UNIVERSITY OF TARTU
Institute of Computer Science
Computer Science Curriculum

Vostan Azatyan

On the transformation of Petri nets
into BPMN models

Master’s Thesis (30 ECTS)

Supervisor:  Luciano Garcia-Bafiuelos, PhD

Tartu 2017



On the transformation of Petri nets into BPMN models

Abstract:

This thesis addresses the problem of translating a Petri net into an equivalent
BPMN process model. This is fundamental problem with implications on the
understanding of the semantics of the notation and that has potential appli-
cations in areas such process model discovery from event logs and structuring
of process models. In previous work, it has been shown that the well-known
family of free-choice Petri nets can be bidirectionally mapped into the subset
of BPMN process models constructed solely with tasks and exclusive/parallel
getaways. In contrast, this work searches at lifting the restriction to a larger
family of Petri nets by proposing a translation that covers also the case of
nets with symmetric confusion. The approach has been implemented in a
prototype which has allowed us to conduct a preliminary performance study.

Keywords:

Business modeling, model to model transformation, Petri nets, concurrency
theory

CERCS:P170, Computer science, numerical analysis, systems, control

Petri vorkude teisendamine BPMN mudeliteks

Marksonad:
arimodelleerimine, mudelilt mudelile teisendamine, Petri vorgud, konkurentsi-
teooria

Liihikokkuvote:

Antud magistritod kasitleb Petri vorkude teisendamist samavaérseteks
BPMN mudeliteks. Tapsemalt oeldes keskendub see Petri vorkude alamk-
lassile nimega t66voo vorgud. Antud 16putoos implementeeriti teisendaja, ka-
sutades selleks mitmeid tehnikaid nagu naiteks Petri vorkude lahti pakkimine
ja modulaarsed dekompositsiooni puud. Sellest tulenevalt pakub antud mag-
istritoo valja taieliku teisendusalgoritmi, mis suudab kasitleda siimmeetrilisi
segadusi Petri vorkudes. See on antud valdkonnas iiks esimesi teisendamise
meetodeid, mis katab ka seda klassi. Hetkel oleme teadlikud ainult iihest
teosest mis illustreerib molemasuunalist teisendamist toovoo vorkude ja graafide
vahel. Lisaks, esitleme me kditumissoltuvuste maatriksi arvutamise meetodi.
Kasitleme ka erijuhtumeid, kus peame BPMN-is lisama tau siindmuse, et
tegemist oleks samakujulise mudeliga.



Contents

1__Introductionl
(1.1~ Organization| . . . . . ... . ... ... ... ...,

2 Background|
2.1  Petri nets and Workflow netsl . . . . . . . ... ... .. ...

2.4 Modular decomposition|. . . . . . ... ... 0L
2.5 Unfolding of Petrinets . . . . . ... ... ... ... .....

B C Hution
[3.1 The algorithm of translationl . . . . . .. ... ... ... ...
[3.1.1 Computing relation behaviour matrix| . . . . . .. . ..

[3.1.2  First pass| . . . . . .. ...

[3.1.3 Second pass| . . . . ... ...

[3.1.4  Third pass| . . . . . . . ... ... ... ... ...,

[3.2 Proceeding the MDTs| . . . . . . ... ... ... ... ...
[3.3 Adding tau transition|. . . . . . .. ... ...

[4  Comparison and Results|







Chapter 1

Introduction

Nowadays, there are variety of different techniques, methods, and tools for
analyzing the business processes. This explains the fact of existence of many
different modeling notations. Hence, this generates the necessity of trans-
lation between these notations. This becomes especially evident, when the
time comes for business analysts to take over as they prefer visual and more
human readable high-level process models, with notations such as BPMN,
UML activity diagrams and EPC over textual descriptions. However, several
tools and techniques for model analysis use Petri nets as input. This is the
case of tools for performance analysis, process mining and cost estimation.

The translation from high-level process models to Petri nets is well un-
derstood and there exist several solid translation methods in the literature
[2, [12] [7].

Surprisingly, the translation from Petri nets to high-level process models
has not had the same amount of attention. The only exception is proba-
bly the work reported in [I5] and a few other papers on old model nota-
tions/languages [15]. However, we consider that this translation would also
be valuable. For instance, many process mining tools currently generate Petri
nets and not high-level process models. The reason seems to be that having
a Petri net is good enough when you are planning to perform further anal-
ysis on the model and log (e.g. performance analysis). However, it is also
interesting to have means to produce a high-level process model for analysts.

As a starting point and inspiration for this thesis was the paper [5] from
Cédric Favre and Dirk Fahland and Hagen Volzer. In this paper they repre-
sent bidirectional translation method from workflow graphs to workflow nets.
Though the algorithm is well formed and theoretically looks solid, we are not



aware of any implementation of it. Thus, in the first place, we did imple-
ment this method, which as an input takes free-choice, workflow net and
returns generated BPMN. In fact, the application performs well by returning
reasonable output.

With this experience at hand, we decided to explore ways to lift the
restriction of the method and cover other classes of Petri nets.

Figure 1.1: The BPMN example of confusion

In particular, we were interested in the family of Petri nets with symmet-
ric confusion. This family of nets is characterized by including clusters of
transitions where a subset of them are in conflict and are themselves concur-
rent with another subset of them with a topology similar to the one illustrated
in figure Note that this net is not longer a free-choice net, but can be
the net produced by a process discovery technique on the log generated by
the process model in figure [I.1]

Figure 1.2: Confusions in Petr nets [6].

In general, there exist two types of confusion in Petri nets, which are
illustrated in the Figure|1.2| (see [6]). The one in the left-hand side is referred
to as asymmetric confusion and the other one is referred to as symmetric
confusion. In this paper, we present algorithms for transforming Petri nets
with symmetric confusion (thus including free-choice nets).



Finally, we note that our approach targets specifically the BPMN no-
tation. The choose this notation because it is nowadays one of the most
representative mainstream notations. However, we believe that the results
can be reused with other notations such as UML activity diagrams and EPCs.

1.1 Organization

The rest of this document is organized as follows. In Chapter [2| we introduce
the basic concepts on Petri nets, process model notations, and review the
existing work on transformation from process models to Petri nets and vice-
versa. In Chapter [3| presents our translation methods In Chapter [ we report
some performance related measurements. We conclude and discuss some
directions for future work in Chapter



Chapter 2

Background

2.1 Petri nets and Workflow nets

A Petri net is a mathematical formalism that serves as a foundation for
the analysis and design of concurrent systems. Intuitively, a Petri net is
a bipartite graph, with two types of nodes called Transitions and Places,
all connected with arcs. Formally, we say that a Petri net is a triple N =
(P, T, F), where P refers to finite set of Places which represents the state of
the process, T refers to finite set of Transitions those are to show the certain
process execution and F' stands for Arcs FF C (P x T) U (T x P) which are
connecting Places to Transitions or backwards. Moreover, there can not be
an arc between two Transitions or two Places. In the Figure you can
see an example of Petri net where {A, B} € T and |P| = 4. The marking
of Petri net refers the state of the net during the process execution, formally
the ¢ marking of the net is the status of Petri net, meaning how many tokens
each place holds in that particular moment of execution.

Every x C P UT node in the net, will have ex for the predecessors of
x so ez = {y|(y,x) € F} and ze for the successors of node where ze =
{y|(z,y) € F}. Given a set of nodes X (either transitions or places), w write
Xe to denote the union of the set of successors of each node z € X, ie.
Xe = U,cxre. For instance in the figure [2.1b] the Ae =< P > pl, p2 where
A €T and (Ae)e =< T > B.

Workflow net is one of the subclasses of Petri net, with some structural
and behavioral restriction. The Petri nets which are defining workflow pro-
cesses are known as workflow nets [I3]. Firstly, a workflow net must have one



single source place (token in this place is presenting the case which going to
be handled), referred to the start place, and one single sink place (the token
in this place shows already handled case), also known as the end place. As
well as every other node in a workflow net is reachable from the source place.
See Figure [2.1b] Last but not least, formally N = (P, T, F) Petri net will
call workflow net if and only if [13], {source, sink} € N where esource = ) &
sinke = (). These are the minimal requirements for Petri net to be workflow
net which means that it is not necessarily to be workflow net if it has these

requirements.
C )y 1 ()

(a) Petri net

T3

T2—.-O—>T4—>O
_..O

T2

O PO

T3

(b) Workflow net

Figure 2.1: Example of Petri net and workflow net

In addition to the aforementioned structural restrictions, a workflow net
must comply with properties of proper completion(Liveness) and bounded-
ness, conjointly referred to as soundness [14].

e Soundness.
If a process starts with ¢ amount of markings in the source place than
in the end of the process it should be the i amount of tokens in the sink
place[I3]. In other words, there must not be any remaining token in
the net at the end of the process. Additionally Workflow net soundness
is required that all the Transitions in the Net could fire, for each T in
the net there is a reachable state.

e Boundedness.
The Workflow net said to be bounded if it does not contain more than



k tokens in each reachable marking from any place of the net. It also
includes the initial place [8]. At the same time workflow net called safe
bounded if £ = 1.

e Liveness.
The liveness of workflow net refers to the not existence of deadlocks
in the net[8]. Simply put, in the WN should not be possible to reache
situation where there is 7" which can not be fired any further. This
means that the workflow net’s liveness is the guarantees of a deadlock-
free net and not important which firing path was chosen.

Workflow net has several degrees of liveness Lo — L4 [13].

e [ - live when T will not be fired in any sequence of execution
(Dead).

e [, - live has a potential to be fired, there is T" which is able to
fire at least once in some execution sequence.

e [, - live in case of given any k, T is able to fire k times in certain
execution flow.

e [5 - live T can exist infinitely in different firing sequences.

e [, - live means that L; - live for every marking in Workflow net.

The Free-choice nets (subclass of Petri net) usually are meant to represent
workflow choices in nets, e.g. there are some Transitions in the Petri net
which are sharing the same place so they represent OR-split construct. At
the same time, the amount of the predecessors has to be the same (ot; = eot5)
[13].

To put it formally, let’s start from mathematical representation of free-
choice nets Vp € P : ([p*|) V (*(p®) = {p}), meaning that every single arc
from p to Transition in the Petri net is the only arc from place or the only
one to Transition.

Free-choice nets have been trendy topic to study in the last decade be-
cause they have a huge capability to be analyzed, but, at the same time, they
do not lose their expressive power [13].

10



2.2 BPMN

Business Process Model and Notation is the standard notation to capture
business processes [9]. It is highly used in analyzing domains as well as
designing high-level systems. Over the time, BPMN has been developed and
currently inherits elements from several previously used notations, including
the XML Process Definition Language (XPDL) [II] and the UML Activity
Diagrams [10]. BPMN composed of many different elements which makes it
a powerful and flexible tool for visualizing processes. The notation elements
in BPMN can be separated into 5 groups.

e EVENTS

Events represent an action resulting the flow of process and can sub-
sequently be divided into start, intermediate and end events. Start
event represents the start point of the sequence (process) or start of
the message (message start) where the end of the process is called end
event as well as there is end message event which accordingly shows
the message end. Moreover, there are several intermediate events such
as Message, timer and error that are to show the sending or receiving
messages to/from other systems, the timer to put certain time interval
during process and errors to show the faults and/or exceptions dur-
ing the process execution. Those events are not only ones in BPMN,
there are several other events which we are not going to describe in the
context of this paper.

e ACTIVITY

Activities can be subdivided into two types Tasks and Subprocesses.
A Task is the core element for BPMN and represents activity, pro-
cess or work to be performed ( the same concept as Transition in
pertinent). There are several event types such as service, send, user,
manual, script, receive and reference. Sub-processes as the word it-
self defines it is the compound activity of one part of the process, in
other words, it is the black boxed process. There are two types of
subprocesses, embedded and independent. Embedded ones they are
considered to be a part of the main process where the independent
ones can be used in any other models. Activities also have other be-
havioral attributes such as looping or multiple instances [2].

11



e SEQUENCE FLOW
Normal flow shows the direction of the process execution. The excep-
tional event fired in the case of some errors or time activity is happen-
ing, it is represented by attached error or temer event to the boundary
of an activity. During the execution of normal flow, the error or time
flows never will be executed. They will appear only in some exceptional
case.

e GATEWAY

Getaways are meant to specify points where a flow is divided into mul-
tiple alternative or concurrent flows inside the process. In general, a
gateway can be divided into multiple subsequent paths. That type of
gateway is also known as a split gateway. Similarly, a joint gateway is
used whenever multiple paths converge into it. Parallel split gateways,
also known as AND-split is to show the sequence (concurrent) flows [2],
and for synchronizing this concurrency it used parallel join gateways
(AND — join). XOR to select one of many possible flows based on
some external event or certain process data. If the XOR is data-based
than it is called XOR — split otherwise it is event-based and known
as deferredchoice. There is another type of XOR getaway which is
marge getaway (XOR-join) that joins the incoming flows. This implies
that no matter which of the incoming flows have been triggered, it will
continue the flow. Next is the decision gateway (OR-split) to chose one
of the multiple outgoing flows. There is always receive or intermediate
task preceded by Event-based XOR decision getaway to show the exact
moment of execution.

e MESSAGE FLOW
The Message flows are meant to show the streams between two rel-
ative processes with some communication tasks e.g. send, receive task
or message events. Two separate processes can be connected with
message flows which will be called interacting processes.

Overall, we are going to focus on basic BPMN constructs ( Tasks, start and
end events, XOR and AND gateways and only normal flows) on the scope
of this paper. The other BPMN elements such as sub-processes, pool/lanes
among others would be ignored.

In the figure we can see the visual representation of the above men-
tioned elements.

12



start end

. T
vent I\__/ O

Activity Task J
p

AND split AND join XOR split XOR join
ey *@ } 4@ @—‘
Sequence Normal flow

Flow L

Figure 2.2: Basic BPMN constructs

2.3 On the translation of BPMN and Work-
flow nets

The Petri nets were investigated from the theoretical point of view for many
decades and that is the fair explanation to the fact that many process anal-
ysis techniques/tools do support Petri nets such as Woflan, Woped, PROM
among others.

To be more precise, Petri nets is quite technical for business analysts to
understand and read them. At the same time, BPMN is a better candidate
to visualize more complicated processes, which is better looking and more
descriptive for business people. In fact, this is the main issue which pushes
the science to think about translation between those notations.

The bulk of the work on the translation between BPMN and Petri nets can
be divided into two large groups. First, we have the methods that translate
the models from BPMN into Petri nets. Second, few other methods exist that
translate models from Petri nets into BPMN. We are aware of only one work
that does the translation in both directions. In this section, we are going to
talk about several methods of the current state of translation techniques.

2.3.1 Bidirectional translation of BPMN and Petri net

As a starting point for our work, we took the paper [5] which, surprisingly is
the only work we are aware of that describes a sound method for translating
an input Petri net into a BPMN model.

13



Other papers exist that describe explicitly the translation in one of the
directions, and in some cases, the translation is covered as a byproduct. In
contrast, the work [5] provides a well-grounded theory for the translation and
does it in the both directions. That is the reason why we look at the work of
[5] deeper and we leave the discussion of the other works for later on in the
Subsection 2.3.21

In the context of this paper, they put the issue on a relationship between
BPMN, EPC and UML activity diagrams as a Workflow Graphs (future in
the paper W) and Workflow Nets (future in the paper N). Nevertheless, in
the article there is a solution for both way translation, and all work is based
on the bidirectional mapping. Yet, we are going to concentrate more on the
translation from N to W.

First of all, to translate N to W or backward will require both of them to
be normalized, limited in length and complexity. The Workflow Graph W
or Petri Net N called normalized if any x element of the process is normal.
The x will be called normal if and only if it has at most one incoming and
one outgoing flow. The translation done by the simple mapping of x normal
elements, shown in the Figure [2.3]

a) -

—¢~ > —0IC
= z_?_ & [
- & 01—

b}

¥ & —Of—
Figure 2.3: Mapping between Workflow Nets and Workflow Graphs [5]

The patterns in the Figure [2.3| are used to translate from N to W, in this
case, they introduce the way to group Workflow Net elements onto conflict
clusters. The article claims that the every normalized Petri Net is able to
decompose into conflict clusters. The way of breaking the Petri nets onto
conflict clusters represented in the article is simple and straightforward, see

14



the Algorithm [I More precise, transformation implementation will be done
in 4 steps [5:

e Get conflict clusters
From Workflow net N get set of conflict clusters (Py, Ty, F1), ... , (Py,
T, F,), using the Algorithm [1]

e Find pattern
Identify pattern according to right hand side of Figure [2.3 add ac-
cordingly left hand side node to W output. Adjust all arcs in pattern
accordingly.

e Connect all elements in W
The next step is to connect all nodes in W output, by mapping back
to N.

e Add source and sink
The last step is to add source incoming edge and sink outgoing edge,
which simply done by identifying the source palace in N and add an
incoming edge for according node in W same done for sink place.

(b) Output BPMN model

Figure 2.4: Translation example

15



For instance, to illustrate the algorithm as an example we took Figure
[2.4a] there is highlighted the identified clusters by the Algorithm [l Then
by iterating over clusters it identifies correct patterns and translates onto
BPMN out of this clusters, the result is illustrated in Figure [2.4b]

In this figures, we easily can see the mapping between those clusters and
identified patterns. Moreover, from here it simply can be noticed that both
models are isomorphic which is prove that translation was correct.

Algorithm 1 Getting conflict clusters from Petri Net

cluster < ()
workset < P

while workset # () do
let p € workset
places < ()
transitions <— pe

for each ¢ € transitions do
places < places | ot
end for

cluster < cluster |J {< places, transitions >}
workset < workset \ places
end while

In addition, the article represents some methods to normalize the Petri
nets by adding some additional transitions to the net. For example, if we
have a look to Figure and assume we do not have transition b than it is
noticeable that there will be an incomplete cluster and the translation will
fail. For this reason, in the paper, they propose to add this transitions in
order to have complete clusters.

To conclude, the translation method represented by [5] is quite narrowed
and covers a small class of Petri nets only. To highlight, the method is able
to translate only and only free-choice Workflow nets which have.

The goal of this thesis is to extend this method and broaden the class
coverage of Petri nets.

16



2.3.2 Related work

In the following subsection we discuss representative work in the field, orga-
nized according to the direction of the translation.

From High-Level Process model to Petri nets

In the article of Remco M. Dijkman, Marlon Dumas and Chun Ouyang [2] the
method of translation from BPMN to Petri net is described. The translation
presented in flowing way, for each possible BPMN object and group of objects
there exists corresponding mapping in Petri net. First of all to translate
BPMN to Petri net it has to be well-formed. To be more precise: 1) The
start event should have one outgoing flow and non incoming. 2) End event
has only one incoming flow and none outgoing one. (To point out, these two
restrictions are coming with actual BPMN syntax). 3) In all over BPMN
the activities and intermediate events have only one incoming and outgoing
flow. 4) AND — split and OR — split getaways have one incoming and
and many outgoing flows. 5) Similarly the AND — join and OR — join
getaways have one outgoing and many incoming flows. In fact, all 3 rules
that we defined above are achievable in any BPMN model by applying some
additional mapping. To finalize, the paper proved that almost in all cases it
will be possible to convert BPMN to Petri net.

The research reported in the series of papers Artem Polyvyanyy, Luciano
Garcia-Banuelos, Marlon Dumas [12], presents an approach to structuring
acyclic process models. A structured process model is one where for every
node with multiple outgoing arcs (split) there is a corresponding node with
multiple incoming arcs (join), and vice versa, such that the fragment of the
model between such nodes forms a single-entry-single-exit subgraph [12]. In
that context, the research reported in [12] search a provide a complete method
for transforming any input model (acyclic) into its structured version, if
any exists. To that end, the method relies on a series of transformations,
which preserve the behavioral equivalence of the input and output model.
The input BPMN model is decomposed into a the fragments of the BPMN
that are structurally unstructure is into a (free-choice) Petri net, which is
then unfolded into an occurrence net. The occurrence net is then used for
computing a behavior relation graph that summarises the set of behavior
relations observed in the input Petri net.

One more journal [7] presents translation method from BPMN to Petri

17



net. The translation method has the restrictions for input BPMN which
has to have single start and end events. Also, several gateway types are
not allowed, in particular OR-~gateways, which represent the ‘Multi-choice’
and ‘General Synchronizing Merge’ patterns. In general the mapping base
on the control-flow aspect of processes. When transforming a model, first,
each object is mapped onto a partial Petri net and second, the partial Petri
nets are composed into a complete model. Although this approach works
for many constructs, some constructs cannot simply be mapped and then
composed. The mapping from BPMN to workflow nets allows the soundness
of these nets to be analyzed [7].

From Petri nets to High-Level Process model

One of the first publication about converting workflow nets into the hierarchi-
cal decomposition of specific BPEL [15]. BPEL (Business Process Execution
Language) is built on top of XML and Web Services. The BPEL uses XML-
based language, although it has graphical editors which are usually used by
managers or business analysts. Hence, we are going to put BPEL parallel
with BPMN, although BPEL is more technical and usually unreadable for
business people due to complicated syntax, it supports many graphical tools,
which is making it quite similar to BPMN. At the same time, there are both
ways converters from BPMN to BPEL or vice versa. Accordingly, it will be
quite reasonable to have a look this translation.

In the work, they present the algorithm which produces a BPEL spec-
ification from given Petri net in the input. They are one of the first who
claimed that it will be more interesting to translate from Petri nets to BPEL
rather than backward. However, as it is one of the first transformers to this
direction, it has lots of restrictions and gaps to be accurate, meaning it only
can translate a narrow group of workflow nets only.

2.3.3 Discussion

Interestingly, there is a small number of articles describing the opposite trans-
lation. There have been few researches done about translating Petri nets into
BPM graphs. Though, it would be a really big commitment to have such a
tool which will transform to this direction. Many business analysts will get
a huge benefit out of it, they could simply convert Petri nets and get some
intuition about business workflows.

18



To conclude, in some cases, there is strong need to translate from already
analyzed Petri net to BPMN in order to visualize it and in certain cases
there is a need to translate vice versa in order to analyze the process. AT
the end of the day, bidirectional translation is really important in the spec
of analyzing the processes.

2.4 Modular decomposition

In this section, we will discuss a part of the graph theory and the concept of
decomposition of the graph into the modules.

C {a.b} Cled)

(a) Simple graph Eb) M;)?}llﬂar de;omposi— (c) MDT of the graph
ion of the grap

Figure 2.5: Example of modular decomposition

The modular decomposition is the reformation of the graph to the subset
of modules [16]. A module is a type of representation of connected elements
in the graph. For example, modules can be constructed recursively, as so that
each module can hold others. Hence, the Modular decomposition tree (MDT)
is the tree with decomposed modules. For instance, in the figure we can
see the simple modular decomposition with corresponding decomposition tree.

The M DT can be defined as follows [12]: Let G = {V, E, L} be a graph
where V' is vertexes, E edges and L is the set of labels. The MDT(G)
will be denoted as the function generating M DT given graph. For instance
in the figure shown the MDT of the graph. However, if we give
the textual representation of the MDT on the figure it will look like
L[Cla,b], Clc,d]].

Let us classify the modules M of graphs on the scope of this paper.

e COMPLETE (C) : This is the case where we have one complete path
of the graph. Formally, M module is COMPLETE iff exist | € {#, ||}

19



and all vertexes in module have a same relations (let =,y € M and
E(z,y) = ). This module can be of two types, first, the case where
vertexes in the graph are concurrent (||) will be COMPLETE_1 module.

Second, where the vertexes in the module are in conflict we will call
them COMPLETE_2.

e LINEAR (L) : If the elements in M has a linear order.

e TRIVIAL (T) : These are single cell M where there is no arc and it is
the only element in the module.

e PRIMITIVE (P) : IffM non of the above classes than it is classified as
an primaitive.

Later in the section we will talk about how to generate BPMN out of
MDT.

2.5 Unfolding of Petri nets

Unfolding is the process of producing Occurrence net (Occurrence net is a
Petri net that can have places with multiple outgoing edges but all places
have at most one incoming edge) from a Petri net.

An Occurrence net N = (B, E, F) (B is conditions E is events and F is
the arcs between B and E) can be defined as follows [3]:

e For all b € B such that |eb| <1 and N is acyclic
e For every e € EUB theset {f € BUE | (f,e) € G} is finit

e There is no e € F which is in self-conflict.

20



Algorithm 2 Unfolding Algorithm [3]

tnput : is a Petri net with initial marking in the source Place.
output : is U unfolded net.
U + (bg = (source, D))
pe < getPE(U) > returns the set of possible extensions in U
cutof f < 0
while pe # () do
let event € pe
if [e](Ncutoff = () then
U«UUe
U < U | conditions activated by current event
pe < getPE(U)
if UisCuttOf f(e) then > checks if given e is cutoff in U
cutof f < cutof f | J{event}
end if
else
cutof f < cuttof \ {event}
17: end if
18: end while

= = e = e e

Net system is the Petri net with the particular marking. For instance,
M, is initial marking of the Petri net where p € My < My(p) = amount
of tokens. To unfold Petri net there is several steps need to be applied [3].
Unfolded net U = (E, B) where: E = (t, B) stand for events which has two
components transition and the list of conditions where event can be executed,
followed by B = (p, E') conditions with the place as a first element and list of
events where the execution of event can put system to the following condition.

In the scope of this paper, we will assume that initial marking of the net
is the marking where we have one token in the source place.

e U unfolded net should be initialized with all set of places which has
token/s.

e get initial place with marking and make a condition with empty set of
events and put it to U

If we apply this algorithm correctly we will end up with correct Occurrence
net. In the Figure is one example of unfolded Petri net by algorithm [2|

21



(b) After unfolding

Figure 2.6: Unfolding example of Petri net before/after.

22



Chapter 3

Contribution

3.1 The algorithm of translation

The translation of BPMN done in several passes during which the initial
BPMN (the BPMN which was generated in the first pass) will be transformed
onto correct translation.

However, before executing the passes we need to have Behaviour Rela-
tion Matriz, the explanation of computing the matrix will be given in the

section B.1.11

e Fist pass: In the first pass, we generate the initial version of the
BPMN model, where all events except for cutoff and duplicate events
are represented. Note that this pass will give rise to an acyclic model,
isomorphic to the unfolding and, hence, no merging XOR gateways are
included.

e Second pass: In the second pass, we merge the future of the cutoff
events. Note that a cutoff event happens to be a duplicate, then this
cutoff will be processed only later in the third pass.

e Third pass: As mentioned, in this pass we are going to resolve all
cutoff duplicates. BPMN will be modified accordingly, XOR joins will
be added where relevant.

e Forth pass: In this pass we are going to take into account the copied
events which are not cutoff, and do final changes on BPMN by adding
AND/XOR splits.

23



In the end, we may end up with some not used elements in BPMN which
will be cleaned up.

Besides, pay attention that input Petri net should be already unfolded by
algorithm [2| introduced by [3].

Let us have an in depth look on each pass with examples.

3.1.1 Computing relation behaviour matrix

In the Petri net two transition, a and b are behaviourally related to each
other. Generally speaking, they can be in CONFLICT, CAUSALITY or
CONCURRENCY .

e CONFLICT The a and b are in conflict iff, the execution of each of
them will disable another one, meaning if we fire a the b never can be
fired anymore and vice versa.

o CAUSALITY The a is in causality with ¢ if the execution of a will
enable ¢ or there is exist such b which is enabling ¢ and at the same
time a in causality with b. This is called transitive causality. In other
words it is known as sequentiality of processes.

e CONCURRENCY The concurrency shows the independence of two
transitions, for instance, if a will be fired it will not affect b and vice
versa, that means that a and b are in concurrency. This usally refers
to parallelism of two processes.

The behaviour relation matrix (BRM), is the matrix which shows direct
and transitive relations between transitions in the Occurrence net resulted
from unfolding.

To compute this matrix we used the algorithm provided by [12]. The
algorithm is composed with two parts. First, it computes the ordering tran-
sitive relations of unfolded net. Second, updates the relations of transitions
in the local configuration of every cutoff transition.

This matrix will be used as a key to compute directed relation graph for
each cluster in every pass. In the first pass we will present the example
of already computed relation matrix.

24



3.1.2 First pass

Algorithm 3 First pass

1:
2:
3:
4:

10:
11:
12:

E' « E'\ copies

open < FE’

while open # () do
Choose any event curr € open
Let P, @ C E' be sets of events s.t. curr € P and P <] Q
open < open \ P
N~ PUQ
D+ (<,NPxQ) > Direct causality relation
C+ (#NN xXN) > Conflict relation
mdt < COMPUTEMDT(N, D UC)
CREATEANDADDPROCESSGRAPH (process, mdt)

end while

Above you can find the algorithm [3| which introduces the first pass of trans-
lation onto BPMN. The result is initial BPMN from behavior relation graph.

(b) Directed graph for first iteration

(a) Unfolded petri net without cutoff
event

Figure 3.1: Example for first pass

25



Figure is an example of input for above algorithm. Let us start with
going over algorithm and apply it to the Petri net. As the first example, we
decided to use a rather simple Petri net to avoid the complex cases. Hence,
no event is duplicated and there are not loops in it. Note that the Petri net
is not the original one rather already unfolded one.

First, we have that the set of events in the unfolding is £ = {a, b, ¢, d, e}.

Moreover, the direct causality relation matrix (DCRM) for our ex-
ample is the following: <, / = {(a,b), (a,¢), (a,d), (b,e)} and the conflict
relation is: #/ = {(b,¢) (¢,b), (¢,d), (d,c), (d,b), (b,d)}.

a
|

DCRM = (3.1)

Ao oW
HFHFk—A T

FIFH—I A o
FH—FHFHF= AN

—F I A A O

e

In line 1, we make a copy of F such as we remove all the duplicate events.
In this example, E’ is identical to FE.

Next, we copy E’ into open, which corresponds to our working set. Hence,
we will repeatedly execute the lines 3 to 12 as long as there are events in
open.

When we enter the while loop in line 4, we select one event and keep
it in curr. Note that the order in which the events are processed is not
important, yet the result will be the same. Hence, let us assume we select
event a. In the next line, we compute the sets P and () such that, for our
example, () contains the set of direct successors of a and P contains the set of
direct predecessors of the events in (). Note that P and () must be maximal.
For instance, the sets P’ = {a} and Q" = {b, ¢} are not consistent with the
requirement of maximally, because ) does not contain d. The notation <
refers to the set of maximal direct relations.

In the next step, from the open set we are going to exclude all P because
we do not want to iterate over them twice.

With the sets P and @), we will build a behavioral relations graph (BRG)
as introduced in [12]. A BRG is a directed graph, where represent the three
behavior relations (conflict, causality and concurrency) as follows: causality
is represented with direct edges, conflict is represented with undirected edges
(or edges in both directions) and concurrency is represented by the absence
of edges. In [12] it is shown that this encoding enables the use of the modular

26



decomposition, which then can be used to generate a BPMN fragment. The
graph in Figure |3.1b| corresponds to the BRG of the first iteration in our
example, that is, to the behavior relations of the events P U Q.

To construct the BRG we proceed as follows. First, in line 7 we com-
pute the set of nodes in the BRG, which in our example corresponds to
N = {a,b,c,d} Then, in Line 8 we compute the edges that represent the
(direct) causality relation. To compute this relation, we take the global re-
lation <, and we compute the restriction to the events that we are using,
ie. P x Q. Thus, we have that ((P x Q = {(a,b), (a,¢),(a,d)})N <,=
{(a,0), (a,¢), (a,d)}).

In line 9, we compute the conflict relation using a similar approach. As
so, N? and # (N2 N# = {(b,¢), (¢,b), (¢,d), (d, ), (d,b), (b,d)}).

Next we have the compute M DT function from [12] which as an argument
will take N, D and C' and will generate modular decomposition tree.

LINEAR

COMPLETE_1

Figure 3.2: Decomposition tree visualization for first iteration

Finally, the decomposition tree for first iteration will look like LINEAR/
COMPLETE_1[c, b, d], af, visualization of tree will look like figure [3.2]

The last line in the algorithm is to add and create all corresponding
elements in the decomposition tree, which will be discussed on section [3.2]

b P

[

Figure 3.3: Inital BPMN, resuly of the algorithm

Finally, in the figure we can see the initial BPMN result from com-
pletion of algorithm 3] As we see the XOR split point is generated but no

27



XOR join exists yet.

Also, pay attention that MDT in the figure dose not contains e event
but in the figure it exists. This is because, the event e was generated
during the second iteration of the first pass, which is not represented here.

3.1.3 Second pass

In this pass we are going to proceed with cutoff events, and add correspond-
ing XOR join elements to initial BPMN from the first pass. Note, that some
cutoff events can be duplicated in this case we leave them to proceed later
on in 3d pass.

Algorithm 4 Second pass

1: E' < E \ copies

2: open < cutoffs \ copies

3: while open # () do

4: Choose any event curr € open

Let P,Q C E' be sets of events s.t. corr(curr) € P and P <! Q
P’ <+ PU/{e | e € cutoffs A corr(e) = corr(curr)}

open < open \ P’

N+ PuQ

> Translated direct causality relation
9: D« {(e,f)|ee P, feQAN(e<, fVcorr(e) <, f)}
(e, fYe N XN ife, f¢&cutoffshe# f
10 C+ ¢ (e,f) e NxN ifeecutoffsAe# fA—(corr(e) <, f)
N Bg € copiesOf(f) e g)
11:  mdt < coMPUTEMDT(N, D UC)
12: CREATEANDADDPROCESSGRAPH(process, mdt)
13: end while

Here we can see the algorithm |4 which represents the second pass, it is
highly noticeable that it is similar to what we had in the first pass. Hence,
to keep the example simple we will use same input from figure and add
missing XOR  join.

For this reason, in the second line instead of taking E/ as a open set we
will take all non-copied cutoff events. Next, we will execute from 3 line till
14 until the open set becomes empty.

28



In the example, the list of cutof f events will be {c,d}, and the corre-
sponding event for this two cutoff events is event b.

When while loop is executed similarly to first pass we select one event
and keep it in curr. As the order of the iteration over the open set is not im-
portant, let us assume that c event was selected as a curr. Next line, we need
to compute the sets P and () such that, P must contain the corresponding
event of curr which is {b} and @ will be the set of all direct successors of b.

In line 6 we need to extend P set with the all cutoff events which has
the same corresponding event and new set we call Pr. In the example P/ =
{b,c,d} as we see that actually both ¢ and d have the same corresponding
and they both are cutoffs. Next, we will clear open from P/ events in order
not to iterate over them again.

As in the first pass, now we need to compute N, D and C with a slightly
different approach than in the first pass.

In line 8 we compute the NV with the all set of the elements that are going
to be in BRG, based on our example it refers to N = PrU @ = {b, ¢, d, e}.

Next, in line 9, D will be the set of tuples where the first element of
the tuple is from P/ and second element is selected from () in such a way
that it will be direct successor of the firstelement or direct successor of
the corresponding event of firstelement. As we see in the example, D =
{(b,e), (c,e),(d,e)}, note that in the input Petri net we do not have relation
between d— > e but the corresponding event b has direct relation with e.

Finally, on the line 10 we will compute C' set which is comparably more
complex than in the other cases. The conflicts will be computed from the
intersection of two conflict sets. First set, when there is (e, f) which are not
cutoff and the f and e are in conflict. Second, if there is e which is in cutoff
and e in conflict with f but the corresponding of e not successor of f and
there is no such g copy of f in the way that e and ¢ are concurrent. The
result, will be the set of C' = {(b,c), (¢,b), (d,b), (b,d), (d,c), (c,d), (d,e),
(e,d), (c.e), (e,c)} \ {(e.d), (ec), (e,b)}.

Now we are ready to generate BRG and then add corresponding XOR
join to initial BPMN.

29



Figure 3.4: Directed graph for first iteration in second pass

From the second pass first iteration modular decomposition tree will rep-
resented as follows LINEAR[COMPLETE 1[b,c,d],e].

[

Figure 3.5: Generated BPMN after second pass, result of the algorithm

In the end of the second pass, we can see that the BPMN is constructed
figure and is isomorphic with initial Petri net. Hence, there are no future
passes that will be interesting to review with this example as there are no
copies which are not cutoff and there are no cutoffs which do not correspond
to the same event.

30



3.1.4 Third pass

Algorithm 5 Third pass

1: open < cutoff N copies
2: while open # () do

3:

9:
10:
11:
12:

Choose any event curr € open
Let I < {e | e € cutoffs A corr(curr) = corr(e)}
Let P,Q C E be sets of events s.t. I U {corr(curr)} C Q and P <} @
Q- Q\I
open < open \ [
N« PUQ

> Translated direct causality relation
D+ {(e,f)|e€ P, feQ Nne<, ftU{(e,corr(f)) |e€ P, felhe<, f}
C+ (#NNxN)\D! > Conflict relation
mdt < coMPUTEMDT(N,DUC)
CREATEANDADDPROCESSGRAPH(process, mdt)

13: end while

Ve
O L

L
5 d

Figure 3.6: Unfolded Petri net with cutoff and copy

In this pass we will focus on all cutoff duplicate events, due to this we will
use more complex example shown in figure

We start to go ahead and execute algorithm [5| assuming that as an input

given the above represented unfolded net.

In the first place, likewise the previous passes, we need to get the open

workset. For this case, it will be chosen from the intersection of copies and
cutoffs (all cutoffs which are the copy at the same time). As a result, we can
see that the only cutoff is the e/ which is duplicated at the same time so the

31



open = {et}. Note, that in this case e/ is the only element so accordingly
curr = e/ and corresponding of it will be the e.

In line 4 we will select the set of events I in such a way that, selected
event will be the cutoff and the corresponding event of it will be the same
as the one of curr. In the example we can notice that it will be the event e/
which is the copy of e so I = {ef}.

Now we need to compute P and @ in the line 5, such that ¢ will be
the union of corresponding of curr and I. Similar to other examples, P will
be all direct predecessors of the events in (). For instance, @ = {e, e/} and
P ={b,c,d}.

In line 6 we will make a new subset of () in such way that newly created
Q! will have all elements in @ excluded all in I, i.e. Q7 = {e}. Next, as in
the other cases, we remove all I events from the list of open so we will not
iterate them again.

From the line 8-10, we compute N all local events N = {b,c,d, e}, D
translated direct causality relations and C' conflict relations.

To compute D in the line 9 we will take the union of two sets, where the
first set will be the direct relations between P events to )/ and the second
set will be the direct relations from all P events to corresponding events in
I,ie. D={(d,e),(be),(ce)}.

Followed by, in line 10 we will compute C' set of conflicts. First, we
compute it as we did for the first pass N? N # and then we face the problem
of ¢ and b being in conflict with e. Though, it is not hard to notice in the
example that they actually are not in conflict in the initial model. To solve
this issue we are going to make mirroring set of D and exclude any possible
intersections with the set of the conflicts.

Figure 3.7: Generated BPMN after third pass, result of the algorithm

Likewise the other passes later MDT will be created from BRG. Finally,
corresponding changes will be applied on the BPMN. After this pass, the
BPMN will look like figure Note that only join getaways have been

32



added to the process model in this pass, the corresponding split gateways
have been added in the first pass.

3.1.5 Forth Pass

In the previous passes, it is notable that none of the examples had a copy
event which was not cut off. With the simple example, it would be impossible
to demonstrate this case that way. That way we will show the smallest
possible example when during the unfolding can apprise the event which is
the copy but not cutoff.

Figure 3.8: Unfolded Petri net with cutoff and non-cutoff copy

In the figure [3.8) we can see the example which is valid as an input of
algorithm [6] the event ¢/ is the copy of g but at the same time it is not
cutoff.

33



Algorithm 6 Forth pass

1: open < copies \ cutoff
2: while open # () do
3: Choose any event curr € open
4: Let P, C E be sets of events s.t. curr € Q, #(curr) N Q = () and
P <@
open < open \ {curr}
N~ PUQ
D+ (<,NPxQ) > Direct causality relation
C+ (#NN xXN) > Conflict relation
mdt +— COMPUTEMDT(N,DUC)
10: CREATEANDADDPROCESSGRAPH(process, mdt)
11: end while

Pay attention that we are not going to demonstrate the exaction of first
three passes with this example. For this reason we will provide the BPMN
generated with figure after applying all 3 passes in figure [3.9

Figure 3.9: BPMN after third pass, result of the algorithm

Notice, that in the above generated figure is the missing part of copy
construct, which we are going to generate in this pass. Now, we need to
proceed with the algorithm and reform the BPMN by adding all missing
components.

First, we choose as open = {g/} workset of events which are copy and not
cutoff. Correspondingly, the curr is selected from the open set, note that in
the example currently we have only one copy but they can be multiple as
well as some of the copies can have the same corresponding event. However,
in this case, current selected element will be curr = g/ and g corresponding
of it. Note that, we will execute from the line 3 : 10 with one event each
time until the open set will get empty.

Next step in line 4, it is important to compute the P and () sets carefully
in this pass, as we do not want to include multiple duplicates that have the

34



same corresponding into (). For example, it can be the case that besides p/
we have other copy p// which is in conflict with other duplicates. In this case,
if we consider g/ and g// being in the same @) set it will generate join and split
getaway. By taking into account this fact, the @ will get the set of {g,d, c}
and accordingly P will be all direct predecessors of ¢ which is {f, b, c}.

The rest from the line 6 till 11, is replicating from the first pass and
eventually generating the final BPMN.

3.2 Proceeding the MDT's

In this section, we will discuss how to proceed MDTs and do corresponding
changes in BPMN model or add some components to it.

As we know from section the modules in the MDT can be in 4 types
COMPLETE (C), LINEAR (L), TRIVIAL and PRIMITIV E(P).

LINEAR

LINEAR

COMPLETE_1

COMPLETE_1

L8]] [&] [&] 1#] [&]

(a) MDT with split gateway (b) MDT with join gateway

Figure 3.10: Example join and split MDT's

To proceed the computation of each leave in the tree we should start
from the root of the tree and recursively go deeper until all nodes will be
visited. To highlight, in the scope of this paper the root of the tree can be
only LINEFAR or PRIMITIVE, as well as the leaves of the tree will be
TRIVIAL.

To compute correctly all gateways and directions of arcs we need to care-
fully filter whether the module is in the left branch of the root or in the right
branch of it. Because the MDT will be in the correct execution order always
from left to right.

In general, our approach of generating BPMN from the MDTs are quite
simple and straightforward.

35



e TRIVIAL :
T is the simplest cell (leaves) in the MDT, and in the words of BPMN
it will be generated as a Fvent without any incoming or outgoing arcs.
The connection of T's will be done when we resolve rest of the modules.

e COMPLETE :
As we know already C' can be in two types, first when there the ele-
ments in (' are connected, meaning they are in conflict and we call it
COMPLETE_1 (C_-1). Second, the absents of the arcs between ele-
ments in C' which means that they are concurrent and accordingly we
call it COMPLETE 0 (C.0).

Consequently, in the case of the C'_1 we will make XOR gateway and
similarly in the case of C'_0 we will make AN D gateway. The decision
whether it will be join or split depends in which order modules are
in the MDT. For example, see figure [3.10a] we have C'_1 in the right
branch of the three, so accordingly it will add XOR-split gateway to
BPMN. As follows, in the figure [3.10b] we have the C'_1 on the left-hand
side, so it will add XOR-join gateway to the BPMN.

e LINEAR :
L simply shows the linear connection between branches. However, in
this work we will not have the case that L being in part of the module
and we can find it only as a root module.

¢ PRIMITIVE :
To resolve the primitive module can be a bit hassling as it is not that
straightforward as the rest. However, let us go over this example of the
simplest primitive module in figure [3.11]

() (=) b [
(D & s [

(a) Primitive constructed BRG (b) BPMN form primitive

Figure 3.11: Example of primitive construct

36



In this case, we should add two AN D gateways one after a which will be
split point and another one before d, join point. In this way, we will
have the primitive construct generated in BPMN. Note that in this
example we have single T's constructing primitive, in the real world
more complex examples may come along. For instance, one case can
be when instead of trivial parts of the primitive can be C'_1 or C' 2.

When all these changes will apply, we will have isomorphic BPMN of
BRG. To point out, all the events will be mapped to original Transitions and
by doing so we will never duplicate events.

3.3 Adding tau transition

Exceptionally, there are cases when we should add tau transition to the
unfolded net in order to have an isomorphic BPMN output.

Implicit place is a place which can be removed without changing the
behavior of the net. The P8 in the figure is clearly implicit place. In
the literature [1], there are several techniques to remove implicit places from
Petri net.

We assume that input Petri nets for our case do not contain implicit
places. However, the unfolding of a Petri net may result in some places that
are apparently implicit.

If we do not pay attention to this places, we would modify their behavior
in the output BPMN.

In this cases, we should take into account the existences of the implicit
place and add the corresponding event to BPMN. For example, the transla-
tion of the net in figure will result the BPMN with tau transition.

37



(a) Input Petri net (b) Unfolded net

Figure 3.12: Exception input Petri net with unfolding

Notice that, original net in the figure does not contain the implicit
place but after unfolding we can simply see that there is.

Figure 3.13: BPMN output with tau event

In the figure below we can see the output Petri net, where it is
noticeable the tau event was added in output BPMN because of implicit
place was found in unfolding. Let us assume that we remove the tau event
from the BPMN, it will obviously change the behavior of the process.

38



Chapter 4

Comparison and Results

To justify our approach we implemented the algorithm in the The relationship
between workflow graphs and free-choice workflow nets [5]. In this section,
we will run same tests on both our and their approach, to understand more
clearly the performance and Petri net class coverage differences.

The translations and tests were performed on the laptop with, Dual cor
2.20 GHz processor and 16Gb memory. The used environment was Windows
8.1 64bit and Java virtual machine 1.8. In order to avoid load time in the
results we did each sample 5 times, by removing first and the last result we
took the average.

4.1 Dataset

The test collection has been selected from real life process models, which has
been published for research purposes [4]. Essentially, we selected all sound
models only from this collection, such that the result was ended up with 375
sound models.

By observing the dataset, we found that many methods are not workflow
as there are cases when several input and/or output places exist. For this
reason, we did changes in the models explicitly before executing them. First,
we added sink transition and added all end places to it. Similarly, we added
source transition and connected to all start places.

On the other hand, it was requirement form [3] that each label in the
Petri net must be unique in order to be unfolded. Hence, to avoid duplicate
labeling of nodes we decided to rename all nodes before proceeding.

39



4.2 Performance

To , we will run performance analyses with both algorithms. We decided
to filter out all models which could be handled with both implementations.
The result was 255 sound models with minimum 11 nodes/arcs, maximum
550 nodes/arcs and the average size 87 nodes/arcs complexity.

Then, each of this models was processed 5 times and we took the average
execution time in milliseconds for each model by excluding the first and the
last result.

1000~

Algorithms
Dirk

Execution time in ms
=
=

= Our

DI ZdD 4DID
Amount of Nodes/Arcs

Figure 4.1: Performance plot of both algorithms

As we see in the figure our approach execution time is exponentially
growing with the complexity of the models. While in the first approach we see
that it is linear and the complexity does not affect the execution time. More
precisely, in our approach, the execution time depends on the complexity of
the model, whereas in their approach the model complexity will not make
much difference.

40



Nonetheless, the execution maximum time was around the second as an
input 550 nodes/arcs model. Though in the second approach the same model
was executed in around 100ms which is about 10 times faster than our ap-
proach. Since, we used the unfolding algorithm from [3] which is exponential,
this is the main explanation of this huge differences in the performance. At
the same time, our algorithm in every pass are linear, hence the performance
would be similar to first approach.

41



Chapter 5

Conclusion

To conclude, the main interest of the paper was to study more the field of
translating Petri nets to industrial languages (in our case BPMN) from the
practical point of view. Surprisingly, we found out that there is only a small
amount of research devoted to this problem. In the case of BPMN, the only
exception we aware of is the [5], where they present bidirectional translation
between free-choice workflow nets and the aforementioned notation. This
contrast with fact that the other way translation is well understood.

In that context, the initial idea of the thesis aimed at implementing a
translator based on the method described in [5]. However, after implementa-
tion, we found that the method did not cover more complex cases. Hence, we
came to the idea of expanding the method to cover cases beyond the family
of free-choice Petri net. This aim is justified by the fact that, in the gen-
eral case, process discovery methods produce nets which are not necessarily
free-choice. Thus, our contribution was to cover the case of Petri nets with
symmetric confusion.

Our work concentrated in the practical side of the problem. Thus, we
implemented our ideas in a prototype and run some preliminary performance
experiments thereof. However, we did not tackled fully developed a theory to
prove the correctness and completeness of the method. We consider that the
theory is important but requires a deep understanding of several formalisms
such as Petri nets, Net unfolding, Modular decomposition and, in general,
concurrency theory. Therefore, such work is left open for further research.
Finally, one natural extension would be to further study the case of Petri
nets with asymmetric confusion.

42



Bibliography

1]

Proceedings of the Sth International Workshop on Petri Nets and Per-
formance Models, PNPM 1999, Zaragoza, Spain, September 8-10, 1999.
IEEE Computer Society, 1999.

Remco M. Dijkman, Marlon Dumas, and Chun Ouyang. Semantics and
analysis of business process models in bpmn. Information and Software
Technology, 50(12):1281 — 1294, 2008.

Javier Esparza, Stefan Romer, and Walter Vogler. An improvement of
mcmillan’s unfolding algorithm. In Proceedings of the Second Interna-
tional Workshop on Tools and Algorithms for Construction and Analysis
of Systems, TACAs 96, pages 87-106, London, UK, UK, 1996. Springer-
Verlag.

Dirk Fahland, Cédric Favre, Jana Koehler, Niels Lohmann, Hagen
Volzer, and Karsten Wolf. Analysis on demand: Instantaneous sound-

ness checking of industrial business process models. Data Knowl. Eng.,
70(5):448-466, 2011.

Cédric Favre, Dirk Fahland, and Hagen Vdlzer. The relationship be-
tween workflow graphs and free-choice workflow nets. Inf. Syst., 47:197—
219, 2015.

Stefan Haar. Clusters, confusion and unfoldings. Fundam. Inform.,
47(3-4):259-270, 2001.

Kurt Jensen and Wil M. P. van der Aalst, editors. Transactions on Petri
Nets and Other Models of Concurrency II, Special Issue on Concurrency
in Process-Aware Information Systems, volume 5460 of Lecture Notes in
Computer Science. Springer, 2009.

43



8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Tadao Murata. Petri nets: Properties, analysis and appl kat ions. IFEE,
77(4):547 — 548, 1998.

Object Management Group (OMG). Business Process Model and Nota-
tion (BPMN) Version 2.0.

Object Management Group (OMG). OMG Unified Modeling Language
Specification.

Nathaniel Palmer. XML Process Definition Language, pages 3601-3601.
Springer US, Boston, MA, 2009.

Artem Polyvyanyy, Luciano Garcia-Banuelos, and Marlon Dumas.
Structuring acyclic process models. Information Systems, 37(6):518 —
538, 2012.

Wil M. P. van der Aalst. The application of petri nets to workflow
management. Journal of Clircuits, Systems, and Computers, 8(1):17 —
66, 1998.

Wil M. P. van der Aalst. Workflow verification: Finding control-flow
errors using petri-net-based techniques. In Business Process Manage-
ment, Models, Techniques, and Empirical Studies, volume 1806 of Lec-
ture Notes in Computer Science, pages 161-183. Springer, 2000.

Wil M.P. van der Aalst and Kristian Bisgaard Lassen. Translating un-
structured workflow processes to readable bpel: Theory and implemen-
tation. Information and Software Technology, 50(3):131 — 159, 2008.

Wikipedia. Modular decomposition — wikipedia, the free encyclopedia,
2017. [Online; accessed 29-April-2017].

44



Licence

Non-exclusive licence to reproduce thesis and make the-
sis public

I, Vostan Azatyan,

1. herewith grant the University of Tartu a free permit (non-exclusive
licence) to:

1.1 reproduce, for the purpose of preservation and making available
to the public, including for addition to the DSpace digital archives
until expiry of the term of validity of the copyright, and

1.2 make available to the public via the web environment of the Uni-
versity of Tartu, including via the DSpace digital archives until
expiry of the term of validity of the copyright,

of my thesis
Type Inference for Fourth Order Logic Formulae

supervised by Luciano Garcia-Banuelos
2. T am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the
intellectual property rights or rights arising from the Personal Data
Protection Act.

Tartu, 18.05.2017

45



	Introduction
	Organization

	Background
	Petri nets and Workflow nets
	BPMN
	On the translation of BPMN and Workflow nets
	Bidirectional translation of BPMN and Petri net
	Related work
	Discussion

	Modular decomposition
	Unfolding of Petri nets

	Contribution
	The algorithm of translation
	Computing relation behaviour matrix
	First pass
	Second pass
	Third pass
	Forth Pass

	Proceeding the MDTs
	Adding tau transition

	Comparison and Results
	Dataset
	Performance

	Conclusion
	Licence


