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1. INTRODUCTION 

Microorganisms, particularly bacteria, occupy a broad spectrum of ecological 
niches on Earth. Their extended evolutionary history has exposed them to a variety 
of changing environmental conditions, leading to the evolution of remarkable 
phenotypic plasticity (McCutcheon & Moran, 2011; Li et al., 2014; Fisher et al., 
2017). Bacteria can colonize various habitats as free-living organisms and inhabit 
eukaryotic hosts. Their habitats include soil, oceans, and various eukaryotic hosts 
like animals, plants, and fungi (Moran, 2015; Bahrndorff et al., 2016; Santoyo 
et al., 2016; Thomas et al., 2016; Bahram et al., 2018b). Evidence points to the 
important role of bacteria in maintaining ecosystem health, and their contribution 
to wildlife, plant, and human health. For instance, host-associated bacteria have 
been demonstrated to improve host fitness, nutrient uptake, and reproduction 
(Chow et al., 2010; Krüger et al., 2019; Bahram et al., 2020; Singh et al., 2020). 
Additionally, host-associated bacteria are considered as an essential extended 
phenotype that support the host immunity (Bernardo-Cravo, 2020). The com-
munity structure of host-associated bacteria may be influenced by a combination 
of host-specific and environmental factors (Pent et al., 2017; Alvarenga & Rousk, 
2022). Yet, the relative importance of these factors in structuring host-associated 
bacterial communities remains an ongoing question.  

Fungi form a diverse group of eukaryotes (Blackwell, 2011) and play a key 
role in carbon and nutrient cycling in terrestrial habitats. Besides free-living 
saprotrophic lifestyles, fungi can establish parasitic or mutualistic relationships 
with other eukaryotes (Bahn et al., 2007; Mueller et al., 2007; Rodriguez et al., 
2009; Tedersoo et al., 2014). Recent evidence suggests that basidiomycetes, many 
of which produce mushroom-like fruiting bodies as their reproductive structures, 
harbor diverse communities of bacteria (Pent et al., 2017; Benucci et al., 2019). 
The interaction of bacteria with their fungal hosts ranges from growth promotion 
to spore dissemination and germination (Citterio et al., 2001; Barbieri et al., 
2010). Similarly to the other host-associated microbiomes, the structure of fungus-
inhabiting bacterial communities is determined by various biotic and abiotic 
factors (Pent et al., 2017; Naylor et al., 2017). However, our understanding of 
fungus-inhabiting bacterial communities is largely restricted to certain fungal 
species and geographical locations. Studying bacterial communities associated 
with a broader range of fungal species and environments may enable us to gain a 
more complete understanding of fungal-bacterial interactions and their ecological 
and evolutionary implications. This includes expanding the diversity of fungal 
models to include underrepresented groups such as members of the earliest 
diverged mushroom-forming basidiomycetes lineage – the Cantharellales and 
considering the impact of environmental conditions. In addition, we know little 
about the genomic features of bacteria that have enabled them to successfully 
adapt to fungal habitats. 
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1.1. Mechanisms of microbial community assembly  
in host microhabitats 

Fungus-inhabiting bacteria are microorganisms that reside within or on fungal 
tissues for at least some part of their life cycle. While these bacteria are thought 
to be part of the soil microbiome (Pent et al., 2017), they display distinct com-
munity patterns across hosts that are attributed to the selection pressures imposed 
by their hosts on the surrounding soil communities (Toljander et al ., 2007; Qin 
et al., 2016). Some studies have shown that hosts primarily exert selection 
pressures through the secretion of exudates (Compant et al., 2019; Trivedi et al., 
2020). This phenomenon has been extensively studied in plants, where various 
exudates released at different growth stages have been found to modify both 
rhizosphere and endophytic microbial communities (James et al., 2007). For 
example, endophytic communities of younger plants tend to be more diverse and 
abundant than those in mature plants (James et al., 2007). Analogous to plants, 
fungal fruiting bodies undergo chemical changes to regulate the microbial com-
munities inhabiting their surrounding environment during their growth (Longley 
et al., 2019). These changes may include a decrease in lipid content (Weete et al., 
1985; Sancholle et al., 1988) and an increase in melanin and carbohydrate content 
(Harki, Bouya, & Dargent, 2006), which can potentially influence the com-
position of bacterial communities that depend on these compounds (Rangel-
Castro et al., 2002a). For instance, during the growth of truffle fruiting bodies, an 
increase in the relative abundance of Alphaproteobacteria, Bacteroidetes, and 
Firmicutes and a decrease in the relative abundance of Betaproteobacteria and 
Verrucomicrobia have been reported (Antony-Babu et al., 2014; Ye et al., 2018). 
Furthermore, similar changes in the community composition of bacteria have also 
been observed in the growth substrate of commercial mushrooms (Zhang et al., 
2018; Benucci et al., 2019). Nevertheless, the dynamics of bacterial communities 
inhabiting aboveground epigeous fruiting bodies and their role in modulating 
fruiting body development remain poorly understood. 

During the developmental process of a host, its associated microbiome follows 
distinct patterns of distribution and abundance that vary depending on the specific 
part of the host (Trivedi et al., 2020). This results in the development of specific 
microbial biogeographies within the host body (Monteiro et al., 2012). A study 
on assembly mechanisms of endophytic communities has found that endophytic 
bacteria are generally less prevalent in aerial parts of plants in comparison to 
roots, indicating that the upward movement of these bacteria within the host is 
restricted (Monteiro et al., 2012). This restriction of bacterial movement may be 
a result of the nutritional or functional needs of the host, as well as the presence 
of specific enzymes in certain bacterial taxa that allow for the breakdown of cell 
walls (Compant et al., 2005; James et al., 2007; Monteiro et al., 2012). Additio-
nally, the higher relative abundance of certain bacterial taxa in specific parts of 
plants has been linked to the development of specialized organs within the host 
(Turner, James, & Poole, 2013). The mechanisms underlying bacterial com-
munity assembly in fruiting body parts of fungi are poorly known and may differ 
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from those observed in plants, due to their distinct anatomical features. The unique 
organization of fungal tissues may affect the establishment and maintenance of 
their associated bacterial communities, potentially leading to their distinct com-
munity structures and dynamics, compared to those associated with plant tissues. 

 
 

1.2. Drivers of bacterial communities inhabiting  
fungal fruiting bodies 

Both intrinsic host-related factors and the extrinsic environment of the host can 
influence the structure of host-associated communities. However, host-related 
factors such as host identity, phylogeny, and genotype are the primary drivers 
shaping these communities in host environments, often surpassing the impact of 
environmental factors (Stuart et al., 2021; Zhang et al., 2023). The high degree 
of host specificity seen in some microbiomes may be the result of host-microbe 
coevolution (Jackrel et al., 2020; Henry et al., 2021). Nevertheless, distinct dif-
ferences in bacterial communities associated with hosts, that are physically closer 
to terrestrial habitats like soil, suggest a host-specific selection of these commu-
nities from soil (Tveit et al., 2020; Wang et al., 2020). This selection is highly 
regulated by the hosts using different secondary metabolites and chemical secre-
tions to either attract or deter particular communities (Compant et al., 2019; Trivedi 
et al., 2020). For instance, in the phyllosphere of plants, the induction of defense 
mechanisms mediated by salicylic acid was shown to result in a reduction of the 
diversity of endophytic microorganisms (Kniskern et al., 2007). In contrast, plants 
deficient in jasmonate-mediated defense exhibited higher epiphytic diversity 
(Kniskern et al., 2007). As in plants, the host identity and genotype effect have 
also been observed in different fungal hosts (Pent et al., 2018), with differences in 
endofungal bacterial communities attributed to variations in the chemical com-
position of fungal fruiting bodies, including pH and the C:N ratio, across fungal 
phylogenetic groups (Pent et al 2020). Similarly, secondary metabolites produced 
by host fungi may also have an additional impact on associated bacterial com-
munities (Alves et al., 2012; Vieira et al., 2014; De Carvalho, Türck, & Abraham, 
2015). 

Communities of free-living microbes show a trend of increasing diversity 
towards lower latitudes (Bahram et al., 2018a), host-associated microbiomes, in 
particular, the well-studied human (gut) microbiome (Yatsunenko et al., 2012) 
and plant microbiomes also show responses towards environmental conditions and 
ecosystem types (Bahram et al., 2012; Aslani et al., 2020). Meanwhile, local scale 
studies have identified soil pH and geographic location as one of the key 
determinants of fungus-inhabiting bacterial community structure (Benucci and 
Bonito 2016; Fu et al., 2016; Pent et al., 2017; Ye et al., 2018). Despite this under-
standing, most of our knowledge about fungus-inhabiting bacteria comes from 
few studies conducted on a few well-studied fungal species (Splivallo et al., 2007; 
Splivallo et al., 2015; Bahram et al., 2018b; Oh et al, 2018; Benucci et al., 2019).  
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Although these studies have provided insights into the assembly mechanisms of 
fungus-inhabiting bacteria, they are mostly focused on a narrow range of fungal 
hosts at local scales. 

 
 

1.3. Functions of fungus-inhabiting bacteria 

There is evidence supporting the important roles of bacteria in various symbiotic 
and parasitic interactions with their fungal hosts (Riedlinger et al., 2006; Frey-
Klett et al., 2007). Symbiotic interactions of bacteria offer several benefits to host 
fungi including protection against pathogens (Frey-Klett, Garbaye, & Tarkka, 
2007), stimulation of mycelial growth (Riedlinger et al., 2006), spore germination, 
mycorrhizal formation, fruiting body development (Citterio et al., 2001; Barbieri 
et al., 2010), aroma production (Splivallo et al., 2015; Splivallo et al., 2019; 
Monaco et al., 2022), spore dispersal enhancement (Citterio et al., 2001; Splivallo 
et al., 2015) as well as production of growth regulators and vitamins (Rangel-Castro 
et al., 2002a; Riedlinger et al., 2006). Members of the genera Bradyrhizobium 
and Rhizobium, which are known for their ability to fix atmospheric nitrogen, 
have been frequently reported to be associated with hypogeous and epigeous 
fungal fruiting bodies (Quandt et al., 2015; Benucci & Bonito., 2016; Chen et al., 
2019). It has been proposed that the formation of associations between truffles 
(Tuber spp.) and these diazotrophic bacteria may serve as a means for nitrogen 
fixation (Barbieri et al., 2010). However, the majority of studies in this area have 
focused on identifying the presence of potential nitrogen-fixing bacteria through 
taxonomic analyses, and the genomic capability for nitrogen fixation in bacteria 
inhabiting fruiting bodies remains to be determined. 

In contrast to symbiotic interactions, pathogenic and decomposing bacteria are 
known to exploit fruiting bodies as a source of nutrients. One such example is the 
pathogenic species Pseudomonas tolaasii, which causes brown blotch disease in 
the fruiting body of Agaricus bisporus through the secretion of toxins called 
tolaasin (Rainey, Brodey, & Johnstone, 1991; Lazzaroni et al., 2003). Recent 
studies have also reported that certain bacterial species possess the ability to inhi-
bit the growth of the mycelia of Trichloma matsutake, suggesting that they may 
also utilize fruiting bodies as a nutritional resource (Oh et al., 2018). 

 
 

1.4. Genomic features of fungus-inhabiting bacteria 

Bacterial-fungal symbiotic interactions can be occasional or long-term. Long-
term interactions are often characterized by endosymbiosis, where one organism 
lives within the cell or tissue of another, and these endosymbionts may undergo 
genomic evolution, often resulting in gene loss and genome reduction. For 
example, some fungal endosymbionts appear to have lost many broad functional 
roles, including flagellar biosynthesis, hook-associated, assembly and motor 
protein genes, compared to their free-living counterparts (Uehling et al., 2017). 
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Studies on genomic content of fungus-inhabiting bacteria have further suggested 
that bacteria have evolved specific genomic features that facilitate their inter-
actions with host organisms. For example, certain bacteria can enhance the patho-
genicity (Lackner, Partida-Martinez, & Hertweck, 2009; Partida-Martinez & 
Hertweck, 2005), antibiotic uptake ability, and nutrient acquisition of host fungi, 
while also adapting their metabolism to the fungal habitat (Lackner et al., 2010; 
Büttner et al., 2021; Richter et al., 2022). Furthermore, these bacteria are specia-
lized for the uptake of fungal metabolites and possess gene clusters for lipopoly-
saccharides synthesis (Lackner et al., 2010). Comparative phylogenomic studies 
of the fungal and bacterial genomes have revealed that host metabolism is highly 
modulated by the presence/absence of endosymbionts, with the genome of endo-
symbionts having multiple copies of malate transporters not found in host fungi 
(Uehling et al., 2017). Despite these advances, the genomic potential of bacterial 
communities inhabiting fungal fruiting bodies remains poorly understood, and a 
comprehensive understanding of the features that bacteria possess to interact with 
fungi is lacking. Particularly, due to differences in the functional roles and enzy-
matic capabilities of ectomycorrhizal (EcM) and saprotrophic (SAP) fungi (Kohler 
et al., 2015), examining the genomic content of bacteria that reside within these 
fungal guilds could elucidate how fungus-inhabiting bacteria contribute to their 
host functioning. 

In this thesis, I employed metabarcoding and whole-genome sequencing, as 
well as comparative genomics and in-vitro experiments to investigate the diver-
sity and functional potential of fungus-inhabiting bacteria across a wide range of 
fungal hosts. Specifically, I aimed to elucidate the assembly of bacterial commu-
nities during the growth of fruiting bodies. I investigated plant-inhabiting bacterial 
communities to determine whether fungi and plants provide distinct microhabi-
tats for their bacterial inhabitants. In addition, I explored the impact of host type, 
climate, and environmental factors on the diversity and composition of fungus-
inhabiting bacteria at the global scale. I also investigated the genomic features 
important for bacteria to colonize fungal habitats and the extent to which bacteria 
complement the functioning of their fungal hosts. Finally, I examined the poten-
tial of fungus-inhabiting bacteria to fix nitrogen.  
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1.5. Hypotheses 

Hypotheses defined in the present thesis: 

• At the global scale, the structure of fungus-inhabiting bacterial communities 
is mainly determined by the host phylogeny, followed by soil and climatic 
factors. 

• The bacterial community assembly mechanisms in the microhabitats of fungal 
fruiting bodies and plant individuals follow distinct patterns due to their 
contrasting chemical and anatomical features. 

• The relative abundance of bacteria that promote fungal fruiting body develop-
ment decreases with fruiting body maturation when these are increasingly 
replaced by parasitic, pathogenic, or decomposer bacteria.  

• Bacteria inhabiting fungal fruitbodies contribute to nitrogen fixation and pos-
sess increased metabolic capabilities to utilize host-derived carbohydrates.  

• Fungus-inhabiting bacteria play a complementary role in their host func-
tioning by metabolizing certain carbon compounds. 
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2. MATERIALS AND METHODS 

2.1. Sample collection and treatment 

Fungal fruiting bodies belonging to four orders of Agaricomycetes, Basidio-
mycota (Agaricales, Russulales, Boletales and Cantharellales) were collected 
from several forest sites across Estonia for study (I, II, IV) and 90 sites across 31 
countries (II) (Figure 1). Two sampling events were carried out for study I, 
yielding two datasets: mushroom sample set and developmental stage sample set. 
A total of 80 fruiting bodies were collected for the mushroom sample set, in-
cluding 44 fruiting bodies from nine Cantharellales species and 36 fruiting bodies 
from 12 other orders. Fruiting bodies of different developmental stages of Cant-
harellus cibarius were collected from one forest area in Meenikunno. The fruiting 
bodies were classified into young and middle-aged fruiting bodies in case the 
total length of fruiting bodies did not exceed 4 cm and 6.5 cm, respectively. The 
total length of old fruiting bodies was greater than 6.5 cm. Collected fruiting 
bodies were individually packed in foil and delivered to the lab in a cold container.  

The surface samples (external parts) were taken from the cap, the surface of 
gills, the middle part of stipe, and the lower part of stipe of C. cibarius fruiting 
bodies. The surface samples contain about the volume of two 5 mm3 pieces of tissue 
material scraped from the surface of the different parts of the fruiting bodies. For 
internal parts, the fruiting bodies were cut lengthwise under the laminar flow using 
sterile scalpel and surface sterilized under UV light for 5 min. Three samples were 
taken, each consisting of two pieces taken from different parts of the fruiting 
bodies, including the cap, the middle of the stipe, and the lower part of the stipe. 
All these samples were treated individually for molecular analysis. All the samples 
were stored at –20 °C until the DNA extraction.  

For study II, the fruiting bodies were dried on the same day of collection using 
silica gel, controlled airflow driers, or under the heat from sun or a lamp bulb. 
Under the sterile conditions in lab, different 3 × 3mm pieces were taken from 
fruiting bodies stipe, cap and/or lamellae with total dry weight <1 g. These pieces 
were further subjected to DNA extraction. All fruiting bodies included in the 
studies (I, II) were identified using morphology and/or using the results of BLAST 
searches in the NCBI nucleotide database, as well as ITS rDNA sequence assign-
ment to the UNITE species hypothesis (Kõljalg et al., 2020). 

For study III, samples were collected from eutrophic boreo-nemoral forests 
located in Tüki (58°24′N, 26°33′E) and Kardla (58°25′N, 26°35′E) in south-
eastern Estonia. Three healthy trees of B. pubescens and A. incana (Betulaceae, 
Fagales), located >5 m apart, were sampled at each site. From each tree, three 
branches were collected from the lower parts of the crown, and two 10-cm-long 
sections were cut from each branch. Five leaves were collected from each of the 
branches, and all leaf samples collected from one tree were combined into one 
sample in the laboratory. Each 10-cm branch part was divided into four pieces, 
resulting in 24 2.5-cm sectors from one tree, which were later crushed and pooled 
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into one sample. Before sampling from the tree trunk, the bark was removed with 
a sterilized knife. Samples of 0.8-by–0.3-cm pieces were collected from the soft 
layer of living cells. To prepare the samples for DNA extractions, the trunk and 
branch samples were crushed for five minutes, while leaf pieces were crushed for 
60 seconds at 30 Hz using a Retch MM400 mill in a sterilized metal jar containing 
two 12-mm-diameter sterilized metal beads. 

Figure 1 shows the geographic distribution of samples collected for study II, with dif-
ferent colors indicating the specific biome type associated with each sample. 
 
 

2.2. Bacterial isolation and culturing 

To establish fungus-inhabiting bacteria in pure culture, fungal fruiting bodies were 
cut into two lengthwise pieces using sterile scalpel. The cut pieces were then 
sterilized under UV light for 5 minutes to prevent cross-contamination. A (5 mm3) 
piece of the inner tissue was extracted from each part of the fruiting bodies, in-
cluding the cap, the center part of the stipe, and the lower part of the stipe, using 
a sterile drill. To isolate tightly adhered bacteria from hyphal surfaces, the tissues 
were soaked in 400 l of 0.1 M phosphate buffer, crushed with a sterile scalpel, 
and vortexed for 5 minutes at maximum speed. Further, 100 μl of the homogenate 
was spread on Petri plates containing R2A low-nutrient agar or twice-diluted 
tryptic soybean agar (TSA). The plates were incubated for 30 days at 25 °C. The 
bacterial communities were examined using a stereo microscope, and any bac-
teria from colonies with different shape, size, margin, color, texture or opacity 
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were transferred to new plates with TSA. This process was repeated until pure 
bacterial cultures were obtained. Pure cultures were stored in 50% glycerol solu-
tion at –80 °C in the Tartu Fungal Culture Collection (TFC) and part of these 
were deposited in the collection of environmental and laboratory microbial strains 
(CELMS) of the Institute of Molecular and Cell Biology at the University of 
Tartu. 
 
 

2.3. DNA extraction, 16s rRNA amplification, and sequencing 

Because the sample collecting procedures used in studies I and II differed, DNA 
extraction was carried out using methods that best fit the sampling method. For 
study (I), the Quick-DNA Bacterial/Fungal Mini prep or 96 Kit (Zymo Research, 
CA, USA) was used to extract DNA from the mushroom samples. The protocol 
followed the manufacturer’s instructions, with the exception that the samples 
were centrifuged at maximum speed (14 680 rpm) and DNA was eluted in two 
phases (50 + 50) to increase total DNA yield in both kits.  

For study II, DNA was extracted from dried samples using the alkaline lysis 
buffer [0.8 M Tris–HCl 0.2 M (NH4)2SO4, pH 8.8–8.9, 0.2% wt./vol. Tween/20]. 
Fruiting body pieces were soaked in a mixture of 100 μl alkaline lysis buffer and 
2.5 μl proteinase K and incubated at 56 °C for 16 h and then at 98 °C for 15 min. 
The solution obtained was centrifuged for 2 minutes at 12 000 rpm. In total, 80 μl 
of the supernatant containing DNA was collected and stored at –20 °C. To extract 
DNA from plant samples [III], we followed the manufacturer’s instructions for 
the Zymo Research Fungal/Bacterial MiniPrep kit and ZymoBIOMICS DNA 
Miniprep Kit (Zymo Research). Bacterial primers 515F (5′-GTGYCAGCMGCC 
GGTAA-3′) [I & II & III] and 806R (5′ GGACTACNVGGGTWTCTAAT-3′) 
[I & III] or 926R (5′-CCGYCAATTYMTTTRAGTTT-3′) [II] were used to amp-
lify the 16s rRNA regions, equipped with a sample-specific 12-base indices. The 
PCR products obtained were pooled into libraries and sequenced using Illumina 
MiSeq technology at the Estonian Biocentre in Tartu, Estonia. 

 
 

2.4. DNA extraction of isolates and whole genome sequencing 

In study IV, DNA from 2–4 days old colonies of each isolate were extracted using 
the similar methods as described for study II. 16s rRNA gene regions of each 
isolate were amplified with universal bacterial primers 27F (forward) and 1492R 
(reverse) and sequenced using the Sanger method. The quality trimmed sequence 
data acquired for all isolates have been deposited to GenBank (NCBI). The 
accession numbers of sequences are provided in the supplementary data of study 
IV. Following bacterial strain identification, we chose 51 of the most frequent 
and potentially nitrogen-fixing (nif) bacteria based on their phylogenetic position 
(Rahimlou, Bahram, & Tedersoo, 2021) for whole-genome sequencing. The 
sequencing libraries for each DNA were created using the Nextra XT kit, which 
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fragments DNA and tags it with sequencing adapters in a single-tube enzymatic 
reaction. DNA from 51 libraries was sequenced on a next-generation sequencing 
platform utilizing Illumina Novoseq 2xPE150 technology at Novogen Corpo-
ration Inc. (U.K.).  
 
 

2.5. Amplicon and whole genome sequence analysis 

The amplicon sequences were processed (demultiplexed, quality filtered, and 
chimera checked) using the LotuS pipeline (Hildebrand et al., 2014) (I, II, III). 
Following this, we utilized UPARSE and USEARCH v10.0.240 (Edgar, 2010) to 
cluster the high-quality sequences into OTUs based on the 97% sequence simi-
larity threshold (I, II). The resulting sequences were classified using the most 
recent release of the SILVA database (Quast et al., 2013) (www.arb-silva.de) 
(I, II, III). Unidentified OTUs and those identified as eukaryotic taxa were dis-
carded. Furthermore, we discarded OTUs with fewer than 5 reads as well as those 
that were numerous in positive and negative controls (I & II). We employed func-
tional prediction analysis (Functional Annotation of Prokaryotic Taxa, FAP-
ROTAX) to assign OTUs to functional groups (I), as defined by (Louca, Parfrey, 
& Doebeli, 2016). The raw sequences have been deposited to the Sequence Read 
Archive (SRA) of NCBI under the accession numbers SRP254164 (I) and 
PRJNA764841(II). 

Whole genome sequences obtained were quality filtered and assembled de novo 
using Trimmomtic and Megahit, respectively (IV). The quality of assembled 
sequences was evaluated using BUSCO v3 and CheckM using the default  
parameters. The assembled genomes were then annotated using the DOE-JGI  
Microbial Genome Annotation Pipeline (MGAP) and deposited in the IMG 
database (IV).  

 
 

2.6. Acquisition of environmental data from public databases 

Climate data including mean annual temperature (MAT) and mean annual pre-
cipitation (MAP) as well as the biome type and soil data including soil pH and 
organic carbon stock were retrieved from WorldClim database (Fick and Hijmans, 
2017) and ISRIC [World soil information (Batjes et al., 2017)], respectively. 
Samples were classified into seven biomes: moist tropical forests, dry tropical 
forests, savannas, temperate deciduous forests, temperate coniferous forests, and 
temperate grasslands. 
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2.8. CAZyme profiling of genomes  

We performed a genome-wide analysis of carbohydrate-active enzyme (CAZyme) 
related genes using the dbCAN pipeline. We annotated the protein sequences using 
DIAMOND, HMMER, and eCAMI algorithms integrated within dbCAN against 
the CAZy and dbCAN databases. To avoid ambiguous annotations, we filtered out 
the genes that were not annotated by at least two algorithms. We then used custom 

 

2.7. Acquisition, filtering, and clustering of whole genome 
sequence data from public database  

For study IV, we retrieved 4,388 bacterial isolate genomes from the IMG data-
base. These genomes belonged to genera similar to our collection and were iso-
lated from different habitats, including the fungi, human body, soil, water, and 
plants. We identified the isolation sites through a manual curation process that 
involved scanning IMG metadata and NCBI biosample data, as well as consulting 
relevant literature. Based on the isolation sites, we classified the genomes as 
either host-associated or free-living bacteria. Together with 138 fungal-asso-
ciated isolate genomes retrieved from public databases, we included 51 newly 
sequenced genomes from fruiting bodies of various fungal lineages in our ana-
lysis for a more comprehensive comparison of fungus-associated bacteria. 

We applied several quality control measures to ensure the selection of 1206 
high-quality and unbiased set of genomes for our analysis. First, based on the 
metadata and taxonomy, we selected up to five random genomes of the same 
species from the same habitat. We discarded genomes with missing or ambiguous 
isolation sites. To assess genome quality and completeness, we used CheckM to 
identify genomes that were less than 95% complete and/or had more than 5% 
contamination, and we removed these genomes from our dataset. In addition, we 
only included genomes that had at least 90% of the 92 single-copy orthologous 
genes. To ensure the high quality of the genome annotations, we removed genomes 
with less than 85% protein-coding sequences. Finally, we used pyANI to compute 
the average nucleotide identity and alignment fraction values for each pair of 
genomes. We marked a genome pair as redundant when the alignment fraction 
was greater than 90% and the average nucleotide identity exceeded 99.995%. In 
these cases, we randomly selected one genome and filtered out the other. 

We applied the hierarchical clustering methods to cluster the 1,206 genomes 
into eight clusters based on phylogenetic distances, to allow for downstream ana-
lysis. The algorithm for hierarchical clustering, use pre-defined K-mer numbers. 
We performed silhouette and gap statistics to determine the optimal number of 
clusters, and we found that k= 8 yielded the maximum silhouette coefficient (0.77). 
The resulting clusters had few overlapping genomes, which might have been due 
to incorrect taxonomic identification provided in the metadata. Our clustering 
divided the Proteobacteria genomes into two taxa, which we renamed Proteo-
bacteria 1 and Proteobacteria 2 for simplicity.  
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R scripts to manipulate the results obtained from dbCAN. First, we extracted all 
the CAZyme domains present in each genome and collated them by domain family, 
and then summarized the results in a table that included the count of all the 
CAZyme domains in each family per genome. We visualized the collated and 
counted values of domain frequency per CAZyme domain family per genome 
using R. 
 
 

2.9. Statistical analyses 

We used R (latest version at the time of analysis) to statistically analyze the data 
(I, II, III, IV). The OTU abundance matrices were rarified and normalized using 
Hellinger-transformation before analysis. Alpha diversity and beta diversity 
indices were calculated using the “vegan” package (I, II, III, IV). Permutational 
Multivariate Analysis of Variance (PERMANOVA) was performed using “vegan” 
package. The best models were selected based on F values as selection criteria. 
Ordination plots (NMDS, PCoA), based on Bray-Curtis distance dissimilarity 
matrix, were generated using “vegan” package (I, II, III, IV). Linear regression and 
Spearman’s correlation tests were performed using the “cor” package (II). The size 
of the core microbiome was determined using the “microbiome” package (II). 
Phylogenetic tree for host fungi was constructed using classification-based algo-
rithms proposed by Tedersoo et al. (2018) (II) and phylogenetic distance were 
calculated using “picnate” function (II, IV). Phylogenetic distances were further 
translated into Principal Coordinates of Neighbourhood Matrix (PCNM; Borcard 
et al., 2004) matrices using “pcnm” function in R. Variation partition analysis and 
Mantel tests were performed using “vegan” package (II). General and pairwise 
comparisons were performed with either t-tests, wilcoxon or one-way ANOVA 
using base R functions (I, II, III, IV) followed by Tukey’s honestly significant 
difference (HSD) tests (IV). Gene enrichment patterns were analyzed by PhyloLM 
tests using the package “ape”. Estimates of PhyloLM models were predicted using 
R base function “predict” (IV). Silhouette method and Gap statistic were applied 
to phylogentic distances between genomes as implicated in the “factoextra” 
package. 
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3. RESULTS AND DISCUSSION 

3.1. Factors determining fungus-inhabiting  
bacterial community structure 

•  The community structure of fungus-inhabiting bacteria is primarily de-
termined by host-related factors such as host identity (I) and hosts’ phylo-
genetic distance (II). Our findings corroborate previous studies that have 
demonstrated the impact of host identity on shaping microbial communities in 
fruiting bodies of members of Basidiomycota (Benucci & Bonito, 2016; Pent 
et al., 2017; Oh et al., 2018; Ye et al., 2018) and Ascomycota (Quandt et al., 
2015; Rinta-Kanto et al., 2018). This predominant effect of host identity and 
phylogeny may be related to the chemical composition of the fungal fruiting 
bodies and the ability of bacteria inhabiting these to use carbon compounds 
such as mannitol, trehalose, or amino acids that are released by the host fungus 
(Timonen et al., 1998; Warmink et al., 2009; Nazir et al., 2010; Pent et al., 
2020). Additionally, the composition of the microbial community may be 
influenced by the anti-bacterial activity of the host, resulting in the enrichment 
of certain bacteria in fungi (De Carvalho et al., 2015; Shirakawa et al., 2019). 

 
• At the global scale, host-related factors rather than soil and climate under-

lie the diversity patterns of fungus-inhabiting bacterial communities (II). 
We found no significant association between climatic conditions, soil charac-
teristics and the bacterial diversity in fungal fruiting bodies. In particular, 
latitude (lm; R2 = 0.001, P = 0.51), mean annual precipitation (lm; R2 = 0.005, 
P = 0.19), mean annual temperature (lm; R2 = 0.0003, P = 0.75), soil pH (lm; 
R2 = –0.0008, P = 0.38), and organic carbon (lm; R2 = –0.003, P = 0.90) had 
no significant effect on the diversity of bacterial communities based on our data. 
Several studies have found that soil physical and chemical characteristics con-
tribute to the bacterial community structures of various epigeous and hypo-
geous fungal fruiting bodies at local scale (Benucci & Bonito, 2016; Pent 
et al., 2017). In addition, the diversity of free-living bacteria strongly asso-
ciates with abiotic variables such as pH, temperature, and salinity in soil, 
water, and air (Louca et al., 2016; Bahram et al., 2018a; Tignat-Perrier et al., 
2019). The missing impact of soil characteristics on the diversity of fungus-
inhabiting bacterial communities at the global scale may be due to the stronger 
effect of host-related factors such as host phylogeny and nutrient content (Pent 
et al., 2017, 2018).  

 
•  In contrast to diversity, the composition of fungus-inhabiting bacterial 

communities was significantly influenced by biome type (F = 1.2, 
P = 0.020), mean annual precipitation (F = 1.7, P = 0.021) and mean annual 
temperature (F = 1.6, P = 0.028) (II). This could be due to differences in 
biome-specific conditions, vegetation type, and soil properties on growth and 
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development of host fungi (López-Bucio, Pelagio-Flores, & Herrera-Estrella, 
2015; Rouphael et al., 2015; Tedersoo et al., 2020), as has been shown in the 
case of microbial communiteis of Agaricus sinodeliciosus (Zhou, Bai, & Zhao, 
2017). Large part of the lifecycle of fungi occurs in soil as mycelia, so the 
enrichment of certain bacterial groups in fruiting bodies may be caused by 
chemical attraction to substances produced by fungal mycelia (Furuno et al., 
2010) or differences in the nutrient levels of soil and fruiting bodies (Pent 
et al., 2020). For example, it has been demonstrated that the bacterial com-
munities associated with certain fungal species tend to favor certain nutrients 
in their mycorrhizosphere, with Suillus bovinus and Paxillus involutus-
associated communities favoring mannitol and fructose, respectively (Timonen 
et al., 1998). The release of glycerol by Laccaria proxima has also been ob-
served to attract certain bacteria in the mycosphere (Boersma et al., 2010). In 
addition, the relative abundance of Proteobacteria tends to increase in environ-
ments with high nutrient levels, while Acidobacteria thrive in low nutrient 
environments (Smit et al., 2001; Torsvik & Øvreås, 2002). Factors such as soil 
pH and temperature also affect the availability of fungus-derived soluble 
carbohydrates, which in turn may impact the relative abundance of certain 
bacterial groups that rely on these compounds (Rangel-Castro et al., 2002a; 
Rangel-Castro et al., 2002b). Furthermore, the type and relative abundance of 
endobacterial communities of plants have been found to be correlated with 
soil nutrient content and host plant nutrient uptake ability (Yuan et al., 2022). 

 
 

3.2. Bacterial community assembly across host compartments  

• Patterns of bacterial community assembly across compartments of indivi-
duals differ between fungi and plants (I, III). Composition of microbial 
communities across different compartments of fungal fruiting bodies did not 
exhibit statistically significant differences (PERMANOVA; F = 0.89, P = 0.70) 
(I). In contrast, we found that bacterial community composition in plants was 
primarily determined by the different plant compartments, which accounted 
for 44% of community variation (PERMANOVA; F = 10.37, P < 0.001) (III). 
Such a difference be attributed to several factors. First, the studied host trees 
have differentiated organs and tissues, longer lifespan, and larger body size 
compared to sampled fungi, despite both being closely associated with soil, 
the primary source of microbial communities in both host groups (Pent et al., 
2017; Ling, Wang, & Kuzyakov, 2022). In addition, the structure of microbial 
communities in plants is influenced by the chemical heterogeneity of different 
plant compartments, resulting in site-specific bacterial communities that play 
a role in the development of those compartments (Monteiro et al., 2012). Fungi, 
especially the mushrooms included in our studies, by contrast have a relatively 
homogeneous internal environment, resulting in similar bacterial communities 
throughout their body (Mandell et al., 1996). Furthermore, we found a signifi-
cantly different community composition of bacteria associated with internal 
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and external compartments of fruiting bodies (I). This finding may result from 
the fact that the surface of fungal fruiting bodies is directly exposed to various 
microbial sources such as insects and air, while the internal compartments lack 
contact with these sources. Climatic conditions, such as temperature and pre-
cipitation, can also exert a greater influence on the composition of microbial 
communities inhabiting the external surfaces of host organisms (Woodhams 
et al., 2020). 

 
• The structure of bacterial communities associated with plants is more 

strongly influenced by distance from the soil, compared to fungal com-
munities (bacteria: R2 = 0.247, P = 0.001; fungi: R2 = 0.101, P = 0.001; III). 
Earlier studies have reported differences in community assembly of bacteria 
and fungi, for example Bernard et al., (2020) suggest that the community 
composition of bacterial communities is more strongly influenced by micro-
habitat conditions within plants, while the community composition of fungi is 
more strongly determined by the geospatial location of the host plant. Further-
more, Xiong et al., (2021) demonstrated that bacterial communities within 
compartments of plants in their early developmental stages were primarily 
shaped by deterministic processes, whereas this influence was pronounced for 
fungal communities in later stages. In agreement with these studies, our findings 
further suggest the mechanisms governing the assembly of host-associated 
bacterial and fungal communities differ even at micro-level, likely due to dis-
similarities in their life forms, population dynamics, physiology, and dispersal 
capacity of microbes from these two domains (Frey-Klett et al., 2011; Reischke 
et al., 2014).  

 
 

3.3. Bacterial community assembly during  
the development of fungal fruiting bodies  

• The structure of bacterial communities changes during the development 
of fungal fruiting bodies, with the most contrasting differences found 
between young and old fruiting bodies (I). Our results agree with studies 
showing that the relative abundance of bacteria in growth substrate of fungal 
fruiting bodies changes over time during fruiting body development, although 
the identity of the dominant phyla remains the same. For example, Zhang et al., 
2018 and Longley et al., 2019 both reported significant differences in bacterial 
community composition and diversity in the substrate during different stages 
of fungal fruiting body growth. Similar patterns have also been observed in 
bacterial communities associated with hypogeous fruiting bodies (Antony-
Babu et al., 2014; Ye et al., 2018) and the soil underneath (Benucci et al., 2019). 
These shifts may be driven by the modification of biochemical composition 
that occur during in fungal fruiting bodies during their development, such as 
an increase in pH due to the release of ammonium during chitin degradation 
(Wang et al., 2019). Furthermore, proteins have been shown to be the dominant 
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macromolecules in immature truffles, and as the truffles mature, the concent-
rations of glucose and mannose increase, with rhamnose being detected upon 
full maturation (Harki et al., 2006). Such changes may alter the conditions 
within the fungal fruiting body and make it more selective for certain types of 
bacteria (Citterio et al., 2001; Harki et al., 2006).  

 
• Certain functional groups, such as potential nitrogen-fixing bacteria, 

persist during the maturation of fungal fruiting bodies but are eventually 
replaced by putative parasites/pathogens (I). We observed significant 
variations in community structure during the growth of fungal fruiting bodies, 
with notable fluctuations in the relative abundance of certain bacterial taxa. In 
particular, potential nitrogen-fixing bacteria, represented by the Rhizobium 
complex, were relatively more abundant in young and middle-aged fruiting 
bodies but declined in older fruiting bodies. In line with previous studies, our 
results suggest a role of these communities in the development and maturation 
of the fungal fruiting bodies, potentially influencing their growth and nutrition 
(Barbieri et al., 2007; Antony-Babu et al., 2014; Pent et al., 2020). In older 
fruiting bodies these bacteria were replaced by putative parasites/pathogens, 
including Chitinophaga, Tardiphaga, and Chlamydiae which are known to 
causes diseases in plants, animals, and humans (Gerbase, Rowley, & Mertens, 
1998; AbdelRahman & Belland, 2005). The enrichment of these bacteria in 
older fungal fruiting bodies may indicate their contribution in the decay of 
fungal fruiting bodies releasing compounds that may support the growth of 
other communities (Sangkhobol & Skerman, 1981; McKee et al., 2019).  

 
 

3.4. Genomic profiling of fungus-inhabiting bacteria 

3.4.1. Genomic features of bacterial adaptation to fungal habitat 

• Fungus-inhabiting bacteria have a greater number of genes related to 
carbohydrate transport and metabolism and motility than bacteria from 
other habitats (IV). This finding may reflect the adaptive strategies employed 
by bacteria to cope with the unique environmental conditions of their fungal 
habitats (Wani et al., 2022). Specifically, fungi are known to produce diverse 
secondary metabolites that could potentially impact the genomic and func-
tional competence of bacteria seeking to establish a symbiotic relationship 
with them (Brakhage, 2012; Rangel et al., 2021) or seeking to survive in their 
presence. These findings are consistent with earlier research based on the 
genomic profiles of bacteria found in plant root microbiomes versus those 
found in soil habitats (Levy et al., 2018). They provide evidence for the impor-
tance of carbohydrate transport and metabolism genes in facilitating bacterial 
colonization of root surfaces (Levy et al., 2018). These results further suggest 
that bacteria adapted to grow in the mycorrhizosphere may be carried along 
and thrive also in fungal fruiting bodies. 
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• Fungus-inhabiting bacteria have a greater abundance of genes involved 
in the metabolism of fungi, including genes that specifically target treha-
lose and chitin. The breakdown of chitin and trehalose into monomers or 
oligomers serves as a source of carbon and nitrogen for both bacterial and 
fungal communities (Beier & Bertilsson, 2013; Thammahong et al., 2019; 
Vanaporn & Titball, 2020). Trehalose has been known to function as an energy 
source during spore germination and fruiting body development, and its 
accumulation has been linked to an increase in fungal biomass (Wiemken, 
Ineichen, & Boller, 2001). Therefore, the greater abundance of genes asso-
ciated with trehalose and chitin metabolism in fungus-inhabiting bacteria may 
indicate a potential role of bacteria in the promotion of fungal growth and 
biomass production by influencing the biosynthesis and degradation of 
trehalose and chitin within the fungal cell wall (Wiemken, Ineichen, & Boller, 
2001; Duponnois & Kisa, 2006). A study on bacterial-fungal interactions has 
shown that trehalose, a disaccharide found in high concentrations in fungal 
hyphae, chemoattracts and boosts the growth of helper bacteria (Deveau et al., 
2010). Another study has found that bacteria with trehalose breakdown capa-
bilities can boost the growth of fungal hyphae when cultivated in the presence 
of bacteria and trehalose as the sole carbon source (Duponnois & Kisa, 2006). 

 
• Genomes of fungus-inhabiting bacteria have a higher abundance of genes 

related to motility, including pilus assembly, compared to bacteria from 
other habitats. These features may enable fungus-inhabiting bacteria to dis-
perse along the surface of fungal hyphae and reach inaccessible areas, facili-
tating their dissemination (Furuno et al., 2010). Fungal hyphae have been 
shown to act as a highway for pollutant-degrading bacteria to navigate to their 
intended targets (Kohlmeier et al., 2005; Furuno et al., 2010). Furthermore, 
bacteria attached to fungal hyphae may be carried toward plant roots, allowing 
them to enter plant tissues or the rhizosphere (Minerdi, Bianciotto, & 
Bonfante, 2002; Warmink et al., 2011).  

 
 

3.5. Metabolic potential of bacteria inhabiting  
ectomycorrhizal (EcM) and saprotrophic (SAP) fungi 

• Bacteria inhabiting EcM fungi possess more carbohydrate-active enzymes 
acting on fungal and plant cell wall substrates. This result is intriguing as 
previous research has shown that EcM fungal genomes have a lower number 
of CAZymes compared to those of SAP fungi (Pellegrin et al., 2015). In 
addition, EcM fungi are often adapted to environments with low-quality litter 
and therefore require extensive enzymes to obtain nutrients from organic 
matter (Bahram et al., 2020; Netherway et al., 2021). Our results suggest that 
fungus-inhabiting bacteria can potentially complement the function of their 
host by providing them with enzymes that they lack. Particularly EcM fungi, 
which lack sucrose-degrading enzymes, may take advantage of the genomic 
potential of their associated bacteria to degrade environmental or plant-
supplied sucrose obtained via mycorrhizal symbioses. 
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3.6. Can fungus-inhabiting bacteria fix nitrogen? 

• The studied bacteria isolated from fungal fruiting bodies do not possess 
the genomic features that would allow to fix environmental nitrogen. Our 
studies I and II found a significant abundance of potentially nitrogen-fixing 
bacteria in fungal fruiting bodies. Previous research has also documented such 
taxa in various fungal systems and proposed their role in nitrogen fixation 
(Barbieri et al., 2010; Chen et al., 2019; Pent et al., 2020). Our analysis of the 
genomes of 51 bacteria from potential nitrogen-fixing groups revealed that 
none of the strains possessed the complete set of genes required for nitrogen 
fixation, including the nifHDK complex. This suggests that based on genome 
data these bacteria do not have the ability to fix nitrogen in fungal habitats. 
Previous studies show that the basidiomycete Guyanagaster necrorhizus 
harbors a community of Enterobacteriaceae that actively fix nitrogen for  
N-scavenging termites in exchange for fungal spore dispersal (Koch et al., 
2021). It is, however, possible that some unculturable communities, excluded 
in our study, are involved in nitrogen fixation activities in fungal fruiting 
bodies. This has been previously shown for endosymbionts of arbuscular 
mycorrhizal fungi, where bacteria have been suggested to provide the fungi 
with fixed nitrogen during the germination of their spores (Minerdi et al., 2001). 
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• Host physiology, functioning, and soil environment are important factors in 
shaping the microbiomes of different hosts, as demonstrated by the contrasting 
bacterial community composition patterns observed in fungal fruiting body as 
well as plant compartments. 

• Relationships between bacteria and their fungal hosts are complex and dynamic, 
characterized by changes in microbial communities during fruiting body 
growth. During the maturation of fruiting bodies, certain bacterial groups, 
such as the Rhizobium complex, exhibit an increase in abundance, suggesting 
their involvement in the growth and development of the host. Conversely, 
bacterial communities in later stages of fruiting bodies development include 
members of several opportunistic parasites/pathogens like Chitinophaga, 
Tardiphaga, and Chlamydiae. Such patterns underscore the importance of 
understanding the functional roles of bacteria in the development of fruiting 
bodies and their impact on ecosystems. 

• My findings highlight the significance of carbohydrate metabolism, transport, 
and motility-related genes in bacterial adaptation to fungal habitats, which 
expands the genome-based understanding of fungal-bacterial interactions. 

• Bacteria play crucial roles in the functioning of their host fungi through 
metabolic complementation. Further studies, using methods such as metatran-
scriptomics and metabolomics, can unravel the functional dynamics of these 
interactions and the extent to which bacteria influence their host’s functioning. 

 
 
 
 
 
 
 
 
 

4. CONCLUSIONS 

The following conclusions can be inferred from this thesis. 

• The mechanisms driving community assembly differ significantly at various 
levels between free-living and host-associated bacteria. Unlike free-living  
and other eukaryote-associated bacterial communities, diversity of fungus-
inhabiting bacterial communities does not exhibit any response to the climate 
gradient examined in our global scale study. However, the observed selection 
pressure exerted by the host may indicate co-evolution between fungal lineages 
and their associated bacteria. Further research is required to investigate the 
mechanisms by which these bacteria establish associations with their host 
fungi as well as to elucidate the specific functions they perform. 
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SUMMARY IN ENGLISH 

Bacteria are ubiquitous in various habitats and can establish diverse interactions 
with eukaryotic hosts. Such interactions can be mutually beneficial when bacteria 
promote host’s growth, nutrient acquisition, or protect the host against pathogens, 
while obtaining carbon and shelter from the host. Understanding host-bacterial 
interactions can help to disentangle the role of different groups of organisms and 
symbiosis within ecosystems. A large number of studies have explored the human 
and plant microbiomes, aiming to improve human health and to enhance plant 
growth, resistance to pathogens and stress tolerance. While fungi, as the third 
major group of eukaryotes alongside plants and animals, perform crucial eco-
logical functions as decomposers and symbionts, they primarily capture human 
attention as pathogenic microorganisms. However, nany fungi also produce 
conspicuous structures facilitating reproduction (referred to as fruiting bodies) 
that are consumed by humans, either when growing in natural ecosystems or 
cultivated in farms. Recent advances in molecular technologies have revealed that 
fungal fruiting bodies harbor diverse bacterial communities that perform various 
functions including host growth promotion, spore dissemination, and germination. 
Despite their ubiquity, our current understanding of these communities and their 
functioning in fungal habitats is limited. Specifically, little is known about 
assembly mechanisms of fungus-inhabiting bacterial communities during fruiting 
body growth, bacterial diversity and distribution patterns across host taxa and 
geographical regions, as well as their genomic features.  

In this thesis, I used metabarcoding and genomic approaches to analyze bac-
terial community dynamics during fruitbody development, to identify factors that 
shape these communities at a larger scale, and to characterize their genomic fea-
tures that are involved in adaptation to fungal habitats. The following hypotheses 
were proposed in this thesis: 1) as fruiting bodies mature, the relative abundance 
of growth-promoting bacteria decreases at the expense of the rise of the share of 
pathogens; 2) the mechanisms of bacterial community assembly in the micro-
habitats of fungal fruiting bodies and plants follow distinct patterns; 3) at the 
global scale, host phylogeny plays a stronger role than environmental and climate 
factors in shaping fungus-inhabiting bacterial communities; 4) bacteria have 
evolved certain metabolic abilities to adapt to the fungal habitat and may comple-
ment the host's functioning; 5) some bacteria have the genomic ability to provide 
their host with fixed nitrogen. The thesis presents the following key findings and 
conclusions: 1) The relative abundance of growth-promoting bacteria remains 
consistent during the maturation of fungal fruiting bodies but declines afterwards, 
indicating their potential role in fruiting body development; 2) Patterns of bac-
terial community assembly across compartments of individuals differ between 
fungi and plants owing to their distinct chemical and anatomical features; 3) At 
the global scale, host-related factors rather than soil and climatic factors or geo-
spatial location determine the diversity of fungus-inhabiting bacterial commu-
nities; 4) Carbohydrate metabolism and transport, as well as motility-related 
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genes, are the key genomic features for bacterial adaptation to fungal habitats; 
5) Fungus-inhabiting bacteria can potentially complement the functioning of their 
host by providing metabolic enzymes absent in the fungal host, e.g. sucrose inver-
tase; 6) Bacteria isolated from fungal fruitbodies do not possess the nifHDK gene 
complex, questioning the published indirect evidence on fungal inhabiting bac-
teria to fix nitrogen.  

Overall, the results presented in this thesis point to the complementary role of 
the bacteria for the functioning of the fungal holobiont, as has been shown for 
plants and animals. Compared to these two host groups, fungi are more intimately 
connected to the soil microbiome, yet the assembly of their bacterial communities 
is largely determined by the host. These new findings contribute to our under-
standing of the dynamics of fungus-inhabiting bacterial communities and their 
interactions with their hosts, while emphasizing the necessity for further investi-
gations to elucidate the complexities of the fungal microbiome and its impact on 
ecosystem functioning. 
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SUMMARY IN ESTONIAN 

Seeni asustavate bakterite mitmekesisus,  
genoomika ja võimalikud funktsioonid 

Bakterid on laialt levinud mitmesugustes elupaikades ja võivad erineval moel 
interakteeruda eukarüootsete peremeesorganismidega. Seesugused interaktsioonid 
võivad olla vastastikku kasulikud, kus bakterid soodustavad peremehe kasvu, 
toitainete omastamist, resistentsust patogeenide suhtes ja toimetulekut stressi 
tingimustes, saades peremehelt süsinikühendeid ja sobiva elupaiga. Peremees-
bakter interaktsioonide parem mõistmine aitab välja selgitada erinevate organismi-
rühmade ja sümbioosi rolli ökosüsteemis. Hiljutised arengud molekulaar- ja sekve-
neerimistehnoloogiates on aidanud paljastada, et viljakehi moodustavad seened 
pakuvad elupaika väga mitmekesistele mikroobikooslustele. Teada on, et taolised 
bakterikooslused pakuvad peremeesseenele erinevaid hüvesid, soodustades müko-
riisa moodustamist, stimuleerides mütseeli kasvu, viljakeha arengut, aromaatsete 
ühendite tootmist, eoste idanemist ja suurendades levikut, samuti tootes kasvu-
regulaatoreid ja vitamiine. Samas on meie praegused teadmised nendest koos-
lustest ja nende funktsioonidest seentega seotud elupaikades veel piiratud. Eriti 
vähe on teavet seeni asustavate bakterikoosluste kujunemise mehhanismidest, 
nende mitmekesisuse ja leviku mustritest seenetaksonite ja geograafiliste piir-
kondade lõikes, aga ka nende genoomidest. 

Käesolevas töös kasutasime metatriipkoodistamist ja genoomipõhiseid meeto-
deid, et analüüsida bakterikoosluste muutusi viljakeha arengu vältel, tuvastada 
faktoreid, mis kujundavad seentega seotud bakterikooslusi laiemas ulatuses ja 
kirjeldada nende genoomseid omadusi, mis võiksid tuleneda kohastumistest seente 
omaduste poolt määratud elupaigus. Käesolevas töös on välja pakutud järgnevad 
hüpoteesid: 1) viljakeha vananemise käigus väheneb kasvu soodustavate bakterite 
suhteline osakaal patogeensete bakterite lisandumise arvel; 2) bakterikoosluste 
varieeruvust seente viljakehades ja taimeisendites iseloomustavad erinevad must-
rid; 3) globaalsel tasandil on seenega seotud bakterikoosluste kujunemisel määra-
vam osa peremehe sugulussuhetel kui keskkonna- ja kliimateguritel; 4) seente 
omaduste poolt määratud elupaikades kasvamisel on bakteritel kujunenud kohas-
tumused, mis mõjutavad nende metabolismi, toetades seeläbi peremehe funkt-
sioone; 5) mõnedes seeni asustavate bakterite genoomides esinevad geenid, mille 
avaldumine tagab peremeesorganismi varustamise õhust seotud lämmastikuga. 

Nende hüpoteeside kinnitamiseks või ümberlükkamiseks viidi läbi mitmeid 
uuringuid. Üks neist (I) hõlmas erinevas kasvustaadiumis viljakehade kogumist 
ja bakterikoosluste struktuuri ja võimalike funktsioonide analüüsimist, kasutades 
selleks suure läbilaskevõimega sekveneerimist. Tulemused näitasid, et kasvu 
soodustavate bakterite suhteline osakaal, eriti nende osas, kes on seotud lämmas-
tiku fikseerimisega, jääb viljakeha kasvu käigus muutumatuks, aga väheneb 
pärast viljakeha küpsemist, viidates nende bakterite võimalikule rollile viljakeha 
arengus. Lisaks võrdlesime bakterikooslusi seente viljakehade ja taimede erine-
vates osades. Tulemused näitasid, et bakterite koosseis viljakehade osades ei 
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erine märkimisväärselt, samas kui taimeorganite bakterikooslused on selgelt eris-
tunud. Sellise erinevuse tingivad tõenäoliselt seente ja taimede erinevatest keemi-
listest ja anatoomilistest omadustest lähtuvad eripärad nende bakterikoosluste 
kujunemisel.  

Teises metatriipkoodistamist kasutavas töös (II) uuriti seeni asustavate bakte-
rite levikumustreid globaalses mastaabis. Selleks koguti seente 31 riigist üle maa-
ilma viljakehaproove, mis seostati kogumispiirkonna kliima- ja keskkonna-
andmetega. Uuringu tulemused näitasid, et mulla ja kliimanäitajad, nagu mulla 
orgaanilise süsiniku sisaldus ja pH, aga ka aasta keskmine temperatuur ja sade-
mete hulk mõjuta seeni asustavate bakterikoosluste mitmekesisust. Samas on seeni 
asustava bakterikoosluse koosseis märkimisväärselt mõjutatud aasta keskmise 
temperatuuri ja sademete hulga poolt. Lisaks tuvastati, et globaalses ulatuses on 
peremehe fülogeneetiline kuuluvus peamine tegur, mis määrab seente bakteri-
koosluste struktuuri. 

Kolmandas töös (III) analüüsiti mikroobikoosluste struktuuri varieeruvust kahe 
puuliigi isenditel. Selleks koguti proove lehtedest kuni juuretippudeni, aga ka neid 
ümbritsevast mullast. Selgus, et võrreldes seenekooslustega mõjutab bakteri-
kooslusi märksa tugevamalt kaugus mullast. Tulemus lubab oletada, et nimetatud 
kooslusi kujundavad mehhanismid erinevad isegi mikrotasandil, seda tõenäoliselt 
tänu olulistele erinevustele bakterite ja seente eluvormide, populatsiooni-
dünaamika, füsioloogia ja levimisvõime osas.  

Leidmaks seoseid seente asustamiseks ja peremehe ainevahetuse mõjuta-
miseks kujunenud kohtastumiste ning bakterite genoomide ülesehituse vahel, 
analüüsisime seente viljakehadest eraldatud bakteritüvede täisgenoome (IV). 
Lisaks võrdlesime neid seentest, mullast, veest, taimedest ja inimestest tuvastatud 
täisgenoomsete järjestustega. Tulemused näitasid, et seentega seotud bakterid on 
rikastatud süsivesinike metabolismi ja transpordiga ning liikuvusega seotud 
geenidega, viidates nende omaduste olulisusele seente kujundatud elupaikades. 
Need tulemused näitavad, et seentega seotud bakterid võivad täita peremehe jaoks 
olulisi funktsioone, varustades neid metaboolsete ensüümidega, mis peremees-
seenel endal puuduvad, nagu näiteks sukroosi invertaas. Uuringus ei tuvastatud 
seentest eraldatud bakteritel nifHDK geenikompleksi, mis võimaldaks neil õhust 
lämmastikku siduda fikseerida. 

Käesoleva doktoritöö tulemused osutavad bakterite komplementaarsele rollile 
seente kui holobiontide toimimises, nii nagu on seda tuvastatud ka taimede ja 
loomade puhul. Võrreldes viimase kahe päristuumsete riigi esindajatega on seened 
märksa vahetumalt seotud mulla mikrobioomiga. Sellele vaatamata selgus, et 
seente bakterikoosluste ülesehituse määravad eelkõige just peremeesseentest läh-
tuvad faktorid. Uued teadmised aitavad paremini mõista seeni asustavate bakteri-
koosluste muutusi ajas ja ruumis ning nende vastastikuiseid suhteid peremees-
organismidega. Edasised uuringud on vajalikud, et selgitada laiemas ulatuses 
seente mikrobioomi iseärasusi ja mõjusid ökosüsteemide toimimisele.  
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