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1. INTRODUCTION 

Revealing major biotic and abiotic gradients along which species are spatially 
distributed is one of the major goals in ecology. The theories of island 
biogeography (MacArthur & Wilson, 1967) and metapopulation dynamics 
(Levins, 1969; Hanski, 1999) have provided a coherent conceptual framework 
for describing species occurrence and persistence with regard to habitat size and 
its proximity to other habitat patches. At the metacommunity level, these 
complementary theories predict that species diversity would decline with 
decreasing area and increasing isolation of habitat fragments. Numerous empiri-
cal studies have confirmed these predictions (Holt et al., 1999; Lomolino, 
2000). However, describing the whole essence of the habitat is a much more 
complex challenge, and would unlikely be captured by just habitat area and 
proximity of habitat patches. This insufficiency is now widely recognized, but 
going beyond these two variables is often not an easy task to accomplish, 
primarily due to difficulties in acquiring relevant data. Failure to consider 
heterogeneity in less obvious habitat variables can seriously impede our under-
standing of what constitutes a suitable habitat for a species, and may also hinder 
practical conservation work. In this thesis, population- and community-level 
consequences of two further habitat characteristics – predation risk and past 
habitat loss are assessed in butterflies. In spite of the growing awareness of the 
importance of these parameters in different ecosystems, community-level 
responses along these gradients, at least in the case of insects, have rarely been 
addressed in empirical studies and conservation practice.  

The poor knowledge of among-habitat variation in natural enemy caused 
mortality risk is at least partly due to the difficulties of recording and quanti-
fying mortality in natural environments. This is particularly evident in the case 
of adult predation. The most reliable method – direct observations – is often 
extremely time-consuming in small mobile organisms. For example, to record 
an average daily predation rate of 0.2 in a solitary insect, individuals should be 
tracked for an average of 5 days to observe just a single predation event. On the 
other hand, the interpretation of various indirect approaches used to quantify 
mortality is often not straightforward. For example, the frequency of predator-
inflicted wing damage used to quantify bird predation (e.g. Brower, 1988; Ide, 
2006) is indicative of successful escape from a predator, but cannot be applied 
to determine actual population loss due to predation (Brakefield et al., 1992). 
Another frequently used indirect way to draw inferences about adult mortality 
rates in the field, the mark–recapture method, fails to identify the cause of 
deaths, and could not satisfactorily distinguish between mortality and 
emigration.  

It is therefore not surprising that practical assessments of habitat quality for 
herbivorous insects are often based on vegetation cover of the patch, and most 
importantly, the presence of host plants (Dennis, 2003). However, even though 
one cannot deny the importance of bottom-up regulation, populations of 
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herbivorous insects are probably even more often regulated by natural enemies, 
such as predators and parasitoids (Cornell & Hawkins, 1995; Cornell et al., 
1998). Natural enemies, being able to cause substantial losses to prey popu-
lations (Cornell & Hawkins, 1995; Cornell et al., 1998), have been shown to 
generate source–sink dynamics (Rosenheim, 2001), and at the extreme, to drive 
their prey to local extinction (Gibbs, 1998). Despite their pervasive effects on 
the numbers of herbivorous insects, demonstrations of the predators’ impact 
beyond the population level – species composition and richness of prey commu-
nities – are rare (see Parmenter & MacMahon, 1988; Joern, 1992; Östman et al., 
2007, for a few exceptions).  

Nevertheless, mortality caused by any single type of predator is rarely 
uniform throughout the season. For example, Remmel et al. (2009; see also 
Teder et al., 2010) showed that, in boreal forests, bird predation on larvae of 
folivorous insects in June, during the nestling period of most insectivorous birds 
is several times higher than e.g. in August. As most predators of insects tend to 
attack only certain developmental stages of their prey, the period of vul-
nerability of a single prey species to a particular species or type of predator is 
typically relatively short. Thus, the impact of a predator on individual prey 
species will critically depend on the phenological match of the two. In a 
multispecies prey assemblage, the variability in phenological match of the 
predator with different prey species provides an opportunity to generate and test 
qualitative theoretical predictions about predators’ impact on community 
structure. 

In addition to present-day habitat variables, historical characteristics of the 
habitat can influence current species composition. This is because the response 
of species to habitat change is typically not instant, but rather involves a time 
lag (called relaxation time; Diamond, 1972). Even if conditions for long-term 
persistence of a species are not satisfied, local extinctions are generally pre-
ceded by a period of decline in population sizes (Hanski & Ovaskainen, 2002). 
The delayed extinction of species is captured by the concept of extinction debt 
(Tilman et al., 1994; Hanski & Ovaskainen, 2002; Malanson, 2008; Kuussaari 
et al., 2009). Rapid changes in human-dominated landscapes and habitats 
suggest that the presence of extinction debts could be widespread.  

Accumulating evidence, indeed, shows that the present-day patterns of 
species diversity do not necessarily depend on habitat parameters characterizing 
its current state but may also depend on habitat parameters prior to change (e.g. 
Cowlishaw, 1999; Lindborg & Eriksson, 2004; Berglund & Jonsson, 2005; 
Helm et al., 2006; Vellend et al., 2006; Ellis & Coppins, 2007; Gustavsson et 
al., 2007, Ranius et al., 2008). Although the importance of past habitat avai-
lability to current species composition is now widely recognised, supporting 
empirical evidence is still mostly limited to long-living organisms, vascular 
plants in particular (see e.g. Cowlishaw, 1999; Lammertink, 2003; Bulman 
et al., 2007, for a few exceptions). However, time lags to extinction following 
habitat change are not expected to be uniform among taxa, habitats and 
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landscapes. Species with long lifespan are expected to have a higher probability 
of showing time-delayed extinctions compared to species with short lifespan 
(Morris et al., 2008). Species with short generation time and high turnover rate, 
and those that are highly specialized have been suggested to be most sensitive to 
environmental changes, and thus have shortest relaxation times (Ovaskainen & 
Hanski, 2002; Kuussaari et al., 2009). Yet these expectations remain largely 
unconfirmed by empirical data.  

In my thesis, I focused on the role of above indicated aspects in structuring 
butterfly communities. Butterflies have proved to be a useful model system for 
various types of ecological and evolutionary research (Watt & Boggs, 2003), 
and they are without doubt the most important conservation target among 
insects (New et al., 1995; Dennis, 2010). Although various vertebrate and inver-
tebrate predators are known to kill adult butterflies (e.g. birds, rodents, lizards, 
wasps, dragonflies, spiders; Brakefield et al., 1992; van Nouhuys & Hanski, 
2004; Wiklund et al., 2008 and references therein), spatial and seasonal 
variation of their impact on butterfly populations in natural environments, and 
thus their role in determining habitat quality appears to be virtually unknown 
(Dennis, 2010). The focus here was on predation by dragonflies which, besides 
birds, are the perhaps most commonly reported predators of adult butterflies 
(e.g. Larsen, 1981; Alonso-Mejía & Marquez, 1994; Sprandel, 2001; van 
Nouhuys & Hanski, 2004), but there appears to be no study attempting to assess 
the spatiotemporal variation in dragonfly predation, and its population- and 
community-level consequences in butterflies.  

As the study system, seminatural calcareous grasslands in Estonia were used 
for most of the substudies of this thesis. For butterflies, calcareous grasslands 
rank as the most species-rich habitat in Europe: almost half of all European 
butterflies have been reported to occur in calcareous grasslands (van Swaay, 
2002). However, like in most parts of Europe, calcareous grasslands in Estonia 
have suffered a rapid decline in area during the last century. Historically large 
and continuous areas have lost approximately two thirds of their original extent 
due to changes in agricultural practice (Pärtel et al., 1999). The known extent of 
historical landscape structure and rapid loss of habitat area during the last 75 
years enabled to test if butterflies are showing signs of delayed response to 
habitat loss. The response of butterfly communities to habitat change was 
analysed at the regional level (using a network of alvars in Estonia) and the pan-
European level.  

The objectives of my thesis were to examine the effects of dragonfly 
predation (I, II) and habitat history (III, IV) on butterfly community structure. 
More specifically, I investigated the spatial and seasonal heterogeneity in 
dragonfly predation on adult butterflies in natural habitats (I), and analysed the 
patterns of patch occupancy of individual butterfly species with regard to 
dragonfly abundance in space and time (II). The dependence of butterfly spe-
cies richness on past and current habitat characteristics was explored at a 
regional and pan-European level (III, IV). 

3
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2. MATERIALS AND METHODS 

2.1. Study system 

Factors determining species richness of grassland butterflies were examined in 
Western Estonia – Saaremaa and Muhu islands, and coastal area of the 
mainland Estonia (c. 58o N, 22–23’ E, I–IV). In terms of vegetation, the study 
area belongs to the boreo-nemoral zone (Sjörs, 1965; Pärtel et al., 1999). The 
landscape of the two islands is a mosaic, dominated by forests (53% of the total 
area), while arable lands occupy 10% of the area, and various types of 
seminatural grassland 18% (Kään, 2002). 

The focus of the current study was primarily on alvar grasslands (I–IV) – a 
type of seminatural calcareous grassland characterised by thin soil layer on 
limestone bedrock (see Pärtel et al., 1999, for detailed habitat description). 
Dragonfly predation on adult butterflies was examined in 29 grasslands within 
2 km from the coastline (I, II). The grasslands were chosen along the coastline 
to minimise patch differences in terms of vegetation cover and abiotic 
conditions. The effect of historical habitat area to current species composition 
and richness was studied in a set of 36 alvar grasslands scattered over the two 
islands, and covering a patch area gradient in the study region (III, IV). The 
effect of historical habitat area to current butterfly species richness was further 
analysed on a broader scale, using 147 semi-natural grasslands in five European 
countries (IV; the type of grassland being the same within each country but 
differing among countries). 
 
 

2.2. Habitat data 

Data on current areas of focal grasslands were obtained from a recent inventory 
of Estonian seminatural communities (2004) and upgraded using orthorectified 
aerial photographs of the study area (I–IV). For the pan-European study, aerial 
photographs taken between 1999–2007 were used depending on availability at 
different countries (IV). Current connectivity of the habitat patches was quanti-
fied as the area covered by the same grassland type within a 2 km buffer, 
including the study patch. The radius of 2 km was chosen for delimiting focal 
areas, as this corresponds to realistic values of mean lifetime dispersal distances 
reported for butterflies (e.g. Hanski et al., 2000, 2006). To control for any sea 
proximity effects (climatic, vegetational, etc.), patch distance from the sea was 
determined (II, III). 

To analyse the response of butterflies to habitat loss, past area and past 
connectivity of the studied grasslands were determined on the basis of detailed 
maps of Estonian vegetation cover in the 1930s (Laasimer, 1965; III). The 
distribution of alvar grasslands at that time corresponded to their distribution 
and proportion in the landscape that had persisted for centuries (Helm et al., 
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2006). To quantify past habitat variables in the pan-European study, historical 
aerial photographs mainly from the 1950s to 1960s were used for all countries 
(IV).  
 
 

2.3. Biodiversity data 

Repeated surveys using standardised transect counts (Pollard & Yates, 1993) 
were conducted to determine species abundance, composition, and richness of 
butterflies (I–IV; also including burnet moths in III, IV) and dragonfly 
abundance (I, II) in the focal grasslands. Along with recording dragonflies and 
butterflies during the transect walks, all dragonfly attacks on butterflies were 
recorded (I). For each attack, its outcome (butterfly captured / butterfly 
escaped), and the species involved were documented. Transect walks were con-
ducted during the active foraging time of the insects. Sites were visited several 
times over the season so that flight time of most butterfly species was covered 
(4–5 visits per site per season II–III; 3–7 visits in different countries in the pan-
European study – IV).  

Biodiversity data were collected over three years (2007–2009; in the pan-
European study one year per country between 2000–2007). The effect of 
dragonfly predation was assessed in 2008–2009 (I, II), and the effect of past 
habitat variables in 2007–2008 (III).  
 
 

2.4. Focal species 

The population-level response of a butterfly species to habitat variables is likely 
to depend on its habitat breadth. To take this meaningfully into account, 
butterfly species were classified into subsets of species according to their 
habitat preference (II–IV). Expert opinion and literature were used for this 
purpose. Three subsets of butterflies were distinguished: (1) strict specialist 
species, i.e. a species depending on the focal grassland type in the study region; 
(2) other grassland species, i.e. all grassland species that are not confined to 
alvar grasslands; and (3) other species, i.e. those not restricted to grasslands, 
such as habitat generalists, woodland species and migrants. The focus of the 
Estonian studies was on the first two groups of the species (II, III). To analyse 
the effect of predation to butterfly species composition, group (1) and (2) were 
pooled (II). In the pan-European study, the classification followed a somewhat 
different approach: the focus was on a subset of species dependent (i.e. strict 
specialist species in the previous classification) or clearly favouring the focal 
grassland type (a subset of the species falling to the group of other grassland 
species).  
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2.5. Data analyses 

Transect data were used to calculate butterfly mortality rate at different 
dragonfly densities (I). As counting butterflies and dragonflies and recording 
dragonfly attacks on butterflies were made in the same spatiotemporal window, 
we could calculate comparable estimates of butterfly and dragonfly densities 
and link them with dragonfly-induced mortality (I). Moreover, for each 
butterfly species, an index describing its phenological match with seasonal 
variation in dragonfly abundance was calculated. Furthermore, quantifying the 
spatiotemporal variation in dragonfly predation and life expectancies in butter-
flies at different dragonfly densities enabled to predict and test the impact of 
dragonfly predation on butterfly community structure (II).  

General linear models and Akaike information criteria were used to evaluate 
the relative contribution of past and current habitat variables to current species 
richness (III, IV). To reveal the effect of past and current habitat area on patch 
occupancy of individual species, species-level logistic regressions were 
conducted for habitat specialists (III). Spatial autocorrelation term was included 
into the analyses where relevant (II, III). 
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3. RESULTS 

3.1. Predation risk 

Nine transect counts were conducted in 29 focal grasslands over two years to 
quantify the magnitude and spatio-temporal variation of dragonfly predation 
risk on adult butterflies and the effect of dragonfly-induced mortality on 
butterfly populations and community structure (I, II). Dragonfly densities 
appeared to be extremely variable spatially. During a single sampling period, 
dragonfly density could differ two orders of magnitude between different 
grasslands. Moreover, there was also a high seasonal variation in abundance of 
these predators: they reached peak densities in June, and then gradually declined 
towards the end of the season. This seasonal variation in dragonfly abundance 
largely followed the flight period of the most abundant dragonfly species, 
Orthetrum cancellatum (I). Despite the high variation in absolute densities 
during the season, relative differences in dragonfly density between the sites 
remained fairly persistent throughout the season within years as well as between 
the years (I).  

Over the two field seasons, a total of 86 dragonfly attacks on 14 different 
butterfly species were observed (I). Of these 15% ended with a capture of the 
butterfly. When dragonfly involved in the attack could be identified (50% of the 
cases), it was always the most common dragonfly species in our study area, 
O. cancellatum. The average attack rate across the nine sampling rounds over 
the two field seasons was 1.9 (95% confidence interval: 1.2–3.0) attacks per 
hour per butterfly, and the average capture rate 0.27 (95% CI: 0.10–0.47) 
captures per hour per butterfly. This value of capture rate corresponds to an 
average life expectancy of 3.7 h (CI: 2.1–10.0) during the butterflies’ active 
foraging time. Butterfly attack and capture rate increased with increasing 
dragonfly density. At dragonfly densities of less than 10 individuals ha–1, no 
attacks were observed in spite of high sampling effort. At dragonfly densities 
between 10 and 24.9 individuals ha–1, a butterfly received on average one attack 
per two hours, which corresponds to a life expectancy estimate of 13 hours 
during active foraging time. At dragonfly densities above 200 individuals ha–1 
each butterfly was attacked about 17 times per hour on average, corresponding 
to an estimated life expectancy of less than an hour (I). 

Where statistically feasible, logistic regression was conducted to analyse the 
association between patch occupancy of individual specialist butterfly species 
and site-specific dragonfly abundance (II). In most of the tested species, the 
probability of a species to be absent in a patch tended to increase with 
increasing dragonfly abundance (II). The parameter estimates of site-specific 
dragonfly abundance obtained from logistic regression analyses for individual 
butterfly species were further used as a dependent variable in a weighted least 
squares regression to examine if they depend on phenological predation risk of 
butterflies. A significant negative effect suggests that patch occupancy in 

4
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butterfly species flying at the time of higher overall dragonfly abundance is 
more sensitive to site differences in dragonfly abundance than patch occupancy 
in species with less phenological overlap with dragonflies. As a logical follow-
up, butterfly communities in dragonfly-rich sites tended to yield fewer species 
and contain more species flying during off-peak dragonfly abundance (II).  
 
 

3.2. Extinction debt 

To evaluate the response of individual butterfly species and butterfly species 
richness to habitat loss, a series of transect counts were conducted in 36 alvar 
grassland patches over two years. A total of 68 species of butterflies (approxi-
mately 2/3 of the butterfly species recorded in Estonia) and five burnet moth 
species were recorded in the surveyed grasslands. Twelve of the recorded 
species (10 butterflies and two burnet moths) were classified as strict habitat 
specialists, and a further 30 species (28 butterflies and two burnet moths) as 
other grassland species (III).  

Current species richness of strict habitat specialists was best explained by the 
model containing both current and past habitat area as explanatory variables. 
The models including either past or current area only were less supported. Both 
variables had a positive effect on current species richness. The lack of 
correlation between current and past area of surveyed grasslands implies that 
the effect of the two variables was independent. The sums of Akaike weights 
across models suggest that the relative importance of current area, past area and 
patch distance from the sea in explaining current species richness of strict 
habitat specialists was nearly equal (III).  

By contrast, no single model received overwhelming support for species 
richness of other grassland species. Based on model averaging, patch distance 
from the sea was the most important predictor of species richness of this group. 
The relative importance of other variables remained substantially lower. The 
qualitative results of the full general linear models were consistent with the 
results based on model selection (III).  

The response of individual species (strict habitat specialists were considered 
here) to past and current habitat characteristics was not uniform. However, a 
distinct pattern emerges when classifying species by their habitat area require-
ments. In particular, six of the twelve strict habitat specialists, showing a 
tendency to be present in historically larger habitat patches, were those that also 
require larger habitat patches. The same six species had also a tendency to occur 
at currently larger habitat patches. No other single functional trait could be used 
to distinguish species showing signs of extinction debt from other strict habitat 
specialists (III). 

An analysis of the response of butterfly species richness to past and current 
habitat characteristics at pan-European level did not show signs of delayed 
response over a time frame of 36–49 years of rapid habitat loss. The current 
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patch area was the best predictor of current species richness. Current patch area 
occurred in the eight best ranked AICc models. Past explanatory variables and 
current landscape area were much less important and showed no relationship 
with butterfly species richness after considering the effects of all other 
explanatory variables. Testing each country separately confirmed that current 
patch area predicts current butterfly species richness best in four of five 
countries. In case of Estonia none of the explanatory variables could explain a 
significant proportion of the variation in the species richness of butterflies. By 
contrast, in four other countries, where the habitat remnants studied were much 
smaller than in Estonia, current habitat parameters tended to predict current 
butterfly species richness better than past habitat variables (IV).  
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4. DISCUSSION 

The natural enemy induced variation in mortality risk and habitat history have 
been virtually neglected in explaining butterfly community structure. This thesis 
shows that the gradients of predation risk and past habitat characteristics can 
explain a significant amount of variation in patch occupancy patterns of butter-
flies. Nevertheless, the effect of these variables to different butterfly species and 
species groups is not uniform, and as such, they act as ecological filters for the 
butterfly community composition. 

The results of this thesis emphasise the importance of considering predation 
as a component of habitat quality that may strongly affect butterfly populations 
and shape butterfly communities. Depending on their density, dragonflies can 
exert a high predation pressure on butterfly populations. In many focal 
grasslands, adult butterfly life-expectancy was estimated to not exceed a day. 
The very low life expectancy of adult butterflies at high dragonfly densities, 
together with a typically several day long maturation time (Scott, 1973; Scott, 
1974; Boggs & Freeman, 2005) implies that many individuals die without 
leaving any offspring. The persistent relative differences in dragonfly abun-
dance between habitat patches suggest that the detrimental impact of dragonfly 
predation on local butterfly populations is unlikely to be a short-term one in the 
study area (I, II). Dragonflies can thus have a profound effect on long-term 
spatial structure of butterfly populations (and communities), and a potential to 
form a classic source–sink habitat structure for butterflies (Pulliam, 1988), 
where populations in sink habitats cannot persist without immigration from 
source habitats. As the sites in the study region had been selected randomly 
without prior knowledge of dragonfly densities, high dragonfly predation of 
adult butterflies is unlikely to be rare in open habitats near water bodies suitable 
for dragonfly breeding, either in Estonia or elsewhere (O. cancellatum is one of 
the commonest species in most of Europe, breeding in different water bodies; 
Askew, 2004). 

Still, due to a high amplitude seasonal variation in dragonfly abundance, not 
all butterfly species experience similarly high risk of dragonfly predation. The 
adult period of most temperate butterflies, i.e. the time when they are vulnerable 
to dragonfly predation usually has a rather distinct peak of just a couple of 
weeks. Even though dragonflies were present throughout the sampling season 
(more than two months) in the study area, their density showed a clear peak in 
June and subsequent decrease to the beginning of August (I). In good corres-
pondence with a priori expectations, the impact of dragonfly predation on the 
spatial structure of individual butterfly species was seasonally variable and 
depended on phenological overlap of the predator and the prey. As predicted, 
spatial patterns of patch occupancy in butterflies flying during peak dragonfly 
abundance were more affected by dragonfly predation than in species with their 
adult period having less overlap with dragonfly phenology. As an expected 
consequence, butterfly species composition in habitat patches with high 
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dragonfly densities tended to show a shift towards a greater proportion of 
species flying at the time when overall predation pressure exerted by 
dragonflies was lower (II). 

The concordance of the observed patterns of patch occupancy of individual 
butterfly species with the predicted impact of dragonfly predation suggests that 
the negative correlation between butterfly species richness and site-specific 
dragonfly abundance reflects a causal association rather than spatial covariation 
of the two variables with some unmeasured confounding factors. The problems 
related to inferring causal relationships from observational data were further 
mitigated by taking into account habitat size and connectivity in the analyses, 
which have often been shown to affect butterfly species richness (e.g. Öckinger 
& Smith, 2006; Brückmann et al., 2010). The negative sign of the relationship 
between dragonfly abundance and butterfly species richness is well consistent 
with what theory predicts when predation intensity is high and predators 
nonselective (Hixon, 1986) as was the case in the study area (I).  

It has been increasingly recognised that, besides current habitat characteris-
tics, the presence of a species in a habitat patch may also depend on its 
characteristics in the past and the degree of its change. The results of this thesis 
suggest that the response of butterflies to habitat changes depends on their 
habitat preference. In particular, the species richness of strict habitat specialist 
butterflies was best explained by a model containing both current and past area 
of habitat patches. The independent effect of past habitat area on current species 
richness of strict specialists is likely to indicate the presence of extinction debt 
in the surveyed range of grassland sizes. The significant effect of current habitat 
area, however, indicates a partly paid extinction debt in this group. In contrast to 
strict habitat specialists, the species richness of other grassland species was 
related neither to current nor to past area of the alvar grasslands (III). The lack 
of correlation with either current or past habitat parameters implies that the 
habitat change has not been severe enough to become affecting species richness 
of this group.  

The differential response of habitat specialists and other grassland species to 
habitat change was in line with the theoretical predictions. Indeed, the group of 
other grassland species consists of species which are not confined to the focal 
type of grassland, and is therefore presumably less sensitive to habitat changes 
than the group of habitat specialists (With & Crist, 1995; Tscharntke et al., 
2002; Kuussaari et al., 2009). This differing pattern (III) also helps to explain 
why, in the pan-European study, none of the explanatory variables could 
explain a significant proportion of the variation in the species richness of butter-
flies in the Estonian case (IV). In particular, besides strict habitat specialists, the 
focal species group used in the pan-European study included also many species 
from the group of other grassland species (see above) used in the regional study. 
By contrast, in four other countries, where the habitat remnants studied were 
much smaller than in Estonia, current habitat parameters tended to predict 
current butterfly species richness better than past habitat variables (IV). It is 

5 
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plausible that, within the range of grassland areas studied in these countries, 
relaxation of the butterfly species richness towards a new equilibrium has 
already occurred.  

The patch occupancy patterns of individual species are unavoidably more 
prone to contain random noise than species richness patterns. Nevertheless, 
species-specific analyses help to shed light on mechanisms governing the varia-
tion in species richness. The data available suggest that, among the group of 
strict specialist butterflies, species demonstrating signs of extinction debt tend 
to require larger habitat patches, on average, than do other habitat specialists 
(III). It appears that no other single functional trait could be used to distinguish 
species showing signs of delayed response to habitat loss from other habitat 
specialists. Indeed, the species in either group represent a rather broad range of 
different body sizes, dispersal abilities and population densities (III). Neither 
could the distinction be easily made at the level of larval host plant use, as all 
strict habitat specialists have rather narrow host range (III). 

The knowledge gained in this thesis would be useful from the perspective of 
practical conservation biology. Biodiversity in seminatural grasslands continues 
to decline in response to habitat loss and degradation. The results of the thesis 
show that relying on just habitat area and connectivity is necessarily incomplete 
for doing research with conservation purposes in mind. As this thesis demonst-
rates, areas otherwise meeting the habitat requirements of a butterfly may 
appear to be sink habitats when accompanied with high abundance of predators. 
Obtaining prior knowledge of where and when predators are abundant, and 
avoiding such sites for butterfly conservation, could sometimes substantially 
improve the efficiency of butterfly conservation practices. Furthermore, relying 
only on current habitat parameters is not sufficient to understand species 
diversity patterns in dynamic, human-affected landscapes. Relaxation to a new 
equilibrium in species richness may occur after a remarkably long time period 
even in organisms which are predicted to respond to habitat changes quickly. 
The reported data on butterflies imply that special attention should here be 
given to habitat specialists and species with large habitat area requirements, as 
these are likely to be affected most from habitat loss. On the other hand, long 
time lags to extinction suggest that early detection of extinction debt may allow 
sufficient time to facilitate the recovery of such species.  
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SUMMARY 

Revealing major biotic and abiotic gradients along which species are spatially 
distributed is one of the major goals in ecology. The theories of island bio-
geography and metapopulation dynamics have provided a coherent conceptual 
framework for describing species occurrence and persistence with regard to 
habitat size and its proximity to other habitat patches. However, describing the 
whole essence of the habitat where a species actually occurs is a much more 
complex challenge, and would unlikely be captured by just habitat area and 
proximity of habitat patches. Going beyond these two variables, however, is 
often not an easy task to accomplish due to difficulties in acquiring relevant 
data. In this thesis, population- and community-level consequences of two 
further habitat characteristics – predation risk and past habitat loss are assessed 
in butterflies. In spite of the growing awareness of the importance of these 
parameters in different ecosystems, community-level responses along these 
gradients, at least in the case of insects, have rarely been addressed in empirical 
studies and conservation practice.  

The objectives of my thesis were to examine the effects of dragonfly 
predation (I, II) and habitat history (III, IV) on butterfly community structure. 
More specifically, I investigated the spatial and seasonal heterogeneity in 
dragonfly predation on adult butterflies in natural habitats (I), and analysed the 
patterns of patch occupancy of individual butterfly species with regard to 
dragonfly abundance in space and time (II). The known extent of historical 
landscape structure and rapid loss of habitat area since 1930s enabled to 
examine the response of butterflies to habitat loss (III). These questions were 
addressed using seminatural calcareous grasslands (alvars) as the study system. 
Factors determining species richness and composition of grassland butterflies 
were examined in Western Estonia – Saaremaa and Muhu islands, and coastal 
area of the mainland Estonia. Like in most parts of Europe, calcareous grass-
lands in Estonia have suffered a rapid decline in area during the last century. 
The dependence of butterfly species richness on past and current habitat 
characteristics was further explored at the pan-European level (IV). Repeated 
surveys using standardised transect counts were conducted to determine species 
abundance, composition, and richness of butterflies (I–IV) and dragonfly 
abundance (I, II) in the focal grasslands.  

This thesis shows that the gradients of predation risk and past habitat cha-
racteristics can explain a significant amount of variation in patch occupancy 
patterns of butterflies. Nevertheless, the effect of these variables to different 
butterfly species and species groups is not uniform, and as such, they act as 
ecological filters for the butterfly community composition. In many focal 
grasslands, adult butterfly life-expectancy was estimated to not exceed a day. 
Relatively persistent site differences in dragonfly predation imply that dragon-
flies may have a profound effect on spatial structure of butterfly populations 
(and communities; I). This suggests that dragonflies can generate substantial 
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spatiotemporal heterogeneity in habitat quality for butterflies in terms of 
survival. Indeed, the seasonal and spatial variation in predator density had a 
measurable effect on butterfly communities. Butterfly communities at predator 
rich sites were biased toward species flying during off peak dragonfly 
abundance. As a logical follow-up, butterfly species richness in dragonfly-rich 
habitat patches was generally lower than in dragonfly-poor patches (II). 

It has been increasingly recognised that, besides current habitat cha-
racteristics, the presence of a species in a habitat patch may also depend on its 
characteristics in the past and the degree of its change. The results of this thesis 
suggest that the response of butterflies to habitat changes depends on their 
habitat preference. The species richness of strict habitat specialist butterflies 
was best explained by a model containing both current and past area of habitat 
patches. The independent effect of past and current habitat area on current 
species richness of strict specialists is likely to indicate the presence of partly 
paid extinction debt. In contrast to strict habitat specialists, the species richness 
of other grassland butterflies was related neither to current nor to past area of 
the alvar grasslands (III), indicating that the habitat change has not been severe 
enough to become affecting species richness of this group. In the pan-European 
study, in four out of five countries, where the remnants of habitat patches were 
much smaller than in Estonia, current habitat parameters predicted current 
butterfly species richness better than past habitat variables (IV). It is plausible 
that, within the range of grassland areas studied in these countries, relaxation of 
the butterfly species richness towards a new equilibrium has already occurred.  

The knowledge gained in this thesis would be useful from the perspective of 
practical conservation biology. The results of the thesis show that relying on 
just habitat area and connectivity is necessarily incomplete for doing research 
with conservation purposes in mind. As this thesis demonstrates, areas other-
wise meeting the habitat requirements of a butterfly may appear to be sink 
habitats when accompanied with high abundance of predators. Obtaining prior 
knowledge of where and when predators are abundant, and avoiding such sites 
for butterfly conservation, could sometimes substantially improve the efficiency 
of butterfly conservation practices. Furthermore, relying only on current habitat 
parameters is not sufficient to understand species diversity patterns in dynamic, 
human-affected landscapes. Relaxation to a new equilibrium in species richness 
may occur after a remarkably long time period even in organisms, which are 
predicted to respond to habitat changes quickly.   
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SUMMARY IN ESTONIAN 

Kisklusrisk ja elupaiga ajalugu  
päevaliblikate koosluste mõjutajatena 

Ökoloogia üks keskseid ülesandeid on kirjeldada ja seletada liigirikkuse 
varieeruvuse mustreid. Saarte biogeograafia ja metapopulatsiooniteooria ennus-
tavad, et liigirikkus on seda suurem, mida suuremad on elupaigalaigud ja mida 
lähemal need asuvad üksteisele. Elupaiga pindala ja sidususega saame kirjel-
dada siiski vaid osa liigirikkuse varieeruvusest. Liigirikkuse mustrite täpsemaks 
kirjeldamiseks on vaja arvestada ka teisi elupaiga parameetreid. Lisapara-
meetrite kaasamine pole sageli aga lihtne ning nõuab spetsiifiliste andmete 
kogumist või olemasolu. Käesolevas doktoritöös uurisin kahe, sageli raskesti 
hinnatava elupaigaparameetri, kiskluse (I, II) ning elupaikade hävimise määra 
(III, IV), mõju päevaliblikate populatsioonidele ja kooslustele. Vaatamata 
sellele, et nende faktorite mõju peetakse liigirikkuse mustrite kujunemisel olu-
liseks, on vähemasti putukate kohta empiirilist infot looduslikes kooslustes 
minimaalselt.  

Töös keskendusin päevaliblikate liigilise koosseisu ja liigirikkuse mustritele 
Lääne-Eesti mandriosa ning Saare- ja Muhumaa loopealsetel. Ajalooliselt on 
need elupaigad püsinud päevaliblikatele sobivaina karjatamise abil, kuid tradit-
sioonilise põllupidamise vähenemise tõttu on nende pindala alates 1930. aas-
tatest võsastumise tõttu kahanenud umbes kolm korda. Konkreetsemalt küsisin, 
kuivõrd mõjutavad kiilid kui kiskjad päevaliblikate liigirikkuse mustreid (I, II) 
ning kas päevaliblikate liigirikkuse tänapäevane muster korreleerub pigem 
elupaiga tänapäevase või ajaloolise pindalaga (III, IV). Loopealsete liigilise 
koosseisu ning liigirikkuse määramiseks kasutasin standardseid päevaliblikate 
jaoks välja töötatud transektloenduse meetodeid.  

Tulemused näitasid, et kiilid on olulised kiskjad päevaliblikatele. Kiilide 
kõrge arvukus loopealsel lühendas päevaliblikate keskmise oodatava eluea 
vähem kui ühe päevani. Kisklussurve oli varieeruv nii sesoonselt kui elupaiga-
laikude vahel. Kiilide arvukus oli kõrgeim juuni keskpaigas ning kahanes siis 
ühtlaselt augustini. Hoolimata kiilirohkuse sesoonsest varieeruvusest, olid 
suhtelised erinevused alade vahel üsna püsivad (I). Edasised analüüsid näitasid, 
et selline ruumiliselt ja ajaliselt varieeruv kisklussurve on piisav, et mõjutada 
mitte ainult päevaliblikate arvukust, vaid ka liigirikkuse mustreid. Nimelt korre-
leerus kiilide arvukus loopealsel päevaliblikate liigirikkusega. Seejuures puudu-
sid kõrgema kiilide arvukusega loopealsetelt suurema tõenäosusega need 
päevaliblikaliigid, kelle lennuaeg kattub kiilide arvukuse tippajaga (II).  

Analüüsimaks päevaliblikate vastust elupaiga pindala kahanemisele, jagati 
päevaliblikad vastavalt elupaigaeelistustele rühmadesse. Kitsaste elupaiga-
spetsialistide puhul leiti liigirikkuse korrelatsioon nii elupaiga ajaloolise kui ka 
tänapäevase pindalaga. Täpsem liigipõhine analüüs näitas, et sellise signaali 
andsid eelkõige liigid, kes vajavad stabiilse populatsiooni eksisteerimiseks 
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suuremaid elupaigalaike (III). Laialt levinud rohumaaliikide puhul sellist seost 
ei tuvastatud: nende liigirikkus ei korreleerunud tänapäevaste ega ajalooliste 
elupaiga parameetritega (III). Üleeuroopalises uuringus leiti enamiku riikide 
puhul, et päevaliblikate liigirikkust seletavad eelkõige elupaiga tänapäevased 
parameetrid (IV). Selline seos viitab liigirikkuse kohandumisele uutele elu-
paigaparameetritele. See ei ole ka üllatav, kuna elupaikade jääkpindala oli neis 
riikides oluliselt väiksem kui Eesti alade puhul. 

Käesoleva töö tulemused on kasulikud ka praktilise looduskaitse vaate-
nurgast. Doktoritöö tulemused näitavad, et liigile sobiva elupaiga kirjeldamisel 
tuleb sageli arvestada ka mitmesuguseid varjatud parameetreid. Nagu töö tule-
mustest nähtub, võib päevaliblikatele muude parameetrite poolest sobiv elupaik 
osutuda mülkaks, kui seal on kõrge kiskluse tase. Kiirete elupaiga muutuste 
korral on oluline arvestada väljasuremisvõlaga. Nagu doktoritöö näitab, võib 
elupaiga parameetrite muutus päevaliblikate liigilises koosseisus kajastuda 
vägagi pika aja möödudes. Teisalt jätab suhteliselt aeglane vastus elupaiga muu-
tustele aega negatiivsetele tendentsidele reageerida: väljasuremisvõla varases 
faasis avastamine võimaldab kasutusele võtta meetmed, et taastada liikidele 
piisav elupaiga pindala nende püsimiseks pikas perspektiivis.  
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