The Functional Role of eL19 and eB12 Intersubunit Bridge in the Eukaryotic Ribosome

Ivan Kisly ${ }^{1}$, Suna P.Gulay ${ }^{\mathbf{2}}$, Uno Mäeorg ${ }^{\mathbf{3}}$, Jonathan D. Dinman ${ }^{\mathbf{2}}$, Jaanus Remme ${ }^{1}$ and Tiina Tamm ${ }^{1}$

${ }^{1}$ Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
${ }^{2}$ Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States
${ }^{3}$ Institute of Chemistry, University of Tartu, Tartu 51010, Estonia

Introduction

Seventeen bridges are formed during association of yeast ribosome subunits [BenShem et al., 2011]

- Twelve intersubunit bridges are conserved among the all kingdoms.
- Five bridges are eukaryote-specific.
- Two eukaryote-specific bridges, eB12 and eB13, are created by the long protein ahelices extending from 60 S subunit E - and A -site sides, respectively.
- eL24 (shown in orange), and consequently the eB13 bridge, is dispensable for cell viability [Steffen et al., 2012].
- The main component of eB12 bridge - protein eL19 (shown in red) - is essential for cell growth and was shown to be an important pre-rRNA processing factor [Poll et al., 2009].
eL19 has two functions - one in 60S biogenesis and a second in intersubunit bridge biogenesis and a second in intersubunit bridge
formation. It is not known which of these is formation. It is not know
essential for cell viability.

Aim of this study was to analyse the functional importance of the intersubunit bridge eB12

1. C-terminal deletions of eL19

Structure of the C-terminal α-helix of the eL19. Residues forming contacts with ES6S of 18S rRNA and 40S subunit proteins (eS7, uS17) are colored green and yellow, respectively. Arrows indicate the positions of the last amino acids of the respective eL19 deletion alleles.

\square Prot-Prot $\quad \square$ Prot-rRNA

> Plasmid shuffling assay

SC-Leu+5FOA

Deletion of the whole C-terminal α-helix of eL19 (mutant eL19 9_{1-133}) is lethal.
2. Phenotypic characterization of the eB12 bridge mutants
> Serial dilutions spot-test analysis

$>$ Ribosome-polysome profile analysis

[^0]
Conclusions

> Ribosomes lacking eB12 can support growth and are active in translation.
$>$ eB12 bridge is essential for the subunit joining in vitro.
$>$ Lack of eB12 induces the stress response and promotes aquired stress tolerance.

- Essential function of eL19, carried by the globular domain and middle region, is in ribosoome biogenesis.
> Secondary function of eL19, provided by the C-terminal domain, is eB12 bridge formation.

3. In vitro formation of 80 S ribosomes

> In vitro reassociation of wild-type 40 S subunits and wild-type or mutant 60S subunits at diferent Mg^{2+} concentrations

Mutants impaired in eB12 bridge formation (eL19 1_{1-154} and eL19 9_{1-146}) fail to form 80 S ribosomes, regardless of Mg^{2+} concentration.
4. Analysis of stress tolerance of the eB12 bridge mutants
> Serial dilutions spot-test analysis of drug resistance/sensitivity

$>$ Sensitivity to NaCl stress
$>$ qPCR analysis of the HSP12 and CTT1 transcript level

(${ }^{*} \mathrm{P} \leq 0.001$)
Mutants impaired in eB12 bridge formation display sensitivity to paromomycin, neomycin and cycloheximide and resistance to anisomycin.
Mutants lacking eB12 are less sensitiive to hyperosmotic stress than wild-type cells.

[^0]: Mutants lacking eB12 bridge (eL19 ${ }_{1-154}$ and $e L 19_{1-146}$) have slow-growth phenotype enhanced at lower temperatures. Ribosome-polysome profile analysis reveales increased levels of free 60 S subunits at $20^{\circ} \mathrm{C}$.

