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Abstract

The thesis explores the role machine learning methods play in creating intuitive
computational models of neural processing. We take the perspective that, com-
bined with interpretability techniques, machine learning could replace human mod-
eler and shift the focus of human effort from creating the models to extracting the
knowledge from the already-made models and articulating that knowledge into
intuitive representations. Automatic model-building methods can process larger
volumes of data and explore more computationally complex relationships than a
human modeler could. This perspective makes the case in favor of the larger role
that exploratory and data-driven approach to computational neuroscience could
play while coexisting alongside the traditional hypothesis-driven approach. We
provide an example of how an intuitive model can be extracted from machine-
learned knowledge, explore major machine learning algorithms in the context of
the knowledge representation they employ, and propose a taxonomy of machine
learning algorithms based on the knowledge representation that is driving their
decision-making process.

We exemplify the illustrated approach in the context of the knowledge repre-
sentation taxonomy with three research projects that employ interpretability tech-
niques on top of machine learning methods at three different levels of neural organi-
zation. In each case we demonstrate the applicability of the approach and present
the neuroscientific knowledge it allowed us to extract. The first study (Chapter 3)
explores feature importance analysis of a random forest decoder trained on intrac-
erebral recordings from 100 human subjects to identify spectrotemporal signatures
that characterize local neural activity during the task of visual categorization. The
second study (Chapter 4) employs representation similarity analysis to compare
the neural responses of the areas along the ventral stream with the activations of
the layers of a deep convolutional neural network. The analysis allowed us to make
conclusions and observations about the hierarchical organization of the human vi-
sual cortex and the similarities between the biological and an artificial system of
vision. The third study (Chapter 5) proposes a method that allows test subjects to
visually explore the state representation of their neural signal in real time. This is
achieved by using a topology-preserving dimensionality reduction technique that
allows to transform the neural data from the multidimensional representation used
by the computer into a two-dimensional representation a human can grasp.

Taken together, the approach, the taxonomy, and the examples, present a
strong case for the applicability of machine learning methods in conjunction with
interpretability techniques to automatic knowledge discovery in neuroscience. Seen
from this perspective, machine learning models cease to be mere statistical black
boxes and, by capturing the underlying dynamics of real life processes, reintroduce
themselves as candidate models of reality.
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Introduction

It has been a very long time since humans began to use their reasoning
machinery — the brain, to reason, among other things, about that same rea-
soning machinery itself. Some claim that such self-referential understanding
is impossible to attain in full, but others are still trying and call it Neu-
roscience. The approach we take is the very same we use to understand
almost any other phenomenon — observe, collect data, infer knowledge from
the data and formalize the knowledge into elegant descriptions of reality. In
neuroscience we came to refer to this later component as modeling. Many
aspects of the phenomenon in question were addressed and explained us-
ing this approach by neuroscientists over the years. Some aspects remain
unexplained, some others even unaddressed.

Entering the era of digital computing allowed us to observe and collect
data at ever-growing rate. The amount of data gave rise to the need, and the
increase in computational power provided the means, to develop automatic
ways of inferring knowledge from data, and the field of Machine Learning
was born. In its essence it is the very same process of knowledge discovery
that we have been using for years: a phenomenon is observed, the data is
collected, the knowledge is inferred and a formal model of that knowledge is
created. The main difference being that now a large portion of this process
is done automatically.

Neuroscience is traditionally a hypothesis-driven discipline, a hypothesis
has to be put forward first, before collecting and analyzing the data that
will support or invalidate the hypothesis. Given the amount of work that is
required to complete a study, the reason for the process being set up in this
way has a solid ground. In a setting where collecting data and extracting
the knowledge takes a long time, exploratory analysis would indeed have a
low yield in terms of solid and actionable knowledge as exploratory anal-
ysis can often result in finding nothing of value. However, with the new
ways of automatic knowledge discovery the time that is required to com-
plete the process has decreased and the balance between hypothesis-driven
and exploratory, data-driven, approach is starting to change. In this work
we put forward the argument that machine learning algorithms can act as
automatic builders of insightful computational models of neurological pro-
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cesses. These methods can build models that rely on much larger arrays of
data and explore much more complex relationships than a human modeler
could. The tools that exist to estimate model’s generalization ability can
act as a test of model’s elegance and applicability to the general case. The
human effort can thus be shifted from manually inferring the knowledge
from data to interpreting the models that were produced automatically and
articulating their mechanisms into intuitive explanations of reality.

In Chapter 1 we explore the history of the symbiosis between the fields
of neuroscience and machine learning, evidencing the fact that those areas
of scientific discovery have a lot in common and discoveries in one often
lead to progress in another. Chapter 2 explores more formally what would
it take to create an intuitive description of a neurological process from a
machine-learned model. We present the subfield called interpretable ma-
chine learning, that provides the tools for in-depth analysis of machine
learning models. When applied to neural data, it makes those models to
be a source of insights about the inner workings of the brain. We propose
a taxonomy of machine learning algorithms that is based on the internal
knowledge representation a model relies on to make its predictions. In the
following chapters 3, 4 and 5 we provide examples of scientific studies that
gained knowledge about human brain by interpreting machine learning mod-
els trained on neurological data. The studies present the applicability of this
approach on three different levels of organization: Chapter 3 shows how the
analysis of a decoder trained on human intracerebral recordings leads to a
better understanding of category-specific patterns of activity in human vi-
sual cortex. Chapter 4 compares the structure of human visual system with
the structure of an artificial system of vision by quantifying the similarities
between knowledge representations these two systems use. The final chapter
makes a step into even higher level of abstraction and employs topology-
preserving dimensionality reduction technique in conjunction with real-time
visualization to explore relative distances between human subject’s mental
states.

With this work we aim to demonstrate that machine learning provides
a set of readily available tools to facilitate automatic knowledge discovery
in neuroscience, make a step forward in our ways of creating computational
models, and highlight the importance and unique areas of applicability of
exploratory data-driven approach to neuroscientific inquiry.
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Chapter 1

Synergy between neuroscience and
machine learning

Both, neuroscience and artificial intelligence, share, as one of their goals, the
purpose of uncovering and understanding the mechanisms of intelligence!.
Neuroscience analyzes the existing examples of intelligent systems that an-
imals and humans have, and tries to figure out how these systems work.
Artificial intelligence approaches the task by searching through the space
of possible solutions, implementing them one by one and using incremental
improvements in performance as the guiding light. Sharing a common goal
makes it inevitable that the paths of those two fields of scientific inquiry

will cross.

1.1 Neuroscience-inspired machine learning

Before exploring the ways machine learning can contribute to neuroscientific
research, we first review the role neuroscience has played in establishing one
of the most important machine learning methods of the present day. Since
both fields contribute to the quest of solving intelligence, we find that it is
important to explore the symbiosis between the fields, establish the benefit it
had and highlight the importance of maintaining that symbiotic relationship
going forward. This section provides the context for our work and helps to
advocate in favor of interdisciplinary scientific inquiry, by which the results
and methods of one field can greatly benefit the progress in another.

'"Here and throughout this work we adhere to using this loosely defined term to denote
the collection of properties and behavior patterns that we attribute to systems that
have analytic capabilities, can operate using abstract notions and carry out high level
planning. The search for mechanisms of intelligence is congruent to the search for the
precise definition of what the intelligence is, until that search is over, we need a term we
can use, we use intelligence.
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1.1.1 Historical influence of neuroscience

The first contribution from the field of neuroscience to the field of logical
calculus, and thus to the early stages of Al research, can be traced to
McCulloch and Pitts (1943), where the authors describe the nervous system
as “a net of neurons, each having a soma and an axon. Their adjunctions,
or synapses, are always between the axon of one neuron and the soma of
another. At any instant a neuron has some threshold, which excitation must
exceed to initiate an impulse”. They then show that “to each reaction of any
neuron there is a corresponding assertion of a simple proposition”, propose
a mathematical model of an artificial neuron that is capable of the same
behaviour as simplified biological neuron in the description, and postulate
“Theorem II: FEvery temporal propositional expression is realizable by a net
of order zero.”, allowing to draw parallels between mathematical logic and
inner workings of human brain.

Growing attention towards the “feasibility of constructing a device pos-
sessing human-like functions as perception, recognition, concept formation,
and the ability to generalize from experience” (Rosenblatt, 1957) led to the
first mechanism that was able to modify it’s behavior by learning from
examples — perceptron (Rosenblatt, 1958), a physical system built from ar-
tificial neurons that were able to adjust their weights (artificial simplistic
analog of synaptic connections).

According to Schmidhuber (2015) early works on animal visual cor-
tex such as the ones by Hubel and Wiesel (1959) and Hubel and Wiesel
(1962) inspired layered architectures in artificial neural networks that be-
came known as multilayer perceptrons (Rosenblatt, 1961), which, paired
with the power of backpropagation algorithm (Werbos, 1974; Rumelhart,
G. E. Hinton, and Williams, 1985), are the backbone of modern deep learn-
ing (LeCun, Y. Bengio, and G. Hinton, 2015). The concept of the perceptive
field from the same work has contributed to the notion and success of con-
volutional neural networks in computer vision (Fukushima, 1980; LeCun,
Bottou, et al., 1998; Krizhevsky, Sutskever, and G. E. Hinton, 2012) by
proposing a way of how visual information is being processed in animal
brain.

A second pillar of contemporary Al (Hassabis et al., 2017) is the field of
reinforcement learning (RL). Dating back to the work on animals done by
Pavlov (1903) that later became known as classical conditioning (Rescorla,
Wagner, et al., 1972) the principles of reinforcement learning made their
way into computer science and machine learning with the works of Sutton
and Barto (1990) and Sutton, Barto, et al. (1998). Paired with deep learn-
ing, reinforcement learning was instrumental for achieving such results as
computers learning to play computer games with no prior knowledge (Mnih,
Kavukcuoglu, Silver, Rusu, et al., 2015; Vinyals et al., 2019; OpenAl, 2018),
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winning world champion at Go (Silver et al., 2017), and others.

The historical lens that we have presented here allows us to appreciate
the enormous impact neuroscience had on the development of the fields of
machine learning and artificial intelligence.

1.1.2 Examples of modern machine learning techniques
inspired by neuroscientific insights

There exists a certain difference in opinion when it comes to the question of
how brain-like the modern artificial learning systems are. In its most pop-
ular form the question is ill-posed and does not look into the matter deep
enough to make that debate useful. We would like to attempt to rectify
that by highlighting that it is important to keep the discussion separate for
different levels of analysis (Marr and Poggio, 1976): the level of implemen-
tation, the level of algorithm and representation, and the most abstract —
the computational level.

On the level of implementation (following Marr’s tri-level taxonomy),
while there is a superficial similarity between biological neural networks
and modern machine learning architectures, the specifics of engineering de-
tail differ a lot. At this lowest level of analysis we would side with the
claim that apart from the superficial similarity between a biological neuron
and an artificial neuron, the systems are fundamentally different. However,
as we move to a higher level of abstraction at the level of algorithm and
representation, the design principles, representations and strategies of in-
formation processing of biological systems sometimes start to resemble the
architectural principles that the best artificial systems rely on. We will show
several such examples later in this chapter. On the computational level, that
reflects the goal and purpose of the computation, biological and artificial
system are often identical: object and speech recognition, speech synthesis,
decision-making based on observations, spatial orientation — these are some
of the examples of computational goals that biological and artificial systems
share.

In this section we will demonstrate several examples where from the
similarity on the computational level (the goal of the computation) emerges
the similarity on the level of algorithm and representation. In other words,
when the goal of an artificial system coincides with the goal of the corre-
sponding biological system, then the algorithmic mechanism of achieving
that goal in an artificial system follows the mechanism we know to exist
in its biological counterpart. These examples extend the discussion of the
similarities between artificial and biological systems and demonstrate that
there is more to this question than the simplistic comparison between neu-
rons and units in an artificial neural network.
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WORKING MEMORY. The mechanism of working memory is an impor-
tant cognitive system that allows us to hold and use the information that is
immediately relevant to the task at hand. It can contain context, recent oc-
currences, and bits of information that preceded the current moment. It also
allows to hold pieces of information back while running another cognitive
process and then recall the held-back information. This ability is crucial for
reasoning and decision-making where the next logical step might depend on
results of another, intermediate, process. The very similar challenge exists
in artificial learning systems: an algorithm might need to remember some
information to use it later, to match information across time and make
decision based on temporally disjoint inputs. Recurrent Neural Networks
(RNNs) (Hopfield, 1982) and later Long Short-Term Memory (LSTM) net-
works (Hochreiter and Schmidhuber, 1997) were proposed to address that
challenge. LSTM network consists of extended artificial neurons, that have
a memory cell to hold a certain values and a set of gates, that regulate
under which conditions the content of the memory cell can be modified or
released back into the network. Since we do not know how biological work-
ing memory is working, we cannot claim the similarity on algorithmic level,
but the similarity on computational level is clearly present.

ASSOCIATIVE MEMORY. It has been conjectured that there are multiple
memory types in a human brain (Tulving, 1985). Other types of biological
memory gave rise to various ideas in machine learning and reinforcement
learning. Associative memory, characterized by the ability to recall a cer-
tain piece of information by triggering a certain stimulus, found its reflection
in an artificial memory model called Hopfield network (Hopfield, 1982) — a
neural network that can store different patterns and a given partial pattern
return the whole. According to Hassabis et al. (2017), experience replay, a
critical component of Deep Q-Network (DQN) (Mnih, Kavukcuoglu, Silver,
Graves, et al., 2013), was “directly inspired by theories that seek to un-
derstand how the multiple memory systems in the mammalian brain might
interact” and draw the parallel between the role of hippocampus and expe-
rience replay buffer: “the replay buffer in DQN might thus be thought of as
a very primitive hippocampus, permitting complementary learning in silico
much as is proposed for biological brains”. Persistent, long-term memory
is also a crucial part of a biological intelligent system, and, although the
biological mechanisms of it did not yet find direct reflection in artificial intel-
ligence systems, the conceptual necessity for this type of memory is widely
acknowledged and was implemented in Neural Turing Machines (Graves,
Wayne, and Danihelka, 2014) and later in an architecture called Differen-
tiable Neural Computer (Graves, Wayne, Reynolds, et al., 2016).
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PREDICTIVE CODING. The theory of predictive coding (Rao and Bal-
lard, 1999) proposes that the brain learns a statistical model of the sensory
input and uses that model to predict neural responses to sensory stimuli.
Only in the case when the prediction does not match the actual response
the brain propagates the mismatch to the next level of the processing hier-
archy. By building and memorizing an internal model of the sensory input
such mechanism would reduce the redundancy of fully processing each sen-
sory input anew at all levels and thus greatly reduce the processing load
on the sensory system. A recently proposed Al agent architecture called
MERLIN (Wayne et al., 2018) achieves a marked improvement on the tasks
“involving long delays between relevant stimuli and later decisions: <...>
navigation back to previously visited goals, rapid reward valuation, where an
agent must understand the value of different objects after few exposures, and
latent learning, where an agent acquires unexpressed knowledge of the envi-
ronment before being probed with a specific task” by introducing the similar
principle into the architecture of the system. The authors point out that
using reinforcement learning to learn the entire system at once, including
the representations of the input, recurrent computation, rules for accessing
the memory, and the action-making policy is indirect and inefficient. They
propose to decouple the learning of the sensory data from learning the be-
havior policy that drives the decision-making by creating a subsystem that
learns to compress sensory observations into efficient representation in an
unsupervised manner. The decision-making policy is a recipient of already
encoded information and thus does not have to learn the encoding through
trial and error. The authors acknowledge the theory of predictive coding as
one of the inspirations for the architecture.

SUCCESSOR REPRESENTATIONS. The trade-off between model-based and
model-free methods is a long-standing question in the field of RL. As the
name suggests, the agents in the model-based methods have to learn (or
have access to) the model of the environment, while model-free agents try
to map observations directly onto actions or value estimates. While having
a model would allow the agent to use it to plan ahead and be more sample
efficient during learning, it also poses significant challenges as learning a
model of the environment, especially if the environment is complex, is a very
hard task. Many successful results were achieved with model-free methods
as those are easier to implement and learning the mapping between the
observations and the actions is in most cases sufficient and is easier than
properly learning the model of the environment. The idea of successor rep-
resentations (Dayan, 1993) lies in-between those two approaches. During
the learning the agent counts how often the transition between a state s,
and state s, has occurred. After interacting with the environment for some
time the agent forms what is called an occupancy matriz M, which holds
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empirical evidence of transitioning between the states. This matrix is much
easier to obtain than a full model of the environment and at the same time
it provides some of the benefits of the model-based approach by allowing to
model which transition is likely to occur next. The hypothesis that the brain
is using successor representations proposes that brain stores in some form
the occupancy probabilities of future states and is supported by behavioral
(Tolman, 1948; Russek et al., 2017; Momennejad et al., 2017) and neural
evidence (Alvernhe, Save, and Poucet, 2011; Stachenfeld, Botvinick, and
Gershman, 2017). Using this statistics the brain can estimate which states
are likely to occur next, serving as a computationally efficient approxima-
tion of a full-fledged environment model. The revival of the original concept
in the context of RL (Momennejad et al., 2017) proposes a way to intro-
duce some of the benefits of model-based methods without sacrificing the
efficiency and ease of implementation of model-free methods.

GRID CELLS. In 2014 the Nobel Prize in Physiology or Medicine was
awarded for the discovery of cells that constitute the positioning system
in the brain (O’Keefe, 1976; Sargolini et al., 2006). In the recent work
by Banino et al. (2018) it was demonstrated that an artificial agent trained
with reinforcement learning to navigate a maze starts to form periodic space
representation similar to that provided by grid cells. This representation
“provided an effective basis for an agent to locate goals in challenging, un-
familiar, and changeable environments”.

ATTENTION. After providing the initial motivation for convolutional
neural networks (CNN) via the ideas of hierarchical organization and the
concept of a receptive field, neuroscience served a source of ideas for fur-
ther improvement though the concept of attention (Desimone and Duncan,
1995; Posner and Petersen, 1990; Olshausen, C. H. Anderson, and Van Es-
sen, 1993). Adding the similar functionality to CNNs (Mnih, Heess, Graves,
et al., 2014; J. Ba, Mnih, and Kavukcuoglu, 2014) helped to further improve
the performance of visual object recognition. The same concept was found
to be useful in artificial neural networks designed for natural language pro-
cessing tasks (Bahdanau, Cho, and Y. Bengio, 2014; Vaswani et al., 2017)
and as a component of the memory module of differentiable neural comput-
ers (Graves, Wayne, Reynolds, et al., 2016).

MEMORY CONSOLIDATION. The standard model of systems memory
consolidation (Squire and Alvarez, 1995) suggests that a novel memory
is first retained in hippocampus, and then, with each new recollection of
that memory, its engram is strengthened in neocortex, making the memory
permanent (Dudai, 2004). On one hand this mechanism ensures that the
important memories, that are being recalled often, become permanent, but
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it also keeps neocortex free of clutter and thus makes it more stable. If
every new memory would be immediately consolidated we would remember
too much “noise”. A similar principle is used in Double DQN architecture
(Van Hasselt, Guez, and Silver, 2016) to make deep reinforcement learning
process more stable: two networks instead of one are maintained at the
same time, the online network is used to pick actions and its weights are
updated immediately, while the second, target network, is used to evaluate
the selected actions and is updated periodically. Periodic update of the
network, in contrast to updating the network immediately, provides more
stable evaluation of actions — within the period between the updates the
actions are evaluated by the same network, allowing those evaluations to
have a common reference point and thus serving as a better relative mea-
sure of the quality of an action.

The examples we discussed in this section demonstrate that on algo-
rithmic level, the biological and artificial systems sometimes share curious
similarities. This observation holds a very promising message in the context
of our work: since the systems share some of the properties, it can be infor-
mative to analyze one in order to gain knowledge about the other. In our
case — to analyze artificial learning systems, explore their mechanisms and
hypothesize the similarities between those mechanisms and the cognitive
processes of biological systems.

1.2 The role of machine learning in neuroscience

Approximately 20 years after Hodgkin and Huxley (1952) published their
fundamental single neuron model that inspired multiple works in mathe-
matical modeling of neural dynamics, the field has accumulated enough
methodology and data to start looking into the models of neuronal popu-
lations (Wilson and Cowan, 1972; Wilson and Cowan, 1973; Nunez, 1974).
Due to the volume of that data and the complexity of the systems be-
ing modeled, the community turned to statistical methods to provide ap-
proximations of aggregate behavior (Lopes da Silva et al., 1974; Buice and
Cowan, 2009; Pillow, 2005; Rolls and Deco, 2010). See Van Drongelen
(2013) for more examples. The adoption of statistical modeling, which is a
precursor of modern machine learning, has established a link between neuro-
science and statistical learning. The advancement of computational power
and the growing amount of digital data fueled the development of data
processing tools, pattern recognition algorithms and data analysis meth-
ods. These tools found multiple applications in various fields, including,
of course, the field of neuroscience (Vu et al., 2018; Hassabis et al., 2017;
Paninski and J. Cunningham, 2017; G. E. Hinton, 2011; Glaser et al., 2019).
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According to Semantic Scholar?, the percentage of neuroscience papers that
mention machine learning has risen from 1.3% to 7.6% over the last two
decades. In this section we give an overview of the major roles machine
learning methods play in neuroscientific inquiry. We then suggest that there
is a methodological component that is readily available, would benefit the
study of neural systems, and would extend the role of machine learning
in neuroscience even further, but, in our observation, this methodology is
lacking mass adoption.

Neural decoding represents the most direct application of machine learn-
ing methods to neurological data. A dataset of neural responses to pre-
determined stimuli is collected, and a machine learning method is tasked
with building a model that can reverse the mapping — given a neural signal
it has to learn to identify which stimulus caused that neural response. It
does so by inferring a set of rules or statistical associations that map neural
responses to the corresponding stimuli in the dataset. One of the earliest
applications of data analysis to characterize stimulus specific cortical activ-
ity can be traced back to Mountcastle et al. (1969) and displays a case of
manual data analysis. With the rise of machine learning techniques the pro-
cess of looking for patterns in vast arrays of data became automated, and
now it is safe to say that machine learning is the default approach to neural
decoding. While the studies that employ the approach are too numerous to
list here, we would like to mention a few. The algorithm proposed by Bialek
et al. (1991) is one of the first direct attempts to read the neural code to
identify movement detection in blowfly’s visual system. Already in the work
by Seung and Sompolinsky (1993) statistical modeling based on maximum
likelihood estimation was applied to a decode direction from the activity of
sensory neurons. Zhang et al. (1998) had successfully applied the decod-
ing methods to identify animal’s location based on the activity of the place
cells. Haxby, Gobbini, et al. (2001) have demonstrated that it is possible
to decode fMRI recordings of responses to 8 different visual categories with
average accuracy of 96%. Decoding of prefrontal activity of rats learning
an alternating goal task allowed to predict rat’s decision, effectively reading
rat’s future intention directly from brain activity (Baeg et al., 2003). In
the works of Nishimoto et al. (2011) and Shen et al. (2019) it was demon-
strated that it is possible to train a decoder that can, albeit with a limited
quality, reconstruct visual information such as images or movies directly
from fMRI recordings from occipitotemporal visual cortex of human sub-
jects who watched natural movies or images. In their extensive fMRI study,
Huth et al. (2012) mapped 1705 object and action categories to the changes
they evoke in human test subjects watching natural movies, allowing them

https://www.semanticscholar.org
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to map the semantic space of those categories onto cortical maps of human
brain. Applying decoding toolbox to the responses of cells to facial stimuli
allowed L. Chang and Tsao (2017) to identify the code for facial identity in
the primate brain. The uncovered code allowed the authors to both predict
the neural responses that a particular facial stimulus will elicit and also
to decode facial identity from the neural activity. Using recurrent neural
networks to decode articulatory movements from cortical activity allowed
Anumanchipalli, Chartier, and E. F. Chang (2019) to decode the intended
utterances and synthesize audible speech.

Neural decoding of the activity of the motor cortex into the intended
movement of a subject has branched into its own field, called brain-computer
interfaces (Wolpaw et al., 2002). Fetz (1969) first demonstrated that a mon-
key can learn to operate a robotic hand that was controlled by the activity
of single cells in the motor cortex, effectively learning to operate an artificial
limb. With more advanced multi-site neural ensemble recoding capabilities
Wessberg et al. (2000) were able to make accurate real-time predictions of
the trajectories of arm movements of a non-human primate and successfully
use those predictions for the control of a robotic arm. Similar work by Ser-
ruya et al. (2002) demonstrated even wider applicability of the method by
showing that the same approach allows a monkey to move a computer cursor
to any location on the computer screen. Finally in the work by Hochberg
et al. (2006) the technology was successfully applied to a human subject,
allowing to operate a robotic limb with nothing else other than the mental
intention to do so.

Performance of a decoding model can be used as a way to quantify the
lower bound on the amount of information or selectivity of a certain brain
region (C. P. Hung et al., 2005; Raposo, Kaufman, and Churchland, 2014;
Rich and Wallis, 2016). Providing a learning algorithm with the data from
the region of interest and tasking it with decoding forces the algorithm
to uncover the information that is pertinent to the process of decoding.
The level of performance of the final model informs the investigator on the
existence and the quality of relevant information in that region.

Difference in performance of the decoders trained under different exper-
imental conditions provides a way to quantify that difference and allow for
quantitive comparison. For example, Hernandez et al. (2010) recorded the
neuronal activity of diverse cortical areas while monkeys performed a cer-
tain task. The level of performance of the decoding models trained on the
activity from different cortical areas was used as an indicator of the involve-
ment of each particular area in that particular task. Similar approach is
used by Meer et al. (2010) to analyze the contribution of hippocampus, ven-
tral striatum, and dorsal striatum into the information processing during
a spatial decision task. By comparing the results of decoding the activity
of posterior parietal cortex (PPC) under two different tasks, R. Quiroga
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et al. (2006) were able to establish that activity in PPC predicts the loca-
tion of targets significantly worse than it predicts the intended movements,
providing insight into the functional role of that area.

In section 1.1 we have described multiple models that the field of artificial
intelligence has produced in attempts to solve various perceptual and be-
havioral tasks. Most of the problems we challenge the artificial intelligence
systems with are the ones that we, humans, already are capable of solving.
This fact naturally leads to the idea that it could be interesting to compare
the biological mechanisms of solving these problems with the mechanisms
that are employed and learned by artificial systems. The modeling branch of
computational neurosciences approaches this question by proposing models
of biological systems and comparing the behavior of the proposed models
with biological data. We find, and this is one of the main arguments we
would like to put forward in this thesis (see Chapter 2), that the rise of
the fields of artificial intelligence and machine learning awarded us with an
alternative way to investigate that question. For example, to quantify the
similarity between the hierarchies of a convolutional neural network (CNN)
and human ventral stream system (Daniel L. Yamins et al., 2013) employed
representational similarity analysis (RSA) (Kriegeskorte, Mur, and P. A.
Bandettini, 2008)) to find that the representations of that are formed in
a CNN were similar to the representations in the ventral stream. Similar
and more detailed findings were reported by Cadieu et al. (2014), Daniel LK
Yamins, Hong, et al. (2014), Giigli and Gerven (2015), Seeliger et al. (2017),
and Kuzovkin et al. (2018) confirming the evidence in favor of the similari-
ties in hierarchical organization of both biological and artificial systems of
vision. Khaligh-Razavi and Kriegeskorte (2014) compared representational
dissimilarity matrices (RDM) of 37 computational models of vision reach-
ing the same conclusion, that deep convolutional neural networks explain
activations of inferior temporal cortex during visual object recognition task.
Similar to visual perception there are comparisons between the hierarchical
structure of human auditory cortex and hierarchy of artificial neural net-
works trained to process auditory data (Kell et al., 2018; N. Huang, Slaney,
and Elhilali, 2018).

A new potential role of machine learning in neuroscience was alluded
to in the works on Neurochip (Jackson, Mavoori, and Fetz, 2006; Zanos,
Richardson, et al., 2011; Nishimura et al., 2013; Zanos, Rembado, et al.,
2018). Being an example of a bidirectional brain-computer interface, Neu-
rochip both reads the inputs from biological neurons, and, after running on-
chip computations on those inputs, stimulates the cortex with its output
connections. Seeing the similarities between some computational mecha-
nisms of biological and artificial systems we are very curious to see the
development of that idea and creation of a computational system that is a
hybrid of biological and artificial circuits.
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Biologically plausible deep learning is a direction of research that de-
velops artificial learning architectures under the restrictions the biological
systems are prone to. G. Hinton (2007) outlined a list of reasons why the
processes employed by modern deep learning methods cannot be running
in the brain. The question was further explored and reviewed by Y. Bengio
et al. (2015). This sparked multiple works (Urbanczik and Senn, 2014; T. P.
Lillicrap et al., 2016; Liao, Leibo, and Poggio, 2016; Scellier and Y. Bengio,
2017) where those limitations were addressed to demonstrate that it is still
possible to achieve learning in an artificial system while respecting some of
the biological constraints. This line of research creates yet another way for
machine learning to play a role in creating plausible computational models
of neuronal processing thus advancing our understanding of the brain.

This overview of the major paths of how machine learning benefits the
advancement of neuroscience highlights the fact that, for various reasons,
numerous machine learning models are being trained on neurological data.
While all of those models serve their purpose in the above-mentioned stud-
ies, many of them are being treated as “black box” tools, where the input is
provided and the output is tested and accepted to be used for further anal-
ysis, interpretation and confirmation of the experimental findings. In the
next chapter we will argue that some of the models that were created in the
above-mentioned and other scientific studies have inadvertently captured
some of the key computational mechanisms of the phenomena the models
were being trained on. The analysis of how exactly these models achieve
their results and reach their predictions could lead to unearthing those cap-
tured computational mechanisms. We find, that while many research groups
are working in this direction, more rigorous and widespread adoption of the
tools that facilitate interpretation of machine learning models would require
little effort but could lead to new and unexpected byproducts of the main
investigation.
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Chapter 2

Machine learning as automatic
builder of computational models

“All models are wrong,
but some are useful.”

— George E. P. Box

Building a model of a complex phenomenon is an ancient way for hu-
mans to gain knowledge and understanding of that phenomenon. Models of
planetary motion (Kepler, 1621), gravity (Newton, 1687; Einstein, 1915),
standard model of particle physics (Wilczek et al., 1975) are prominent ex-
amples of this approach. By comparing the predictions made by a model to
observations in the real world, we theorize that the mechanism driving the
model could be the same as the one driving the phenomenon. By building
more and more accurate models, we approach the true mechanism closer
and closer, hoping to get to the point of being able to artificially replicate
the phenomenon in full.

This line of scientific inquiry is being widely applied to brain studies as
well. The method of mathematical modeling spans across the whole field of
computational neuroscience and includes single neuron models (Lapicque,
1907; Hodgkin and Huxley, 1952; Koch, 2004; Herz et al., 2006), net-
work models (White et al., 1986; Hagmann et al., 2008; E. Bullmore and
Sporns, 2009; Sporns, 2010; Bassett and Sporns, 2017; Bassett, Zurn, and
Gold, 2018), models of memory (Durstewitz, Seamans, and Sejnowski, 2000;
Frank, Loughry, and O’Reilly, 2001; Chaudhuri and Fiete, 2016), cogni-
tion (Smith and Ratcliff, 2004; Oaksford and Chater, 2009; Tenenbaum et
al., 2011; Palmeri, Love, and Turner, 2017; Kriegeskorte and Douglas, 2018)
and learning (Hebb, 1949; Raisman, 1969; Zilles, 1992; Fuchs and Fliigge,
2014), sensory precessing (Barlow, 1959; Barlow, Blakemore, and Petti-
grew, 1967; Ernst and Banks, 2002; Weiss, Simoncelli, and Adelson, 2002;
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Olshausen and D. J. Field, 2004; Kording and Wolpert, 2004; Kriegeskorte
and Douglas, 2018) and other neural phenomena. Both computational and
structural modeling lead to numerous discoveries and important contribu-
tions to our understanding of the nervous system.

The most prized property of a model is our ability to understand its
mechanism and thus understand the phenomenon that is being modeled.
Coming up with a theory of how a particular phenomenon works and propos-
ing a model that describes it has always required careful and extensive
observation, good intuitive understanding of the process and almost art-
ful ability to consolidate the intuition with the observation into a formal
description that generalizes well across all instances of the phenomenon.
A good sign of a model being successful is its ability to make predictions
about future observations and results of interactions, making predictability
the first litmus test of any model or theory. Models and theories that do not
pass that test are usually discarded from the pool of scientific knowledge.

A typical machine learning pipeline involves such consecutive steps as
data acquisition, data preprocessing, training a model that employs sta-
tistical tools to describe the data, and testing of the resulting model on a
hold-out subset of the data (Murphy, 2012). This latter step is of partic-
ular interest to us in the context of the argument we put forward in this
chapter. Statistical learning theory (V. Vapnik, 2013) addresses the prob-
lem of selecting such a model that minimizes its error on the data, while
keeping bias and variance of the model as low as possible. Further set of
techniques, such as training/test split, cross-validation and others are then
applied to estimate model’s performance and its generalization ability. All
this theoretical machinery serves one purpose — the resulting model should
accurately describe the data at hand and make correct predictions on pre-
viously unseen data samples. A model that does not sufficiently satisfy
this requirement is discarded the same way as non-predictive models and
theories we discussed in the previous paragraph.

The consequence of the machine learning approach being set up in this
way is that all of the successful models that were ever built on neural data,
including the ones we have discussed in Section 1.2, do, by design, satisfy
the primary requirement of a good model and pass the litmus test of gen-
eralizability. In this section we put forward the argument that in addition
to solving the primary issue those models were created to address (being it
neural decoding, comparison of experimental conditions, quantification of
information, or else), they also are models (or reflect the dynamics) of the
computational mechanisms that gave rise to that neural data. Our prede-
cessors had to analyze such data manually and use their insight to come up
with a good model they understood in great detail. In the era of big data
and high performance computing we are facing the opposite — the analysis
of the data and building of a model that satisfies that data is done auto-
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matically, but what we sacrifice is the understanding of the resulting model.
Thankfully, modern machine learning toolbox does include various methods
to achieve model interpretability, which, combined with the abundance of
data and computing power leaves us with the best of two worlds — we can
build models on a grand scale and at a fast pace and interpret those models
to read out the formalisms they develop, informing us on the underlying
neural mechanisms.

2.1 Gaining an intuitive understanding of compu-
tation carried out by machine-learned models

The definition of a mathematical model is a broad one and includes statis-
tical models, differential equations, computational models, dynamical sys-
tems and more. The precise nature of a model produced by a machine
learning approach depends on the particular machine learning algorithm
that generated the model. In this section we will describe general mechan-
ics of machine learning process, provide an example based on the decision
tree algorithm that demonstrates how a computational model is born from
local statistical decisions, and describe major families of machine learning
methods to understand what kind of model is being created by each of those
families when applied to a set of data.

To illustrate the necessity and motivation for the following material let
us introduce a hypothetical situation. Let us assume that during a study
a group of researchers have obtained vast volumes of data, preprocessed it
and successfully trained a machine learning model that accurately differenti-
ates between the experimental conditions and generalizes well to previously
unseen data. Now we are in a peculiar situation, where the group of re-
searchers, given the same data, will not be able to decode it, but in their
hands they have a model, which does “know” how to do it. The content
of this section explores the feasibility of transferring that knowledge from
within the model and into the researchers.

2.1.1 General mechanics of the machine learning approach

The process starts with a dataset of observations, where each particular
observation is called a sample and is described by a set of values called fea-
tures. A sample can also have a label associated with it, that, depending on
type of the learning problem, can represent the category of the sample (su-
pervised learning, classification problem), numerical outcome (supervised
learning, regression problem), reward from the environment (reinforcement
learning), or not be present at all (unsupervised learning). An example of a
neural dataset could be a set of observations in the frequency domain, where
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the features are particular frequency bands, a sample is described by the
powers of those frequencies and has a label indicating whether test subject’s
eyes were open or closed when that sample was recorded. A straightforward
application of machine learning on such data would be to train a decoder
(a model), that can identify whether test subject’s eyes are open or closed
based on the neurological data alone.

Once the initial set of observations is collected, the next steps are feature
engineering and feature selection. During feature engineering one has to
come up with the best way to represent the data from the perspective
of a machine learning algorithm. In the example above we took powers
of the frequency bands as our features, but that was not the only choice
available and we did it only because we know that the information about
whether the test subject’s eyes are closed or open is readily available in
the alpha frequencies. We made the decision to represent our data in this
particular form because we know that this representation will make it easy
for the learning algorithm to identify the pattern that separates closed eyes
recordings from open eyes recordings. Feature engineering is often a creative
process, that requires both domain knowledge and understanding of the
machine learning method that will be subsequently applied. One of the
reasons for the popularity of deep learning methods is the ability of deep
artificial neural networks to automate feature engineering and learn good
features directly from data. This methodology has revolutionized the fields
of computer vision (Krizhevsky, Sutskever, and G. E. Hinton, 2012) and
speech recognition (G. Hinton et al., 2012), and proved to be applicable in
other areas as well (LeCun, Y. Bengio, and G. Hinton, 2015).

The subsequent (or alternative) step of feature selection is a related, but
conceptually different process, where we seek to identify the most repre-
sentative features and remove the rest to make the learning problem easier.
This can be done manually by employing human domain knowledge, or with
the help of statistical techniques (Blum and Langley, 1997; Hall, 1999).

The next, central, step is running a machine learning algorithm on pre-
processed data. The choice of the algorithm will depend on the type of the
learning problem (supervised, unsupervised or reinforcement, classification
or regression) and on the types of the features we use to describe the data
(numerical or categorial, continuous or discrete, etc). The exact learning
mechanism can be quite different depending on the chosen algorithm, but
the underlying framework of mathematical optimization (Snyman, 2005) is
common to all of them. Every machine learning algorithm has two essential
components: an objective function (also called the loss function) that the
algorithm has to optimize and a set of parameters that it can change in or-
der to optimize the objective. Depending on the algorithm, the parameters
can be numerical weight coefficients (examples: linear and logistic regres-
sion as presented in Murphy (2012); neural networks), categorical variables
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and numerical thresholds (decision trees by Breiman et al. (1984); random
forest by Leo Breiman (2001)), points in the feature space (K-means clus-
tering by Hartigan and Wong (1979); support vector machines by Cortes
and V. Vapnik (1995); linear discriminant analysis by Fisher (1936)) or have
one of the multiple other possible representations. The final configuration
of parameters in conjunction with the computational process that the algo-
rithm runs is the final model that the algorithm will output. Changing the
parameters affects the value of the objective function, so all the algorithm
has to do is to find the parameters that work best. To give an example of
how this can be achieved we consider the case when the objective function is
differentiable and the parameters are continuous, which is the case for such
algorithms as artificial neural networks, linear and logistic regression and
many others. In such a case gradient-based optimization methods can be
applied to iteratively approach better and better model parameters. Each
configuration of parameters is a point in the parameter space where the
objective function is defined. Since the function is differentiable we can
compute the gradient (derivative) of the function at every possible configu-
ration point. That gradient is a vector in the parameter space, that tells us
which way we should move the point in order to increase the value of the
objective function. Depending on whether we want to maximize or min-
imize the objective function we respectively move in the direction of the
gradient or in the direction opposite to it. This optimization technique is
called gradient descent (or gradient ascent). For a more detailed and for-
mal description of this and other optimization methods see Vanderplaats
(2001) and Snyman (2005). Once the optimization process has approached
the global or a local optimum within a predefined tolerance threshold, or is
unable to improve the result any further, the learning algorithm stops and
outputs the configuration of parameters that has achieved the best result
so far.

The final step of the process is the evaluation of model’s performance
and generalization ability. When a human is designing a model, he or she
takes particular care to make their model general, so that it would not only
describe the data at hand, but also work correctly on future data samples.
A machine learning algorithm has no such natural inclination and, if it
has sufficient expressive power, tends to memorize the whole dataset, as
such representation will be, in most cases, the most accurate one from the
optimization perspective. This phenomenon is called overfitting and has
to be avoided if we want the resulting model to capture the underlying
dynamics or patterns in the data. The ability of a model to do so is called
generalization ability and is as important as accuracy of the representation
of the training data. A common approach to estimate generalization ability
of a model is to reserve a portion of the data, a test set, run the learning
procedure on the remaining training set, and use the performance of the
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final model on the test set as the estimate of generalization ability. In most
cases the very first algorithm we try will not be successful at finding a good
model and we will try many different ones before the one that works is
found. In the process of doing so we can overfit to the test set as well. To
avoid that the training set is further split in two parts: a smaller training
set and a wvalidation set. The complete training procedure looks as follows:
learning algorithms are trained only on the smaller version of the training
set, then their performance is estimated on the validation set and, if desired,
the process is repeated until a good model is found. And only then the test
set is used once to gauge model’s true performance. There are variants
to this procedure such as cross-validation, leave-one-out and a few others,
all of which were developed to ensure that the model that was built by an
artificial learning system is able to generalize and make accurate predictions
on previously unseen data. This process is set in place to emulate human
modeler’s natural strive towards general and elegant models.

The process we have outlined above is being applied across multiple
branches of neuroscientific research. Often, in the context of a particular
scientific study that employs machine learning approach, the question of
how the resulting model achieves its result is not in the spotlight, because
the focus is on the result itself. However, behind each successful model,
lies, encoded in the values of those parameters, the computational principle
that allowed the model to succeed. Often trivial, sometimes revelational —
we will only know once we have interpreted the parameters and unearthed
the principle.

2.1.2 An example of intuitive understanding emerging from
a machine-built decision tree

The decisions a machine learning algorithm makes during the process of
fitting the model to the data are driven by local statistical, information-
theoretic, probabilistic or combinatorial rules. The question of whether a
combination of such decisions can amount to a comprehensive mathematical
model is a valid one to ask. In this section we argue in favor of the positive
answer to that question and illustrate our reasoning using one particular
learning algorithm — a decision tree (Breiman et al., 1984).

Consider the task of decoding a neural recording to determine whether
a test subject’s eyes are open or closed, that we introduced above. Assume
that the data for that task was recorded using an EEG device, the raw signal
was cleaned and transformed to frequency domain, and the power spectral
densities of 30 frequencies (1 Hz to 30 Hz) constitute the feature space.
Building of a decision tree using ID3 (Quinlan, 1986) algorithm would pro-
ceed as follows:
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(a) Given the dataset S, for each feature f compute, using entropy H, the
information gain IG(S, f) = H(S) — H(S|f). That number shows the
amount of additional information that will be obtained if the dataset
S is split into two disjoint subsets Syigne and Siefy using the value vy
of the feature f as the splitting criterion. Maximal information gain
will be achieved by splitting at optimal (in terms of information gain)
value v*. The data samples that have vy > v* are assigned to Syignt
and the rest to Sje.

(b) If all of the samples in Syight belong to the same class (eyes closed, for
example) the branching process stops and this subset becomes a leaf
that contains samples of the “eyes closed” category. The same is done
with Sieft.

(c) If a subset contains samples from both classes, the algorithm goes
recursively into this subset and repeats the procedure starting from
step (a).

Assume that we have completed the training process, tested the resulting
model on a test set and found that the model is very accurate and can
reliably identify if test subject’s eyes are open or closed. If the purpose of our
study was to prove that such decoding is possible, or it was an engineering
project for clinical purposes (for example to automatically detect whether a
patient is asleep), then we have successfully achieved the goal of our study.
Many real-world studies do stop at this stage.

We would like to note, that at this point we do have a model that works,
but we do not know why or how it works. An additional step of interpret-
ing the model should be taken in order to answer those questions. In the
case of a decision tree the analysis is very simple — we can visualize the
tree that is the final model. Figure 1 illustrates a made-up example of how
such a tree might look like. This analysis will reveal to us, that the model
has 8 parameters — the four features that are put in the branching points
and the four threshold values of these features for making the branching
decisions. Over the whole set of frequencies from 1 Hz to 30 Hz the model
deemed important only the 11 Hz, 10 Hz, 9 Hz and 12 Hz. This informs
us that these are the frequencies which are indicative of the “eyes closed”
experimental condition. Furthermore we learn that the power spectral den-
sity values those frequencies need to reach in order to indicate the “eyes
closed” condition are, respectively, 8.3, 7.7, 6.5 and 7.2 % We also find
out that the 11 Hz feature provides the highest information gain (since it
was selected first and was placed at the root of the tree), and is followed
by 10 Hz, and then by 9 Hz and 12 Hz. We can also see, that in the case
of 9 Hz reaching the threshold of 6.5 “H—V; there is still a chance that this
could happen even under “eyes open” condition and thus the further check
of whether 12 Hz is higher than 7.2 “H—VZZ is required, thus indicating that
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PSD (11 Hz) > 834>

Yes

Figure 1. A made-up example of a decision tree built on a dataset of recordings
of power spectral density features under two experimental conditions: eyes open
and eyes closed. Traversal of this tree provides us with a rule-based computational
model and supplies knowledge about neuronal dynamics — it indicates which fre-
quencies are relevant to the task and which thresholds are the best discriminators
of the two experimental conditions.

Yes

closed

PSD (10 Hz) > 7.742

only in conjunction those two features can reliably indicate the “eyes closed”
condition. All these observations carry information about the neurological
correlates of our experimental conditions and all those details would be
missed if we would not pursue the analysis and have stopped as soon as
the primary goal of the project has been achieved. Pursuing the analysis,
however, allowed to postulate an intuitive rule-based computational model
of the neural conditions characteristic of the “eyes closed” state.

Although this example is trivial, its simplicity allows us to describe the
process in full detail. In Chapter 3 we provide the details and the findings
of a study, that employed similar approach to analyze the contributions of
spectral components into the process of visual categorization based on a
dataset of 11000 local field potential (LFP) recordings from intracerebral
electrodes across 100 human subjects.

2.1.3 Understanding the models built by different machine
learning algorithms

The example in the previous section has demonstrated that the way to un-
derstand a particular machine learning model and the way to interpret it
will depend a lot on the algorithm and the architecture that generated the
model. The architecture of a decision tree enabled us to readily convert
the output of the algorithm into a set of intuitive rules that provide neu-
rological information to a domain expert. Applying other machine learning
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methods would result in very different representations of the computation
that is required to solve the task. The core challenge in gaining an intuitive
understanding from observing model parameters lies in the requirement to
know the details of the inner mechanism in order to see what is it that the
model has learned that allows it to make the decisions.

Interpretability becomes more and more important topic in the machine
learning community, across scientific communities that employ machine
learning methods, and even in the global community as machine learn-
ing models become embedded in our everyday lives (Doshi-Velez and Kim,
2017). “Interpret means to explain or to present in understandable terms.
In the context of ML systems, we define interpretability as the ability to
explain or to present in understandable terms to a human” (ibid). Multiple
general-purpose methodologies on how interpretability could be achieved
have been suggested over the years (Vellido, Martin-Guerrero, and Lisboa,
2012; Ribeiro, Singh, and Guestrin, 2016a; Ribeiro, Singh, and Guestrin,
2016b) along with numerous domain specific approaches. Since the notion
of an understandable explanation in ambiguous, it is hard to come up with
a rigorous method to quantify and measure interpretability of a machine
learning model. As a result of this ambiguity, multiple review articles (Lip-
ton, 2016; Bibal and Frénay, 2016; Doshi-Velez and Kim, 2017; Guidotti
et al., 2018; Gilpin et al., 2018; Murdoch et al., 2019) proposed different
taxonomies to help systematize the way we think about interpretability.
Surveys like the one by Narayanan et al. (2018) are being conducted to em-
pirically estimate interpretability via user-studies. Bibal and Frénay (2016)
systematically explore various terms that are used in machine learning lit-
erature to denote interpretability and make suggestions how to bring the
terminology in order. The same motivation drives Lipton (2016) and leads
to suggesting desiderata for interpretability: trust, causality, transferabil-
ity, informativeness and ethics, followed by a taxonomy of the properties of
interpretable models. Another study by Doshi-Velez and Kim (2017) argues
for the need of a rigorous approach and introduces the notion of incomplete-
ness of problem formalization. Incompleteness encompasses unquantifiable
gaps in knowledge that a model might have and has to be addressed in
order to reach the desiderata of a comprehensive model. The outstanding
survey by Guidotti et al. (2018) proposes a classification of approaches to
model interpretability based on the type of the problem, type of the ez-
planator adopted, type of the model and type of data. The most recent
review (Gilpin et al., 2018) provides a good summary of the taxonomies
proposed in the previous studies and puts forward a distinction between
interpretability and explainability — ability of a model to summarize the
reasons for the behavior of the model.

Exploring the question of interpretability in the context of neuroscience
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allows us to narrow down the scope of applicable desiderata, properties and
methods and focus on the ways to uncover knowledge from the models that
are the products of automatic scientific discovery. In our case the ques-
tion we want to answer is “when translated back from model’s representation
into neuroscientific domain, what is it that allows the model to make accu-
rate predictions?”. In such form the question of interpretability is perhaps
best covered by multivariate pattern analysis (Ritchie, Kaplan, and Klein,
2017) on fMRI data (Haxby, 2012), where simple linear methods allowed re-
searchers to decode mental states and analyze their representations (Haynes
and Rees, 2006; Norman et al., 2006; O’ Toole et al., 2007; Kriegeskorte and
Kievit, 2013; Haxby, Connolly, and Guntupalli, 2014). Applying other ma-
chine learning methods with the direct goal of extracting neuroscientific
knowledge was also attempted by interpreting SVM (Grosenick, Greer, and
Knutson, 2008; Hardoon and Shawe-Taylor, 2010; Haufe et al., 2014), de-
cision trees and random forests (Richiardi et al., 2010; Oh, Laubach, and
Luczak, 2003), artificial neural networks (Sturm et al., 2016; Samek, Wie-
gand, and Miiller, 2017), probabilistic models (Ma et al., 2006; Doya et al.,
2007; Wolpert, 2007; Griffiths et al., 2010), dimensionality reduction tech-
niques (Freeman et al., 2014; J. P. Cunningham and Byron, 2014), graphical
models (E. T. Bullmore and Bassett, 2011), and other methods.

The choice of the algorithm for building an interpretable model on neu-
ral data is guided by the nature of knowledge representation the authors
of the above-mentioned studies were aiming to extract. Such reasoning for
the choice of the algorithm leads to yet another basis for a taxonomy of
interpretable machine learning models. Given the abundance of different
methods and the freedom to choose any of them for a particular neurophys-
iological study, the obvious choice would be in favor of the method that will
uncover the representation that is most interpretable in the context of this
particular study. If an investigator is interested in which neural features are
the most informative for a given task — they should choose a method that
is naturally suited for feature importance analysis (e.g. Random Forest). If
the aim of the investigation is to identify the data samples that are crucial
for correct performance — a method that identifies such samples during the
learning process (e.g. SVM). Here we propose a preliminary taxonomy (Ta-
ble 1) of machine learning methods that forgoes classical distinctions such
as supervised or unsupervised, predictive or generative and instead orga-
nizes the methods into the groups based on the representation of the core
knowledge that the model learns in order to make its decisions.

LINEAR COEFFICIENTS. One of the most straightforwardly interpretable,
but also the least expressive in terms of encoded knowledge, are the algo-
rithms like logistic and linear regression, that encode the learned inferences
in linear coefficients of features. The learning process directly optimizes
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Knowledge
representation

Learning algorithms

Linear coefficients

Linear regression
Logistic regression

Points in feature
space

Linear discriminant analysis (Fisher, 1936)

Support vector machines (Cortes and V. Vapnik, 1995)

K-means (MacQueen et al., 1967)

Self-organizing maps (Kohonen, 1990)

Density-based spatial clustering of applications with noise
(DBSCAN, Ester et al. (1996))

Distance between
samples

Hierarchial clustering (Ward Jr, 1963)

K-nearest neighbors (kNN, Cover, Hart, et al. (1967))
Representational similarity analysis

(RSA, Kriegeskorte, Mur, and P. A. Bandettini (2008))

Distribution in
feature space

Bayesian learning (Murphy, 2012), e.g. Naive Bayes classifier
Gaussian and non-gaussian mixture models
(McLachlan, Lee, and Rathnayake, 2019)

States and
transitions

Probabilistic graphical models (Koller and Friedman, 2009),
e.g. HMM (Rabiner, 1989)
Reinforcement learning (Sutton and Barto, 2018)

Tree structure,
important features,

Decision trees (Breiman et al., 1984)
Random forest (Leo Breiman, 2001)

over inputs or
latent variables

thresholds
Distributed Deep learning (LeCun, Y. Bengio, and G. Hinton (2015)):
representations Feed-forward neural network (ANN)

Convolutional neural networks (CNN, Fukushima (1980))
Recurrent neural networks (RNN, Hopfield (1982))
Long short-term memory

(LSTM, Hochreiter and Schmidhuber (1997))

Compressed
feature space

Autoencoder (Vincent et al., 2008)
Restricted Boltzmann Machines

(RBM, G. E. Hinton and Salakhutdinov (2006))
Multidimensional scaling (MDS, Mead (1992))
Principal component analysis (PCA, Pearson (1901))
Independent component analysis (ICA, Comon (1994))

Embeddings

Deep learning methods, such as:
word2vec (Mikolov et al., 2013)
Convolutional neural networks
Graph convolutional networks (Kipf and Welling, 2016)
node2vec (Grover and Leskovec, 2016)

Functions

Gaussian processes (Rasmussen, 2003)

Table 1. Taxonomy of machine learning algorithms based on the way they rep-
resent the knowledge they have gathered during inference (with some examples).
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the coefficients to minimize (in the most common formulation) the cross-
entropy or, in the case of linear regression, the mean squared error. The
final output of, for example, a logistic classifier can be represented as a
separating hyperplane in the feature space. Please note that while the fi-
nal decision rule of many classification algorithms can be represented by a
separating hyperplane, the underlying principles and knowledge on which
the separating plane is built are very different across different learning al-
gorithms. From the interpretability perspective linear coefficients indicate
each feature’s contribution into the final decision, and, especially if features
were normalized before training, can allow for comparison between feature
importances. Whether a coefficient is positive or negative provides an ad-
ditional dimension for interpretation.

POINTS IN THE FEATURE SPACE. Many popular classification and clus-
tering algorithms encode their findings in particular points in the feature
space. Support Vector Machines find the samples in the training dataset
that are next to the decision boundary, thus indicating which samples either
have particular significance, or are the fringe members of class categories.
Linear Discriminant Analysis (also known as Fisher’s discriminant) locates
centroids of the samples in each category and then devises the separating
boundary that is perpendicular to the straight line connecting the centroids.
The centroids are thus characteristic of the groups of samples they repre-
sent. Similar knowledge representation can be found in one of the most
popular clustering algorithms — K-Means. The algorithm finds the prede-
termined number of cluster centers and places them at the locations in the
feature space that optimize the objective function. Similar, but extended,
concept is employed by self-organizing maps, where each unit of a map is
assigned to a centroid in a feature space that represents center of a clus-
ter. In the context of interpretability centroids can obtain special meaning
when interpreted by a domain expert that has intuitive understanding of
the feature space.

DISTANCE BETWEEN SAMPLES. Multiple methods make conclusions
about similarity of data samples based on pairwise distances between them.
The family of hierarchical clustering algorithms and distance-based clas-
sification algorithms such as K-Nearest Neighbors are good examples of
this knowledge representation. In neuroscientific domain the method of
Representation Similarity Analysis facilitated scientists to compare repre-
sentational geometry of samples that have different representations. The
interpretability of the findings that those methods make is straightforward
as the intuitive meaning of a distance between the samples is directly ap-
plicable in almost any domain of knowledge.
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DISTRIBUTIONS IN THE FEATURE SPACE. Extending the idea of impor-
tant points in the feature space some methods store distributions in the
same space and each distribution is assigned to a category, for example to
an experimental condition. Mixture models describe data centroids as dis-
tributions, providing much more information that a point-based centroid
would. Parameters of a distribution will capture statistical properties of
each group of samples, modeling the values of the features that describe the
samples, their orientation and extent in the feature space. Bayesian learn-
ing methods, such as Naive Bayes, learn, before applying the Bayes’ rule,
the distribution of observations conditioned on the category these observa-
tions belong to. The interpretative value of this knowledge representation
is similar to that provided by the points in the feature space, but carries
considerably more information.

STATES AND TRANSITIONS. Graph-like representation of possible states
of a system and transitions between them is a very flexible way to capture
the rules inferred by a learning model. Probabilistic graphical models, such
as Bayesian networks or Hidden Markov Models, condense the dynamics
they observe in the data into probabilistic state machines and are inter-
pretable by human investigator as a set of rules that governs the underlying
data generation process.

TREE STRUCTURE. Decision trees and their ensembles such as Random
Forest, represent the inferred decision making in a form of a hierarchically
organized sequences of threshold-based rules, where at each step of the pro-
cess a certain rule is applied to the value of a feature and depending on
the outcome the sample is assigned to a certain category. Decision trees
are considered to be one of the most interpretable algorithms, they store
the whole process of decision in an intuitive form, are directly translatable
to deterministic decision rules, rank the features by their importance (the
more important a feature is, the closer it will be to the root of a tree) and
find the threshold values of those features that are meaningful in the context
of the decision-making process. All this information can be easily accessed
by the investigator and provide domain-specific insight.

DISTRIBUTED REPRESENTATIONS. The enormous capacity (V. N. Vap-
nik and Chervonenkis, 2015) of modern deep learning models has led, on
one hand, to their success in the last decade, and to obscuring the reasons
for model’s decisions on the other. Both the intermediate, and the final
knowledge is stored in the model as a set of weights, often measured in
millions. However, the final decision of a deep learning model can often be
decomposed into (a) hierarchical organization and (b) set of local decision
within each layer of the hierarchy. This allows to portray the knowledge
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stored by the model as a collection of distributed representations, each of
which describes one of the decision rules that the model makes during com-
putation. Direct interpretation of this knowledge, is, however, impossible
and an investigator has to use additional tools to extract the knowledge.
We will review these tools in Section 2.1.4.

COMPRESSED FEATURE SPACE. This group of algorithms employs vari-
ous methods to reach the same end-goal — find a feature space of a smaller
dimensionality than the original, but preserve as much of the information as
possible when the data samples are transformed from the original space to
the new one. These methods are often referred to as dimensionality reduc-
tion techniques. An autoencoder is an artificial neural network that receives
a sample as an input, performs a series of transformations to encode that
sample using smaller number of artificial neurons (the bottleneck layer), and
then decodes it back from the bottleneck layer to the original representation.
The difference between the original sample and its reconstruction serves as
the objective function that the algorithm has to minimize. Principle compo-
nent analysis finds an orthogonal transformation of the feature space, such
that the axis of the new space correspond to those data dimensions with
largest variance. The new axis are called the principle components. The first
component explains largest amount of variance, the second represents the
dimension with second-largest variance, etc. After the transformation the
user can estimate how many components are to be kept in order to preserve
the predetermined percentage of variance (usually 90%, 95% or 99%) and
discards the rest. Multidimensional scaling takes another approach where
instead of the variance, the new feature space, while being reduced in size,
preserves the pairwise distances between the samples as well as possible.
There are other example algorithms, but the important common property
that allows us to group those algorithms together is that in order to pre-
serve the information given limited expressive power, these algorithms are
forced to detect an underlying pattern, or a principle, following which the
data can be best reconstructed. Capturing that principle allows to reduce
the size of the feature space, but also, importantly for the interpretability
context, distills the underlying patterns from the less important ones and
from the noise.

LEARNED EMBEDDINGS. While being similar to the previous group in
form, embeddings are numerical features vectors that are built, differently
from dimensionality reduction techniques, by following a rule that cap-
tures a specific property, of even semantics, of the original data. Mod-
ern word embeddings (Mikolov et al., 2013), for example, are built by
teaching a neural network to predict the word that appears in the con-
text of other words in a language corpus. Words that appear in similar
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context will have similar internal representation in the embedding (fea-
ture) space. Since appearing in a similar context carries semantic meaning
in natural language, this representation even allows for arithmetic oper-
ations on words, such as the one demonstrated by the famous example
E(king) — E(man) + E(woman) = E(queen), where E is the function that
maps the word to its numerical vector in the embedding space. Subtract-
ing man from king leaves us with the embedding that represents notion
of “kingness”, adding woman to that leads to an embedding that combines
notion of “femenineness” with “kingness”, leading to the word queen. The
ability of embedding to capture semantic similarity has been also demon-
strated in visual domain (Deselaers and Ferrari, 2011; Frome et al., 2013).
When applied to graphs, an embedding can reflect topological properties of
graph nodes (Grover and Leskovec, 2016), or combine topological data with
node attributes (Kipf and Welling, 2016). The key property of embeddings
for the interpretability efforts is their ability to capture semantic similarity
between the data samples.

FuncTIONS. Gaussian processes is an example of a learning method
that models a distribution over the possible functions, that are consistent
with the observed data. After applying initial constraints to reduce the
set of possible functions, the learning process narrows the distribution by
eliminating the functions that are not consistent with the data. The final
output is a set of possible functions that can capture the learnt knowledge.

This brief overview of the basis of the proposed taxonomy of machine
learning algorithms provides a useful guide for selecting the method that is
appropriate for a learning problem at hand when a certain interpretation
of the learnt knowledge is desired. While some of the representations above
are straightforward to interpret, others require additional tools, such as
visualization, rule extraction or simplification, in order to extract intuitive
understanding of the knowledge represented by the model. In the next
section we provide an overview of such tools.

2.1.4 Techniques to analyze machine learning models and
extract knowledge from representations

At this point we have completed three out of four steps along the path
towards insightful automatically built computational models of neural com-
putation: (1) selected the learning algorithm with accordance to the learn-
ing problem and desired end-knowledge representation (Section 2.1.3), (2)
trained the model to fit the data, and (3) evaluated model’s performance
and generalization ability (Section 2.1.1). The last step is gaining intuitive
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understanding of the model’s knowledge. Depending on the algorithm we
used to train the model this knowledge can be already in a human-tractable
form, or it might require some additional steps.

Linear models, single decision trees and rules are recognized by the ma-
chine learning community as most interpretable (Guidotti et al., 2018)
and empirical experiments were conducted to estimate comprehensibility
of these models by humans (Huysmans et al., 2011). Following the nomen-
clature presented in Table 1 we extend the list of straightforwardly inter-
pretable knowledge representations to include linear coefficients, points in
the feature space, distances between samples, and distributions in the fea-
ture space. For a domain expert, who has the understanding of the data
the model was trained on, these representations have direct meaning and
no further steps are required to spot an intuitive meaning if the model has
uncovered one.

Feature importance analysis is applicable to any model that has a quan-
tifiable way to estimate each feature’s contribution into the final decision.
Linear models, provided that the data was normalized across the dataset
prior to training the model, provide this information in the values of lin-
ear coefficients. Decision trees and random forests make branching decision
based on the information gain, which acts as a measure of how big of a role
a feature plays in the decision-making process. In Chapter 3 we use this
method to identify time-frequency patterns of neural activity that are im-
portant for perceptual categorization in human brain. If a model does not
provide quantitative information about each feature’s contribution, sensi-
tivity analysis (Saltelli, 2002) gives us the means to obtain the same infor-
mation by measuring how the output of a model is affected by altering the
input. If altering the input values of a certain feature (or a set of features)
does not change model’s behavior, one can conclude that this feature (or
features) is not important for the model. If features of the dataset represent
specific domain knowledge, their importance is directly interpretable by a
domain expert.

Visualization of model parameters and internal data representation is
one of the main tools for achieving interpretability. Simplest methods in-
clude plotting, if dimensionality permits, the data points, decision boundary
and the knowledge representation (support vectors, centroids, etc). In most
cases, however, dimension of the feature space is too high to be visualized
directly and investigators resort to visualizing aggregated statistics, such
as histograms of value distributions. Dimensionality reduction techniques,
that are, on one hand, learning algorithms in their own regard as we noted
in the previous section, can, on the other hand, be essential for visualization
efforts. Reducing the dimensions down to 2 or 3 allows to plot the data,
decision boundaries and internal data representation in a human-readable
form. Different dimensionality reduction techniques focus on preserving dif-
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ferent properties of the object that undergoes the reduction, allowing the
investigator to choose the right one depending on what property should be
preserved. Topology preserving algorithms such as t-distributed stochastic
neighbor embedding (t-SNE, Maaten and G. Hinton (2008)), self-organizing
maps (Kohonen, 1990), and multi-dimensional scaling keep the objects that
were similar in the original space also close in the new space. Principle
component analysis identifies the data dimensions that have the highest
variance and keep the transformation that allows to see the contribution of
the dimensions of the original space into the dimensions of the new space.
Please refer to Guidotti et al. (2018) for a comprehensive review of visual-
ization methods in the context of interpretability.

Automatic rule extraction is another way to achieve interpretability by
converting complex model into a set of rules. In additional to trees and
tree ensembles that can be naturally converted to this representation, the
approach has been proposed for SVMs (Nunez, Angulo, and Catala, 2002)
and neural networks (R. Andrews, Diederich, and Tickle, 1995; Tsukimoto,
2000; J. Zilke, 2015).

The enormous number of trainable parameters and high capacity of deep
learning models is one of the reasons for the success of these methods in
the last decade. It is also the reason why the decisions made by these
methods are even less transparent than the ones made by other machine
learning methods. This predicament has led to an explosion in the number
of studies proposing, in addition to model-agnostic, also neural network-
specific interpretability methods. Activation mazimization methods identify
input patterns that maximize the activation values of a particular neuron,
later visual inspection of those patterns can be very insightful, especially in
visual input domain (Zeiler and Fergus, 2014). Attention mechanism (Mnih,
Heess, Graves, et al., 2014) allows the investigators to analyze the areas
of the input that the model deemed worth of its attention and understand
which part of the feature space, or what data content, was most relevant for
the model. Proxy models are trained to approximate the behavior of a neural
network on a full, or partial, set of data and build a simpler representation
of network’s behavior. Due to ease of interpretation, linear (Ribeiro, Singh,
and Guestrin, 2016b) or decision tree (Craven and Shavlik, 1996; Schmitz,
Aldrich, and Gouws, 1999; J. R. Zilke, Mencia, and Janssen, 2016) models
are most commonly used as proxy models. Readout technique employs
linear models to take activations of a subset of neurons as input and train to
predict the final outcome (for example the category of a sample), the method
draws inspiration from reservoir computing (Schrauwen, Verstraeten, and
Van Campenhout, 2007). Ability or inability of a readout model to perform
well is an indicator of the involvement of the chosen subset of neurons
in the decision-making process of the model. Koul, Greydanus, and Fern
(2018) demonstrate how to extract finite state representation of a recurrent
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neural network. Please see Gilpin et al. (2018) for an extensive survey of
interpretability techniques developed specifically for deep learning methods.

2.2 Interpretation of machine-learned models for
neuroscientific inquiry at different levels of or-
ganization

In the next three chapters of this thesis we present detailed description
of three studies that demonstrate how the approach we have described in
this chapter can be realized in the context of neuroscientific inquiry to
analyze, interpret and understand neural processes at three different levels
of organization. Each study shows how the in-depth analysis of the machine
learning models can lead to insights or confirmations of conjectures about
inner workings of the human brain.

Chapter 3 demonstrates the analysis on a level of local field potentials.
We first train a decoder to predict visual category based on spectro-temporal
activity of single iEEG probes using a random forest classifier. We then per-
form feature importance analysis to understand which locations are relevant
for the task of visual decoding and which, while being active and respon-
sive compared to the baseline, do not carry relevant information. Further
analysis of the important parts of TF spectrum shows difference in roles of
different neuronal locations and uncovers category-specific patterns we call
spectral signatures of visual perceptual categorization.

Chapter 4 shows how the comparison of activations of an artificial model
of vision (convolutional neural network) with the activations in human vi-
sual cortex allows to draw the analogy between the hierarchical structures
of those two systems. This study serves as an example of how machine
learning methods can be used to analyze the brain on the level of functional
organization.

The third example, demonstrated in Chapter 5, shows how using di-
mensionality reduction for clustering and visualization of high-dimensional
EEG feature space helps to gain a high-level understanding of relative prop-
erties of mental concepts encoded in that space. By visualizing mental state
space we can browse the signals generated by the human brain under dif-
ferent conditions and visually assess which ones are close to each other and
which ones are further apart. The work shows an application of this con-
cept to the field of brain-computer interfaces and serves as an example of
applicability of the interpretable machine approach on the level of mental
concepts.
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Chapter 3

Feature importances of random
forest models inform on localized
cortical activity

Human brain has developed mechanisms to efficiently decode sensory infor-
mation according to perceptual categories of high prevalence in the envi-
ronment, such as faces, symbols, objects. Neural activity produced within
localized brain networks has been associated with the process that inte-
grates both sensory bottom-up and cognitive top-down information pro-
cessing. Yet, how specifically the different types and components of neural
responses reflect the local networks’ selectivity for categorical information
processing is still unknown. In this work we train Random Forest classifi-
cation models to decode eight perceptual categories from broad spectrum
of human intracranial signals (4 — 150 Hz, 100 subjects) obtained during a
visual perception task. We then analyze which of the spectral features the
algorithm deemed relevant to the perceptual decoding and gain the insights
into which parts of the recorded activity are actually characteristic of visual
categorization process in human brain. We show that network selectivity for
a single or multiple categories in sensory and non-sensory cortices is related
to specific patterns of power increases and decreases in both low (4 —50 Hz)
and high (50—150 Hz) frequency bands. By focusing on task-relevant neural
activity and separating it into dissociated anatomical and spectrotemporal
groups we uncover spectral signatures describing neural mechanisms of vi-
sual category perception in human brain that have not yet been reported
in the literature.

Previous works have shown where and when perceptual category infor-
mation can be decoded from the human brain, our study adds to that line
of research by allowing to identify spectrotemporal patterns that contribute
to category decoding without the need to formulate a priori hypothesis
on which spectral components and at which times are worth investigating.
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Application of this method to an extensive dataset of human intracerebral
recordings delineates the locations that are predictive of several perceptual
categories from the locations that have narrow specialization, identifies spec-
tral signatures characteristic of each of 8 perceptual categories and allows
to observe global and category-specific patterns of neural activity pertinent
to visual perception and cognition.

3.1 Spectral and temporal signatures
of human brain activity

Our capacity to categorize sensory information allows us to quickly process
and recognize complex elements in our environment. Early studies revealed
strong relations between the brain activity within certain localized networks
and the neural representations of certain stimulus categories, as for example
faces, bodies, houses, cars, objects and words (Kanwisher, McDermott, and
Chun, 1997; Epstein, A. Harris, et al., 1999; Peelen, Fei-Fei, and Kastner,
2009; Malach et al., 1995; Haxby, Gobbini, et al., 2001; Ishai, Ungerleider,
et al., 1999; Cohen et al., 2000). These early assessments also revealed brain
networks’ capability to rapidly extract categorical information from short
exposure to natural scenes (Potter and Faulconer, 1975; S. Thorpe, Fize,
and Marlot, 1996; Li et al., 2002) based on models of parallel processing
across neural networks (Rousselet, Fabre-Thorpe, and S. J. Thorpe, 2002;
Peelen, Fei-Fei, and Kastner, 2009). In both animal and human studies,
visual cortices and particularly inferior temporal cortex (ITC) appear as a
key region to integrate information at the object-level (Grill-Spector and
Weiner, 2014; Tanaka, 1996; DiCarlo, Zoccolan, and Rust, 2012). In hu-
mans, a great deal of observations of cortical response selectivity have been
achieved using fMRI, but measuring direct neuronal activity (R. Q. Quiroga
et al., 2005; Kreiman, Koch, and Fried, 2000) also revealed similar patterns.
To further understand how stimulus features and perceptual experience is
processed in neural networks, brain activity, especially in sensory cortices,
has been decoded using a variety of methods and signals (Haynes and Rees,
2006; Kriegeskorte, Goebel, and P. Bandettini, 2006; Kamitani and Tong,
2006). This decoding often relies on machine learning to avoid a priori se-
lection of partial aspects of the data by the human observer, and unless
additional analysis is performed on the model itself it does not emphasize
the mechanisms of neuronal communication within and between neural net-
works involved in this processing.

A pervasive feature of electrophysiological neural activity are its spectral
fingerprints. Neural oscillations have been proposed to reflect functional
communication processes between neural networks (Fries, 2009; Buzsaki,
2006; Siegel, Donner, and Engel, 2012; Michalareas et al., 2016). Certain
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frequency bands are selectively associated with the operating of different
cognitive processes in the human and animal brain (Vidal, Chaumon, et
al., 2006; Wyart and Tallon-Baudry, 2008; Jensen and Mazaheri, 2010;
VanRullen, 2016; Engel and Fries, 2010; Dalal et al., 2011), and lately,
direct recordings from the human cortex have revealed the remarkable rep-
resentation selectivity of broadband high-gamma activity (50 — 150 Hz)
(Lachaux, Axmacher, et al., 2012; Parvizi and Kastner, 2018; Fox et al.,
2018). Human intracranial recordings have previously shown evidence of
functional processing of neural networks related to perceptual category rep-
resentation (McCarthy et al., 1997) and lately the prominence of broadband
high-gamma activity in selective category responses in visual areas (Vidal,
Tomas Ossandon, et al., 2010; Davidesco et al., 2013; Hamame, Vidal,
et al., 2014; Privman et al., 2007; Fisch et al., 2009). Yet, very little is
known about the specific relation between the different components of the
full power-spectrum, including high-gamma activity, and their level of se-
lectivity in processing perceptual categories. Previous works have shown
where and when perceptual category information can be decoded from the
human brain, the approach introduced in this work adds to that line of
research by allowing to identify spectrotemporal patterns that contribute
to category decoding without the need to formulate a priori hypothesis on
which spectrotemporal regions of interest are worth investigating.

In this work we capitalize on an extensive dataset of deep intracranial
electrical recordings on 100 human subjects to decode neural activity pro-
duced by 8 different stimulus categories. We analyzed the decoding mod-
els built by a random forest classifier to disentangle the most informative
components of the time-frequency spectrum related to the simultaneous
classification of 8 different perceptual categories. Via feature importance
analysis we quantified the contribution of each TF component into the de-
coding decision, which allowed us to identify the activity patterns that were
either characteristic of the processing of a specific visual category or were
shared by several categories. In addition to feature importance we analyzed
the predictive power of each activity pattern and identified how informa-
tive was their spectral signature for the classification of visual categories.
We tested the predictive power of broadband high-gamma activity in com-
parison to lower frequency activity as they reflect different communication
mechanisms elicited by networks seemingly involved in distinct temporal
windows of functional neuronal processing. Through the analysis of feature
importance we show the specific neuronal spectral fingerprints from highly
distributed human cortical networks that were elicited during automatic
perceptual categorization. The uncovered spectral signatures provide in-
sight into neural mechanisms of visual category perception in human brain.

43



3.2 Large-scale intracortical recordings during
visual object recognition task

One of the important steps leading up to being able to interpret the results
and representations of a machine learning model is the correct choice of
representation of the input data. In this section we explain the origin of
our dataset and preprocessing choices that were made in order to present
the data in a form that is both informative for the algorithm and directly
interpretable by human domain expert.

3.2.1 Patients and recordings

100 patients of either gender with drug-resistant partial epilepsy and can-
didates for surgery were considered in this study and recruited from Neuro-
logical Hospitals in Grenoble and Lyon (France). All patients were stereo-
tactically implanted with multi-lead EEG depth electrodes (DIXI Medical,
Besancon, France). All participants provided written informed consent,
and the experimental procedures were approved by local ethical committee
of Grenoble hospital (CPP Sud-Est V 09-CHU-12). Recording sites were
selected solely according to clinical indications, with no reference to the
current experiment. All patients had normal or corrected to normal vision.

Electrode implantation

11 to 15 semi-rigid electrodes were implanted per patient. Each electrode
had a diameter of 0.8 mm and was comprised of 10 or 15 contacts of 2 mm
length, depending on the target region, 1.5 mm apart. The coordinates of
each electrode contact with their stereotactic scheme were used to anatom-
ically localize the contacts using the proportional atlas of Talairach and
Tournoux (Talairach and Tournoux, 1993), after a linear scale adjustment to
correct size differences between the patient’s brain and the Talairach model.
These locations were further confirmed by overlaying a post-implantation
MRI scan (showing contact sites) with a pre-implantation structural MRI
with VOXIM® (IVS Solutions, Chemnitz, Germany), allowing direct visu-
alization of contact sites relative to brain anatomy.

All patients voluntarily participated in a series of short experiments to
identify local functional responses at the recorded sites (Vidal, Tomas Os-
sandon, et al., 2010). The results presented here were obtained from a test
exploring visual recognition. All data were recorded using approximately
120 implanted depth electrode contacts per patient using SD LTM Express,
Micromed system for signal acquisition with a sampling rate of 512 Hz,
high-pass filter 0.15 Hz, low-pass filter 500 Hz. Data were obtained from a
total of 11321 recording sites.
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Stimuli and task

The visual recognition task lasted for about 15 minutes. Patients were
instructed to press a button each time a picture of a fruit appeared on
screen (visual oddball paradigm). Non-target stimuli consisted of pictures
of objects of eight possible categories: houses, faces, animals, scenes, tools,
pseudo words, consonant strings, and scrambled images. All the included
stimuli had the same average luminance. All categories were presented
within an oval aperture of 2° x 3° in visual angle (illustrated on Fig-
ure 2a) at a distance of 70 — 90 cm using NeuroBehavioral Systems (NBS)
Presentation® software. Stimuli were presented for a duration of 200 ms
every 1000 — 1200 ms in series of 5 pictures interleaved by 3 second pause
periods during which patients could freely blink. Patients reported the de-
tection of a target through a right-hand button press and were given feed-
back of their performance after each report. A 2 second delay was placed
after each button press before presenting the follow-up stimulus in order
to avoid mixing signals related to motor action with signals from stimu-
lus presentation. Altogether, responses to 400 unique natural images were
measured per subject, 50 from each category.

3.2.2 Processing of neural data

The analyzed dataset consisted of 4528400 local field potential (LFP) record-
ings — responses from 11321 recording sites to 400 stimuli. To remove the
artifacts the signals were linearly detrended and the recordings that con-
tained values > 100mages, Where ojmages is the standard deviation of voltage
values (in the time window from —500 ms to 1000 ms) of that particular
probe over all stimuli, were excluded from data. All electrodes were re-
referenced to a bipolar reference and the reference electrodes were excluded
from the analysis. The signal was segmented in the range from —500 ms to
1000 ms, where 0 marks the moment when the stimulus was shown. The
—500 to —100 ms time window served as a baseline.

To quantify the power modulation of the neural signals across time and
frequency we used standard time-frequency (TF) wavelet decomposition
(Daubechies, 1990). The signal s(¢) was convoluted with a complex Mor-
let wavelet w(t, fo), which has Gaussian shape in time (0:) and frequency
(0f) around a central frequency fo and defined by oy = 1/270; and a nor-
malization factor. To achieve good time and frequency resolution over all
frequencies we slowly increased the number of wavelet cycles with frequency,

Jo was set to: 6 for high (61 — 150 Hz) and low (31 — 60 Hz) gamma, 5 for

af
beta (15 — 30 Hz), 4 for alpha (9 — 14 Hz) and 3 for theta (4 — 8 Hz) fre-
quency ranges. This method allowed to obtain better frequency resolution

than applying a constant cycle length (Delorme and Makeig, 2004). The
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square norm of the convolution results in a time-varying representation of
spectral power, given by: P(t, fo) = |w(t, fo)-s(t)|*. Baseline normalization
was performed by dividing the average power after stimulus onset (0 to 1000
ms) in each frequency by the average power of that frequency in the baseline
window (—500 to —100 ms). Each LFP recording was transformed from 768
data points (1.5 seconds of voltage readings at 512 Hz sampling rate) into
a matrix of size 146 x 48 where each row represents a 1 Hz frequency band
from 4 Hz to 150 Hz and columns represent 31.25 ms time bins. Value in
each cell of that matrix is the power of that specific frequency averaged over
16 time points.

Further analysis was done only on the electrodes that were responsive
to the visual task. In each frequency band we compared each electrode’s
average post-stimulus band power to the average baseline power with a
Wilcoxon signed-rank test for matched-pairs. Only the probes that showed
a post-stimulus response that is statistically significantly (p-value < 0.005,
corrected for multiple comparisons with the false discovery rate (FDR) pro-
cedure (Genovese, Lazar, and Nichols, 2002)) different from the baseline re-
sponse in at least two frequencies were preserved for future analysis. Please
note that eliciting a significant response in at least 2 out of 146 frequencies
is a relaxed requirement. The use of such a relaxed criterion allowed us to
include into analysis not only the areas that had a strong response in the
visual areas, but also the responses from other brain areas that might reflect
downstream processes related to automatic perceptual categorization. This
was possible due to the fact that the proposed method, given sufficiently
large dataset, will not be hindered by the additional volume of irrelevant
data and is able to detect narrow phenomena even in the large corpus of
data.

To anatomically localize the source of each signal in subject’s brain
each electrode’s MNI coordinates were mapped to a corresponding Brod-
mann brain area (Brodmann, 1909) using Brodmann area atlas from MRI-
Cron (Rorden, 2007) software.

To confirm that probe’s predictiveness of a certain category implies that
the probe belongs to the network selective of that category we ran a set
of experiments on three well-known functional areas: Fusiform Face Area
(FFA) (Kanwisher, McDermott, and Chun, 1997), Visual Word Form Area
(VWFA) (Cohen et al., 2000) and Parahippocampal Place Area (PPA).
Following Montreal Neurological Institute (MNI) coordinates of FFA re-
ported in (R. J. Harris, Young, and T. J. Andrews, 2012) and (Axel-
rod and Yovel, 2015) we defined FFA bounding box as = € [—44, —38],
y € [-61,-50], z € [—24,—15] in the left hemisphere and = € [36,43],
y € [-55,—49], z € [-25, —13] in the right hemisphere. Based on the Table
1 from (Price and Devlin, 2003) we defined VWFA area as MNI bounding
box x € [-50,—38], y € [-61, —50], z € [-30, —16] in the left hemisphere.
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From MNI coordinates reported in (Bastin, Vidal, et al., 2013) and (Park
and Chun, 2009; Hamame, Szwed, et al., 2013) we defined PPA bound-
ing box to be z € [-31,—-22], y € [-55,—49], z € [-12,—6] in the left
hemisphere and =z € [24,32], y € [-54,—45], z € [-12,—6] in the right
hemisphere.

3.3 Feature importances of a decoder are indica-
tive of task-relevant brain activity

In the taxonomy of knowledge representation (Section 2.1.3), decision trees
were brought forward as the representation best suited for feature impor-
tance analysis (see Section 2.1.4). In this work we use spectral power read-
ings in time-frequency domain as our input and look to identify which time-
frequency features contribute most to the task at hand. Since feature impor-
tance is our desired interpretation we have chosen Random Forest learning
algorithm to build the decoding model. In this section we explain the in-
ner workings of this algorithm and present our feature analysis approach in
details.

3.3.1 Random Forest as a decoding model

A Random Forest (Leo Breiman, 2001) is a collection of decision trees, where
each tree gets to operate on a subset of features. Each tree is assigned a
random set of features and it has to find the decision boundaries on those
features that lead to best classification performance. At each branching
point the algorithm must decide which feature will be most efficient in
terms of reducing the entropy of class assignations to the data points in
the current branch of the decision tree. To achieve that, the feature that is
most useful is selected first and will be responsible for largest information
gain. For example, if the activity of a probe at 52 Hz at 340 ms is high
when a subject is presented with a face and low for all other categories,
decision tree will use that fact and rely on the “52 Hz at 340 ms” feature,
thus assigning it some importance. How high the importance of a feature
is depends on how well does this feature distinguish faces from all other
categories. As Random Forest is a collection of trees and the same feature
will end up being included into several different trees, being important in
many trees contributes to the overall importance of a feature (for the exact
computation see the section on feature importance below).

We treated each electrode’s responses as a separate dataset consisting
of 400 data points (one per stimulus image), and 7008 features — time-
frequency transformation of LFP response into 146 frequencies and 48 time
bins. For each electrode we trained a Random Forest with 3000 trees and
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Figure 2. Major steps of the data processing pipeline. a: Image stimuli from 8
categories were presented to test subjects. b: Human brain responses to images
were recorded with deep intracranial electrodes. c: LFP signals were preprocessed
and transformed into time-frequency domain. d: Random Forest models were
trained to decode image category from each electrode’s activity. e: Feature im-
portances of each model were calculated to identify the region on each electrode’s
activity map that was relevant to visual object recognition. Notice how the final
results on panel e tell us that high gamma activity in 90 — 120 ms window and the
subsequent activity in the low gamma range in 120 — 250 ms window are the only
bands and time windows in that particular electrode’s activity that are relevant
for the classification task, while the spectrogram on panel ¢ also shows that there
was activity in early theta, beta and low gamma bands. Our analysis revealed
that not all activity was relevant (or useful) for the classification of an object and
showed which parts of the activity are actually playing the role in the process.
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used 5-fold cross-validation to measure the predictive power of the neural
activity recorded by each of the electrodes. Per-class F; score, a harmonic
mean of precision and recall of a statistical model, provides us with a metric
of success of the classification. The parameters were selected by performing
informal parameter search. Random Forest was the algorithm of choice for
our analysis due to interpretability of the resulting models, that allowed us
to track the process that led each particular model to a decoding decision
and due to its previous application to spectrotemporal features (Westner et
al., 2018). We used scikit-learn (Pedregosa et al., 2011) implementation
of the above-mentioned methods with default parameters unless indicated
otherwise.

As the first step of the decoding analysis we estimated which of 11321
electrodes have predictive power. For that we split each electrode’s 400-
sample dataset into 320 samples for training and 80 for prediction estima-
tion. Repeating this procedure 5 times provided us with 400 predictions
that we could compare to the true categories. By running a permutation
test 100000 times on electrodes with randomly permuted class labels we
estimated that 99.999th percentile (equivalent to significance threshold of
p < 0.00001) of Fy score is 0.390278. F; score is an aggregated metric of
the performance of a classifier that combines both the precision (the ratio
of the data samples that truly belong to a category among the ones that
were assigned to that category by the model) and recall (the ratio of data
samples that were correctly identified to belong to a category to the to-

tal number of samples of that category in the dataset) into one number:

recision - recall
Fir=2- P — . In total 787 electrodes had a predictive power
precision + recall

of F1 > 0.390278 in at least one of the categories. For each of those elec-
trodes a Random Forest model was retrained once more on whole data (400
samples instead of 320) and that model was used for calculating feature
importances and, ultimately, for understanding which parts of the recorded
activity were relevant for visual object recognition in human brain.

3.3.2 Feature importance for the analysis of task-relevant
neural activity

During the process of constructing the decision trees, Random Forest relies
on some features more than on the others. We chose Gini impurity (Leo
Breiman, 2017) as a measure of which features should be used to make
the branching decisions in the nodes of a tree. This score, along with the
number of times each particular feature was used across trees, informed us
on the relative importance of each particular feature with respect to other
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features. Gini impurity G is calculated as

=N

G=> p(l—p), (3.1)
=1

where n. is the number of categories and p; is the proportion of class i in
a node. To pick a feature for a parent node, Gini impurity of both child
nodes of that parent are calculated and used to estimate the reduction in
impurity that would be achieved by picking that particular feature as the
branching factor for the node. The feature that decreases impurity the most
is selected to be the branching factor of that parent node. The reduction
in impurity is calculated as

I = Gparent — Gleft child — Gright child (3.2)

and is called node importance. Feature importance of a feature f is esti-
mated by calculating the sum of Gini impurity reductions over all samples
in the dataset that were achieved with the use of a particular feature f
and normalizing it by the total number of samples. Figure 2e is a visual
representation of relative feature importance, color intensity shows the im-
portance of each of 7008 (146 frequencies x48 time bins) spectrotemporal
features from one probe. In total our analysis has produced 787 x 8 such
images — one for each probe-class pair.

The importance map computed as depicted on Figure 2 is an example
of a global map for all 8 categories. The regions that are highlighted on
the map are important for distinguishing between all 8 categories. There
is, however, a way to look at category-specific importances as well. The
final set of nodes of a decision tree, called leaves, are the end-points of the
classification process and each leaf is associated with a certain category. If
we take one TF activity map (TF components are the features) and start
traversing a decision tree following the rules set by the nodes of the tree,
we will end up in a certain leaf. That leaf will be associated with a certain
category, for example, with faces. The fact that we followed the rules and
ended up in that leaf indicates that the TF map we used as the input to
the tree probably comes from a trial where a face stimulus was shown to
the subject. In order to get category-specific feature importance map we
took all the leaves associated with a category, traversed the tree backwards
and tracked all the features that were used on the path from the leaf to the
root of the tree. This way we got a list of features (TF components) that
were used to identify a neural response as belonging to a certain category.
Random Forest feature importance allowed us to identify which sub-regions
of neural activity (TF maps) are relevant for decoding. It showed that only
a small portion of activity is actually crucial for identifying the categories
(see Figure 3).
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Figure 3. Using the importance map to filter out irrelevant activity. The three
rows show three different examples of how filtering of the activity by importance is
beneficial: in patient 23, probe 74 we see that only later portion of the broadband
gamma activity increase was useful for identifying this activity as a response to
the animal stimulus; patient 27, probe 97 shows that although there is an increase
in broadband activity, the actually useful information contained in decrease in the
lower frequency bands; patient 87, probe 52 demonstrates that for decoding this
particular probe’s activity one must focus on the activity in lower frequencies at
specific time and, despite prominent presence, ignore the increase in broadband
gamma. a. Probe’s importance map, color codes the relative importance of each
spectrotemporal feature within the map. b. Full spectrotemporal activity of the
probe, features with importances one standard deviation higher than the average
(in contour) mark the regions of activity that were useful for the decoding model.
c. Activity of the probes filtered by the importance mask, only the relevant activity
is preserved.

o1



To compare importance maps between each other we fit a normal dis-
tribution on the difference between two maps and considered statistically
significant the differences that are bigger than u + 40. One spectrotempo-
ral importance map consists of 7008 values. To filter out false positives we
stipulated that only 1 false positive out of 7008 pixels can be tolerated and
tuned the threshold accordingly. That requirement resulted in the p-value
of 0.0001427 and confidence level of 99.99%, corresponding to 3.89¢, which
we rounded up to ¢ = 4.0.

3.3.3 Hierarchical clustering to reveal types of activity pat-
terns

To further analyze the spectrotemporal signatures elicited by different vi-
sual categories in different parts of human brain we clustered filtered activ-
ity patterns and identified the most prominent groups. The result of this
analysis is shown in the second column of Figure 8. For each category, the
four most populated (in terms of the number of probes) clusters of activity
patterns elicited by this category are shown.

To do the clustering we first took each probe’s category-specific activity
separately by averaging probe’s responses to 50 images of each particular
category in time-frequency domain. We then masked the activity with the
category importance map (as shown on Figure 3), leaving only those features
out of 146 x 48 that have importance score larger that p+ o, where pu is the
average importance score for that category and o is one standard deviation
of the score distribution.

Masked activity patterns were hierarchically clustered using Eq 3.3 to
calculate the distance between a pair of clusters U and V as the maximal
cosine distance between all of the clusters’ member observations (complete
linkage clustering):

u-v

d(U,V) = max (7

Hullllvll) YueU, WweV (3.3)

SciPy (Jones, Oliphant, Peterson, et al., 2001) implementation of the
hierarchical clustering methods was used in this work. Resulting clustering
assignments were visually inspected and corrected.

3.4 The role and diversity of time-frequency pat-
terns of individual locations and area networks
in perceptual categorization

By choosing the machine learning algorithms with subsequent need for inter-
pretability in mind (random forest, hierarchical clustering) and application
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of interpretability techniques (feature importance analysis, visualization) we
were able to extract the knowledge that the model had obtained, present it
in a way that is understandable to a neuroscientist and articulate the neu-
rological insights that the model has found. The three main observations
we made as a result of this analysis were: (a) the difference between re-
sponsiveness of a neural location and its ability to predict an experimental
condition (visual category), (b) existence of monopredictive and polypredic-
tive neural locations, where the former are specialized and only are relevant
for processing specific visual categories, while the latter carry information
that is relevant to decoding of several categories, and (c) to extensively
map and describe time-frequency patterns that are characteristic of cogni-
tive processing of each particular visual category. In this section we present
these findings in full detail.

3.4.1 Feature importance allows to separate out the neural
signals that are predictive of perceptual categorization
from the mixture of stimulus-induced responses

To identify spectrotemporal features that are characteristic of automatic
perceptual categorization of a particular category we relied on time-frequency
(TF) maps of the neural responses of intracranially implanted electrodes.
Out of the total set of 11321 probes 11094 (98%) were responsive (see the
section 3.2.2 on processing of neural data for details) to the stimuli from at
least one of the categories. On one hand this provides us with abundance
of data, on the other raises the question whether all of that activity was
relevant to the processes that encode and process visual input.

Training a decoding model (see the section 3.3.1 on Random Forest as
decoding model) for each of the probes allowed us to dissociate the predictive
probes that exhibited activity that was useful for decoding from the rest of
the responsive probes that did not carry such activity.

Green markers on Figure 4a show the set of probes that are responsive to
the house category, while the blue markers are the probes that are predictive
of that category (4.8%, 535 probes). Decoding models built on the neural
responses of the predictive probes were successful at classifying at least one
perceptual category (F; > 0.39 for one or more classes), focusing on them
in our further analysis allowed to work only with the locations that carry
information relevant to the task of perceptual categorization.

Predictive probes had a heterogeneous distribution in the brain, yet
remained mostly concentrated in visual cortices and inferior temporal re-
gions (76%), from BA17 to BA20, including early visual areas (BA 18, 19),
fusiform gyrus (BA 37) and inferior temporal cortex (BA 20). A major-
ity of the predictive probes were in fusiform cortex (average of 52% over
all categories, Figure 4b), followed by BA 19 (27%), across all category
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Figure 4. Distribution of predictive probes. a. Green markers indicate all
of the probes that were responsive to stimuli from the house category. Blue
markers indicate only the predictive probes that carry information that is relevant
to decoding the neural response as reaction to house stimulus. b. Distribution
of predictive probes over areas within each category (each row sums up to 100%).
Color shows the percentage across categories. c. Distribution of predictive probes
over a category within each area (each column sums up to 100%). Color shows
the percentage across areas.

networks.

Within the primary visual cortex, BA 17 and 18, the scrambled was
the stimulus that elicited most predictive probes (28) amongst all stimulus
categories (Figure 4c), followed by pseudowords (13). Probes predictive of
faces were mostly concentrated in BA19, BA37 and BA20 (72%, 108 out
of 150). The low number of predictive probes in area 17 is explained by the
fact that less than 1% of the implantation sites in the original dataset were
located in primary visual cortex.

o4



Previous studies have shown that perceptual category-selective networks
are located in occipito-temporal cortex (Grill-Spector and Weiner, 2014;
Ishai, Ungerleider, et al., 1999; Malach et al., 1995). To test whether pre-
dictive power of the Random Forest model trained to decode activity of
probes is coherent with known functional processing by cortical networks we
evaluated the selectivity of the predictive power in three known functional
networks: Fusiform Face Area (FFA) (Kanwisher, McDermott, and Chun,
1997), Visual Word Form Area (VWFA) (Cohen et al., 2000) and Parahip-
pocampal Place Area (PPA) (Epstein and Kanwisher, 1998). We checked
whether the probes located in each of these areas and the Random Forest
model trained on these probe’s activity to discriminate between 8 categories
produces the highest predictive power for the category for which this area is
known to be selective. Probes in FFA are associated with facial recognition
and encoding facial information (Parvizi, Jacques, et al., 2012; Ghuman
et al., 2014; Kadipasaoglu et al., 2016; Jonas, Jacques, et al., 2016; Jonas,
Rossion, et al., 2015) and thus we expect their activity to be predictive of
the face category, probes in VWFA should be predictive of characters and
pseudowords categories (Kadipasaoglu et al., 2016; Lochy, Van Reybroeck,
and Rossion, 2016; Hirshorn et al., 2016) and probes in PPA should be
responsive to scenes and houses (Aguirre, Zarahn, and D’esposito, 1998;
Meégevand et al., 2014; Epstein and Kanwisher, 1998; Bastin, Committeri,
et al., 2013).

There were 12 probes in the FFA that were significantly (permutation
test p < le — 4) predictive (classification score F; > 0.39) of a category: 5
were predictive of faces, 4 of animals (which mostly have faces on the im-
age), 2 of pseudowords and 1 of scrambled images. Most probes that were
in FFA and were predictive, carried information of the categories containing
facial features.

There were 8 probes in the VWFA that were predictive of a category:
5 were predictive of pseudowords, 2 of characters and 1 of faces. This
points to the fact that the predictive probes in VWFA are predictive of
the stimuli with written characters on them. These results confirm that
predictive power of a Random Forest model trained on probes activity in
VWFA reflects the functional role known to be carried by this area.

For probes in the PPA results were less selective. There were 23 probes
inside that area that were predictive of a category: 5 were predictive of
houses, 4 of scenes, 5 of characters, 5 of scrambled images, 2 of tools
and 2 of pseudowords. The probes from PPA predicted not only houses and
scenes, but also other categories. However, houses and scenes were among
the categories that the probes from PPA were able to identify successfully
in highest proportion as compared to the other categories.

These confirmatory findings give credibility to the methodology by which
the probes that are identified as predictive of a certain category are involved
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in the processing of the stimuli that belong to that category.

Training per-probe decoding models not only allowed us to identify the
predictive locations, but also to apply feature importance analysis to de-
coding models trained on local activity. Computing the feature importance
across the time-frequency map (4—150 Hz and —500 to 1000 ms) allowed us
to see which parts of neural activity are crucial for the decoding. Overlay-
ing the importance over time-frequency map showed at which frequencies
and at what times the activity that was important for the algorithm has
occurred. This can be applied both on aggregated level, where the impor-
tance map is averaged over probes, and on individual probe level. Figure 3
illustrates the application of probe importance map to filter irrelevant ac-
tivity and obtain spectrotemporal signature of a particular category on a
particular probe. Now we can use the feature importance map as a mask
and perform the analysis of the activity itself, focusing only on the relevant
parts of it. When applicable, this methodology helps to filter out irrelevant
activity and allows to focus on the activity that is important to the scientific
question under investigation.
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Figure 5. Average importance map of each of eight categories over probes predic-
tive of that category. The color shows the relative importance of each spectrotem-
poral feature, indicating how informative that particular feature was for the task
of decoding.

We took an average over importance maps of all individual probes within
each category to obtain the global picture of where the category-specific
activity lies in time and frequency space. Figure 5 summarizes such analysis
and singles out the spectrotemporal signatures that are unique to specific
categories and those that are less selective. From these importance maps we
notice that certain TF components are distinctly present per category, as
for example high (significantly higher than 81 out of 112 regions of interest,
Mann-Whitney U p < 8.9e—7, corrected) importance of the transient theta
activity in all categories, or the almost absence of importance of broadband
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gamma (significantly lower than 10 out of 12 other regions of interest, Mann-
Whitney U p < 8.3e—5, corrected) in the control scrambled condition.

In the following sections we expand our analysis to the comparison of
the feature maps and analyzing the activity in the regions that we have
identified as important.

3.4.2 Polypredictive and monopredictive probes

The analysis revealed two types of neural locations: polypredictive probes
are predictive of multiple visual categories, while monopredictive are useful
for decoding only one out of 8 different types of stimuli revealing a high
degree of specialization (Figure 6b). We considered a probe to be predic-
tive of a category if cross-validation F; score for that category was higher
than 0.39 (see the section 3.3.1 for the details on the threshold selection),
which is a stricter condition than above-chance criterion (F; > 0.125). Fig-
ure 6a shows that polypredictive probes reside mainly (94%, 136 out of
145) in posterior occipital and posterior temporal, while the monopredictive
probes extend, in addition to occupying similar posterior occipital and tem-
poral locations, to frontal cortex (92%, 45 out of 49 probes in this area are
monopredictive) and anterior temporal cortex (88%, 51 out of 58 probes).
Both mono- and polypredictive probes are also observed in parietal cortex.
Monopredictive probes that extend beyond ventral stream and temporal
cortex pertain to the following perceptual categories: faces (orbitofrontal
cortex), animals and pseudowords (dorsofrontal cortex, inferior frontolat-
eral cortex, premotor cortex), and, to a smaller extent, scrambled images
(prefrontal cortex).

The unique association of specific TF feature importance components
with either polypredictive and monopredictive probes was category spe-
cific, as shown in figures 7a to 7h. While all of the data presented on
these figures shows statistically significant differences between monopredic-
tive and polypredictive neural locations, we will focus only on a few that
were supported by the strongest signal in the data. For face stimuli, most
of the feature importance in the early broadband gamma response was sig-
nificantly (40) higher in polypredictive probes as compared to monopredic-
tive probes, indicating that the most useful information for distinguishing
faces from other visual categories is coded in that region of time-frequency
space and is carried by polypredictive probes (Figure 7b). Decoding of
animals and tools relied on the activity patterns produced by monopre-
dictive neural locations in late broadband gamma range (> 300 ms) and
in even later (350 — 600 ms) alpha/beta range, with very little involvement
of the activity of polypredictive probes. Scenes and houses also show
strong feature importance in late alpha and beta band responses of mono-
predictive probes (4o higher). Interestingly, for characters (Figure 7g),
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Figure 6. Anatomical distribution of mono- and polypredictive locations. a: Red
markers are the locations of monopredictive probes, blue markers are the locations
of polypredictive ones. Polypredictive probes (145 unique locations) are mostly
confined to visual areas and temporal lobe (both parts of the ventral stream),
while monopredictive (specialized, 401 unique locations) probes are, in addition
to visual areas, also found in frontal and parietal cortical structures. b: The
histogram shows how many categories are predictable by how many probes.

feature importance in the early broadband gamma range was dominant for
polypredictive probes (40 higher than monopredictive), while the opposite
was true for the pseudowords (Figure 7f) — the late broadband gamma re-
vealed to be dominant for monopredictive probes, also note the difference
in the anatomical locations that were the most useful for the decoding of
the pseudowords compared to the locations that were useful for decoding
characters. Pseudowords also elicited a significantly stronger TF feature
importance in monopredictive probes in late (350 — 750 ms) low-frequency
(4 — 12 Hz) range, similar to animal and tool stimulus categories. Finally,
an interesting observation was that animals and faces share most of their
polypredictive probes (51%) indicating a large overlap of categorization net-
works of these two categories.

3.4.3 Further decomposition of important activity reveals
clusters of distinct time-frequency patterns

We ran clustering analysis of the probes predictive of a category based on
their activity to see which probes in the category-network behave in a similar
way. Left column of Figure 8 shows an averaged feature importance map for
a given category. We look into the regions of the time-frequency map that
are indicated as important by the feature importance map, extract baseline-
normalized activity in those regions and cluster the probes according to that
activity using hierarchical complete linkage clustering with cosine distance
(see the section 3.3.3 on hierarchical clustering for details). The second
column of Figure 8 shows the activity of four most populated clusters for
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Figure 7. Statistically significant differences between the importance of mono-
predictive and polypredictive probes’ activity. Gray regions indicate the areas of
TF spectrum where both monopredictive and polypredictive probes exhibit impor-
tant (20 from the mean) activity. On top of it, if one of the groups is statistically
significantly (40 difference) more important than another, the region is colored
with blue (polypredictive) or red (monopredictive) to show which of two kinds of
neural specialization dominates this TF region in terms of importance. For exam-
ple decoding of scenes (d) involves early theta activity of polypredictive (blue)
probes, followed broadband gamma activity that is significantly important (gray),
and is slightly dominated by monopredictive (red) probes, then followed by late
alpha activity produced predominantly by monopredictive neural locations. a:
house, b: face, c¢: animal, d: scene, e: tool, f: pseudoword, g: characters,
f: scrambled.

each category. Each cluster represents the activity pattern exhibited by the
probes in that cluster. Only the probes whose activity had predictive power
(F1 > 0.39) are included in this analysis. As the final step we identified
the anatomical locations of the probes from each cluster to see whether
difference in the activity patterns could be attributed to the functional
regions of the brain. The visualization of this step in the last two columns
of Figure 8.

This analysis allowed us make a number of global and category-specific
observations. The set of visual categories presented in our data is diverse
enough to consider category-specific findings to be general and emerge under
any comparable set of visual stimuli.

The first global observation was that it is not only broadband gamma
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Figure 8. Detailed analysis of spectral activity of (a) animals, (b) faces, (c)
pseudowords and (d) scrambled images. Leftmost column contains the impor-
tance maps extracted from Random Forest models and shows where in time and
frequency the important activity is. Second column visualizes the four largest (by
the number of recording sites) clusters of activity patterns inside those spectrotem-
poral regions that are deemed important. The numbers in the top right corner
of each cluster’s activity pattern show the average predictive power (F; score) of
the probes in that cluster and proportion of polypredictive locations that exhib-
ited this particular pattern of activity. Note how every cluster has a designated
color: green, blue, red or black. This color of the cluster matches the color of MNI
location markers in the last two columns, that show sagittal and dorsal views of
the brain. White markers show the probes that have predictive power, but their
activity pattern does not belong to any of the four major clusters.

activity that is useful for the decoder’s (Random Forest) performance,
but low-frequency activity also contributed significantly (41% of predictive
probes exhibited only low-frequency activity in the regions of importance),
sometimes overshadowing the activity of higher frequency bands altogether
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(for face and scrambled stimuli low frequency activity was significantly
more important than broadband gamma activity, Mann-Whitney U test
p < le—7, corrected). Most clusters were composed of a combination of
low and high-frequency components (Figure 8, second column) and were
mostly (87%) located in occipito-temporal cortices, though some electrodes
in parietal and frontal cortex (7%) also appeared to contribute with pre-
dictive responses in the decoding process (Figure 8, two right columns),
especially for such stimulus categories as animal and pseudoword.

The second observation spanning across all categories was that the clas-
sifier used not only the increases in power to perform the classification,
but also relied on power decreases in different brain networks (7 out of 32
dominant activity clusters consisted solely from the activity patterns charac-
terized by power decrease). The most prominent examples are the clusters
faces-2 (Figure 8b), animals-2 (Figure 8a), tools-2, pseudowords-1,
pseudowords-2 (Figure 8c), scrambled-1 and scrambled-2 (Figure 8d).
For example, to decode face or pseudowords from the activity of the blue
cluster network, the RF classifier used broadband gamma power decreases
located in posterior inferior temporal cortex and inferior occipital gyrus.
None of the probes for which the decrease in activity was identified as
important for decoding were located in classically defined Default Mode
Network (Buckner, Andrews-Hanna, and Schacter, 2008; Raichle, 2015).

Across all categories, the earliest component that often appeared in clus-
ters was the brief power increase (mean non-zero power increase was 2.8
times the baseline in the region of interest) in the low-frequency interval
(4-25 Hz), which for one group of probes can be associated to an almost
instantaneous broadband gamma power increase (8b, cluster 3, mean broad-
band gamma increase of 1.9 times the baseline), but remains the only source
of important activity for another group of probes (8b, cluster 1).

Studying the anatomical locations of the probes belonging to different
clusters of activity revealed interesting observations. Figure 8c, pseudowords,
clusters 1 and 3 show a clear example how clustering by activity patterns
leads to assigning the probes into functionally different anatomical areas.
The gamma-band increase signature captured by cluster 3 occurs only in
the left hemisphere (red markers on Figure 8c), the late theta-alpha power
decrease captured by cluster 1 also occurs only in the left hemisphere (green
markers) and is spatially clearly distinct from probes in cluster 3. Because
it is known that pseudoword stimuli elicit top-down language-related (or-
thographic, phonological and semantic) analysis, which elicits highly left-
lateralized networks identifiable in iEEG recordings (Juphard et al., 2011;
Mainy et al., 2008), we know that this observation reflects a functional
brain process. This dissociation in both the spectrotemporal and anatomi-
cal domains provides us with valuable data on the locations and associated
activity patterns emerging during automatic perceptual categorization and
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highlights the benefit of disentangling the activity into functionally and
anatomically disassociated clusters.
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Figure 9. Comparison of predictive power of the electrodes from three different
sets of features: full spectrum (4 — 150 Hz), broadband gamma alone (50 — 150
Hz) and lower frequencies alone (4 — 50 Hz) across categories. The bracket with
the p-value indicates a significant difference according to Mann—Whitney U test.

Finally, the relevance of the different components in the TF domain
for the Random Forest classification process was assessed. Specifically,
we tested whether the activity in the broadband gamma range, commonly
present on most clusters across categories, is in general the most valuable
neural signature for category networks as compared to the low-frequency
parts of the spectrum. To test whether broadband gamma was solely the
most informative frequency interval we statistically compared predictive
power of three intervals: broadband gamma (50 — 150 Hz), low-frequency
(4 — 50 Hz) and full spectrum (4 — 150 Hz). Overall, across 7 perceptual
categories out of 8 (except for scenes), using the full spectrum was more
informative than using the broadband gamma interval or the low-frequency
interval alone (Mann—Whitney U test, p < 0.001563, corrected to the num-
ber of clusters compared, see Figure 9), which is in line with the results
reported by K. J. Miller et al. (2016). Importantly, for scrambled images
and faces the broadband gamma carried less (Mann-Whitney U p < le—7,
corrected) decoding-relevant information than the lower frequencies.
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3.5 Significance of bottom-up approach to the
analysis of human intracerebral neural activity

In this chapter we explored the bottom-up approach to the analysis of
human intracerebral neural activity. Due to a rich dataset and powerful
methodology we were able to uncover facts about neural processing of au-
tomatic visual categorization that we would not necessarily address in a
hypothesis-driven study. Previous works have shown where and when per-
ceptual category information can be decoded from the human brain, our
study adds to that line of research by identifying spectrotemporal patterns
that contribute to category decoding without the need to formulate a pri-
ori hypothesis on which spectral components and at which times are worth
investigating.

The classifier model first allowed us to globally identify two types of neu-
ral responses: those that were predictive of a certain category and those that
did not predict any category despite eliciting strong amplitude modulation
across multiple frequency bands. Surprisingly, when comparing the level of
predictability of probe responses we found that only 4.8% of the responsive
probes were predictive of a category. This very low percentage highlights an
important fact regarding the level of “selectivity” of a neural responses. In
this decoding approach, the level of single-probe neural response selectivity
depends on the diversity and overall quantity of the comparison /reference
group to which it is compared to. Stimulus-induced neural signal selectivity
is thus a graded quality that can be assessed through multiple comparisons
with a broad variety of stimulation conditions. This result also implies
that although any stimulus can elicit a local neural response throughout
the cerebral cortex, in the light of our results, there is a high probability of
it being non-predictive of any of the categories or being polypredictive of
several categories at once.

In line with a vast literature on the localization of category related net-
works (Kanwisher, McDermott, and Chun, 1997; Epstein, A. Harris, et al.,
1999; Malach et al., 1995; Haxby, Gobbini, et al., 2001; Ishai, Ungerleider,
et al., 1999; Cohen et al., 2000; Peelen, Fei-Fei, and Kastner, 2009; Grill-
Spector and Weiner, 2014; Tanaka, 1996; DiCarlo, Zoccolan, and Rust,
2012) predictive probes concentrated mostly in the inferior temporal cor-
tex, namely the fusiform gyrus (BA 37), yet surprisingly for some categories,
probes in primary visual cortex were also predictive of these categories. This
effect is probably related to the specifics of the physical content of certain
images that uniquely characterize certain categories amongst all others, as
for example the content in high-contrast edge information in scrambled and
written text stimuli.

Predictive probes were subsequently classified according to their level
of selectivity towards a single or multiple visual categories. Polypredictive
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probes (36%) clustered in visual cortices and inferior temporal cortex and
were associated with early spectral components (< 300 ms) such as broad-
band gamma power increases and a transient theta burst shortly after stim-
ulus presentation. Monopredictive probes (64%) were abundant in these
same regions, but extending uniquely in frontal, parietal, superior temporal
and anterior limbic cortex. Their activity was strongly associated with the
later (> 300 ms) time and with power suppression of spectral importance
features, versus baseline, in the theta (4 — 7 Hz), alpha (8 — 15 Hz) and
beta bands (16 —40 Hz). In a subgroup of probes the associated power sup-
pression of the feature importances extended into the broad gamma band
(50 — 150 Hz).

Importantly, the capacity to ascribe category selectivity to predictive
probes (mono vs polypredictive probes) arises from the fact that the de-
coding model was trained to discriminate between all 8 categories simulta-
neously. The separation between mono and polypredictive probes revealed
specific effects in terms of network localization and time-frequency compo-
nents. The high concentration of polypredictive probes (and local networks)
in early visual cortices, from primary visual cortex up to inferior temporal
cortex is coherent with the idea that networks in the ventral visual stream
progressively integrate more complex features into object representations,
thus becoming progressively more selective, and converge within median
temporal lobe to more stimulus-invariant representations (R. Q. Quiroga et
al., 2005). This progressive information integration by spectral features of
neuronal responses across the visual hierarchy has been recently connected
with the computations carried out by deep convolutional neural networks
trained to solve the task of visual recognition (Kuzovkin et al., 2018).

Globally, the random forest data classification provided results that are
coherent with current knowledge on 1) the implication of networks located
in visual cortex and inferior temporal cortex in processing visual categories,
2) the timing of object categorization in the human brain and 3) the role of
broadband gamma responses in processing category-selective information
within these networks. Previous studies have shown that certain stim-
ulus categories elicit clustered cortical responses of highly localized net-
works in the occipito-temporal ventral stream such as the fusiform-face-area
(FFA) and the visual-word-form area (VWFA) (Kanwisher, McDermott,
and Chun, 1997; Cohen et al., 2000). Yet, other studies have broadened
this scope by showing that certain categories, as for example faces, rely on
the involvement of a larger brain-wide distributed network (Ishai, Schmidt,
and Boesiger, 2005; Vidal, Tomas Ossandon, et al., 2010). Our classifica-
tion analysis shows that the spatial extent of this network distribution is
category specific, certain stimuli eliciting larger network responses, such as
for faces, animals and pseudowords, as compared to scenes, houses and
scrambled images which concentrate in the fusiform cortex, the parahip-
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pocampal cortex and primary visual cortex respectively.

Our results largely agree with previous works trying to decode visual ob-
ject categories over time with magnetoencephalography (MEG) (T. Carlson
et al., 2013; Radoslaw Martin Cichy, Pantazis, and Oliva, 2014) or intracra-
nial recordings (Liu et al., 2009). All these studies converge on the result
that perceptual categories can be decoded from human brain signals as
early as 100 ms. Our current work goes a step beyond these previous in-
vestigations by demonstrating which spectral components underlie this fast
decoding. Previous intracranial studies have also shown that broadband
gamma is modulated by information about object categories (Vidal, Tomas
Ossandon, et al., 2010; Privman et al., 2007; Fisch et al., 2009). Moreover,
broadband gamma has been suggested as a proxy to population spiking
output activity (Manning et al., 2009; Ray and Maunsell, 2011; Lachaux,
Axmacher, et al., 2012; Ray, Crone, et al., 2008). It has since then been con-
sidered as a hallmark of local population processing (Parvizi and Kastner,
2018). Our classification results however show that broadband gamma is not
the sole selectivity marker of functional neural processing, and that higher
decoding accuracy can be achieved by including low-frequency components
of the spectrum. For certain stimulus categories, as scrambled images, the
broadband gamma range is even outperformed by the predictive power of
the low-frequency range.

To understand which spectral components play a specific role in stimu-
lus categorization we analyzed the decision process that drives the decoding
model and identified the combined spectrotemporal regions that are infor-
mative for the output of the random forest classification procedure. This
allowed us 1) to identify the category-selective spectral components of high
importance for the automatic visual categorization process, and 2) identify
the correlates functional involvement of positive as well as negative power
modulations (increases and decreases versus baseline) in early and late time
windows of neural processing involved in visual categorization.

While the distinctive activity of polypredictive neural locations is mostly
reflected by early TF components (i.e. broadband gamma and theta burst
in faces), the sustained decrease in power in the alpha/beta band was ex-
tended in space and time. This process is probably dependent on the degree
of difficulty for the networks in reaching a perceptual decision and which
appeals to the involvement of top-down processing required to resolve per-
ceptual ambiguity elicited by the different stimulus categories. For example,
animal and tool stimuli are highly diverse in their physical image struc-
ture, as compared to face stimuli. This affects the efficiency of bottom-up
process in extracting category information, often associated with increase
in gamma activity, and probably in parallel triggers top-down processes
through selective activity modulation in low-frequency channels (Bastos et
al., 2015). In our data, this latter phenomenon could be mirrored by a de-
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crease of predictive power in the low-frequency range. Studies have shown
that power modulations reflect changes in network connectivity (Tewarie
et al., 2018) and that top-down processes, eliciting a decrease in power in
the alpha-beta band, are accompanied by an increase in distant network
connectivity (Gaillard et al., 2009).

Finally, we also show that certain probes elicit decreased broadband
gamma responses (versus baseline) while representing a significant feature
importance for the classification model. It has been shown that neural activ-
ity in the Default Mode Network can be negatively modulated by attending
sensory stimulation (Buckner, Andrews-Hanna, and Schacter, 2008), and
intracranial studies have found that this was reflected by decreases (versus
baseline) in the broad gamma range (Tomas Ossandon et al., 2011; Jerbi et
al., 2010; Dastjerdi et al., 2011). Here we found no evidence of such power
decreases in probes located in the DMN (Buckner, Andrews-Hanna, and
Schacter, 2008). However, the random forest classifier singled-out broad
spectral patterns of power decreases at probes located in visual regions and
beyond for categories faces, pseudowords and characters. This is the
first time, to our knowledge, that power decreases in the broadband gamma
range outside the DMN have been associated with highly functional neural
signal classification of perceptual categories. Their functional significance
should be studied in the future as they could reflect an important phe-
nomenon of communication regulation between networks during perceptual
decision making of visual categories.

Expanding on this work and established methodology by including more
subject data in the future might allow us to make a transition from the
observations of local activity and the analysis of its role to being able to de-
tect signatures of global decision-making processes. It is possible that these
signatures would be reflected in specific spectral fingerprints as many classic
theories would suggest (Rodriguez et al., 1999; F. Varela et al., 2001; Engel,
Fries, and Singer, 2001; Siegel, Donner, and Engel, 2012). The methodology
proposed in this study can facilitate the search of those fingerprints with-
out the need to formulate a priori hypothesis about which spectrotemporal
components are worth investigating.
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Chapter 4

Representational similarities
between biological visual processing
and artificial neural networks inform
on structural organization of human
visual cortex

In the previous chapter we have demonstrated a way to interpret an auto-
matically built model to gain knowledge about neurological mechanisms on
the level of local field potentials. In this chapter we move to a higher level of
abstraction and employ machine learning and interpretability to peek into
functional organization of human visual cortex. Using a metric based on
representational similarity analysis we compare the activations of biological
neurons in the layers of human visual cortex with the activations of artificial
neurons in the layers of a deep convolutional neural network. This compari-
son allows us to find an alignment between those two hierarchical structures
and to investigate which spectrotemporal regions of human brain activity
are aligned the best, confirming the role of high gamma activity in visual
processing. Using deconvolution technique to interpret the behavior of the
DCNN we were able to visualize visual inputs that the artificial neurons are
tuned to and observe the similarities with the reported tuning of biological
neurons when processing visual inputs.

4.1 The search for the model of
human visual system

Biological visual object recognition is mediated by a hierarchy of increas-
ingly complex feature representations along the ventral visual stream (Di-
Carlo, Zoccolan, and Rust, 2012). Intriguingly, these transformations are
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matched by the hierarchy of transformations learned by deep convolutional
neural networks (DCNN) trained on natural images (Giiclii and Gerven,
2015). It has been shown that DCNN provides the best model out of a wide
range of neuroscientific and computer vision models for the neural represen-
tation of visual images in high-level visual cortex of monkeys (Daniel LK
Yamins, Hong, et al., 2014) and humans (Khaligh-Razavi and Kriegeskorte,
2014). Other studies with functional magnetic resonance imaging (fMRI)
data have demonstrated a direct correspondence between the hierarchy of
the human visual areas and layers of the DCNN (Giiglii and Gerven, 2015;
Eickenberg et al., 2016; Seibert et al., 2016; Radoslaw Martin Cichy, Khosla,
et al., 2016). In sum, the increasing feature complexity of the DCNN cor-
responds to the increasing feature complexity occurring in visual object
recognition in the primate brain (Kriegeskorte, 2015; Daniel LK Yamins
and DiCarlo, 2016).

However, fMRI based studies only allow one to localize object recogni-
tion in space, but neural processes also unfold in time and have charac-
teristic spectral fingerprints (i.e. frequencies). With time-resolved mag-
netoencephalographic recordings it has been demonstrated that the corre-
spondence between the DCNN and neural signals peaks in the first 200 ms
(Radoslaw Martin Cichy, Khosla, et al., 2016; Seeliger et al., 2017). Here
we test the remaining dimension: that biological visual object recognition
is also specific to certain frequencies. In particular, there is a long-standing
hypothesis that especially gamma band (30 — 150 Hz) signals are crucial for
object recognition (Singer and Gray, 1995; Singer, 1999; Fisch et al., 2009;
Tallon-Baudry, Bertrand, et al., 1997; Tallon-Baudry and Bertrand, 1999;
Lachaux, Rodriguez, et al., 1999; Wyart and Tallon-Baudry, 2008; Lachaux,
George, et al., 2005; Vidal, Chaumon, et al., 2006; Herrmann, Munk, and
Engel, 2004; Srinivasan et al., 1999; Levy et al., 2015). More modern views
on gamma activity emphasize the role of the gamma rhythm in establishing
a communication channel between areas (Fries, 2005; Fries, 2015). Fur-
ther research has demonstrated that especially feedforward communication
from lower to higher visual areas is carried by the gamma frequencies (Van
Kerkoerle et al., 2014; Bastos et al., 2015; Michalareas et al., 2016). As
the DCNN is a feedforward network one could expect that the DCNN will
correspond best with the gamma band activity. In this work we used the
DCNN as a computational model to assess whether signals in the gamma
frequency are more relevant for object recognition than other frequencies.

To empirically evaluate whether gamma frequency has a specific role in
visual object recognition we assessed the alignment between the responses
of layers of a commonly used DCNN and the neural signals in five distinct
frequency bands and three time windows along the areas constituting the
ventral visual pathway. Based on the previous findings we expected that:
mainly gamma frequencies should be aligned with the layers of the DCNN;
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the correspondence between the DCNN and gamma should be confined to
early time windows; the correspondence between gamma and the DCNN
layers should be restricted to visual areas. In order to test these predictions
we capitalized on direct intracranial depth recordings from 100 patients with
epilepsy and a total of 11293 electrodes implanted throughout the cerebral
cortex.

We observe that activity in the gamma range along the ventral pathway is
statistically significantly aligned with the activity along the layers of DCNN:
gamma (31 — 150 Hz) activity in the early visual areas correlates with the
activity of early layers of DCNN, while the gamma activity of higher visual
areas is better captured by the higher layers of the DCNN. We also find
that while the neural activity in the theta range (5 — 8 Hz) is not aligned
with the DCNN hierarchy, the representational geometry of theta activity
is correlated with the representational geometry of higher layers of DCNN.

4.2 Simultaneous recordings of human intracorti-
cal responses and of responses of an artificial
neural network to the same visual stimuli

The dataset that was created for this study consists of two components:
recordings of local field potentials in human visual cortex and activations
of artificial neurons of a deep convolutional neural network trained on a
visual recognition task. The raw neurological data was the same as the one
used in Chapter 3, please refer to section 3.2 for the technical details on the
subjects and data acquisition parameters. The preprocessing pipeline was
mostly similar to the one performed in the previous study, however there
were a few differences, please see the section below. Further in this section
we present the protocol we used to obtain activations of artificial neurons
once the artificial neural network was presented with the same visual stimuli
as the the human subjects.

4.2.1 Processing of neural data

The final dataset consists of 2823250 local field potential (LFP) recordings
— 11293 electrode responses to 250 stimuli. To remove the artifacts the
signals were linearly detrended and the recordings that contained values
> 100images; Where Timages is the standard deviation of responses (in the
time window from —500 ms to 1000 ms) of that particular probe over all
stimuli, were excluded from data. All electrodes were re-referenced to a
bipolar reference. For every electrode the reference was the next electrode
on the same rod following the inward direction. The electrode on the deepest
end of each rod was excluded from the analysis. The signal was segmented
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in the range from —500 ms to 1000 ms, where 0 marks the moment when
the stimulus was shown. The —500 to —100 ms time window served as
the baseline. There were three time windows in which the responses were
measured: 50 — 250 ms, 150 — 350 ms and 250 — 450 ms.

We analyzed five distinct frequency bands: 6 (5—8 Hz), a (9—14 Hz),
(15—30 Hz), v (31 — 70 Hz) and T" (71 — 150 Hz). To quantify signal power
modulations across time and frequency we used standard time-frequency
(TF) wavelet decomposition (Daubechies, 1990). The signal s(t) is convo-
luted with a complex Morlet wavelet w(¢, fy), which has Gaussian shape in
time (o) and frequency (os) around a central frequency fy and defined by
o = 1/2m0; and a normalization factor. In order to achieve good time and
frequency resolution over all frequencies we slowly increased the number of

wavelet cycles with frequency (ﬁ was set to 6 for high and low gamma, 5
o

for beta, 4 for alpha and 3 for theta). This method allows obtaining better
frequency resolution than by applying a constant cycle length (Delorme and
Makeig, 2004). The square norm of the convolution results in a time-varying
representation of spectral power, given by: P(t, fo) = |w(t, fo) - s(t)]?.
Further analysis was done on the electrodes that were responsive to the
visual task. We assessed neural responsiveness of an electrode separately
for each region of interest — for each frequency band and time window
we compared the average post-stimulus band power to the average baseline
power with a Wilcoxon signed-rank test for matched-pairs. All p-values from
this test were corrected for multiple comparisons across all electrodes with
the false discovery rate procedure (Genovese, Lazar, and Nichols, 2002). In
the current study we deliberately kept only positively responsive electrodes,
leaving the electrodes where the post-stimulus band power was lower than
the average baseline power for future work. Table 2 contains the numbers
of electrodes that were used in the final analysis in each of 15 regions of
interest across the time and frequency domains.
‘ 0 Q@ I3 ~y r
50 —250 ms | 1299 709 269 348 504
150 — 350 ms | 1689 783 260 515 745
250 —450 ms | 1687 802 304 555 775

Table 2. Number of positively responsive electrodes in each of the 15 regions of
interest in a time-resolved spectrogram.

Each electrode’s Montreal Neurological Institute coordinate system (MNI)
coordinates were mapped to a corresponding Brodmann brain area (Brod-
mann, 1909) using Brodmann area atlas contained in MRICron (Rorden,
2007) software.

To summarize, once the neural signal processing pipeline is complete,
each electrode’s response to each of the stimuli is represented by one number
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—the average band power in a given time window normalized by the baseline.
The process is repeated independently for each time-frequency region of
interest.

4.2.2 Processing of DCNN data

We feed the same images that were shown to the test subjects to a deep
convolutional neural network (DCNN) and obtain activations of artificial
neurons (nodes) of that network. We use Caffe (Jia et al., 2014) imple-
mentation of AlexNet (Krizhevsky, Sutskever, and G. E. Hinton, 2012)
architecture (see Figure 14) trained on ImageNet (Russakovsky et al., 2015)
dataset to categorize images into 1000 classes. Although the image cat-
egories used in our experiment are not exactly the same as the ones in
the ImageNet dataset, they are a close match and DCNN is successful in
labelling them.

The architecture of the AlexNet artificial network can be seen on Figure
14. It consists of 9 layers. The first is the input layer, where one neuron
corresponds to one pixel of an image and activation of that neuron on a
scale from 0 to 1 reflects the color of that pixel: if a pixel is black, the cor-
responding node in the network is not activated at all (value is 0), while a
white pixel causes the node to be maximally activated (value 1). After the
input layer the network has 5 convolutional layers referred to as convi1-5.
A convolutional layer is a collection of filters that are applied to an image.
Each filter is a 2D arrangement of weights that represent a particular visual
pattern. A filter is convolved with the input from the previous layer to pro-
duce the activations that form the next layer. For an example of a visual
pattern that a filter of each layer is responsive to, please see Figure 14b.
Each layer consists of multiple filters and we visualize only one per layer
for illustrative purposes. A filter is applied to every possible position on
an input image and if the underlying patch of an image coincides with the
pattern that the filter represents, the filter becomes activated and translates
this activation to the artificial neuron in the next layer. That way, nodes
of convl tell us where on the input image each particular visual pattern
occurred. Figure 14b shows an example output feature map produced by a
filter being applied to the input image. Hierarchical structure of convolu-
tional layers gives rise to the phenomenon we are investigating in this work
— increase of complexity of visual representations in each subsequent layer of
the visual hierarchy: in both the biological and artificial systems. Convolu-
tional layers are followed by 3 fully-connected layers (fc6-8). Each node in
a fully-connected layer is, as the name suggests, connected to every node of
the previous layer allowing the network to decide which of those connections
are to be preserved and which are to be ignored. For both convolutional and
fully-connected layers we can apply deconvolution (Zeiler and Fergus, 2014)
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technique to map activations of neurons in those layers back to the input
space. This visualization gives better understanding of inner workings of
a neural network. FExamples of deconvolution reconstruction for each layer
are given in Figure 14b.

For each of the images we store the activations of all nodes of DCNN.
As the network has 9 layers we obtain 9 representations of each image: the
image itself (referred to as layer 0) in the pixel space and the activation
values of each of the layers of DCNN. See the step 2 of the analysis pipeline
on Figure 10 for the cardinalities of those feature spaces.

4.3 The mapping between the Brodmann areas and
layers of a Deep Convolutional Neural Network

As a result of the preprocessing steps we were left with two sets of responses
to the same set of stimuli: one from a biological system, one from an artifi-
cial one. Our ultimate goal was to compare those responses, but since the
representations were very different a direct comparison was not possible.
To overcome this we used representational similarity analysis — a technique
that relies on the distance measure between the data samples (see taxon-
omy in Table 1 of Section 2.1.3) to provide a way to compare behaviors
of two systems under the same set of stimuli while having different data
representations.

4.3.1 Mapping neural activity to the layers of DCNN

Once we extracted the features from both neural and DCNN responses our
next goal was to compare the two and use a similarity score to map the
brain area where a probe was located to a layer of DCNN. By doing that
for every probe in the dataset we obtained cross-subject alignment between
visual areas of human brain and layers of DCNN. There are multiple deep
neural network architectures trained to classify natural images. Our choice
of AlexNet does not imply that this particular architecture corresponds
best to the hierarchy of visual layers of human brain. It does, however,
provide a comparison for hierarchical structure of human visual system and
was selected among other architectures due to its relatively small size and
thus easier interpretability.

Recent studies comparing the responses of visual cortex with the ac-
tivity of DCNN have used two types of mapping methods. The first type
is based on linear regression models that predict neural responses from
DCNN activations (Daniel LK Yamins, Hong, et al., 2014; Giigli and Ger-
ven, 2015). The second is based on representational similarity analysis
(RSA) (Kriegeskorte, Mur, and P. A. Bandettini, 2008). We used RSA to
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compare distances between stimuli in the neural response space and in the
DCNN activation space (Radoslaw M Cichy et al., 2016).

We built a representation dissimilarity matrix (RDM) of size number of
stimuli x number of stimuli (in our case 250 x 250) for each of the probes
and each of the layers of DCNN. Note that this is a non-standard approach:
usually the RDM is computed over a population (of voxels, for example),
while we do it for each probe separately. We use the non-standard approach
because often we only had 1 electrode per patient per brain area. Given
a matrix RDMeatwre space 5 yalye P{Dl\/lzf?am]re PA in the ith row and jth
column of the matrix shows the Euclidean distance between the vectors v;
and v; that represent images 7 and j respectively in that particular feature
space. Note that the preprocessed neural response to an image in a given
frequency band and time window is a scalar, and hence correlation distance
is not applicable. Also, given that DCNNs are not invariant to the scaling of
the activations or weights in any of its layers, we preferred to use closeness
in Euclidean distance as a more strict measure of similarity. In our case
there are 10 different feature spaces in which an image can be represented:
the original pixel space, 8 feature spaces for each of the layers of the DCNN
and one space where an image is represented by the preprocessed neural
response of probe p. For example, to analyze region of interest of high
gamma in 50 — 250 ms time window we computed 504 RDM matrices on
the neural responses — one for each positively responsive electrode in that
region of interest (see Table 2), and 9 RDM matrices on the activations of
the layers of DCNN. A pair of a frequency band and a time window, such
as “high gamma in 50-250 ms window” is referred to as region of interest in
this work.

The second step was to compare the RDMP™P® P of ecach probe p to
RDMs of layers of DCNN. We used Spearman’s rank correlation as measure
of similarity between the matrices:

pf;;gelp = Spearman(RDMP™Pe P RDM!aver 1), (4.1)
As a result of comparing RDMP™P® P with every RDM'™®*" ! we obtain a
vector with 9 scores: (ppixels, Peonvls - - - » Prcg) that serves as a distributed
mapping of probe p to the layers of DCNN (see step 5 of the analysis pipeline
on Figure 10). The procedure is repeated independently for each probe in
each region of interest. To obtain an aggregate score of the correlation
between an area and a layer the p scores of all individual probes from that
area are summed and divided by the number of p values that have passed
the significance criterion. The data for the Figures 11 and 13 are obtained
in such manner.

Figure 15 presents the results of applying RSA within the DCNN to
compare the similarity of representational geometry between the layers.
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Figure 10. Overview of the analysis pipeline where 250 natural images are pre-
sented to human subjects and to an artificial vision system. The activities elicited
in these two systems are compared to map regions of human visual cortex to lay-
ers of deep convolutional neural network. Step 1: LFP response of each of 11293
electrodes to each of the images is converted into the frequency domain. Activity
evoked by each image is compared to the activity evoked by every other image
and results of this comparison are presented as a representational dissimilarity
matrix (RDM). Step 2: Each of the images is shown to a pre-trained DCNN and
activations of each of the layers are extracted. Each layer’s activations form a
representation space, in which stimuli (images) can be compared to each other.
Results of this comparison are summarized as a RDM for each DCNN layer. Step
3: Subject’s intracranial responses to stimuli are randomly reshuffled and the anal-
ysis performed in step 1 is repeated 10000 times to obtain 10000 random RDMs
for each electrode. Step 4: Each electrode’s MNI coordinates are used to map the
electrode to a Brodmann area. The figure also gives an example of electrode im-
plantation locations in one of the subjects (blue circles are the electrodes). Step
5: Spearman’s rank correlation is computed between the true (non-permuted)
RDM of neural responses and RDMs of each layer of DCNN. Also 10000 scores
are computed with the random RDM for each electrode-layer pair to assess the
significance of the true correlation score. If the score obtained with the true RDM
is significant (the value of p < 0.001 is estimated by selecting a threshold such
that none of the probes would pass it on the permuted data), then the score is
added to the mapping matrix.The procedure is repeated for each electrode and
the correlation scores are summed and normalized by the number of electrodes
per Brodmann area. The resulting mapping matrix shows the alignment between
the consecutive areas of the ventral stream and layers of DCNN.
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To assess the statistical significance of the correlations between the RDM
matrices we ran a permutation test. In particular, we reshuffled the vector of
brain responses to images 10000 times, each time obtaining a dataset where
the causal relation between the stimulus and the response is destroyed. On
each of those datasets we ran the analysis and obtained Spearman’s rank
correlation scores. To determine score’s significance we compared the score
obtained on the original (unshuffled) data with the distribution of scores
obtained with the surrogate data. If the score obtained on the original
data was bigger than the score obtained on the surrogate sets with p <
0.001 significance, we considered the score to be significantly different. The
threshold of p = 0.001 is estimated by selecting such a threshold that on
the surrogate data none of the probes would pass it.

To size the effect caused by training artificial neural network on natural
images we performed a control where the whole analysis pipeline depicted
on Figure 10 is repeated using activations of a network that was not trained
— its weights are randomly sampled from a Gaussian distribution A(0,0.01).

For the relative comparison of alignments between the bands and the
noise level estimation we took 1,000 random subsets of half of the size of
the dataset. Each region of interest was analyzed separately. The alignment
score was calculated for each subset, resulting in 1,000 alignment estimates
per region of interest. This allowed us to run a statistical test between each
pair of regions of interest to test the hypothesis that the DCNN alignment
with the probe responses in one band is higher than the alignment with
the responses in another band. We used Mann-Whitney U test (Mann
and Whitney, 1947) to test that hypothesis and accepted the difference as
significant at p-value threshold of 0.005 Bonferroni corrected (Dunn, 1961)
to 2.22e—5.

4.3.2 Quantifying properties of the mapping

To evaluate the results quantitatively we devised a set of measures specific
to our analysis. Volume is the total sum of significant correlations (see
Equation 4.1) between the RDMs of the subset of layers L and the RDMs
of the probes in the subset of brain areas A:

1/ areas A probe p
layers Z Z Z layer Lo (42)

a€A l€L peSsy

where A is a subset of brain areas, L is a subset of layers, and S} is the set
of all probes in area a that significantly correlate with layer [.
We express volume of visual activity as

VA:{17,18,19,37,20}
L=all layers )

(4.3)
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which shows the total sum of correlation scores between all layers of the
network and the Brodmann areas that are located in the ventral stream:
17,18,19,37, and 20.

Visual specificity of activity is the ratio of volume in visual areas and
volume in all areas together, for example visual specificity of all of the
activity in the ventral stream that significantly correlates with any of layers

of DCNN is
[ A={17,18,19,87,20}
SA:{17,18,19,37,20} _ "L=all layers (4 4)
L=all layers - 1 A=all areas ’
L=all layers

The measures so far did not take into account hierarchy of the ventral
stream nor the hierarchy of DCNN. The following two measures are the
most important quantifiers we rely on in presenting our results and they do
take hierarchical structure into account.

The ratio of complex visual features to all visual features is defined as the
total volume mapped to layers convb, £c6, £c7 divided by the total volume
mapped to layers convl, conv2, conv3, convb, fc6, fc7:

Vit

={convb,fc6,fc7}

cA (4.5)

L={conv1,conv2,conv3,convb,fc6,fc7}

Note that for this measure layers conv4 and fc8 are omitted: layer conv4
is considered to be the transition between the layers with low and high
complexity features, while layer £c8 directly represents class probabilities
and does not carry visual representations of the stimuli (if only on very
abstract level).

Finally, the alignment between the activity in the visual areas and ac-
tivity in DCNN is estimated as Spearman’s rank correlation between two
vectors each of length equal to the number of probes with RDMs that sig-
nificantly correlate with an RDM of any of DCNN layers. The first vector
is a list of Brodmann areas BA? to which a probe p belong if its activity
representation significantly correlates with activity representation of a layer
l:

(4.6)

is significant ac-
Aalign = {BAp ‘ Vp = p(RDMP,RDMl> cordigng mt the }

permutation test

A is ordered by the hierarchy of the ventral stream: BA17, BA18, BA19,
BA37, BA20. Areas are coded by integer range from 0 to 4. The second
vector lists DCNN layers L? to which the very same probes p were assigned:

is significant ac-
Latign = {Lp |'¥p 3 1: p(RDMP, RDM!) cording 1o the }

permutation test

(4.7)

Layers of DCNN are coded by integer range from 0 to 8. We denote Spear-
man rank correlation of those two vectors as alignment

Palign = Spearman(Aaligm Lalign)- (48)
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We note that although the hierarchy of the ventral stream is usually not
defined through the progression of Brodmann areas, such ordering neverthe-
less provides a reasonable approximation of the real hierarchy (Lerner et al.,
2001; Grill-Spector and Malach, 2004). As both the ventral stream and the
hierarchy of layers in DCNN have an increasing complexity of visual repre-
sentations, the relative ranking within the biological system should coincide
with the ranking within the artificial system. Based on the recent sugges-
tion that significance levels should be shifted to 0.005 (Dienes, A. Field,
et al., 2017) and after Bonferroni-correcting for 15 time-frequency windows
we accepted alignment as significant when it passed p < 0.0003(3).

4.4 Alignment between the layers of the DCNN
and layers of human visual cortex

This section present the results and observations that were achieved by com-
paring the two systems of vision. Here is a brief summary of our findings:
activity in gamma band is aligned better than other frequencies to the hi-
erarchical structure of a deep convolutional neural network, this alignment
is mostly attributed to having two types of layer in DCNN: convolutional,
that are representationally more similar to the activity of early visual ar-
eas, and fully connected layers, that are more similar to later visual and
temporal areas of the ventral stream. The section describes the evidence in
favor of those conclusion and presents more granular and deeper analysis
focusing on specific areas of visual cortex and layers of the DCNN.

4.4.1 Activity in gamma band is aligned with the DCNN

We tested the hypothesis that gamma activity has a specific role in visual ob-
ject recognition compared to other frequencies. To that end we assessed the
alignment of neural activity in different frequency bands and time windows
to the activity of layers of a deep convolutional neural network (DCNN)
trained for object recognition. In particular, we used RSA to compare the
representational geometry of different DCNN layers and the activity pat-
terns of different frequency bands of single electrodes (see Figure 10). We
consistently found that signals in low gamma (31—70 Hz) frequencies across
all time windows and high gamma (71 — 150 Hz) frequencies in 150 — 350
ms window are aligned with the DCNN in a specific way: increase of the
complexity of features along the layers of the DCNN was roughly matched
by the transformation in the representational geometry of responses to the
stimuli along the ventral stream. In other words, the lower and higher layers
of the DCNN explained gamma band signals from earlier and later visual
areas, respectively. Figure 11a illustrates assignment of neural activity in
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Figure 11. Mapping of the activity in Brodmann areas to DCNN layers. Un-
derlying data comes from the activity in low gamma (31-70 Hz, panel a) and high
gamma (71-150 Hz, panel b) bands in 150-350 ms time window. On the vertical
axis there are Brodmann areas and the number of significantly correlating probes
in each area out of the total number of responsive probes in that area. Horizontal
axis represents succession of layers of DCNN. Number in each cell of the matrix
is the total sum of correlations (between RDMs of probes in that particular area
and the RDM of that layer) normalized by the number of significantly correlating
probes in an area.
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low gamma band and Figure 11b the high gamma band to Brodmann areas
and layers of DCNN. Most of the activity was assigned to visual areas (areas
17,18, 19, 37, 20). Focusing on visual areas revealed a diagonal trend that
illustrates the alignment between ventral stream and layers of DCNN (see
Figure 13).

4.4.2 Activity in other frequency bands

To test the specificity of gamma frequency in visual object recognition,
we assessed the alignment between the DCNN and other frequencies. Our
findings across all subjects, time windows and frequency bands are summa-
rized on Figure 12a. We note that the alignment in the gamma bands is
also present at the single-subject level (see supplementary Figure 23 and
supplementary materials B.2). Apart from the alignment we looked at the
total amount of correlation and its specificity to visual areas. Figure 12b
shows the volume of significantly correlating activity was highest in the high
gamma range. Remarkably, 97% of that activity was located in visual areas,
which is confirmed by Figure 11 where we see that in the gamma range only
a few electrodes were assigned to Brodmann areas that are not part of the
ventral stream. The detailed mapping results for all frequency bands and
time windows are presented in layer-to-area fashion on Figure 13.
Alignment Specificity

50 - 250 ms @ O C X AN )
150 - 350 ms @ @ -0
250 - 450 ms M I o ®
O 0 By T 0 0« ByYT

© ¥ 2 2 3 © ¥ g 2 3
R R

~ ~

Figure 12. Overall relative statistics of brain responses across frequency bands
and time windows. Panel a shows the alignment between visual brain areas and
DCNN layers (see Equation 4.8). The color indicates the correlation value (p) while
the size of the marker shows the logarithm (so that not significant results are still
visible on the plot) of inverse of the statistical significance of the correlation, dotted
circle indicates p = 0.0003(3) — the Bonferroni-corrected significance threshold
level of 0.005. Panel b shows whether activity in a region of interest is specific
to visual areas (see Equation 4.4): intense red means that most of the activity in
that band and time window happened in visual areas, size of the marker indicates
total volume (Equation 4.2) of activity in all areas. The maximal size of a marker
is defined by the biggest marker on the figure.

The results in the right column of Table 3 show the alignment values
and significance levels for a DCNN that is trained for object recognition
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on natural images. On the left part of Table 3 the alignment between the
brain areas and a DCNN that has not been trained on object recognition
(i.e. has random weights) is given for comparison. One can see that training
a network to classify natural images drastically increases the alignment score
p and its significance. One can see that weaker alignment (that does not
survive the Bonferroni correction) is present in early time window in theta
and alpha frequency range. No alignment is observed in the beta band.

Alignment Alignment
with layers of with layers of
randomly  ini- AlexNet trained
tialized AlexNet on ImageNet
Band Window Palign P-value | palign p-value
0 50-250 ms | 0.0632 0.71 | 0.2257 0.00231575 | *
0 150-350 ms | -0.1013 0.59 | 0.1396 0.08848501
0 250-450 ms | 0.1396 0.59 | 0.0695 0.78400416
o 50-250 ms | -0.2411 0.32 | 0.3366 0.00103551 | *
! 150-350 ms | 0.0000 1.00 | 0.2720 0.13199463
« 250-450 ms - - - -
I} 50-250 ms - — 1 0.4166 0.00397929
Jé] 150-350 ms - -1 0.3808 0.16141286
B 250-450 ms - - - -
v 50-250 ms | 0.1594 0.62 | 0.5979 0.00004623 | ***
~y 150-350 ms | -0.1688 0.34 | 0.5332 0.00000059 | ***
y 250-450 ms | -0.1132 0.56 | 0.5217 0.00001624 | ***
r 50-250 ms | 0.0869 0.42 | 0.2259 0.00222940 | *
r 150-350 ms | -0.0053 0.96 | 0.3200 0.00000051 | ***
r 250-450 ms | -0.1361 0.33 | 0.2688 0.00047999 | *

Table 3. Alignment score paign and the significance levels for all 15 regions of
interest. * indicates the alignments that pass p-value threshold of 0.05 Bonferroni-
corrected to < 0.003(3) and *** the ones that pass 0.005 (Dienes, A. Field, et al.,
2017) Bonferroni-corrected to < 0.0003(3). Note how the values differ between
random (control) network and a network trained on natural images. Visual repre-
sentation of alignment and significance is given on Figure 12a.

In order to take into account the intrinsic variability when comparing
alignments of different bands between each other, we performed a set of
tests to see which bands have statistically significantly higher alignment
with DCNN than other bands. See the section 4.3.1 for details. The results
of those tests are presented in Table 4. Based on these results we draw a
set of statistically significant conclusions on how the alignment of neural
responses with the activations of DCNN differs between frequency bands
and time windows. In the low gamma range (31 — 70 Hz) we conclude that
the alignment is larger than with any other band and that within the low
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gamma the activity in early time window 50 — 250 ms is aligned more than
in later windows. Alignment in the high gamma (71 — 150 Hz) is higher
than the alignment of 6, but not higher than alignment of a. Within the
high gamma band the activity in the middle time window 150 — 350 ms has
the highest alignment, followed by late 250 — 450 ms window and then by
the early activity in 50 — 250 ms window. Outside the gamma range we
conclude that theta band has the weakest alignment across all bands and
that alignment of early alpha activity is higher than the alignment of early
and late high gamma.
0.2079 +0a3s1 6%
0.3352 +0.009 o
0.5652 01053 "0
0.4880 +o0.1650 150
0.4656 +o0.2185 7250
0.2172 +o.1179 >0
0.3116 +0.a11s T
0.2494 +o0.1381 20 > 950, r?°

050’ FSO7 F250

950 2507 P50, 11150’ F250

50 . 150
) «@ ) fy ) ’y
050’ a50, 1-\507 F150, F250
050 a50, F50, F150, F250

9

050 F50 1'\250
) ’

vV V.V V V VYV

Table 4. Comparison of the alignment across regions of interest. Alignment of the
region of interest on the left is statistically significantly larger than the alignments
of the regions of interest on the right. To obtain these results a pairwise comparison
of the magnitude of alignment between the regions of interest was made. First
column enlists significantly aligned regions, their average alignment p score when
estimated on 1000 random subsets of the data (each of the half of the size of the
dataset), and standard deviation of the alignment. On the right side of the table
we list the regions of interest of which the ROI on the left is larger. The hypothesis
was tested using Mann-Whithney U test and only the results with the p-values
that have passed the threshold of 2.2e—5 (0.005 Bonferroni corrected to take into
account multiple comparisons) are presented in the table.

4.4.3 Alignment is dependent on having two types of layers
in DCNN

On figures 11 and 13 one can observe that sites in lower visual areas (17,
18) are mapped to DCNN layers 1 to 5 without a clear trend but are not
mapped to layers 6-8. Similarly areas 37 and 20 are mapped to layers 6-
8 but not to 1-5. Hence we next asked whether the observed alignment
is depending on having two different groups of visual areas related to two
groups of DCNN layers. We tested this by computing alignment within the
subgroups. We looked at alignment only between the lower visual areas (17,
18, 19) and the convolutional layers 1-5, and separately at the alignment
between higher visual areas (37, 20) and fully connected layers of DCNN
(6-8). We observed no significant alignment within any of the subgroups. So
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we conclude that the alignment mainly comes from having different groups
of areas related more or less equally to two groups of layers. The underlying
reason for having these two groups of layers comes from the structure of the
DCNN — it has two different types of layers, convolutional (layers 1-5) and
fully connected (layers 6-8) (See Figures 14a and 14b for a visualization of
the different layers and their learned features and a longer explanation of the
differences between the layers in the 4.5). As can be evidenced on Figure
15 the layers 1-5 and 6-8 of the DCNN indeed cluster into two groups.
Taken together, we observed that early visual areas are mapped to the
convolutional layers of the DCNN whereas higher visual areas match the
activity profiles of the fully connected layers of the DCNN.

pixels convl conv2 conv3 conv4d conv5 fc6 fc7 fc8

pixels 0.4332 0.2117 0.1079 0.1062
convl
conv2
conv3

conv4

conv5

fc60.2117 0.1931 0.4597 0.4169 0.4967
fc70.1079 0.1097 0.3675 0.3611 0.4373 0.5112

fc8{0.1062 0.1680 0.3181 0.3901 0.4542 0.4516

Figure 15. Correlations between the representation dissimilarity matrices of the
layers of the deep convolutional neural network. All scores are significant.

4.4.4 Visual complexity varies across areas and frequencies

To investigate the involvement of each frequency band more closely we an-
alyzed each visual area separately. Figure 16 shows the volume of activity
in each area (size of the marker on the figure) and whether that activity
was more correlated with the complex visual features (red color) or simple
features (blue color). In our findings the role of the earliest area (17) was
minimal, however that might be explained by a very low number of elec-
trodes in that area in our dataset (less than 1%). One can see on Figure 16
that activity in theta frequency in time windows 50 — 250 ms and 150 — 350
ms had large volume and is correlated with the higher layers of DCNN in
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higher visual areas (19, 37, 20) of the ventral stream. This hints at the role
of activity reflected by the theta band in visual object recognition. In gen-
eral, in areas 37 and 20 all frequency bands reflected the information about
high level features in the early time windows. This implies that already
at early stages of processing the information about complex features was
present in those areas.

4.4.5 Gamma activity is more specific to convolutional lay-
ers

We analysed volume and specificity of brain activity that correlates with
each layer of DCNN separately to see if any bands or time windows are
specific to particular level of hierarchy of visual processing in DCNN. Fig-
ure 14 presents a visual summary of this analysis. In section 4.3.2 we
have defined total volume of visual activity in layers L as V1. We used
average of this measure over frequency band intervals to quantify the ac-
tivity in low and high gamma bands. We noticed that while the frac-
tion Fof gamma activity that is mapped to convolutional layers is high
Vo

( L={convl...conv5}

= 0.71), this fraction diminished in fully connected layers

17all band
‘/{aL:ciI;wSl...conVS}
vt
fc6 and fc7 (M = 0.39). Note that £c8 was excluded as it repre-
all bands
L={fc6,fc7}

sents class label probabilities and does not carry information about visual
features of the objects. On the other hand the activity in lower frequency
bands (theta, alpha, beta) showed the opposite trend — fraction of volume in
convolutional layers was 0.29, while in fully connected it grew to 0.61. This
observation highlighted the fact that visual features extracted by convolu-
tional filters of DCNN are more similar to gamma frequency activity, while
the fully connected layers that do not directly correspond to intuitive visual
features, carry information that has more in common with the activity in
the lower frequency bands.

4.5 Extending the methodology beyond the visual
system

The recent advances in artificial intelligence research have demonstrated a
rapid increase in the ability of artificial systems to solve various tasks that
are associated with higher cognitive functions of human brain. One of such
tasks is visual object recognition. Not only do the deep neural networks
match human performance in visual object recognition, they also provide
the best model for how biological object recognition happens (Kriegeskorte,
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2015; Daniel L Yamins et al., 2013; Daniel LK Yamins, Hong, et al., 2014;
Daniel LK Yamins and DiCarlo, 2016). Previous work has established a
correspondence between hierarchy of the DCNN and the fMRI responses
measured across the human visual areas (Giiglii and Gerven, 2015; Eick-
enberg et al., 2016; Seibert et al., 2016; Radoslaw Martin Cichy, Khosla,
et al., 2016). Further research has shown that the activity of the DCNN
matches the biological neural hierarchy in time as well (Radoslaw Martin
Cichy, Khosla, et al., 2016; Seeliger et al., 2017). Studying intracranial
recordings allowed us to extend previous findings by assessing the align-
ment between the DCNN and cortical signals at different frequency bands.
We observed that the lower layers of the DCNN explained gamma band
signals from earlier visual areas, while higher layers of the DCNN, respon-
sive for more complex features, matched with the gamma band signals from
higher visual areas. This finding confirms previous work that has given a
central role for gamma band activity in visual object recognition (Singer
and Gray, 1995; Singer, 1999; Fisch et al., 2009) and feedforward commu-
nication (Van Kerkoerle et al., 2014; Bastos et al., 2015; Michalareas et al.,
2016). Our work also demonstrates that the correlation between the DCNN
and the biological counterpart is specific not only in space and time, but
also in frequency.

The research into gamma oscillations started with the idea that gamma
band activity signals the emergence of coherent object representations (Gray
and Singer, 1989; Singer and Gray, 1995; Singer, 1999). However, this view
has evolved into the understanding that activity in the gamma frequencies
reflects neural processes more generally. One particular view (Fries, 2005;
Fries, 2015) suggests that gamma oscillations provide time windows for
communication between different brain regions. Further research has shown
that especially feedforward activity from lower to higher visual areas is
carried by the gamma frequencies (Van Kerkoerle et al., 2014; Bastos et al.,
2015; Michalareas et al., 2016). As the DCNN is a feedforward network our
current findings support the idea that gamma rhythms provide a channel
for feedforward communication. However, our results by no means imply
that gamma rhythms are only used for feedforward visual object recognition.
There might be various other roles for gamma rhythms (Buzsaki and Wang,
2012; Fries, 2015).

We observed significant alignment to the DCNN in both low and high
gamma bands. However, when directly contrasted the alignment was stronger
for low gamma signals. Furthermore, for high gamma this alignment was
more restricted in time, surviving correction only in the middle time win-
dow. Previous studies have shown that low and high gamma frequencies are
functionally different: while low gamma is more related to classic narrow-
band gamma oscillations, high frequencies seem to reflect local spiking ac-
tivity rather than oscillations (Manning et al., 2009; Ray and Maunsell,
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2011), the distinction between low and high gamma activity has also impli-
cations from cognitive processing perspective (Vidal, Chaumon, et al., 2006;
Wyart and Tallon-Baudry, 2008). In the current work we approached the
data analysis from the machine learning point of view and remained agnos-
tic with respect to the oscillatory nature of underlying signals. Importantly,
we found that numerically the alignment to the DCNN was stronger and
persisted for longer in low gamma frequencies. However, high gamma was
more prominent when considering volume and specificity to visual areas.
These results match well with the idea that whereas high gamma signals re-
flect local spiking activity, low gamma signals are better suited for adjusting
communication between brain areas (Fries, 2005; Fries, 2015).

In our work we observed that the significant alignment depended on the
fact that there are two groups of layers in the DCNN: the convolutional and
fully connected layers. We found that these two types of layers have similar
activity patterns (i.e. representational geometry) within the group but the
patterns are less correlated between the groups (Figure 15). As evidenced in
the data, in the lower visual areas (17, 18) the gamma band activity patterns
resembled those of convolutional layers whereas in the higher areas (37 and
20) gamma band activity patterns matched the activity of fully connected
layers. Area 19 showed similarities to both types of DCNN layers.

Convolutional layers impose a certain structure on the network’s con-
nectivity — each layer consists of a number of visual feature detectors, each
dedicated to finding a certain pattern on the source image. Each neuron
of the subsequent layer in the convolutional part of the network indicates
whether the feature detector associated with that neuron was able to find
its specific visual pattern (neuron is highly activated) on the image or not
(neuron is not activated). Fully connected layers on the other hand, as
the name suggests, connect every neuron of a layer to every neuron in the
subsequent layer, allowing for more flexibility in terms of connectedness
between the neurons. The training process determines which connections
remain and which ones die off. In simplified terms, convolutional layers can
be thought of as feature detectors, whereas fully connected layers are more
flexible: they do whatever needs to be done to satisfy the learning objective.
It is tempting to draw parallels to the roles of lower and higher visual areas
in the brain: whereas neurons in lower visual areas (17 and 18) have smaller
receptive fields and code for simpler features, neurons in higher visual areas
(like 37 and parts of area 20) have larger receptive fields and their activity
explicitly represents objects (Grill-Spector and Malach, 2004; DiCarlo, Zoc-
colan, and Rust, 2012). On the other hand, while in neuroscience one makes
the broad differences between lower and higher visual cortex (Grill-Spector
and Malach, 2004) and sensory and association cortices (Zeki, 1993), this
distinction is not so sharply defined as the one between convolutional and
fully connected layers. Our hope is that the present work contributes to
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understanding the functional differences between lower and higher visual
areas.

Visual object recognition in the brain involves both feedforward and
feedback computations (DiCarlo, Zoccolan, and Rust, 2012; Kriegeskorte,
2015). What do our results reveal about the nature of feedforward and
feedback compoments in visual object recognition? We observed that the
DCNN corresponds to the biological processing hierarchy even in the lat-
est analysed time-window (Figure 12). In a directly relevant previous work
Cichy and colleagues compared DCNN representations to millisecond re-
solved magnetoencephalographic data from humans (Radoslaw Martin Ci-
chy, Khosla, et al., 2016). There was a positive correlation between the layer
number of the DCNN and the peak latency of the correlation time course
between the respective DCNN layer and magnetoencephalography signals.
In other words, deeper layers of the DCNN predicted later brain signals. As
evidenced on Figure 3 in (Radoslaw Martin Cichy, Khosla, et al., 2016), the
correlation between DCNN and magnetoencephalographic activity peaked
between ca 100 and 160 ms for all layers, but significant correlation per-
sisted well beyond that time-window. In our work too the alignment in low
gamma was strong and significant even in the latest time-window 250-450
ms, but it was significantly smaller than in the earliest time-window 50-250
ms. In particular, the alignment was the strongest for low gamma signals
in the earliest time-window compared to all other frequency-and-time com-
binations.

The present work relies on data pooled over the recordings from 100 sub-
jects. Hence, the correspondence we found between responses at different
frequency bands and layers of DCNN is distributed over many subjects.
While it is expected that single subjects show similar mappings (see also
Supplementary Figure 23), the variability in number and location of record-
ing electrodes in individual subjects makes it difficult a full single-subject
analysis with this type of data. We also note that the mapping between
electrode locations and Brodmann areas is approximate and the exact map-
ping would require individual anatomical reconstructions and more refined
atlases. Also, it is known that some spectral components are affected by
the visual evoked potentials (VEPs). In the present experiment we could
not disentangle the effect of VEPs from the other spectral responses as we
only had one repetition per image. However, we consider the effect of VEPs
to be of little concern for the present results as it is known that VEPs have
a bigger effect on low frequency components, whereas our main results were
in the low gamma band.

It must be also noted that the DCNN still explains only a part of the vari-
ability of the neural responses. Part of this unexplained variance could be
noise (Giiglii and Gerven, 2015; Khaligh-Razavi and Kriegeskorte, 2014).
Previous works that have used RSA across brain regions have in general
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found the DCNNs to explain a similar proportion of variance as in our re-
sults (Radoslaw Martin Cichy, Khosla, et al., 2016; Seibert et al., 2016).
It must be noted that the main contribution of DCNN has been that it
can explain the gradually emerging complexity of visual responses along
the ventral pathway, including the highest visual areas where the typical
models (e.g. HMAX) were not so successful (Daniel LK Yamins, Hong,
et al., 2014; Khaligh-Razavi and Kriegeskorte, 2014). Recently it also has
been demonstrated that the DCNN provides the best model for explaining
responses to natural images also in the primate V1 (Cadena et al., 2017).
Nevertheless, the DCNNs cannot be seen as the ultimate model explain-
ing all biological visual processing (Kriegeskorte, 2015; Rajalingham et al.,
2018). Most likely over the next years deep recurrent neural networks will
surpass DCNNs in the ability to predict cortical responses (Kriegeskorte,
2015; Shi et al., 2017).

Intracranial recordings are both precisely localized in space and time,
thus allowing us to explore phenomena not observable with fMRI. In this
work we investigated the correlation of DCNN activity with five broad fre-
quency bands and three time windows. Our next steps will include the
analysis of the activity on a more granular temporal and spectral scale. Re-
placing representation similarity analysis with a predictive model (such as
regularized linear regression) will allow us to explore which visual features
elicited the highest responses in the visual cortex. In this study we have
investigated the alignment of visual areas with one of the most widely used
DCNN architectures — AlexNet. The important step forward would be to
compare the alignment with other networks trained on visual recognition
task and investigate which architectures preserve the alignment and which
do not. That would provide an insight into which functional properties
of DCNN architecture are compatible with functional properties of human
visual system.

To sum up, in the present work we studied which frequency components
match the increasing complexity of representations of an artificial neural
network. As expected by previous work in neuroscience, we observed that
gamma frequencies, especially low gamma signals, are aligned with the lay-
ers of the DCNN. Previous research has shown that in terms of anatomical
location the activity of DCNN maps best to the activity of visual cortex and
this mapping follows the propagation of activity along the ventral stream
in time. With this work we have confirmed these findings and have addi-
tionally established at which frequency ranges the activity of human visual
cortex correlates the most with the activity of DCNN, providing the full
picture of alignment between these two systems in spatial, temporal and
spectral domains.
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Chapter 5

State space visualization informs on
representation of mental concepts in
human brain

Numerous studies in the area of BCI are focused on the search for a bet-
ter experimental paradigm — a set of mental actions that a user can evoke
consistently and a machine can discriminate reliably. Examples of such
mental activities are motor imagery, mental computations, etc. We propose
a technique that instead allows the user to try different mental actions in
the search for the ones that will work best. The system is based on a modi-
fication of the self-organizing map (SOM) algorithm and enables interactive
communication between the user and the learning system through a visual-
ization of user’s mental state space. During the interaction with the system
the user converges on the paradigm that is most efficient and intuitive for
that particular user. Results of two experiments, one allowing muscular
activity, another permitting mental activity only, demonstrate soundness
of the proposed method and empirically validate the performance improve-
ment over the traditional closed-loop feedback approach.

5.1 The search for distinguishable mental patterns

In many BCI experiments, participants are asked to perform certain mental
actions. Consider an experiment, where a person is asked to control a point
on a screen, and have it move to the left. In essense, the subject is requested
to focus on a thought of “moving the point leftwards”. This request is quite
ambiguous — should the user concentrate on the abstract notion of “left”,
engage in motor imagery or think about an unrelated concept?

The problem of choosing the best kind of mental activity for BCI has
been studied by E. A. Curran and Stokes (2003) and Friedrich, Scherer, and
Neuper (2012). Most experiments first propose a particular paradigm and
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then evaluate its average effectiveness on a sample of users. Many paradigms
have been evaluated this way (C. W. Anderson and Sijercic, 1996; Babiloni
et al., 2000; Alivisatos and Petrides, 1997; Allison et al., 2010; Basar et al.,
2007; Cabrera and Dremstrup, 2008; Chochon et al., 1999; E. Curran et al.,
2004). As brain activity for a particular mental action differs across subjects
(M. B. Miller et al., 2012; Ganis, Thompson, and Kosslyn, 2005; Tavor et
al., 2016), any general paradigm will be suboptimal compared a user-specific
one. In this work we propose a method that facilitates self-guided interactive
search for a user-specific paradigm through communication between the user
and the learning system. We demonstrate the feasibility of the approach
on EEG recordings from two separate experiments on muscular and mental
activity. The approach is general and does not depend on the neuroimaging
method.

To achieve our goal we replace the traditional feedback (Pfurtscheller
and Neuper, 2001) with a visualization of the feature space within which
the underlying machine learning algorithm is operating. This visualiza-
tion facilitates a ‘dialogue’ between the learning algorithm and the user
by visually explaining to the user why his current set of mental actions is
suboptimal, which ones are being recognized well by the system and which
ones should be changed. By exploring how their mental actions affect the
visualization, a user can find a suitable mental action for each of the stimuli.
The exploration of the mental state space can go for as long as needed to
find mental actions that the user can produce consistently over time and
that are distinguishable by the algorithm.

5.2 BCI via topology-preserving visualization of
the feature space

At the core of almost any BCI system lies a machine learning algorithm
that classifies user brain signal into desired actions (Lotte et al., 2007). The
algorithm sees the incoming data in a high-dimensional space and operates
in that space. If an algorithm is unable to correctly discern the desired
actions from the signal one can rely on visualization of the data and the
space state to figure out why that is the case. Visualization allows to see
particular data points in the context of other data, and allows to detect
such issues as homogeneous data representation, failure to represent critical
features of the data, biases in the data, insufficient flexibility of the feature
space to present different data points differently, too high variance of the
data points that should belong to the same group, and others. In the case
of classification of mental actions we find that the two most important
aspects a visualization could help evaluate are the cases where the data
points from different classes look too much alike (one mental pattern is too
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similar to another) for the algorithm to differentiate between them, and the
variance of the data within a class — mental patterns that a user produces
for the same action are not consistent and the algorithm is not able to
group them together. With enough simplification we were able to present
such a visualization to the user directly, allowing for a real-time evaluation
of the above-mentioned issues during the training process. This allows the
user to modify his mental activity in accordance with the feedback and
try to produce more consistent and more distinguishable mental patterns.
Figure 17 depicts the interaction process between the user and the proposed
feedback system.

| see that the signal for <= is very
similar to the signal for ==

I should try to think == differently @ @
So.
> -

Figure 17. Real-time interaction process between the system and the user, during
which the user realizes that he must modify his mental activity for one of the
actions to increase the system’s performance.

Direct visualization of the space of mental signals provides more infor-
mation to the user and allows to make more informed decisions than would
be possible with the traditional approach (Pfurtscheller and Neuper, 2001).
If in the case of usual system the subject has no information of why the sys-
tem cannot distinguish the user’s mental states, in the adaptive paradigm,
proposed in this work, the subject can see which mental actions are not
being recognized or are colliding with others, previously attempted, mental
states. The proposed framework naturally addresses a few limitations of
the traditional approach, such as limited number of actions that can be
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trained simultaneously and makes a more efficient use of the training time
by shifting training data class distribution towards more complicated cases.

The concept described above poses several technological constraints on
the choice of the underlying learning algorithm. To facilitate the real-time
feedback loop the algorithm should work in an online setting and be fast
enough to support real-time operation. In order to present the projec-
tion of the feature space to the user the algorithm must be compatible
with topology-preserving dimensionality reduction techniques (Gisbrecht
and Hammer, 2015). In this section we describe a method that satisfies
those requirements.

5.2.1 Self-organizing map

Self-organizing map (SOM) (Kohonen, 1990) is one of the topology-preserving
dimensionality reduction techniques. These techniques try to preserve the
relative distances through the transformation, such that the data points
that were close in the original space remain close in the target space, and
those that were apart, remain apart. SOM projects the data form the orig-
inal space onto a map, which is a collection of m units organized into a
multidimensional rectangular grid. Most commonly (and also in this work)
a two-dimensional grid is used. Each SOM unit u corresponds to a vector
w, € R? in the space of input data points (signal samples from the EEG
device, in our case). This way each unit effectively covers a region in the
signal space. In this work the map has 625 units (25 x 25 square grid) with
630-dimensional vectors w initialized from uniform distribution ¢/(0,0.01).

The learning phase consists of updating vectors w with each new training
sample x. Once a new sample is obtained from a neuroimaging device the
best matching unit (BMU) for that sample is found according to Equation
5.1 with Euclidean distance used as the distance measure.

BMU (x) = argmin distance(wy, X) (5.1)
ue{l..m}

Once BMU is found the weights w of unit « and its neighbors are updated
as shown in Equation 5.2, where s is the number of the current iteration.

with = wi + O(BMU, u, s)a(s)(x — wj) (5.2)

Default SOM is an offline learning algorithm that performs several passes
over the training data. The update is thus repeated for each iteration
s € {1,...,5}, for each input data vector (xi,...,Xy) in the training set
and for each unit in the map (ug,...,un). In total this procedure is being
repeated up to S xnxm times, where S is the iteration limit, n is the number
of samples in the training data and m is the size of the map. Not all units
are updated with each new input vector, furthermore, not all units among
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the updated ones are updated equally. There are two functions in Equation
(5.2), which are responsible for deciding which units will be updated and
by how much. O(b,u,s) is called the neighborhood function, it determines
to what extent unit w is neighbor of a unit b: for b itself ©(b,b,s) = 1 and
for some unit u, which is too far away to be considered to be a neighbor of b
©(b,u, s) = 0. The parameter s is used to decrease the number of neighbors
on later iterations. The function a(s) outputs learning rate that decreases
with more iterations allowing the learning process to converge.

At the end of the learning process the units of the map represent centers
of signal clusters in the training data. Each new data sample can be assigned
to one of the clusters and this cluster will hold samples that are similar. The
samples that are close in the original space will be assigned to map units
that are close to each other on the map.

5.2.2 Predictive online SOM

We extend SOM to work in an online setting (D. Deng and Kasabov, 2000;
Somervuo, 2004), where the map is updated only once with each new data
sample. We also assign a vector of probabilities p, € R to each unit u and
use that vector to classify each new incoming data sample into one of C
classes. The class probability vector p of unit u of Predictive Online SOM
(POSOM) is initialized to a random vector of length C' with values sampled
from uniform distribution ¢£(0.0,0.2). This vector holds action probability
distribution for the unit u. It shows what is the probability that a signal x,
which was classified into unit u, has been produced in response to action a.
Class probability vectors are updated after each sample according to

Equation 5.3,
P (u) = p*(u)(1 — a) + ca (5.3)

where s is iteration number, a € (0, 1) is a parameter, which specifies how
fast the contribution of the older data samples deteriorates, and c is a bit
vector, where for each class we have value 0 or 1. There can be only one
non-zero value in the vector ¢ and its position indicates the true class of a
sample.

The probability vector p, is used for classification as follows: for each
new sample x we first identify POSOM’s BMU w for this sample, and predict
the class of this sample by choosing the most probable class in the vector

Pu.-

5.2.3 POSOM-based BCI training system

The learning method defined in the previous section satisfies all of the re-
quirements of a system with an interactive feedback based on visualization
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p, = (Pr[action, |u],. .., Prlactiong|u]) € RY

original feature space

Figure 18. SOM extended with class probability vectors. Signal representation
w,, in the original feature space is mapped to a unit v on a two dimensional map.
This unit represents a cluster of signal samples similar to w,,, such as sample x.
Unit u holds a vector of class probabilities p, that shows to which class a sample
assigned to the cluster with centroid u most probably belongs.

on user’s mental state space we have outlined in the beginning of the chap-
ter.

The training process begins by presenting an empty SOM map to the
user (Figure 19a). A stimulus cue is displayed for a brief period of time
and the system starts receiving samples from the neuroimaging device. It
finds the best matching unit w for each of the samples and updates the
w,, and p, vectors of the unit u and its neighbours. Some of the randomly
initialized SOM units now represent certain mental patterns and are mapped
to corresponding actions, the action each unit is associated with is shown
with a pictogram on the map (Figure 19b).

a b c

Figure 19. The process of forming the map. a: Visualization of an empty SOM
and the very first stimulus cue. b: The first few samples are collected and assigned
to the units on the map. c: Repeating steps (a) and (b) for all stimuli multiple
times results in a map, where units are assigned mental state representations and
corresponding actions.
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The process continues until the user is satisfied with his ability to produce
the required set of patterns consistently and system’s ability to assign these
patterns to correct units on the map (Figure 19c). The user can see on the
map which of the mental patterns are always assigned correctly and which
ones are ‘jumping’ across the map. This informs the user about the variance
of a mental pattern, if the variance is too high it might be best to switch to
another mental pattern instead. If a user can see that the patterns of two
or more different actions tend to occupy the same region of the map he can
conclude that the mental patterns he is producing for these actions are not
different enough to be distinguishable and he should consider replacing one
or all of them.

5.3 Experimental validation on brain-computer in-
terface for control

Each of 5 test subjects completed a set of four experimental runs to com-
pare maximal achievable classification accuracy of adaptive (proposed) ver-
sus control approach under two different conditions. In the first pair of
experiments subjects were allowed to engage facial muscles to achieve the
control of the system more easily. In the second pair only mental activity
was allowed and the subjects were instructed to rely on mental imagery to
control the system.

Subjects were seated in front of a computer screen in a quiet room with
no distractions. All subjects had normal or corrected to normal vision. In
all of experiments subjects were presented with 3 different stimuli (left,
right and none) and were asked to engage different mental (or, in the case of
the experiment where facial expressions were allowed, muscular) activity for
each stimulus. A stimulus was shown for 7 seconds. Subjects were briefed
on the usual mental paradigms including motor imagery (Pfurtscheller and
Neuper, 2001; Hwang, Kwon, and Im, 2009), vivid visual imagery (Marks,
1973; Neuper et al., 2005), mental computations (Chochon et al., 1999) and
auditory recollections (Cabrera, Farina, and Dremstrup, 2010).

The sequence of the experimental runs each test subject has completed was
as follows:

1. Training of the classification model in the traditional way. Stimuli
were presented in a random order for 7 seconds each, for total time
of 7 minutes, keeping the number of times each stimulus is shown
balanced. The test subject received real-time feedback by observing
the height of the performance indicator that was changing with each
new data sample. Currently highlighted bar is the current action,
height of the bar indicates the performance (Figure 20b).
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Figure 20. Interface of the experiment. a: In adaptive experiment the user
is presented with a grid that visualizes 2D projection of decoder’s feature space.
The grid is updated with each new data sample received from the neuroimaging
device, enabling the user to see how his mental actions affect the mental state
space representation in real time. Cue to the next stimulus is shown in the center
of the screen and disappears after 1 second, allowing the user to see the full grid.
b: The control experiment provides the feedback by raising or lowering per-class
performance bar, indicating which stimuli are being recognized well by the system.
c: The decoding models resulting from both adaptive and control experiments are
tested with the same interface, where a user is presented with a description of the
mental activity he must engage in. We do not use the same cues as during training
to measure the ability of the user to engage the metal activity associated with the
action and avoid measuring involuntary reaction to the cue image.

2. Testing the traditional model. To avoid measuring the involuntary
reaction to the cue image the user interface of the testing stage was
different from the training stage and is shown on Figure 20c. Currently
highlighted stimulus is the one the user should engage in. Stimuli were
shown for 7 seconds in random order for a total length of 3 minutes.

3. Training of the classification model in adaptive way. The user was
presented with a visualization of the projection of the feature space
onto 2D grid (Figure 20a). Each stimulus is shown for 7 seconds, the
duration of the experiment was not fixed to allow the subject to test
different mental activities for the same action until the one that works
is found. The stimuli were presented in the order of their performance
rate, the actions that have the lowest score are shown more frequently.

4. Testing of the adaptively trained model. The procedure repeats the
steps outlined in (2) exactly, making the testing runs comparable.

Upon finishing the trials the test subjects were asked of their subjective
evaluation of the adaptive system in comparison with the traditional one
and whether they were able to feel the interaction with the system and its
efforts to adapt to test subject’s mental efforts.
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5.3.1 Preprocessing of EEG data

The data was recorded using the Emotiv EPOC (Stytsenko, Jablonskis, and
Prahm, 2011) consumer-grade EEG device. Signal from all 14 EEG channels
was split into 1000 ms windows with a step size of 250 ms. Each 1000 ms
recording was linearly detrended and converted to frequency domain using
fast Fourier transform (Welch, 1967). Frequencies outside the 1 to 45 Hz
range were excluded from further analysis.

A 1000 ms signal from one channel was represented by 45 frequency
power measurements. By concatenating representations of all 14 channels
we obtained feature representation of a signal with 630 dimensions. In ma-
chine learning terms a sample x that represents 1000 ms of EEG recording
has 630 features and a categorical class label.

5.4 Feedback based on mental state space visual-
ization leads to higher decoding accuracy

We have conducted two types of experiments to empirically validate the
benefits of the adaptive search for mental BCI paradigm via visual explo-
ration of a projection of subject’s mental state space. During the first
experiment the test subjects were allowed to engage in facial muscle activ-
ity in response to the stimuli (C.-N. Huang, Chen, and Chung, 2006; Heger,
Putze, and Schultz, 2011). The second experiment was aimed at controlling
the system via mental efforts only. In both experiments the proposed ap-
proach demonstrated statistically significant improvement in performance
over the traditional method. Average performance of the model trained on
facial expressions in traditional way was 23% higher (Mann-Whitney U test
p = 0.006) than that of the traditional approach. For the mental actions
the adaptive approach resulted in a model that was significantly and con-
sistently higher than the chance level (F1 score = 0.422), while traditional
approach failed to deliver a non-trivial model (F1 score = 0.354). Com-
paratively, the adaptive approach yielded 19% higher performance (Mann-
Whitney U test p = 0.018).

Figure 22 (left) presents the detailed analysis of the results of the ex-
periments involving facial expressions. Face muscle activity highly affects
the EEG readings (D O’Donnell, Berkhout, and Adey, 1974) and can be
observed with the naked eye even on the raw signal. The primary goal of
this series of experiments was to demonstrate the benefit of the adaptive
approach in a high signal to noise ratio (SNR) scenario. Compared to the
facial expressions experiment the task of distinguishing mental states was
much harder (Haynes and Rees, 2006). Since the effect of changing the
activity was not immediately evident, it required more time for the test
subjects to begin to understand how their efforts affect the learning system.
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Figure 21. Average result of the experiments on facial expressions (left) and
mental activity (right). In both cases adaptive approach demonstrates statistically
significant improvement over the traditional approach.

Figure 22 (right) shows the detailed results of the experiment.
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Figure 22. Details of performance on 3-class control problem. Left: 3-class train-
ing results using facial expressions. Circular markers denote the results achieved
using the traditional approach and the triangular ones denote the adaptive ap-
proach. Each test subject is marked with a different color. On the z-axis we can
see the number of samples the algorithm needed to reach the F1 score displayed on
the y-axis. Traditional experiments were ran for 240 samples, or, if a subject felt
that he would benefit from longer interaction with the system, the experiment was
extended to 420 samples. Right: 3-class training results using power of thought
via traditional (circle) and interactive (triangle) approach. Horizontal axis shows
the number of sample is took to train the model, while the vertical one indicates
the performance of the final model on the test run. The experiment continued for
as long as test subject felt necessary.
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5.5 The general quest of navigating human mental
state space

In this work we have proposed, implemented and empirically tested an al-
ternative approach to closed loop feedback BCI training that relies on the
visualization of test subject’s mental state space in real time facilitating
the interaction with the learning system. In the traditional approach the
feedback serves only one purpose — to inform the test subject on his current
performance. We expand the information available to the subject by allow-
ing him to see not only that his current actions work poorly (or well), but
also provide him with an insight into why a particular set of mental actions
might not be a suitable one. We then provide him with an interactive way
to experiment with other mental actions until he finds the ones that he can
engage consistently and that are distinguishable by the learning system. By
the sheer fact of sharing more information with the user we expect our sys-
tem to achieve better performance. By facilitating the interactive training
process we enable the test subject, given enough effort, to reach the desired
level of performance.

In addition to the primary benefit described above we find that a few
other properties of our approach are beneficial for training BCI systems,
namely: the resulting paradigm is personalized to each particular test sub-
ject and thus can be tuned better than a one-fits-all paradigm such as motor
imagery; system automatically takes care of failed trials and mistakes on the
test subject’s side — a subject can rectify a mistake via further interaction
with the system, the failed record does not taint the dataset forever, but is
gradually phased out by further training; flexibility in training time allows
to deviate from strict stimulation schedule and allows the test subject to
focus on the most problematic actions, giving them more attention if more
attention is needed.

We would like to highlight the choice of the testing paradigm we em-
ployed in our work. We find that testing of a general-purpose BCI system
must be decoupled from the training in terms of visual cues and protocol.
This is necessary to avoid training the subject to simply react to the visual
cues and not engage in the corresponding mental activity. By changing
the cues we ensure that during the test time the test subject has to invoke
the mental activity corresponding to each particular action. Such approach
makes the resulting model more robust in the context of real-world appli-
cations.

We acknowledge the shortcoming of this study, such as low number of
test subjects and a low-end EEG device. This work serves the purpose of
initial validation of the concept that allows to plan a larger study, ideally
involving intracranial neuroimaging techniques that would have sufficient
SNR to make the approach applicable for real-world applications. Rectify-
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ing the above-mentioned issues and further exploring the possible topology-
preserving dimensionality reduction techniques such as t-SNE (Maaten and
G. Hinton, 2008) and neural networks-based solutions are the primary di-
rections for our future work.

The proposed methodology of visualizing test subject’s mental state
space in real time has wider applicability than BCIs. It gives a user the
opportunity to roam the visualization space that is topologically consistent
with the space of representation of user’s mental signals. This means that
if two mental state are close in terms of the brain activity they generate,
they will also be close visually, which allows the user to see which thought,
emotions, motor actions, and other activities that involve brain activity are
close together and which are further apart. The basis for this approach
lies in the ability of machine learning interpretability tools to explain what
an artificial model is seeing to a human observer. Supplying the proposed
system with a high quality neuroimaging device (such as intracortical elec-
trode system) would allow a researcher to gain better understanding of the
space of neural signals, or a general user to explore their own mind. Such
use of this methodology could lead to new realizations about how human
brain works and to new applications of neural technology.
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Conclusion

Traditionally, neuroscience was and to a large extent is a hypothesis-driven
science. The growing amount of data that is being generated by modern
neuroimaging techniques merits, however, an increase in the role that ex-
ploratory, data-driven approach plays in modern neuroscience. In this thesis
we make the case for the importance of adopting methods of interpretabil-
ity of machine learning models in neuroscientific research. We discuss the
benefit that machine learning brings by augmenting the ways of neurosci-
entific inquiry with an additional path of automatic hypothesis generation
and validation.

The ultimate purpose of proposing new hypotheses and models of brain
function is to discover the ones that describe the phenomenon well. In the
hypothesis-driven approach most of the process relies on a human investiga-
tor, who first observes a certain phenomenon, then comes up with a model
or a hypothesis to describe it, collects the data, validates the model based
on the data, and, finally, rules the model to be true or insightful or discards
it. In this scenario the role of automated data processing is confined to the
process of obtaining and processing the data to provide measures on certain
narrowly-defined experimental metrics that the investigator needs to reach
a conclusion. This approach allows the human investigator to be in full
control of the meaning of the model that is being created, but scales up
only by increasing the number of investigators, naturally limiting the space
of possible hypothesis that is humanly possible to test against the data.
In the data-driven approach the process starts with the dataset that con-
tains the observations of a phenomenon. Machine learning methods then
automatically generate models (hypotheses) that attempt to explain the
dynamics that was captured by the data. Model validation step automat-
ically discards most of the models that merely capture shallow statistical
dependencies in the particular data instance that was recorded and do not
generalize to capture the underlying process. Some of the models, however,
do, and, when validated, show to generalize well to correctly describe pre-
viously unseen data from the same phenomenon. When this happens we
know that the process of automatic modeling has captured a description of
the process that governs the phenomenon. All of the steps leading to this
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stage can be done with minimal human involvement and scale up with the
amount of computational resources. This allows the space of models that
are proposed and tested to be considerably larger than if we would only use
humans to sift through the possible explanations. Now the human effort
can be concentrated on the models and hypothesis that were identified by
the automatic process as descriptive and general. Interpreting those models
will show which ones are true and insightful and which ones are trivial.

The hypothesis-driven and data-driven approaches to hypothesis gener-
ation cover different parts of the conceptual space of unknown hypotheses
and should both be exploited to advance our knowledge of the brain. The
data-driven approach is designed to excel in the exploratory analysis, and,
given the above-mentioned volumes of data, such exploration of this data
has ever-growing chance of making a discovery. To properly facilitate this
process, the interpretability techniques that have established their role in
general machine learning community have to find their way into neuro-
science research on a wider scale. We hope this thesis contributes to this
process.

The exploration of the symbiosis between the fields of neuroscience and
machine learning in Chapter 1 establishes the already existing and also the
emerging track record of mutual benefit those two fields have provided each
other. We find that one of the ways this benefit can prosper further is by
adopting the view presented in Chapter 2 of the machine learning approach
playing the role of a builder of computational neurophysiological models.
The need to interpret the knowledge the model has acquired and to articu-
late it in an intuitive manner leads us to the interpretability techniques. The
need for a better understanding of the knowledge representation that artifi-
cial learning algorithms create require a structured approach to navigating
the space of those representations. In Section 2.1.3 we propose a taxonomy
of machine learning methods based on knowledge representation and hope
that this view angle proves useful when designing next neuroscientific study
that involves machine learning methods.

The work that became the basis of this thesis serves as an example of
adopting the proposed perspective and methodology and demonstrates its
applicability on three different levels of organization. In Chapter 3 inter-
pretable machine learning model is used to analyze neural dynamics at the
level of localized activity across the human brain. This analysis allowed to
characterize neural locations and their activity in during the task of visual
perceptual categorization. The uncovered signatures of visual processing
in human brain provided a multifaceted view on spectral, temporal and
anatomical characteristics of this process. The comparison between biologi-
cal and artificial systems of vision in Chapter 4 gives an example of the role
machine learning models can play at a more abstract level, where the aim is
to understand the functional organization of the human brain. In the last
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study described in Chapter 5 the dimensionality reduction and visualization
techniques provide an actionable insight into relative organization of men-
tal concepts within a subject’s mental state space. Visualizing the mental
state space allows to analyze the behavior of our brain at the highest level
of abstraction.

Taken together, the ideas and the results of this thesis highlight one of
the roles machine learning could play in advancing our understanding of the
human brain. The ability to uncover patterns and extract knowledge from
data makes the method of machine learning a suitable tool for augmenting
our capacity to create explanations of natural phenomena around us. Neu-
roscience is a particularly fitting area for application of this methodology
due to its symbiosis with the area of artificial intelligence and machine learn-
ing. The shared goal of uncovering the mechanism of intelligence made the
field of artificial intelligence follow and reapply the discoveries made in neu-
roscience. In some cases this has led to the realization that both systems,
the biological and the artificial ones, if presented with the same functional
goal, sometimes develop similar mechanisms of achieving it. The similari-
ties between the mechanisms employed by biological and artificial systems
that were discovered to this date, such as hierarchy of the visual system,
the mechanism of periodic memory consolidation, grid-like representation of
space for navigation, and others endorse the fact that an artificial learning
system can emerge a mechanism that is similar to the one that is used by
our brain. In this thesis we stress the importance of continued analysis of
the ways how machine learning algorithms achieve their results as under-
standing of these mechanisms can shed light on the mechanisms employed
by our brain.

We hope you have found the perspective curious and the examples con-

vincing enough to let the proposed approach occupy a part of your mental
state space.
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Appendix A

Code and data

All the pre-processed spectrotemporal data that supports the findings re-
ported in Chapter 3 are available for download under Academic Free Li-
cense 3.0 from https://web.gin.g-node.org/ilyakuzovkin/Spectral-
Signatures-of-Perceptual-Categorization-in-Human-Cortex. The code
that was used to produce this data from the raw recordings and to perform
all of the subsequent analysis steps is available at https://github.com/
kuz/Spectral-signatures-of-perceptual -categorization-in-human-
cortex.

The activations of biological and artificial systems of vision that are
the bases for comparison and mapping reported in Section 4 are available
for download under Academic Free License 3.0 from https://web.gin.g-
node.org/ilyakuzovkin/Human-Intracranial-Recordings-and-DCNN-to-
Compare-Biological-and-Artificial-Mechanisms-of-Vision. The full
code of the analysis pipeline is publicly available at https://github.com/
kuz/Human-Intracranial-Recordings-and-DCNN-to-Compare-Biological-
and-Artificial-Mechanisms-of-Vision under the MIT license.

Raw human brain recordings that support the findings in chapters 3 and
4 are available from Lyon Neuroscience Research Center but restrictions
apply to the availability of these data, which were used under license for
the current study, and so are not publicly available. Raw data are however
available from the author upon reasonable request and with permission of
Lyon Neuroscience Research Center.

The data supporting the findings in Chapter 5 along with the code of
the analysis and experiments are publicly available at https://bitbucket.
org/ilyakuzovkin/adaptive-interactive-bci.
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Appendix B

Supplementary materials

B.1 Detailed visualizations of spectral signatures
of visual processing filtered and feature im-
portance maps

Full figures of averaged time-frequency importance maps, per-subject im-
portance maps and per-area maps are available for download from https://
figshare.com/articles/Time-Frequency_Importance_Maps_average_per-
subject_per-area/8223356.

Normalized per-probe time-frequency power activity plots with importance
contour overlay are available at https://figshare.com/articles/Normalized_
TF_activity_with_importance_contour_overlay/8223389.

Full figures of comparison between polypredictive and monopredictive probes
are available at https://figshare.com/articles/Difference_between_
polypredictive_and_monopredictive_neural_locations/8223398.

For each cluster we have visualized the cluster mean and also the TF activ-
ity of all individual probes that constitute that cluster. Full-resolution fig-
ures can be downloaded from https://figshare.com/account/projects/
64523/articles/8223383.

B.2 Mappings of Brodmann areas to layers of DCNN
per area, layer and subject

Visualizations of the alignment of all Brodmann areas to the layers of Deep

Convolutional Neural Network based on representational similarity analysis

are available at https://figshare.com/articles/RSA_mapping_of_all_
Brodmann_areas_to_DCNN_layers/8222579. Mappings to ventral stream
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only are available at https://figshare.com/articles/RSA_mapping_of _
visual_Brodmann_areas_to_DCNN_layers/8222546.

Patient HT_18MAR13G, 71-150 Hz in 50-250 ms Patient PM_17JAN12G, 71-150 Hz in 50-250 ms
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Figure 23. Single subject results from two different subjects. The numbers show
the sum of correlations normalized by the number of probes in an area. On the
left plot we see how a probe in Brodmann area 18 is mapped to the layers 0, 1,
and 3 DCNN, while the activity in Brodmann area 19, which is located further
along the ventral stream, is mapped to the higher layers of DCNN: 6, 7, 8. Similar
trend is seen on the right plot. The numbers on the left of each subplot show the
number of significantly correlating probes in each area out of the total number of
responsive probes in that area.

Visualizations of all single subject mappings of the Brodmann areas in the
ventral stream to DCNN layers are available at https://figshare.com/
articles/Per-subject_RSA_mapping_of_visual_Brodmann_areas_to_DCNN_
layers/8222939.
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VEP
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Neuroscience
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Principle Component Analysis
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Reinforcement Learning
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Visual Evoked Potential
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Summary in Estonian

Inimaju arvutuslikke protsesside moistmine
masinope mudelite tolgendamise kaudu
Andmepohine ldhenemine arvutuslikku neuroteadusesse

Kaéesolev doktorit6é uurib, millist rolli méngivad masinoppe meetodid sel-
liste neuroteaduse mudelite loomisel, mis pakuvad modelleeritava ndhtuse
intuitiivset kirjeldust. Meie tahame néidata, et modelleerimisprotsessis voib
asendada inimese poolt mudeli konstrueerimise masinoppe mudeli treenimi-
sega. See lubab nihutada neuroteadlase t66 neuroteaduslike mudelite loomi-
selt masinoppega treenitud mudelite tolgendamisele. Valideeritud masinop-
pe mudeli puhul saame oletada, et see mudel peegeldab mehhanismi, mis
toimus treeningandmed genereerinud ajus. Niilid seisneb uurija roll selles,
et tolgendada masinoppe mudeli t66printsiipi ja artikuleerida seda reaalsuse
elegantse kirjeldusena.

Masinoppe meetodid suudavad téodelda palju suuremaid andmekogu-
seid ja uurida palju keerulisemaid seoseid kui inimene. Neuroandmestike
hulk ja suurus kasvab viga kiiresti ja koos sellega kasvab ka andmepohise
analiiiisi roll neuroteaduses. Selles t66s me néiitame, kuidas suurte andme-
mahtude peal treenitud masinoppe mudelit voib tolgendada niimoodi, et
see tolgendus kirjeldab mitte ainult masinoppe mudeli mehhanismi ennast,
vaid pakub ka seletust modelleeritava ajuprotsessi kohta. Teises peatiikis
tootame vilja taksonoomia, mis grupeerib masinoppe meetodid selle jérgi,
kuidas teadmised, mida masinoppe algoritm jareldas andmetest, on véljen-
datud algoritmi sisemise esitusena. Erinevad esitusviisid lubavad erinevaid
tolgendusi, seega (neuro)teadlane, kelle eesmérk on mitte pelgalt treenida
mudel, vaid ka aru saada, kuidas mudel saavutab oma tulemusi, peab ar-
vestama algoritmi valides selle algoritmi sisemise esitusviisiga.

Me naitlikustame kirjeldatud ldhenemist kolme uuringuga, mis kasutavad
masinoppe tolgendamismeetodeid kolmel erineval neuroloogilisel tasemel.
[gas uuringus me néitame, kuidas masinoppe tolgendamismeetodid olid ra-
kendatud ja millist neuroteaduse teadmist see lubas meil avastada. Esimeses
uuringus (peatiikk 3) kasutame me tunnuste téhtsuse analiiiisi juhumetsa
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(Random Forest) mudelitel, mis olid treenitud 100 inimese koljusiseste aju-
signaalide peal. Analiiiis lubas meil tuvastada, millised aegsagedus kom-
ponendid iseloomustavad inimese ajusignaali visuaalsete objektide tuvasta-
mise iilesande puhul. Teine uuring (peatiikk 4) kasutab esituste erinevuste
analiiiisi (Representation Dissimilarity Analysis, RDA), et vorrelda samade
visuaalsete stiimulite puhul signaale inimese aju ventraalses piirkonnas ja
konvolutsiooniliste tehisndrvivorkude aktivatsioone erinevates kihtides. See
metoodika voimaldas meil teha jéreldusi inimese visuaalse ajukoore prot-
sessidest ja kinnitada hiipoteesi, et molemad siisteemid, nii bioloogiline kui
ka tehislik, kasutavad hierarhilist struktuuri visuaalsete objektide tuvasta-
mise protsessis. Kolmas uuring (peatiikk 5) pakub vilja meetodi, mis lu-
bab kasutaja arvutiekraanil reaalajas visualiseerida tema ajuolekute ruumi
projektsiooni. See funktsioonalsus on saavutatud kasutades topoloogiat sai-
litavat (topology-preserving) mootmelisuse vihendamise meetodit, mis tei-
sendab mitmemootmelise ajusignaali kahemootmeliseks visualisatsiooniks.
Visualiseeritud kujutis on inimese jaoks arusaadav ja lubab ndha, millised
ajusignaalid ja motteseisundid on iiksteisele sarnased ja millised erinevad.
Koik kolm uuringut loovad ajuandmete peal teatud masinoppe mudeli ja
siis kasutavad tolgendamismeetodeid, et saada kitte teadmisi, mis on kasu-
likud neuroteaduse kontekstis. Samas, abstraktsiooni tase igas uuringus on
erinev: esimeses me t66tleme lokaalseid elektrofiisioloogilisi signaale, teises
huvitab meid ajuprotsessi tildine struktuur ja signaali esitus, kolmandas me
rakendame andmepohist lahenemist motteseisundite visualiseerimiseks.

Kokkuvottes, selles t60s kirjeldatud ideed ja tulemused tostavad esile
rolli, mida masinope saaks méngida edendamaks meie arusaamist inimese
ajust. Masinoppe meetodite oskus leida mustreid ja luua teadmisi on oluli-
ne taiendus meie padevustele loodusprotsesside ja fenomenide seletamisel.
Neuroteadus sobib eriti histi nende meetodite rakendamiseks, sest sellel
teadusharul on teatav siimbioos masinoppe ja tehisintellekti uuringutega.
Nende teadusharude iihine eesmérk on avastada mehhanism, mis seletaks,
kuidas t66tab meie aju ja intellekt. Nagu on naidatud esimeses peatiikis,
kui bioloogilisel ja tehislikul siisteemil on sama eesmaérk, siis tihti t6otavad
molemad siisteemid vélja tllatavalt sarnased mehhanismid selle eesmérgi
saavutamiseks. Moned néited sellistest sarnasustest on: visuaalse objekti-
tuvastuse hierarhia visuaalses ajukoores ja konvolutsioonilistes tehisnérvi-
vorkudes; mélu konsolideerimine hipokampuses ja stiimuloppe algoritmides;
heksagonaalne vore mida aju vorerakud ja stiimuloppe mudelid opivad ruu-
milise navigatsiooni jaoks. Need néited toendavad asjaolu, et moned meh-
hanismid meie ajus on sarnased mehhanismidega, milleni jouavad oppimise
kdigus masinoppe algoritmid. Moned neist mehhanismidest on avastatud ja
on ainult loogiline oletada, et on olemas veel moned, mida me veel ei tea.
Oma t66ga me rohutame masinoppe mudelite tolgendamise tdhtsust selliste
mehhanismide avastamiseks.
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