
UNIVERSITY OF TARTU

Institute of Computer Science

Software Engineering Curriculum

Mikheil Kenchoshvili

Tool for Identifying Working Style Based on

Event Logs

Master’s Thesis (30 ECTS)

Supervisor(s): Marcelo Sarini

Marlon Dumas

Tartu 2018

2

Tool for Identifying Working Style Based on Event Logs

Abstract:

Working style is a relatively new topic in Business Informatics. It is strictly related to

concepts existing in other areas of the research such as Organizational Mining, Visual

analytics, Pattern recognition. While there are several tools to tackle the task of

organizational mining, they are general purpose stand-alone desktop applications, and none

of them concentrate solely and deeply on working style identification. To this end, this thesis

introduces a domain-specific web-based tool that aids the user with working style

identification. The tool allows end users to import event logs. They can explore and query

patterns to answer the questions related to the working style of the human actors involved

in that event logs. The thesis presents, functional and technical requirements as well as the

implementation details of the tool. Also, discusses the difficulties faced during the

development and the gaps that have been identified in the current state of practice of the

technologies that were used for implementation. Moreover, several possible extensions of

the tool are suggested that could be addressed in the future works. Finally, the thesis

demonstrates the usage of the tool by importing the sample data and exploring different

capabilities and aspects of the application.

Keywords:

Working Style, Working Style Identification, Organizational Mining, Event Log

CERCS: P170 - Computer science, numerical analysis, systems, control

3

Sündmuste logi alusel tööstiili tuvastamise tööriist

Lühikokkuvõte:

Äriinfotehnoloogia on tööstiil küllaltki uus uurimusteema. See on tihedalt seotud teistest

uurimisvaldkondades tuntud kontseptsioonidega nagu näiteks organisatsiooniline kae-

vandamine, visuaalne analüüs ning mustrituvastus. Organisatsioonikaevet abistavaid töö-

riistu on küll mitmeid, kuid nad on kõik üldiseks otstarbeks eraldiseisvad programmid ning

ükski ei spetsialiseeru süviti just tööstiili tuvastamisele. Antud uurimustöö tulemusena val-

mis domeenispetsiifiline veebipõhine tööriist mis aitab kasutajal tuvastada tööstiili identif-

ikaatoreid. Kasutajal on antud keskkonda võimalik importida vaadeldavate isikute tegevuste

ajalugu, vaadelda neid andmeid ning koostada päringuid tuvastamaks tööstiili mustreid. Li-

saks funktsionaalsete ning tehnilistele nõuetele on kaetud ka tööriista teostuse üksikasjad.

Lisaks arutleb autor arenduse käigus tekkinud raskuste üle ning kirjeldab tööriista valmis-

tamisel kasutatud tehnoloogiates leitud puudujääkide hetkeseisu. Lõputöös tehakse ka

mitmeid ettepanekuid tööriista täiendamiseks edasistes töödes ning demonstreeritakse näite-

andmestiku abil tööriista kasutamist, uurides programmi erinevaid võimalusi ning aspekte.

Võtmesõnad:

Tööstiil, tööstiili identifikaator, organisatsiooniline kaevandamine, sündmuste logi

CERCS: P170 - Arvutiteadus, arvanalüüs, süsteemid, kontroll

4

Table of Content

Table of Content .. 4

Table of Figures .. 7

1 Introduction ... 8

1.1 The goal of the thesis .. 8

1.2 Research Questions .. 8

1.3 Research Methodology ... 9

1.4 Functional Requirements .. 10

Upload event log ... 10

Convert and store data ... 10

Visualize Data ... 10

Query Patterns ... 11

1.5 Technical Requirements ... 11

Database .. 11

Web development framework ... 11

Front-end ... 12

1.6 Limitations .. 12

Lack of PaaS providers ... 12

Visualization library .. 13

2 Related Work .. 14

2.1 Theoretical background .. 14

2.2 State of Practice .. 14

ProM, Social Network Miner .. 14

Disco ... 15

bupaR .. 15

5

3 Proposed Solution ... 16

3.1 Event Log to Graph .. 16

INCLUDES relationship ... 17

PERFORMED relationship ... 17

WORKS_WITH relationship .. 17

Example and Rationale ... 18

3.2 Working Style Artifact (WSA) ... 19

3.3 Patterns in WSA ... 19

3.4 Enriching WSA with context .. 20

PageRank ... 21

Lable Propagation ... 22

3.5 Visual Cues ... 22

4 Implementation ... 24

4.1 Dependencies .. 24

4.2 Configuration .. 24

4.3 DBMS ... 25

4.4 Data Access Layer .. 26

4.5 HTTP endpoints .. 27

4.6 Cypher Query Builder .. 27

4.7 Jinja2 Templates ... 28

4.8 Deployment .. 28

4.9 Logging ... 29

5 Demonstration ... 30

5.1 Testing Event Log Upload .. 30

5.2 Testing Data Explorer ... 35

5.3 Testing Pattern Creator ... 37

6 Conclusion and Future Work .. 39

6

6.1 More Graph Algorithms ... 39

6.2 Customize neovis.js .. 39

6.3 Provide REST API ... 39

7 References ... 41

Appendix ... 43

I. List of abbreviations and terms .. 43

II. CSV data used for evaluation ... 44

III. List of user stories .. 46

IV. License .. 47

7

Table of Figures

Figure 1. Example CSV data ... 16

Figure 2. Meta-graph of the proposed solution ... 17

Figure 3. Graph of the example data ... 18

Figure 4. Working Style Artifact 1 ... 19

Figure 5. Working Style Artifact 2 ... 19

Figure 6. Performers directly related to Mike from WSA 2 ... 20

Figure 7. Working Style Extended Artifact .. 21

Figure 8. Base configuration ... 25

Figure 9. Cypher query for converting CSV data into Graph ... 26

Figure 10. Cypher query for creating WORKS_WITH relationships 26

Figure 11. Procfile for Heroku in the repository ... 29

Figure 12. File Uploader Page .. 30

Figure 13. Native file explorer pop-up on the upload page .. 31

Figure 14 Upload page with the selected file .. 32

Figure 15. Upload page with a progress bar ... 33

Figure 16. Upload page with success message ... 34

Figure 17. The default state of Data Explorer ... 35

Figure 18. View all entities related to the case with ID 1 ... 36

Figure 19. View all entities related to activity B .. 37

Figure 20. Pattern Creator Interface .. 37

Figure 21. Original WSA (left) WSA’ with the overlay of the queried pattern (right) 38

8

1 Introduction

Working style is a relatively new topic in Business Informatics. It is strictly related to con-

cepts existing in other areas of the research such as Organizational Mining, Visual analytics,

Pattern recognition. Working Style characterizes the nature of work, with the main focus on

the relationships between human actors who perform the activities during the unfolding of

a business process. For this extent, working style sheds light on the choices performers make

within the constraints posed by the workplace [1].

Nowadays companies rely on process-aware information systems such as CRM, ERP, so

forth to organize and track their business processes. These systems pose a certain limita-

tion on the possible choices human actors can make while at the same time they support

the unfolding of a business process. So, in the various situation, it would be useful to iden-

tify the working style of those actors to makes visible how people arrange their duties in

the presence of such technologies.

1.1 The goal of the thesis

Several existing tools can analyze and visualize event logs, but most of them are general

purpose and usually concentrate on control flow aspect of the event logs rather than organ-

izational ones [2]. Moreover, a narrow field such as working style identification gets even

less share of the attention.

The goal of the thesis is to create the tool based on event logs, that will help users to identify

the working style. We do this by converting event logs into more comprehensible and intu-

itive graph-based structure that we can easily analyze and visualize. We generate and visu-

alize WSA and WSEA to help the user with the task of working style identification.

We aim to create a domain specific web application that potentially can have multiple users

that collaborate with each other. Narrowing down the domain and introducing the semantic

of the logs allows us to create an intuitive web-based tool that can aid user to identify the

working style of the human actors based on the event logs.

1.2 Research Questions

Given the lack of domain-specific, web-based tools that can aid user to identify working

style we propose the following main research questions:

9

1. How to represent event logs to support working style identification?

The answer to this question will help to clarify the intermediate structure that we are going

to use to store event logs efficiently to aid with querying and visualization tasks. Since we

are going to base our tool on event logs, it is vital to have a deterministic way of transforming

and storing them.

2. How to extract WSA from the intermediate structure and identify patterns?

To aid the user with working style identification, we should find the way to provide them

with WSA (working style artifact) that are simple enough to conclude and also a way to

query and identify patterns in it

3. How to visualize and compare WSAs?

This question is directly related to the ultimate goal of working style identification. Without

proper visualization, the user will fail in their task.

1.3 Research Methodology

This section discusses the research approach of the thesis. This work follows the design

science research methodology. In order to resolve the identified research question, we have

created and evaluated IT artifact. Based on the design science research methodology the

thesis consists of the following activities:

a. Design as an Artifact. The thesis presents a web-based tool for the identification of

working style.

b. Problem Relevance. The paper [2] identifies the gap in the research of mining or-

ganizational aspects. While they introduce their research to try and close the gap in

theoretical work, one cannot ignore the lack of practical, web-based, tools.

c. Demonstration. The thesis demonstrates the proposed solution as a web application.

Section 1.5 discusses the features of the artifact.

d. Evaluation. IT artifact is evaluated using a sample event log from Appendix II. The

author evaluates the application by populating the data via event log uploader and

querying patterns from derived WSA. The requirements of the artifact are evaluated

using three test scenarios: testing event log uploader, testing data explorer, and test-

ing pattern creator.

10

e. Research Contribution. The proposed IT artifact is a tool that enables the user to

upload and analyze the event logs to identify the working style of human actors in-

volved in the execution of work. The system also supports exploration of relation-

ships between these actors and other entities from the event log such as the activities

and cases.

f. Communication of Research. The solution proposed in this thesis is available on the

web. Any interested parties: end-users, software developers, and other researchers

can freely utilize it.

1.4 Functional Requirements

This section contains functional requirements. We also have extracted user stories from the

project related discussions to drive front-end development, track project progress and eval-

uate the results. Appendix II includes a complete list of user stories, while each subsequent

paragraph of this section contains lists of the IDs of related user stories if there are any.

Upload event log

The web application should have the page where one can select the event log file and upload

it to the server. The application should ensure the validity of the file and notify the user if

anything goes wrong. The application should support CSV file similar to the one from Ap-

pendix II

Related user stories: 1, 2

Convert and store data

After the user submits the desired CSV file, the application should crunch the event logs

and populate the database with relevant structures.

Visualize Data

The web application should provide a page where the user can explore the state of the data-

base. There should be appropriate filters to hide irrelevant data and closely explore specific

parts of the data.

Related user stories: 3, 4, 5

11

Query Patterns

The web application should provide a page where the user can indicate the query parameters

(length, performers involved and so on) to identify patterns between involved performers.

Related user stories: 6, 7, 8

1.5 Technical Requirements

Database

The application should use the Neo4j [3] Graph database. We choose Neo4j over others

similar technologies such as OrintDB [4] because of well documented and powerful Cypher

query language. Moreover, it has built-in web-based administration tool, Neo4j Browser,

that allows to connect to remote server using only a web browser and manage, update, and

query the data. Also, it has database drivers for most of the common programming languages

(Python, Java, .Net, JavaScript).

Nodes are the main data entities in the Neo4j database. Relationships connect two Nodes

(they are directional). Both Nodes and Relationships can have properties (attributes of key:

value pairs). Nodes have one or more labels that describe their role in the graph (we can

refer to the group of nodes using the label).

Based on our preliminary research Neo4j is uniquely qualified for our use case and it has all

necessary database entities to support the Graph structure that we propose in section 2.

Web development framework

Out of the four programming languages that support Neo4j both Python and JavaScript are

equally well fit to develop web applications. We chose Python as the parties involved in the

research (author and supervisor) had the personal preference towards this language.

As for web development framework we chose Flask [5]. We had Django [6] as the alter-

native, but because Flask is so lightweight and it is better suited for the research project

such as ours.

12

Front-end

For the front-end component library application should use Bootstrap [7] As it is the most

popular among web developers. Among other pros Bootstrap has prebuilt components, the

responsive grid system, and powerful jQuery [8] plugins make it so much more useful.

As for web browsers, the application should run on the Chrome [9] without interruptions.

Support of other browsers is encouraged but not required.

1.6 Limitations

This section aims to make clear the limitations that we have faced before and during the

implementation of the tool. The section of technical requirements states that application

should use Neo4j. However, this has its costs. We did preliminary research on the technol-

ogy related to Neo4j and detected a few limitations.

Lack of PaaS providers

Neo4j is a relatively new technology, and it experiences a lack of PaaS providers. The best

fit that our preliminary research found was GrapheneDB [10]. Unfortunately, they only pro-

vide the support for bare Neo4j, but they do not let the user alter the configuration of the

system which is crucial if one wants to extend neo4j with plugins.

One of such plugins that we use is Graph Algorithms [11]. To operate it needs neo4j con-

figuration to have certain parameters defined that are not there by default. So GrapheneDB

cannot support it by design.

We have tried to host neo4j on Amazon EC2 [12] machine ourselves. Unfortunately, we

went a little out of the scope of the project when one of the libraries failed to establish a

connection because of the SSL certificate [13] issues. Moreover, Amazon is a commercial

platform and not suited for scientific or open source and non-commercial projects.

So to benefit from full capabilities of Neo4j one needs to host it on a private server to be

able to access and tweak all configurations manually. For these limitations, we were not able

to automate the deployment process of the application. We can only manually deploy the

version of the application with limited capabilities.

13

Visualization library

The preliminary research has identified Neovis.js as the best candidate for the visualization

of Graph database content. Moreover, the official website of Neo4j reference this library

multiple times. Also, the applications that rely on Neo4j frequently use this library. The

primary reason for the popularity of Neovis.js is that it has a JavaScript driver for neo4j out

of the box.

Unfortunately, Neovis.js is very rigid when it comes to customization of behavior and tends

to make visualization decisions automatically. For this reason, there are some inconsisten-

cies in the tool that show up from time to time. We discuss these inconsistencies in the

implementation section and provide an explanation for each of them as well as the ways we

can fix them in the future.

14

2 Related Work

This section aims to briefly overview the related theoretical work and the current state of

practice.

2.1 Theoretical background

Set of choices that performers make under the constraints of the workplace characterizes the

working style, this becomes more evident when process aware systems drive the unfolding

of the business process as those tools pose certain constraints on how the workflows during

the unfolding of the business process. [5]

Just like a painting is the visual counterpart of the painting style of the artist, working style

artifact (WSA) is the visual counterpart of the working style. Moreover, just like art critics

can identify a certain style from the painting, we can identify the working style base on

working style artifact. WSA can serve as a tool for comparisons to identify similarities and

differences about the nature of work.

We need to practically represent WSA in the way to easily reason regarding the nature of

work. This thesis gets inspiration from the paper [1] but refines the structure proposed in the

original work and provide a practical web-based tool that utilizes new structure to aid users

with the identification of the working style.

2.2 State of Practice

This section discusses the practical tools that concentrate on process mining, and organiza-

tional mining.

ProM, Social Network Miner

Popular process mining tool ProM includes a social network miner plugin. It can import and

convert data from event logs into sociograms. Converted data can serve as the starting point

for execution of SNA. Using this plugin one can apply different social network mining al-

gorithms to the data. The user can control visualization aspects, observe the data, and, filter

the irrelevant information by setting thresholds. Papers [14, 15] discuss the theoretical work,

as well as the implementation details.

15

Plugins serve as a comprehensive tool for organizational mining. While the certain results

that we want to achieve can be detected using social network miner of ProM, it is still a

standalone desktop application. The user has to install the whole ProM Framework and only

after that they can download and benefit from appropriate plugins. In contrast, our solution

is a web-based application that user can access using a web browser without downloading

or installing anything extra.

Disco

Disco is a commercial process mining software that can construct process models from com-

plex and large event logs. It is a general-purpose tool that tries to cover many aspects of

process mining mainly focusing on the control flow of the event logs. Organizational mining

is not Disco’s primary focus, but users with a deep understanding of the tool can find a

workaround to creatively swap activities and resources to build process model that can help

to draw certain conclusions related to organizational structure [16].

The downside of Disco is that it is commercial, so users need to pay if they want to benefit

from full capabilities. Also, it is a standalone desktop application that users need to install

on their machine. While Disco can detect certain results that our application aims it requires

deep knowledge of the tool to do so which can be challenging for certain users.

bupaR

BupaR [17] (business process analysis in R) is an open source project that consists of eight

packages for R programming language each one of them has a different focus such as crea-

tion, exploration, and visualization of event logs. BupaR is well suited for a data scientist.

Average users without the appropriate background will have troubles using the tool, but It

is worth mentioning that if one has sufficient understanding of the data science and wants

to work closely with the raw event logs first hand, these packages are wonderful utilities to

do so [6].

BupaR has a little bit different niche than the tools discussed above or the one that we intro-

duce in this project.

16

3 Proposed Solution

This section discusses the proposed solution, while the subsequent section, will discuss the

implementation based on this proposal.

3.1 Event Log to Graph

We assume that the input is an event log similar to the Figure 1. To put it into words we

interpret event log as follow: A case includes some activities each performed by a performer

at a given timestamp.

Figure 1. Example CSV data

The relationship between the two performers is very hard to identify from the CSV repre-

sentation of the event log, so we propose an alternative way that makes those relationships

visible. We propose first to convert the event log into a graph. As the previous work [14,

15] shows, it is very easy to mine organizational structures from Graph structures. Moreo-

ver, original theoretical work [1] also utilizes the Graph structure to define WSA.

As we can see the event log contains four columns: Case, Performer, Activity, and

Timestamp. Three of those columns: Case, Performer, Activity can serve as the nodes into

our graph.

Figure 2 shows the schema as a meta-graph of the proposed structure. We will motivate this

structure with the example so that it is clearer why we chose to represent event log specifi-

cally with this schema.

17

Figure 2. Meta-graph of the proposed solution

INCLUDES relationship

The “Includes” relationship is a trivial relationship that is visible on the entry of the event

log. It is between a case and an activity as in “Case one includes activity A.”

PERFORMED relationship

The “performed” relationship is a trivial relationship that is visible on the entry of the event

log. It is between a performer and an activity as in “The performer John performs the activity

A.”

WORKS_WITH relationship

The WORKS_WITH relationship is a non-trivial relationship that is not visible on the entry

of the event log. It is between two performers as in “The performer John works with the

performer Mike.” This hidden relationship connects two consecutive entries of the log to

each other that is why it is so hard to deduce it by looking at a particular entry in isolation.

To identify this type of relationships first, we construct a timeline (order entries by the

timestamp). Every pair of performers that directly follow one another is in the relationship

of WORKS_WITH.

In its basis, WORKS_WITH relationship reflects the co-operation between two performers.

We aim to uncover the nature of this relationship as it is a key to identifying the working

style.

18

Example and Rationale

Figure 3. Graph of the example data

Figure 1 contains the data from a simple event log while Figure 3 contains the graph repre-

sentation of that data based on the proposed schema from Figure 2.

As we can see the graph contains the same information as the event log but the relationship

WORKS_WITH that we cannot see in the event log so easily, came to light and became

visible in the graph representation. Also, note that columns in CSV file duplicate the values

to refer the same entity while in Graph representation we have a unique node for each entity

and we can have as many ingoing or outgoing relationships as we want. So while in case of

CSV file every new entry duplicates the data we only need one relationship to express the

same information that is of course if we already have involved parties in the Graph otherwise

we create them, and that is not the duplication.

Note that method to preserve the information about the timestamp is implementation spe-

cific. We propose to save it as a property of the relationships. In other words, both IN-

CLUDES and PERFORMED has timestamp field while WORKS_WITH has start and end

fields to reflect on when (at which timestamp) has the co-operation started and when it fin-

ished.

19

3.2 Working Style Artifact (WSA)

Figure 4. Working Style Artifact 1

We refer to the part of the graph that exclusively contains only WORKS_WITH relation-

ships as Working Style Artifact (Figure 4). If we enrich the WSA with context (show related

activates, cases so on), we call it Working Style Extended Artifact (Figure 5).

3.3 Patterns in WSA

Let us discuss some of the patterns one can discover in the WSA. Figure 4 is too small of a

WSA so let us take WSA from Figure 6 as an example. Depending on the use case user may

want to query different patterns from WSA.

Figure 5. Working Style Artifact 2

20

Let’s take the following example scenario. Mike is going on the vacation and management

wants to notify performers who will directly be affected by this fact. In other words, they

want to identify the people who are one “works_with” away from Mike. Figure 7 contains

identified pattern is a part of the WSA that contains only the information that interests the

user.

Figure 6. Performers directly related to Mike from WSA 2

One of the goals of the tool that we develop is to let user identify the patterns in WSA. It is

up to the implementing party to visualize the identified pattern in the way to be understand-

able for the user. We choose to bring forward (highlight) the pattern inside the WSA we call

resulting visualization WSA’. The implementation section discusses more details about this.

3.4 Enriching WSA with context

The easiest enhancement we can do is to add other entities from the database as they already

contain relevant information and can add useful context to WSA. Figure 7 contains extended

WSA that include activities, cases, INCLUDES, and PERFORMED relationships along

with performers and WORKS_WITH.

21

Figure 7. Working Style Extended Artifact

We can go even farther and compute parameters that can help identify the importance of the

particular performer in the global scale. Also, the user will benefit from the information

regarding the possible communities of performers as well as the importance of each per-

former in the global scale.

To detect the importance of a particular performer we propose to calculate the PageRank

and to identify the communities of performers we propose to label them using Label Prop-

agation. Later we discuss how to provide visual cues based on these parameters to increase

the usefulness of the tool.

PageRank

L. Page et al. proposed the original PageRank algorithm in 1998. To put it simply it outputs

a probability distribution used to represent the likelihood that a person randomly clicking

22

on links will arrive at any particular page. The algorithm can calculate PageRank for collec-

tions of documents of any size.

Several research papers assume the evenly divided distribution among all documents in the

collection at the beginning of the computational process. The Algorithm executes several

iterations to adjust the approximate value of PageRank every time getting closer and closer

to the true theoretical value [18].

PageRank has the same values (0 to 1) as the probability. A 0.5 probability means "50%

chance" of something happening. Hence, PageRank of 0.5 means there is a 50% chance that

a person clicking on a random link will appear on this document with the 0.5 PageRank.

Even though the original paper concentrates on websites and links, it has since was gener-

alized to work on any Graph-like structure.

Lable Propagation

Semi-supervised machine learning algorithm, Label Propagation, assign labels to previously

unlabeled data points. Initially, every node has a different unique community. Node changes

community based on the labels of the neighboring nodes [19].

There are different metrics the most commonly used it the maximum number of labels from

the direct neighbors of the node although one of the plugins of Neo4j uses different metric

[20].

Every node has the unique initial label; then the labels storm throughout the network. More

dense groups obtain the same label relatively quickly, thus forming the communities. Many

dense (consensus) communities start to form in the network and continue to expand until it

is impossible for every node to change its community label.

In contrast with other algorithms label propagation can result in various community struc-

tures from the same initial condition. Although, the range of solutions become narrow if

several nodes have initial labels while others are unlabeled.

3.5 Visual Cues

Even though PageRank was originally developed in google to rank websites it has since

been generalized for any Graph-based structure. Thus, we use PageRank to measure the

23

importance of the performers in WSA. Moreover, we make the size of performer node pro-

portional to the PageRank this will enable the user to compare performers base on their

importance in WSA.

We can use Label propagation algorithm to assign labels to each performer that will indicate

their community. We can use color as a visual cue to distinguish different communities on

the visualization.

24

4 Implementation

This section describes the implementation details of the tool. Implementation satisfies all

technical requirements stated in this thesis. That is, the tool uses neo4j as the database, py-

thon as the main programming language, Flask as the web development framework and

Bootstrap for front-end component library.

Implementation follows the MVC pattern. HTML templates acting as views, Flask functions

acting as Controllers and Neo4j database acting as a model. We separate parts of the code

this way with the flexibility, extensibility, and maintainability in mind.

Implementation of the tool resides at https://github.com/MadViper/masters-project

4.1 Dependencies

The application relies on the following python packages: werkzeug, gunicorn, flask, neo4j-

driver. It is necessary to install the dependencies to run the application. For easy installation

of dependencies, the application comes with the requirements.txt file so that it is possible to

install all of the requirements at ones using the command: pip install -r requirements.txt

4.2 Configuration

Base Config class (Figure 8) defines all configurable parameters with reasonable default

values. The configuration contains a secret key for Flask (it is important to set the real secret

key in production configuration) debug and testing flags to indicate if the application is in

either of those modes. Database user, password, and bolt URL are necessary fields for neo4j

python driver to connect with the database.

https://github.com/MadViper/masters-project

25

Figure 8. Base configuration

Development, Testing, and Production configurations subclass the base configuration and

set appropriate values for the options.

Flask supports initialization of the configuration from this kind of hierarchical structure.

This structure enables the developer to create as many configuration variations as they need

and later use an environment variable to provide different class references to Flask depend-

ing on the context of execution.

4.3 DBMS

Database management script is responsible for crunching the event log and creating the

Graph representation from it, as well as executing graph algorithms (PageRank and Label

Propagation) mentioned in the proposed solution. As we stated valid entry of the log con-

tains case, activity, performer, and timestamp fields.

When DBMS receives the CSV file, it loops over the entries and applies Cypher from Figure

9 to initialize the nodes of the graph (cases, performers, and activities) and INCLUDES and

PERFORMED relationships. It cannot initialize WORKS_WITH relationships as it re-

trieves entries one by one.

26

Figure 9. Cypher query for converting CSV data into Graph

Note that, Cypher is smart enough not to duplicate the nodes if the Graph already contains

it.

Cypher query language is so powerful it can create WORKS_WITH relationships from the

whole data in one query, so there is no need to try and initialize WORKS_WITH along the

other relationships. Figure 10 shows the query that we use to create the WORKS_WITH

relationships after the creation of all nodes and other relationships.

Figure 10. Cypher query for creating WORKS_WITH relationships

4.4 Data Access Layer

Data access layer is the class that is responsible for directly communicating with the neo4j

database. Connection establishment and clean up as well as query execution is the respon-

sibility of this class. All other entities that want to have access to the data should go through

a data access layer first.

This kind of separation guarantees that even if the underlying structure of the database

changes we will only have to update the implementation of this class and everything else

will continue working as intended. Moreover, if we ever decide to change the backend

27

technology, we would only have to implement a data access layer for the new one and plug

it in the rest of the code.

Data access layer provides accessors to the list of cases, performers, and activities as well

as the ability to run custom Cypher queries (with optional query parameters)

4.5 HTTP endpoints

This section lists the endpoints that our web application supports. We will discuss how the

pages look more in-depth in the demonstration section.

HTTP GET: /uploader - renders the event log uploader page

HTTP POST: / uploader - receives the file from the user, validates it and executes DBMS

functions to initialize the data.

HTTP GET: /explorer – renders data explorer page where the state of the database shows

up alongside with appropriate filters

HTTP POST: /explorer – receives the form data inputted by the user, and constructs the

query based on that data.

HTTP GET /creator – renders the pattern creator interface where the user can choose the

desired parameters for their pattern recognition query.

HTTP POST /creator – receives the form data inputted by the user

HTTP GET /result

4.6 Cypher Query Builder

After the user enters the details of the pattern of interest, the controller function of the Flask

application receives the input provided by the user and creates the object of CypherQuery-

Builder class from the pattern characteristics provided. After that “build” method generates

the Cypher query that can fetch the pattern that the user asked. This query is passed down

to the Data Access Layer to execute and fetch results.

28

4.7 Jinja2 Templates

Flask supports Jinja2 template language [21] out of the box. Jinja2 enables a hierarchy of

the HTML templates to reuse the common code also enables usage of python code to gen-

erate HTML. Rest of the paragraph discusses HTML templates of our web application.

base.html - Contains common functionality for all the templates such as linking CSS and JS

libraries, defining the navigation bar and managing alerts.

uploader.html – Contains HTML definition of the file uploader page. Defined input fields

to select the desired file and upload button see Figure 12 shows the web page rendered from

this HTML.

explorer.html – Contains the HTML definition of the data explorer page. Defines area for

the visualization of WSEA also input fields and drop-down lists to filter the data based on

user preference. Figure 17 shows the web page rendered from this HTML

result.html – Contains HTML definition of the page with original WSA and identified pat-

tern overlaid. Figure 21 shows the web page rendered from this HTML

4.8 Deployment

In the early stage of the development, we have been using Heroku [22] to deploy the appli-

cation and make it accessible via the web. We have a Procfile (Figure 8) to enable Heroku

to automate the process. At that time, we were using GrapheneDB that has a plugin for

Heroku that made the deployment process a lot easier. However, after we started using Algo

plugin of Neo4j GrapheneDB became useless for us because it is unable to support this

plugin by design. So, our deployment cycle broke.

We tried to use Amazon EC2 in order to recover the deployment cycle. We used to maintain

Amazon machine with the neo4j instance for a while, but we went out of the scope of the

project once complicated system administration related issues started to show up.

29

Figure 11. Procfile for Heroku in the repository

4.9 Logging

The application utilizes python’s logger module to provide descriptive logs of the execution

process. It is easily configurable to log in the file, on the console, in the syslog and so forth.

30

5 Demonstration

This section demonstrates the developed tool in action. We explore the capabilities of the

tool to evaluate and verify that all functional requirements of the thesis are satisfied. During

the demonstration, we also validate the application against the user stories from Appendix

II and see if we managed to provide the functionality that the user needed.

5.1 Testing Event Log Upload

Figure 12. File Uploader Page

Figure 12 shows the initial state of the event log upload page. As per User Story 1, there is

the browse option, and as per User Story 2, there is the upload button.

From this point, the user can follow the flow of the file upload as we discuss in this section

or at any point change their mind and the page from the top navigation bar. In that case, they

will end up on Pattern Creator or Data Explorer page. We will discuss their behavior in the

subsequent sections.

31

Figure 13. Native file explorer pop-up on the upload page

Should the user choose to follow the file upload flow, they will press on Browse (or the file

field itself) operation system specific file picker dialog will pop up on the page, and they

will achieve the state from Figure 13.

While in the state from Figure 13, they can search for the desired CSV file. When they find

the file that they want to upload they press open.

If they reconsider at any point, they can cancel the dialog and stop the uploading attempt.

32

Figure 14 Upload page with the selected file

Should the user continue with uploading flow, they will reach the state in Figure 14, where

the chosen file name shows up in the file field.

From this point, the user can either choose another file or upload the selected one by pressing

the Upload button. If they decide to choose a different file, they will have to go through the

same steps that we have discussed so far. Otherwise, they press the upload button.

33

Figure 15. Upload page with a progress bar

After they press the upload button Window will pop up, and the application will start track-

ing progress (figure 15).

Showing the progress bar to the user is important as they will not be able to do anything

until the back-end crunches the data and initializes the Graph. So, for the better user

experience, we show the progress bar and delay the user on the uploader page as long as it

takes to initialize the Graph.

The user cannot discard the progress bar dialog. Even if they attempt to close the page

entirely, the database will initialize eventually because the data processing happens on the

back end.

34

Figure 16. Upload page with success message

After the back end initializes the Graph, it will notify front end to discard the progress bar,

thus bringing user in the state shown in Figure 16.

At this point, they can choose to visit other pages for example data explorer to investigate

the what had they just uploaded or Pattern Creator to directly jump to working style identi-

fication.

35

5.2 Testing Data Explorer

Figure 17. The default state of Data Explorer

Figure 17 shows the initial state of the data explorer page. As per User Story 3, there is the

fetch data button. As per User Story 4, there are control components that a user can filter

the case by case ID, activity by name and performer by name. As per User Story 5, there are

check boxes to exclude/include the relationships from the visualization.

At this point, if the user wants to follow data exploration flow described in this section, they

can use control components (dropdown list/checkboxes) to construct different perspective

of the data Figures 18, 19 and many more. They can always use the top navigation bar to go

to the Pattern Creator to start working style identification or to the File Uploader to load

new data.

36

Figure 18. View all entities related to the case with ID 1

Note that Graph has visualization cues proposed in the previous section. Performer nodes

have a different size proportional to the proposed PageRank property.

Moreover, they have the partition property that has the value assigned by the proposed label

propagation algorithm. Performers with the same partition have the same color, and neo-

vis.js automatically colors the relationships with the color of the source node.

37

Figure 19. View all entities related to activity B

5.3 Testing Pattern Creator

Figure 20. Pattern Creator Interface

Figure 20 shows the pattern creator interface. As per User Story 6, there is a search button

that to query for patterns. As per User Story 7, There are two drop-down lists to select the

38

desired target and destination performers of the pattern. As per User Story 8, text fields and

radio buttons to allow specification of the desired type and range of the pattern length.

Figure 21. Original WSA (left) WSA’ with the overlay of the queried pattern (right)

Figure 21 shows the result of the query that involves performers John and Mike and pattern

length is at most 2. We can see that the application managed to identify a correct pattern.

The only problem is the visualization. Because of the limitations posed by neovis.js (dis-

cussed in the limitation section), there is no consistent way to exclude all “Gateway” rela-

tionships from the pattern color. We call “Getaway” relationship those that have one end

connected to the pattern and another end to the non-pattern. Noevis.js automatically assigns

relationships a color of the source nodes, so some of the “Gateway” nodes show up in the

color of the pattern even though they are not.

39

6 Conclusion and Future Work

By analyzing tests, we can assume that the goal of the thesis is reached. The outcome of the

thesis is a web-based tool that aids the user with their tasks related to working style identi-

fication by consuming their event log, analyzing data and providing easy to use interface for

exploring the database and searching for patterns.

Rest of this section discusses some of the future work that will enrich the tool and address

current limitations.

6.1 More Graph Algorithms

Now that we have seen the power of graph algorithms and how they enrich WSA with more

context and aid the visualization we propose to provide options for different Graph Algo-

rithms and let the user decide which one they want to apply.

6.2 Customize neovis.js

One of the gaps that we identified in the current state of practice related to neo4j tools is

that JavaScript visualization library neovis.js is rigid when it comes to customization of the

visualization aspects, and it tends to make crucial visualization decisions automatically.

In our use case, we needed to assign a specific pre-determined color to the certain nodes

(obtained using Cypher query language) and another color to the rest of the nodes. This

results of choose specific color for the nodes with a specific label or to opt out from rela-

tionship coloring when we color the nodes and so forth.

The whole neo4j community will benefit if neovis.js becomes more flexible and easily cus-

tomizable. As future work, we can extend the library to enable customization options.

Contribute to the development of the library by extending it To address the issue Address

problems with Neovis.js fix the library and contribute to help out the community.

6.3 Provide REST API

In some use cases, it will be beneficial to update the Graph data in real time. By current

design, this is not possible as we only support data initialization via file uploader that takes

CSV files as an input.

40

For example, we have stated earlier that process aware systems drive the modern workplace.

These systems usually have built-in event logging and tracking functionalities. So, it will be

easier for the end user if Graph database updates as soon as the system generates an event.

To support this functionality, we need to implement a way to update the Graph upon user’s

request dynamically. We propose to extend the tool with REST API that will have simple

CRUD (create, read, update, delete) functionality and enable the client to manage the data

whenever and however they want. As a result, the client can integrate their process manage-

ment tool using the REST API and update it in real time.

41

7 References

[1] M. Sarini, "Can Working Style Be Identified?," 2017. [Online]. Available:

http://ceur-ws.org/Vol-1898/paper1.pdf.

[2] A. Gao, Y. Yang, M. Zeng, J. Zhang and Y. Wang, "Organizational Structure

Mining Based on Workflow Logs," International Conference on Business

Intelligence and Financial Engineering, 2009.

[3] "Neo4j," [Online]. Available: https://neo4j.com/. [Accessed 02 08 2018].

[4] "OrientDB," [Online]. Available: https://orientdb.com/. [Accessed 02 08 2018].

[5] "Flask," [Online]. Available: http://flask.pocoo.org/. [Accessed 02 08 2018].

[6] "Django," [Online]. Available: https://www.djangoproject.com/. [Accessed 02 08

2018].

[7] "Bootstrap," [Online]. Available: https://getbootstrap.com/. [Accessed 02 08 2018].

[8] "jQuery," [Online]. Available: https://jquery.com/. [Accessed 02 08 2018].

[9] "Chrome," [Online]. Available: https://www.google.com/chrome/. [Accessed 02 08

2018].

[10] "GrapheneDB," [Online]. Available: https://www.graphenedb.com/. [Accessed 02 08

2018].

[11] "Graph Algorithms plugin for neo4j," [Online]. Available:

https://neo4j.com/developer/graph-algorithms/. [Accessed 02 08 2018].

[12] "Amazon EC2," [Online]. Available: https://aws.amazon.com/ec2/.

[13] "What is SSL certificate?," [Online]. Available: https://www.globalsign.com/en/ssl-

information-center/what-is-an-ssl-certificate/. [Accessed 02 08 2018].

[14] W. M. P. v. d. Aalst, H. Reijers and M. Song, "Discovering Social Networks from

Event Logs," Computer Supported Cooperative Work, vol. 14, no. 6, pp. 549-593,

2005.

[15] M. Song and W. M. P. v. d. Aalst, "Towards Comprehensive Support for

Organizational Mining," BETA Working Paper Series, 2007.

[16] "Disco User’s Guide," [Online]. Available: https://fluxicon.com/disco/files/Disco-

User-Guide.pdf. [Accessed 02 08 2018].

42

[17] "bupaR," [Online]. Available: http://bupar.net/. [Accessed 02 08 2018].

[18] L. Page, S. Brin, R. Motwani and T. Winograd, "The pagerank citation ranking:

Bringing order to the web.," Stanford Digital Libraries Working Paper, 1998.

[19] G. Kontonatsios, A. J. Brockmeier, P. Przybyła, J. McNaught, T. Mu, J. Y.

Goulermas and S. Ananiadou, "A semi-supervised approach using label propagation

to support citation screening," Journal of Biomedical Informatics, vol. 72, pp. 67-76,

2017.

[20] "Neo4j Apoc procedures," [Online]. Available: https://neo4j-contrib.github.io/neo4j-

apoc-procedures/. [Accessed 02 08 2018].

[21] "Jinja2," [Online]. Available: http://jinja.pocoo.org/docs/2.10/. [Accessed 02 08

2018].

[22] "Heroku," [Online]. Available: https://www.heroku.com/. [Accessed 02 08 2018].

43

Appendix

I. List of abbreviations and terms

Abbreviation Description

CRM Customer relationship management

ERP Enterprise resource planning

SNA Social Network Analyses

SSL Secure Sockets Layer

WSA Working Style Artifact

WSEA Working Style Extended Artifact

PaaS Platform as a Service

HTML Hypertext Markup Language

CSS Cascading Style Sheets

REST Representational state transfer

API Application Programming Interface

MVC Model View Controller

JS JavaScript

44

II. CSV data used for evaluation

case activity performer timestamp

1 A John 1

1 B Mike 2

1 C John 3

1 D Sue 4

1 E Pete 5

1 F Jane 6

1 H Sue 7

1 A John 8

2 A John 9

2 B Fred 10

2 C John 11

2 D Clare 12

2 E Robert 13

2 F Mona 14

2 H Clare 15

3 A John 16

3 C John 17

3 B Pete 18

3 D Sue 19

3 E Mike 20

3 F Jane 21

3 H Sue 22

4 A John 23

4 C John 24

4 B Fred 25

4 D Clare 26

4 G Clare 27

4 H Clare 28

5 A John 29

5 C John 30

5 B Robert 31

5 D Clare 32

5 E Fred 33

5 F Mona 34

5 H Clare 35

6 A John 36

6 B Mike 37

6 C John 38

6 D Sue 39

6 G Sue 40

6 H Sue 41

7 A John 42

7 B Mike 43

7 C Mike 44

45

7 D Sue 45

7 E Mike 46

7 F John 47

46

III. List of user stories

User Story 1 As a user, I should be able to choose CSV file from my local machine so that

I can upload it to the server.

User Story 2 As a user, I should be able to upload the chosen CSV file so that I can initialize

the data on the server.

User Story 3 As a user, I should be able to query the database so that I can explore and

analyze the data.

User Story 4 As a user, I should be able to filter the data by case ID, activity name, per-

former name so that I can discard irrelevant nodes.

User Story 5 As a user, I should be able to choose which relationship types should show up

on the data explorer so that I can observe the relevant connection between en-

tities.

User Story 6 As a user, I should be able to query patterns so that I can compare WSA and

WSA’ to each other

User Story 7 As a user, I should be able to specify performers involved in the pattern so that

I can identify the nature of co-operation between particular individuals.

User Story 8 As a user, I should be able to specify the length of the pattern so that I can

identify indirect relationships between performers.

47

IV. License

Non-exclusive licence to reproduce thesis and make thesis public

I, Mikheil Kenchoshvili,

(author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of

validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,

including via the DSpace digital archives until expiry of the term of validity of the

copyright,

of my thesis

Tool for Identifying Working Style Based on Event Logs,

(title of thesis)

supervised by Marcelo Sarini and Marlon Dumas,

(supervisor’s name)

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual property

rights or rights arising from the Personal Data Protection Act.

Tartu, 09.08.2018

