriguing SPOUT superfamily of MT (chapter 2.3.2) 
(Tkaczuk et al., 2007). The crystal structure of the RlmH protein has been deter-
mined and like other SPOUT MT crystallizes as a homodimer and contains the 
deep C-terminal trefoil knot formed by the threading of the last 35 amino acids 
through a 45 amino acid long knotting loop (Benach et al., 2003). However, 
unlike the other two E. coli SPOUT MT that methylate rRNA (RlmB and 
RsmE), RlmH monomers are antiparallel (chapter 2.3.2). Dimerization is 
thought to be important for the co-factor S-adenosyl-L-methionine (SAM) 
dependent methyltransferase function of all SPOUT MT (Tkaczuk et al., 2007). 
RlmH is composed solely of the core catalytic domain characteristic of the 
SPOUT MT and lacks the extra N-terminal domains exhibited by RlmB and 
RsmE (Table 3) (Tkaczuk et al., 2007). 



53 
 
 

Proteins with significant similarity to RlmH exist in virtually all bacteria, 
and the corresponding gene is also present in the genomes of green plants and in 
a few archaeal species (Ref. I Figure 5) probably resulting from a horizontal 
gene transfer (Tkaczuk et al., 2007). In agreement, the RlmH ortholog in 
Arabidopsis thaliana is annotated as a chloroplast protein. The RlmH orthologs 
likely perform the same function in these organisms. While the m3Ψ modifica-
tion in 23S rRNA was experimentally determined in E. coli (Kowalak et al., 
1996) and D. radiodurans (Del Campo et al., 2005); B. subtilis and Z. mays 
chloroplast LSU rRNAs likely contain the equivalent of m3Ψ1915 as revealed 
by a strong reverse transcriptase stop (Ofengand et al., 1995). The exact extent 
of the conservation of the m3Ψ modification at the position equivalent to E. coli 
23S rRNA 1915 is unknown; however, there is no evidence of m3Ψ methylation 
within the cytoplasmic ribosomes of eukaryotes. 

The distribution of RlmH orthologs among different species and the 
“uniqueness” of the m3Ψ modification imply that there must have been a com-
pelling reason for the cells to evolve an enzyme catalyzing this modification. 
Deletion of the rlmH gene resulting in the loss of m3Ψ1915 in H69 does not 
have a detectable effect on the bacterial growth rate at least as far as rich 
medium is concerned. However, Purta and co-workers demonstrated that cells 
lacking functional RlmH protein had a clear competitional growth disadvantage 
against E. coli WT cells (Purta et al., 2008) indicating the functional importance 
of m3Ψ either in ribosome biogenesis, stability, or functioning. 

Hydrophilic pseudouridylations and hydrophobic methylations rarely occur 
in the same position of RNA. As discussed in chapter 1.1, Ψ1915 has a 
destabilizing effect (~0.5 kcal/mol) on the H69 structure (Meroueh et al., 2000), 
while the following N3-methylation of Ψ1915 causes an increase (~0.5 
kcal/mol) in the thermodynamic stability without causing any substantial 
changes to the overall structure of H69 (Chui et al., 2002). It is tempting to 
propose that Ψ1915 is synthesized as a “by-product” by RluD whose real 
purpose is to synthesize the universally conserved and functionally important 
Ψ1917 (discussed in chapter 1.1). It is conceivable that the 
destabilizing/hydrophilic effect of the Ψ1915 on H69 structure is compensated 
by the stabilizing/hydrophobic effect of the m3Ψ1915. The idea that the main 
role of the RlmH-dependent methylation at position 1915 lies in countering the 
destabilizing effect of a Ψ at this position and is not essential for other 
ribosomal functions is in agreement with the observation that replacing the U/Ψ 
at 1915 with the isosteric C does not affect the growth rate of the E. coli cells 
(Hirabayashi et al., 2006). However, Chow and co-workers have suggested that 
methylation of Ψ1915 may play a role in stabilizing specific long-range tertiary 
RNA-RNA or RNA-protein interactions, rather than be involved in the 
maintenance of the local conformation of H69 (Chui et al., 2002).  
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2. SUBSTRATE SPECIFICITY OF  
RlmH (REF. I AND II) 

2.1 RlmH modifies 70S ribosomes 

RluD was shown to synthesize the H69 Ψs, including the one located at position 
1915, using the assembled LSU isolated from the rluD deletion strain as a sub-
strate (Leppik et al., 2007; Vaidyanathan et al., 2007) (chapter 2.3). Further-
more, analysis of the pseudouridylation pattern of 23S rRNA isolated from ribo-
some assembly precursor particles showed that the Ψs in H69 are formed during 
the late assembly steps (Leppik et al., 2007). RlmH, which was predicted to 
follow RluD in action (Raychaudhuri et al., 1998) in modifying the U1915 of 
H69 would therefore also be a late assembly specific rRNA ME acting at the 
stage of assembled LSU or even later. 

In order to determine the substrate of RlmH, incorporation of methyl groups 
into LSU and 70S ribosomes isolated from the rlmH deletion strain was tested 
in vitro using purified RlmH protein. As revealed by both the incorporation of 
[14C]-methyl groups derived from the [14C]-SAM co-factor into the trichloroace-
tic acid (TCA) insoluble material and by the RP-HPLC analysis of the nucleo-
side composition of the H69 region following the in vitro methylation assay, 
both the N-terminally His6-tagged RlmH protein and the native (non-tagged) 
RlmH protein were able to methylate the 70S ribosomes, with methylation 
efficiencies ~60% and ~90%, respectively (Ref. I Figure 3D, Figure 4, and 
Table 1; Ref. II Figure 1 and Table 1). Unlike the His-tagged RlmH protein, the 
native RlmH protein was able to methylate the LSU as well (with ~80% effi-
ciency) when excess amounts of protein (~200-fold molar excess) and long 
incubation times (1 hour) were used (Ref. I Figure 4 and Ref. II Table 1). As 
these results did not exclusively establish the preferred substrate, the 
methyltransferase activity of the native RlmH protein using either 70S ribo-
somes or LSU and SSU isolated from the rlmH deletion strain as substrates at 
various Mg2+ concentrations was studied. It is known that 70S ribosomes 
dissociate at Mg2+ concentrations below 2 mM, whereas SSU and LSU associ-
ate to form 70S ribosomes at Mg2+ concentrations above 6 mM (Blaha et al., 
2002). Testing RlmH activity within this range of Mg2+ concentrations allows 
determining whether the LSU or the 70S ribosomes are modified. RlmH 
dependent incorporation of [3H]-methyl groups was monitored and revealed to 
follow the same Mg2+ dependency pattern as ribosome subunit association/ 
dissociation (Ref. II Figure 2). This establishes that the RlmH protein needs its 
substrate base to be presented in the context of the associated 70S ribosomes 
and not in free LSU for the methylation reaction to take place. The RlmH activ-
ity seen on free LSU in the in vitro methyltransferase assay (Ref. II Table 1) can 
be explained by the presence of trace amounts of SSU in the LSU preparation.  

While RlmA, RlmE, and RluD have also been shown to be able to modify 
70S ribosomes, free LSU is still preferred as substrates by these rRNA ME 
(Bugl et al., 2000; Caldas et al., 2000a; Vaidyanathan et al., 2007). Hence, 



55 
 
 

RlmH is the only rRNA ME shown to modify 70S ribosomes exclusively. 
Requirement for the 70S ribosomes indicates that RlmH is acting during the 
final stages of ribosome assembly, probably during translation initiation as this 
is when the 70S ribosomes are formed in the cell. Based on this finding, Purta 
and co-workers (Purta et al., 2008) docked the crystal structure of the RlmH 
dimer onto the E. coli 70S ribosome (Schuwirth et al., 2005). The docking data 
suggest that in order to position the methyl group donor SAM adjacent to the 
substrate Ψ1915, the RlmH dimer would have to bind into the ribosomal A-site 
at the interface between the SSU and the LSU (Purta et al., 2008). According to 
this model, RlmH binding to the ribosome A-site would not interfere with tRNA 
binding to the ribosomal P-site, supporting the notion that the physiological 
substrate of RlmH is the translation initiation complex with initiator tRNA in 
the P-site. Remarkably, RlmH seems to recognize its substrate by making 
simultaneous contacts with both ribosomal subunits, a feature that has not been 
previously seen for any of the rRNA ME. Moreover, the interactions with the 
“non-substrate” SSU are expected to be extensive and to contribute considera-
bly to the orientation and the stability of the RlmH-ribosome complex, whereas 
the interactions with the LSU are mainly confined to the loop region of the H69 
(Purta et al., 2008). In good agreement, RlmH protein is known to co-purify 
primarily with the SSU r-proteins (Sergiev et al., 2012). Thus, RlmH could use 
almost its entire surface for precise substrate recognition, in contrast to the usual 
case where a substrate fits into an active-site cleft of the ME, RlmH fits into a 
cleft of its substrate. 

The docking data prompted Purta and co-workers to speculate that RlmH is 
involved in the quality control of the ribosome biogenesis and that the 
corresponding methylation may functions as a stamp of approval indicating that 
LSU has been engaged in translational initiation (Purta et al., 2008). However, 
the who and the how of the ribosome validation process is enigmatic.  

Altogether, RlmH is inclined to be the ultimate rRNA ME acting during the 
ribosome biogenesis and the first example of rRNA modification process 
overlapping with translation. The fact that RlmH modifies LSU only in 70S 
ribosomes demonstrates the dependence of LSU maturation on not just the mere 
presence of SSU, but also the ability of both LSU and SSU to be incorporated 
into 70S ribosomes. Final processing of the LSU rRNA ends also appears to 
take place during the translation initiation complex formation, or during the first 
cycles of translation as discussed in chapter 2.2. 

 
 

2.2 RlmH modifies pseudouridine 

Ψ results from isomerization of U and the substrate atom of RlmH, the  
N3-nitrogen, is located at the same position in both of those bases (chapter 2.3.1 
and Figure 6). Thus, Ψ and U could be difficult to distinguish by RlmH. 
However, it was proposed that Ψ would be a better substrate for the following 
methylation reaction (Raychaudhuri et al., 1998). Furthermore, Purta and co-
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workers made an interesting observation that every genome containing an rlmH 
ortholog also contains an rluD ortholog, whereas the opposite is not the case 
(Purta et al., 2008), which is in good agreement with the requirement for the 
prior Ψ formation for the RlmH dependent methylation to occur. 

To check whether ribosomes with U instead of Ψ at position 1915 of 23S 
rRNA can be methylated by RlmH, 70S ribosomes isolated from the E. coli 
strain lacking both the rlmH and rluD genes were tested in the in vitro methyla-
tion assay using purified RlmH and RluD proteins. Our results indicate that 
RlmH protein was unable to incorporate [3H]-methyl groups into the 70S ribo-
somes of the rlmH/rluD strain unless they were first treated with RluD protein 
introducing the H69 Ψs (Ref. I, Figure 4). For quantitative assessments, RP-
HPLC analysis of the nucleoside composition of the H69 region was performed 
following the in vitro methylation assay. Even when the ribosomes were incu-
bated for as long as 1 hour with ~200-fold molar excess of native RlmH protein, 
the level of U1915 methylation in rluD deletion and rluD/rlmH double deletion 
strain ribosomes was relatively low (~20–30%), whereas under the same condi-
tions, the level of Ψ1915 methylation in rlmH deletion strain ribosomes was  
~90% (Ref. II Figure 1 and Table 1). This shows that RlmH preferentially 
methylates Ψ at position 1915 of 23S rRNA in vitro. To confirm the substrate 
nucleotide specificity of the RlmH protein in vivo, we analyzed the nucleoside 
composition of 23S rRNA H69 region isolated from rluD deletion and 
rluD/rlmH double deletion strain ribosomes and studied the effect of comple-
menting these strains with the plasmid-encoded RlmH protein. Nucleoside 
composition analysis by RP-HPLC revealed that a small fraction (<10%) of 
m3U was detected in the rluD deletion strain but not in the rluD/rlmH double 
deletion strain (Ref. II Figure 1 and Table 1). This finding indicates that in the 
absence of Ψ1915, RlmH present in amounts normally found in cells, is able to 
methylate U1915, albeit very inefficiently. Expressing the RlmH protein from a 
plasmid in the rluD and rluD/rlmH strains causes a significant amount ~50%–
60%) of m3U formation (Ref. II Figure 1 and Table 1) that can be attributed to 
the high level of protein overexpression from the arabinose-inducible plasmid 
construct (data not shown). It should be mentioned that although it is widely 
accepted that a MN at a given site in rRNA is present in all ribosomes in WT 
cells, this is not entirely the case for the MN of H69. Purta and co-workers 
showed that methylation by RlmH was less than stoichiometric and remained 
constant during the logarithmic growth phase even when the intracellular 
concentration of RlmH was increased (Purta et al., 2008). A slight increase in 
the amount of both Ψ and m3Ψ in the H69 region of 23S rRNA was detected 
when ribosomes isolated from E. coli MG1655 and BL21 stationary phase cells 
were compared to ribosomes isolated from mid-logarithmic phase cells (data not 
shown). The explanation that fits best with these observations is that the 
unmethylated faction in rapidly growing cells reflects recently synthesized 23S 
rRNA molecules that have not yet reached the late stages of ribosome biogene-
sis when H69 MN are synthesized.  
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Our ability to detect the m3U1915 modification in the 23S rRNA lacking Ψs 
in H69 indicates that when RlmH protein is in excess and the substrate Ψ is not 
available, RlmH can also methylate U at the same position both in vitro and in 
vivo (Ref. II Figure 1 and Table 1). In contrast to the ribosomes isolated from 
the rluD and rluD/rlmH deletion strains, we failed to detect the m3U1915 
modification in the ribosomes isolated from the E. coli WT strain (Ref. II Figure 
1 and Table 1). The absence of the m3U1915 modification in the WT strain is 
most likely explained by the sequential action of the ME RluD and RlmH. Thus, 
when the functional RluD enzyme is present in the cells, the U at the 1915 posi-
tion is quantitatively converted into Ψ and there is no U left for RlmH to act 
upon.  

While it remains to be determined what the exact mechanism is that allows 
RlmH to distinguish between U and Ψ, it very likely involves recognizing the 
N1 nitrogen atom present only in the latter. Even though much less likely, it can 
not be excluded that the presence of the other two Ψs in H69 (Ψ1911 and 
Ψ1917), also synthesized by RluD, are directly or indirectly required for the 
RlmH dependent methylation.  

Taken together, although the activity of RlmH is not uniquely restricted to Ψ, 
the sequential action of the modification enzymes RluD and RlmH ensures that 
it is m3Ψ and not m3U that is the main modification at the 1915 position of 23S 
rRNA.  
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3. KINETIC PARAMETERS (REF. II) 

As discussed in chapter 2.1, ribosomal subunits acquire their final sedimenta-
tion value in less than a minute after the transcription of the pre-rRNA is com-
pleted (Lindahl, 1975). The freshly formed subunits are immature and take 
additional 1 to 2 minutes at 37°C (Lindahl, 1975) and ~5 minutes at 25°C (Peil 
et al., 2008) to become able to participate in translation. Therefore, the rate-
limiting step in ribosome biogenesis is the final maturation of the subunits after 
majority, if not all, of the r-proteins have already associated with the rRNA. 
Conformational rearrangements in rRNA and r-proteins, as well as a subset of 
rRNA processing and modification events are known to take place during that 
time (chapter 2). In case of the LSU, only a few of the rRNA MN, namely the 
three Ψs in the H69 and Um2552, are shown to be introduced at this stage (Bugl 
et al., 2000; Leppik et al., 2007; Vaidyanathan et al., 2007). Incidentally, the 
same modifications have been implicated in ribosome assembly (discussed in 
chapter 3.4). We determined that the H69 m3Ψ1915 MT RlmH uniquely modi-
fies already associated 70S ribosomes (Ref. I and Ref. II) assigning it to the last 
stages of ribosome biogenesis that probably coincides with the translation initia-
tion. However, the rates of the rRNA modification reactions during the late 
stages of ribosome biogenesis have remained unknown. 

 
 

3.1 RlmH 

To characterize the kinetics of the RlmH dependent methylation reaction, we 
determined the apparent KM and kcat values of the RlmH protein for its substrate 
and for co-factor SAM. The rlmH deletion strain 70S ribosomes, purified  
N-terminally His6-tagged or native RlmH proteins, and [3H]-SAM were used to 
monitor the amount of [3H]-methyl group incorporation into TCA insoluble 
material. The initial rates of the methylation reaction were calculated from the 
time-courses of the product formation at different substrate or co-factor 
concentrations. The apparent KM and kcat values for the RlmH-catalyzed 
methylation reaction were estimated by fitting the data to the standard 
Michaelis-Menten equation. The methylation rates were measured at varying 
concentrations of the 70S ribosome and at a SAM concentration (100 μM) that 
is 4-fold above the respective KM value (Ref. II Figure 3). For co-factor, the 
initial methylation rates were determined with constant (2 μM) 70S ribosome 
and varying SAM concentrations (Ref. II Figure 3).  

Based on the kinetic constants, the RlmH dependent methylation is a rela-
tively fast process with a kcat value of ~5–6 min−1 and apparent KM values of  
~0.5 and ~27 μM for 70S ribosomes and co-factor SAM, respectively (Ref. II 
Table 2). kcat values determined for both 70S ribosomes and co-factor SAM 
correlated relatively well (varying <20%), indicating that the kinetic constants 
were obtained under appropriate conditions. It should be noted that the N-termi-
nally His-tagged RlmH protein is significantly less efficient compared to the 
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native RlmH protein (Ref. II Table 2). The snug fit of the RlmH dimer between 
the ribosome subunits as suggested by the docking data (Purta et al., 2008) 
would explain why the His-tagged RlmH was less active, namely, one or both 
(one per monomer) of the N-terminal His-tags located far from C-terminal ac-
tive site of RlmH could hinder substrate recognition and/or RlmH binding to the 
70S ribosome by sterically clashing with the SSU. The other aspect that can be 
explained by the RlmH-ribosome binding model is the lack of additional do-
mains attached to the catalytic core domain of RlmH. 

RlmH was the first pseudouridine-specific MT to be enzymatically 
characterized and was shown to be a relatively fast enzyme (kcat value of ~5–6 
min−1) when 70S ribosomes were used as a substrate, yet again confirming that 
70S is the true substrate of RlmH. Only a few other rRNA MT (RsmE, RlmD, 
and RlmE) have been kinetically characterized. The kcat value determined for 
RlmD (synthesizes m5U1939 on 23S rRNA) is 3.6 min−1 (Agarwalla et al., 
2002), which is in good agreement with the early assembly-specific modifica-
tion enzymes being relatively fast, as the time frame when their substrate is 
available, is limited in cells (discussed in chapter 2.3). The kcat values for RsmE 
(synthesizes m3U1498 on SSU) and RlmE (synthesizes Um2552 on LSU), are 
0.078 and 0.064 min−1, respectively (Hager et al., 2004; Basturea & Deutscher, 
2007). It is unlikely that RsmE and RlmE enzymes act this slowly in vivo. More 
likely, their physiological substrates are different from the substrates tested in 
vitro, or alternatively, the purified enzymes have lost a co-factor that enhances 
their activity in cells. 

 
 

3.2 RluD 

Since the conversion of U to Ψ is an isomerization reaction (chapter 2.3.1) and, 
unlike the methylation reaction, nothing is added to the substrate, there is noth-
ing that can be radioactively tagged and traced. The only rapid quantitative as-
say for pseudouridylation activity measures the release of [3H] from C5 of U 
upon Ψ formation (Ramamurthy et al., 1999b) but because this method requires 
the in vitro transcription of the PS substrate in order to incorporate the 5-[3H]-
uracil, it sets constraints to the size and the complexity of the substrate that can 
be used. Consequently, the kinetic parameters were not available for any of the 
rRNA PS apart from RluA (Ramamurthy et al., 1999b), which in addition to 
rRNA also modifies tRNA allowing its kinetic characterization at least as far as 
tRNA is concerned.  

The finding that RlmH preferentially methylates Ψ in the context of the 70S 
ribosomes, whereas the substrate of the RluD protein is the LSU, gave us the 
opportunity to use a coupled assay with RlmH as the reporter enzyme to deter-
mine the kinetic parameters of the U1915 pseudouridylation by RluD. As 
methylation of Ψ1915 by RlmH was found to be a relatively fast reaction, pseu-
douridylation of U1915 by RluD was believed to be the rate-limiting step.  
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It must be noted that the association of ribosomal subunits is a fast reaction and 
occurs in less than a second (Antoun et al., 2004; Hennelly et al., 2005).  

The two-step coupled enzyme assay scheme: 

LSUU1915 + RluD → LSUΨ1915 + SSU + RlmH + SAM → 70Sm3Ψ1915 

In the first step, LSU subunits of the rluD/rlmH double deletion strain were 
incubated with the purified RluD protein for various time intervals. In the se-
cond step, the pre-incubated mix consisting of SSU, purified native RlmH pro-
tein (at saturating concentration), and [H3]-SAM was added to the first mix and 
incubated for 15 seconds. Control experiments demonstrated that in the pres-
ence of SSU, there is no detectable RluD dependent pseudouridylation during 
the 15 second incubation step (data not shown). Incorporation of [H3]-methyl 
groups was determined by TCA precipitation and liquid scintillation counting.  

The initial rates of U1915 pseudouridylation were obtained at a fixed con-
centration of RluD and varying concentrations of LSU (Ref. II Figure 4). 
Apparent KM and kcat values were calculated in a similar manner to RlmH and 
were based on the assumption that the Ψ1915 methylation reaction by RlmH 
follows the first-order kinetics. The apparent KM value of ~1 μM for LSU and a 
kcat value of ~2 min−1 for U1915 isomerization by RluD were obtained (Ref. II 
Table 2).  

While the exact mechanism of substrate nucleotide (U1911, U1915, and 
U1917 in H69) recognition and pseudouridine synthesis by RluD is not known, 
formation of Ψs at positions 1911 and 1917 was shown to be autonomous of 
each other and independent of the Ψ1915 formation (Leppik et al., 2007). 
U1911 and U1917 in H69 are likely isomerized at similar rates as U1915 given 
that their synthesis is stochastic and does not seem to happen in any specific 
order. This is based on the observation that all three H69 Ψs appear concur-
rently over time upon RluD treatment of the LSU (Ref. II Figure 5) as revealed 
by the chemical modification of 23S rRNA followed by reverse transcriptase 
directed primer extension analysis and separation of cDNAs by Urea PAGE 
(Bakin & Ofengand, 1993; Ofengand et al., 2001a). Thus, as all H69 Ψs are 
made concurrently, the kinetic parameters determined for the synthesis of 
Ψ1915 can in all likelihood be extrapolated for the synthesis of Ψ1911 and 
Ψ1917 as well.  

RluD is the first rRNA PS to be kinetically characterized and, according to 
current knowledge (Siibak & Remme, 2010), the only PS acting during the late 
stages of ribosome assembly. The rate of RluD dependent pseudouridylation in 
vitro is sufficiently fast for this modification to take place during the time frame 
of final LSU maturation in cells further confirming that LSU is the physiologi-
cal substrate of RluD. 
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4. SUBSTRATE RECOGNITION AND CATALYTIC 
MECHANISM OF RlmH (REF. I AND III) 

To shed light onto the mechanism by which the RlmH protein recognizes first 
its substrate base, Ψ1915 of H69, within the 70S ribosome; then its substrate 
atom, N3 nitrogen, within the aromatic ring of Ψ1915; and finally catalyses the 
transfer of a methyl group from co-factor SAM to the aforementioned nitrogen; 
we performed a mutagenesis study on both of the players in this process. 

 
 

4.1 Ribosome mutagenesis 

As already discussed, docking of the crystal structure of the RlmH dimer into 
the crystal structure of the 70S ribosome suggested that RlmH makes extensive 
contacts with the SSU and interacts with the LSU mostly in the H69 loop region 
(Purta et al., 2008). To elucidate the substrate recognition mechanism of RlmH, 
the significance of individual bases in H69 loop region were assessed by 
monitoring the formation of m3Ψ1915 in vitro on ribosomes with alterations in 
this region of 23S rRNA.  

The following single base alterations in H69 of 23S rRNA were analyzed: 
A1912U, C1914U, A1916U, A1916C, A1919U, and A1919G (outlined in Ref. 
III Figure 1). Mutation A1960G located in the 23S rRNA stem-loop 71 (H71) 
that forms a part of the inter-subunit bridge B3 (Yusupov et al., 2001), was also 
analyzed. Mutations A1912U, A1919U, and A1916G in H69 have previously 
been shown to severely impair ribosome functioning in vitro (Liiv et al., 2005; 
Kipper et al., 2009). A1912 and A1919 of H69 are involved in the formation of 
the inter-subunit bridge B2a (discussed in chapter 1.1). In current study, we 
were not able to analyze ribosomes containing A1916G and A1918U variants of 
23S rRNA, probably due to assembly defects or instability of the mutant ribo-
somes in the E. coli rluD/rlmH double deletion strain. The rluD/rlmH strain was 
used for the expression and purification of the variant LSU so that the MN in 
H69 would be absent. To avoid possible defects due to incomplete assembly, 
the variant LSU were isolated from 70S ribosomes using streptavidin sepharose 
affinity chromatography (23S rRNA variants contained a streptavidin-binding 
aptamer in helix 25) (Leonov et al., 2003). Since the absence of the RluD en-
zyme strongly impairs cellular growth (Gutgsell et al., 2005) and therefore re-
duces the yield of the variant ribosomes, the rluD/rlmH double deletion strain 
was constructed using a so-called “pseudorevertant” rluD deletion strain. Due to 
compensatory mutations elsewhere in the genome, the pseudorevertant strain 
has a WT-like growth phenotype despite lacking a functional RluD enzyme and 
the Ψs in H69 (discussed in chapter 3.4). 

The activity of RlmH protein on ribosomes with base alterations in 23S 
rRNA was tested in vitro. Variant LSU were pre-incubated with 10-fold molar 
excess of RluD protein for 10 minutes in order to introduce the H69 Ψs (fore-
most the prerequisite Ψ1915). Also, SSU were pre-incubated with varying 
concentrations (up to 6-fold molar excess compared to LSU) of native RlmH 
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protein and [3H]-SAM (100 μM). The pre-incubation reactions were mixed to-
gether and incubated for 1 minute. It should be noted that the RlmH dependent 
modification of ribosomes with native H69 sequence occurs at significantly 
lower RlmH concentrations within seconds (kcat ~5 min-1) (Ref. II Table 2). 
Therefore, this experiment was designed to reveal major effects of the mutations 
in H69 on the activity of RlmH. The [3H]-methyl group incorporation into TCA 
insoluble material was monitored by scintillation counting.  

The efficiency of RlmH dependent methylation of ribosomes with native 
H69 sequence was ~80% and was not affected by the presence of the affinity 
tag used for LSU purification (data not shown). When the RlmH-dependent 
methylation was analyzed on the H69 variant ribosomes, all of the alterations 
introduced into the H69 had an inhibitory effect on the RlmH activity in vitro 
(Ref. III Figure 4A-C). The strongest negative effects were observed with 
replacements at position 1919 and 1912. Somewhat less severe inhibition of 
RlmH activity was seen with replacements at positions 1914 and 1916. Whether 
the RlmH substrate Ψ1915 was synthesized in vivo or in vitro did not affect the 
methylation efficiency, as rlmH deletion strain ribosomes behaved similarly to 
rluD/rlmH double deletion ribosomes treated with RluD in vitro (data not shown). 

Since RlmH methylates H69 only in the 70S ribosomes and requires interac-
tions with the SSU for its activity (Ref. I and II), any alteration that affects the 
ability of ribosomal subunits to associate would also be likely to affect the 
activity of the RlmH protein. In order to estimate to what extent the impairment 
in methylation of variant LSU was caused by defects in subunit association as 
opposed to the effects of the mutations on the structure of the H69 per se re-
quired for RlmH dependent modification, the ability of the variant LSU to form 
70S ribosomes was analyzed. One A260 (absorbance at 260 nm) unit of both 
LSU and SSU, treated the same way as in methylation assay, were loaded onto 
sucrose density gradient, subjected to ultracentrifugation, and the ribosome pro-
files were analyzed with continuous monitoring of absorbance at 254 nm. As 
revealed by ribosome profiles, the re-association efficiency was decreased with 
most of the LSU variants that exhibited significant inhibitory effects on RlmH 
activity (Ref. III Figure 4E). The strongest defect in 70S formation was ob-
served with the A1919U variant LSU that was also one of the poorest substrates 
for RlmH in methylation assay (Ref. III Figure 4). The extent of the subunit 
association defect of A1919U was comparable to the one caused by the A1960G 
mutation in H71 (located away from the H69 and forming a part of the inter-
subunit bridge B3), which was used as a control for a mutation known to cause 
an association defect (Liiv & O'Connor, 2006). However, the inhibitory effect 
of the A1919U mutation on the RlmH activity was significantly stronger than 
the one caused by the A1960G mutation (Ref. III Figure 4). The lack of correla-
tion between the effects of the mutations in H69 on 70S formation and on 
methyltransferase activity of RlmH is further underscored by the A1912U 
replacement that significantly inhibited RlmH activity but only moderately 
affected 70S formation (Ref. III Figure 4). Taken together, these findings argue 
against the subunit association defect being the primary cause for the impair-
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ment in the RlmH activity on H69 variant ribosomes. Instead, the impairment in 
RlmH dependent methylation could be attributed to the altered conformation of 
the H69 within the variant 70S ribosomes. 

As the co-crystal structure of the RlmH protein in complex with the 70S is 
not available, the structural basis of our results can be discussed only tentatively. 
Evidently, a number of H69 nucleotides are important for RlmH activity in vitro 
(Ref. III Figure 4). While the adenines at positions 1912 and 1919 of H69 seem 
to be almost a prerequisite for the action of RlmH, mutations at positions 1914 
and 1916 also exhibited a significant effect on RlmH activity. Interestingly, the 
most important nucleotides for the activity of RlmH, A1912 and A1919, are 
more distant to the actual modification site at position 1915 (Ref. III Figure 1 
and Figure 5). It seems that RlmH is able to methylate Ψ1915 at least to some 
extent in vivo on ribosomes with single base alterations Ψ1911C, A1912C, 
A1913U, A1913G, C1914A, C1914G, A1916C, Ψ1917C, and A1918G in H69 
as revealed coincidentally by the chemical modification analyses of Ψs in the 
H69 region (Hirabayashi et al., 2006; Leppik et al., 2007; Monshupanee et al., 
2008), however, no conclusions about the effect of these mutations on the effi-
ciency of the methylation reaction can be drawn from these experiments.  

One possible explanation for the observed effects is to assume that RlmH 
makes extensive and specific contacts with most of the bases in the loop region 
of the H69. However, this is in apparent conflict with the docking model of 
Purta and co-workers, which predicted contacts between RlmH and the tip of 
H69, not including the nucleotides A1912 and A1919 (Purta et al., 2008). 
Molecular dynamics simulations have shown that mutations at positions 1912 
and 1919 affect the conformation of the H69 (Kipper et al., 2009). This 
conformational change in H69 may displace the Ψ1915, explaining the severe 
effect of the mutations at 1912 and 1919 positions on the RlmH dependent 
methylation despite their distance from the actual modification site. Nucleotides 
C1914 and A1916 (right next to the substrate Ψ1915), whose replacement 
exhibited less severe defects, can either interact with the RlmH protein directly 
or, alternatively, be important for the presentation of Ψ1915 in the proper 
conformation. Taken together, the fact that replacements at positions 1914 and 
1916 had a smaller impact on the RlmH activity than the replacements at the 
more distant positions, 1912 and 1919, indicates that rather than interacting 
directly with the nucleosides neighboring its substrate Ψ1915, RlmH is sensitive 
to the conformation of the H69 within the 70S ribosome.  

Interestingly, unlike RlmH, the RluD protein that modifies not just the same 
region of the ribosome but even the same position, namely the U1915, is rela-
tively insensitive to single base alterations at neighboring positions in H69 as 
revealed by chemical modification analysis of Ψ formation in the H69 region of 
23S rRNA. Both the in vitro (Ref. III Figure 2B) and the in vivo (Leppik et al., 
2007) analyses of RluD activity suggest that A1916 serves as an important 
specificity determinant for RluD. 

As discussed in chapter 2.3.3, rRNA ME most likely rely on substrate 
dynamics, the ability of RNA to refold into an “unusual” conformation, as a 
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method of substrate recognition. The ability of RNA to adapt certain confor-
mations, however, depends on its sequence. As a result, substrate recognition by 
ME can occur without a large number of direct contacts to conserved bases in 
rRNA (Byrne et al., 2009). Results of the H69 mutagenesis analysis are in 
agreement with RlmH and RluD proteins employing the “indirect readout” 
mechanism of substrate recognition described previously for rRNA ME RlmD 
and RluA (Lee et al., 2005; Hoang et al., 2006). However, it is also possible 
that the main specificity determinants of rRNA ME lie outside the immediate 
vicinity of the site of modification. In case of RluD, the N-terminal S4-like do-
main is probably also involved in substrate recognition and binding (Vaidya-
nathan et al., 2007) (chapter 2.3.1 and Table 2).  

In addition to interacting with the H69 region of the LSU, RlmH also inter-
acts with the SSU (Ref. I and II; Purta et al., 2008). However, it is not known 
which regions of the SSU and to what extent the RlmH protein interacts with. 
The binding efficiency of the RlmH to 70S ribosomes was tested in vitro. Due 
to similar migration of RlmH and several r-proteins on the sodium dodecyl sul-
fate (SDS) PAGE, verifying the binding of RlmH to ribosomes required the 
purification of a 35SMet/35SCys-labeled RlmH protein (data not shown). 70S 
ribosomes isolated from the WT, rluD deletion, and rluD/rlmH double deletion 
strains were incubated with 5-fold molar excess of the labeled RlmH in the 
presence of sinefungin (SAM analog, acts as a MT specific inhibitor). One part 
of the reaction mixture was TCA precipitated, analyzed on SDS-PAGE, and the 
radioactivity was visualized by a Typhoon Phosphoimager; the other part of the 
reaction mixture was TCA precipitated and analyzed by liquid scintillation 
counting. RlmH protein was shown to bind to both rluD and rluD/rlmH deletion 
strain, but not to E. coli WT strain ribosomes (data not shown). While the 
binding was most efficient with the rluD/rlmH ribosomes, it was still less than 
25%. In accordance, hydroxyl-radical footprinting experiments on the 
rluD/rlmH 70S/RlmH/sinefungin complex showed only a modest protection in 
the H69 region and yielded no conclusive results about the interactions between 
the RlmH and SSU (data not shown). Furthermore, a high-resolution cryo-
electron microscopy (cryo-EM) image processing and three-dimensional 
structure reconstitution (performed by the laboratory of Prof. D. Wilson) of the 
rluD/rlmH 70S ribosome/RlmH/sinefungin complex showed no extra density 
for the RlmH in the inter-subunit space. Consequently, due to the low binding 
efficiency of RlmH, the exact ribosomal elements beyond the H69 region 
recognized by RlmH have proven to be difficult to pinpoint. 

In conclusion, while the exact contribution of the SSU in determining the 
RlmH substrate specificity remains unknown, a proper conformation of the H69 
or rather the ability of H69 to obtain a certain conformation, in addition to subu-
nit association, is likely necessary for an efficient methylation of Ψ1915 by 
RlmH. The modeled complex with the 70S ribosomes suggests that only a 
minor change in the H69 conformation is required for swinging the target Ψ into 
the active site of RlmH (Purta et al., 2008). 
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4.2 RlmH mutagenesis 

The crystal structure of E. coli RlmH dimer (Figure 7) was determined almost 
10 years ago (named YbeA at the time) and was disclosed to contain an unusual 
topological knot (Benach et al., 2003;). The extensive structural and evolution-
ary bioinformatics study done by Bujnicki and co-workers revealed that YbeA 
belonged to the SPOUT superfamily of MT (Tkaczuk et al., 2007) (chapter 
2.3.2). Based on sequence and structure comparison to previously characterized 
SPOUT MT (tRNA 2’O-MT TrmH and TrmJ, tRNA m1G-MT TrmD, 23S 
rRNA 2’O-MT RlmB, and 16S rRNA m3U-MT RsmE), Bunnicki and co-
workers implicated YbeA in post-transcriptional RNA modification and 
predicted the location of the co-factor (at the bottom of a deep cleft) and RNA 
substrate binding sites at the interface of monomers (Figure 7). Conserved 
amino acids from both monomers were anticipated to be necessary for the active 
site formation (Tkaczuk et al., 2007). YbeA was, indeed, confirmed to be 
involved in 23S rRNA m3Ψ1915 formation and renamed RlmH, accordingly 
(Ref. I). Since there is no precedent for m3Ψ modification, the Ψ1915 
recognition and methyl group transfer mechanism to N3 nitrogen of Ψ mediated 
by RlmH is unique. Recognition of the target atom within the Ψ is likely to be 
inextricably linked to the mechanism of the specific modification reaction. 
Binding and orientation of the Ψ will likely dictate which atom will be suitably 
positioned for the attack on the methyl group of SAM. 
 

 

 
Figure 7. Structure of E. coli RlmH (YbeA) homodimer. Surface representation colored 
according to the distribution of electrostatic potential from red (-10 kT) to blue (+10 kT). 
Predicted co-factor and substrate binding sites between the monomers are indicated by 
yellow and green circles, respectively. Adapted from Benach et al., 2003 (PDB ID: 
Ins5). 
 
In order to shed light onto the substrate base recognition and the catalysis of 
methyl transfer reaction, we monitored the formation of m3Ψ1915 in vivo in 
rlmH deletion strains expressing mutant RlmH proteins. 18 amino acids of 
RlmH were selected for mutagenesis study based on their conservation and/or 
structural proximity to the predicted co-factor binding and catalytic site (Ref. I 
Figure 5) (Tkaczuk et al., 2007). Altogether, ~12% of the total amino acids of 
RlmH were analyzed. In most cases, alanine was chosen as a substitution to 
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eliminate side chain functionality of amino acids while avoiding potential 
problems due to the conformational flexibility of glycine. The low level of 
transcription from the plasmid encoded araBAD promoter in the absence of 
arabinose (Lee et al., 1987) was employed to achieve low amounts of mutant 
RlmH proteins in cells in order to reveal subtle changes in RlmH activity. A 
moderate level of over-expression (data not shown) from the araBAD in the 
presence of arabinose (final concentration 0.002%) was used to reveal major 
changes in RlmH activity. 70S ribosomes were isolated from cells in varying 
growth phases (OD600 0.3-2.4) and the H69 region was monitored for the pres-
ence of m3Ψ1915 by primer extension analysis. 

Surprisingly, all of the mutations introduced into RlmH had a negative effect 
on its activity (Figure 8). As expected, the defects were more evident when 
RlmH expression level was low. The most noticeable defects were seen with 
mutations of Y23, E56, E106, G107, E138, R142, and Y152. Only the Y152A 
mutation resulted in the total loss of the enzymatic activity. G107, E138, R142, 
and Y152 are universally conserved (Ref. I Figure 5 and Supplementary  
Figure 1). Our results support the bioinformatical predictions that L72, D73, 
G103, G107, and L122 are involved in SAM binding; and that E106, T126, and 
R142 are involved in catalysis (Tkaczuk et al., 2007). However, the functional 
importance of E138 and Y152 was not predicted by bioinformatical analysis.  
 
 

 
Figure 8. Effect of mutations on RlmH activity in vivo. Formation of m3Ψ1915 in E. 
coli rlmH deletion strain expressing low or moderate amounts (+ ara) of native (WT) 
and mutant RlmH proteins was monitored. rRNA was extracted from ribosomes of cells 
collected from different growth phases (OD600 0.3-2.4). Reverse transcriptase dependent 
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primer extension analysis followed by separation of cDNAs on Urea-PAGE was used to 
detect m3Ψ1915. Stop signal corresponding to m3Ψ1915 is indicated by an arrow.  
Fortunately, the closest paralog of RlmH, the tRNA m1G MT TrmD, has been 
crystallized in complex with co-factor (Ahn et al., 2003). TrmD methylates N1 
nitrogen of guanosine that is in a structural context that is chemically similar to 
the N3 nitrogen of Ψ (both nitrogens are fairly nucleophilic). Most importantly, 
TrmD has been relatively well characterized by site-directed mutagenesis stud-
ies (Elkins et al., 2003). All in all, TrmD can provide valuable insight into the 
roles of amino acids located at the active site of RlmH. 

The structures of the SAM binding pockets of TrmD and RlmH are nearly 
identical (Ahn et al., 2003; Benach et al., 2003; Tkaczuk et al., 2007). Based on 
the similarity to TrmD, RlmH L72 and S121 are involved in binding of the 
adenosine ring of SAM, while G103 and G107 are involved in binding of the 
ribose moiety of SAM. In addition, D73 and L122 are likely to have a function 
in SAM binding. Most hydrogen bonds to SAM are presumably formed by the 
peptide backbone.  

Based on RlmH structure, R142 lays in the putative catalytic site near the 
SAM binding site. TrmD equivalent of RlmH R142 appears to play a role in 
target base binding. While the R142A equivalent mutation completely inacti-
vated TrmD (Elkins et al., 2003), RlmH retained some enzymatic activity 
(Figure 8). Hydrogen bond formation between the side chain of R142 and the 
base of Ψ is unlikely since R142K and R142A mutations had a similar effect on 
RlmH activity, while the R142L mutation almost completely inactivated the 
enzyme. The role of R142 in substrate base binding appears to be mainly struc-
tural. Y152 probably stacks upon Ψ and is likely essential for its stabilization in 
the active site as RlmH was completely inactivated by substituting this tyrosine 
with alanine while substitution with another aromatic acid, phenylalanine, re-
sulted in major but not complete loss of enzymatic activity at least when mutanr 
RlmH was present in excess in cells (Figure 8). Like its TrmD equivalent, the 
R154 of RlmH could be involved in interactions with RNA backbone. 

TrmD D169 acts as a general base catalyst and withdraws a proton from the 
N1 group of guanosine allowing it to nucleophilically attack the reactive methyl 
group of SAM, thereby triggering the methyl transfer reaction. Similar general 
base catalysis mechanisms are widespread among the tRNA and rRNA MT 
(Schubert et al., 2003; Tkaczuk et al., 2007). Surprisingly, there is no obvious 
equivalent to TrmD D169 in the vicinity of RlmH active site to accept the pro-
ton from N3 of Ψ. As conformational rearrangements in RlmH upon substrate 
binding could position a more distant negatively charged residue into the vicin-
ity of the active site, conserved aspartic (D73) and glutamic (E56, E106, and 
E138) acid residues located within conceivable distance from the active site 
were analyzed by site-directed mutagenesis. While the substitution of all of 
these amino acid residues had a negative effect on RlmH activity, none 
abolished it completely, hence, ruling out the general base candidates (Figure 8). 
However, the absence of a clearly recognizable catalytic general base is not 
unprecedented among rRNA MT. 
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In case of Nep1, the 18S rRNA m1Ψ MT in yeast, even determining the 
crystal structure in complex with the cognate substrate and co-factor did not 
reveal the candidate for a catalytic general base (Thomas et al., 2010). Similarly, 
in AviRb, an avilamycin resistance 23S rRNA 2’O MT in Streptomyces virido-
chromogenes, no catalytic general base could be unambiguously identified 
despite structural and mutagenesis analyses (Mosbacher et al., 2005). Curiously, 
Nep1 and AviRb also belong to the SPOUT super-family of MT (Tkaczuk et al., 
2007). In case of AviRb, the catalytic base was hypothesized to be water 
(Mosbacher et al., 2005). 

There are also other obvious differences between RlmH and TrmD that 
likely reflect their respective substrate specificities. For instance, the vicinity of 
the putative active site of RlmH comprises conserved residues not present in 
TrmD: Y23, T126, P128, H129, Y141, and H153. Substituting any of these resi-
dues with alanine had a negative effect on RlmH activity (Figure 8). Specificity 
for the Ψ N3 nitrogen methylation and ability to discriminate between Ψ and U 
suggests that H-bonding with the N1 position of Ψ is probably an important 
determinant for RlmH. Peculiarly, none of the 21 mutations in RlmH caused a 
decreased specificity for Ψ1915, as revealed by the fact that m3U1915 formation 
in the rlmH/rluD double deletion strain was not increased compared to native 
RlmH (data not shown).  

In conclusion, RlmH is exquisitely sensitive to mutations around the putative 
catalytic site. Several factors could contribute to dramatic effects of mutation on 
the catalytic activity of RlmH. First, residues in the active site may interact with 
the co-factor and the substrate and be therefore required for enzymatic activity. 
Second, active site residues may be involved in hydrophobic or ionic interac-
tions across the monomer-monomer interface and could affect the catalytic 
activity through destabilization of the dimeric structure. Third, as the topologi-
cal knot is important for SAM binding and catalytic activity, mutations could 
affect the enzymatic activity by perturbing the knot formation or even by 
perturbing the overall structure of RlmH. Determining the kinetic parameters of 
mutant RlmH proteins for substrate and co-factor, as well as determining the 
structure of RlmH in complex with its substrate and co-factor, would go a long 
way in helping to further elucidate the substrate recognition and catalysis 
mechanisms. 
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CONCLUSIONS 

Ribosome biogenesis is a complex process involving an ordered series of events 
including: transcription and processing of rRNAs; binding of r-proteins; and 
modification of both rRNAs and r-proteins. Improperly assembled ribosomes 
have been implicated in several human diseases (Freed et al., 2010) and insights 
into ribosome biogenesis may lead to new therapeutic agents. Identification and 
characterization of the rRNA modification enzymes will lead to a more com-
plete understanding of the mechanisms that govern the ribosome biogenesis 
process as well as will help to elucidate the cellular significance of the modi-
fications themselves. The main focus of the current study was the modification 
of the functionally important stem-loop 69 (H69) of the Escherichia coli 
ribosome. The following conclusions can be drawn: 
I. The gene product of ybeA is responsible for the post-transcriptional 

methylation of Ψ1915 to m3Ψ1915 in H69 of E. coli ribosomes. YbeA 
protein was renamed to RlmH according to uniform nomenclature of rRNA 
methyltransferases and shown to be conserved in bacteria. RlmH was the 
first pseudouridine methyltransferase identified and is likely to be the only 
one existing in bacteria. 

II. RlmH has unique substrate specificity among rRNA modification enzymes; 
it requires prior conversion of U1915 to Ψ1915 and for the latter to be pre-
sented within the 70S ribosome. As such, RlmH is one of the latest if not 
the ultimate rRNA modification enzyme acting during ribosome biogenesis. 
RlmH dependent methylation likely coincides with translation initiation. 
Specificity of RlmH demonstrates that the ribosome large subunit matura-
tion depends on the presence of ribosome small subunits. 

III. RlmH is a relatively fast enzyme compared to other RNA modification 
enzymes. Knowledge of the substrate specificity and the kinetic parameters 
of RlmH made it possible to determine the kinetic parameters for RluD as 
well. RluD was the first pseudouridine synthase acting on rRNA to be 
kinetically characterized. The determined rates of H69 pseudouridylation 
by RluD and methylation by RlmH are compatible with the timeline of 
ribosome biogenesis. 

IV. Substrate recognition and modification catalysis mechanisms of RlmH are 
sensitive to single point mutations in both the substrate H69 and in the 
RlmH protein itself. 
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SUMMARY IN ESTONIAN 

Bakteriaalne ribosoom modifitseeritud  
nukleosiidide vaatevinklist 

Ribosoomid vastutavad valgusünteesi läbiviimise eest kõikides elusrakkudes. 
Bakteriaalse mudelorganismi Escherichia coli (soolekepike) ribosoomid koos-
nevad kolmest ribosomaalse RNA (rRNA) molekulist ning 54 ribosomaalsest 
valgust (r-valgud), kusjuures RNA domineerib nii ribosoomi struktuuri kui 
funktsiooni seisukohast. Kuigi eukarüootide ribosoomid on suuremad ning 
koosnevad enamatest komponentidest, on ribosoomide struktuursed ning funkt-
sionaalsed põhielemendid konserveerunud terve eluslooduse ulatuses. Arves-
tades ribosoomide suurust ja keerukust, ei ole vast üllatav, et ribosoomide sün-
tees rakkudes on ülimalt kompleksne ning rangelt reguleeritud protsess. Ribo-
sooomi komponentide kokkupakkimine algab samaaegselt rRNA sünteesiga 
ning hõlmab lisaks rRNA protsessimisele nii rRNA kui ka r-valkude modifit-
seerimist. Mitmed haruldased geneetilised haigused on põhjustatud vigadest 
ribosoomide sünteesil. 

E. coli rRNAd sisaldavad 36 modifitseeritud nukleosiidi (MN), millest 
valdav enamus on pseudouridiinid (Ψ) ja erinevad metülatsioonid. Vaatamata 
sellele, et MN on enamjaolt konserveerunud ning paiknevad ribosoomi funkt-
sionaalselt olulistes piirkondades, on nende tähtsus suures osas selguseta. Bak-
terites sünteesivad rRNA MN koht-spetsiifilised ensüümid, mis on E. colis val-
davalt küll tuvastatud, ent iseloomustatud vaid üksikutel juhtudel. Ribosoomi 
funktsiooneerimise seisukohast väga oluline regioon, “juuksenõel 69” (H69), 
sisaldab kolme konserveerunud Ψ, millest üks (positsioonis 1915) on lisaks veel 
ka metüleeritud (m3Ψ). Kõik kolm Ψ on sünteesitud pseudouridiini süntaasi 
RluD poolt, kuid H69 metüleeriv ensüüm oli seni teadmata. Käesoleva töö ees-
märgiks oligi tuvastada H69 pseudouridiini metüültransferaas ning iseloomus-
tada H69 modifikatsioone ning modifikatsiooniensüüme ribosoomide sünteesi 
ning funktsioneerimise seisukohast.  

Peamised tulemused: 
1.  E. coli ybeA geen kodeerib H69 m3Ψ metüültransferaasi. YbeA valk on 

bakterites konserveerunud ning nimetati ümber RlmH valguks, mis on 
kooskõlas kokkuleppelise rRNA metüültransferaaside nomenklatuuriga. 
RlmH valgu näol on tegu esimese identifitseeritud pseudouridiini metüül-
transferaasiga ning suure tõenäosusega ainukesega bakterites, sest peale 
H69 ei ole m3Ψ bakterites mujal kirjeldatud. 

2.  RlmH substraadispetsiifika on unikaalne rRNA modifikatsiooniensüümide 
seas. Esiteks, RlmH metüleerib eelistatult Ψ, ning teiseks, teeb seda 70S 
ribosoomil mitte aga vabadel subühikutel või rRNA-l. Sellest lähtuvalt on 
RlmH üks viimaseid (kui mitte kõige viimane) rRNA modifikatsiooni-
ensüüm, mis ribosoomi sünteesil osaleb. RlmH poolne metüleerimine toi-
mub suure tõenäosusega samaaegselt translatsiooni esimeste etappidega, 
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mis viitab asjaolule, et ribosoomi suure subühiku lõplik valmimine sõltub 
väiksest subühikust. 

3.  RlmH on kiire ensüüm võrreldes enamike RNA modifikatsiooniensüü-
midega. RlmH substraadispetsiifika ja ensüümikineetika tundmaõppimine 
võimaldas määrata kineetilised parameetrid ka ensüümile RluD. RluD on 
esimene rRNA pseudouridiini süntaas, mille ensüümikineetikat on ise-
loomustatud. RluD ja RlmH kineetilised konstandid on kooskõlas ribo-
soomide sünteesi kineetikaga rakus. 

4.  Üksikpunktmutatsioonid nii substraat rRNAs kui RlmH valgus endas 
mõjutavad oluliselt nii substraadi äratundmist kui katalüüsi kiirust, mis 
eristab RlmH ensüümi enamikest RNA modifikatsiooniensüümidest. 
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