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ABSTRACT

It is possible to solve most mathematical problems, including equations of school
mathematics, with the help of Computer Algebra Systems (CAS). However, while
many answers offered by CAS (CAS answers) do not differ from the answers
expected in a school context (school answers), there are some exceptions.

Such unexpected CAS answers are often correct and could offer opportunities
for learning by utilising the computational power provided by CAS, but students
and teachers need to be able to understand them. A systematic review of the
differences between CAS answers and school answers is missing from research
and such review and organisation of resources could greatly add to CAS assisted
teaching practices in schools.

A review of the differences between CAS answers and school answers in the
case of equations is provided in this dissertation. The spectrum of differences is
explained by using two kinds of classifications. A key criterion of the first clas-
sification is comparing whether or not CAS answers include a larger or a smaller
number of solutions than the expected answers. The other classification is more
content-oriented, highlighting the issues of the form, completeness, dependence
on the number domain, and branching of answers and automatic simplification of
equations.

The differences caused by the number domain and branching are discussed
separately in greater depth in separate chapters. The possibilities of determining
real or complex domains in different CAS are presented. Branching is described
by evaluating the diversities between CAS answers, school answers and mathe-
matically branch-complete answers.

Although the differences between school answers and CAS answers are of-
ten thought to be confusing they can also serve as opportunities for teaching
and learning mathematics. Moreover, it is possible to make a productive use the
differences between CAS answers and students’ answers, which may also differ
from school answers. This dissertation proposes a pedagogical approach to utilise
CAS-assisted teaching opportunities offered by the differences between various
answers.

The topic of trigonometric equations, which has several properties to exem-
plify answer diversity, was chosen for testing the pedagogical approach in the
mathematics classes. The proposed pedagogical approach is based on compar-
ative discussions on students’ answers and CAS answers in pairs, and provides
also opportunities for collecting data on students’ understandings and misunder-
standings. The focus of the research was on analyzing whether or not students can
adequately identify the equivalence/non-equivalence and correctness of their own
answer compared to CAS answer. I found that even if the students’ solutions look
to be correct, students may have misunderstandings and knowledge gaps.

The systematic review of differences between CAS answers and school an-
swers provided in this dissertation could support CAS developers to improve their



software, teachers to utilise opportunities offered by CAS in their classrooms, and
curriculum designers in organizing the teaching process based on CAS assisted
teaching. The proposed pedagogical approach based on comparative discussions
on students’ answers and CAS answers in pairs of students complements reper-
toire of teachers and researchers.
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1. INTRODUCTION

This dissertation investigates the differences between answers offered by Com-
puter Algebra Systems (CAS) and answers expected from students in mathematics
classes at schools. The locations of these answers in the curriculum, their char-
acteristics, underlying reasons for appearance, and possibilities for using these
differences in teaching and learning are examined in the following chapters. An-
swers offered by CAS are referred to here as CAS answers and answers expected
from students are referred to as school answers. The dissertation focuses on CAS
and school answers in case of solving equations. The standards for school answers
can vary depending on the country, the curriculum, the textbook, the teacher. As
far as possible, different variants are taken into account in this study. Although
the dissertation focuses on school mathematics, some examples and discussions
go beyond the school level in the interests of a slightly broader overview.

In the last part of the dissertation, students’ expectations based on their own
solutions play an important role. These answers are referred to as students’ an-
swers. Both school answers, as answers expected from students, and students’
answers, as the basis of their expectations for CAS answers, are referred to as
“expected answers’ in the title of the dissertation.

The purpose of this chapter is to describe the background, the motivation and
structure of this dissertation. Firstly, the use of CAS in teaching and learning in
school mathematics will be briefly introduced, followed by an overview of expec-
tations for the answers in schools and the differences between answers offered by
CAS and expected school answers. Secondly, the motivations for research and the
identification of research issues and research questions will be described. Thirdly,
at the end of the chapter, the structure of the dissertation will be outlined.

1.1. Context: Computer Algebra Systems and their relations to
school mathematics

Section 1.1 points out the possible advantages of CAS for teaching and learn-
ing mathematics as well as the ways of using CAS in school mathematics (Sec-
tion 1.1.1). Section 1.1.2 introduces the differences between CAS answers and
school answers and their possible use in teaching and learning.

1.1.1. Computer Algebra Systems in school

The use of CAS in teaching and learning school mathematics is briefly discussed
in this section, but a more thorough overview of the specific CAS systems and
their uses is provided in Chapter 2. Cohen (2003) defined CAS as follows:

A computer algebra system (CAS) or symbol manipulation system is a computer program

that performs symbolic mathematical operations.
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Although CAS generate graphs and perform numeric calculation in addition to
symbolic manipulation (Heid, 2005), this dissertation concentrates on symbolic
manipulation, particularly solving of equations and simplification of expressions.

There are many computer programs that can be classified as CAS. This disser-
tation examines (to a greater or lesser extent) Axiom, Derive, GeoGebra, Maple,
Mathematica, Maxima, MuPAD, Sage, TI-92+, TI-nspire, WIRIS, WolframAl-
pha. CAS are often primarily designed for professional users just for getting the
answer but there are also systems (e.g., Derive, GeoGebra, TI-92+, TI-nspire,
WIRIS) that are designed for teaching purposes.

The operations that can be performed by CAS include most of the algebraic op-
erations of school and university mathematics courses (Geddes & Labahn, 1992).
Therefore, CAS provide students with an opportunity to outsource routine work to
the CAS (Heid & Edwards, 2001). Artigue (2002) stressed that, as CAS technol-
ogy could take charge of most of the taught techniques, it is commonly considered
that the use of CAS could allow students work directly at conceptual level. Re-
lationship and balance between procedural skills and conceptual understanding
in teaching and learning algebra is crucial to debates on development of algebra
education (Drijvers, Goddijn, & Kindt, 2011).

Heid, Thomas, and Zbiek (2013) argued that using CAS could allow users to
explore mathematical invariants, active linking of dynamic representations, en-
gagement with real data, and simulations of real and mathematical relationships.
More specifically, Pierce, Bardini, et al. (2015) listed 12 implementations for
mathematics classes: Checking answers, Obtaining results faster than with pen &
paper, Doing calculations that students might find hard, Doing algebra that stu-
dents might find hard, Doing application problems, Showing the impact of varying
coefficients, powers etc., Creating tables, Graphing functions, Solving, Expanding
or factorising, Differentiating or integrating, Doing matrix operations.

This dissertation focuses on answers offered by CAS to equations because
solving of equations has a very important position in school mathematics curricu-
lum and is also one of the main activities performable by CAS. Although solving
equations can also be related to some other items on the above list, Solving and
Checking answers are in the focus of this study.

CAS answers often coincide with school answers, but not always. Moreover,
different CAS can offer different answers. Wester (1999b) has provided probably
the most extensive review of how CAS solve different problems (542 problems
were included), but only some of them were from school mathematics. I have
been interested in CAS since before 2000 and have also found a few bugs in
different CAS. Wester’s review (1999b) gave me inspiration to offer something
similar with regard to school mathematics.

Drijvers (2002) stressed that differences between CAS answers and school an-
swers can elicit a feeling of irritation and frustration in students. Similarly, Ball
(2014) described a case where a teacher felt that students experienced frustration
when CAS offered an unexpected output. On the other hand, Drijvers (2002) and

17



Buteau, Marshall, Jarvis, and Lavicza (2010) noted that differences between CAS
answers and school answers can serve as pedagogical opportunities. The unex-
pected response of CAS can be a catalyst for rich mathematical discussion (Pierce
& Stacey, 2010).

In the early years of my research I concentrated on the differences of CAS
and school answers in order to alert teachers, curriculum designers and CAS au-
thors. Later, my focus shifted on the possible constructive ways of using these
differences. My motivation for concrete research questions of the dissertation is
described in Section 1.2. Before that, the differences between CAS and school
answers are discussed in Section 1.1.2.

1.1.2. Differences between CAS and school answers

As the differences between CAS and school answers constitute the main object
of this dissertation, they are introduced in this section before identification of
research questions in Section 1.2. The issues of number domain and branching
are highlighted because of their important role in causing the differences.

This dissertation is focused on the solving of equations, a leitmotif of school
mathematics. There are different types of equations in school curricula (referred
to here as school mathematics equations): linear, quadratic and fractional equa-
tions, equations that contain an absolute value of an expression, irrational (rad-
ical), exponential, logarithmic and trigonometric equations and literal equations
(equation with parameters). Some equations can also be combined from different
types. Equation solving is closely related to functions (Kolyagin, Lukankin, &
Mokrushin, 1977; Usiskin, 1988). The introduction of a new operation or func-
tion is usually also associated with a new type of equation in school curricula. The
operations and functions in equations determine the form of the solution set, the
requirements for solution and solving technique. In addition, possible difficulties
and mistakes in the solving process are also related to the properties of operations
and functions. As the type of equations has a significant bearing on possible dif-
ficulties, mistakes and standards, all mentioned types of equations from school
mathematics are observed separately in the dissertation.

The CAS and school approaches can be different and here the school standards
are presented first. The standards for school answers are shaped by requirements
and examples from study material (e.g., textbooks) and teachers. The standards
can somewhat vary depending on the country, the curriculum, the textbook, the
teacher, etc. School mathematics can differ from university mathematics and
mathematicians’ mathematics, for example, in the number domain. As CAS are
often designed for tertiary (university) and disciplinary (mathematicians’) math-
ematics, different standards can cause differences between CAS and school an-
SWers.

Firstly, the issue of the number domain is introduced because difference of
domains is one of the significant reasons for the differences between CAS and
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school answers. The complex domain is the default domain in some and the real
domain in other CAS. An answer offered by a CAS may be unexpected for a
student because it belongs to domain different from the domain used at school
(Alonso, Garcia, Garcia, Hoya, et al., 2001). For example, in the case of enter-
ing solve(x~2+1=0,x), a CAS (WolframAlpha) offers x = +i. An imaginary
answer can be unexpected for students as school mathematics does not (at least
usually) deal with imaginary numbers. Wester (1999b) mentioned that the ele-
mentary mathematics option for a CAS (all variables are declared to be real, v/—1
is undefined, etc.) should be useful. CAS can have features for confining the work
in the real domain. Sometimes, CAS features for determination of domain can be
inconsistent and present a real solution that is considered as extraneous in school:
—1 in the case of v/2x = v/x — 1. —1 is the correct answer in the complex domain,
but \/TZ is undefined in the real domain.

Secondly, branching of solutions is under consideration. Namely, a solution
can consist of different branches in some manner and CAS and school answers
can differ in their presentation of the branches. However, CAS and school answers

coincide in the following case: Kadijevich (2014) was concerned that CAS usually
2

simplifies all to x, not adding the constraint x # 0. Similar examples are provided
in Berger ()26009) and Olive et al. (2010). The distinguishing of such ’forbidden’
branches is also often discarded in the school context. The *forbidden’ operations
are legalized by hidden assumptions to avoid branching. For example, a textbook
Barnett, Ziegler, and Byleen (1999) says:

Even though not always explicitly stated, we always assume that variables are restricted

so that division by 0 is excluded.

Such transformation can lead to extraneous solutions in equation solving. The
common strategy for excluding extraneous solutions is checking the provisional
solution in the initial equation.

The differences in presentation of branches occur with different types of equa-
tions. Examples of quadratic, literal and trigonometric equations are presented
here. Some textbooks say that there are two equal roots, some say one real root
(a repeated root), and some say just one real solution if the discriminant is zero in
case of solving quadratic equation (e.g., x> +2x+ 1 = 0). Sangwin (2015) pointed
out the issue of repeated root in CAS answers and illustrated it by solving the
equation x> — 6x+ 9 = 0 with six CAS. Two of the CAS indicated multiplicity
and four did not.

Literal equations (equations with parameters) offer different levels for treat-
ment of branches. For example, only the main branch is often assumed in applied
problems in the school context, e.g., in physics: A = P+ Prt; please express r.
These are cases where P = 0 or t = 0 are not particularly handled. On the other
hand, for example, all cases are expected to present in the answer of equation
(a*>—1)x—(2a* +a—3) =0.

Stoutemyer (1991) pointed out that most CAS return only x = 0 when solving
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cx = 0. Similarly, Bernardin (1999) mentioned that almost all CAS provide only
the main branch (in case of equation ax = 1, only the branch where a # 0).
There are different sources for branching in case of trigonometric equations —
periodicity and the families of solutions. Textbooks may or may not provide gen-
eral solutions. In case of general solutions, different forms are possible. For
example, in case of sinx + cos2x = 0 textbooks can give the answer
4

n n T
X :§+2n7rande:€i§+§n7r

or

T 74
xp=(=1)" E—l—nn and x = (—1)""! g—i—nn.

CAS can present the general solution or a set of particular solutions in case of
trigonometric equations. Stacey and Ball (2001) showed CAS answers in case of

5cos?x+2sin%x =2

1.5707 (by HP-49G),
x=((2n—1)m)/2 (by TI-89),
x=(2m)k—m/2 and x = (27m)k + /2 (by FX-2.0),

e x=—7m/2 and x = 7/2 (Mathematica).

Trigonometric equations are very interesting because of a variety of possible
presentations of solutions, units of measurement, general and particular solutions,
and they are used frequently in this dissertation.

The differences can be noticed already in relatively simple examples. Some-
times CAS can provide answers that are not fully simplified. Drijvers (2002)
pointed out that students can experience difficulties in recognizing equivalence of
a CAS answer and the answer that the student had in mind. The examples were

1
—(x—12) vs 12 —x and \/i 'S E\/E Similar examples were noted by Stacey

(2003), (b+a)?* vs a* + b* +2ab, and Meagher (2005), —(x — 3x%) vs 3x> —x.
All these authors mentioned that recognition of equivalence/non-equivalence of
answers can be difficult for some students but not for others.

Although the differences between CAS answers and school answers are often
thought to be confusing and undesirable as an obstacle, they can also serve as op-
portunities for teaching and learning. Alonso et al. (2001) listed some unexpected
answers and proposed not to skip such exercises but use them in classroom, as it
is necessary for developing students’ critical ability, and CAS offer the possibility
of contrasting all the results, using a variety of representations. They are con-
vinced that the unexpected results can be used to emphasize concepts and increase
the critical perspective. Pierce and Stacey (2010) stated that it is possible to ex-
ploit the contrast between ideal and machine mathematics. Teachers could make
deliberate use of 'unexpected’ error messages, expression formats and graphical
displays as a catalyst for rich mathematical discussion.
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There are quite a few concrete examples about the use of the differences be-
tween CAS answers and school answers in literature. In some cases, students are
asked to explain CAS answers. Kieran et al. (2006) described the justification of
CAS simplification (2 —x)(1 —2x) to (x—2)(2x — 1) by students. Artigue (2005)
presented a case where students were explicitly asked to record the result, their
remarks, comments and interpretations of the result in case of an unexpected or
incomprehensible CAS result. For example, in case of (x\f2 — \@) (x\@) —V2,
CAS did not transform v/2+/3 into v/6 as would be done with pen and paper.

Ball (2014) and Pantzare (2012) presented some questions from the written
examination in Mathematical Methods in Victoria (Australia). For example, stu-
dents were asked to solve a trigonometric equation by CAS and choose the correct
answer from four alternatives. The correct answer was equivalent to CAS answer
but looked different.

Lagrange (1999) described a case where students had to find their answer
themselves and then by CAS and explain the equivalence of results. The stu-

dents were asked to differentiate trigonometric function cos(3x — —). Guzman,

Kieran, and Martinez (2010, 2011); Martinez, Kieran, and Guzmadn (2012); Stay-
ton (2016) described the case where students worked in pairs and compared CAS
answers to their own pen-and-paper answers. The examples were chosen to guide
students to notice important differences between the following expressions:

x(3+x) 4x+4y 3x+4y
x T ox+y x+y

Section 1.1 introduced CAS use briefly in teaching and learning mathematics
in schools. Special attention was paid to the differences between CAS answers and
school answers — their possible causes and opportunities for teaching. Although
possible uses of the differences between CAS answers and school answers are
mentioned in literature, only a few concrete cases or practices could be found.
However, these examples encouraged me to become engaged with the differences
between CAS and school answers.

1.2. Motivation, research issues and questions

In this section, the central issues of this dissertation are identified, with some
references to my personal motivation. Four research issues are introduced, each
in a separate section from 1.2.1 to 1.2.4. Six research questions are formulated as
well.

1.2.1. The first issue — differences between CAS and school
answers

I have been interested in using CAS for nearly 20 years. The main focus of my re-
search has been on identifying the differences between CAS and school answers.
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Although I found a few bugs, I understood that usually these differences are re-
lated to the choices made by CAS authors. The choices have been influenced by
the fact that CAS were initially developed for professional users and even now
professional users are the main user group of CAS. Unfinished answers, excep-
tional solutions and particular solutions vs. general solutions are probably not
so confusing for professional users but they can be confusing for students. It is
worth mentioning that some systems (e.g., GeoGebra and WIRIS) are developed
primarily for educational purposes and more school-friendly choices have been
made in these systems.

It is notable that CAS answers to a particular problem can vary between differ-
ent CAS, commands and settings. Wester (1999b) described a large experiment
aimed at discovering how different CAS solve problems. Wester (1999b) as well
as Bernardin (1999) did not provide many examples from school mathematics.
There are also some examples of school mathematics discussed in different pa-
pers (e.g., Alonso et al., 2001; Drijvers, 2002) but no large systematic review has
been compiled.

The first research issue can be formulated as follows:

Computer output provided by CAS can, on some occasions, be different than
the answers expected from students in schools. These differences can be confusing
but can also serve as opportunities for teaching and learning. Therefore, a system-
atic review of these differences in relation to the curriculum and the applied CAS
software would be important and could also be useful for teachers, curriculum
designers, and CAS authors. In particular, the review should describe the place
in curricula, the characteristics, the reason of appearance of such differences, as
well as the characteristics of CAS software and its output style.

Two research questions (RQ1 and RQ2) could be formulated based on the
outlined issue. As the dissertation focuses on school mathematics equations, the
first research question is:

RQ1. Where differences between CAS and school answers could be de-
tected in equations within the school curriculum?

RQ1 focuses on the location of the differences between CAS and school an-
swers. However, a systematic review should not be limited to location alone — the
contents and causes of the differences between CAS and school answers should
be examined as well. Different authors mention various phenomena in connection
with the differences. Wester (1999b) noted that some CAS answers are incom-
plete or incompletely simplified. B6hm (2009) and Kadijevich (2009) found that
automatic simplification can be confusing. Aslaksen (1999) highlighted the dif-
ference of transformation rules in different number domains. Bradford, Corless,
Davenport, Jeffrey, and Watt (2002); Corless and Jeffrey (1996); Rich and Jeffrey
(1996) discussed multivalued functions. These sources give ideas and inspira-
tion for description and classification of the differences between CAS and school
answers.
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The second research question is:
RQ2. How can the detected differences between CAS and school answers
to equations in the school curriculum be described and classified?

1.2.2. The second issue — nhumber domain

Both literature and the answers to RQ1 and RQ2 show that the issue of the num-
ber domain is one of the important reasons for the differences between CAS and
school answers. As the issue of the number domain is, in case of equations, closely
related to simplification of expressions, it is justified to discuss them together. The
solution sets of equations and the validity of transformation rules in the manipu-
lation of expressions may depend on the domain in case of some types — they are
domain-sensitive. For example, v/—1 is i in case of complex numbers but not de-
fined in case of real numbers. Furthermore, the equation x* 4 1 = 0 has solutions
in the complex domain but not in the real (or rational) domain.

A CAS answer may be unexpected to students because the domain may differ
from the domain used at school (Alonso et al., 2001). Wester (1999b) mentioned
that an elementary mathematics option for a CAS should be useful. CAS have
various possibilities to determine the domain of a result, variable value or equation
solution. Such features can sometimes be inconsistent, for example, —1 is offered
as answer to the equation x + /x = /x — 1 even in the real domain.

The issue here is formulated based on the results of RQ1 and RQ2:

Different CAS software provide various real and/or complex answers; it would
be important to have an overview of the features used for determination of the
domain of a calculation result, variable value or equation solution and of the
quality of these features. Such overview would be useful for teachers who teach
(or plan to teach) with CAS, but also for curriculum designers and CAS authors.

Some CAS work in the complex domain by default, others work in the real
domain. CAS have different possibilities for the determination of the domain of a
calculation result, variable value or equation solution. The next research question
is posed for assessing the performance of CAS and it is formulated as follows:

RQ3. When do CAS outputs offer correct and incorrect answers for
domain-sensitive examples, specifically for expression simplification and
equation solving?

1.2.3. The third issue — branching solutions

As presented in literature and in the answers to RQ1 and RQ?2, a solution can,
in many cases, consist of different branches. Solutions of quadratic, literal and
trigonometric equations and cancellation of the fraction with variables in the de-
2
. X . . . .
nominator (— to x) introduced in Section 1.1.2 serve as examples of branching.

X
Some branches can be absent from school and CAS answers compared to math-
ematically branch-complete answers. For example, the mathematically branch-

23



X,
complete answer for — is
X

X ifx#0
undefined if x =0.

An answer is mathematically branch-complete if the multiplicity of roots is
shown; for example, if the discriminant is zero in case of a quadratic equation. A
mathematically branch-complete answer to a literal equation presents all cases and
a mathematically branch-complete answer to a trigonometric equation provides a
general solution.

The next research issue is formulated as follows:

As school answers and CAS answers could differ from mathematically branch-
complete answers, it is reasonable to consider besides the CAS answer and the
school answer also the mathematically complete answer in the case of branching.
An overview of branching would be useful for teachers, curriculum designers and
CAS authors.

Based on the outlined issue, the following research question RQ4 can be for-
mulated:

RQ4. How can branching be described for answers provided by different
CAS software; by different school solutions and textbooks; by the possibil-
ities of mathematical approaches for expressions simplifications and equa-
tions solving?

1.2.4. The fourth issue — using of differences

In this section the last issue and research questions will be formulated. Although
CAS answers different from school answers are often thought to be confusing and
undesirable as an obstacle, they could also serve as opportunities for teaching and
learning, especially to stimulate the students’ analysis and discussion. Finding
such opportunities has been particularly important to me as mere identification of
the differences between CAS and school answers seemed to be biased.

In case of the examples by Guzman et al. (2010, 2011); Lagrange (1999);
Martinez et al. (2012); Stayton (2016), presented in Section 1.1.2, students were
directed to compare their own answers to CAS answers. This approach seems
reasonable to me, as it involves simultaneous solving with pen-and-paper and by
CAS. Balance between procedural skills and conceptual understanding is taken
into account. The use of students’ own answers can add a personal touch. More-
over, students’ discussion on the equivalence and correctness of a CAS answer
and their own answer can produce better insights into students’ understandings
and misunderstandings.

Unfortunately, there are only few examples of comparison CAS and students’
answers found in literature. Therefore, the last research issue is formulated as
follows:
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There is a lack of examples where the differences between CAS answers and
students’ answers are used in education to support students’ understanding. Addi-
tionally, the research potential in studying students’ discussions has been largely
untapped.

Two activities can be identified here. First, there is a need for a pedagogi-
cal approach where the differences between CAS answers and students’ answers
are used in education to support students’ understanding. Then it is possible
to examine the approach as well as students’ identification of equivalence/non-
equivalence and correctness of their answers and CAS answers to particular types
of equations.

At first, the research question RQ5 is formulated as follows:

RQS. What pedagogical approaches could be proposed to utilize the
teaching opportunities offered by the differences between CAS and students’
answers?

For the experimental part with students, solving of trigonometric equations was
chosen as the main topic because of the natural variation of possible presentations
of solutions, units of measurement, general and particular solutions, etc. The va-
riety of answers of trigonometric equations is highlighted by Abramovich (2005,
2014); Kieran and Saldanha (2005); Lagrange (1999); Pantzare (2012). The vari-
ations give a good basis for students’ discussion on equivalence and correctness
of their own answers and CAS answers.

A pedagogical approach where pairs of students were charged with the task of
comparing the answers offered by a CAS with their own answers was suggested
and implemented. This approach is referred to here as a lesson scenario based
on comparative discussion on students’ answers and computer algebra system an-
swers in pairs of students.

The students’ discussion when comparing their answers and CAS answers also
provides data about students’ understandings and misunderstandings related to
correctness and equivalence of their answers and CAS answers. Equivalence is
one of the important issues in mathematics but is somewhat hidden in school
mathematics. Kieran, Boileau, Tanguay, and Drijvers (2013) mentioned the cru-
cial role of equivalence of algebraic expressions in expression simplification and
equation solving and in a broader context.

Recognition of equivalence and correctness is crucial when students compare
CAS and their own answers. The experimentation of the lesson scenario lead to
the research question RQ6 which is formulated as follows:

RQ6. How can students identify 1) the equivalence and non-equivalence
between CAS and their own answers; 2) correctness of CAS and their own
answers of trigonometric equations in lessons based on comparative discus-
sions on students’ answers and CAS answers in pairs of students?

The research design will be described by individual research questions in Sec-
tion 3.1, after the chapter on related works. Research based on the issues and
questions will be presented in Chapters 4—8.
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1.3. Outline

The structure of the dissertation is outlined in this section.

The dissertation is divided into nine chapters. An overview of related works
is presented in Chapter 2, after the Introduction (Chapter 1). Chapter 3 gives an
overview of research design and instruments.

The dissertation is a monograph based on six papers (Tonisson, 2007, 2008,
2011, 2013, 2015; Tonisson & Lepp, 2015). Five of them are single-authored;
in case of Tonisson and Lepp (2015) the co-author helped with the preparation
of the experiment and data analyses. Although the papers generally deal with
quite connected topics, there was no direct plan for a monograph beforehand. The
monograph was composed after the papers were published.

Chapter 4 is based on the paper Differences between Expected Answers and
the Answers Given by Computer Algebra Systems to School Equations (Tonisson,
2015) and demonstrates where the differences between CAS and school answers
can be detected in equations within the school curriculum (RQ1). Over 120 equa-
tions from school mathematics are solved using 8 different CAS. The detected
differences between CAS and school answers are described and classified (RQ2).
The classification consists of 6 types.

Chapter 5 provides a different classification of the differences between CAS
answers and school answers than Chapter 4 (RQ2). The classification is more
content-oriented and the types are based on the form, completion, dependence
on the number domain, and branching of answers and automatic simplification
of equations. Some phenomena seem to have more didactic value for treatment
of certain topics. The scenario where students compare CAS answers with their
own answers is outlined here but the experiments are described in Chapter 8. The
chapter is based on the paper Unexpected answers offered by Computer Algebra
Systems to school equations (Tonisson, 2011) but is considerably improved.

The issues of domain and branches are so distinguished that special chapters
are justified. Chapter 6 (based on Issues of Domain in School Mathematics and
in Computer Algebra Systems (Tonisson, 2008)) focuses on the issues of domain
(mainly the real and complex domain). The question when do CAS outputs offer
correct and incorrect answers for domain-sensitive examples (RQ3) is answered.

The area of Chapter 7 (based on the paper Branch Completeness in School
Mathematics and in Computer Algebra Systems (Tonisson, 2007)) is limited to
the problems where a solution is separable in some manner. Branching diversi-
ties (RQ4) between CAS answers (CAS), school answers (SCH) and mathemati-
cally branch-complete answers (MATH) are described using special notation, e.g.,
CAS < SCH = MATH.

Unlike the preceding chapters, Chapter 8 (based on the papers Students’ Com-
parison of Their Trigonometric Answers with the Answers of a Computer Algebra
System (Tonisson, 2013) and Students’ Comparison of Their Trigonometric An-
swers with the Answers of a Computer Algebra System in Terms of Equivalence
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and Correctness (Tonisson & Lepp, 2015)) includes an experimental part with
students. Firstly, a lesson scenario based on comparative discussion on students’
answers and computer algebra system answers in pairs of students is proposed in
order to utilize the teaching opportunities offered by the differences between CAS
and students’ answers (RQS5). Secondly, the chapter analyses whether students
can adequately identify the equivalence/non-equivalence and correctness of their
answer and CAS answer (RQ6).

The concluding part is numbered as Chapter 9. The conclusion includes an
overview of the results by research questions, an outline of the contribution to the
work of different user groups, and ideas on possible future work. The Appendix
includes tables of equations of the test suite used in Chapter 4 and worksheets and
questionnaires used in the lessons described in Chapter 8.
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2. RELATED WORKS

The purpose of Chapter 2 is to introduce related works from different areas.
Firstly, the works where CAS answers have been analysed are presented in Sec-
tion 2.1. Section 2.2 introduces some aspects of teaching and learning equation
solving. Thirdly, the use of the differences between expected answers and CAS
answers is in the focus in Section 2.3. Finally, the chapter concludes with some
ideas, which are useful in the context of this dissertation.

2.1. Analysis of CAS answers

This section focuses on works about CAS answers, their possible shortcomings,
and their differences from one another and (school) mathematics answers. Sec-
tion 2.1.1 is based on Wester (1999b) which contains probably the thoroughest
overview of CAS answers. Bugs and limitations are discussed in Section 2.1.2.
Issues related to the number domain, branching and the simplest form of CAS an-
swers are discussed in Sections 2.1.3-2.1.5 respectively. Section 2.1.6 is devoted
to answers to trigonometric equations.

2.1.1. Wester’s review of CAS answers

CAS answers have been analysed in different works. Section 2.1.1 is based on
A critique of the mathematical abilities of CA systems (Wester, 1999b) which
is a part of the collection of papers Computer algebra systems: A Practical
Guide (Wester, 1999a). Wester’s (1999b) paper is probably the most extensive
review of how CAS solve different problems (542 are included). Wester com-
pared how seven different computer algebra systems (Axiom, Derive, Macsyma,
Maple, Mathematica, MuPAD, Reduce) deal with a chosen set of problems. All
results were collected into one table showing the overall tendencies, shortages and
patterns. Figure 1 and Figure 2 present small parts of this table. The answers were
evaluated by special "grades’:

® success;

* success, but a little fudging or subtlety required,
or the answer could be just a little nicer or more complete;

o success but indirectly, incomplete or unsimplified;

b tricky, very inelegant or minimal success;

# incompletely simplified, but some useful transformations were
performed;
could not do the problem;

— lack the capability to do or state the problem;
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48 COMPUTER ALGEBRA SYSTEMS: A PRACTICAL GUIDE
# PROBLEM Ax | De |Mc|Mp |[Mm|Mu|Re
=z - | ] ] | — |
M. Equations
Ml (32 4+(1=1)=>24+1=2 . o o | oo e
M2 |solve(3a® — 1822 + 33z — 19 = 0, R) o | e | x| x| o x|oe
M3 |solve(z! + % + 22 + 241 =0) i e | o | o | o | e | e
M4 |verify a solution of the above ° ° ° ° ° * | e
M5 |solve(z5 — 921 — 4a® + 2722 — 362 — 23)
M6 |solve(z” —1=0)=a={1,{eE*/T}3_1 4§ | « | e | o | « | b |y
M7 |solve(z® — 827 + - — 140z + 46 = 0) o | o | o | o | o
M8 |solve(e®® + 2¢® + 1 = z, ) of | o | e | of | of [x18] e
M9 |solve(e? " = e~%) = z = {—1,2}[+ C] of | e | of | of |x!8
M10 [solve(e® = &) = & = —Wy,(—1) (n € Z) of | & | o o"
M11 |solve(z® = z) = « = {—1,1} o o

Figure 1. Review of CAS (Wester, 1999b)

€ an error message was generated;
€ asurprising error occurred;

(® afatal program error occurred;
T very slow;

almost correct;

® partial success, but also partially incorrect;

&

mostly, but not completely wrong;

produced the wrong answer;

I X

~

N

18

only provides solutions within a restricted interval;

one or more spurious solutions were produced;

unsuccessful using E"x, but successful using exp(x).

does not indicate some or all solutions may have a multiplicity > 1;

Grading variants also indicate that the picture is not contrastingly black and
white. There were cases where somewhat partial or dubious success was ex-
pressed — the evaluation of CAS answers is not always straightforward. There
were not very many school problems reviewed in Wester, 1999b. It is understand-
able as CAS were initially designed mainly to help professional users of mathe-
matics. However, there were some equations in school level (like sinx = cosx,

tanx = 1, sinx = tanx, VX2 + 1 =x—2, x+/x =2, |2x+ 5| = |x - 2|).
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Besides of the grade ’success’, also ’success but indirectly, incomplete or un-
simplified’, ’success, but a little fudging or subtlety required, or the answer could
be just a little nicer or more complete’ and ’partial success, but also partially in-
correct’ were noted. The comments ’only provides solutions within a restricted
interval’ (marked by r) and ’does not indicate some or all solutions may have mul-
tiplicity > 1’ (marked by m) were added in case of some answers. For example,
the answers to trigonometric equations (see Figure 2) where a CAS gave particular
solutions were classified as ’success but indirectly, incomplete or unsimplified’.

M13|solve(sina = cosz) = & = § [+ nn] of | o | x| e | ofF | x| %
M1 |solve(tanz = 1) = = = § [+ n7] ofF | o | e | o | o | e | e
M15 |solve(sinz = §) = %, 3% [ + n2m, + n2n) " | o | x| o | o | o | @
M16 |solve(sinz = tanz) = 0,0+ nm, +n2n] |o™F| o | o [o™F| o™ | o |®?®
M17 |solve(sin™! 2 = tan~! z) = x = {0,0,0} oM | om om | om °

Figure 2. Trigonometric equations (Wester, 1999b)

Wester did not classify the grades on the basis of equivalence. It is hard to say
what was exact meaning of “almost correct’, for example. Is the answer equivalent
to the expected answer or not? The equivalence issues are important for students
and teachers and also in the context of this dissertation.

There are some grades that could seem somewhat subjective, for example, ’the
answer could be just a little nicer or more complete’ or ’success, but indirectly,
incomplete or unsimplified’. It should be noted that some differences that are not
hindrances for professional users could confuse students and teachers.

Wester’s review provided the inspiration for using similar tables with differ-
ent CAS in this dissertation. His gradings were quite emotional and diverse, and
different classifications were used. Grading variants also indicate that the picture
is not plainly black and white. Wester’s grading style and test suite are not di-
rectly suitable for school mathematics. However, some highlighted issues are also
important and interesting in the school context.

The next section discusses bugs and limitations.

2.1.2. Bugs and limitations

Section 2.1.2 is focused on classification of some unexpected answers.
Stoutemyer (1991) differentiated between bugs and limitations. He considered
a bug as something bad that a program does contrary to the programmers’ intent
and a limitation as something a program cannot do that a user wishes it could.
Stoutemyer divided the limitations in turn to theoretical, resource and algorithmic
limitations. Theoretical (incl. undecidability results from logic and the theory of
computation) and resource (e.g., computer memory, computational time) limita-
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tions are not relevant for this dissertation. Algorithmic limitations that arise from
the fact that it is impractical to implement all possible details are, on the contrary,
pertinent.

Talking about bugs, Stoutemyer suggested that a CAS result should be checked
on more than one CAS, because it is unlikely that two systems have the same bug.
Trying more than one system would also provide an overview of the best features
of each system.

Some of the Stoutemyer’s (1991) sentences from have been somewhat inspir-
ing for this dissertation:

o The goal here is to inspire caution. These systems can be extraordinarily
useful if users are aware of underlying assumptions and of their responsi-
bility to verify results.

e [t is important for users to be aware of some of the limitations of such
systems to use them wisely.

The topic of Alonso et al., 2001 (Some Unexpected Results Using Computer

Algebra Systems) is very pertinent for this dissertation. Alonso et al. (2001) pre-
sented the following classification of unexpected results:

e Bugs, incorrect results, contrary to the programmers’ intent.

o Limitations imposed by the programmers with a view to avoiding problems
or facilitating other situations.

e Correct results that are surprising to the user, who implicitly assumes certain
hypotheses or believes that the variables lie in a given specific domain.

e Others. The range of situations is very broad. Thus, it is something surpris-
ing that the system is unable to perform an apparently simple calculation,
in which case it is necessary to "help the computer".

The last three classes are focused on in this dissertation. Alonso et al. (2001)
presented an example of an incorrect result — the approximation of the fraction
110781,/10000 to 11.0780 when using Derive 4.11. Derive 5 offers the correct
answer. It shows that a bug can be corrected in future versions of a CAS.

Bugs are not very important in the context of this dissertation, as they prob-
ably would be fixed in subsequent versions. On the other hand, Lavicza (2008)
pointed out that compatibility of different CAS versions can be problematic for
mathematicians as worksheets should be redeveloped after the upgrade. For this
dissertation, intentional behavior is more interesting as regards to the possibility
of use in teaching and learning. The next sections are devoted to different aspects
of intentional behavior.

2.1.3. Number domain

The choice of number domain is one of the intentional choices. Section 2.1.3
presents the works that highlight the differences related to different number do-
mains. Alonso et al. (2001) noted that a CAS answer can be unexpected for stu-
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dents because the domain may differ from the domain used at school. Wester
(1999b) mentioned a possible special need for elementary mathematics:

It certainly would be wonderful if CASs were adjustable to the mind-sets
of their users (mathematicians, physicists, engineers, etc.) One could invoke
mindset (elementary_math_student) to initially declare all variables to be real, make
V=1 undefined, etc., for example.

Stoutemyer (1991) discussed the issue of imaginary numbers and assumptions,
for example, being real or nonnegative. In case of simplification of In(1) the users
could expect 0 as the answer but actually the correct answer (in the complex do-
main) is 2n7 | n € Z. The multiple-valued complex functions in the CAS context
are the topic of many papers. For example, Aslaksen (1999) listed some tests for
the checking of correctness. One of them specified that

o /2w — \/zv/W should not simplify when z and w are complex.
o /2w — \/zv/W should simplify to 0 when z and w are both positive.
Kaltofen said:

One of the fundamental difficulties in dealing with "the square root bug" is that because
of multivaluedness, some cherished algebraic identities, such as

an]ZQ = an| +ln12

no longer hold — they are not true for all specializations of the variables. People have

been willing to try to keep these identities, at almost any cost. (Kaltofen, 2000)

Multivalued functions and branch cuts were the main topic of several works of
Jeftrey and his co-authors (Bradford et al., 2002; Corless & Jeftrey, 1996; Corless,
Jeffrey, Watt, & Davenport, 2000; Rich & Jeffrey, 1996). Jeffrey (2014) described
the new approach to multivalued elementary inverse functions (log(z), arcsin(z),
arccos(z), arctan(z), arcsinh(z), arccosh(z), arctanh(z), fractional powers z'/"). It
is based on an idea of the branch of an inverse function and defining of an index
for each branch. He also observed that

.. in the 1980s, errors resulting from the incorrect application of these transformations
were common. Since then, systems have improved and now they usually avoid simplifi-
cation errors, although the price paid is often that no simplification is made when it could
be.

Although, for instance, inverse trigonometric functions are important in the
context of this dissertation, the issues of multivalued function are not discussed in
greater depth here.

The correct but unexpected results are related to the fact that a CAS itself is not
limited to the real domain. For example, Alonso et al. (2001) mentioned that the
user expects —2 instead of 2(— 1)% as the cube root of —8. Unwritten assumptions

leads to expected simplifications that are not generally correct. (x")% is not x in
general, log(xy) is equivalent to log(x) 4+ log(y) only when x and y are positive.
Furthermore, In(exp(z)) = z holds only if the imaginary part of z is in (—7x, 7).
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Domain issues are very important for this dissertation as the complex domain
is often used in CAS but not in school mathematics. The above examples give
ideas for a test suite. The branching of solutions, which is also related to the
number domain, will be discussed in the next section.

2.1.4. Branching of solution

Section 2.1.4 includes examples where a solution consists of different branches in
some manner. The issues of literal equation, extraneous solutions, repeated roots
and simplification without comments are discussed.

Literal equations. Most of the Stoutemyer’s (1991) examples were beyond
school mathematics but some topics were related to school equations. For ex-
ample, CAS tend to ignore special cases in some context. Stoutemyer said:

David Jeffrey pointed out to me another example of ignoring a set of measure 0 in solving
an equation such cx = 0 for x. Most systems return only x = 0, but if declarations don’t

exclude ¢ = 0, then another solution is ¢ = 0. Since we requested the values of x that
satisfy the equation, we could express the solution set somewhat awkwardly as

x= if ¢ =0 then @ else 0

where @ is a unique new variable designating "anything". In contrast, there is less need to
worry about the case ¢ = 0 in solving cx = 1 for x, because the solution x = 1/c contains a
manifest indication of a limit solution at x = 1/0 = complex oo. It is the invisible failures
of a formula that are most dangerous. (Stoutemyer, 1991)

Bernardin (1999) (an earlier version is Bernardin, 1996) focused on algebraic
and transcendental equation solving, which is closely related to this dissertation.
Although many of the reviewed equations were beyond school mathematics, there
were several that are appropriate for the school level. For example, the correctness
of answer

b
xX=-
a
was discussed in case of the equation
ax=b.

Extraneous solutions. Stoutemyer (1991) touched on the issue of extraneous
solutions. Human beings and CAS sometimes take steps that introduce extraneous
solutions. The equation

Vx=1-—x

was explained as an example where squaring both sides generates a quadratic
equation with two solutions, only one of which is a solution of the original equa-
tion. The problem is much deeper in case of cubic or quartic equations. The
candidates should be verified but sometimes CAS could skip it. Stoutemyer sug-
gested that at least a warning should be used in such cases.

In addition, Bernardin (1999) presented some school level irrational equations

(like x ++/x =1 and \/x —vVx—1=3).
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Repeated root. The issue of repeated root could arise in case of equations. For
example, Sangwin (2015) pointed out the issue of repeated root and illustrated it
by solving the equation x> — 6x +9 = 0 with several CAS. Two of the CAS in-
dicated multiplicity while four did not. Furthermore, depending on the particular
standard applied in a school, one could speak about one root, two equal roots or a
repeated root.

Simplification without comments. Alonso et al. (2001) presented the simplifi-

. X : . .
cation of — to 1 without showing the special case of x = 0 as an example of a
X

2 2
limitation . As similar examples, Y isin Kadijevich, 2014 and I in Berger,
X _
—1)?
2009 and =1 i1 Olive et al.. 2010,

x J—
Actually, this behaviour is common in the school context as the identification

of such ‘forbidden’ branches is also often discarded in the school context. For
example, Barnett et al. (1999) said: "Even though not always explicitly stated, we
always assume that variables are restricted so that division by 0 is excluded".

Similar "hidden assumptions’ can also be used in other cases. For example,
(v/x)? is not x in case of the real domain, as for negative numbers square root is
not defined. Kadijevich (2009) approved a CAS (TI-Nspire) that adds the warning
"Domain of the result might be larger than domain of the input". Furthermore, the
warning "Non-real calculation" is used in case of v/—1. Kadijevich and also B6hm
(2009) found that it could be fine if a user could turn automatic simplification on
or off. It seems that the question is not so much about automatic simplification in
itself but about the lack of comments in case of automatic simplification.

The examples of different ways of presenting of branches inspire to compare
them in terms of completeness of the solution set. The choice of branches is
important for the final answer. The next section discusses the issues of the final
form in even more detail.

2.1.5. Final form of CAS answer

Choices for the final form of CAS answers are reported in this section.
It is not always clear what is the simplest correct form. Carette (2004) argued
that there are cases where is clear what is simpler. For example,

e 0is simpler than (x+3)> — x> — 9x* —27x — 27,

e 1-+/2is simpler than \3/ 745V2,

e 4issimplerthan2+4141.

In other cases, it is not so clear. For example, what is simpler 22" _qora
very long equivalent integer? It should be noted that some valuable information
could be lost in the simplest form.

The issue of the simplest form is very important in case of computer aided as-
sessment (CAA). Bradford, Davenport, and Sangwin (2009) and Bradford, Dav-
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enport, and Sangwin (2010) distinguished between mathematical, pedagogical
and aesthetical correctness. For example, in the task Expand out (x + 1)2, the
answer 2x + x> + 1 is:

e mathematically correct, in that it is equal to the question posed;

e pedagogically correct, in that the student has done the task required;

e aesthetically incorrect, in that there are more conventional ways of writing

the answer.

If the answers were equivalent the notation fp =cas fr was used. The main
idea of the experiment described in Chapter 8 of this dissertation is that students
themselves should analyze the equivalence of their and CAS answers.

Drijvers (2002) emphasised that students could experience difficulties in rec-
ognizing equivalence of a CAS answer and the answer that the student had in

1
mind. The examples were —(x — 12) and 12 — x and \/i and 5\/5

The final form of the answer is not always uniquely determined. Checking
equivalence of different answers can be instructive.

2.1.6. Answers to trigonometric equation

Section 2.1.6 is devoted to trigometric equations because they are particularly
interesting as answers to these equations are more sophisticated and different pos-
sible forms of an answer are common in solving the equations with or without
CAS.

Fateman (2005) focused on the equation from British A-level examination
cos(x) + cos(3x) 4 cos(5x) = 0 for x. The solutions of this equation could be
presented, for example, as

2n+ 1)z

— "
Bntl)xm
3

The CAS (Fateman tested the CAS in 1991, and again in 2005) used different
styles for the solutions. A CAS can present the general solution or a set of partic-
ular solutions. In case of particular solutions the question is, how many and which
solutions should be presented. For example, one CAS presented 5 (Figure 3) and
another 10 solutions (Figure 4) in case of cos(x) + cos(3x) +cos(5x) = 0.

ez

nez.

1/2 Pi, 2/3 Pi, 1/3 Pi, 1/6 Pi, 5/6 Pi

Figure 3. Maple 1991, 2005 (Fateman, 2005)

Bernardin (1999) classified the CAS answers as ok answers, partial answers
and wrong answers. The issue of general solution and particular solution was dis-
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{{z— _TV} {z— %} {z— _7"} {z— _—;} {z— %"} {z— %},{z—v%}.{z - ;}._[:r:—» %T“},{z - ‘%‘"‘}}

Figure 4. Mathematica 2005 (Fateman, 2005)

cussed in case of trigonometric equations. If the CAS only gave a set of particular
solutions it was marked as a partial answer.

The equation ﬁ = 0 is an example of the topic of indeterminacy and in-
finity. Bernardin (1999) classified as ok answers both, the family of solutions
x= (E +u)7, u € Z and "no solutions’.

The answers of equivalent equations could be different in appearance. For
example, Pantzare (2012) observed that answers of sin2x = 0.5 and sin2x = 5
are different in a CAS calculator. The answer to sin2x = 0.5 is

180 (nl-m+1.309) 180- (n2-mw+0.2617)
xX= p or x = p

1
and to sin2x = 3 is

x=15-(12-n245)orx=15-(12-n2+1).

Abramovich (2014) described the case of solving the trigonometric equation
acos ¢ + bsin @ = ¢ and the corresponding inequalities. Besides other examples
he took notice of the equation 4 cos ¢ + 3sin ¢ = 2. The answer offered by Wol-
framAlpha

1
x=2(atn+tan"! (2 (3 V21))) ~ 2.0000(3.1416n —0.25789).n € Z

1
x= 2(nn+tan_1(8(3 +v/21))) ~ 2.0000(3.1416n+0.90139),n € Z

differs from the answer of human solution

6 —4v21

= i 2k, ke Z
(¢ = arcsin 75 + 27K, K €
8 —-3v21
¢ = arccos 5 + 27k, k € Z.

If one uses a CAS for solving school mathematics problems, say equations, he
or she will probably get an answer quicker than with pen and paper. However, this
is not always the case. Stacey and Ball (2001) presented the trigonometric equa-
tion 5cos?x + 2sin?x = 2 that can be easier to solve by hand than with a CAS,
as the substitution of cos”x + sin®x = 1 is recognizable. The use of trigonomet-
ric features is different in different CAS. Furthermore, the answers can also be
different and would need interpretation. The CAS answers in case of

5co8?x+2sinx =2
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are

1.5707 (by HP-49G),
x=((2n—1)m)/2 (by TI-89),
x=(2m)k—m/2 and x = (27)k+ /2 (by FX-2.0),

e x=—m/2 and x = /2 (Mathematica).

The notation could be unfamiliar for students (Drijvers, 2000). Lokar (2009)
said that students can often adapt to different notation faster than we think they
can. Sometimes, the same notation could be used for several things, for example,
tan ! in tan?(x) 4 tan~!(x) for ’cotangent’ or ’arctangent’ (Smirnova & Watt,
2006).

The answers to trigonometric equations are very interesting in their variabil-
ity — general or particular solutions, format of answer, etc.

Section 2.1 provides several useful examples and topics that are interesting

also in the school context. Some concluding remarks are listed in the final section
(2.4) of Chapter 2.

2.2. Teaching and learning equation solving

This dissertation investigates the differences between CAS answers and school
answers. When Section 2.1 described the works on CAS answers, this section
focuses on the school side. On the one hand, the purpose is to explore the back-
ground for test suites of CAS answers as they are studied according to the school
context. On the other hand, the current situation in teaching and learning equation
solving is discussed in order to find a suitable way of utilizing the differences in
education.

The place of equation solving in curricula and related problematic issues
are described in Section 2.2.1. The procedural character of equation solving is
pointed out in Section 2.2.2 and an overview of school answers is provided in
Section 2.2.3). Comparing alternative solutions (Section 2.2.4) and discussion
amongst students (Section 2.2.5) are also covered in this chapter. CAS issues are
not directly presented in Section 2.2, contrary to Section 2.3.

2.2.1. Equations at school

The dissertation focuses on solving equations and Section 2.2.1 describes the
place of equations in school mathematics and the issues that are related to teaching
and learning equation solving.

Cai, Nie, and Moyer (2010) noted that the first thing that people remember
from school algebra is usually equations and equation solving. Jakobsson-Ahl
(2006) pointed out in her dissertation that school algebra is concerned with for-
mulating and solving equations.

The place of equations in curricula can vary in different countries (or edu-
cational jurisdictions). In some countries, for example, in the Russian Federa-
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tion, the Czech Republic and Hungary, transforming and manipulating expres-
sions, variables and equations are introduced earlier than in many other countries
(Kendal & Stacey, 2004 in ICMI 12th study (Stacey, Chick, & Kendal, 2006)).
On the other hand, curricula can have different accents — some curricula are re-
stricted to formal solutions to given equations, others also involve formulation
equations as models of various types of situations (Jakobsson-Ahl, 2006). The
concept of equation itself is defined in different ways at different school levels
and, therefore, may be hard to understand as mentioned by Attorps in her disser-
tation (2006).

However, in all curricula, students get the first idea about equations through
linear equations. Learning and teaching the linear equation is a part of transform-
ing from arithmetic to algebra and it has been studied in many works. Kieran
(2007) noted that understanding of expressions, variables and equivalence is nec-
essary when working with equations. Booth and Koedinger (2008) pointed out
that an incomplete or incorrect understanding of the role of the equals sign and
negative signs is injurious to performance and learning of equation-solving pro-
cedures.

Different types of equations provide different issues. For example, Zakaria,
Maat, et al. (2010) discussed the errors of quadratic factorization, completing the
square and quadratic formula in case of quadratic equation. In case of the trigono-
metric equation, Chigonga (2016) mentioned among other issues checking the
validity of the solutions and lack of knowledge about the periodicity of trigono-
metric functions, which prevents linking revolutions to integers. Equation solving
is closely related to functions (Usiskin, 1988; Kolyagin et al., 1977). For exam-
ple, the quadratic equation is related to the square root, trigonometric equations to
trigonometric functions and inverse trigonometric functions, etc.

Both, issues related to a particular type of equations and general issues of
equation solving have been highlighted in different works. For example, Kieran
(2004) stressed equivalence and the notion of solution to an equation. Knuth, Al-
ibali, McNeil, Weinberg, and Stephens (2005) claimed that equivalence is one of
the two most fundamental key ideas (alongside the variable). Kieran et al. (2013)
mentioned the crucial role of equivalence of algebraic expressions in expression
simplification and equation solving and in a broader context. They were con-
cerned that equivalence, one of the big ideas of algebra, is somewhat cursory in
school algebra. Furthermore, they noted the small number of research reports that
address explicitly the mathematical concept of equivalence.

From the general issues, the topics of equivalence and solution of equation are
especially interesting for this dissertation. Furthermore, linking the periodicity of
trigonometric functions and integers in solutions to trigonometric equations is one
of the issues observed in Chapter 8.
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2.2.2. Procedural character of solving equations

Many works emphasised the procedural (rule-based, technical) character of equa-
tion solving in school. Some of them are presented in Section 2.2.2. Kieran et al.
(2006) claimed that school algebra has been an area where technique and theory
collide and technique usually wins over theory. Kaput (1999) wrote that school
algebra has traditionally been taught and learned as a set of procedures discon-
nected both from other mathematical knowledge and from students’ real worlds.

Kieran (2004) divided the activities of school algebra into three types: gen-
eration, transformational, and global/meta-level. Solving equations, simplifying
expressions, working with equivalent expressions and equations are main exam-
ples of the transformational (rule-based) type. Attorps (2006) pointed out that the
concept of equations has a strong process-oriented or operational character be-
cause it is used as an effective problem-solving tool at all school levels. Attorps
(2006) also noted that teachers perceive equation teaching as a study of proce-
dures rather than as a study of central ideas and concepts of algebra. Moreover,
Doerr (2004) pointed that teachers tend to emphasise procedural knowledge for
solving equations as the core of algebra.

There are several descriptions of cases where students have the procedural
skills and can solve mathematical problems without having an actual understand-
ing of what they do. For example, the cases of computation with integers and solv-
ing two-step equations (Reyes, 2012), solving quadratic equations (Didig, Bas,
& Erbasg, 2011), solving word problems (Reusser, 1988), and physics (Ohlsson,
1992) have been presented.

Moreover, Chevallard (2006) and Vinner (2013) discussed the blind compli-
ance with the textbook algorithm in case of the quadratic equation. Attorps (2006)
described a study (originally in Wagner, 1981) where only 38% of 29 interviewed
students from middle and high school gave a correct answer to the question: For
the equations, 7T x W +22 =109 and 7 x N 422 = 109, which would be larger,
W or N? Part of the remaining students had a procedural concept of equations and
wanted to solve the equations first. Also, Attorps (2006) found that some teach-
ers have an operational interpretation of algebraic expressions like x*> — 5x + 10,
sin®x + 3sinx — 4 and they see these expressions as equations.

Attorps (2006) pointed out that mathematical understanding of the concept
of equation is a complicated interaction between both the operational and the
structural aspects of the concept where both aspects are equally important for the
acquisition of mathematical knowledge.

The idea that procedural skills and conceptual understanding should be bal-
anced is expressed, for example, in the preambles of curricula or standards and
many different works. Mathematics Standards (2017) prescribes that mathemat-
ical understanding and procedural skill are equally important, and both are as-
sessable using mathematical tasks of sufficient richness. Hiebert and Carpenter
(1992) argued that both, conceptual and procedural knowledge, are necessary in
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mathematics but conceptual knowledge is essential for understanding. Drijvers et
al. (2011) stressed that the aim should be integration instead of polarization — a
balanced equilibrium between procedural skills and conceptual understanding is
to be preferred. Schoenfeld (2002) argued that it is possible, with well-designed
curricula, to teach for understanding without sacrificing procedural skills. The
relationship between procedural skills and conceptual understanding in teaching
and learning algebra is crucial to debates on development of algebra education
(Drijvers et al., 2011).

For this dissertation, it is important to take into account that procedural skills
have been and still are very important in teaching and learning equation-solving.
A balance between procedural skills and conceptual understanding should be
achieved in possible new approaches for the use of CAS answers.

After slightly more general topics, the next section discusses school answers.

2.2.3. School answers

This dissertation investigates the relations between CAS answers and school an-
swers. The term school answer was defined as an answer expected from stu-
dents in the introduction of the dissertation. This section gives a brief overview of
school answers — their place in textbooks and some different formats of answers.

There are many exercises (for example, equations) in mathematics textbooks.
Many textbooks also provide the answers to the exercises. The answers can be
provided for all exercises or, for some exercises, the answers can be listed in an-
other book. The expected answers are also presented in worked examples present
expected answers.

The differences between answers in different countries (educational jurisdic-
tions) are not often highlighted in literature. Howewer, some issues are listed
here.

Decimal and thousands separators. There are different ways to notate num-
bers, for example, different decimal and thousands separators are used in different
countries. The United Kingdom and the United States use a period to indicate
the decimal place, while many other countries use a comma. The United King-
dom and the United States use a comma to separate groups of thousands, while
many other countries use a period and some countries a thin space (Decimal and
Thousands Separators, 2017).

e 4.294.967,295.00 (e.g. GB-English, US-English)

e 4.294.967.295,00 (e.g. Italian, Spanish)

e 4294 967 295,00 (e.g. German, French, Finnish, and also Estonian)

CAS use numbers without separation of thousands and a period as decimal
separator.

1
Mixed number. The issue of mixed numbers (such as 3—) is one of the differ-

ences between countries listed in Paditz (2011). Mixed numbers are used in many
countries but are unusual, for example, in France.
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Functions. Paditz (2011) pointed out some function notations that can have
different meanings. For example, tan~! can stand for the arctan-function or the
cot-function. In case of y =log(x) a base could be 10 or e.

Order of terms. There can be somewhat different expectations for form of the
final answer to simplification of expressions. For example, it is often suggested
that the terms of an expression should be sorted from the highest degree to the
lowest and variables should be in an alphabetic order. However, several textbooks

10 13
present, for example, 4 4 4x (Safier, 1990), or ?t - (Abramsom, 2017) as

the final answers.

Repeated roots. Textbooks can include different presentations of the repeated
root, for example, in case of quadratic equation where the discriminant is zero.
Some textbooks say that there are two equal roots, some say one real root (a
repeated root), and some say just one real solution.

Solutions to trigonometric equations. The expectations regarding the answers
to trigonometric equations can be variable. Sometimes a general solution is ex-
pected, sometimes one solution, or solutions in a specified interval. The ques-
tion of unit, radian or degree is also possible. Moreover, the general solution to
sinx = m can be expressed in the form of two series:

x=arcsinm—+2nn,n €”Z
x=m—arcsinm+2nw,n €2

or (as in some Estonian textbooks, for example, Lepmann, Lepmann, and
Velsker (1996))
x=(—1)"arcsinm+nm,n€Z.

The answers are certainly connected to particular tasks, say equations, but they
also provide information about the expectations for the answer format for certain
types of task. Textbook answers support students and comparing their answers
with textbook answers can be an important part of learning. The next section
presents this comparison in more detail.

2.2.4. Comparing alternative solutions

Comparing their own answers to textbook answers is a customary practice for
students. Comparison in general is a topic of several works and some of them
are presented in this section. Comparison is interesting for the dissertation as the
differences between CAS and school answer naturally lead to comparison.

Booth, Lange, Koedinger, and Newton (2013) examined whether correct and
incorrect examples with prompts for self-explanation can be effective for learning.
Their results showed that incorrect examples (alone or in combination with correct
examples) may promote conceptual understanding.

Rittle-Johnson, Star, Durkin and colleagues have written many papers on the
use of comparison in case of learning algebra. Star et al. (2015) claimed that
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comparison is an important part of best practices in mathematics education and
sharing solution procedures and discussion of similarities and differences are at
the core of reform pedagogy. They distinguished between five types of compar-
isons. In case of one of them, the same problem solved with two different correct
methods and in case of another, the same problem is solved with a correct and an
incorrect method (Rittle-Johnson & Star, 2011). Rittle-Johnson and Star (2007)
suggested that it pays to compare in learning to solve equations.

Some types of equations are more suitable for comparison tasks. One of them
is the topic of trigonometric equations. The trigonometric equation has a some-
what special position, as in case of general solutions it is often possible to pro-
duce different-looking correct solutions. Different solution strategies may lead
to different-looking but still equivalent answers. Abramovich (2005) presented a
classroom discourse in case of the equation

2+ cos?2x = (2 —sin’x)%.

Four different answers were under consideration.

Abramovich (2014) stressed that different solutions to trigonometric equations
can be used in activities that can be called ’check the result’ and are in style of
Polya (2014).

Although Section 2.2 does not provide direct links to CAS it should be noted
here that the use of instant answers as feedback when learning pen-and-paper
skills is one of the examples of pedagogical opportunities of using CAS as identi-
fied (and mapped) by Pierce and Stacey (2010).

Guzman et al. (2010); Martinez et al. (2012); Guzmén et al. (2011); Stay-
ton (2016) found that differences between students’ incorrect answers and cor-
rect CAS answers provoked students to reflect on the mathematics involved. The
researchers also found that teachers’ intervention is inevitable, as students miss
important mathematical connections when they find ways to correct their errors.

A part of the inspiration for this dissertation stems from the importance of
comparison and from idea of comparing answers to trigonometric equations.

2.2.5. Discussion among students

Section 2.2.4 focused on comparing alternative solutions. Every student can com-
pare the solutions by himself/herself but it can also be done in discussion with
other students. Discussion among students can be valuable for learning. Dis-
cussion among students on comparing CAS answers and students’ own answers
forms the basis of the pedagogical approach that is the focus of Chapter 8.
Mercer (2000); Mercer and Littleton (2007); Mercer (2008) stressed the im-
portant contribution of student-to-student interaction for developing conceptual
understanding. In this section, some aspects of discussion that can be related to
the use of the differences between CAS and expected answers are highlighted.

42



Vygotsky (1980) stressed that when students are asked to work collaboratively
they are capable of performing at higher intellectual level than in case of indi-
vidual work. Gokhale (1995) said that proponents of collaborative learning claim
that the active exchange of ideas within small groups promotes critical thinking.
In her experiment the students had to compare their own answers with a given so-
lution sheet. Sfard (2008) emphasised the interconnection of doing mathematics,
thinking mathematically and communicating mathematically.

Working in pairs or in groups also provides new possibilities for data collec-
tion. Analyzing working sheets (paper or CAS files) is also possible in case of
individual solving. Interviews can be individual as well. (Activity sheets and au-
dio and video-recorded interviews were used, for example, in the study described
in Martinez et al., 2012.) Still, analysing of discussion gives opportunity better
understanding of misconceptions.

It should be noted that discussion and collaboration do not result in success by
default. Mercer and Littleton (2007) suggested that the specific design of activi-
ties can significantly impact students’ collaboration. Artigue (2005) warned that
students could fulfill only minimum obligations.

The guidance provided with a task should lead the student straight to the point.
Lagrange (2005) warned for too abstract questions — the instruction ’observe
what happens’ may not lead to an interesting observation.

The idea that discussion among students can be useful for conceptual learning
and data collection is interesting in the context of this dissertation. Furthermore,
it should be noted that the specific design of activities (for example, worksheets)
can be useful as well.

It is possible to highlight the following keywords from Section 2.2 for this
dissertation.

e The concepts of equation, solution of equation and equivalence as general
issues of equation solving.

e Answers to trigonometric equations, including general and particular solu-
tions, linking of the periodicity of trigonometric functions and integers in
solutions to trigonometric equations as a potentially fruitful topic for exper-
iments.

e The procedural character of equation solving and a desired balance between
procedural skills and conceptual understanding as the background for ped-
agogical approaches.

e The value of discussion and comparison for teaching and learning, but also
for research.

Several of the issues highlighted in this section are considered in the CAS
context in Section 2.3.
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2.3. Use of the differences between expected answers and
CAS answers

Section 2.3 is devoted to works that are related to the use of the differences be-
tween expected answers and CAS answers. Section 2.3.1 highlights some more
general aspects of using CAS in teaching and learning of school mathematics.
Section 2.3.2 describes the reactions to unexpected answers. Possible ways of
developing expectations are presented in Section 2.3.3. Finally, Section 2.3.4
presents some examples where recognition of equivalence/non-equivalence of dif-
ferent answers was utilized.

2.3.1. CAS in teaching and learning school mathematics

Before the direct discussion on the use of the differences between CAS answers
and expected answers, some more general aspects of the use of CAS in school
mathematics are highlighted in Section 2.3.1.

The use of CAS provides an opportunity to reorganize teaching and learning
school mathematics and particularly expression simplification and equation solv-
ing.

The operations that can be performed by CAS include most of the algebraic op-
erations of school and university mathematics courses (Geddes & Labahn, 1992).
Watson (2008) has even said that all school algebra could be solved by CAS. CAS
provide students with opportunity to outsource routine work to the CAS (Heid &
Edwards, 2001).

Teachers can be assisted by CAS to enhance students’ opportunity to acquire
insightful problem solving skills, develop deep conceptual understanding, develop
higher levels of thinking, and gain an understanding of how to validate and in-
terpret solutions (Kendal, Stacey, & Pierce, 2005). The conceptual issues were
also important in the 17th ICMI study (Hoyles & Lagrange, 2010). Hoyles and
Lagrange observed in the introduction to the proceedings of ICMI Study 17 that
almost all papers deal with the issue of how students could focus on conceptual
rather than procedural or technical issues.

Artigue (2002) described the theoretical frameworks for thinking about learn-
ing issues in CAS environments — anthropological approach (roots from Cheval-
lard) and the theory of instrumentation. They are developed in order to overcome
some research traps, as "technical-conceptual cut’. The ’technical-conceptual cut’
refers to an epistemological position, which opposed conceptual and technical
work in mathematical activity. The balance between task, technique and theory
in acquiring skills is crucial in anthropological terms (Bokhove, 2008). The in-
teraction between the use of ICT tools and conceptual understanding has been
demonstrated in research within the framework of anthropological and instrumen-
tal approaches (Bokhove, 2011).

There are two ’cover’ examples of the theory of instrumentation that are related
to this dissertation. Solving of parametric equations is the topic of one of the three
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schemes of instrumented action in Drijvers et al., 2010 (also described in Drijvers
& Gravemeijer, 2005). One element of the scheme is: Being able to interpret the
result, particularly when it is an expression.

Another example of the scheme of instrumented actions in Drijvers et al., 2010
(from Kieran & Drijvers, 2006; Kieran et al., 2006) is about the notion of equiv-
alence of algebraic expressions. It includes a number of techniques (substituting
numerical values, common form by factoring, common form by expanding, com-
mon form by automatic simplification). Each of them affects the understanding of
the notion of equivalence.

Artigue (with reference to Balacheff, 1994) emphasized that techniques and
the mathematical needs of techniques change when computer technology is used.
New needs are linked with the computer implementation of mathematics. There
is no easy way to identify these needs if the mathematical needs of the technical
work are not taken into account.

Stacey (2003) argued that CAS could be used as a pragmatic, epistemic or
pedagogical tool. Kadijevich (2014) described these pragmatic, epistemic and
pedagogical uses accordingly as ’calculate it’, "understand it” and ’practice it’.

When one discusses possible replacement of pen-and-paper skills with CAS
skills it is important to think about the value of pen-and-paper skills. Ball (2014)
wrote that pen-and-paper skills are needed for developing mathematical under-
standing in a broader sense and not just for calculation. Pen-and-paper skills
have epistemic value. Berger (2009) presented the equation x> — 10x> 4 9x =
—4x* 4 40x? — 36 which is easily solvable by CAS and this way has high prag-
matic value. However, the epistemic value of manual solving (insight into the
nature of roots of a polynomial, the Factor Theorem) is lost.

One idea is replacing pen-and-paper work with programming. Kadijevich
suggested programming own functions or programs by CAS for deeper insight
(Kadijevich, 2014). The use of programming in the context of learning math-
ematics has been discussed by many authors; only Papert (1980) is mentioned
here. Stoutemyer (1979) compared CAS and programming languages. He ar-
gued that CAS is far more relevant to math education than the commonly taught
programming languages. He emphasized exact solution of algebraic equations.

For this dissertation, it is interesting that, although CAS provide an opportunity
to delegate procedural work to CAS, pen-and-paper activities are still important.

The next section focuses, in particular, on the reactions to unexpected CAS
answers.

2.3.2. Reactions to unexpected CAS answers

This section presents some reactions to unexpected CAS answers, which have
been described in literature.

Drijvers (2002) listed different obstacles that students often encounter in case
of working with CAS. The Drijvers’ examples were mainly connected with the
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concept of parameter but the findings are more general. Some obstacles were
closely related to CAS answers. The most relevant for this dissertation are the
following:
o The difference between the algebraic representations provided by the CAS
and those students expect and conceive as ’simple’.
e The difference between numerical and algebraic calculations and the im-
plicit way the CAS deals with this difference.
e The tendency to accept only numerical solutions and no algebraic solutions.
(Numerical solutions and algebraic solutions are here in sense of answer,
not as solution process.)

The examples were correspondingly

1
e —(x—12)vs12—xand 2 Vs E\/E

e V2vs 1.4l
1 1 .
e x—= 5s — Ev as an unexpected answer for those who expect numerical solu-
tions.

Drijvers suggested two reasons why obstacles should be taken seriously in the
classroom.

e Encountering obstacles can elicit feelings of irritation and frustration by the
students. Although dealing with frustration is a part of doing mathemat-
ics, in some cases it can be counterproductive. Ignoring the obstacles in
teaching can amplify this effect.

e Obstacles often integrate a technical and a conceptual aspect. Therefore,
working on overcoming an obstacle often also means working on the con-
ceptual development of the mathematics involved. (Drijvers, 2002)

Different feelings that students can get in case of unexpected answers were also
discussed in other works. Ball described in her dissertation (Ball, 2014) a case
where a teacher felt that students experienced frustration when CAS offered an
unexpected display for solution of trigonometric equations. However, the teacher
mentioned that it was good for developing an appreciation of domain and types of
answers. Unexpected results could highlight important aspects of mathematics to
be understood.

Artigue (2005) described the effect of surprise produced by unexpected results.
It could be useful to destabilize erroneous conceptions, to promote questioning, to
motivate mathematical work. Artigue described that, in case of computations with
radicals where different interpretations were possible, students only noted the re-
sults but no more. She stresses that surprise effects and the resulting motivation
for understanding can only exist if there is some expectation. The familiarity of
those students with the topic was too limited to induce spontaneous predictions.
Artigue wrote that such a prediction should be partly done mentally without car-
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rying out very detailed calculations. As it was too complicated for the majority of
those students, they fulfilled the minimum obligations without deeper discussion.

Stayton (2016) focused on reactions of pre-service secondary mathematics
teachers to the differences of outputs of different technologies. Her results suggest
that there are opportunities for rich discussion in teacher education for deepening
content knowledge and broadening perspectives on technology use.

Alonso et al. (2001) listed some unexpected answers and proposed not to skip
such exercises but use them in classroom, as it is necessary for developing stu-
dents’ critical ability and CAS offer the possibility of contrasting all the results,
using a variety of representations. They were convinced that the unexpected re-
sults presented in this paper can be used to emphasize concepts and increase the
critical perspective that every scientist should have. Pierce and Stacey (2010)
stated that it is possible to exploit the contrast of ideal and machine mathematics.
Teachers could deliberately use 'unexpected’ error messages, expression formats
and graphical displays as a catalyst for rich mathematical discussion.

Interpretation and explanation, which is important in case of unexpected an-
swers, could be unaccustomed for students. Meagher (2005) wrote in his dis-
sertation about a student who was bothered by an unexpected answer of a CAS
(Mathematica) (e.g., giving an answer as — (x — 3x"2)) rather than 3x"2 — x). The
student had the idea that authentic mathematical activity involves working with
numbers and expressions and not interpretation and explanation.

Unexpected answers can be a source for whole class discussion.Beaudin, Pi-
card and their colleagues at Ecole de technologie supérieure (ETS) have expe-
riences with extensive use of CAS in several mathematics courses over many
years. CAS calculators have been mandatory in their courses since 1999 (Beaudin,
2008). They have found surprising or incorrect answers of CAS in different areas,
for example, antiderivatives (Beaudin, 2011) or systems of equations (Beaudin,
Picard, & Savard, 2013). It is important that these answers are also used in whole
class discussions with students.

The reactions described in this section demonstrate that unexpected answers
can be useful for teaching and learning, which is a source of inspiration for this
dissertation.

2.3.3. Expectations for CAS answers

Artigue (2005) stressed that certain expectations are necessary to elicit a sense of
surprise about unexpected answers. Some examples of how expectations can be
developed are presented in this section.

The first situation refers to students having expectations for the general look
of the answer.

1 1
Drijvers’ (2002) example x = —s — —v which is an unexpected answer for those

who expect numerical solutions is one of them. A similar example, y =31 —x as
unexpected answer to equation solving, was described by Drijvers and Gravemei-
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jer (2005). It is conceptually difficult for many students, as ’solve’ (also by CAS)
means finding a solution but the possible answer 31 — x to the equation is seen as
an expression, not a solution. The idea that the same So/ve-command is used for
isolating an unknown (the result is an algebraic expression) as well as for solving
an ’ordinary’ equation (the result is a number (or numbers)) points that these op-
erations (that could seems different for the student) are identical in the world of
CAS and are also mathematically equivalent (Drijvers & Gravemeijer, 2005).

The inconsistency with the general look of the answer (for example, algebraic
expression instead of expected numerical answer to a parametric equation) is quite
noticeable even without exact formulation of the expected answer. Often, it is
not obvious to students that the answer is unexpected (as they do not have any
expectations). The question is how the student could be provided with (or guided
to) an expected answer.

Lagrange (2005) said that the results, which were expected by the teacher to
be surprising to students, did not alone create surprise. The learning situation had
to point to puzzling peculiarities and to challenge students’ anticipations. He sug-
gested preparation of examples where students’ predictions will very probably be
wrong and to ask them to compare these predictions with the calculator’s answer.

It is possible to provide some answers to students and they have to choose
the correct answer. Multiple-choice answers are used in written examination of
Mathematical Methods in Victoria (Australia) (Mathematical Methods — Exams
and Examination Reports, 2016). The students are permitted to use an approved
CAS calculator in Part 2 of the examination. Two examples of questions are
presented here. The first (Question 1 (2013) (Figure 5)) is quite typical to the
Victorian examination. Multiple-choice answers are rare in equation solving (as
in Question 4 (2009) (Figure 6)). Both of them are close to the examples used in
the experiments described in Chapter 8 of this dissertation.

The function with rule f(x) = —3tan(27x) has period

(correct)

U 0w
4;\.—4\)\»—‘!\);”,\,

e
[\
S

Figure 5. Question 1 (2013) (Mathematical Methods — Exams and Examination Reports,
2016)

Similarly, Pantzare (2012) described a case where the students were asked to

i 1
solve a trigonometric equation sin2x = > and choose the correct answer from

four alternatives.
There is an example where explanation of one prescribed answer is needed in
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The general solution to the equation sin(2x) = —1 is

T
A . x=nrm— T n € Z (correct)

T T
B.x:2n7r+zorx:2nn'—z,nez

nmw T
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Figure 6. Question 4 (2009) (Mathematical Methods — Exams and Examination Reports,
2016)

the question (Figure 7) (Kieran & Saldanha, 2005). There are also some guiding
questions asked. The importance of guiding questions will be discussed in Section
2.3.

Q.5 The following equation has x = 2 and x = 2/3 as solutions:
x(2x—4) + (—x+2)? = —3x* +8x—4

(i) Precisely what does it mean to say that, "the values 2 and 2/3 are solutions of this
equation"?

(i1) Use the CAS to show that:

(a) the two values above are indeed solutions, and

(b) there are no other solutions.

What I entered into the CAS:

What the CAS displays and my interpretation of it:

(iii) Are the expressions on the left- and right-hand sides of this equation equivalent?

Please explain.

Figure 7. Question 5 (Kieran & Saldanha, 2005)

Lagrange (1999) described a case where the students had to find their answer
themselves. The students were asked to differentiate the trigonometric function

T
x — cos(3x — 8) by hand and with TI-92. After that they had to explain why
the resulting expressions were equivalent. The students’ expected answer was
T T
—3sin(3x — g) and TI-92 gave 3cos(3x + 5) The researchers expected that

T n
students could give an explanation like cos(o + §) = —sin(a + 8) because the

property cos(a + g) = —sin(o) was known to them. Actually, only 8 students
of 26 were able to do that. Others only mentioned something like "the calculator
doesn’t work like we do".

The experiment by Guzman, Kieran and Martinez was described in Guzmén et
al., 2010, 2011; Martinez et al., 2012; Stayton, 2016. The topic was simplification
of rational expressions. The students worked in pairs and compared CAS answers
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to their own pen-and-paper answers. The students had to simplify the following
expressions by themselves in the beginning and with a CAS afterwards:

x(34+x) 4x+4y 3x+4y
x T ox+y x+y

The examples were chosen to guide students to notice important differences
between the two last expressions. The latter was manually quite often simplified
to 7, after "canceling’ x+y.

Artigue (2005) described a case where students were explicitly asked to record
the following in case of an unexpected or incomprehensible CAS result:

e the expression concerned;

e the nature of the algebraic manipulation involved: expansion or factoriza-

tion;

o the result given by TI-92;

o their remarks and comments, as well as their interpretation of the result, if

any.

Artigue (2005) also described a case where the students had to compare
the results of apparently similar computations, for example, (\[ - \@)2 and
(V3—-V5)%

Lagrange (1999) presented a case where the students had to discuss different
automatic answers of TI-92 to obviously equivalent expressions.

1—(1—x)(34+2x)—x —x* =2

l—x—(1-x)34+2x) —2(x—1)(x+1)

The students also had to use (and learn to use) the items of the algebra menu
(Factor, Expand, ComDenom) in order to get the needed output.
Recognition of equivalence/non-equivalence is discussed in the next section.

2.3.4. Recognition of equivalence/non-equivalence of different
answers

Section 2.3.4 highlights examples from literature where recognition of equiva-
lence/non-equivalence of different answers is presented.

Artigue (2005) said that simplification, which is performed automatically with
CAS, could often produce a result different from school answer. In case of those
results, students have to develop competences for dealing with the problems of
equivalence efficiently, both mentally and with the help of the calculator.

Kieran et al. (2006) described a task where students had to justify CAS simpli-
fication (2 —x)(1 —2x) to (x—2)(2x— 1). Students used different techniques. For
example, one of them (after some thinking) used substitution, adding a number to
both expressions.
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With regard to Victorian examination, Ball (2014) affirmed that students
need to recognize the equivalence of their own or CAS answers with the cor-
rect multiple-choice response. The phase of ascertaining equivalence (or non-
equivalence) can be completed with the help of a CAS or with paper-and-pen.
Ball (2014) described the comments of teachers about working with pen-and-
paper. Working initially with pen-and-paper helps students to understand how a
CAS works. Pen-and-paper techniques also seem to be important in transforming
an unexpected answer into a multiple-choice response in an examination. Use of
CAS in that examination is also discussed in other works (Ball, Pierce, & Stacey,
2003; Pierce, 2001; Pierce & Stacey, 2004).

It should be noted that some of the examples from literature can seem very
simple but are actually frustrating for several students. For example, Stacey (2003)
talked about recognizing the equivalence of (b + a)2 and a* + b 4 2ab. Only
54% of Year 11 students, who participated in the study, were able to quickly
recognize the equivalence. Simplicity is quite subjective and depends on different
aspects. For example, the equivalence of (b + a)2 and a® + b* + 2ab is probably
obvious to first-year university students. However, students can have problems
with equivalence of trigonometric expressions, as presented in Chapter 8 of this
dissertation.

Differently-looking (but equivalent) answers are more common in case of alge-
braic expressions. Nevertheless, there are numerical answers where equivalence
is not obvious. Trigonometry and roots are the most interesting topics to that ef-
fect. It is possible that answers of different systems differ. For example, Stacey
and Ball (2001) introduced a case where the calculator FX-2.0 offered

V2(v3-1)
4

and Mathematica gave

—-1+V3
2v2

while cos(75°) is entered. They argued that students will frequently need basic
algebra skills, if they are to match output to given forms (e.g. for checking answers
in a textbook, working with others using a different system, getting a specified
answer on a test etc.). Trigonometry is also mentioned in other works. A CAS
could give immediate results for problems that are very laborious or impossible to
solve manually. These cases could help students to become an efficient user of the
CAS and also develop the intelligence of algebraic computation (Artigue, 2005).

Recognition of equivalence/non-equivalence of different answers is used in ex-
periments described in Chapter 8 of the dissertation. The related works described
in Section 2.3 encouraged the use of the differences between CAS an school (or
student) answers in teaching and learning.
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2.4. Summary of related works

Section 2.4 summarises the chapter on related works in order to highlight the ideas
that are particularly important for this dissertation.

An overview of the works that analysed CAS answers was presented in Sec-
tion 2.1. Wester’s review (Wester, 1999b) was inspiring for this dissertation as
similar tables can be used for analysing CAS answers in the school context. How-
ever, the grading style used by Wester for the answers is not directly applicable
in the school context. CAS answers that could differ from school answers were
found in different works (for example, in Abramovich, 2014; Alonso et al., 2001;
Kadijevich, 2014; Sangwin, 2015; Stoutemyer, 1991) but the exact locations and
categories of the differences have not been mapped. Providing a systematic re-
view of the differences between CAS and school answers is one of the main goals
of this dissertation.

The works referred to in Section 2.1 presented different examples that can be
used in the test suites of the dissertation. Moreover, some interesting issues were
highlighted, namely, the issues of the number domain, branching of solutions,
and the final form. The domain issues and branching of solutions are discussed in
dedicated chapters of this dissertation.

The domain issues have been discussed in literature, for example, in Alonso
et al., 2001; Aslaksen, 1999; Jeffrey, 2014; Kaltofen, 2000; Stoutemyer, 1991.
Wester (1999b) mentioned a possible special need case for elementary mathemat-
ics where all variables should be declared to be real. It provided the inspiration
for investigating such possibilities in different CAS in this dissertation.

Examples where a solution consists of different branches in some manner have
been presented in several works, for example, the issues of literal equation and
extraneous solutions in Bernardin (1999); Stoutemyer (1991); repeated roots in
Sangwin (2015); and simplification without comments in Alonso et al. (2001);
Berger (2009); Kadijevich (2014); Olive et al. (2010).

Furthermore, this dissertation proposes a pedagogical approach where the dif-
ferences between CAS answers and students’ answers are used in education to
support students’ understanding. Sections 2.2 and 2.3 mainly described the back-
ground for this goal.

Section 2.2 introduced some aspects of teaching and learning equation solving.
For this dissertation, it is important to take into account the procedural character
of equation solving and try to maintain a balance between procedural skills and
conceptual understanding in a pedagogical approach. The concepts of equation,
solution of equation and equivalence were highlighted as general issues of equa-
tion solving.

Rittle-Johnson and Star (2007) suggested that, in learning to solve equations,
it pays to compare. The differences between CAS and school answers provide
an opportunity for comparing them. Guzmadn et al. (2010, 2011); Martinez et
al. (2012); Stayton (2016) found that the differences between students’ incorrect
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answers and correct CAS answers provoked students to reflect on the mathematics
involved.

Comparison can be connected to discussion among students. Mercer (2000);
Mercer and Littleton (2007); Mercer (2008) stressed the important contribution of
student-to-student interaction for developing conceptual understanding. The spe-
cific design of activities can significantly impact students’ collaboration (Mercer
& Littleton, 2007). Moreover, analysing the discussion provides an opportunity
for better understanding of any misconceptions.

The use of the differences between expected answers and CAS answers was the
focus of Section 2.3. Different works (for example, Alonso et al., 2001; Artigue,
2005; Ball, 2014; Drijvers, 2002; Pierce & Stacey, 2010 ) have discussed students’
reactions to unexpected CAS answers and their possible value in teaching and
learning.

Students can have expectations for the general look of the answer (Drijvers,
2002). It is possible to provide some answers to students and they have to choose
the correct answer (Mathematical Methods — Exams and Examination Reports,
2016). The cases where students had to find their answer themselves and compare
it with the CAS answer (Lagrange, 1999; Guzman et al., 2010, 2011; Martinez et
al., 2012; Pantzare, 2012; Stayton, 2016) are closest to this dissertation.

Although different topics were highlighted in the works, the answers to
trigonometric equations seem to be particularly interesting due to their variabil-
ity — general or particular solutions, format of answer, etc. Linking of the pe-
riodicity of trigonometric functions and integers in solutions to trigonometric
equations has been identified as a problematic issue for students. The answers
to trigonometric equations are potentially a fruitful topic for comparison and dis-
cussion.

Publications from different decades were referenced in this chapter. It is pos-
sible that some examples of CAS answers are no longer relevant in case of new
CAS or new versions. Unfortunately, there has been no large-scale review of
CAS answers after Wester, 1999b. The highlighted issues (for example, domain,
branching and automatic simplification) are still relevant for the most part. The
mathematical results are, certainly, ageless.

The discussion of related works concluded in this section. Some references to
literature are also provided in Chapter 3.
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3. RESEARCH DESIGN AND INSTRUMENTS

The purpose of Chapter 3 is to describe the research design and instruments. The
research questions were proposed in Section 1.2; the research design is introduced
in Sections 3.1-3.5. A description of ethical considerations (Section 3.6) and the
reasoning behind the choice of CAS (Section 3.7) is provided as well.

3.1. Research questions 1 and 2. Differences between CAS
and school answers

Research questions 1 and 2 are discussed together because both of them explain
the differences between CAS and school answers. To state the research questions
again:
RQ1. Where differences between CAS and school answers could be de-
tected in equations within the school curriculum?

RQ2. How can the detected differences between CAS and school answers
to equations in the school curriculum be described and classified?

Wester’s work (1999b) was used as a model to investigate these research ques-
tions. Firstly, a test suite of different types of equations was composed similar
to Wester’s (1999b) test suite consisting numerous problems from different types
of equations. The equations were chosen for the test suite systematically in order
to cover all intriguing equation types taught in schools. Most examples were in
accord with textbook contents as much as it was possible to keep diversity. Some
examples were taken from textbooks or from research papers and some were de-
veloped myself to cover all important types of equations. The examples from the
test suite were solved by different CAS and every answer was analyzed afterwards.

The school answers are observed on the basis of some textbooks from Estonia,
the USA, and Norway. Some rather old books on teaching mathematics in Russian
language were also used. It is possible to say that small differences exist, but such
a passing observation is not sufficient for a general description of the differences
between countries.

The tables in Chapter 4 outlined the answers to RQ1 indicating where differ-
ences between CAS and school answers were possible to detect. Each row of a
table includes an equation, the expected school answer and codes that express the
type of difference between CAS and school answers in the case of particular CAS
used in the solution. The form of the tables was also inspired by Wester (1999b).
The descriptions and classification (as answer to RQ2) presented in Chapter 4
mirror the possible set-theoretic relations between answers depending whether
the CAS answer includes more or less solutions than the school answer.

Secondly, the content-oriented classification is presented in Chapter 5. The
test suite (partially different from the test suite used in Chapter 4) consisted of
equations of different types. Answers were analyzed in order to describe and
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classify differences between CAS and school answers. The classification is based
on the form, completion, dependence on the number domain, and branching of
answers and automatic simplification of equations. Every type was divided into
subtypes (phenomena) and at the end 29 subtypes were identified.

The (second) answer to RQ2 was offered by equation types in Section 5.2.
Each row of a table includes an equation, a CAS answer, the name of the CAS,
and the identified phenomenon. The types are discussed in Section 5.3 where, in
addition to a description of the types, a few brief ideas on the potential didactical
use of the types are presented. The connections between the type and Drijvers’
(2002) list of obstacles are presented as well.

The limitations of the study on RQ1 and RQ2 are related to the choice of
examples for the test suites and the choice of CAS. Although the equations for the
test suite were systematically chosen, it is possible to add specific examples.

The sets of compared CAS differ from paper to paper, both in general and in
my papers. For example, different sets of CAS were used in the tests described
in the papers in the collection Wester (1999a). Also, the publications underlying
this dissertation were written in different times and different CAS and versions
were used. It causes a limitation for repeating the tests because the old CAS or
versions, especially if they are web-based can be inaccessible. The free CAS (or
demo versions) are preferred for testing in this study. Usually, the CAS are used
with the main settings (unless otherwise specified).

3.2. Research question 3. Number domain

RQ3. When do CAS outputs offer correct and incorrect answers for
domain-sensitive examples, specifically for expression simplification and
equation solving?

Examples related to square root, natural logarithm and arcsine were chosen for
the test suite. The choice was inspired by Rich and Jeffrey (1996) who discussed
the calculations v/—1, In(—1) and arcsin(5/4). In addition to these calculations,
the test suite contained ’cancellation expressions’, like Vx2, identities by simpli-
fying the difference of two expressions, like Inxy — (Inx+Iny), equations without
solutions in school context, like sinx = 5/4, and equations with a disputable real
solution, like v/x = v/2x+ 1 where, in case of —1, a negative number appears
under square root.

The examples from the test suite were solved by different CAS using fea-
tures suitable for school-like situations. Different CAS have different possibilities
(commands, packages, buttons, etc.) for determining the domain of a calculation
result, variable values or equation solutions. The correctness of CAS answers was
evaluated and answers to RQ3 is presented as a table in Chapter 6. In some cases,
CAS does not provide desirable restrictions of domains and in some other cases
CAS does not simplify the expression and causing problems for understanding in
schools.
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3.3. Research question 4. Branching solutions

RQ4. How can branching be described for answers provided by different
CAS software; by different school solutions and textbooks; by the possibil-
ities of mathematical approaches for expressions simplifications and equa-
tions solving?

The topics where branching solutions appear are collected from answers to
RQ1 and RQ2 and from the literature (Bernardin, 1999; Bradford et al., 2002;
Stoutemyer, 1991). As in RQ3, simplification of expressions is closely connected
to solving equations, and both of them are studied.

The treatment of branching in textbooks and CAS, and mathematical branch-
completeness are explained for each topic. Comparison of school, CAS and math-
ematically branch-complete answers is presented by giving evaluations of branch-
ing diversities (EBD). For example, the evaluation CAS < SCH = MATH indicates
that CAS answer is less complete (<) than the school and mathematically branch-
complete answers, which present branches similarly (=). It is the case, for ex-
ample, when a CAS provides only x = 1/a as the answer to the literal equation
ax =1 but also the case where a = 0 should be included in a school answer and
in a mathematically branch-complete answer.

In case of previous research questions, tables showed information on CAS
answers based on examples from the test suite. Here, in case of answering RQ4,
the answer is formed of evaluations presented by topics with comments.

3.4. Research question 5. Lesson scenario

RQ5. What pedagogical approaches could be proposed to utilize the teach-
ing opportunities offered by the differences between CAS and students’
answers?

Looking at the balance between procedural skills and conceptual understand-
ing, equation solving is biased toward procedural skills. A desirable pedagogical
approach should develop students’ conceptual understanding and also produce
better insights into students’ understandings and misunderstandings.

It is reasonable to use the comparison of CAS answers and students’ answers
and their discussions. For example, Guzman et al. (2010, 2011); Lagrange (1999);
Martinez et al. (2012); Stayton (2016) introduced examples where students com-
pared their own answers to CAS answers. Discussion among students can provide
an important contribution for developing a conceptual understanding (Mercer,
2000; Mercer & Littleton, 2007; Mercer, 2008). An analysis of students’ discus-
sion, in which they explain solutions (on paper or verbally), can produce better
insights into students’ understandings and misunderstandings as conceptual gaps
can become evident during discussion even in case of procedurally correct solu-
tions.
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Research question 5 focuses on the utilization of differences between CAS
and students’ answers. Although some other pedagogical approaches may be pos-
sible, a lesson scenario was developed and tested. The scenario was based on
comparative discussion on students’ answers and CAS answers in student pairs.
Students were paired up and supplied with given worksheets with tasks and ques-
tions. Initially, students solved a task (correctly or not) without a CAS and then
with a particular CAS. The worksheets guided students to analyze the differences,
equivalence and correctness of their own and CAS answers.

The approach was tested in two rounds of lessons in 2012 and 2013. The
lessons were taught by myself (I was not the regular teacher of the course). The
scenario was also discussed with the actual teachers of the groups. The task of
comparing their own answers and CAS answers was new for students. The stu-
dents filled out a pre-questionnaire at the beginning and a post-questionnaire at
the end of the lesson. The questionnaires were analyzed afterwards and it can be
said that the students rather appreciated such lessons.

The description of a lesson scenario with an analysis of students’ feedback
is provided as an answer to RQ5. The answer to RQ5 is mainly limited to one
approach while other approaches are certainly possible.

3.5. Research question 6. Equivalence and correctness of
CAS and students’ answers

RQ6. How can students identify 1) the equivalence and non-equivalence
between CAS and their own answers; 2) correctness of CAS and their own
answers of trigonometric equations in lessons based on comparative discus-
sions on students’ answers and CAS answers in pairs of students?

A developed lesson scenario was also implemented to collect data for an-
swering RQ6. The lessons were a part of a course in elementary mathematics
for first-year university students. As the lessons took place in the beginning of
their university studies the situation was similar to secondary school examples.
The worksheets of student pairs were used as the main source of data. The
audio-tapes were used only for understanding questionable places of the work-
sheets. Equivalence/non-equivalence and correctness of the students’ answers
and CAS answers were evaluated. Students’ opinions about the equivalence/non-
equivalence and correctness were derived from the analysis of worksheets. The
worksheet analysis (in case of lessons 2013) was performed in discussion with
Marina Lepp, co-author of Tonisson & Lepp, 2015. The collaboration helped to
make decisions in problematic cases and improved trustworthiness.

Answers to RQ6 are presented in the form of tables. In case of the equiv-
alence issue, the rows in the tables refer to equivalence/non-equivalence of stu-
dents” and CAS answers, while the columns refer to students’ opinions about
equivalence/non-equivalence of their and CAS answers. In case of the correctness
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issue, the rows in the tables refer to the correctness of students’ answers and the
columns refer to students’ opinion about the correctness of their answer.

The course "Elementary mathematics [" was chosen because the course in-
cluded topic of trigonometric equations and was conducted at the appropriate time
in the university. As the course was one of the first courses for the students at the
university, it was probably quite similar to a secondary school situation. More-
over, advanced students were dismissed from the course. However, computer
science students (constituting the main group of participants) are probably better
in mathematics than secondary school students in general.

3.6. Ethical Considerations

Students who participated in the lessons answered RQ5 and RQ6 were informed
about the study and they signed a consent form for using their work in research.
Participants were free to withdraw their participation at any time. Anonymity was
guaranteed for every participant.

3.7. Choice of CAS

There are dozens of CAS available nowadays; for example, Grabmeier, Kaltofen,
and Weispfenning (2003) gave brief descriptions of more than 60 CAS packages.
The sets of compared CAS differ from paper to paper of different authors. Also,
the choice of CAS varied in different chapters of this dissertation, as studies were
carried out at different times (publications 2007-2015).

CAS packages used in the dissertation were, by chapters:

Chapter 4 (2015): GeoGebra, Maple, Mathematica, Maxima, Sage, WIRIS,
WolframAlpha, Xcas;

Chapter 5 (2011): Maxima, OpenAxiom, Sage, WIRIS, WolframAlpha;
Chapter 6 (2008): Derive, Maple, Mathematica, Maxima, MuPAD, TI-92+,
TI-nspire, WIRIS;

Chapter 7 (2007): Derive, Maple, Mathematica, Maxima, MuPAD, TI-92+,
TI-nspire, WIRIS;

Chapter 8 (2013, 2015): Maxima, WIRIS, WolframAlpha.

The choice of the particular set (which was still subjective) was influenced by
various circumstances, some of which were general but some were related to the
Estonian situation. The general issue was that support of the authors for some
CAS (Derive, MuPAD) ended during the research period and these CAS were not
used afterwards. WIRIS (designed for schools) is used as it has been available in
Estonian schools from 2006 to 2017. As CAS calculators (like TI-92+, TI-nspire)
are not popular in Estonia, they were not used in later publications. Although the
heavyweight CAS (Maple and Mathematica) packages have also been used, the
main focus is still on CAS available free of charge (Maxima, OpenAxiom, Sage,
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WolframAlpha, Xcas). GeoGebra was included in later research as it is popular
software in schools (also in Estonia) and CAS possibilities were included in recent
versions.

Chapters 1, 2 and 3 were introductory chapters. The following chapters that
form main part of dissertation are based on different papers and may somewhat
vary in style.
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4. SPECTRUM OF DIFFERENCES BETWEEN
EXPECTED SCHOOL ANSWERS AND CAS
ANSWERS

4.1. Introduction

Chapter 4 is devoted to answering the research questions RQ1 and RQ2:

RQ1. Where differences between CAS and school answers could be de-
tected in equations within the school curriculum?

RQ2. How can the detected differences between CAS and school answers
of equations in the school curriculum be described and classified?

The chapter is based on Tonisson, 2015. The answer to RQ1 is provided in Ta-
bles 1-10. Each row of a table includes an equation, the expected school answer,
and the type of difference between CAS and school answer in case of particu-
lar CAS. Such form of tables was inspired by Wester (1999b). The types with
descriptions offer one possible answer to RQ?2.

The test suite consisted of 127 equations. Linear, quadratic and fractional
equations, equations that contain an absolute value of an expression, irrational,
exponential, logarithmic and trigonometric equations and literal equations were
included. Each equation was solved by 8 different CAS. The systems GeoGebra
(GGB in tables, webpage in the list of references), Maple (MPL), Mathematica
(MTH), Maxima (MXM), Sage (SAGE), Wiris (WRS), WolframAlpha (WA) and
Xcas (XCS) were used for the chapter. The versions accessible in 2014 were used.
Most of them were accessible for free, enabling even parallel use of the systems.
The trial versions of Maple and Mathematica were used as well.

The choice of example equations and CAS commands is introduced in Sec-
tion 4.2. The types of differences and the tables with typed CAS answers are
presented in Section 4.3. Some remarks on making use of the differences in the
classroom can be found in Section 4.4. Finally, a conclusion is provided in Sec-
tion 4.5.

4.2. Choice of equations and commands

Section 4.2 describes, firstly, the selection of equations for the test suite and, sec-
ondly, the selection of commands.

Equations play an important role in school mathematics. There are hundreds
of equations in the textbooks and choosing a reasonable set of examples can be
quite complicated. In rough terms, the test suite consists of equations selected for
the following reasons:

e Common equations that are or could be in textbooks, for example,
2x*> —4x—15 =0, in order to cover all basic types.
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e Equations developed from trivial equations by attaching an ’intriguing be-

haviour’, for example, x+ —— =1+ instead of x = 1. In some

x—1 X—
cases, triviality was disguised, for example, x+1 =xorx— (x—1) =0
instead of 1 =0.

v/
e Equations from literature, for example, tan(x + Z) =2cotx—1.

The test suite itself, with reasons given by equations, is presented in Appendix
A. The reasons are described now in more detail.

The aim was to include all basic types of equations from school mathemat-
ics. The most general level of classification of equations (linear, quadratic and
fractional equations, equations that contain an absolute value of an expression,
irrational, exponential, logarithmic, trigonometric and literal equations) is pre-
sented quite well in different sources. The types at more refined levels are usually
less clearly distinguished in textbooks or elsewhere. However, the aim was to
find examples from a more exact level than just the general level. For exam-
ple, in case of quadratic equations, the test suite included equations from types
ax2+c:O, ax2+bx:0, b* —4dac > 0, b2—4ac:O, b* — 4ac < 0 but also some
equations chosen for other reasons, like an equation with same factor in both sides
(x—Dx=2x+1)(x—1).

The idea was to provide an example for every significant solving technique.
The examples were chosen from the textbooks or composed so that the observed
(somewhat problematic) issue is as exposed as possible. Many equations have
solutions with ’simple’ numbers, like —1, 0, 1, 2, for this reason. On the other

hand, there are also "ugly’ cases, like sinx = 1o As domains and ranges of func-

tions are essential topics, there are special examples focusing on that, for example
2% = —1. The issue of extraneous solutions is very important as some solving
algorithms lead to possible extraneous solutions. Besides 'normal’ equations with
C))

fx)”

=0, and also examples where an ’intriguing’ term is inserted by addi-

possible extraneous solutions, like x + /x = 2, there are examples of type

. tan? x
like

anx

1
tion, like x + v/x = v/x — 1, or by division, like o ——. On the other hand,
logx logx

examples of type f>(x) = f(x), like x/x = v/x, provoke missing of the solution
due to oversight.

Several examples in the test suite were taken from or inspired by related works.
Wester’s review (1999b) did not focus on school mathematics and included only
a few examples from school. Nevertheless, 12 examples from his review are suit-
able for our test suite.

Two equations (ax = 0 and ax = 1) are included in our test suite from
2

Stoutemyer (1991). Kadijevich (2014) mentioned simplification of ol to x not
X
adding the constraint x # 0. Several examples of this type are tested in this chap-
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ter. Although the main topic of Sangwin (2015) was inequalities, some equations
are also examined. For example, he pointed out the issue of repeated root and
illustrated it by solving equation x> — 6x +9 = 0 with several CAS. This issue is
also touched upon in the tests.

The test suite includes examples of trigonometric equations that illustrate is-
sues covered in the chapter on related works. The variety of correct answers
to trigonometric equation is discussed, for example, by Abramovich (2005) and
Pantzare (2012). The possibility that a CAS does not indicate some solutions or
only provides solutions within a restricted interval is noted by Wester (1999b). It
depends mainly on the CAS (and command) but not on particular equation.

The solving of equations is certainly a topic in very many textbooks. Some
rather old textbooks of didactics of mathematics in Russian (for example, Bloh,
Gusev, Dorofeeyv, et al., 1987; Boltyanskii, Sidorov, & Shabunin, 1972; Kolyagin
et al., 1977) are good resources for interesting examples and elaborated classifica-

T
tion. For example, tan(x + Z) = 2cotx — 1 is taken from (Kolyagin et al., 1977).

Some examples (like x* = x, (x — 6)* = 2¥) are actually beyond school mathe-
matics.

As our interest is focused on the answers offered by CAS, the choice of com-
mands of CAS is also important. The solution process (and the answer) can be
sensitive to a change of command, additional arguments, the form of an argument,
etc. In this study, we mainly use the most natural method of solution — the solve
command. However, sometimes it is reasonable to use other commands or ad-
ditional options. For example, the additional fo_poly_solve command is used in
Maxima and Sage and the Reduce command in Mathematica. There are also pos-
sibilities to determine domain in some CAS, for example, Real/Domain in Maple.
(However, even more suitable variants may exist.) The parallel use of different
commands or options of the same CAS could be instructive as the differences be-
tween them could reveal important issues. For example, if one command presents
an imaginary solution and the other not, this could serve as a lead-in to a discus-
sion on number domains.

The syntax of input differs in different CAS; for instance, a logarithm can be
very multifarious (discussed also in Section 5.2.8). Although output notation can
be confusing sometimes, we do not focus on that and presume that the user can
understand the answer. For example, response to command

to_poly_solve(sin(x)=1/2,x); (shown in Figure 8)
could be confusing at first.

b ST
%unior{{x:Z T %zl2+gj SIx=2T7 %zl4+?j]

Figure 8. Output of command fo_poly_solve (Maxima)
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In some cases, CAS deliberately offer answers that are not equivalent to the
general mathematically correct answer. For example, particular solutions could
be presented instead of general solutions in case of trigonometric equations. (It is
even possible that the methods used can only produce particular solutions.) Some
CAS also generate warning messages if this is the case.

There reasoning behind the selection was described in this section. The next
section introduces the types of differences and proposes a respective classification
of the differences.

4.3. Types of differences between CAS answers and school
answers

Section 4.3 introduces the types of differences between CAS answers and school
answers, and then 127 - 8 answers (127 equations, 8 CAS) are classified according
to these types.

RQ1 asks where the differences between CAS and school answers can be de-
tected in equations. For this question, it is enough just to mark whether a particular
CAS answer differs from the school answer or not. It is reasonable to observe the
answers somewhat more thoroughly at same time. The answers were analysed and
the differences between CAS answers and expected school answers were classi-
fied in six types in this chapter.

(1) No difference.

(2) Equivalent but different.

(3) More solutions than expected.

(4) Fewer solutions than expected.

(5) Did not solve or only some transformations were completed. Error mes-
sage.

(6) Very complicated answer.

If a CAS answer is not exactly the same as the school answer it is reasonable
to ask whether the CAS answer is equivalent to the school answer. In addition
to checking equality or equivalence of single solutions, there are several cases
where a set of solutions should be compared. As a solution set of CAS answers
can contain more or fewer solutions than the expected school answer, the types
(2), (3), (4) can be established. The types (5) and (6) are needed for extraordinary
cases.

This classification is quite simple and only one possible way of doing this,
while more elaborate classifications are possible as well. Another classification is
presented in Chapter 5.

Now the types are described in more detail.

(1) No difference. The answer is in the expected form. If there are any ques-
tions, they could be about the expected form. For example, in case of trigono-
metric equations the ’cultural’ issue is important, as the expectations for answers
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can be different in different cases. For instance, the solution to sinx = m could be
expressed in the form of two series:

x =arcsinm+2nw,n €Z
x=m—arcsinm+2nw,nc€”Z

or (as in Estonian textbooks)
x=(—1)"arcsinm+nm,n e Z.

The examples where this is the only difference are also marked as (1). Trigono-
metric equations are discussed in Section 5.2.9 and Chapter 8.

(2) Equivalent but different.

The expected answer (or, more specifically, a response) could also be an error
message or warning message. For example, in case of x*> + 1 = 0 Wiris generates
the message Warning, difficulty: It is not possible to find a result or solution.

The type Equivalent but different is very extensive — from answers that are
almost the same as expected to answers that look very different and require hard
(and possibly instructive) work to check the equivalence. This category also in-
cludes answers that could be called unfinished but the unknown should be already

In8 In7
isolated. For example, we treat ln—z as unfinished answer but not 11172

The next types are roughly i(ilentiﬁed by comparing whether thr(la CAS answer
includes more or less solutions than the expected answer.

(3) More solutions than expected.

A CAS answer can have more solutions if extraneous solutions are included.
This is closely related to the domain questions of equation and function, as extra-
neous solutions are outside the domain of the functions that are included in the
equation. The number domain is also very important as the solution set could dif-
fer in case of, for example, the real and complex domain. It should be noted that
the complex domain is not distinguished only by an imaginary unit in the answer,
but it could also be present in case of real (or even integer) solutions. Is —1 the
solution to the equation x + v/x = /x — 1? Yes, in case of the complex domain.
Furthermore, hidden complex domain can also be seen in case of the answer with
arcsin2. We distinguish between two subtypes:

(3a) if the provided answer is not suitable even in the complex domain, and

(3b) if the provided answer is a correct answer in the complex domain.

The subtype (3a) is related to the question of division by zero.

(4) Fewer solutions than expected.

(4a) If we search for a general solution to a trigonometric equation, the par-
ticular solutions that several CAS provide could be noted as fewer solutions than
expected.

(4b) There are also other examples where a solution is missing (for example,
in case of Vx+45—v/x—16 = 1, some CAS miss —109). In case of literal
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equations the issue could be about presenting different branches. Almost all CAS
provide only the main branch (in case of equation ax = 1 only branch where a # 0)
as mentioned also by (Bernardin, 1999). The only exception is the use of the
Reduce command in Mathematica.

The last types are the most unsuccessful and, fortunately, rare.

(5) Did not solve or only some transformations were completed. Error mes-
sage.

Unlike in case of type 2, where an error message was rather expected, here the
error message indicates incapacity for solving. Figure 9 presents the response in
case of 22 = 2°~! by Sage where only some transformations are completed.

[2%% == -27(1/2%x - 1/2), 2*x == 2°(1/2%x - 1/2)]
Figure 9. Response with only some transformations completed
(6) Very complicated answer.

Figure 10 shows a fragment of response in case of
2(sinx+cosx) 4 sin2x + 1 = 0 by Maxima is presented.

2372

[N

({ \/ ’x(23r’2—2)2—(_23/2_2)2—23/2—2 1)2 ( lll(_g
i\ )+t

Figure 10. A fragment of complicated answer

Examples of equations are presented in the following tables:

e linear equations in Table 1;

e quadratic equations in Table 2;

e fractional equations in Table 3;

e irrational equations in Table 4;

e cquations that contain an absolute value of an expression in Table 5;
e exponential equations in Table 6;

e logarithmic equations in Table 7;

e trigonometric equations in Table 8 and Table 9;

e literal equations in Table 10.

The idea was not to discuss, which CAS is better or worse, or even more or
less suitable for school. A deviation from school expectations can even be an
advantage in terms of promoting discussion.

This section classified the differences between CAS answers and school an-
swers into six types. Some remarks on using the differences are presented in the
next section.
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Equation — school answer

2x—4=0—=2

2x—3=0—3/2

1
(15 is discussed in Section 5.2.2)

~|—| GGB

~|—| MPL

~|—| MTH

—| = MXM

—|—| SAGE

~[—| WRS

—| = XCS

2x=0—=0

x+1=x—0

x—(x—=1)=0—0

x—1=1-2-x) =R

—_| = = —

| | |

— | = | =] —

[y YV VN U

[y VN N

Y YV VN U

| | |

—_| = = —

Table 1. Linear equations

Equation — school answer

¥—1=0— +1

X +x=0—0,—1

X —3x+2=0—1,2

—|=1—| SAGE

14
2x2—4x—5:0—>1:t§

—_—

—_—

—_—

—_—

¥ —2x+1=0—1,1

CAx+1=0—0

3b

3b

P=—1-0

3b

20— 1)(x—=2)=0—1,2

(x—Dx=2x+1)(x—1) = 1,—1

(x+1)x—x"=1—1

x3:x—>0,1,—1

[N U VI U U VN U

X =52 +4=0— —1,1,-2.2

[N VI VRIS VI VI VI [NV (U

[N VNG VNS VI VI VI [RUIIN (U

[N VNG NS VN U

[N VI VNN VY NN

[N VNG NS VI VI VI [NV N

UG RV (UG U VI (NURIY VI VI [N

[N VNG VNS VI VI VI (VI (U

Table 2. Quadratic equations
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S [HT
5= =M= 2«3
Equation — school answer O| = |=|=2|v |5 |B|X
T RN
i
2050 RN
X
T
x+-=—-—>0 1 |3a|3a|3a|3a|3a]1 1
X+ =1+ ! —0 1 |3a|3a|3a|3a|3]|1 1
2x—l x—1
Yoxrl X 1|1 3|3 |3a|3|1]1
x—1 x—1 1
P42+ 1=3x+—1—>2 1 |3a|3a|3a|3a|3a]|1]]1
* _ vl 1113l
x—1 x—1
x(x_ll)_l—no 1 |3a|3|3a|3|[3|1]1
-
7 —
o2, R
le x—1
X
) IR
x—1 21 >
X X
— - 2 IR
=2 @] »i2
1 1 1 5
vt :2—7+x—>:|:1,7:i:£ tlr et
2x2 X 22
T 050 1|3 |3a|3|3a|3|1]1
X

Table 3. Fractional equations
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Equation — school answer

Vi=1-—1

Vi=—1—0

Vi+vVa—1=-2-0

—_| == MXM

V2x=vx—1—-0

V242 =3x =12

x—vV1-2=1->1

x+V1I-x2=1-=1,0

Vx+4+v/x+1=3—=0

Vx+54+V20—x=7— 4,11

V2x+1+vVx—-3=4—4

Vx=2-38

Vax=vx—1— -1

4b

Va2 +2=v3x— 1,2

Va2 —3%x+2=0— 1,8

202 —2x+4d—/x2—2x+9=1

— 0,2

[EN [SNIN NN [ QS (U U VR (U [ -

[E (SN S [ QS (U U U S [ =

el e Bl el e el e el e e

Vx+45—vVx—16=1— 80,—109

4b

4b

4b

4b

4b

Vi2tl=x—2-0

1 1

1

x+v/x=2—1

1 1

1

T
2v/x+3x4—2=0— I

1 1

1

X
—=0-—0
f

1 3a

3a

3a

3a

X
xV/x=+vx—0,1

1 1

1

3b | 3b

3b

3b

3b

X+vVx=vx—1—0
X 1

1 1

1

3a

3a

1 1

1

Table 4. Irrational equations
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Equation — school answer

K =1— £1

x—1|=2—=-1,3

[2x—1] = -3x— —1

x=—1—0

2x—1|=-3—0

K1+l =2—[-11]

N
(on

[2x+5]=|x=2| = —1,-7

—_—

[x—1]+2x+1]=3 — +£1

—_—

I I
X+—=—=—0

e |

—_—

—_

(98]
o

(98]
o

(98]
o

(%)
o

[

—_—

T 050

x|

1

3a

1

1

3a

—_—

—_—

—_—

Table 5. Equations with absolute value

Equation — school answer

2'=8—-3

2* =7 —log,7

=—-1-0

2 =21

2FT42¥ =350

#-3.242=0—1,0

u| =] ;| L) =]l MXM

m»—mg»—[\)SAGE

2 I
2= 512
4 9

—_—

—

—_

—_—

(x—6)" =25 8,4,0

4b

4b

9]

4b

4b

X=x—1,-1

5

4

Table 6. Exponential equations

69




[5}

_ 228 & 22| < |8
Equation — school answer O|=|=|=|ad |58 |5 | X
o) — g g 3a 3|3 | 5|5 |3 |33
10g,0x =2 — 100 T 111ttt ][71]1
log, 100 =2 — 10 T [ 1 [ 11 [2][1]1]1
log, 90 =2 — 3V/10 P11 (221 |1]1
log3x =log;ox — 1,10, Tlo L1111 (11|11

2
logiox _ 1 [3a|3 (3|3 |3|1]|1
loggx
log ;o (2x) =logo (x—1) — 0 3b [3b | I |3b|3b| 1 |3b]3b
log, 4=2— I T[T |1 [3[2]1]1]1
log; (log, x) =0 — 2 T [ 1 [ 1 [ 11111
log, (x—2)+1log, (x—3)=1—4 1|1 [ 13 (3|1 |1]1
10g10x2+10g10x:3 — 10 1 1 1 1 |3b] 1 1 1
loglox—3loggx+2=0—10,100 | 1 | 1 [ 1 [ 1 [ 1 [1[1]1
x+logx=1logx—1 — 0 3b [ 3b | 3b | 3b | 3b | 3b | 3b | 3b
> b P11 |3]3]|1]|1]1
logx logx
g0 — 100 — 10V2,107 V2 202025 |sl1]2]2
Vlogx =log/x — 1,¢* s 1|1 {11 ]5]1]5

Table 7. Logarithmic equations
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BI2IE|I%2/82 <8
Equation — school answer O|=2|=2|=|ad |5 | B |X
sinx =0 — 17 Tt 11111
T
sinx = 5 — (—l)”%—i—nn AR
sin(3x) = —1 — (71)"+1g+% | S A S U O R R R |
2
sin(xf—)ziﬁzf(fl)”Eerr T A TN A T A T AN T
\ZF 3 4
3
sin(4x+2) = > = AR
1 T T
(=12
5+ : TR
sinx = T (=1)"arcsin — +nm Lt 11| 1|1|1]1
sinxr =20 T {11336 1364
cosx=0— +2 420 R
cos(x— 2)=0.5— 2+ % 4 ong SRR ERERE!
4 &
cos(x—¢) = 1/2— £ &5 +2nm R
cosx=250 Tl 111111
tanx =0 — n7 Tt 11111
3
tanxz—%%%—i—mr AR
tanx = 2 — arctan2 +nw 1 1 2 1 4a | 4a | 1 | 4a
fanx = tan ~ — ~ +nx R HEEEEEEE
X = — — n
24
tanx=tan— — 0 1 1 |3a| 3a 1 1 3a 1
cotx =0 — g+m 1111 laals] 14
cotx = /3 — g+mr IR
cotx =cot0 — 0 1 1 | 3a| 3a 1 1 3a | 1
sinx = cosx — ~ +nm it ool 221

9
tanx =1 — Z—an’

sinx = tanx — 0+ nm, 0+ n27w

Table 8. Trigonometric equations (1)
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BI2|E|2/2/2|<|9
Equation — school answer O| = | =2 | = |w | BB | X
tan(x+§):200tx71% 1 {1 ] 1]6|4b|4]|1]2
T
E +n7t, arctan E +nr -
tan3x:tanx%nﬂ:,j:1+n7r | O O O O R O O A R |
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Bx_ 50 3a| 1 |3a|3a|3|[3|3]1
fanx
2sinxcos2x —1+2cos2x—sinx =0 | 1 1 1 1 1 1 1 1
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2(sinx+cosx) +sin2x+1 =0 — 211 |1]6]| 6 |4a|3b|4a
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cos(xsz)ziﬁ L1111 ]1]1]1
£\ [2£ 5 +2mn
sin2x73sinx+2:0%g+27rn 1 1 1 3b | 4a | 3b | 4a
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Table 9. Trigonometric equations (2)
s [a}
AEIEIEIEIE IR
Equation — schoolanswer | © | = | = | = | v Z| 5| X
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Table 10. Literal equations
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4.4. Some remarks on using the differences between CAS
answers and school answers

Nice concrete examples of educational use of the differences of CAS answers
from expectations can be found in the works referred in Section 2.3 of this disser-
tation. The ideas presented here, in Section 4.4, are not well-developed and they
are provided mainly as an evidence of the ongoing search for an applicable idea.

We primarily discuss the topics that could be highlighted. The keywords are
certainly already there — equivalence, domain, extraneous solution, properties of
a particular function or operation, particular and general solutions.

The difficulty of the task of checking equivalence depends on the particular
equation. It could be very easy if the answers are obviously different. However,
it could be complicated in other cases. Of course, a teacher should consider stu-
dents’ level of learning, the aim of the lesson, etc. For example, checking equiv-
alence of the answers to a quadratic equation could be instructive if manipulation
of such expressions is the current topic of study but it could become boring later.
In addition, a CAS answer can sometimes be ahead of the school program. For
example, an imaginary unit can be disturbing if presented too early. On the other
hand, it could be very interesting for some students even at the early stages.

Solutions to trigonometric equations are a good source for tasks, as even the
correct solutions can look externally very different. Chapter 8 (based on Tonisson,
2013 and Tonisson & Lepp, 2015) presents the lessons in which university stu-
dents solved trigonometric equations at first by themselves manually and after
that with a CAS.

The comparison of a CAS answer to the students’ (possibly incorrect) answer
opens new and interesting perspectives. We suggest that this method could stimu-
late discussion and provide a possibility to activate students.

Domain issues (both a domain of the function and number domain general)

are also very important and the above equations could provide ground for dis-

I 1 1
cussion. For example, x + — = — leads to the domain of a function f(x) = —

X X
and also to real and complex domains. Many examples in the previous table
are (deliberately) quite simple — the critical issue is quite transparent. It is

possible to decrease the transparency somewhat; for example, one could use
4 —1)2—x(x—2 1 1 1

—x—x+(x Joxx=2) = instead of x4+ — = —. The ob-
2 X 3(x—1)—2x+3 X X

servable function could be present already in the equation but it could also appear
In(8)
In(2)
pears only in the solution (which is unfinished). The domain issue is directly re-
lated to extraneous solutions. The common strategy for excluding extraneous so-

lutions is checking the provisional solution in the initial equation. It could be done

in the solution. For example, in 2* = 8 the answer is and the logarithm ap-

1
by a CAS. Sometimes the extraneous solution is caught; for example, 0+ 0 causes
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an error message. Sometimes an extraneous solution can pass the test. For exam-
ple, in case of equation x + V/x = 1/x — 1 the substitution —1 + V-l=+v—-1-1
could be simplified to True (which is correct in the complex domain).

Imaginary numbers appear in different cases — the most famous case is square
root. It is common that i is introduced by v/—1 from x> = —1. Actually, imaginary
numbers can be part of solutions of exponential, logarithmic and trigonometric
equations. An exhaustive discussion of such solutions requires knowledge about
complex analyses, branch cuts, etc., which is definitely beyond school mathemat-
ics and probably not even covered in math teacher training. Sometimes answers
with complex number solutions can be (perhaps frighteningly) large, occupying
dozens of lines. The questions of uncertainty and infinity also belong to an area
that almost immediately crosses the border of school mathematics. Some CAS
still divide by zero.

The ideas that are presented in this section could potentially be developed for
actual use in classes. However, only one approach was actually developed and
tested in the frames of this dissertation.

4.5. Conclusion

Section 4.5 concludes Chapter 4.

A study, in which 127 equations of different types of school equations were
solved by 8 computer algebra systems, was presented in the chapter. The tables
in this chapter provide an answer to RQ1 Where differences between CAS and
school answers could be detected in equations within the school curriculum? The
answers to linear and quadratic equations were practically same as school answers
in case of all the CAS. There were some differences in other types of equations. In
case of the literal equation, all CAS provided only the main branch which would
not be a complete answer in the school context. In general, GeoGebra answers
had the least differences from school answers.

The differences between CAS answers and expected school answers were clas-
sified into six types. This classification could be accounted as one answer to RQ2
How can the detected differences between CAS and school answers of equations
in the school curriculum be described and classified? Other classifications are
possible and a different one is provided in Chapter 5. Chapter 5 also includes
more ideas about instructive use of the differences.

A teacher should decide if solving a particular equation with a particular CAS
is suitable for stimulating (hopefully rich) discussion. It could be reasonable to
choose another CAS or avoid the equation at all. The possible topics of classroom
discussion are related to equivalence, domains and ranges of different functions,
extraneous solutions, real and complex domain.

Many examples from the test suite are "explicit’ and could be ’disguised’ for
the purposes of actual use. Some cases (especially answers with complex num-
bers and infinity) are definitely out of students’ and probably teachers’ scope of
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learning. It is possible to examine some issues in more detail. One of them is the
number domain that is discussed in Chapter 6. As quite many solutions include
branching in some ways the issues of branches are in the focus of Chapter 7.

Some trigonometric equations from the test suite were used in the experiment
described in Chapter 8.
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5. CONTENT-ORIENTED CLASSIFICATION OF
DIFFERENCES

5.1. Introduction

This chapter focuses mainly on the research question RQ2: How can the de-
tected differences between CAS and school answers of equations in the school
curriculum be described and classified? A classification of the differences be-
tween school answers and CAS answers as an answer to RQ2 was described in
Chapter 4. It mirrored mainly the possible set-theoretic relations between answers
as solution sets. Another, more content-oriented, classification will be provided in
this chapter. The types of differences between CAS answers and school answers
are described and examples are chosen to illustrate each particular type. Chap-
ter 5 is based on Tonisson, 2011. The CAS Maxima, OpenAxiom, Sage, WIRIS,
WolframAlpha are used and the chapter reflects the situation in the summer 2010.

It was mentioned several times before that most answers offered by CAS to
equations are customary for school, but there are some answers that would be
somewhat unexpected (or incompatible with the teaching practice) in school. For
our purposes, an answer is considered to be unexpected if it differs in some way
from the answer that the student/teacher/textbook expects/waits for/presents. In
reality, it depends on many circumstances. The expectations could vary depending
on the curriculum, the teacher, the textbook, etc.

The unexpected CAS answers can be divided between mistakes and reasonable
unexpected answers. Reasonable unexpected CAS answers are correct (or some-
times partially correct), but conform to a different standard. As we try to discuss
didactically useful answers, the terms "didactical answers’ or ’instructive answers’
can be appropriate as well. Some of the reasonable answers are equivalent to the
expected answers but some are not. A further breakdown, as presented in Figure
11, is possible. The types are based on the form, completion, dependence on num-
ber domain, and branching of answers and automatic simplification of equation.
The types were inspired by different papers (e.g., Aslaksen, 1999; Bradford et al.,
2002; Kadijevich, 2009; Stoutemyer, 1991; Wester, 1999b) but this particular set
as a whole has not been used before. In fact, the types Form, Unfinished, Domain,
Branches, Automatic can be broken down even further. Hence we use the notation
Type(subtype), e.g., Domain(R/C), Unfinished(log). It should be noted that the
classification presented in Figure 11 is about answers. However, we also consider
input issues and present type Input.

The test suite includes linear, quadratic and fractional equations, equations that
contain an absolute value of an expression, irrational, exponential, logarithmic,
trigonometric and literal equations. More than 120 equations (partially the same
as in Chapter 4) were used as test examples but only distinguishing ones are pre-
sented in the chapter. Most of them are school-like equations but some are rather
artificial equations, designed to elicit specific behavior. As CAS are constantly
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Answers

T

Expected Unexpected
Reasonable, explicable Mistakes
Equivalent Not equivalent

Form  Unfinished /’\

Domain Branches  Automatic

Figure 11. Types of answers

improved and new versions and new CAS appear, the situation with a particular
version of a particular CAS is not overly important. Rather, what could be useful
is an understanding of the possible range and nature of the phenomena, especially
when the didactic value of an unexpected answer can be capitalized on in the pre-
sentation or accentuation of some topics. Such topics (e.g., equivalence, domain)
can be concealed at first, but are actually important. The scope of this chapter is
restricted to mapping and (preliminary) classification. The ascertainment of the
actual importance requires further experiments, involving teachers and students as
well.

The phenomena are identified in the Section 5.2 by types of equations. The
types of phenomena are discussed separately in Section 5.3.

5.2. Equations

5.2.1. Introduction

The main types of school equations are observed in this chapter to identify the
various kinds of differences between CAS and school answers. However, other
equations (e.g., Diophantine equations) can be included in the curriculum in cer-
tain regions. The curricula of different countries and school types include different
amounts of equations. The order of study and names of equation types can vary as
well, e.g., radical equation — irrational equation, literal equation — equation with
parameter, absolute-value equation — equation with absolute value — equation
containing absolute value.

The following subsections all have a similar structure. The subsections include
a brief introduction of every type (and subtype) of equations. This is followed by
a discussion of the interesting phenomena. The test examples were selected with
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the intention to find simple non-trivial examples, characteristic of the particular
(sub)type. Some were taken directly from a textbook; others were simplified from
textbook examples. There are also examples from previous chapters.

5.2.2. Linear equations

The first equations we study are linear equations. Linear equations are the first
equations learned in school and may seem quite trivial to both students and CAS.
Still, some important phenomena appear here. It is possible to identify three sub-
types of linear equations: equation that has one solution, equation that is true for
all numbers, and equation that has no solutions.

The solution could be (at least at the school level where linear equations are
introduced) an integer or a fractional number. There are no problems with the
integer, but two points can be observed in case of a fractional answer. In case of

2
3x+2 =0, all CAS give —2/3 (or —g). In case of the equation 2x = 3, only

Sage gives 1.5, the others 3/2 (or §). Should the solution be a common fraction
or a decimal fraction? Although students should be familiar with both forms, the
particular form selected by the program could be slightly unexpected. We de-
note this issue as Form(fraction). The second issue is more country-dependent.
Namely, mixed numbers are used in some countries and, instead of 3/2, the an-

swer 1 ! is expected. CAS do not support mixed numbers. We denote the issue as
Form(mixed).

The cases where there are no solutions or the solution set consists of all num-
bers lead to the notation issue denoted as Form(all/empty). CAS use quite different
approaches in this case:

e [x=x], [x==r1],0=0, All values of x are solutions’;

e [], 'No solutions exist’, "Warning, difficulty. It is not possible to find a

result or solution’.

Some examples are listed in Table 11.

Equation Answer, Remark | CAS Phenomenon

2x=3 1.5 (vs 3/2) Sage Form(fraction)
I

2x=3 3/2o0r 1.5 (vs 1 E) All Form(mixed)

2x+1)=2x+2 | [x=rl] Sage Form(all/fempty)

2x+1)=2x+1 | [ ] Maxima | Formf(all/empty)

Table 11. Linear equations
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5.2.3. Quadratic equations

Quadratic equations can be classified by the (manual) solution process and by
the number of real solutions. It should be noted that different countries seem to
prefer slightly different solutions. For example, solving of quadratic equation by
completing the square is popular in several countries, but almost not used at all in
others.

Incomplete quadratic equations in the form ax> 4+ bx = 0 (like 10x*> + 17x = 0)
are solved by all CAS without new problems. (The issue of presentation of frac-
tions is still present.) The equations in the form ax*+c¢=0 (like 2 —8 = 0)
raise the issue of sign &= (Form(+)), WolframAlpha presents 12 as the answer to
the equation 2x*> — 8 = 0, others present the solutions separately.

A quadratic equation can have 2, 1 (actually two equal) or O real solutions. All
of them can provide unexpected answers. In case of 2 solutions, there can be dif-
ferences between CAS in the order of terms, etc. For example, one of the answers

V14

to the equation 2x> —4x — 5 = 0 could be presented by different CAS as — — +1

V14 —V14+2
2

-2
(WIRIS, see Figure 12), — — (Maxima, see Figure 13), (Axiom,

1 7
see rigure , — < + age, See rrgure oril— b olrram a, See
Figure 14), —>V/14-+ 1 (Sage, see Figure 15) or 1 -/ 7 (WolframAlph

Figure 16). We denote the issue as Form(radical). In case of two equal solutions,
there is a question about presentation of multiple solutions (Branches(mult)); all
CAS present them one at a time — the equation x> —2x+ 1 = 0 has the answer
x=1(motx;=1,x=1).

The most essential issue related to the quadratic equation is presentation of
the answer when there are no real solutions (but there are complex solutions, of
course). an empty set { }; Maxima, Sage and WolframAlpha give the complex
solutions that include an imaginary unit; the answer in Axiom has a negative
number under square root in solutions. We denote the issue as Domain(C).

Some examples are listed in Table 12.

L e

[sol\re{ZxE—dx—5=0] i {{x= : x=_T+1

Figure 12. Solutions of quadratic equation (WIRIS)

5.2.4. Fractional equations

Fractional equations introduce extraneous solutions. One can perform all steps
(excl. checking) of the solution algorithm correctly, but the solution can still be
wrong. There are two possible strategies for managing this case (both for human
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($11) solve (2*x*2-4*x-5=0, ) ;

’\!14 = 14 +2
z r A= J

=
Z

(%0l) [x=

Figure 13. Solutions of quadratic equation (Maxima)

radicalSo lve (2 #x"*2—-4%x—5=8)

¥ =

Nile o+ 2

"y

Figure 14. Solutions of quadratic equation (Axiom)

solve (2*x"2-4*x-5==0, x)
[ == -1/2*sqrt(14) + 1, x == 1/2*sqrt (14) + 1]

Figure 15. Solutions of quadratic equation (Sage)

solve 2*x~2-4*x-5=0

Input interpretation

solve 2x* -4x-5=0

Results:

x= 1_1||g * —0.870829
7
.J."=1+.,||5 = 2.87083

Figure 16. Solutions of quadratic equation (WolframAlpha)
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Equation Answer, Remark | CAS Phenomenon
22 -8=0 =+ in anwswer WolframAlpha | Form(=+)
2x% —4x—5=0 | Different forms All Form(radical)
22 —2x+1=0 | x=1vs All Branches(mult)
x1=1Lx=1
P4+x+2=0 i in answer Maxima, Sage, | Domain(C)
WolframAlpha

Table 12. Quadratic equations

and CAS operations). The *forbidden’ values can be determined in advance before
solving or the potential answer can be checked when solving is finished. CAS give

—1
correct answers in case of ordinary fractional equations, like — = 0, a =1,
X X
3x—1 x—2 x—=3 2 x+1 2
—2=0, 1= ,——x=1or = .
X x—1+ 2% x—1 x*—x

One could lure CAS with the somewhat artificial equations T 0 and
X

1 1
— = —. All CAS give disputable answers: 0O to the first equation and ’all values’
X

t)f) the other equation. This is probably related to automatic simplification — the
equation is automatically transformed to the (standard) form and indeterminacy is
cancelled. We denote this issue as Automatic(indet).

Some examples are listed in Table 13.

Equation | Answer, Remark | CAS | Phenomenon

T _0 | Divisionby0 All | Automatic(indet)
X

T 1

- = Division by 0 All Automatic(indet)

X x

Table 13. Fractional equations

5.2.5. Equations that contain an absolute value

Equations that contain an absolute value could be presented to students after linear
equations or much later or not at all. Solving such equations is complicated and
some textbooks deal only with simple examples, solvable by definition.

The first question related to CAS is how to input an absolute value. Wolfra-
mAlpha understands the mark | | (typed from the keyboard); WIRIS has a special
button in the palette, but the most common approach is to use the abs( ) function.
We denote the issue as Input(abs).

Unlike with the previous types, CAS have quite different efficiencies in case
of equations that contain absolute values. It should be noted that absolute value
is also a theoretically complicated topic in computer algebra. WIRIS and Wol-
framAlpha cope well with all examples: x| =3, |x| = =3, [x+2| =1, [x—3| =
42, x=3|=3—x|, x+2| = |x| =x =3, |x* = 1| = —2x, |x* —x| +3x =5,

B b
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I —Vx+1|=3| =+ Vx+1-7.

Axiom gives answers when 1/ (f(x))? is used instead of |f(x)| in the input,

e.g., \/(x+2)> = 1. We denote this issue as Input(sqrt("2)). However, there will

be the extraneous solutions in case of [x* — 1| = —2x, |x> — x| +3x = 5; and in case
of [|x* —vx+ 1| —3| =x* ++/x+ 1 —7 the answer did not appear in reasonable
time. Maxima and Sage provide the answer in response to numerical command
find_root. We denote this issue as Input(numerical).

Some examples are listed in Table 14.

Equation | Answer, Remark | CAS Phenomenon
All abs() vs | | Input(abs)

All \/(f(x))2 vs | | Axiom Input(sqrt(“2))
All find_root vs solve | Maxima, Sage | Input(numerical)

Table 14. Equations that contain an absolute value

5.2.6. Irrational equations

There are several subtypes of irrational equations in school mathematics. Some
of them are solvable simply by raising to power (perhaps more than once) and
then solving a linear or a quadratic equation. Sometimes, the equation is alge-
braic equation with respect to the radical expression. The checking of solutions is
essential part of solving.

In case of CAS, the first question is again about input. While square roots are
easily to enter (with a special button or function sqgr()), the other roots (e.g., /,
Va ) can be problematic. We denote the issue as Input(radical).

All CAS provide correct solutions to simpler irrational equations with only
one radical on the one side and a number on the other, like \/x = 0, v/x = 2,

Vx+1=2and v/x% — 3x = 2. Additionally, all CAS can solve \/7 —vx—3=2

1 1
and — =

v 2

In case of most irrational equations (like V2x = Vx+ 1, Vx = x,
x—2=vVx,x—V25-x2=1,Vx+6—-vVx—1=1,V/2x—1—+vx—4=2and
Vx+2—vVx—2=+3x+ 2), Axiom, WIRIS and WolframAlpha offer correct an-
swers, while Maxima and Sage do not solve symbolically but solve numerically
with the find_root command (Input(numerical)). Axiom, Sage, WIRIS and Wol-
framAlpha solve Va2 =2 correctly, Maxima gives |x| = 2 as a reaction (but solves
numerically with find_root). In case of an empty set of solutions (v/x = —2,
Vx+3=-2and V3x+1=+/x—1), Axiom, WIRIS and WolframAlpha give
correct reaction. Maxima, Sage, WIRIS and WolframAlpha are correct with
V3x+4++/x = —3, but Axiom gives a faulty answer.
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Axiom and WolframAlpha present a real solution that is considered as extra-
27
neous in school: —1 in case of v2x = vx—1 and - (in addition to 3) in case

of V2x +6 ++1/x — 3 = 2y/x. We denote this issue as Domain(R/C).

In case of v/x+ 45— v/x— 16 = 1, WIRIS gives both solutions (80 and —109),
Axiom and WolframAlpha give only 80. When —1009 is substituted to the left side
of the equation, Axiom and WolframAlpha give —v/—1 as a result. We denote this
issue as Form(cbrt). It is related to definition of multivalued functions (see Jeffrey
& Norman, 2004). Maxima and Sage do not solve it symbolically but solve nu-
merically with find_root. WIRIS and WolframAlpha solve vx+ 1 42vx+1=3
correctly. Axiom gives, in addition to 0, the strange faulty solutions which include
\/—3%x722 + (—2%x71 —760)%x72 — 3%x71%> — 760%x71 — 11232, for exam-
ple. Again, Maxima and Sage do not solve it symbolically but solve numerically

with find_root.
Some examples are listed in Table 15.

Equation Answer, Remark CAS Phenomenon

/s ete ‘What function All Input(radical)

All find_root vs solve Maxima, Sage | Input(numerical)

V2x=vx—1 —1—=+v=2 Axiom, Domain(R/C)
WolframAlpha

Vx+45—v/x—16=1 | Multivalued —v/—1 Axiom, Form(cbrt)
WolframAlpha

Table 15. Irrational equations

5.2.7. Exponential equations

Some useful ideas for solving exponential equations are introduced in school. One
of them is to observe whether bases are equal (or transformable to equal). Another
idea is to use logarithms. There are equations that are linear or quadratic equation
with respect to the term a* and are also more complicated.

The first exponential equation observed is 2* = 2% (same as 2* = 8). Wolfra-
mAlpha gives a correct answer 3. WIRIS gives 3.0 which is correct, but seems
to be numerical. We denote this as Form(l.). Axiom, Maxima and Sage give
log(8)
log(2)
Unfinished(log). The same situation occurs in case of v/3* = 9, where the left side
of the equation is a little bit trickier, but the right side is still a number. When
there is an exponential term on the right side as well, e.g., 2t = 22*  Axiom and
WolframAlpha give the exact answer, WIRIS gives 1.0 but Maxima and Sage do
not solve symbolically but give the solution numerically with the help of find_root
(Input(numerical)).

as a solution. It seems to be somewhat unfinished and we denote this as
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1\ s
If the same base is somewhat hidden (51*x+ <5) +2572 =155 or

321 — 279, Axiom does not solve, but if the first step is made manually
5 25 1
(3% 1 =3% and = + = + == 155), the CAS can solve it. In case of equa-

tions that are a linear or quadratic equation with respect to the term a* (3% —

3 435 =21, 2% —8.2°4+16 = 0 and 3% ! —3*"1 —2 = 0), WolframAlpha
gives a correct answer, WIRIS gives a Form(1.) answer, Axiom gives an Un-
finished(log) answer, and Maxima and Sage give a numerical answer with the

command find_root.
X 3—x
WolframAlpha and WIRIS give expected answers to equation T

log(—v/3)

1/2 and 0.5, respectively. Maxima and Sage give 1/2 and 10g(3)
log(v/3) log(—v/3) ;

d = Y-/ finished|(1
log(3) o log(3) (Unfinishedlos).

Unfinished(log(—1))). It should be noted that WolframAlpha also offers the com-
plex answer (see Figure 17, denoted as Branches(Cn), Domain(C)). In case of
"unlikeable’ answers (like 3* = 5, 3%*! = 15 and ¢* = 30), WIRIS gives Form(1.)
answer (like 0.73249) and the four other CAS give an Unfinished(log) answer;

(Form(log(—1))), Axiom gives

log(5
WolframAlpha also gives a numerical value (logg9§ ~ 0.732487).
0g

Input interpretation:

FeEE
solve —_— =
9 g9-x

Result:
log(3)+2inmn
r=——
log(9)

and ne £

Real salution:

1
xX=-
2

Figure 17. Periodic solution to exponential equation (WolframAlpha)
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When the number is in decimal form in the equation 107" = 0.0347, manual

7
transformation to 10" = 10000 is needed in Axiom (Input(fraction)).
WIRIS gives a warning message in case of equations 2* = —4, ¢* +1 =0

that have no real solutions. WolframAlpha gives all sets of complex solutions

log(4) +in(2n+1
(like og( )1—{_”{2() ntl) or i(2wn+ 1) ) (denoted as Branches(Cn), Domain(C));

0g
. . . log(4)
Sage gives one complex solution (like i + m) (denoted as Branches(Cl),
0g

. : .. log(—4) .

Domain(C)). Axiom and Maxima give l0g(2) (Unfinished(log(—1))).
0g

In case of unequal bases (like 2>~ = 327 and 4! — 3% = 3*2 —4%), Wolfra-
mAlpha gives the expected answers; Maxima and Sage give numerical answers
with the help of find_root. WIRIS gives a warning message, and Axiom gives
empty brackets | ]. In case of 2-4* —5-6" 43 -9 = 0, WolframAlpha gives only
a set of complex answers (Branches(Cn), Domain(C)) where case n = 0 gives the
needed real answers.

Some examples are listed in Table 16.

Equation Answer, Remark CAS Phenomenon
2x =23 3.0 WIRIS Form(1.)
log(8
2 =23 0g(8) Axiom, Maxima, | Unfinished(log)
log(2)
Sage
2FT =% find_root vs solve Maxima, Sage Input(numerical)
3437 log(—+v/3
o f =i 2 %(3\)[) Axiom, Maxima, | Form(log(—1))
Sage
107 =0.0347 | manually Axiom Input(fraction)
0.0347 — 347/10000
2 =4 All sets of WolframAlpha Branches(Cn),
e+1=0 complex solutions Domain(C)
2Y=—4 One complex Sage Branches(Cl),
ef+1=0 solution Domain(C)

Table 16. Exponential equations

5.2.8. Logarithmic equations

Before discussing logarithmic equations, we should consider the function log().
It means log;, in WIRIS, but log, in the other CAS used. There are log(b,
a) function for the log,b in WIRIS, but log(a, b) (or log_a(b)) in Wol-
framAlpha. In other CAS, the necessary function should be defined (e.g.,
logv(b,a) :=log(b)/log(a)). We denote the issue as Input(log).

The main idea in solving logarithmic equations is to transform the equation
to the form log, f(x) = ¢ or log, f(x) = log,g(x). We start from equations
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that already have the required form. All CAS solve the equations log,x = 4,
log, x = log, 14; WIRIS gives a decimal answer (e.g., 16.).
When the number is in decimal form in the equation log, x = 4.5, manual

transformation to log, x = 9/2 is needed in Axiom (Input(fraction).
9log (2) 9log (2)

Then, Axiom gives e~ 2 as a solution. Also, Maxima and Sage give e 2

as a solution in case of log, x = 4.5. It seems to be unfinished and we denote this
log (4)

as Unfinished(log/e). Similarly, Axiom, Maxima and Sage give e 2
log (4

oflog, 14=2e g 1. Axiom gives o210 (2)

¢202(19) in case of log?, (x) —3log,o (x) +2 = 0.

In case of more complicated equations, like

— 1 in case

in case of log, (log,x) = 1 and

logy, (¥’ +3) = 2.

logjo (x+1) +1logjg (x — 1) —log;o (2x+5) = logy( 3,
log?, (100x) — 3log, (10x) — log,, (x) = 14,

WolframAlpha gives the expected answers. Sage gives numerical answers with
the help of find_root (Input(numerical)). Maxima does not solve (with the help of
find_root either) and Axiom gives empty brackets [ |. WIRIS gives the expected
answer in case of the first equation and Form(1.) answers (like 10.0) in case of
others.

The exponential logarithmic equation x
WolframAlpha.

WIRIS and Axiom present a real solution that is considered as extraneous in
school: —1 in case of In (2x) = In (x — 1). We denote this issue as Domain(R/C).

The equation log, (x*) = log, (2x — 1) includes a parameter. WolframAlpha
gives the answer x = 1 and log (b) # 0, while Axiom only gives 1. This issue will
be discussed in the section on literal equations. Maxima, Sage and WIRIS do not
solve it.

Some examples are listed in Table 17.

logox

= 100x is solved only by

5.2.9. Trigonometric equations

Trigonometric equations can be included in school curricula and textbooks in very
different ways. Sometimes only the sine, cosine and tangent are covered. The
cotangent could also be included, but secant and cosecant are virtually unknown.
The complexity of equations is very variable. The variety also extends to the re-
quirements for solution — sometimes a general solution, sometimes one solution
or solutions in specified interval. A question of unit — radian or degree — is also
possible.

Trigonometric equations can be classified in different ways. In this chapter, we
distinguish the following subtypes:

e Basic equations
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Equation Answer, Remark | CAS Phenomenon

log, b Should be defined | Axiom, Sage, Input(log)
Maxima

log,x=4.5 manually Axiom Input(fraction)

45—9/2

log,x=4.5 e% Maxima, Sage | Unfinished(log/e)

log, (logy x) = 1 2102 Axiom Unfinished(log/e)

log,,14=2 e% -1 Axiom, Sage, Unfinished(log/e)
Maxima

log,, (x** +3) =2 find_root vs solve | Sage Input(numerical)

log2yx —3loggx+2=0 | ¢21°2(10) Axiom Unfinished(log/e)

In(2x) =In(x—1) —1—-v-2 Axiom, Domain(R/C)
WolframAlpha

Table 17. Logarithmic equations

. . . 3
— ’likeable’ answer, like sinx = 0, cosx = > orcotx=—1

1
— ’less likeable’ answer, like sinx = 10" sinx = 0.1
— unsolvable (in R), like sinx = 2, cosx = 2

e Advanced equations (’one-function’)

_ V2

— more complicated argument, like cos <2x — g) ==
— factorization, like sinx(1 —sinx) =0
— quadratic equations, like sin®x — 2sinx —3 =0
— biquadratic equations, like 2tan* 3x —3tan?3x+1 =0
e More advanced (’function-change’)
— change function, like tanx+ 3 cotx =4
— homogeneous, like 2sinx —3cosx =0
— more complicated, like 2 4 cos? (2x) = (2 — sin®x)?
The following phenomena can be notice in case of basic trigonometric equa-
tions. The number of solutions can be one (Axiom, Sage) or two (WIRIS),
or a general solution can be given (WolframAlpha). Maxima gives one solu-

tion but also a warning: ’Some solutions may be lost’. We denote the issue as
Branches(number of solutions). The single solution can be different in different

3n
CAS, for example, in case of cotx = —1, Axiom gives e but Maxima and Sage

.~ . , . .
give e (Branches(choice of solution)). WIRIS does not solve this equation.
Decimal answers are expected in case of ’less likeable’ answers, but they can
sometimes also appear in case of an expected ’likeable’ answer (e.g., sinx = 3 in

WIRIS) (Form(fraction)). It is possible that an inverse function (arcsin, arccos,
arctan, arccot) is included in the solution (Form(invtrig)). The inverse functions
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are presented differently in different CAS (see Figures 18, 19 and 20). In case of
Axiom, the inverse function appears already in the ’likeable’ answer (e.g., Axiom,

1
sinx = 3 ). In case of Maxima, Sage and WolframAlpha, the inverse function

1
appears in case of ’less likeable’ answers (e.g., sinx = E)' In case of "unsolvable’

equations (e.g., cosx = 2), WIRIS does not give solutions (that is reasonable).
Other CAS give inverse functions in the solution.

Figure 18. Inverse trigonometric functions in answers (Axiom)

[# == arcsin(1/10)]

Figure 19. Inverse trigonometric functions in answers (Sage)

x=2an+xr-sin"'(@2) and ne Z

Figure 20. Inverse trigonometric functions in answers (WolframAlpha)

The advanced (’one-function’) equations add more complicated answers and
sometimes the checking of equivalence can be quite intriguing. Are x = n®

T
and x = (—1)”5 + nr as found in (Estonian) textbooks equivalent to x = 27n,

1
x=2nn+mand x = 5(471’71 + ) as given by WolframAlpha (Form(periodic))?

Biquadratic trigonometric equation 2 tan* 3x — 3tan® 3x+ 1 = 0 is too complicated
for Maxima and Sage, but 2t* — 3t +1 =0 is solvable. Therefore, we denote the
issue as Input(substitute).

From the more advanced (’function-change’) equations, we mention here the
equation 2 + cos” (2x) = (2 — sin’x)? , introduced by Abramovich (2005) as the
equation that has at least three different reasonable ways of solving and each way
produces a different-looking answer. Similarly, CAS give different answers (Max-
ima and Sage do not solve the equation).

Some examples are listed in Table 18.

88



Equation Answer, CAS Phenomenon
Remark
All Particular vs All Branches(number
general solutions of solutions)
3n —m
cotx = —1 T Vs e Axiom, Sage, Branches(choice
Maxima of solution)
|
sinx = 5 Decimal answers | WIRIS Form(fraction)
I
sinx = 5 Inverse function Axiom Form(invtrig)
T
sinx = 0 Inverse function | Maxima, Sage, | Form(invtrig)
WolframAlpha
sinx(1 —sinx) =0 Different forms WolframAlpha | Form(periodic)
of solutions
2tan*3x—3tan’3x+1=0 | Substitute Maxima, Sage | Input(substitute)
t =tan3x

Table 18. Trigonometric equations

5.2.10. Literal equations

In principle, parameters can be included in every type of equations; one such ex-
ample was presented in the section on logarithmic equations. Here we focus on
linear and quadratic equations. Drijvers (2002) discussed parameter very thor-
oughly. Drijvers emphasizes that literal equation is basically a different type of
equation, because the answer is algebraic expression with letters. The issue is
related to obstacle 4 in Drivers’ list: The tendency to accept only numerical so-
lutions and not algebraic solutions. 1t is explained as: Students often are not

1 1
satisfied with answers such as x = 35— 5% In the end they want to know what

value x stands for. This is called the ’expected answer obstacle’.
The test set included, e.g., ax=1,ax=b, ax+b =5, x> =a,V = nr’*h. One
can notice the different forms of the answer, e.g., in case of ax®> +bx+c¢ =0,

V—4ac+b> —b V—4ac+b> —b
+ +

o WIRIS gives — and —— 4+ —,
2a 2a 2a 2a
) Vb%2—4dac+b Vb% —4ac—b
e Maxima — 5 and > R
a a
1 b++—4ac+b? 1 b—+v—4dac+b?
e Sage 5 P and ) P .

The answer of WolframAlpha is shown in Figure 21. The issue of different forms
of radicals is denoted as Form(radical). Axiom does not solve this equation.
When we look at the WolframAlpha answer, we see different branches. It is
very common that a complete answer to a literal equation has branches but CAS
present branches differently (Branches(literal)).
Sometimes a branch can be the source of a new problem to be
solved by students. For example, WolframAlpha gives to the equa-
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Inputinterpretation ;
solve | ax?+bx+ec=0
solve ax " 2+bx+c=0 £ Wolframalpha

Results Show steps

—Vb2—4ac—b feTi
=0 and a
2a
2_ e
P i SRR
2a
x:—% sind o= Brandibia

solve ax *2+bx+c=0 & WolframAlpbs
Figure 21. Branches in the answer of a literal equation (WolframAlpha)

. 3mx—5 2m—+1 5 th 21m+38 d
ion = - e answer x= ——— an
(m+2)(x*=9) (m+2)(x—3) x+3 6m+9

3m~+3 # 0 and 9m> + 66m> + 151m+ 110 # 0.

Equation Answer, Remark CAS Phenomenon
ax*> +bx+c=0 | Different forms of radicals | All but Axiom Form(radical)
ax’ +bx+c=0 | Different branches All but Axiom | Branches(literal)

Table 19. Literal equations

Some examples are listed in Table 19.

All basic types of school equation were observed to highlight the various types
of differences between CAS answers and school answers. The next section dis-
cusses the detected phenomena individually by type.

5.3. Identified phenomena

5.3.1. Introduction

Section 5.3 discusses the phenomena highlighted in Section 5.2. The individual
phenomena are examined separately in Sections 5.3.2-5.3.7.

In addition to a general description of each type, the following sections present
a few brief ideas on the potential didactical use of the types. In the expla-
nation of didactical ideas, the answers from different sources are labeled as
follows: answeriexbook, AnNSWercas, AnSWercas(commandy> AMSWETCAS(speci fication)s
answer g yudent » €tC.

The connections between type and Drijvers’ (2002) list of obstacles are pre-
sented as well. Drijvers (2002) presented the obstacles that students can encounter
while working in a computer algebra environment. The paper was based on his
experiments. As this chapter focuses on a greater number of school equations and
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a greater number of CAS, the obstacles listed by Drijvers are partially also rele-
vant to the phenomena discussed here. The following obstacles were listed in his

paper:
1.

The difference between the algebraic representations provided by the CAS
and those students expect and conceive as ’simple’.

The difference between numerical and algebraic calculations and the im-
plicit way the CAS deals with this difference.

. The flexible conception of variables and parameters that using a CAS re-

quires.

4. The tendency to accept only numerical solutions and no algebraic solutions.

e

O © 3

10.
. The difficult transfer between CAS technique and paper-and-pencil.
12.

The limitations of the CAS, and the difficulty in providing algebraic strate-
gies to help the CAS to overcome these limitations.

The inability to decide when and how computer algebra can be useful.
The black box character of the CAS.

The limited conception of algebraic substitution.

The limited conception of algebraic solution.

The conception of an expression as a process.

The difficulty in interpreting the CAS output.

5.3.2. Phenomena related to input

We assumed in Chapter 4 that input does not pose particular problems, or at least
we did not discuss them in greater depth. However, we start with the issues that
occur before an answer is produced. In these cases, it is necessary to enhance the
input line; the command solve(equation) is not powerful enough.

7 phenomena were identified: Input(abs), Input(sqrt("2)), Input(radical), In-
put(log), Input(fraction), Input(numerical), Input(substitute). The relevant equa-
tion types are listed in Table 20.

Phenomenon Equations

Input(abs) Absolute (Table 14)

Input(sqrt(2)) Absolute (Table 14)

Input(radical) Irrational (Table 15)

Input(log) Logarithmic (Table 17)

Input(fraction) Exponential, logarithmic (Tables 16, 17)
Input(numerical) | Absolute, irrational, logarithmic (Tables 14, 15, 17)
Input(substitute) | Trigonometric (Table 18)

Table 20. Input

There are several cases where simply using the solve-command is not sufficient
and some adjustments are needed. They could be related to entering a specific
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function or operation, for example, absolute value, root, logarithm (Input(abs),
Input(radical), Input(log)). At first, the different notations and ways of expression
may seem obstructive, but they can also be instructive.

Sometimes formulae (like |a| = Va2 (Input(sqrt("2))) or log, b = % (In-
put(log))) are required. The use of a formula helps to understand the propegrties of
the operation or function.

The issue is related to obstacle 5 on Drijvers’ list: The limitations of the CAS,
and the difficulty in providing algebraic strategies to help the CAS to overcome
these limitations. It is explained as: Sometimes, ..., there is no direct command
to perform a task, or the CAS is unable to carry it out without any help from the
user. In such cases, cooperation between users’ expertise and CAS capacities is
needed to find a result.

The next issue concerns the form of the enterable number (fraction). The use of
4.5 or 9/2 in equations can give different responses in solving (Input(fraction)).
For example, when the number is in decimal form in the equation log, x = 4.5,
manual transformation to log, x = 9/2 is needed in Axiom (Input(fraction)).

The question of decimal approximation is also important if a CAS does not
solve the equation symbolically and numerical solving methods (for example,
with the command find_root) are invoked (Input(numerical)). Although decimal
approximation and numerical methods are very interesting and important topics,
they are not discussed in this dissertation. Here, it is classified under the Input
phenomena as the choice of a command can be treated as a part of input. This
leads to questions about initial values, precision, etc. The importance of numeri-
cal calculations and decimal answers can be quite different in different countries.
The issue is closely related to obstacle 2 on Drijvers’ list: The difference between
numerical and algebraic calculations and the implicit way the CAS deals with this
difference. 1t is explained as: For many students V2 is not a real answer: they
consider 1.41 as the ultimate result. They do not really understand the difference
in status of the two answers: ’still has some algebra in it’, whereas 1.41 is purely
numerical. The CAS is not always clear about this difference in status.

The expected form of the answer seems to depend on the country. In several
countries, V2 is preferred as the ultimate answer. It could also be classified as
Form(numerical) instead of Input(numerical).

Sometimes, partial manual solving of the equations helps to produce the an-
swer. For example, instead of 2tan*3x — 3tan?3x+ 1 = 0 (which could be un-
solvable for a particular CAS), we will solve 2t* — 372 4+ 1 = 0. After that, the
corresponding trigonometric equation will be solved (Input(substitute)). The is-
sue is related to obstacle 8 on Drijvers’ list: The limited conception of algebraic
substitution. It is explained as: Students often think that substitution is limited
to 'filling in numerical values’. That conception has to be extended to algebraic
substitution of expressions.
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5.3.3. Phenomena related to form of answer

In Chapter 4, we regarded many slightly different answers as equivalent (Type
(2) Equivalent but different). In this subsection we are able to increase the de-
gree of ’sensitivity’ and focus on the differences. 10 phenomena were iden-
tified: Form(fraction), Form(mixed), Form(all/lempty), Form(+), Form(radical),
Form(cbrt), Form(1.), Form(log(—1)), Form(invtrig), Form(periodic). The rele-
vant equation types are listed in Table 21.

Phenomenon Equations
Form(fraction) Linear (Table 11)
Form(mixed) Linear (Table 11)
Form(all/empty) | Linear (Table 11)
Form(+) Quadratic (Table 12)
Form(radical) Quadratic, literal (Tables 12, 19)
Form(cbrt) Irrational (Table 15)
Form(1.) Exponential (Table 16)
Form(log(—1)) Exponential (Table 16)
Form(invtrig) Trigonometric (Table 18)
Form(periodic) Trigonometric (Table 18)

Table 21. Form

This subsection groups together the phenomena where the answer is equiva-
lent to the expected one but different in some way. However, the answers in this
subsection seem to be in the ultimate form; the seemingly unfinished answers are
treated in the next subsection. (The boundary between these two classes is quite
ambiguous.)

We start with the fractional answers. It depends on the approach adopted in a

3 .1
country which form, 7 15 or 1.5 is preferred (Form(mixed), Form(fraction)). The

situation is slightly different if a decimal answer appears in case of an integer, 1.
instead of 1 (Form(1.)). The answer could also be expressed by more complicated

V14 v —4 b2  —b
expressions, like - +1, —% + 2 (Form(radical)) or x = 27n,
a a

1
x=27n+ 7 and x = 5(47511 + 1) (Form(periodic)), and the answer could differ

from the expected one. The handling of —v/—1 (Form(cbrt)) can also be placed
in this group of phenomena.

The solution can be in a different but still correct form. The checking of equiv-
alence can be easy or not so easy but instructive. The issue is related to obstacle
1 on Drijvers’ list: The difference between the algebraic representations provided
by the CAS and those students expect and conceive as ’'simple’. Recognizing
equivalent expressions is a central issue in algebra and this is still the case when
working in a computer algebra environment.

Sometimes the response of a CAS can contain symbols that are unfamiliar to
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a student. If a symbol (like £) is included in the curriculum (but is presented
at a later stage) the introduction via CAS can be appropriate (Form(+£)). (Also,
one can understand =+ as interval.) If the symbol is not in the curriculum of the
school, the introduction could be problematic but still instructive. There are also
some CAS-dependent notation questions (like [x = x| or [ ] in case of equations
where the solution set includes all numbers or is empty) (Form(all/empty)). Un-
derstanding the different error or warning messages is also a part of understanding
the notation.

A somewhat transitional issue between this and the next subsection is the ap-
pearance of inverse trigonometric functions in the solution (Form(invtrig)).

Now we look at solutions of quadratic equation, which are seemingly different
but actually equivalent.

The didactical example includes quadratic equations that have square roots
in the solutions. Different CAS can use different rules for presentation of an
expression. For example, one of the answers to the equation 2% —4x—5=0

V14 V14-2
can be presented by different CAS as — + 1 (Wiris), ———— (Maxima),

2
_\/244_2 (Axiom), —%\/ﬁ + 1 (Sage) or 1 — \/Z (WolframAlpha).

When do answers with a square root appear? If coefficients a, b, and c are
rational and b* — 4ac is not a perfect square, then the roots are irrational and not
equal. Furthermore, the roots are conjugate surds (it is possible to construct the
equation with irrational coefficients so that the discriminant is not a perfect square
but the roots are rational). The issues of perfect square, conjugate surds, etc.,
could also be interesting and instructive, but probably do not pertain to normal
school mathematics.

Another (probably simpler) way is to solve the equation with CAS and see
whether square root appears or not. It is not very difficult to generate an equation
to represent this phenomenon: using arbitrary integer coefficients, we usually get
an equation with solutions that include square root.

There are different possibilities to use these equations and answers in learning
and teaching, as the issue of equivalence of such expressions is relevant for school.
Some possible tasks include:

o Check answeriogpook = answercas OF ANSWeTgudenr = ANSWercas O
ANSWercas] = ANSWercaAs?

o With a CAS. It is possible to check equivalence of the answers by
simplification of difference of the two expressions;

o Manually.
o Transform answercas — answerextbook -

e When does the solution include square roots?
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5.3.4. Phenomena related to unfinished answers

3 phenomena were identified: Unfinished(log), Unfinished(log(—1)), Unfin-
ished(log/e). The relevant equation types are listed in Table 22.

Phenomenon Equations

Unfinished(log) Exponential (Table 16)
Unfinished(log(—1)) | Exponential (Table 16)
Unfinished(log/e) Logarithmic (Table 17)

Table 22. Unfinished

This subsection discusses the solutions that seem to be unfinished, so that al-
most every user would like to simplify them further. The subsection is some-
what parallel to the subsection on Input which referred to (manual) steps before
solving. This type only contains logarithm-related examples. There are cases

log(8
(like 1Z§22§ (Unfinished(log)) and eoe(2) (Unfinished(log/e))) where only the fi-
log(—v/3
nal step seems to be needed. The negative argument of logarithm (O;g((g)[)
0g

(Unfinished(log(-1)))) leads to the question of domains.

These CAS answers could also be used in teaching and learning, as students
could be tasked with performing the final simplification.

o Simplify answercas
o With a CAS;
o Manually.

e Transform answercas — answer exbook-

5.3.5. Phenomena related to domain issues

2 phenomena were identified: Domain(C), Domain(R/C). The relevant equation
types are listed in Table 23.

Phenomenon | Equations
Domain(C) Quadratic (Table 12)
Domain(R/C) | Irrational, logarithmic (Tables 15, 17)

Table 23. Domain
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Complex numbers are included in school curricula in some countries but not in
others. If complex numbers are not included, complex solutions would be unex-
pected. The solution can explicitly include an imaginary unit or a negative number
under square root or as an argument of logarithm (Domain(C)). Nevertheless, the
introduction of a complex solution could be instructive, at least by indicating that
there are more numbers than we use in school.

It is somewhat disputable what would be the correct answer for equations like
V2x=+/x—1orIn(2x) =In(x— 1). On the one hand, —1 is, of course, a real so-
lution. On the other hand, it is not appropriate when operating with real numbers
only, since a negative number appears under the square root signs and as an ar-
gument for In (Domain(R/C)). The topic is more thoroughly discussed in Chapter
6.

The example takes us back to the quadratic equation. The quadratic equation
does not have real solutions if the discriminant is negative, but there are complex
solutions.

The bounds could be described through a ’semi-solution’ (by finding the dis-
criminant) but it could be easier just to solve the equation with a CAS and check
for i.

It is important that not all CAS produce i. Wiris gives real solutions by default
(it is possible to ask for complex solutions). WolframAlpha gives real solutions if
the word ’real’ is added. Axiom gives a negative number under the square root in
response to the command radicalSolve and an approximate answer (precision
0.1) with i in response to the command complexSolve.

Equation: x*+2 =0

ANSWer s iom(radicalSotve): ¥V —2, —V =2
ANSWer s xiom(complexSolve): —1.40025i, 1.40625i
Answeryaxima: \@i, —V2i
AnswerWolframAlpha(SolveEquation): j:(l\/i)

Is it reasonable to introduce the imaginary unit at all if it is not mentioned in the
school mathematics curriculum? It could be instructive for many students, while
it could be excessive noise for others. However, the statement 'no real solutions’
could lead to the question *what about other solutions’. An imaginary unit in a
CAS answer can provide a good basis for introduction and further discussion. A
possible task is:

e Solve the equation and try to explain the answer. Can you guess the mean-

ing of i?
o Use the Internet.

The imaginary solutions will also appear in case of exponential and trigono-
metric equations (see Chapter 6).
The next issue is about checking the solution of an irrational equation. Are

v—1 and v —1 equal?
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On the one hand, the question about the equality of two expressions that are the
same may seem strange. On the other hand, the expression seems to be ’illegal’: a
negative number cannot be under square root (in ‘real’ life). The question is based
on equations where a solution (or solutions) is a real number but changes the
expression under square root to negative. The topic is more thoroughly discussed
in Chapter 5 .

Equation: \/2x+1 = \/x
Answeraxiom, AnswerMaxima(to_poly_solver) > AnswerSage(10_170[)’_501"9) ’
AnswerWolframAlpha(SolveEquation): -1

(Wiris and WolframAlpha give no solutions in the real domain.)
Number —1 is, of course, a real number, but substitution to the equation gives

V-1
What happens when we substitute the solution for the equation in CAS?
Equation: \/2-(—1)+1=/(-1)
Answeraziom: V—1=+v—1
Answeryaxima, ANSWersage: i =i

Answerwol framAipha- True

To check whether an equation causes such ’illegal’ real solution, one can solve
the equation. It seems, however, that instructions for constructing an example are
more useful. An equation that has a square root on both sides could be based on
linear or quadratic equation, for example. It is easy to compose an equation with
the solution —1, for instance. Then, we can distribute the terms so that one side
contains the expression, which is negative in this particular solution (—1). Finally,
square roots are added.

(x=3)(x+1)=x>—2x—3
¥ —3=2

Vx2—3=+2x

Such ’illegal’ real solutions create a basis for discussion in a mathematics class.
Possible initial tasks include:

e Solve the equation and check the answer
o with a CAS;
o manually.
o Compare the answers of the different CAS.

The phenomenon is also possible in case of logarithmic equations (and rarely
used inverse trigonometric equations).
The issues of domain are more thoroughly discussed in Chapter 5.
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5.3.6. Phenomena related to branches of solutions

6 phenomena were identified: Branches(mult), Branches(Cn), Branches(Cl),
Branches(number of solutions), Branches(choice of solution), Branches(literal).
The relevant equation types are listed in Table 24.

Phenomenon Equations
Branches(mult) Quadratic (Table 12)
Branches(Cn) Exponential (Table 16)
Branches(C1) Exponential (Table 16)
Branches(number of solutions) | Trigonometric (Table 18)
Branches(choice of solution) Trigonometric (Table 18)
Branches(literal) Literal (Table 19)

Table 24. Branches

In many cases when solving an equation, the solution is separable into
branches in some manner.

Different textbooks can treat some issues a little differently. For example, in
case of two equal solutions, some textbooks say that there are two equal roots,
some say one real root (a double root), and some say just one real solution. All
CAS present them only one at a time (at least by default).

There are different sources for branching in case of trigonometric equations —
periodicity and the families of solutions. Textbooks may or may not provide gen-
eral solutions, and the same applies to CAS.

3w -7
The choice of between different solutions (like T or T) from the solution

set is denoted as Branches(choice of solution).

The topic of literal equation is a classic branching topic (Branches(literal)).
Bernardin (1999) criticized the behavior of CAS. In case of ax = b Bernardin
says: When asked to solve with respect to x, all the systems returned the solution

x = — even when this answer is obviously not correct for a = 0. He notes that

thereamay be different commands (e.g., Reduce in Mathematica) that work better.

In addition, the answers in case of complex numbers can include branch issues
(Branches(Cn), Branches(C1)). However, it is not an issue of the school-level and
we will skip it here.

In case of trigonometric equation, the solution can include more numbers in
a specific systematic way. For example, the general solution to a trigonometric
equation consists of one or several ’series’. There are many possible types of
trigonometric equations in textbooks. In addition, the expected answer could be
different: sometimes the general solution is expected but in many cases only par-
ticular solutions fit the specified range. We focus mainly on the general solution,
although particular solutions are also considered. Actually, it is not surprising that
trigonometric equations (especially in more complicated cases) may give differ-
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ent answers depending on choices made in the solving process (see Abramovich,
2005).

Different CAS work quite differently in case of trigonometric equations.
WolframAlpha gives the general solution. Maxima and Sage give particular so-
lutions by default but also have possibilities for general solutions. Axiom and
Wiris give particular solutions. We focus on two issues here: equivalence of two
periodic solutions and relation between general and particular solutions.

We need at least two different general solutions for analysis of equivalence.
Interestingly, in many cases, WolframAlpha gives different answers, depending
on whether one enters only an equation (AnSwWery, framAipha(Equation)) OF @ €qua-
tion with the command solve (Answery, tramAipha(SolveEquation))- 1N many cases
the difference is quite superficial, only with different terms removed from paren-
theses.

N =

Equation: sinx =
1 1
ANSWerywo; ramaipha(Equation)* 6(127m+ 7),n € Z and 6(127m+ S5n),neZ

5
AnswerWolframAlpha(SolveEquation): 7'[,'(2}’[ + 6)’ n € Zand 7'[(211 + 6)’ nei

Identification of the exact boundaries is not an easy task and it is better to
examine it on the basis of CAS answers.

The cases where different answers (textbooks vs. CAS or CAS1 vs. CAS2)
treat the ’series’ of solutions differently (for example, two series in one answer
are merged in the other) are more instructive.

Equation: sinx =0

AnswerWolframAlpha(Equalion): mn,n€’Z
ANSWerywo framaipha(SolveEquation): 270, n € Z and 2ain+ 7, n € Z

When does this phenomenon appear? If there are different numbers of series
(given by textbook, student or CAS), it is an indication that the phenomenon ap-
pears. In (some) textbooks, (—1)" is usual in case of sine and + in case of cosine,
while the a CAS (WolframAlpha) gives an equivalent answer with two series.

1
Equation: cosx = 3

T
Answertextbook- :|:§ +2nmw,n €7
1 1

ANSWery o framaipha(Equation)* §E(6n —1),n€Zand g(6irn—|— T),n€l

Therefore, appearance of the phenomenon can be predicted from the textbook
answer: As the textbook uses (—1)" and £ but a CAS does not use them, we have
different but equivalent answers. For a detailed overview we need a description of
the solving and presenting strategy of the CAS.

Another significant (but not consistent) indicator of the phenomenon is fan ™!
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(inverse tangent) in WolframAlpha.

Equation: sinx = cosx

T
Answerrexbook- 1 +nn,neZ

AnswerWolframAlpha(Equation): 2(7.[” — tan”! (1 - \/E))’ n € Z and
2(mn—2tan” ' (14v2)),neZ
4n%zl + 1
AnswerMuxima(I(Lp()lyfsolver): f’ neZz

b 3n
It is explainable that arctan(1 — /2) is equal to 3 and arctan(1 +v/2) to <

The second issue (which is not purely a question of equivalence) is the relation
between particular and general solutions. If a CAS gives particular solutions it
is instructive to place them in the context of the general solution. Maxima and
Sage give only one solution per series. Similarly, Axiom gives one solution, but
quite often simply with inverse trigonometric function. The question when the
inverse trigonometric function justified as the exact answer, is interesting but not
discussed here. The appearance of inverse trigonometric functions in different
CAS is not discussed here either.

Equation: sinx(1 —sinx) =0

T
Answeryaxima, AnSwersage, Answeraxiom: 0, 5
T
Answerwiyis: 0, m, 5
(For example, the *Wiris’ strategy is interesting and consists of two substrate-
gies.)

Branches seem to be suitable for use in a mathematics class. Possible tasks
include:

o Check answeriexbook = answercas OF ANSWeTgydens = ANSWeErcAs O
answercas) = answercas?

— With a CAS;
— Manually.
o Transform answercas — answer eyupook-

o What about the relation between the particular and general solution? What
is the value of n?

e Graphical presentation of solutions is also a possible basis of tasks.

The experiment described in Chapter 8 is partially based on this type of differ-

ences.
The issues of branching are more thoroughly discussed in Chapter 6.

5.3.7. Phenomena related to automatic simplification of equation

1 phenomenon was identified: Automatic(indet).
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. 1 1
In case of the solving the somewhat artificial equations ¥ _0and - = —, the

equations are automatically transformed to the standard fofrcm and inde)ferm)icnacy
is cancelled (Automatic(indet)). All CAS give disputable answers: 0 in case of
the first equation and ’all values’ in case of the other. This is probably related to
automatic simplification (the topic is discussed in Tonisson, 2004).

It seems that CAS simplify equation Al 0 to equation x = 0 before actually

solving it. Kadijevich (2009) also discussed the question of automatic simplifica-
tion.

It is easy to construct an example if one adds indeterminacy to a linear or
quadratic equation by multiplication-division to one side or adding to both sides.
Indeterminacy 0/0 is added by multiplication/division in the following example.

X 43x—4= 0, solutions are x = 1 and x = —4

¥ =4- 3x, solutions are x =1 and x = —4
x(x—1) .. .
1 =4 — 3x, solution is x = —4, extraneous solution is x = 1
x —
X —x2
I =4 — 3x, solution is x = —4, extraneous solution is x = 1
x —

The phenomenon provides a chance to discuss the topics of division by 0,
indeterminacy, etc., which are not very thoroughly covered in school mathematics
(see Tonisson, 2006). The following task could be used:

e Solve the equation and check the answer
— with a CAS;
— manually.

The types of phenomena were discussed in this section. The next section con-
cludes the chapter.

5.4. Conclusion

In a large number of cases when solving school equations (from linear and
quadratic to trigonometric and literal) with CAS, the system gives the answer
that is expected by the student or teacher. However, occasionally, this situation
also reveals certain phenomena, in which the answer is somewhat different (unex-
pected). The chapter focused on reasonable unexpected answers — answers that
are not mistakes, but are formulated according to standards differing from school
standards. The goal was to classify and map such answers, not to criticize or rank
any particular CAS.

More than 120 different equations were solved in five computer algebra sys-
tems (Axiom, Maxima, Sage, Wiris and WolframAlpha). The chapter identifies 29
types of phenomena with unexpected answers (and input issues), grouping them
into categories and supplying each with a brief introduction. There were separate
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categories for entering the command and the equation, form of the answer, un-
finished solutions, domain issues, branching and automatic simplification. Their
relations with the items on Drijvers’ (2002) list were expressed. Other ways of
grouping are certainly possible, but the classification proposed in this chapter is
also one answer to RQ2 How can the detected differences between CAS and school
answers of equations in the school curriculum be described and classified?

It should be noted that the current study was based only on a limited number
of CAS and textbooks. The real instructive value of the phenomena could be
determined in a study that involves teachers and students. It seems that the most
promising topics for study are the equivalence of answers, the domain issues and
branching.
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6. ISSUES OF NUMBER DOMAIN IN SCHOOL
MATHEMATICS AND IN COMPUTER ALGEBRA
SYSTEMS

6.1. Introduction

As different number domains are major source of differences in CAS answers such
issues are discussed severally in this chapter. The chapter is based on Tonisson,
2008. Although equations are the main area of the dissertation, simplification of
expressions is examined here in addition to solving equations. Simplification of
expressions and solving of equations are closely related, both in school context
(Usiskin, 1988) and in computer algebra.

The chapter is devoted to the research question RQ3: When do CAS outputs
offer correct and incorrect answers for domain-sensitive examples, specifically
for expression simplification and equation solving?

The solution sets of equations and the validity of transformation rules in ma-
nipulation of expressions depend on the domain. For example, equation x* +1 =0
has solutions in the complex domain but not in the real (or rational) domain. It
is also possible that a real number is the correct solution only in case of the com-
plex domain. The purpose of the chapter is to identify expressions and equations
that are domain-sensitive, analyze techniques for selecting domains for school use
in different CAS, test CAS with domain-sensitive examples and make some sug-
gestions for improving teaching and CAS. Testing of CAS is inspired by various
larger (Wester, 1999b) or smaller (Bernardin, 1996) reviews that are not school-
oriented in principle. As our goal is a school-oriented review it is necessary to
describe (or at least sketch) what answers are expected in schools. We have pre-
sumed that the curriculum does not include complex numbers (in fact, imaginary
numbers) even though this may not be the case in the curricula of several countries
and schools.

The area of domain-sensitive examples is very multifarious and, therefore,
some constraints are needed. We will focus on square root, natural logarithm and
arc sine because they are domain-sensitive and taught quite thoroughly at schools.
(The topics related to infinities and indeterminates (e.g., division by zero, tangent)
are not discussed in this chapter.) The chapter brings together information from
different areas, such as works on using CAS in learning and teaching mathematics
(in general or specifically), treatment of number domains in mathematics educa-
tion, comparative reviews of CAS, etc. Some of these works will be cited in the
following text. The school textbooks and works on the multi-valued nature of
functions are used for describing treatments in school and higher mathematics.

Section 6.2 of this chapter recalls different levels of handling complex num-
bers. Section 6.3 provides a brief overview of the handling of domain-sensitive
functions (mainly /, In and arcsin) in school mathematics in relation to expres-
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sions and equations. A list of (didactically) important examples is presented as a
result. Section 6.4 reviews various possibilities in CAS for determination of the
domain of a calculation result, variable value or equation solution. Different as-
pects of such tools in different CAS (Derive, Maple, Mathematica, Maxima, Mu-
PAD, TI-92+, TI-nspire and WIRIS) are analyzed. What is the default domain?
How could the user select a domain (packages, commands, buttons, etc.)? The
goal is to identify a school-friendly (imaginary-free) set of options. Section 6.5
presents the results of testing with the examples listed in Section 6.3, using the
possibilities overviewed in Section 6.4. It is important that the CAS versions
contemporary in 2008 are used. Some problematic issues are explained with the
help of experts of particular CAS. Section 6.6 draws some conclusions and makes
suggestions.

6.2. In school mathematics and beyond

Section 6.2 discusses different levels of handling the topics of square root, natural

logarithm and arc sine. In school mathematics, the domains are restricted (ac-

cordingly, to x > 0, x > 0 and —1 <x < 1) and the functions are mainly treated as

single-valued. (However, there are some doubtful cases, e.g., is V4 equal to 2 or

42, even attempts to use special notation V1 =1 could be found in Novosjelov,
+

1955.)

Treatment of the topic of complex numbers varies in different (intermediate
or college algebra) textbooks (e.g., Barnett & Kearns, 1990) but is generally quite
superficial. It is only a rough (and unverified) guess, but it seems likely that in very
many cases the school knowledge about complex numbers is almost exclusively
restricted to v/—1 = i and solving quadratic equations with negative discriminant.
Therefore, it may be quite a surprise for some users when a CAS produces results
like In(—1) = mi or arcsin(5/4) = g —iln2.

In fact, the field is even more complex and the topics of multi-valued functions,
branch cuts, signed zero, etc., enable various interesting discussions (at advanced
study levels), for example, in the works of Corless, Davenport, Jeffrey and others
(Bradford et al., 2002; Corless et al., 2000; Bradford & Davenport, 2002; Jeffrey
& Norman, 2004; Rich & Jeffrey, 1996). For example, Bradford et al. (2002);
Bradford and Davenport (2002) discussed an identity /1 —zv1+z= v/ 1—22.
Aslaksen (1999) discussed the issue of identities (for example, Ine* = x and
Inxy = Inx+1ny). There are 8 tests after theoretical treatment; some of them
are used in this chapter. The question of equations (like —3 = z'/?) is discussed
in Fateman (1996).

This section highlighted some differences between answers in complex domain
and real domain. They are also useful for the next section where set of examples
is described.
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6.3. Didactically important domain-sensitive examples

The aim of this section is to describe a set of examples that will be tested in
different CAS. The examples should be (at least in principle) usable in schools.
Some of them may occur accidentally while using a CAS while others can be used
on purpose. Some examples are derived from the materials cited in the previous
section and some are new.

When we look at the topics related to square root, natural logarithm and arc
sine in textbooks we can find some similarities. The new operation (,/, In and

arcsin) is introduced with the help of the familiar inverse operation (2, & (or
a), sin). The subtopics are usually presented in the following order: calculation,
transformation-simplification, solving of equations. The pace can vary — the pro-
cesses from learning square root to learning irrational equation could take years
while logarithm topics could be concentrated in a short span of time. We try to
find examples from the different phases.

We start with calculation of functions in case of arguments that are impossible
in (imaginary-free) school: v/—1, In(—1) and arcsin(5/4) (used also in Rich &
Jeftrey, 1996).

Then we introduce ’cancellation expressions’ Va2 (is x, when x > 0, and |x],

T T
when x is real), Ine* (is x, when x is real), arcsin(sin(x)) (is x, when —— <x < —).
The third group of examples checks some well-known identities by simplifying
the difference of two expressions: \/xy — v/x,/y (is 0, when x and y are both non-

1 1
negative); \/> — 7 (is 0, when x is positive); v e* — e? (is 0, when x is real);
X X

Inxy — (Inx+Iny) (is 0, when x and y are positive); Inx> — 2Inx (is 0, when x is
positive) and also v/1 —xv/1+x—1+/1—x2 (is 0, when —1 < x < 1) which need
somewhat specific explanation. The expected result O relieves us of the question,
which expression is simpler? It should be noted that the restrictions for domain
are somewhat hidden in school textbooks, for example, it could be said: Unless
otherwise stated, all variables are assumed to represent positive number (Barnett
& Kearns, 1990). In general, it is necessary to express the assumptions explicitly
in CAS.

The equations x> +1 =0, ¢+ 1 =0 and sinx =5 /4 (the fourth group) are
related to the above calculations and do not have solutions in school.

The fifth group includes the equations v/x = v/2x+ 1, Inx = In(2x+ 1) and
arcsinx = arcsin(2x — 5/4). It is somewhat disputable what is the correct answer
for the school (without imaginary numbers). On the one hand, —1 (and 5/4 in case
of arcsin) are, of course, real solutions. On the other hand, they are not appropriate
when operating with real numbers only, since a negative number appears under the
square root signs and as an argument for In (and 5/4 > 1 for arcsin).

All examples are domain-sensitive in the sense that if we change the domain
(e.g., to complex numbers) the results may change.
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6.4. Domain possibilities of CAS

Several features that are needed to create a school-like situation: provision that
the calculation result is a real number; declare the domain of variable to be a real,
positive (or non-negative) or in a certain interval; provision that the solution of an
equation is a real number are described in Section 6.4. The features that we use
in the following tests are listed in Table 25. Hopefully, the users of specific CAS
can understand the very short titles.

It should also be noted that the usual commands, like Simplify and Solve,
are used. Notably, that Maxima has, in addition to default simplification, special
commands like rootscontract that converts products of roots into roots of products
or logcontract that *collects’ logarithms, for example in the following way
(hi1) 2x(axlog(x) + 2*xaxlog(y))$
(%i2) logcontract(%);

2 4

(ho2) a log(x vy )

Foremost, we are looking for the symbolic (exact) answers (vs numeric (ap-
proximate)). As realroots gives approximate solutions in case of polynomial equa-
tions in Maxima, we use parentheses in the table — (Realroots). It is possible that
CAS have different commands for similar activities (e.g., Reduce instead of Solve
(Mathematica)). Some of them are mentioned in the next section.

calculation variable is a variable solution of
result in real real number in a certain an equation is
domain interval a real number
Derive Not applicable | Author Variable | Author Variable | Solve(..., Real)
Domain Domain
Maple RealDomain Assume Assume RealDomain
RealDomain
Mathe- RealOnly Assuming Assuming RealOnly
matica
Maxima | Notapplicable | Default Assume (Realroots)
MuPAD Dom::Real Assume Assume Solve(..., Real)
TI-92+ Complex Default [ "with" Solve
Format Real (vs cSolve)
TI-nspire | Complex Default [ "with" Solve
Format Real (vs cSolve)
WIRIS Default Default Not applicable Default

Table 25. Techniques for establishing the domain
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Different CAS use different styles. There may be

e special commands (like assume(x, Type::Real) (MuPAD)),

e special parameters (like SOLVE(x~2+1=1,x,Real) (Derive)),

e menu options (like Document Settings — Complex Format — Real (TI)),

or

e special packages (like with(RealDomain) (Maple)), etc.

Some restrictions work just for one line (like

simplify(sqrt(x~2)) assuming x>=0), some determine the entire subse-
quent process in that particular worksheet or session. Some commands have
different forms in one CAS (like assume and assuming). Some options are visible
on the screen, while others are not.

In general, it seems that all features are simple enough to be used in schools but
some may need certain explanations by the teacher. It should be noted that some
CAS work, at least partially, in the real domain by default. Maxima generally
treats variables as real-valued. WIRIS works in principle in the real domain by
default.

6.5. Test results

This section presents the results of testing with the examples mentioned in Section
6.3 by using the possibilities overviewed in Section 6.4. At first, Table 26 presents
the examples, domains, prospective results and evaluations of the answers offered
by CAS. The problematic issues are discussed afterwards. The table includes
various reference codes. The code No in case of a prospective result indicates that
the proper reaction of a CAS should be no solutions or a message: Nonreal result
or undefined, etc.
The answers can receive the following potential evaluations.

e Code OK is shown in the cell if the CAS gives the prospective result. In
case of v/x = +v/2x— 1 and Inx = In(2x + 1) both No real solution and —1
are acceptable answers; similarly, in case of arcsinx = arcsin(2x —5/4) No
real solution and 5/4 are acceptable. Therefore, codes OK/ and OK2 are
used.

e Code OK= indicates that the answer is numerical (approximate) (this fea-
ture is used only when a symbolic one is not found).

e Code RNA (Restriction Not Applicable) means that it is not currently possi-
ble to restrict the domain but an answer is found on larger scale, for exam-
ple, v/—1 is simplified to i.

e Code NA (Not Applicable) indicates that the operation is not applicable (in
case of current arguments) at all.

e Code NS (Not Simplified) means that in case of simplifications, it is possible
that expression is not simplified.

107



Example/ Pros- DRV| MAP MTMMXMMUP 92+ [NSPWRS
Domain pectivel
result
V-1 No [RNA| OK | OK |[RNA|OK | OK | OK | OK
Result is real
In(—1) No RNA| OK [ OK | NS |OK|OK|OK | OK
Result is real
arcsin(5/4) No RNA| OK [OK~| NS |OK|OK |OK |OK
Result is real
\/; x |OK| OK | OK | OK | OK | OK | OK [RNA|
x>0
V2 I |0K| oK | oK | ok |0k | oK | ok [ok
X is real
In(e¥) x |OK| OK | OK | OK |OK|OK | OK | OK
X is real
arcsin(sin(x)) x |OK| OK | OK | OK |OK|OK | OK | NS
EpeS
m—ﬁﬁ 0 |OK| OK | OK | OK |OK|OK |OK | NS
x>0,y>0
\/I,L 0 |OK| OK | OK | OK |OK | OK | OK [RNA|
x VX
x>0
Ver —e/? 0 |OK| OK [ OK | OK [OK|OK|OK | NS
X is real
In(x-y) — (Inx+Iny) 0 |OK| OK | OK | OK | OK | OK | OK [RNA|
x>0,y>0
Inx? —2Inx 0 |OK| OK | OK | OK |OK | OK | OK [RNA|
x>0
£+1=0 No [OK| OK | OK |OK~| OK | OK | OK | OK
Real solutions
ef+1=0 No [OK| OK | OK |[RNA|OK |OK | OK | OK
Real solutions
sinx=5/4 No [OK| OK | OK |[RNA|OK |OK | OK | OK
Real solutions
Vx=+v2x+1 No or |[OK2/OK1/2OK2| NA |OK2|OK2|OK2|OK1
Real solutions -1
Inx=1n(2x+1) No or |[OK2/OK1/2OK2| NA |OK2|OK1|OK1|OKl1
Real solutions -1
arcsinx = arcsin(2x — 5/4)| No or [OK2| OK2 |OK2| NA |OK2|0K~OK=~|OK1
Real solutions 5/4

Table 26. Results of tests

1
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It is important to note the versions of CAS used in the tests. The table includes
the results of Derive 6, Maple 8, Mathematica 5.2, Maxima 5.13, MuPAD 4.0,
TI-92+, TI-nspire and WIRIS. Sometimes the differences between versions are
significant, for example, Maple 8 (with RealDomain) gives no solution in case of
v/x=1/2x+1 and Inx = In(2x+ 1) while Maple 12 gives —1. It is marked in the
table as OK1/2. It should be noted that in case of Inxy — (Inx+Iny) the default
simplifier of Maxima does not simplify but logcontract does.

We discuss the cases that are different from OK (or OKI and OK2) and NA.
Derive has no possibilities to restrict the results of calculations to the real domain
but the answers are correct in the complex domain (code RNA). The situation is
the same with Maxima in case of v/—1 (RNA). In case of In(—1) and arcsin(5/4)
Maxima does not return imaginary answers but just the input. In principle, it is
possible to customize Maxima (as an open-source system) by writing a pattern that
will give an error message if they are generated. Code OK=: in case of arcsin(5/4)
and Mathematica means that arcsin(5/4) does not give the proper result while
arcsin(1.25) does (approximately).

The command solve could not be restricted to real solutions in Maxima. How-
ever, there is the command realroots that works only for polynomial equations and
gives approximate (floating-point) solutions. Thus, the code used for x> +1 =0
is OK~z. There is no such command for other equations. The command find_root
that finds a root over the closed interval [a, b] is not very suitable in our situation.

TI-92+ and TI-nspire do not solve arcsinx = arcsin(2x — 5/4) symbolically but
nSolve gives answer No solutions found (code OK=:).

WIRIS works in the real domain by default. Unfortunately, the assumptions
(like x > 0) are not possible. If we test the examples without assumptions, we
use the code RNA to refer to the results that are the same as presumed with the
assumptions. Otherwise, when the expression is not simplified we use the code
NS.

Some problems notwithstanding, the general situation seems to be quite
good. Some more problematic issues may occur with more complex examples.
Let us look at the expression /1 —xv/1+x—1/1—x2. We restrict the domain
to —1 < x < 1. The prospective answer is O in this range (and actually wider
(Bradford & Davenport, 2002)). If we use the same commands as previously,
only Mathematica gives 0. We may need other commands for this expression.
Thanks to experts of current CAS the following variants are listed. The variant
simplify(combine (sqrt(1-x)*sqrt(1+x)-sqrt(1-x~2),symbolic));
works in Maple. The command rootscontract works in Max-
ima. In MuPAD, it is possible to determine maximal number
of steps that will be done in simplification (the default is 50):
Simplify(sqrt(1-x)*sqrt(1+x)-sqrt(1-x~2), Steps = 10000). Under
the above assumptions, this needs 1352 steps (version 4.0.6).
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6.6. Conclusions and suggestions

The examples from the test suite (18 calculations, simplifications, equations) were
solved by different CAS with usage of the features for creation of school-like sit-
uation, particularly establishing the domain. Different CAS have different pos-
sibilities (commands, packages, buttons, etc) for determination of the domain of
a calculation result, variable value or equation solution. Correctness of the CAS
answers were evaluated and the answer to RQ3 was presented as a table.

We could say that CAS have quite good features for confining the work in
school-like (imaginary-free) domains. Different CAS have different commands
and other features and Table 25 could serve as a kind of dictionary in this re-
spect. It would be wonderful if we could create a school-like approach in one
swoop in any given CAS. Just as Wester (1999b) hoped: One could invoke

mindset (elementary_math_student) fo initially declare all variables to be
real, make /—1 undefined, etc., for example. Of course, various problems should
be overcome to create such a feature — differences between different schools,
technical problems, etc. The packages RealDomain (in Maple) and RealOnly (in
Mathematica) are already a big step in the right direction.

The current features work quite well as we see in Table 26. However, the user
has to be informed and careful. If the teacher knows the problematic issues it is
possible to avoid or forestall negative surprises. On the other hand, some issues
could be used for disputes with students in mathematics classes. For example,
the equations /x = v/2x+ 1, Inx = In(2x+ 1) and arcsinx = arcsin(2x — 5/4)
could be used for introduction of imaginary numbers. Knowledge about complex
variable functions would help teachers in this case.

This review could be expanded with more complex examples. A study of dif-
ferent commands (like testeq for testing equivalence) could be useful. The testing
with other CAS and versions is important when a particular CAS or version is
actually used in class. A challenge could be to compose a review where the exam-
ples are tested in the complex domain. It would cross the boundary of (imaginary-
free) school mathematics and would create powerful possibilities for comparing
domains, identities, (multivalued) functions, etc., in schools where the topics of
complex numbers are included in the curriculum as well as in universities. Nev-
ertheless, even this chapter can hopefully contribute to the use of different ideas
(e.g., searching counterexamples).

This chapter was devoted to the issues of number domain. The next chapter
discusses on the issues of branching.
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7. BRANCH COMPLETENESS IN SCHOOL
MATHEMATICS AND IN COMPUTER ALGEBRA
SYSTEMS

7.1. Introduction

Chapter 7 is devoted to the solutions that are separable into branches in some man-
ner. Here, like in the previous chapter, simplification of expressions is relevant in
addition to solving equations. This chapter is based on Tonisson, 2007 and focuses
on the research question RQ4: How can branching be described for answers pro-
vided by different CAS software; by different school solutions and textbooks; by
the possibilities of mathematical approaches for expressions simplifications and
equations solving?

The cases where separation into branches takes place are different. For ex-
ample, an expression may be undefined in case of some values of the variables
(e.g., 1/x, v/x) or an equation may have several roots or root groups. In some
cases, these branches are explicitly introduced in school mathematics, in other
cases the branches may be hidden. This chapter examines separable branches of
solutions of different problems (simplifications, equations) and the completeness
of branch sets. We could say that a solution is mathematically branch-complete
if all branches are presented. The chapter describes some approaches to branches
that are used in school mathematics and CAS. It tries to identify possible reasons
behind different approaches and also indicate some ideas how such differences
could be explained to students.

The school mathematics side of the chapter is based both on different text-
books (English (e.g., Barnett & Kearns, 1990; Barnett & Ziegler, 1989), Russian
(e.g., Govorov, Dybov, Miroshin, & Smirnova, 1983), Norwegian (e.g., Oldervoll,
Orskaug, & Vaaje, 1995), Estonian (e.g., Lepik, Nurk, Telgmaa, & Undusk, 2000;
Lepmann, Lepmann, & Velsker, 2000)) and on computer algebra systems (Derive
6 (Webpage of Derive, 2007), Maple 8 (Webpage of Maple, 2007), Mathematica
5.2 (Webpage of Mathematica, 2007), Maxima 5.13 (Webpage of Maxima, 2007),
MuPAD 4.0 (Webpage of MuPAD, 2007), TI-92+ (Webpage of TI-92+, 2007), T1-
nspire (Webpage of TI-nspire, 2007) and WIRIS (Webpage of Wiris, 2007)). It
should be noted that Tonisson (2007) was published in 2007 and the versions of
CAS were contemporaneous.

Admittedly, these sources do not cover all possible approaches. Different text-
books, other CAS, versions, commands or even some special expressions or equa-
tions could work in a different way. However, this chapter is hopefully adequate
enough for most cases. The main aim of the chapter is not criticism of a particular
CAS or textbook but rather providing a description of a variety of approaches. A
special notation (CAS < SCH = MATH) is introduced in Section 7.3 for better
overview. Some presented topics are fundamental school topics that are discussed
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in almost every textbook. Some topics are discussed only in particular textbooks
and are not discussed at all or only touched upon briefly in others. At the same
time these topics could have recognizable educational potential, particularly when
using a CAS. Similarly, some presented examples may occur only in a single CAS,
being fairly marginal but still having educational value.

There is an overview of previous related works in Section 7.2. An approach
to evaluation of branching diversities is introduced in Section 7.3. Section 7.4
discusses simplification questions and solving of equations is examined in Sec-
tion 7.5. Even though other commands may work better in some cases, the usual
Simplify and Solve commands are used first of all. There are some general com-
ments on branching diversities in Section 7.6 and a conclusion in Section 7.7.

7.2. Related works

The author has not found any works that would thoroughly discuss branching in
CAS from the viewpoint of school mathematics. However, there is a great deal of
material related to the topic. Several works were already introduced in Chapter 2.
Some of the related works are discussed in Section 7.2.

Wester (1999b) conducted probably the largest experiment aimed at discover-
ing how different CAS solve problems can be found. However, there were not
very many examples from the school in that paper and not many branching exam-
ples either. Bernardin (1999) provided some interesting examples and comments.
Bernardin said after example ax = b: Often, there seems to be a philosophy among
computer algebra systems to return answers even if they do not hold on a finite
subset of the parameter space. Stoutemyer (1991) also discussed the same issues.
Stoutemyer listed several theoretical and practical limitations of CAS. Some of
them are closely related to branching. His sentence, It is important for users to be
aware of some of the limitations of such systems to use them wisely, is suitable as
a slogan for this research.

Kahan (1987) provided a theoretical overview of branch cuts for complex el-
ementary functions, Aslaksen (1999) discussed complex analysis for CAS. Com-
plex analysis is closely related to branching. It is useful to find parallels from fur-
ther fields of mathematics, for example the idea of using sequents like in Gentzen-
type calculi (Chuaqui & Suppes, 1990). It seems that branching in school mathe-
matics is generally not very often explicitly discussed in papers. The importance
of branches tends to be emphasized in more specific papers (for instance, on teach-
ing and learning the absolute value (Wilhelmi, Godino, & Lacasta, 2007)).

There are also some papers by the author of the dissertation that are related
to the current topic. Some preliminary work for Tonisson (2007) could be found
in Tonisson (2004) that tried to classify CAS answers in relation to correctness,
completeness and compactness of the answers.
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7.3. Structure of overview and notation

Before proceeding to the main sections, the structure of the description and spe-
cific notation are explained in this section. There are three matters under consider-
ation — we observe comparatively how branches are treated in school textbooks,
in CAS, and what is a mathematically complete branch set. The variations in the
first two elements of the above list are the object of this chapter. The mathemati-
cal branch completeness is a gauge that is explained in every subsection. Special
attention in studying the textbooks is paid to the model solutions and also to the
answers, because the expectations for students are mainly presented in these parts.
The classic commands (e.g., Solve and Simplify) are used in CAS at a first approx-
imation.
We evaluate the branching completeness in case of

e CAS answer;
e school answer;
e mathematically complete answer.

Then we compare them and determine the evaluations of branching diversities
(EBD) for each problem type, e.g.,

CAS < SCH = MATH.

CAS refers to the treatment of branches in computer algebra systems, SCH refers
to the treatment of branches in school textbooks, and MATH refers to a mathemat-
ically branch-complete solution. The equality sign (=) indicates that branches are
similarly presented, the sign < shows that the second treatment is more complete.
As different textbooks and CAS may have differing branch sets, it is possible that
there is more than one EBD in a particular problem type. The specification is
added in parentheses in these cases (e.g., CAS(1) may mean that a multiple root is
presented in one time). As the specification is context dependent, there is an ex-
planation for the corresponding EBD. Section 7.6 includes comments on all found
EBDs.

There are more areas where we can find branching, but in this chapter we focus
on two important areas of school mathematics — simplification of expressions
(Section 7.4) and solving of equations (Section 7.5). The sections are structured as
follows: a general introduction to branching in this area, followed by a discussion
of a number of more colorful topics. The treatments of branches in textbooks
and CAS, and mathematical branch-completeness are explained for each problem
type. The evaluations of branching diversities (EBD) are also introduced.

We do not discuss the notation of answers (incl. branches); it is assumed that
the notation is understandable for the students. If the notation is complicated or
confused a teacher should explain it.

Now, it is possible to move to the main part of the chapter. Firstly, simplifica-
tion is under consideration.
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7.4. Simplification

7.4.1. Introduction

Although the main topic of the dissertation is solving equations, it is justified to
discuss also issues of simplification of expressions. Different simplification exer-
cises can be found in textbooks at many places, usually after introduction of a new
operation or function. The great majority of the simplification exercises in text-
books are without (or at least without explicitly presented) branching. Three areas
are discussed in greater depth in this section. The topic of ’forbidden branches’
(Section 7.4.2) is a good example of hidden branches while in the case of expres-
sions with absolute value (Section 7.4.3) the branches are (sometimes) explicitly
presented. The topic of Va? (Section 7.4.4) is closely related to the absolute
value but has independent importance as well. Finally, one more topic is listed
(Section 7.4.5).

7.4.2. Forbidden branches

The student learns for a number of operations and functions that operating is im-
possible (at least in school) in case of some values of arguments. The first contact
with these problems occurs in early grades during subtracting when 2 — 3 is prob-
lematic, because negative numbers are (at least ’officially’) not yet known to stu-
dents. The matter is not discussed in depth in these grades and such expressions
are simply avoided. The first commented contact with the ’forbidden’ operands
appears in case of division by zero. The fact that division by zero is undefined
is explained by means of multiplication. An important argument is the fact that
multiplying by 0 always results in 0.

Explanations are also given for further problematic operations. Thus, the stu-
dent knows (after more or less explanation) the following restrictions:
division by zero is undefined;
there is no square root for a negative number;
the domain of a logarithmic function is the set of all positive real numbers;
the base of logarithm is positive and differs from 1;
tangent function is not defined if x = (2n+1)7/2, n € Z;
argument of arc sine and arc cosine is from the interval [—1;1] (not ex-
pressly discussed in school textbooks).

The limits of what is allowed and what is not are fairly clear while calculating
with numbers. The situation changes when variables appear in denominators or
under square roots or in arguments of other problematic functions. In order to fol-
low these restrictions correctly in mathematical terms one should demonstrate all
"forbidden branches’ separately in expression transformation exercises. In real-
ity, the distinguishing of forbidden branches is discarded, and the practice is even

. XT . .
legalized. For example, — is transformed to x without comments.
X
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A textbook (Lepmann et al., 2000) said:

e Even though not always explicitly stated, we always assume that variables
are restricted so that division by 0 is excluded,

o Unless stated to the contrary all variables are restricted so that all quanti-
ties involved are real numbers;

e The equality is valid only at such variable values where the value of either
side of the equality is calculable. For instance, the equality

X XX

x—1  (x—1)x

is valid only where x # 0 and x # 1. As mentioned above, such restrictions
are henceforth not explicitly stated in the equalities.

Such conventions allow students to remorselessly reduce, expand, isolate vari-
ables from the radical, etc., without giving a thought to division by zero or ex-
tracting the square root of a negative number, etc.

The CAS do not show ’forbidden branches’ either. We look at the expressions
where in simplification some parts are cancelled, for example

s
i

All computer algebra systems solve it by giving the answer 97, without recording
the peculiarity of x = 0. (It is noteworthy that TI-nspire adds a warning message:
Domain of the result may be larger.) In addition to the general style of disregard
for the special cases, it could also be attributed to automatic simplification that
some CAS use. We claim that a result is mathematically branch-complete if ’for-
bidden branches’ are also explained. Therefore, EBD for cases where CAS and
school mathematics forget *forbidden branches’ is CAS = SCH < MATH.

It is another matter whether a computer algebra system (or some other software
application) could behave in a more precise manner and separately record special
cases. This issue has been examined in Chuaqui and Suppes (1990), who propose
to write the results of solution steps in the form of sequents (as in Gentzen-type
calculi in mathematical logic). It is possible to present only the main branch with
the condition(s), for example,

x#0:>9£:97.
X

Furthermore, it is possible to present all branches separately, for example,

7 7
x;é0:>—9 Y 97andx=0= -0
X X 0

0
A case of 0 leads to another area that is discussed in Beeson and Wiedijk (2005).
This question is also discussed in Stoutemyer (1991) as Sets of Measure Zero.
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Stoutemyer suggests including in CAS the option of simplifying that distinguishes
the branches in the conditional form of if ... then ... else ....

In fact, there are some textbooks containing some specific exercises that em-
phasize the domain of the expression, for example, Find the domain of the expres-
sion

4
x—1

(Lepmann et al., 2000).

There are also books (e.g. Govorov et al., 1983 — the collection of prob-
lems used in entrance examinations in the former Soviet Union) where (at least
in some exercises) the branches are presented. One such exercise is presented in
Section 7.4.4. In these cases, where school textbooks refer to the domain, EBD is
coded as CAS < SCH = MATH.

The topic of ’forbidden branches’ is tied to the topic of infinity-indeterminate
and number domains because there may be different restrictions in case of differ-
ent domains. For example, v/e% — ¢*/? should not be simplified when z is complex
but should be simplified to O when z is real (Aslaksen, 1999).

7.4.3. Absolute value

The topic of absolute value — a classic branched topic and very educative, as
such — is discussed in Section 7.4.3. The branches are introduced already in the
definition:

la| = a ifa>0
T l—a ifa<0’

There may be exercises that avoid branching by appropriate additional assumption
in the text of the exercise: Simplify expression |x+ 1| —|x—1|, where —1 <x < 1.
Likewise, CAS (except WIRIS) have possibilities for using such assumptions (see
Table 25 in Chapter 5). For example, in Maple:

simplify(abs(x+1)-abs(x-1)) assuming -1<=x, x<1;
As all explanations of a branch are equal in all these ’parties’, EBD is CAS =
SCH = MATH.

In fact, school textbooks do not include too many simplifications that contain
the absolute value. Abel, Jogi, and Mitt (1984) was not a regular school textbook
but rather a textbook for teacher training. In case of expression without additional
assumptions (e.g., 2— |x— 3| ) the branches spring and Abel et al. (1984) presented

them.
2 x—3|= 2—(x—3) ifx>3 [5-x ifx>3
T 12— (—x+3) ifx<3 |x—1 ifx<3

A separate question would be if this exercise is simplification at all, and the answer
to that is more complicated in some sense. CAS do not present branches (at least
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not in association with the Simplify command). EBD is CAS < SCH = MATH if
CAS does not present branches.

It is possible to compose miscellaneous expressions that include several abso-
lute values. For example, if absolute values are cancelable, CAS give the correct
answer, for example, |x — 3| — |3 — x| is simplified to O.

The question of Va2, that is discussed in the next section, is very closely re-
lated to the absolute value.

7.4.4. Square root of the square (Va2)

There are quite a few simplification exercises that include expressions in the form
of \/cﬁ, (az)l/ 2, W, etc., where a is an expression. Such examples are discussed
in Section 7.4.4. On the one hand, textbooks say that Va2 = |a|. On the other hand
in simplification exercises some books (for example Lepmann et al., 2000) may
somewhat retract and say If not required separately we do not write \/aTy =|al\/y

and \/(x—2)* = |x — 2| but \/a*y = a\/y and +/(x—2)* = x — 2. It is a hidden
assumption a > 0 similar to the one of *forbidden branches’.
Derive, Maxima, TI-92+ and TI-nspire give |a|,/y as an answer in the sim-

plification of \/a?y. The other systems do not simplify. This question is also
discussed in Aslaksen (1999):

o \/22 should not simplify, or simplify to csgn(z)z when z is complex.
o \/22 should not simplify, or simplify to sgn(z)z = |z| when z is real.
) \/;2 should simplify to z when z is positive.

The complex sign function csgn(z) is defined (in Aslaksen, 1996)

1 if Re(z) > 0 or (Re(z) =0 and Im(z) > 0)
csgn(z) = 0 ifz=0
—1 if Re(z) < 0or (Re(z) =0and Im(z) <0)

When the CAS gives the absolute value (the branches are ’compressed’) we
could (perhaps questionably) say SCH < CAS = MATH. It is hard to determine
EBD when the CAS does not simplify.

There are still books that require presenting branches; for example, in case of

o\ 172
2(a+b)~'(ab)'/? l+i<\/g—\/§>

Govorov et al. (1983) gave branching answer:

1 ifa>0andb >0
—1 ifa<O0andb <O

Forbidden branches are not mentioned. It is related to the question of Va2 but
also to several issues listed in the section on ’forbidden branches’. We could say
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(perhaps questionably again) that EBD is CAS < SCH = MATH as CAS do not
present branches.

7.4.5. More topics

There are more topics in school mathematics where we could anticipate branch-
ing. For example in trigonometry Half-Angle Formulas include +, e.g.,

o /1—cosa
Sln2 2

However, these expressions are very rare in simplification exercises. Sometimes
a half-angle may be in the exercise but it is squared and £ will be eliminated
immediately.

7.5. Equations

7.5.1. Introduction

Equations have a central position in school algebra, and branching is essential in
case of some equations. Four areas are discussed in greater depth — multiplicity
of roots (Section 7.5.2), extraneous roots (Section 7.5.3), literal equations (Sec-
tion 7.5.4) and trigonometric equations (Section 7.5.5). It should be noted that
here we skip forms of branching that are related to complex numbers although
they are important, especially in case of CAS answers (e.g., solutions of exponent
equations).

7.5.2. Multiplicity of roots

Although multiplicity of roots is a wider topic we concentrate here on quadratic
equations. In solving a quadratic equation, one can get two different real roots
in case of a positive discriminant; such branching is clearly presented both in
textbooks and in CAS answers (EBD is CAS = SCH = MATH). A negative dis-
criminant leads to complex numbers and we skip it here. There is a problem of
the multiple root if the discriminant is zero (e.g. in case of x> +2x+ 1 = 0).
Some textbooks say that there are two equal roots, some say one real root (a re-
peated root) or some say just one real solution. The CAS have applied different
approaches as well. Derive, Maxima, TI-92+, TI-nspire, MuPAD and WIRIS give
a single root while Maple and Mathematica give it twice. It is important to note
with respect to the notation that the same signs may have different meanings in
different CAS. For example, mark {a, b, ¢} means a set in MuPAD but a list in
Mathematica. We consider that presenting roots twice is a complete answer, even
though it is not particularly important to emphasize this in school because there
are no polynomials and equations of the nth degree in school.

As textbooks and CAS can both present roots once (marked by 1 in EBDs) or
twice (marked by 2 in EBDs) the possible EBDs are
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CAS(1) = SCH(1) < MATH(2),
CAS(2) = SCH(2) = MATH(2),
SCH(1) < CAS(2) = MATH(2) or
CAS(1) < SCH(2) = MATH 2).

7.5.3. Extraneous roots

It is necessary to consider the branches in the case of the equations (fractional,
radical, logarithmic, etc.) that correspond to the expressions with ’forbidden
branches’. Disregarding them may result in extraneous roots. Different vari-
ants are used in the textbooks to obtain correct final answers. Mainly, check-
ing of potential roots in the initial equation is used but detection of the domain
of the equation can be used as well. Generally, textbooks and CAS give a cor-
rect set of solutions (EBD is SCH = CAS = MATH) but CAS may be surpris-
ingly *more complete’ than would be correct in case of some equations (EBD is
SCH = MATH < CAS). The CAS (except Maxima and WIRIS) can present by de-
fault a real solution that is considered in school, in the real domain, as extraneous
(e.g.,x = —1 in case of V2x=+/x— 1 (or In(2x) = In (x — 1))).

The other case can be illustrated by the example where all the systems offer 0
as the answer to the equation

—=0.
X

TI-nspire adds a warning-message Domain of the result may be larger. It can be
explained by the fact that the original equation is automatically simplified before
solving. EBD is SCH = MATH < CAS.

7.5.4. Literal equation

The topic of literal equation is a classic branching topic. Literal equations offer
different levels for treatment of branches. The minimal case considered correct
in some way would be the one where it is assumed by default that the parameter
has no ’suspicious’ values, and only the main branch is calculated. This is often
assumed in applied problems (e.g., in physics: A = P+ Prt; please express r). At
the next level, the parameter values that result in the branch are recorded with the
main branch. The level where all cases are shown separately is the most complete.
For example, the answer of equation (a> — 1)x — (2a* +a —3) = 0 in Lepmann et
al. (2000) is

R ifa=1
0 ifa=—1
2a+3 .
= f +1
* a+1 ifaz

We consider the level where all cases are shown separately as complete.
Bernardin (1999) criticized the behavior of CAS. In case of ax = b Bernardin
sayd: When asked to solve with respect to x, all the systems returned the solution
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x = — even when this answer is obviously not correct for a = 0. He notes that

thereamay be different commands (e.g., Reduce in Mathematica) that work better.

Using somewhat later versions of CAS we could say that the CAS apply differ-
ent approaches. MuPAD records all branches; Derive, Maple, Maxima, TI-92+,
TI-nspire and WIRIS present only the main branch. In Mathematica, it depends
on what command (Solve, Reduce or InequalitySolve) is run. The command Solve
gives only the main branch, the command Reduce gives the main branch with
the corresponding condition and command InequalitySolve gives the complete set
of branches. We mark the *main-branch-approach’ as main and the ’all-branch-
approach’ as all. As both textbooks and CAS can use both approaches we get
many possible EBDs:

CAS(main) < SCH (all) = MATH (all),

CAS(all) = SCH (all) = MATH (all),

SCH (main) < CAS(all) = MATH (all) or

CAS(main) = SCH (main) < MATH (all).

7.5.5. Trigonometric equation

There are different sources of branching in case of the trigonometric equations —
periodicity and the families of solutions. Textbooks provide general solutions. For
example, in case of the equation

sinx+cos2x =10

textbooks give the answer

T T 1w 4
X :§+2n7randx2:€i§+§n7r

or

T T
xp=(=1D" 5 +nmand xp = (—1)"*! g+nn’.

However, the CAS work differently. MuPAD gives general solutions; Derive,
Maple, Mathematica, TI-92+, TI-nspire give (at least by default) only the par-
ticular solutions. They have different standards for the choice. This equation
is too complicated for Maxima and WIRIS. In case of simpler equations they
present particular solutions. It is noteworthy that Mathematica, Maxima, TI-92+,
TI-nspire add warning messages when presenting particular solutions, e.g., Some
solutions will be lost or Some solutions may not be found.

As we consider general solution as complete, EBDs according to the CAS
approach would be:

CAS < SCH = MATH or

CAS =SCH = MATH.
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EBD Problem type

CAS =SCH < MATH Forbidden branches are not recorded (CAS,
SCH)

CAS < SCH = MATH Forbidden branches are recorded (SCH),
not recorded (CAS)
Absolute value, all branches (SCH)

SCH < CAS = MATH Va? — a (SCH)

Table 27. EBDs (Simplification)

EBD Diversity type

CAS =SCH < MATH Multiplicity of roots 1 (CAS, SCH)

Literal equation 1 branch (CAS, SCH)

CAS < SCH = MATH Multiplicity of roots 1 (CAS), 2 (SCH)
Literal equation 1 branch (CAS), all
branches (SCH)

Particular solution of trigonometric equa-
tion (CAS)

SCH < CAS = MATH Multiplicity of roots 1 (SCH), 2 (CAS)
Literal equation 1 branch (SCH), all
branches (CAS)

SCH = MATH < CAS Extraneous roots

Table 28. EBDs (Equations)

7.6. Comments on branching diversities

Theoretically we could compose quite a few different EBDs while only some of
them are present in practice. The situations where a textbook and CAS give the
same amount of branches (CAS = SCH = MAT H) are not very interesting from
the perspective of this chapter, as the student (and also the teacher) gets the answer
that accords with the school presentation and mathematics. Tables 27 and 28
contain all the other aforementioned EBDs with references. This section provides
brief comments on the different types of evaluations of branching diversities that
we found.

The cases of SCH = MATH < CAS are deficiencies of CAS where CAS pro-
vides extraneous solutions. The situation CAS = SCH < MAT H needs some com-
ments. The explanation-justification related to hidden forbidden branches is pre-
sented (maybe too modestly) in textbooks. It can be assumed that branch com-
pleteness is rejected for the sake of compactness. Apparently, it is more compli-
cated as well as more time- and space-consuming to (repeatedly) record several
branches and special cases. Furthermore, repeated recording entails the danger
of oversights, etc. In addition, it is more difficult to grasp the answer where it
contains many special cases and branches, which distract attention from the main
line.
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In other cases, a CAS may present a complete set of branches while a textbook
presents an incomplete set or vice versa. It could be happen, for instance, in case
of literal equations where some branches could be ’forgotten’. If a CAS presents
a complete and a textbook an incomplete set (SCH < CAS = MAT H), there may
be the explanation-justification in textbook (\/cﬁ — a) or it is possible to use the
same explanation as in the textbooks that present the complete set of branches
(multiple root, literal equation).

If a textbook is more complete (CAS < SCH = MAT H), there are three possible
approaches: avoid using CAS (simplification of an expression involving absolute
value), try to find a complete set manually (or with CAS)(trigonometric equa-
tion), or explain that a (more) complete set of branches is not necessary for school
(multiple root, literal equation).

7.7. Conclusion

It could be said to answer RQ4 that branching can be described by evaluations of
branching diversities (EBD).

We described (perhaps questionably sometimes) the mathematically correct
and complete branch sets and compared the approaches of textbooks and CAS
and the mathematically complete sets. We classified the situations and found four
types (SCH = MATH < CAS, CAS = SCH < MATH, SCH < CAS = MATH and
CAS < SCH = MAT H) that were briefly commented on. In all cases the answers
were comparable and the branches in the school answer were similarly presented
as the CAS answer or the mathematically complete answer as there are only few
reasonable variants of branching.

It seems reasonable to use CAS in teaching and learning the branch-related top-
ics. Almost all diversities can be explained. However, further studies are needed to
develop a detailed framework. Hopefully, teachers (and others) could then place
their own examples into this framework and get useful information to improve
their work.

There are several open research ’branches’ that could ensue from this chapter.
For example, a study of teachers’ attitudes to branching would be very interest-
ing. What approaches are more suitable for teaching and learning? The usual
commands Simplify and Solve with default settings are used in the above exam-
ples. The other possibilities (e.g., assuming in Maple, or Reduce in Mathematica)
are only briefly touched on. Actually, the proper use of different commands, as-
sumptions and settings could make CAS more suitable for school mathematics.
For example, there are special tools for determination of the real or complex do-
main. Some of them are listed in Chapter 5.
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8. STUDENTS’ COMPARISON OF THEIR
TRIGONOMETRIC ANSWERS WITH THE ANSWERS
OF A COMPUTER ALGEBRA SYSTEM

8.1. Introduction

The previous chapters included some abstract ideas about potential educational
use of the differences between the researched answers. This chapter will de-
scribe an experiment where differences between CAS answers and students an-
swers were used in a teaching and learning situation.

Chapter 8 is based on the papers:

e Students’ Comparison of Their Trigonometric Answers with the Answers of
a Computer Algebra System (Tonisson, 2013) and

o Students’ Comparison of Their Trigonometric Answers with the Answers
of a Computer Algebra System in Terms of Equivalence and Correctness
(Tonisson & Lepp, 2015).

In Section 8.2 a lesson scenario is provided as an answer to the research ques-
tion RQS5:

What pedagogical approaches could be proposed to utilise the teaching oppor-
tunities offered by the differences between CAS and students answers?

Sections 8.3 and 8.4 are based on two experiments using this lesson scenario
to seek answers to RQ6: How can students identify 1) the equivalence and non-
equivalence between CAS and their own answers; 2) correctness of CAS and their
own answers of trigonometric equations during lessons based on comparative
discussions on students’ answers and CAS answers in pairs of students?

Section 8.3 (and (Tonisson, 2013)) is focused on the adequacy of students’
identification of equivalence. Lessons were held in the autumn of 2012 (also re-
ferred to as 'Lessons of 2012°). Section 8.4 (and (Tonisson & Lepp, 2015)) is
focused on identification of equivalence and correctness by students. The lessons
were held in the autumn of 2013 (also referred to as 'Lessons of 2013”). Sec-
tion 8.5 includes conclusion of Sections 8.2 and 8.4, overviews of problematic
issues for students, and also some ideas for future work.

8.2. Using comparison of students’ and CAS answers

Section 8.2 proposes one pedagogical approach for utilising teaching opportuni-
ties offered by the differences between CAS and student answers. The proposed
approach is described in Section 8.2.1. The lessons where this approach was used
are described in Section 8.2.2. The approach is evaluated in Section 8.2.3.
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8.2.1. Description of the proposed approach

The aim was to propose a pedagogical approach, in which the differences between
CAS and students’ answers can be utilized. The proposed approach and its back-
ground are described in this section. A lesson scenario is presented, followed by
a description of data collection.

In general, it was kept in mind that an approach should be relatively easy to
execute in practice and attractive for students. The use of student answers and their
own solution processes was designed to encourage deeper engagement with the
task. Moreover, solving by pen-and-paper supports the development of students’
procedural skills — an aspect, which some believe is jeopardized by the use of
CAS. Keeping a balance between procedural skills and conceptual understanding
was one of the underlying ideas.

The envisaged approach had to support students’ conceptual understanding.
As discussion can be a useful tool for developing conceptual understanding, work
in pairs was chosen as the preferred approach. As discussion and work in pairs are
usually more effective when they are guided, it was decided to provide students
with a worksheet. According to these ideas, a lesson scenario, based on a com-
parative discussion on students’ answers and computer algebra system answers in
pairs of students is proposed.

As this dissertation focuses on equations, the proposed approach was used on
issues that are important in the context of equation solving — solution of equa-
tion, equivalence of solutions. The students were paired up and supplied with
given worksheets with equations and questions. Initially, the students solve an
equation (correctly or not) without a CAS and then with a particular CAS. Solv-
ing of trigonometric equations was chosen as the main topic because of the natural
variety of possible presentations of solutions and units of measurement. In addi-
tion, unlike most of the other school equation types, the solution of trigonomet-
ric equation includes no separate numbers but rather series, which reveals some
special complications, like understanding the meaning of parameter n. Students’
difficulties in linking the periodicity of trigonometric functions and integers in so-
lutions of trigonometric equations is highlighted in Chigonga (2016). It should be
noted that in Estonian textbooks the solution for sinx = m, is often expressed as

x=(—1)"arcsinm+nr, n € Z
and not as in many other countries
x = arcsinm—+2nw, n € 7

x=m—arcsinm+2nw, n€Z .

In the context of this dissertation, it is important that the proposed approach
provides an opportunity to collect various data, for example, to identify students’
understandings and misunderstandings. The filled-out worksheets are an impor-
tant source of data. Moreover, students’ pair discussions could be recorded for
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later analysis. In addition, it is possible to use questionnaires. (Tonisson, 2013)
and (Tonisson & Lepp, 2015) and Sections 8.3 and 8.4 are based on the data col-
lected during the experiment with the lesson scenario carried out in the course
"Elementary mathematics I" at the university. The analyzed data included the
work of 26 pairs in 2012 and 38 pairs in 2013.

The lessons where the proposed scenario was used are described in the next
section.

8.2.2. Two rounds of lessons. Similarities and differences

Section 8.2.2 describes the lessons. Firstly, the course and the participants are
introduced, followed by a description of the lessons. The differences between the
lessons in 2012 and 2013 are also highlighted.

The lessons were a part of a course in elementary mathematics for first-year
university students. The course "Elementary mathematics" is a course for the
first-year university students and it involves some repetition of the elements from
school mathematics. The participants were mainly computer science students but
also several mathematics students and a few students from other curricula. The
students had quite diverging skill levels in solving trigonometric equations. As
the advanced students were dismissed from the course (on the basis of a prelim-
inary test), the proportion of wrong answers probably increased. The students
had very few experiences with CAS but they were experienced in using a com-
puter (according to pre-questionnaires). CAS were not used in other lessons of
the course.

The students were paired up and then worksheets with trigonometric equations
and questions were distributed. Initially, the students solved an equation (correctly
or not) without a CAS and then with a particular CAS. As different systems can
present answers in different ways, a particular CAS was arranged to initiate an
’intrigue’ in order to obtain information about the effect of different representa-
tions. The systems used were Maxima, Wiris, and WolframAlpha in the lessons
of 2012 and only WolframAlpha in the lessons of 2013. The worksheets guided
the students to analyze the differences, equivalence and correctness of their own
answers and CAS answers (see Appendix C). Their discussions were audio-taped
in order to obtain a deeper overview beyond the notes on paper. The audio-tapes
were actually used in this dissertation only for understanding questionable places
of the worksheets.

The lesson in question was taught by the author (who was not the regular
teacher of the course). The lesson lasted for 90 minutes and consisted of an in-
troduction (pre-questionnaire, formation of pairs), a period of equation solving
(ca 70 minutes), and closing (saving data, post-questionnaire (Appendix B)). (See
also Table 29.) The introduction gave an overview of the lesson, the aims of the
study, etc. The computer algebra systems were not specially introduced but the
students were warned that the answers of a CAS could differ from human answers
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Minutes | Periods Activities
10 Introduction | pre-questionnaire, formation of pairs
70 Solving distribution of worksheets,
for each equation:

solve without CAS,

solve with CAS,

analyze differences, equivalence, correctness
10 Closing Saving data, post-questionnaire

Table 29. Lesson scenario

Lessons of 2012 & Lessons of 2013
Topic of the lesson | Solving of trigonometric equations
Course Elementary mathematics I
Students Advanced students were dismissed
Teacher Author (was not the regular teacher)
Data Worksheet, audiotapes, questionnaires

Table 30. Similarities between the lessons of 2012 and 2013

and could also be incorrect. The types of possible differences were not explained.
The topic of trigonometric equations was not repeated in the current lesson but
the students were equipped with a paper that included the most important trigono-
metric formulae. The common aspects of the lessons are also presented in Table
30.

In the autumn of 2012 data were collected from 29 pairs. Each pair had a
different order of equations and there were 10 equations in total on the worksheets.
The students solved fewer equations than the author had hoped and some of the
equations had only a few solvers. Three equations were selected for the study
presented in Tonisson, 2013 and in Section 8.3. The analysis covered 47 instances
of equation-solving from 26 pairs.

The lessons in 2012 seemed to be successful in my opinion, and also in the
students’ opinions, as shown by a brief post-questionnaire. Moreover, the orga-
nization of the lesson seemed to be appropriate for data collection for the most
part and it was decided to repeat the experiment again in the autumn of 2013.
The differences between the rounds and corresponding studies are also presented
in Table 31. In order to get more responses to particular equations, the order of
equations was fixed. There were fewer equations (7 from the 10 used in 2012).
Seven was enough, only a couple of pairs solved all of them. It was also de-
cided to use only one CAS (WolframAlpha) instead of three in 70 minutes. These
changes were made on purpose. The difference between the numbers of students
(and therefore pairs) depended on the actual number of students in corresponding
years. The study presented in Tonisson & Lepp, 2015 and in Section 8.4 focuses
on three equations (112 instances of equation-solving, 38 pairs of students). The
latter study also focuses on correctness of CAS and student answers in addition to
equivalence/non-equivalence.

126



Lessons 2012 Lessons 2013

Order of equations prescribed, different | prescribed, same for all
for different pairs

Total number of equations | 10 7

CAS Maxima, Wiris, WolframAlpha
WolframAlpha

Focus of study equivalence equivalence, correctness

Analyzed equations 3 3

Analyzed instances 47 112

Number of pairs 26 38

whose work was analyzed

Paper (Tonisson, 2013) (Tonisson & Lepp, 2015)

Table 31. Differences between the lessons of 2012 and 2013

There were no changes in lesson organisation between the lessons in 2012 and
2013. The post-questionnaire was improved and 13 questions were asked (see
Table 32).

The filled-out worksheets of student pairs were used as the main source of data.
The worksheets were analysed after the lesson.

The worksheets included students’ solutions which were evaluated as usu-
ally teachers do in case of written solutions. There were also some questions
with multiple-choice answers, for example, "How confident are you in the cor-
rectness of your answer" and "How unexpected is the CAS answer at the first
sight?". The answers to the question "How are your answer and the CAS an-
swer related? (analyse equivalence/non-equivalence, particular solutions/general
solutions)" again needed evaluation by the researcher.

In the first study, the data were analysed mainly by the author of the disserta-
tion. Some audio records were used to clarify questionable places on the work-
sheets. The problematic cases were discussed with colleagues. In the second
study, two researchers were involved in analysing. The first researcher, Marina
Lepp, the co-author of (Tonisson & Lepp, 2015), analysed the worksheets. Af-
ter that the second researcher, the author of the dissertation, reviewed the codes
using the worksheets and the audio records in some questionable places. A joint
decision was made whenever there were problematic cases.

This section described the lessons where the proposed approach — a lesson
scenario based on comparative discussion on students’ answers and CAS answers
in pairs of students — was used. The next section discusses the success of the
scenario.

8.2.3. Evaluation of the scenario

In Section 8.2.3, an evaluation of the scenario is presented. The evaluation
is mainly based on the students’ feedback that was collected with a post-
questionnaire in the lessons of 2013. A less informative post-questionnaire was
used in the lessons of 2012.
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The task of comparing their own answers and CAS answers was new for the
students. Usually, only the solution of an equation is needed and nothing more.
However, the format seemed to be interesting and attractive. Generally, they be-
came accustomed to the style of the lesson and actively discussed the topic of
trigonometry throughout the lesson.

After the lesson the students individually filled out the post-questionnaire (see
Appendix B). There were 13 statements and the students were asked to circle the
numbers that indicated whether they strongly disagreed (1), rather disagreed (2),
partially agreed / partially not (3), rather agreed (4) or strongly agreed (5) with the
statement.

The statements and mean values are presented in Table 32.

No Statement Mean
Ql. I liked solving these tasks in pairs 3.8
Q2. The work in pairs went well in our pair 4.1
Q3. The personal qualities of my peer were suitable 4.1
for cooperative work with me
Q4. Discussion with my peer was instructive 4.0
Q5. Working in pairs took more time than working alone 2.7
Q6. Results of work in pairs were better than 3.8
they would be working alone
Q7. I got more knowledge and skills thanks to work in pairs 35
than I would get working alone
QS. I received advice and explanations about the exercises from my peer 3.9
QO. My peer had more knowledge and skills than I 3.1
Q10. | Iplayed the leading role in the discussion 2.8
Q11. | The worksheet encouraged discussion 3.6
Q12. | The tasks on worksheet were suitable for work in pairs 35
Q13. | Both partners should have their own worksheets 2.5

Table 32. Post-questionnaire

One of the objectives was to have an approach, which is attractive for students.
The feedback from students generally confirmed that the scenario was attractive
for them. They rather liked solving these tasks in pairs (Q1), and felt that the work
in pairs went well in their pair (Q2). They also felt that the results of work in pairs
were better than they would have been working alone (Q6).

The author was the teacher in these lessons and can confirm that the lessons
were successful at least in the sense that the students were involved in discussion
about mathematics (here trigonometry) for the whole lesson. As the role of the
teacher was to go around and observe (and help if necessary), it was possible to
follow whether the students stayed on topic. This was also confirmed by a spot
check of audio recordings.

Another objective was to support students’ conceptual understanding by main-
taining a balance between procedural skill and conceptual understanding. A spe-
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cific measurement of the improvement in students’ conceptual understanding was
not performed, but at least the students themselves generally felt that the discus-
sion with peers was instructive (Q4), they attained more knowledge and skills
thanks to the work in pairs (Q7), and they received advice and explanations about
the exercises from their peers (Q8). The balance between procedural skills and
conceptual understanding was not measured either, but both procedural skills
(such as equation solving with pen and paper) and conceptual understanding (such
as the concepts of equation solution and equivalence of trigonometric expressions)
were addressed.

The objective The approach is relatively easy to execute in practice is some-
what relative. If computers with a CAS are available, only worksheets are neces-
sary. The teacher’s role is to walk around in the classroom and offer help if needed.
A similar scenario was also used in case of irrational equation with school teachers
and it was easy to execute (Hoim, Jukk, Lepp, Pihlap, & Ténisson, 2015).

One could say conclusively that this scenario promotes student discussion
about mathematics throughout the lesson. The students rather approve of such
lessons. The actual teachers of the groups agreed that the lessons were successful.

Furthermore, data on students’ understandings and misunderstandings were
collected, providing the basis for the next sections.

8.3. Adequacy of identification of
equivalence/non-equivalence

The research question RQ6 is How can students identify 1) the equivalence and
non-equivalence between CAS and their own answers; 2) correctness of CAS and
their own answers of trigonometric equations during lessons based on compara-
tive discussions on students’ answers and CAS answers in pairs of students?

Section 8.3 is devoted to the first part of the question about the equivalence
and non-equivalence between CAS and students’ answers.

The section is based on the lessons of 2012 and Tonisson (2013). The selection
of equations is presented in Section 8.3.1. Sections 8.3.2, 8.3.3 and 8.3.4 are
devoted to analysing the adequacy of identification of equivalence/nonequivalence
in case of the three respective equations.

8.3.1. Choice of equations and CAS. Worksheet

The selection of equations is described in Section 8.3.1.

The worksheets with 10 equations (but fewer solutions) of 26 pairs of students
were analyzed. The order of solvable equations was prescribed and was different
for different pairs. The students first solved an equation (correctly or not) without
and then with a particular CAS. The systems used were Maxima, Wiris and Wol-
framAlpha. A specific CAS was prescribed for the equation to attain the expected
difference between student answers and the CAS answer. Actually, as students
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solved the equations themselves, they also made mistakes and the comparison
was made between their actual answers and the CAS answers.

Some of the equations were from regular school textbooks, others from books
where trigonometry is handled at a somewhat advanced level. Data of more than
100 instances of equation-solving were collected. Three equations

sin(4x+2) = \f,

tan’ x = tanx,

T
~2)=05
COS( 6)

from ten were chosen for deeper analyses in this study (47 instances of equation-
solving, 26 pairs of students).

These equations seemed to be more suitable for the topic of Representations of
mathematical knowledge in the track Mathematical Knowledge Management in
the Conferences on Intelligent Computer Mathematics (CICM 2013). The paper
(Tonisson, 2013) was a part of the Proceedings of the CICM 2013. The focus of
these equations is primarily on different representations of the answers and not
so much on extraneous roots, complex domain, etc., (like in case of some other
equations).

3
The first example is the equation sin(4x+2) = \2[, where the students use the

formula
x=(—1)"arcsinm+nm, n€Z

(as taught in Estonian schools) and get the answer like

T 1 nm
— (2 M e
y=(D)E sty

WolframAlpha expresses series separately (see Figure 22). It was relevant in 2012
and 2013. It should be noted that a new version of a CAS can behave differently
from a previous version in the case of a particular equation. At the beginning of
2015, WolframAlpha shows only the exact solution by default. The approximate
form can be seen by clicking the "Approximate forms" button.

The second example is tan’ x = tanx, where students give general solutions,
but Wiris gives particular solutions (see Figure 23).

The third example is cos (x — g> = 0.5, where Maxima uses its own notation

with union and %z (see Figure 24). The other equations with more specific nu-
ances (extraneous roots, issues of domain, indeterminacy, etc.) are not discussed
in this section but are listed for the sake of completeness in Table 33.

The students first had to solve the trigonometric equations by themselves and
then with a particular CAS. They were encouraged to analyze differences, equiv-
alence and correctness of their own answers and CAS answers. The worksheet
included the following tasks (in the case of the first example):
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_— & WolframAlpha s .
p

[ sobveiEin¥ g+ 2)=sgrt(3/2) E]

-&E-Bb-8-9T = Examples =2 Random
Input interpretation:

3
solve sinf4x +2) = T

Results: Mare digits | | [ Step-by-step solution

x= % (Ban+m—3)=0.16667(9.4248 n+ 0.14159) and ne £

1
X = E (Barn4+m—6)=0.083333(18.850n - 2.8584) and ne £

Qi ag < Z isthe set of integers »

V3

Figure 22. sin(4x+2) = > (WolframAlpha)

{solvsttan(xﬂﬂan(x]] = [{x=0}.(x=n},{x=%],{x=3‘Tﬂ],{x=5jTﬂ]|{x=-£}}

Figure 23. tan’ x = tanx (Wiris)

(%i6) Y%solve(cos(x-%pi/6)=0.5x);
(%06) %union[[x =21 %6 -g],[)( =27 %28 %]

Figure 24. cos (x — g) = 0.5 (Maxima)
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Equation. CAS

Place of difference

3
l. | sin(4x+2) = g Different forms of general solution
WolframAlpha
2. | tan®x = tanx CAS gives
Wiris particular solutions
T
3. | cos (x — 6) =0.5 Unusual form of arbitrary integer
Maxima
4. 2sin2xcos2x+cos2x =0 CAS gives general solution
in [-30°;0°] WolframAlpha
tan” x . . .
5. . =0 Exceptional solution. Expected mistake
anx
WolframAlpha also by CAS
T
6. | tan(x+ Z) =2cotx—1 Possible miss of solution,
WolframAlpha correct by CAS
7. | 2cos?x+4cosx = 3sin’x CAS gives particular solutions
Wiris complicated answer
8. | sinx—sin’x = 14cos’x Complex numbers in solution
Maxima
=
9. | X _ Transfer to tan(x/2) leads to
sinx
Maxima, Wiris, exceptional solution.
WolframAlpha Differently by different CAS
10. | 1—cosx=+/3sinx Squaring leads to exceptional
WolframAlpha solution

Table 33. Equations, place of difference
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3
1. Solve the equation sin(4x+2) = \Zf (without the computer at first).
How confident are you in the correctness of your answer?
Solve the equation with the CAS WolframAlpha using the solve command.

How unexpected is the CAS answer at first view?

A

Analyze the accordance of your answer with the CAS answer! If you want
to complement/correct your solution, please use the green pen.

6. What are the differences between your answer and the CAS answer?

7. How are your answer and the CAS answer related (analyze
equivalence/non-equivalence, particular solutions/general solutions)?

8. Rate the correctness of your (possibly corrected) answer.

9. Rate the correctness of the CAS answer.

The student worksheets were evaluated and analyzed and the results from the three
examples are presented in the following subsections.

The analysis of each equation begins with a brief introduction of the exam-
ple, including reasons for selecting the example, a possible school answer, and a
snapshot of the CAS answer. Next, the equivalence/non-equivalence of the stu-
dents’ answers with the CAS answers is discussed. It is based on mathematical
reasoning by the author (denoted by the word Mathematically in the tables). The
second dimension is the students’ opinion about the equivalence/non-equivalence
that is based on an analysis of paper and audio data (denoted by the words In
students’ opinion in the tables). The discussion concludes with some pedagogical
comments.

8.3.2. The first equation. Different forms of general solution

Section 8.3.2 focuses on the equations where the CAS answer is particularly un-
expected for those who use the (—1)" formula for solutions of sinx = m (as is
common for Estonian students). The expected Estonian school answer for the
equation

V3

in(4x+2) = 22
sin(4x+2) :
is .
T nmw
— s " e
x=()'g -t e

WolframAlpha gives two series of solutions (see Figure 22). The answers are
actually equivalent. The students did not receive any specific information about
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the CAS answer.

As our textbooks and teachers use mainly the (—1)" form, the students’ an-
swers and the CAS answer seemed quite different at least for this reason. (Twelve
pairs (of 17) used (—1)" form and 4 gave the particular solution. One pair initially
gave the particular solution and then corrected it to the (—1)" form.)

As several pairs made mistakes, the count included 11 cases (of 17) of equiv-
alence with the CAS answer and 6 cases of non-equivalence. Four pairs (of the
equivalent cases) used both degrees and radians in the same answer, for example:

1
x= (—1)”150—5—&—450-11, nez.

Equivalent Non-equivalent Abstruse
in students’ opinion | in students’ opinion
Mathematically 4 5 2 11
equivalent
Mathematically 3 3 6
non-equivalent
7 8 2

3
Table 34. sin(4x+2) = % Equivalence/non-equivalence

Our main focus in the study is to observe how students compare their own and
CAS answers. In many cases, their opinion about the equivalence is ascertainable,
sometimes not. The results are presented in Table 34.

The depth of discussions about the comparison varied between the student
pairs. For example, 3 pairs identified actual equivalence through reasonable dis-
cussion, while one pair simply presumed it. There were also 3 pairs whose answer
was not equivalent with the CAS answer, but they counted them as equivalent
without any real discussion. Seven pairs did not recognize that the answers were
equivalent (5 pairs considered as non-equivalent and 2 opinions were abstruse).
Mainly, they did not grasp that » in their answer and » in the CAS answer (see
Figure 22) was not the same. This points to an automated (and correct) habit of
solving the algorithm of trigonometric equation without exhaustive understanding
of the solution. Three pairs identified the non-equivalence of their answer and the
CAS answer. Their answers were remarkably different from the CAS answer.

It seems that the different representations of the same answer, like in this ex-
ample, could initiate instructive discussion. It could also point to a possible su-
perficial treatment of the fairly important issue of the meaning of n. A simpler

3
equation, like sindx = - could probably be a more straightforward means for

clarifying the phenomenon. The example is suitable if the students use the (—1)"
formula. This is also an issue of different traditions. For example, it is usual to
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find solutions, such as T
x= (—1)”6 +nmw,n€Z

(being the solution of sinx = 5), in the textbooks of some countries, like in Esto-

nia, but this is not the case in many others.

8.3.3. The second equation. CAS gives only particular solutions

The situation where a CAS gives only particular solutions but students are asked
to present general solutions is discussed in Section 8.3.3.
The students should frame the CAS solutions up to their own general solutions.
In case of the equation
tan® x = tanx

the human answer could be
xX=nn,n€”Z
n
x= j:Z +nn,n€Z
or
x=nn,ne”
T
x= 1 +nm,ne’
/4
X = —Z+n7r,n€Z .
L . . T 3n 5w
Wiris gives the particular solutions 0, 7, —, YRS

Certainly, {nm,n € Z} and {0; 7} are not equivalent in the usual mathematical
sense. These answers are counted as equivalent in the sense that all series are
represented by 2 instances. The order of solutions in the output of Wiris is quite
confusing as the instances of the series of solutions are not always side by side (for

, —g (see Figure 23).

example, g and %Tn are not from same ’club’). The students did not receive any
specific information about the CAS answer. Many student pairs (9 of 14) gave the
right answer and they also figured out (after more or less effort and discussion)
the relationship between their and CAS answer (see Table 35). One pair could
3n R}/4 . . . .
not frame 7, T and e up to their right answer. Again, the meaning of » in
the formula seemed to be incoherent for them. The cases where students omitted
some solutions were very interesting. One such pair corrected their mistake and
finally found the right answer. They added to
T+ T7n

n+7t
— n
4

missing
r +r
——+7nn .
4
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Emotions are not focused in this study but their joy after the correction was
remarkable. The other pair (initially only n7 solution) had a member who had
already diagnosed their mistake. The third pair did not analyze the CAS solutions
thoroughly enough and did not notice that their answer was incomplete. It is
impossible to give a thorough overview of the discussion of the pair that got an
incomplete answer and also considered it as non-equivalent with the CAS answer,
as their discussion was very laconic. It seems that the representation of the answer

Equivalent Non-equivalent
in students’ opinion | in students’ opinion
Mathematically 9 1 10
equivalent
Mathematically 2 1 3
non-equivalent
Non-equivalent — 1 1
Equivalent
12 2

Table 35. tan’ x = tan.x. Equivalence/non-equivalence

is generally accomplishable in this case. The possible corrective virtue is also
notable. The standard of representation of answers to trigonometric equations
could provide more instructive examples, as the choice of a particular solutions is
not always as transparent.

8.3.4. The third equation. Unusual form of arbitrary integer

The third example, which is related to CAS notation, is analysed in Section 8.3.4.
The CAS answer is actually very similar to a normal human answer but with
some CAS-specific peculiarity. The human answer to the equation

cos( —g) =0.5

T
x:—g+2n7r,n€Z

could be

T
x:§—|—2n7c,n€Z .

Maxima gives the same answer in a somewhat distinctive way: 27%z6 — 3

2n%z8+g (see Figure 24). The package to_poly_solve is used for solving
trigonometric equations as suggested in the Maxima manual. The Maxima manual
is cited for clarity: Especially for trigonometric equations, the solver sometimes
needs to introduce an arbitrary integer. These arbitrary integers have the form
%zXXX, where XXX is an integer (Maxima manual, 2015). Use of separate arbitrary
integers is even better way.
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The meaning of %z was also an important issue for solving the equation with
Maxima. The students did not receive any specific information about the CAS
answer, but they had additional brief paper manuals (3 pages) on using different
CAS where %z was explained. Only two pairs found the info about %z in this
manual. Almost all pairs mentioned %z as a significant difference from their own
answer. An explanation was given if the students asked for it. Nevertheless, two
pairs remained confused and could not understand the CAS answer. The mean-
ing of such a notation could be more clearly indicated in the CAS user-interface.
For example, tooltips could be used. Eight pairs (of 16) got the right answer (see
Table 36). Five of these pairs quite easily found the CAS answer to be equiva-
lent. Three pairs had an answer equivalent with the CAS answer but their opinion
about equivalence was abstruse. One of these pairs could not understand the CAS
answer because of %z. The second pair did not observe the CAS answer suffi-
ciently and did not notice the relation between the CAS answer and their own (not
fully simplified) answer. The third pair’s discussion was too laconic. One pair
corrected their mistake and finally found the right answer, from

1
x—30° = arccos > +27n

to

1
x—30° = farccos 3 +27n

Three pairs saw equivalence that really did not exist. There were also four pairs
who considered their wrong answers as non-equivalent with the CAS answer. One
of these pairs could not understand the meaning of %z correctly. Two pairs tried
to find their mistakes; one pair had evidently a different answer.

Equivalent Non-equivalent Abstruse
in students’ opinion | in students’ opinion
Mathematically 5 3 8
equivalent
Mathematically 3 4 7
non-equivalent
Non-equivalent — 1 1
Equivalent
9 4 3

Table 36. cos (x — g) = 0.5. Equivalence/non-equivalence

It seems that the different notation can cause major trouble for some people,
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while it can be easily acceptable for others. It should be mentioned that the stu-
dents used Maxima for the first time and many issues would probably be resolved
by further use.

The conclusions are presented in Section 8.5 after the section based on the
lessons of 2013.

8.4. Equivalence and correctness

Section 8.4 is devoted to both parts of RQ6: How can students identify 1) the
equivalence and non-equivalence between CAS and their own answers; 2) cor-
rectness of CAS and their own answers of trigonometric equations during lessons
based on comparative discussions on students’ answers and CAS answers in pairs
of students?

The section is based on the lessons (data collected from 38 student pairs) of
2013 described in the paper of Tonisson and Lepp (2015). Like in the experiment
described in Section 8.3, the lessons were based on comparative discussion on
students’ answers and computer algebra system answers in pairs of students (see
Section 8.2, Table 29). Unlike the lessons of 2012, the order of equations was
fixed and same for all pairs, and all equations were solved with WolframAlpha.

This section includes three parts. Section 8.4.1 explains the selection of equa-
tions and Section 8.4.2 describes data collection and analysis. The results are
presented in Section 8.4.3.

8.4.1. Choice of equations

The selection of equations is described in Section 8.4.1. Three selected equations
are presented in detail.
Data of more than 200 instances of equation-solving were collected in the

3
lessons of 2013. Three equations (sin(4x+2) = R 2sin2xcos2x+cos2x = 0,

tan? x

anr 0) from seven were chosen for deeper analyses in this study (112 in-
X
stances of equation-solving, 38 pairs of students), as they were solved by almost

all pairs. (These seven equations are equations 1, 2, 4, 5, 6, 7, 10 in Table 33,
which lists the equations used in the lessons of 2012. As it was decided to use
only one CAS, the Maxima related examples were excluded.)

The first equation is

3
sin(4x+2) = \2[

The expected school answer in our region is

T 1 nm
(e 2 M ey
x=()'g gty
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1
n[n —)z3.1416(n—0.25000) nd ne Z

x= -
4

x:;r(rﬂ- i) % 3.1416 (n 4+ 0.25000) and ne £

xX=nx n—l—lzJ:tSA1416[n—0.083333} ind ne Z

x=.r:[n+ ]—7?)== 3.1416 (n + 0.58333) and ne Z

Figure 25. The answer to the second equation 2 sin 2x cos 2x+cos 2x = 0 (WolframAlpha)

or 1
x=(=1)"15" = 2 +n-45°, ne L.

It is usual in Estonian schools that, if not stated otherwise, the general

1
solution is needed. Solution provided by WolframAlpha is 8(37tn—|—7r—3),
1

B (6mn+m—6), n € Z (shown in Figure 22).

The second task was to find the solutions of the equation 2sin2xcos2x +
cos2x = 0 in the interval [-30°;0]. The school answer is —15° or —7m/12. The
students’ worksheets included an example of solving the equation without particu-
lar marking of the interval in the students’ worksheet. The solution to the equation
2sin2xcos2x + cos2x = 0 provided by WolframAlpha is shown in Figure 25.

This highlights the question of particular and general solution. WolframAlpha
gives a general solution, which is again quite different than probably expected by
the students. In case of our usual formulae the general solution is

T
x::tz+n7r,nEZ

and
T nmw
— 1 n+1 v 7,
x= ()" g5 ne
: _tan’x : : :
The third equation = 0 is interesting because WolframAlpha gives prin-

cipally different answer;ﬁllz)fn could be expected in the school context. The normal
school answer is that there are no solutions. Nevertheless, it is quite natural to
propose that nr is the solution. And the CAS confirms this answer.

The selection of equations was described in this section. The next section is
devoted to data collection and analysis.

8.4.2. Data collection and analysis

Section 8.4.2 describes data collection and analysis by worksheets.
Figure 26 shows the part of the worksheet with the students’ answers. The

3
assigned task is "Solve the equation sin(4x +2) = \2[ (without the computer at

139



first!)." The first part of the solution is written before solving with WolframAlpha.
Question 1.1 is "How confident are you in the correctness of your answer?" (very
confident / quite confident / do not know / quite unsure / very uncertain). These
students marked "very confident". The next task is "Solve the equation with the
CAS WolframAlpha using the solve command". Question 1.2 is "How unexpected
is the CAS answer at the first sight?" (very unexpected / quite unexpected / do not
know / quite expected / very expected). These students chose "quite unexpected".

The second part of the solution is written with a green pen after solving the
equation with WolframAlpha.

On the next page, the students had to answer the question: "How are your
answer and the CAS answer related? (analyze equivalence/non-equivalence, par-
ticular solutions/general solutions)". These students wrote: "After we had seen the
system’s answer, we understood that our solution was not correct and we solved
the task again".

After the lesson the worksheets and questionnaires were analysed. Two re-
searchers were involved in this. First, one researcher analysed the worksheets.
After that the second researcher reviewed using worksheets and audio records in
some questionable places. A joint decision was made in all problematic cases.

Although the equations were different and prevalent mistakes were quite vari-
able as well, a single classification is used. At first, the students’ manual solutions
were classified on the basis of the relation to the correct school answer. It is
quite similar to the process that teachers apply when they check students’ solu-
tions. However, our emphasis was on finding different types of solutions instead
of giving points or marks. Although a quite detailed classification is possible, a
more concise version is used here and the particular mistakes are highlighted as
examples. Three main categories are distinguish

e the answer is correct,
e the answer has a particular/general solution inaccuracy,
e the answer is incorrect.

The comments for all categories help us to understand the ranges. Actually,
even answers with minor shortcomings are accounted as correct, for example,
missing n € Z or using degrees and radians together in the answer. However, ac-
counting answers containing both radians and degrees as correct answers is prob-
lematic because, in the next step, some students tend to add them incorrectly.
The particular/general solution inaccuracy means that particular solutions are ex-
pressed when actually the general solution is expected or vice versa. It is impor-
tant that all series are represented, e.g., in case of sinx-cosx = 0, answers of both
sinx = 0 and cosx = 0 are necessary.

Incorrect answers are the largest category of students’ manual solutions. Dif-
ferent subtypes can be distinguished in this case. For example, degrees and radians
are calculated as same units or solution process is unfinished. (However, a solu-
tion where x is already expressed and only a small step remains to be done was
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Figure 26. The part of the worksheet with the students’ solution

141



still counted as correct.) The following types were used in coding:
e degrees and radians are incorrectly added,
e discontinued,
e mathematical detail,
e mathematical principle (e.g., permission of 0/0),
e trigonometric detail (e.g., missed arcsin),
e trigonometric principle (e.g., problems in application of formula),
e multiple mistakes.

It should be noted that the answer is focused rather than the use of all necessary
solution steps. There are some cases (in the second equation, 2sin2xcos2x +
cos2x = 0) where the right answer is expressed but the solution process is not
completely correct.

As the CAS answer is not necessarily the same (or even equivalent) as the
school answer, it is also reasonable to classify the students’ answers in relation
to the CAS answer. Here, a similar schema is used. Three main equivalence
categories are used:

e the students’ answer is equivalent to the CAS answer,

o the students’ answer and the CAS answer have a particular/general solution
difference,

e the students’ answer is not equivalent to the CAS answer.

Again, minor differences in nuances were allowed when counting the answers
as equivalent. We did not care about missing n € Z. Degrees and radians in
the same expression certainly maintain equivalence. The answer belongs to the
second category if there are only particular solutions in the students’ answer but
general solution in the CAS answer or vice versa. There are different reasons to
count the students’ answer and the CAS answer as non-equivalent. For example,
a series is missing or is incorrect.

The students had to specify the differences and relations between their answer
and the CAS answer. As the equations were quite different and the differences and
relations varied as well, we used different schemas for analyzing the differences
and relations. The most important trends are expressed in the dissertation. The
students were encouraged to complement/correct their solution after obtaining the
CAS answer. The possibility was not used very often but there were some cases.
Nevertheless, the cases where the CAS answer gives students ideas for changing
their original solution are particularly interesting.

This section described how data were collected and analysed. The result is
presented in the next section.

8.4.3. Results

This section describes the results of the experiment of 2013. The first part looks
at how well the students solved the equations, followed by an overview of how
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Correct | Particular/General | Incorrect
3
sin(dx+2) = g 12 5 21
2sin2xcos2x+cos2x =0 19 3 15
)
vy 19 18
tanx

Table 37. How well the students solved

the students perceived the expected CAS answers. The main part of the section is
presented with the help of the following questions: What differences do students
notice foremost? How do the students understand correctness of the answers? Are
students able to ascertain equivalence/non-equivalence? How do the students
explain equivalence/non-equivalence? Are there any differences in this regard
between different types of equations and answers?

First, we consider how well the students solved the equations. The first equa-

3
tion sin(4x+2) = £ was quite complicated for the students. Only 12 pairs from

38 solved it correctly while 21 pairs solved it incorrectly. Five pairs provided a
particular solution while a general solution was needed. The most common mis-
takes were connected to measure units radians and degrees. For example, the stu-
dents got the correct answer x = 15° +45°n— 1 /2, where 15 and 45 are in degrees
and 1/2 is in radians and then they solved further and got x = 14.5° +45° - n.

The second equation 2sin2xcos2x 4 cos 2x = 0, was solved with a little more
success than the first one. The correct answer was find by 19 pairs from 38. Fifteen
pairs solved the equation incorrectly (the solution was produced with mistakes or
only a half-solution was presented). Three pairs provided the general solution
while the particular solution was required. Eleven pairs made some changes (with
green pen) after solving the same equation with WolframAlpha and one of them
found the correct answer (replacing the previous incorrect answer).

) . tan . . : .
The third equation = (0 was very interesting as it has no solutions, but

an

it is possible to make a mistake by reducing it and get a solution. This is what
WolframAlpha does. The students produced both correct and wrong answers.
Nineteen pairs gave the right answer that there is no solutions and 18 pairs solved

the equation incorrectly and arrived at a solution. They did not take into account
2

the contradiction and simplified the equation =0 in a similar way to Wol-

anx
framAlpha. They got the equation tanx = 0 and solved it and got the solution
x =nx, n € Z. The respective figures are also presented in Table 37.

3
The WolframAlpha answer to the first equation sin(4x +2) = \2[ was quite

unexpected. The WolframAlpha answer was found to be very (8 pairs) or quite
(14 pairs) unexpected by 22 pairs in their worksheets. After using WolframAl-
pha for solving the first equation the students could guess that the CAS produces
solutions according to different formulae. The answer of the second equation
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Very or quite | Very or quite Do not know
unexpected expected or not answered
. V3
sin(4x+2) = - 22 6 10
2sin2xcos2x+cos2x =0 12 18 7
tan2
L0 18 15 4
fanx

Table 38. Expectness

2sin2xcos2x + cos2x = 0 was not as unexpected as the first one. While, in rela-
tion to the first equation, 12 pairs marked that the CAS answer was very (2 pairs)
or quite (10 pairs) unexpected, this had now risen to 18 pairs for whom this answer
was quite (12 pairs) or very (6 pairs) unexpected. The WolframAlpha answer to

the third equation ttan Y — 0 was unexpected for 18 pairs and 15 of them had the
correct answer in thaen &orksheet. 15 pairs marked the CAS answer as expected
and 13 of them had the wrong answer. (See also Table 38.)

The following part of the section is structured with the help of the questions
listed in the beginning of Section 8.4.3.

What differences do the students notice foremost? The worksheet included two
questions about the differences and relations between the students’ answer and the
CAS answer (What are the differences between your answer and the CAS answer?
How are your answer and the CAS answer related (analyze equivalence/non-
equivalence, particular solutions/general solutions)?). As the answers to the first
equation are quite different in appearance, it would be natural to investigate the
CAS answer and try to derive one from the other. However, it seems that the stu-
dents were not keen on deeper exploration. The students (27 pairs) noticed the
important differences between answers (like radians/degrees, one/two answers,
particular/general solution), but they did not provide any analysis on the relations
between the answers. An analysis of the relation between the students’ answer and
the CAS answer was almost missing in case of 23 pairs and completely missing
in case of 8 pairs. Only 2 pairs provided a sufficient analysis of the answers. Five
pairs presented an insufficient description of the relation between the answers.

The descriptions of the differences and relations in case of the second equation,
2sin2xcos2x 4 cos 2x = 0, were not sufficient and we combine them here. Only 2
pairs checked whether their answer really matched the CAS answer. Many pairs
(18) indicated that their solution is in concrete interval but the CAS solution is
not. Several pairs (3) mentioned that CAS has more solutions. One pair noticed
the relation between the general and particular solution. The other 14 pairs did

not write any reasonable descriptions.
2

= 0 the differences and relations between

. . tan
In case of the third equation

the students’ and the CAS answers were divided mainly into two groups (with
some minor exceptions). If the answer was the same as the CAS answer, the
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Students’ opinion about correctness
correct | partially | incorrect | do not
correct know
Math. correct 6 4 2 12
Math. incorrect 6 1 5 4 16
Math. particular/general 2 3 5
Math. incorrect — correct 3 1 4
17 8 8 4

Table 39. sin(4x+2) = v/3/2. Correctness of students’ answer / students’ opinion about
correctness of their answer (after possible correction)

Students’ opinion about correctness
correct | partially | incorrect | do not
correct know
Math. correct 17 1 1 19
Math. incorrect 2 9 2 1 14
Math. particular/general 1 1 1
Math. incorrect — correct 1 1
21 11 3 2

Table 40. 2sin2xcos2x+ cos2x = 0. Correctness of students’ answer / students’ opinion
about correctness of their answer

differences were not detected (12 pairs). If the students answered that the equation
does not have solutions, they (19 pairs) also noticed important differences (no
solutions / some solution). The same holds for the description of relations. The
pairs with the same answers as the CAS answer (14 pairs) did not have to find the
relations between answers, they just marked that the answers are the same. It was
not difficult to describe the relations between the answers (CAS simplifies and
does not take into account the contradiction) for those pairs who had the correct
answer (17 pairs).

How do the students understand correctness of the answers? It was somewhat
complicated, as they had not been given the correct answer according to school
math. Many students seemed to trust CAS while others trusted themselves. It
seems that it depends on students’ confidence in their answer whether they trust
the system or themselves. Furthermore, correctness can sometimes be compli-
cated to evaluate, for example, in case of particular and general solution.

The students’ opinions about correctness of their answer were adequate, very
roughly, in half of cases. It is interesting to note that, even after seeing the correct

3
answer to the first equation, sin(4x+2) = \2[, produced by WolframAlpha, six

pairs marked their wrong answer as correct.

It is possible that the CAS answer was so different that it did not give any clue
about possible mistakes. The WolframAlpha answer was so confusing for some
students that they marked their right answer as wrong (2 pairs). Twelve pairs made

145



Students’ opinion about correctness
correct | partially | incorrect | do not
correct know
Math. correct 15 1 1 17
Math. incorrect 12 3 1 16
Math. correct — incorrect 1 1 2
Math. incorrect — 1 1
CAS like incorrect
28 5 1 2
tan® x .
Table 41. anx = 0. Correctness of students’ answer / students’ opinion about correct-

ness of their answer

some changes with the green pen and 4 of them got the correct answer. (See also
Table 39.)

As the second equation, 2 sin2xcos 2x + cos 2x = 0, required a particular solu-
tion and WolframAlpha provided only a general solution, most pairs marked their
answers as correct or partially correct. Even the pairs with wrong answers chose
the option "correct answer" (2 pairs) or "partially correct” (9 pairs).

These students probably did not bother to investigate the CAS answer deeply
enough to discover that they had an incorrect solution. The WolframAlpha answer
was quite different (4 series) and this may have been the reason why 1 pair marked
their correct answer as incorrect. (See also Table 40.)

The larger majority of both groups (groups with the correct answer and groups

with a wrong answer to the third equation = 0) had marked their answer

as correct on the worksheet after seeing the %\?ojiframAlpha answer. Those pairs
who had the correct answer understood how WolframAlpha got the wrong answer
and that their answer is correct and the CAS answer is not. Only one pair marked
their right answer as wrong after seeing the WolframAlpha answer. They proba-
bly believed in CAS more than in themselves. The pairs with an incorrect answer
saw the WolframAlpha (wrong) answer and were very happy, as the answers were
exactly the same. Of course, they marked their answer as correct. Four pairs
made some changes with the green pen after solving the equation with Wolfra-
mAlpha. Two of them changed their correct answer to incorrect answer (they got
the same answer as the WolframAlpha). One pair had a completely wrong answer,
which was not equivalent to WolframAlpha answer. After seeing the CAS answer
they corrected the incorrect answer to another incorrect answer, but this one was
equivalent to the CAS answer. (See also Table 41.)

The opinions about correctness of the WolframAlpha answer were quite dif-
ferent. The students had to make different choices for different equations. The

3
CAS answer of the first equation, sin(4x+2) = \2[, was correct. The correctness

of the solutions in case of this equation was identified with the highest degree of
accuracy (71%). However, as the form of the WolframAlpha answer of the first
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Students’ opinion about correctness of CAS

correct | partially | incorrect | do not

correct know
Math. correct 8 4 12
Math. incorrect 10 7 17
Math. particular/general 5 5
Math. incorrect — correct 4 4

27 11

Table 42. sin(4x+2) = v/3/2. Correctness of students’ answer / students’ opinion about
correctness of CAS answer

Students’ opinion about correctness of CAS
correct | partially | incorrect | do not
correct know
Math. correct 11 5 3 19
Math. incorrect 10 1 1 2 14
Math. particular/general 1 1 1
Math. incorrect — correct 1 1
23 7 1 6

Table 43. 2sin2xcos2x+-cos2x = 0. Correctness of students’ answer / students’ opinion
about correctness of CAS answer

Students’ opinion about correctness of CAS
correct | partially | incorrect | do not
correct know
Math. correct 3 12 4 19
Math. incorrect 13 1 14
Math. correct — incorrect 1 1 2
Math. incorrect — 1 1
CAS like incorrect
18 1 12 5
tan’ x ..
Table 44. = 0. Correctness of students’ answer / students’ opinion about correct-

anx
ness of CAS answer
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equation is quite complicated, it is likely that most of the students only believed
that the CAS answer was correct (perhaps it shows that students always trust the
system even if they do not understand the answer). (See also Table 42.)

We count the answer of the second equation, 2sin2xcos2x + cos2x = 0,
produced by WolframAlpha as partially correct (because a partial solution was
needed, but CAS gave a general solution). The quite low rate (19%) of adequate
identifications of correctness in the case of the second equation could be explained
by the fact that many pairs (62%) counted the general solution as correct. It is an-
other question why they thought that the CAS general solution, which differs from
their general solution, is correct. (See also Table 43.) It is likely that, again, they

trusted the CAS. 5

t
The WolframAlpha answer of the third equation, tan = 0, did not coincide

with the correct answer as taught in school. The correc?gption would have been
to select that the WolframAlpha answer is incorrect. It was quite confusing for the
students. Twelve pairs (32%) said that the CAS answer is incorrect and all of them
got the correct answer in manual calculations. Three pairs with the right answer
had marked that the CAS answer as correct. Of course, those students who had
the incorrect solution (same as CAS) thought that the CAS answer was correct.
(See also Table 44.)

Are students able to ascertain equivalence/non-equivalence? There seem to be
different "hindrances’ to identification of equivalence/non-equivalence in case of
different equations. The form of the WolframAlpha answer of the first equation,

3
sin(4x +2) = \Zf’ was so different and unexpected that the students possibly

made simply a guess about equivalence (only 5 pairs found that their answer was
equivalent with the CAS answer (when it actually was equivalent)). Students with
an equivalent answer to the CAS answer said that the answers are not equivalent
and vice versa (4 pairs marked that answers are not equivalent and 3 pairs selected
the option "do not know" when the answers were equivalent; 4 pairs decided that
the answers are equivalent while the students’ answer and the CAS answer were
not equivalent). The issue of equivalence was not explored in great depth on the
worksheets. (See also Table 45.)

The small percentage (13%) of adequate identifications in case of the second
equation was caused by the task (find the particular solution). The choices offered
to the students were only that answers are equivalent or not equivalent. Maybe
if the worksheet had the choice "general solutions are equivalent”, the number
of adequate identifications would have been higher. As it was, adequate iden-
tification was possible only if the students presented a general solution which
was equivalent to the WolframAlpha answer (and they said that the answers are
equivalent, 1 pair) or the students gave a wrong general solution and marked the
answers as non-equivalent (4 pairs). Most of the students chose the equivalence
(16 pairs). This is not a wrong choice because general solutions were equivalent in
12 cases. 10 pairs marked the non-equivalence. Again this is not a wrong choice
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Students’ opinion about equivalence
equivalent | non-equivalent | do not
know
Math. equivalent 5 4 3 12
Math. non-equivalent 4 9 4 17
Math. particular/general 2 2 1 5
Math. non-equivalent 1 2 1 4
— equivalent
12 17 9

Table 45. sin(4x+2) = v/3/2. Equivalence of students’ and CAS answer / students’
opinion about equivalence of their and CAS answer

Students’ opinion about equivalence

equivalent | non-equivalent | do not

know
Math. equivalent 1 2 3
Math. non-equivalent 4 6 14
Math. particular/general 10 6 3 19

Math. non-equivalent 1 1
— particular/general

16 10 11

Table 46. 2sin2xcos2x + cos2x = (. Equivalence of students’ and CAS answer / stu-
dents’ opinion about equivalence of their and CAS answer

T
as the particular answer (—7/12) and the general answer (x = j:Z +nw, ne’Z

T nm . . . .
andx = (—1 )"+1 — + —, n € Z) are not equivalent. One pair revised their wrong

solution and improved it (finding the correct answer), but this answer is not equiv-
alent to the CAS answer (because it is a particular solution). (See also Table 46.)

The high percentage (84%) of adequate identifications in case of the third equa-

. tan? x
tion,

=0, was caused by the task as well. Fifteen pairs had exactly the same
anx
wrong answer as WolframAlpha (13 pairs had wrong solution and 2 pairs had the

Students’ opinion about equivalence
equivalent | non-equivalent | do not
know
Math. equivalent 13 13
Math. non-equivalent 1 17 1 19
Math. particular/general 1 1
Math. non-equivalent 2 1 3
— equivalent
16 19 1

tan2 x

Table 47.

= 0. Equivalence of students’ and CAS answer / students’ opinion about
anx
equivalence of their and CAS answer
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right solution and corrected it to incorrect with the green pen). Of course, all of
them marked the answers as equivalent. Nineteen pairs had the correct answer.
The identification of equivalence/non-equivalence of their answer and the CAS
answer was quite easy but still some pairs did not identify it properly (2 pairs).
(See also Table 47.)

To conclude, the identification of equivalence/non-equivalence depends very
much on the equation and the task. If the students’ answer and the CAS an-
swer looked rather different, then the students did not know how to determine
equivalence/non-equivalence and quite often did it incorrectly. Equivalence/non-
equivalence of particular and general solutions is very questionable. However, in
case of some equations, where the CAS answer is the same as a possible student
answer or very different (like some solution/ no solutions), it can be done very
well.

How do the students explain equivalence/non-equivalence? 1f the students’
answer and the CAS answer looked quite different, then the students usually did
not explain equivalence/non-equivalence at all. It is maybe one of the important
messages for improving the worksheet. A thorough comparison of different an-
swers would be very instructive, for example, for understanding general solutions
properly, including the role of the n. It is likely that more detailed subtasks would
be useful. It could also be a good idea to use equations where the answer is more
similar to the school (and hopefully the students’) answer.

Are there any differences in this regard between different types of equations
and answers? There were not enough equations for making extensive conclusions
but one could say that the choice of equation (particularly by answer) is very
important. It would be useful to evaluate the ’distance’ between the CAS answer
and school answer (or probable students’ answer). For example, the ’distance’
seems to be too large in case of the first equation.

As Sections 8.3 and 8.4 are closely connected, the common conclusions are
presented in the next section.

8.5. Conclusions and suggestions

Section 8.5 consists of three parts. Firstly, common conclusive part of Sections
8.3 and 8.4 is provided in Section 8.5.1. In Section 8.5.2, the issues problematic
to students are highlighted. Finally, with conclusion ideas for future work are
presented in Section 8.5.3.

8.5.1. Adequacy of identification of equivalence/non-equivalence
and correctness

Section 8.5.1 continues the search for answers to the research question RQ6: How
can students identify 1) the equivalence and non-equivalence between CAS and
their own answers; 2) correctness of CAS and their own answers of trigonometric
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equations during lessons based on comparative discussions on students’ answers
and CAS answers in pairs of students?

This section is based on the conclusive parts of the papers Tonisson (2013) and
Tonisson and Lepp (2015) but also includes details that were not in the papers.
The results on adequacy of identification of equivalence/nonequivalence and cor-
rectness were presented mainly by individual equations in Sections 8.3 and 8.4.
Here we try to look at the equations together.

However, we start with an overview of how the students took the chance to
correct their solution (with the green pen) after seeing the CAS answer. Table 48
includes data about all equations that were under observation in the papers. The
table includes columns for: year, equation, the number of solutions, the number
of solutions that were not the same as the CAS answer, the number of changed
solutions (with the green pen), and the number of successful changes (incorrect to
correct). The possible change is natural if the students’ answer and CAS answer
are different. If we account for all these cases, changes were made in 29% of the

solutions (43 of 146).

n2x

It should also be noted that, in case of
tanx

=0, the CAS answer was incor-

rect. Two pairs changed their correct answer to incorrect answer.

Year | Equation Solutions | Not | Changes | Success-
same ful
3
2012 | sin(4x+2) = g 17 17 6 0
2012 | tan®x = tanx 14 14 5 1
2012 | cos —%) =0.5 16 13 4 1
3
2013 | sin(4v+2) = % 38 38 13 4
2013 | 2sin2xcos2x+cos2x =0 37 37 11
7
2013 | Y g 37 27 4 2
tanx

Table 48. Change solution after seeing CAS answer

In many cases, the students did not try to correct their answer. Furthermore,
it seems that the students did not make enough use of the provided opportunity
to analyze differences, equivalence and correctness of their own answers and the
CAS answers in writing. In case of multiple-choice questions they selected some-
thing but thorough, judicious explanations were rather rare in questions with a
free-text answer.

It is not clear why quite so many students ignored the possibility to discuss and
change the different answer. Some ideas for the reasons could be the following:

o Such tasks are unfamiliar for students. Equivalence issues are not usual at
school.
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Year Equation Percentage of correct solutions
3
2012,2013 | sin(4x+2) = g 42%
2012 tan® x = tanx 71%
2012 cos (x— g) ~0.5 50%
2013 2sin2xcos2x+cos2x =0 51%
2
2013 Brx_y 51%
tanx

Table 49. Percentage of correct solutions

e The students’ answer was too ’far’ from the CAS answer. The large gap
reduced the motivation to even try to fill it.

e The students’ motivation was not geared towards complete understanding.
Rather, they preferred to move to the next equation.

Even without a thorough discussion, it was mostly clear what the students
thought about equivalence/non-equivalence and correctness of their answers and
CAS answers. The adequacy of the opinions was the main topic of the papers
Tonisson (2013) and Tonisson and Lepp (2015) and also Sections 8.3 and 8.4.

It should be noted that the topic of solving trigonometric equations is quite
complicated for students in general and this was the case in our lessons as well.
In spite of working in pairs and having formula sheets available, the percentage
of correct solutions was not very high in the group of analyzed equations (see
Table 49).

Solving of equations was an important part of the scenario in our experiment,
but still only one part. While solving equations is a common task in schools, ascer-
taining and explaining equivalence/non-equivalence and correctness of answers is
not so common.

When we look at the findings (from the lessons of 2012 and 2013) in Sections
8.3 and 8.4, it is possible to single out the cases where the students adequately
identified the equivalence/non-equivalence of their answer and the CAS answer.
The percentages of these cases are presented in Table 50. The cases where a non-
equivalent answer was changed to equivalent in the light of the CAS answer are
also included.

There seem to be different ’hindrances’ to identification of equivalence/non-
equivalence in case of different equations. It is likely that the percentage of ade-
quate identifications of equivalence/non-equivalence can be increased by drawing
special attention to the problematic issues before solving or on the worksheets. It
is important to decide what issues are relevant and useful for students.

It is probably possible to increase the percentage of student answers that are
equivalent to CAS answers. For instance, we could use simpler equations or give

3
more hints about the solution. (For example, sin(x) = \g instead of sin(4x +
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Year Equation Percentage of
adequate identification
2012 sin(4x+2) = \ég 41%
2012 tan® x = tanx 79%
2012 | cos(x— %) ~0.5 62%
2013 sin(4x+2) = \26 39%
2013 | 2sin2xcos2x+cos2x =0 13%
2013 an’x 89%
tanx

Table 50. Adequate identification of equivalence/non-equivalence

Year Equation Percentage of
adequate identification
3
2013 | sin(4x+2) = \zf 45%
2013 | 2sin2xcos2x+cos2x =0 57%
yJ
2013 tan"x _ 44%
tanx

Table 51. Adequate identification of correctness of students’ answer

2)= \f.) Principally, it is possible to compare the pre-developed solutions (also
correct or incorrect) with CAS answers but then the students would have a weaker
personal connection with the exercise.

Table 51 shows the percentage of adequate identifications of correctness of the
students” own answers and Table 52 shows the percentage of adequate identifica-
tion of correctness of CAS answers. These data was collected only in the lessons
of 2013 (not in 2012).

It is possible to draw following conclusions.

o Students quite rarely take the opportunity to change their answer after see-

Year Equation Percentage of
adequate identification
3
2013 | sin(dx+2) = ‘zf 71%
2013 | 2sin2xcos2x+cos2x =0 19%
2
2013 @y _g 33%
tanx

Table 52. Adequate identification of correctness of CAS answer
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ing the CAS answer.

o The discussion is not very thorough and students often prefer moving to the
next equation.

o Ascertaining and explaining equivalence/non-equivalence and correctness
of answers of trigonometric equations is complicated for many students.
There are differences between different equations.

It is possible to formulate several suggestions for different levels — the math-
ematics curriculum in general, the selection of concrete equations, and the orga-
nization of the lesson.

o The mathematics curriculum should include a more extensive explanation

of the topic of equivalence/non-equivalence.

o The equations for the lesson should be carefully selected. A too large gap
between possible students’ answers and CAS answers decreases motivation
for discussion. CAS answers that are the same as school answers could be
used at first.

o The scenario should be used with simpler topics at first. Trigonometric
equation is probably one of the most complicated topics in school mathe-
matics.

o A better explanation of the scenario, and motivation to discuss thoroughly
and to correct their answers after seeing CAS answer should be provided in
the introduction (and also during the lesson).

8.5.2. Problematic trigonometric issues revealed. Parameter n

The problematic issues that only emerge in the context of the used scenario are
discussed in Section 8.5.2.

As students initially solved the equations manually on the worksheet, their
mistakes were the same as they usually make in tests. These issues are not dis-
cussed here. We are interested in problematic issues that emerge in the context of
comparison of student answers and CAS answers.

Solving of trigonometric equations entails quite specific issues, for example,
n (or another parameter) in the answers of general solutions. If one solves the
trigonometric equation and finally uses formulae like

x =arcsinm+2nxw, n € Z
x=m—arcsinm+2nmw, n € Z

then n will “appear’ in the solution. If there are no mistakes, everything seems fine
and the solution is accounted as correct. Indeed, it is procedurally correct solution.
Nevertheless, students can have conceptual gaps in their knowledge. The study
revealed quite a lot of cases where students had trouble comparing two answers
where n had different meanings, even if they solved the equation correctly.

It should be noted that in Estonia mainly formula
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x=(—1)"arcsinm+nr, n € Z

is used in case of sinx = m instead of expressing two series separately. Therefore,
the students’ answer and the CAS answer were different in all cases of solving

3
sin(4x+2) = \2[ Attempts to explain equivalence by substitution of concrete

numbers to the general solution could be identified only in a very few cases.

The issue of parameter n is also connected to a peculiarity of Maxima. It
should be mentioned that the %zXXX form can be confusing for some students,
but it seems to be easily explainable. However, changing the %zXXX form could
be considered as a possible suggestion to CAS developers.

The following conclusions could be formulated.

e Even if a solution looks to be correct, students can have misunderstandings
and knowledge gaps that can remain hidden in the usual solving process
but could be uncovered through this scenario.

o The issue of parameter n is incoherent for many students. The comparison
of different series in answers was missing or inadequate in many cases.

o The differences between the CAS standard and the school standard can
cause additional obstacles.

The suggestions are also related to parameter 7.

o The meaning of parameter n should be explained more thoroughly to stu-
dents.

o There should be a discussion about the preference of formulae x =
arcsinm + 2nw and x = 1 — arcsinm + 2n7 instead of x = (—1)" arcsinm +
nw in case of sinx = m in (Estonian) school mathematics.

e [t could be helpful if %zXXX is replaced in Maxima.

8.5.3. Conclusion. Future work

In this section, after a brief conclusion, some ideas for further work are presented.

We can conclude that the method of asking students to compare their own
answers with CAS answers seems to have potential in the context of learning as
well as research, but further work is certainly needed. This type of scenario is also
usable with other topics. An experiment where irrational equation was introduced
in a school mathematics class is described in the article of H6im et al. (2015).

This style of comparison could contribute to the usage of computer-based tools
for doing mathematics in different ways. On the one hand, students can see a faster
and easier way to perform calculations. On the other hand, one should understand
that evaluating a CAS answer may not be a fast and easy exercise for students.
It is likely that the exercises facilitate the development of critical thinking ability
(particularly, with respect to computer algebra systems).

One could even say that having different answers compared to school solutions
is a part of the charm of CAS. It is possible to propose various lesson scenarios
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other than those used in the lessons described here. A discussion where all stu-
dents would participate could be very useful. The discussion could take place dur-
ing the same lesson, after solving and comparing, but it is also possible to arrange
the concluding discussion during the next lesson. In any case, the concluding part
is desirable, as students need feedback.

It is also possible to direct students to use CAS tools in the comparison of
answers. For example, they could try to substitute a solution into the equation,
simplify the difference of answers with the help of the CAS. Of course, it is pos-
sible that students compare their own answers with CAS answers as they did in
these lessons. Another possible task for students could be a comparison of the an-
swers of different computer algebra systems. In addition, one and the same CAS
could offer different answers with different commands or assumptions and these
answers could be also compared.

On the one hand, it is good when CAS answers are very school-like. On the
other hand, a moderate difference between the student and CAS answers can also
be positively challenging and useful. Specifying the degree of such moderation is
one of the most challenging tasks of further work as it leads to more questions.
For example, how would such a specification look like? Would it be possible to
work out indicators that qualify the type of answers?
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9. CONCLUSION

Firstly, the aims of the dissertations are repeated in the conclusion. Secondly, an
overview of the results by research questions is presented. Thirdly, the contribu-
tion to the work of different user groups is outlined, followed by ideas on possible
future work at the end of the chapter.

The dissertation focused on the differences between CAS answers and answers
expected from students in schools (school answers). A number of such differences
have been described in literature, but the exact locations and categories have not
been mapped. The first aim of the dissertation was to provide a systematic review
of the differences between CAS answers and school answers and the reasons for
their occurrence in equation solution tasks.

Although differences between CAS answers and school answers are often seen
as confusing and undesirable obstacles they can also be useful for teaching and
learning. The second aim of the dissertation was to propose a pedagogical ap-
proach for utilising the teaching opportunities offered by the differences between
CAS and students’ answers. The proposed approach was used in lessons on
trigonometric equations and data about students’ understandings and misunder-
standings was collected.

Some answers to the six research questions stated in the introduction of the
dissertation are summarized here.

RQI. Where differences between CAS and school answers could be detected
in equations within the school curriculum?

The answer to RQ1 was presented in Chapter 4 in tables 1-10, which included
127 equations. The equations were selected to test all important types of school
equations and potentially critical examples. All the equations of the test suite were
solved with 8 different CAS (GeoGebra, Maple, Mathematica, Maxima, Sage,
Wiris, WolframAlpha, and Xcas) and the differences between CAS answers and
school answers were analyzed.

The identified differences were broken down into 6 types, with one key cri-
terion being the comparison of whether a CAS answer includes more or fewer
solutions than the expected answer. The types of difference were: No difference,
Equivalent but different, More solutions than expected, Fewer solutions than ex-
pected, Did not solve or only some transformations are completed, Very compli-
cated answer.

Answers to linear and quadratic equations in case of all CAS were practically
the same as school answers. There were some differences in case of other types
of equations. In case of the literal equation, all CAS provided only the main
branch, which would not be a complete answer in the school context. In general,
GeoGebra answers had the least differences from school answers.

RQ2. How can the detected differences between CAS and school answers to
equations in the school curriculum be described and classified?

The above-described set-theoretic relations between answers — whether the
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CAS answer includes more or fewer solutions than the expected answer — re-
sulted in one possible classification. As a second option, a content-oriented classi-
fication is presented in Chapter 5. The answers were analyzed in order to describe
and classify the differences between CAS and school answers. The classifica-
tion was based on the form, completion, dependence on the number domain, and
branching of answers and automatic simplification of equations. A type based on
the form of equation input, which was not just about the answer, was also added.
Each type was divided into subtypes (phenomena) and 29 such subtypes were
identified.

The differences caused by the number domain and branching were also dis-
cussed separately in the light of RQ3 and RQ4.

RQ3. When do CAS outputs offer correct and incorrect answers for domain-
sensitive examples, specifically for expression simplification and equation solv-
ing?

The examples from the test suite (18 examples — calculations, simplifications,
equations) were solved by different CAS while using the features for creation
of a school-like situation, particularly establishing the domain. Different CAS
have different possibilities (commands, packages, buttons, etc.) for determination
of the domain of a calculation result, variable value, or equation solution. The
correctness of CAS answers was evaluated and the answer to RQ3 was presented
as a table in Chapter 6.

RQA4. How can branching be described for answers provided by different CAS
software; by different school solutions and textbooks; by the possibilities of math-
ematical approaches for expressions simplifications and equations solving?

Comparison of school, CAS and mathematically branch-complete answers was
presented by encoding different evaluations of branching diversities (EBD) in
Chapter 7. For example, the evaluation CAS < SCH = MATH expresses that
CAS answer is less complete (<) than school and mathematically branch com-
plete answers, which present branches similarly (=). The answer to RQ4 was
presented as a set evaluations (EBD) with comments added for each topic where
branching takes place. Four types of EBD were detected (SCH = MATH < CAS,
CAS =SCH < MATH, SCH < CAS = MATH and CAS < SCH = MATH).

In a long-term perspective, it could be said that there were some bugs that I
found in the beginning of my research before the year 2000. Later, the differences
between CAS and school answers have been mainly related to the choices made
by CAS authors. The issues (such as domain and branches) have been similar over
the years.

RQ5. What pedagogical approaches could be proposed to utilize the teaching
opportunities offered by the differences between CAS and students’ answers?

Chapter 8 was dedicated to finding a suitable pedagogical approach. In addi-
tion to other criteria, it was required that the approach should support students’
conceptual understanding with keeping the balance between procedural skill and
conceptual understanding. Furthermore, the approach should provide data about
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students’ understanding and misunderstanding.

A lesson scenario, based on comparative discussion on students’ answers and
computer algebra system answers in pairs of students, was proposed and applied.
Students were charged with the task of comparing the answers offered by a CAS
with their own answers. The topic of trigonometric equations, which has several
useful properties, was chosen for testing in the mathematics class. One could
say conclusively that this scenario promotes student discussion about mathemat-
ics throughout the lesson. The students perceived this lesson format as rather
beneficial.

Furthermore, data was collected to answer RQ6.

RQ6. How can students identify 1) the equivalence and non-equivalence be-
tween CAS and their own answers; 2) correctness of CAS and their own answers
of trigonometric equations in lessons based on comparative discussions on stu-
dents’ answers and CAS answers in pairs of students?

It could be mentioned that the students identified the equivalence and non-
equivalence and correctness of CAS answers and their own answers of trigono-
metric equations relatively poorly. It was found that even if a student’s solution
looks to be correct, students can have misunderstandings and knowledge gaps.
The issue of parameter n in periodic solutions of trigonometric equations was
confusing for many students.

The dissertation offers broadly two results:

e A review (and classification) of the differences between CAS answers and
school answers in case of equations;

e A pedagogical approach based on comparative discussion on students’ an-
swers and computer algebra system answers in pairs of students, which is
also used as a data collection tool to obtain insights into students’ under-
standings and misunderstandings.

The results provide a contribution to the work of different user groups: CAS
developers, teachers, curriculum designers, textbook authors, and researchers.

For CAS developers, the review gives information for improvement of CAS so
that they would be better at meeting the needs of the school context. It is possible
to improve the options for selecting a school-friendly output. The warning about
possible differences can be improved as well.

For teachers, the review may provide encouragement for increased use of
CAS, as the possible differences are known and can be either used for learning
or avoided. It provides information for explaining the differences between CAS
answers and school answers to students. The review also supports teachers in
choosing CAS and tasks. The proposed approach complements the repertoire for
stimulation of mathematical discussion among students. It is also applicable as
a tool for collecting data in order to obtain insights into students’ understandings
and misunderstandings. The outlined issues of students’ misunderstandings in
case of trigonometric equations can be used to prevent them.
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Curriculum designers, textbook authors and others who are responsible for
school mathematics at a more general level could, with the help of the review,
fine-tune the use of CAS in the development of mathematics curricula, textbooks,
etc., by either avoiding or highlighting the problematic examples. Furthermore,
the proposed pedagogical approach may inspire them to include such methods in
curricula or textbooks.

Researchers may be inspired to study the differences between CAS answers
and school answer and propose and test new ways of utilization of such differ-
ences. The proposed approach can be used as a research tool for studying stu-
dents’ understandings and misunderstandings. It could also be improved and used
for other topics.

The conclusion ends with some ideas for future work related to this disserta-
tion. It is possible to create a similar review of the differences between CAS an-
swers and school answers for other CAS or CAS versions. Certain issues seemed
persistent and the same examples could be used for testing any new CAS or ver-
sions. Such review could be done periodically. Similar school-oriented reviews
could also be created for topics other than equations. Besides symbolic solving
methods, numeric solving methods could also be examined. It should be men-
tioned that no general large-scale comparisons of CAS have been published after
Wester, 1999b. One reason could be that the users of contemporary CAS have
different options for customising a CAS and it is not easy to put the answers of
a CAS in one row. A description of possible options of different CAS could be
interesting.

There amount of data collected during the experimental lessons was larger than
has been used in this dissertation. For example, there is room for a more thorough
study of the discussions among students.

The pedagogical approach that was proposed and tested in this dissertation
could be used for other topics beyond trigonometric equations. It has already
been attempted in case of irrational equations (Hoim et al., 2015). Similarly,
understandings and misunderstandings could be studied in other topics. The ap-
proach could be improved, for example, by adding other activities before and after
the work in pairs. Moreover, the approach could be used systematically in case of
different topics, starting with simpler ones.
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Appendix A. CHOICE OF EQUATIONS

The following tables present why particular equations are included to the test suite
used in Chapter 4. The source is marked as follows:
e common — the equation is or could be in textbooks, for example,
2x% —4x—5=0;
e developed — the equation is developed from trivial equations by attaching

an ’intriguing behaviour’, for example, x + —— =1+ I instead of
X—

X—
x = 1. In some cases, triviality in disguised, for example, x + 1 = x or
x—(x—1) =01instead of 1 =0;

e by reference, for example, (Kolyagin et al., 1977).

Equation Answer Why Source
2x—4=0 2 ax+b=0 common
I

2x—-3=0 15 or 3 or 1.5 | mixed number common
2x=0 0 b=0 common
x+1=x 0 pseudolinear b # 0 | developed
x—(x—1)=0 0 pseudolinear b # 0 | developed
x—1=1-(2-x) | R pseudolinear b =0 | developed

Table 53. Linear equation
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Equation

Answer

Why

Source

PZ-1=0

+1

ax*+c=0

common

x2+x:0

0,—1

ax* +bhx=0

common

X —3x+2=0

1,2

with 2
real roots,
b —4ac > 0

common

26> —4x—5=0

=
B~

with 2
real roots,
b? — dac > 0,
"ugly"

common

¥ —2x+1=0

1,1

with 1 dou-
ble root,
b? —4dac =0

common

P+x+1=0

no real roots,
b? — 4ac < 0,
out of range

common

¥ =—1

out of range

developed

2(x—1)(x=2)=0

1,2

product =0

common

(xr—Dx=2x+1)(x=1)

+1

same factor in
both sides, dan-
ger in division
both sides

developed

pseudoquadratic

common

0,1,—1

y3 = y same
factor in both
sides, danger in
division  both
sides

common

x475x2+4:O

—1,1,-2,2

biquadratic

common

Table 54. Quadratic equation
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Equation Answer Why Source
I
-=1 1 basic common
X
1
-=0 0 out of range developed
X
1
x+—-—=- 0 extraneous developed
rod +=+, to
quadratic
| I
x+ =14+ — 0 extraneous developed
x—1 x—1
+=+, to
quadratic
2 x+1
al x?— =" 1 0 extraneous developed
*- r= +=+, already
common  de-
nominator
I
X424 P 3x+ 1 2, extran. 1 extraneous based on
o x- +=+, to | (Boltyanskii et
quadratic al., 1972)
I
al 1= I 0 extraneous /=/ | developed
b 1/0=1/0?
—1
*a 1 ) =1 0 extraneous */ developed
X
7
3x—-2
o 2, extran. 1 to  quadratic, | developed
x—1 x—1
extranous
1
. -1,2 to  quadratic, | common
x—1 2 .
proportion
al ! e 2, extran. 1 t drati
- = , extran. 0 uadratic, | common
w2 R2-1 42 A
quadratic in de-
nominator, not
yet  common
denominator
1 5
X+ S =2——+x +1, 3 + % reciprocal common
equation,
substitution
2
— =0 0 uncertainty developed
X 2
Y[y

Table 55. Fractional equation
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Equation Answer Why Source
Vx=1 1 basic common
Vi=-1 0 out of range developed
\/}Jr Vx—1=-2 0 out of range common
V2x=vx—1 0 R—>C—>R /-2 = | developed
V=2
\/ X2 +2=1+3x -1 sqrt = sqrt common
x— \/1 —x2=1 1, extran. 0 1 involution, 1 rad- | common
ical, to quadratic,
extraneous
x4+ \/ 1-x2=1 1,0 1 involution, 1 radi- | common
cal, to quadratic
Vi+d4+vVx+1=3 0 2 involutions, 2 rad- | common
icals, to linear
Vx+54+v20—x=7 4,11 2 involutions, 2 rad- | common
icals, to quadratic,
2 solutions
V2x+1+vVx—-3=4 4, extran. 84 2 involutions, 2 rad- | common
icals, to quadratic,
extraneous
Jx=2 8 cbrt common
Voax=vx—1 1,2 1 involution, | developed
cbrt=cbrt, to linear
Va2 42 =3x 1,2 1 involution, 2 | common
radicals,cbrt=cbrt,
to quadratic
\3/; —3yx+2=0 1,8 quadratic(cbrt) common
2\/x2 —2x+4— 0,2 subst common
Va2 —2x+9=1
Vx+45—vVx—16=1 80,—109 using initial equa- | common
tion in solving
\/ XC+l=x-2 0 repeat Wester (Wester,
1999b)
x+vVx=2 1 repeat Wester (Wester,
1999b)
2v/x+3x! A_2=0 L repeat Wester (Wester,
16 1999b)
% =0 0 ¥y developed
XVx=+/x 0,1 Y=y developed
x+vr=+x—1 0 extraneous +=+ developed
- ! 0 extraneous /=/"| developed
=1 vx—l 1/0=1/0?
\/xi2 =1 +1 absolute value developed

Table 56. Irrational equation
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Equation Answer Why Source
2¥ =8 3 basic common
2Y=17 log, 7 basic, "ugly" common
2Y=—1 0 out or range developed
22 — o~ -1 ' = 8@ common
2T ¥ =3 0 linear(f(x)) common
4°-3.24+2=0 1,0 quadratic(f(x)) common
: I
27 o 1,2 take logarithm, | common
4 .
to quadratic
(x—6)*=2* 8,4,0 equal  expo- | literature
nents
xX=x 1,—-1 repeat Wester (Wester,
1999b)
Table 57. Exponential equation
Equation Answer Why Source
doe (¥ +3) — ¢4 extran. 1,—1 exponent common
logjgx =2 100 basic common
log, 100 =2 10 basic common
log, 90 =2 3v10 "ugly" common
I
logfox: loggx 1,10,E Y=y common
1 2
9810 _ extran. 1 ¥y developed
log)ox
log;o (2x) =logg(x—1) 0 R—>C-—>R developed
log, 1 4=2 1, extran. —3 definition common
logs (logy X) = 0 2 D) common
log, (x—2)+log, (x—3) =1 4, extran. 1 2 logarithms common
log10x2 +logipx =3 10 linear(f(x)) common
log%ox —3logipx+2=0 10,100 quadratic(f(x)) common
x+logx=logx—1 0 extraneous +=+ | developed
I
LI 0 extraneous /=/ | developed
logx logx 1/0=1/0?
£1°8% = 100 10\/§, 10-V2 complex common
Vlogx =log+/x 1, & repeat Wester (Wester,
1999b)

Table 58. Logarithmic equation
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Equation Answer Why Source
sinx =0 nw basic common
I T
sinx = 3 (=" 3 +nm basic common
T
sin(3x) = —1 (—1)"*! 3 + | lin.arg common
nm
V2 :
2 b T
sin(x— =)= — =~ —(=1)"=+ | linarg common
2 3 4
nm
3 1
sin(4x+2) = % —5 lin.arg common
T
1=
=1"3
T
n-Z
4 I
sinx = 0 (—1)"arcsin 0 4 "ugly" developed
nm
sinx =2 0 out of range common
cosx =0 j:g +2nm basic common
T T 2 T
cos(x — g) =0.5 3 + 3 +2nrw lin.arg, decimal | common
T T
cos(x— g) =1/2 3 +—+2nm lin.arg common
cosx =2 0 out of range developed
tanx =0 nw basic common
3 b2
tanx = — £ 5 +nr basic common
tanx =2 arctan2 +nw "ugly" common
T
tanx = tan 1 1 +nr tan = tan developed
4
tanx = tan 5 0 out of domain developed
T .
cotx=0 5 +nm basic common
T
cotx =3 5 +nrw basic common
cotx = cot0 0 out of domain developed

Table 59.

Trigonometric equation (1)
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Equation Answer Why Source
sinx = cosx z +nm basic (Wester,
4 1999b)
tanx = 1 z +nm basic (Wester,
4 1999b)
sinx = tanx O+nm, 0+n2m | basic (Wester,
1999b)
T T . . .
tan(x+ —) =2cotx— 1 — + nm, | miss solution | (Kolyagin et
4 2
1 = al., 1977)
arctan 5 +nn 2
tan’ x = tanx nw, ig +nw y3 =y developed
tan’ x 2
o 0 ; y/y developed
2sinxcos2x — 1 4+ 2cos2x — | £— + 7n, | factors common
sinx =0 761:
——+2nm
7
2(sinx+cosx) +sin2x+1=0 | — 1 +nm subst.  sinx + | common
cosx =t
2 1 T .
cos(x” —2) = 5 j:\/2 + 3 +27n| trig(quad(x)) common
sin?x—3sinx+2=0 g +27nn quad(trig(x)) common
3sin’xcos?x—cos’x =0 2n + 1) g, homogeneous common
T
(6n + i 1) o’
(6n—1) G
Table 60. Trigonometric equation (2)
Equation Answer Why Source
x| =1 +1 basic common
[x—1/=2 -1,3 abs(lin), 2 solu- | (Wester,
tions 1999b)
[2x—1] = —3x -1 abs(lin), 1 solu- | (Wester,
tion 1999b)
x| =—1 0 out of range common
x—1]+2x+1]=3 +1 2 absolute, 2 | common
solutions
[2x—1]=-3 -1 2 absolute, 1 | common
solution
x—1+x+1]=2 [—1,1] interval common
[2x+5] = |x—2| —1,-7 repeat Wester (Wester,
1999b)
x+ i = i 0 extraneous +=+ | developed
| 1x]
—_= 0 extraneous /=/ | developed
i 1/0=1/0?

Table 61. Equation that contains an absolute value of an expression
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Equation Answer Why Source
ax=0 if a # 0 then 0, | basic (Stoutemyer,
else R 1991)
ax=1 1 basic (Stoutemyer,
¢ 1991)
ax’ —3x+2=0 if a = 0| usual common
then %, else
3+v/9—8a
2a
ax’ +bx+c=0 branches formula developed
ax+b=0 branches formula developed
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Appendix B. QUESTIONNAIRES

Trigonomeetrilised vorrandid. Paarist66

Eelankeet

Arvutialgebra stisteemidega saab lahendada véga paljusid matemaatikailesandeid. See, millisel moel
nende siisteemide voimsust matemaatika Sppimisel ja Opetamisel saab kasutada, on jatkuvalt arutelu
all. Tana proovime Uhte ldhenemist, mille sobivust ja kasulikkust pitiame ka hinnata. Analttsimiseks on
vajalik véimalikult korralikult andmeid koguda ja selle jaoks on Teiega koost6 vaga oluline. Teie
personaalseid andmeid ei avaldata.

Ulesannete lahendamine toimub paarides. Samas on igal iilidpilasel vdimalus jadda eriarvamusele, mida
siis palun ka lahenduses markida. Samuti vastatakse selle ankeedi kiisimustele eraldi.

Olge Te tanatud katsetusel kaasal6omise eest!

Eno Tonisson
Palun vastake neile kiisimustele enne vérrandite lahendamisele asumist
Nimi:

Hinnake viiepallisiisteemis (vdib lisada ka + ja -) oma koolimatemaatika taset:

Kui sageli olete kasutanud jargmisi arvutialgebra stisteeme?
Maxima ei olegi / iiksikutel juhtudel / ménikord / sageli
Wiris ei olegi / iiksikutel juhtudel / ménikord / sageli
WolframAlpha eiolegi / iiksikutel juhtudel / ménikord / sageli
M&ni muu arvutialgebra siisteem

ei olegi / iiksikutel juhtudel / ménikord / sageli

ei olegi / iiksikutel juhtudel / ménikord / sageli

Kui palju olete varem koolis tundides paarist66d teinud?
mitte kunagi / iiksikutel juhtudel / ménikord / sageli
Kui palju olete varem ulikoolis tundides paaristo6d teinud?

mitte kunagi / iiksikutel juhtudel / ménikord / sageli

Kuivord teile tundides paarist6o meeldib?
iildse ei meeldi / pigem ei meeldi / raske hinnata / pigem meeldib / viga meeldib

Kommentaarid:
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Trigonomeetrilised vérrandid. Paarist66

Jarelankeet

Kui suur oli umbes teie panus llesannete lahendamisel? (50 %, kui m&lema paarilise panus oli

umbes sama suur)

Palun hinnake, kuivord olete ndus jargmiste vdidetega.

Uldse Pigem | Osaliselt | Pigem | Taiesti
pole pole | ndus, ndus ndus
ndus ndus | osaliselt
mitte
Mulle meeldis neid tlesandeid lahendada 1 2 3 4 5
paaristéona.
Paarist606 sujus meie paaril hasti. 1 2 3 4 5
Paarilise isikuomadused olid minuga koosto6ks 1 2 3 4 5
sobivad.
Paarilisega arutamine oli &petlik. 1 2 3 4 5
Paaristooga laks kauem aega, kui oleks ldinud 1 2 3 4 5
liksi tootades.
Paarist66 tulemusena sai t66 tulemus parem, kui 1 2 3 4 5
oleks saanud iiksi tootades.
Sain tanu paaristoole enam teadmisi ja oskusi, 1 2 3 4 5
kui oleksin saanud uksi tootades.
Paariliselt sain nduandeid ja selgitusi tilesannete 1 2 3 4 5
kohta.
Paarilisel oli enam teadmisi ja oskusi kui minul. 1 2 3 4 5
Olin arutelus juhtivam pool. 1 2 3 4 5
Tooleht soodustas arutelu. 1 2 3 4 5
Toolehe tlesanded olid paaristooks sobivad. 1 2 3 4 5
Mé&lemal paarilisel peaks olema eraldi técleht. 1 2 3 4 5

Uldised kommentaarid eksperimendi kohta, markused materjali kohta jms.
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Appendix C. FRAGMENT OF WORKSHEET

Ulesanne 1. Lahendage vérrand sin(4x + 2) = ‘/2—3 (ESIALGU ILMA ARVUTITA!)

Palun mérkige kellaaeg: (kirjutage sinise/musta kirjutusvahendiga)

Vihjeid: Lahendada kdigepealt vorrand 4x+2 suhtes.

1.1. Kui kindlad te oma vastuse digsuses olete?

vdga kindlad / isna kindlad / ei oska éelda / iisna ebakindlad / vidga ebakindlad

Palun lahendage niiiid vorrand siisteemiga WolframAlpha kasutades kasku solve.

& WolframAlpha'z

| solve(sing*e+2)=sort(2)/2) 8]

- B-|m 5 Exarmnples Random

1.2. Kuivord ootamatu tundub arvutialgebra stisteemi vastus esmapilgul?

véiga ootamatu / iisna ootamatu / ei oska 6elda / iisna oodatud / téiesti oodatud
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Palun analiiiisige enda vastuse ja arvutialgebra siisteemi vastuse kooskdla!

e Kuion vaja oma eelmise lehekdlje lahendust tdiendada-parandada, siis palun tehke
seda rohelise kirjutusvahendiga.

1.3. Milles seisnevad teie vastuse ja arvutialgebra siisteemi vastuse erinevused?

1.4. Kuidas on teie vastus ja arvutialgebra stisteemi vastus omavahel seotud? (Analtitsige
samavaarsust / mittesamavaarsust, erilahendite / tldlahendite seost jms.)

1.5. Palun hinnake niitd enda (vajadusel parandatud) vastuse digsust
dige / osaliselt dige / vale / ei oska éelda

1.6. Palun hinnake arvutialgebra siisteemi vastuse digsust
dige / osaliselt dige / vale / ei oska 6elda

1.7. Palun hinnake enda (vajadusel parandatud) vastuse ja arvutialgebra siisteemi vastuse
samavaarsust

on samavddrsed / ei ole samavddrsed / ei oska delda

Kommentaarid!
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SUMMARY IN ESTONIAN

Oodatavate vastuste ja arvutialgebra susteemide vastuste
erinevused koolimatemaatika vorrandite puhul

Arvutialgebra siisteemidega saab lahendada erinevat tiilipi matemaatika-
iilesandeid, sealhulgas koolimatemaatika vorrandeid. Sageli langevad arvuti-
algebra siisteemide vastused kokku koolikontekstis oodatavate vastustega (kooli-
vastustega), vahel aga mitte. Sellised ootamatud arvutialgebra siisteemide vas-
tused on tihti kiill matemaatiliselt korrektsed, aga mone teise standardi jirgi, néi-
teks kompleksarvude vallas.

Kéesoleva dissertatsiooni iiheks eesmirgiks oli anda lilevaade arvutialgebra
siisteemide vastuste ja koolivastuste erinevustest ja nende pohjustest vorrandite
puhul. Selleks piistitati uurimiskiisimused, mille kaupa jargnev kokkuvéte on iiles
ehitatud.

1. uurimiskiisimus. Kust véib leida erinevusi arvutialgebra siisteemide vastuste
Jja koolivastuste vahel koolimatemaatika vorrandite puhul?

Vastusena sellele kiisimusele on 4. peatiikis tabelid, mis sisaldavad 127 vorran-
dit. Need vorrandid on valitud kdigi oluliste koolimatemaatika vorranditiilipide
testimiseks. Kdik vorrandid on lahendatud 8 erineva arvutialgebra siisteemi-
ga (GeoGebra, Maple, Mathematica, Maxima, Sage, Wiris, WolframAlpha, and
Xcas). Leitud erinevused on jaotatud 6 tiiiipi, kusjuures pdhikriteeriumiks oli, kas
arvutialgebra siisteemi vastus sisaldab rohkem vdi vihem lahendeid kui kooli-
vastus.

Lineaarvorrandite ja ruutvorrandite puhul olid arvutialgebra siisteemide vas-
tused praktiliselt samad kui koolivastused. Teiste vorranditiitipide puhul leidus ka
erinevusi. Parameetrit sisaldavate vorrandite puhul andsid arvutialgebra siistee-
mid ainult peaharu, mis ei ole koolikontekstis tdielik vastus. Siisteemide 1dikes oli
iildiselt GeoGebra vastuste puhul kdige vihem erinevusi koolivastustest.

2. uurimiskiisimus. Kuidas saab koolimatemaatika vorrandite puhul leitud ar-
vutialgebra siisteemide vastuste ja koolivastuste erinevusi kirjeldada ja liigitada?

Kui eelkirjeldatud liigitus pohines pigem lahendite arvude vordlemisel, siis 5.
peatiikis toodud liigitus on sisupdhisem. See pdhineb vastuste kujul, tdielikkusel,
arvuvallast séltuvusel ja harunemisel ning vorrandite automaatsel lihtsustamisel.
Lisaks baseerub iiks tiiiip vorrandi sisestamisele. Tiilibid on veel omakorda jaota-
tud alamtiitipideks, mida on kokku 29.

Arvuvallast ja harunemisest tulenevaid erinevusi késitleti eraldi 3. ja 4.
uurimiskiisimuse abil.

3. vurimiskiisimus. Millal on arvutialgebra siisteemi vastused korrektsed ja
millal mittekorrektsed arvuvallast séltuvate avaldise lihtsustamise ja vorrandi la-
hendamise ndidete puhul?

Testikomplekti 18 iilesannet (arvutamisi, lihtsustamisi, vorrandeid) lahendati
arvutialgebra siisteemidega Derive, Maple, Mathematica, Maxima, MuPAD, TI-
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92+, TI-nspire ja WIRIS.

Kasutati arvutialgebra siisteemide voimalusi koolilaadse olukorra (eriti just ar-
vuvalla méttes) tagamiseks. Erinevates arvutialgebra siisteemides on selleks erine-
vad vdimalused (késud, paketid, nupud vms). Arvutialgebra siisteemide vastuste
korrektsuse hinnangud on esitatud tabelina 6. peatiikis.

4, uurimiskiisimus. Kuidas saab kirjeldada erinevate arvutialgebra siisteemi-
de vastuste, erinevate kooli (6piku) vastuste ja matemaatiliselt tdiielike vastuste
harunemist avaldiste lihtsustamise ja vorrandite lahendamise iilesannete korral?

Koolivastuse, arvutialgebra siisteemi vastuse ja matemaatiliselt tdieliku vastuse
vordlus esitati 7. peatiikis vastavate vorratuste abil. Niiteks CAS < SCH = MATH
nditab, et arvutialgebra siisteemi vastus ei ole nii tdielik (<) kui koolivastus ja
matemaatiliselt tdielik vastus, mis esitavad harusid sarnaselt (=). Analiiiisiti koiki
avaldiste lihtsustamise ja vorrandite teemasid, kus harunemist esineb. Leiti nelja
tiitipi variante (SCH = MATH < CAS, CAS = SCH < MATH, SCH < CAS =
MATH ja CAS < SCH = MATH).

Koolivastuste ja arvutialgebra siisteemide vastuste erinevusi saab kasutada
Opetamisel ja dppimisel. Sellega seoses piistitati 5. uurimiskiisimus.

5. uurimiskiisimus. Milliseid pedagoogilisi lihenemisi saab vdlja pakkuda ar-
vutialgebra siisteemide vastuste ja oppijate vastuste erinevuste kasutamiseks?

8. peatiikis otsiti lihenemist, mis toetaks Oppijate kontseptuaalset arusaamist,
kusjuures siilitades tasakaalu protseduuriliste oskuste ja kontseptuaalse arusaa-
mise vahel. Samuti pidi lihenemine andma vGimaluse koguda andmeid dppijate
arusaamise kohta.

Dissertatsioonis on pakutud vélja tunnistsenaarium, mis pohineb arvutialgeb-
ra siisteemide vastuste ja Oppijate endi vastuste vordlemisel paaristodna. dppijad
pidid kdigepealt lahendama iilesande ise pabertoolehel ja seejarel arvutialgebra
slisteemiga ning seejérel vastuseid vordlema. Seda ldhenemist testiti trigonomeet-
rilisi vorrandeid kisitlevates tundides esimese aasta iilidpilastega. Trigonomeetri-
liste vOrrandite teema valiti, sest nende puhul on vastuste vdimalik erinev esitus
loomulik. Pakutud lihenemine soodustas Opilastevahelist matemaatilist arutelu.
oppijad pidasid seda formaati kasulikuks.

Lisaks dpetamisele ja dppimisele saab selle formaadiga koguda andmeid dppi-
jate teemamdistmise kohta. Antud juhul piistitati jargmine uurimiskiisimus.

6. uurimiskiisimus. Kuidas suudavad oppijad tuvastada 1) arvutialgebra siis-
teemide ja endi vastuste ekvivalentsust voi mitteekvivalentsust, 2) arvutialgebra
siisteemide ja endi vastuste korrektsust trigonomeetrilisi vorrandeid kiisitlevad
tunnis, mis pohineb arvutialgebra siisteemide vastuste ja oppijate endi vastuste
vordlemisel paaristoona?

Voib oelda, et dppijad tuvastasid arvutialgebra siisteemi vastuse ja enda vas-
tuse ekvivalentsust ja mitteekvivalentsust ning korrektsust suhteliselt halvasti. Ar-
vestada tuleb, et antud tunniformaat oli dppijatele uus ja iilesanded suhteliselt
keerulised. Tulemusena leiti ka, et isegi kui Oppijate lahendus paistab korrektne,
voib siiski olla liinki arusaamises. Néiteks parameetri n tihendus trigonomeetrili-
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se vorrandi perioodilises lahendis oli paljude dppijate jaoks segane.

Dissertatsioonis toodud iilevaade arvutialgebra siisteemide vastuste ja kooli-
vastuste erinevustest ja nende pdhjustest voib aidata arvutialgebra siisteemide
arendajaid tdiustada siisteeme kooli jaoks sobivamaks.

Opetajad saavad selle iilevaate abil julgemalt arvutialgebra siisteeme kasuta-
da, kuna nad teavad voimalikke erinevusi ja saavad neid rakendada voi viltida.
Samuti aitab iilevaade arvuitialgebra siisteeme ja iilesandeid valida. Viljapakutud
pedagoogiline ldhenemine (tunnistsenaarium) tdiendab Spetajate vahendite loete-
lu Oppijatevahelise matemaatilise arutelu initsieerimiseks. Samuti saab seda ldhe-
nemist kasutada dppijate arusaamiste kindlakstegemisel.

Oppekava arendajad, dpikute autorid ja teised, kes vastutavad koolimatemaa-
tika eest lildisemalt, saavad pakutud iilevaate abil arvutialgebra siisteeme dppeka-
va ja Opikutega seotult tipsemalt kasutada problemaatilisi néiteid rohutades voi
viltides. Viljapakutud pedagoogiline 1ihenemine vdib inspireerida selliseid viise
soovitama Oppekavas voi opikutes.

Uurijad voivad saada ideid arvutialgebra siisteemide ja koolivastuste erinevus-
te uurimiseks ja uute kasutamisvéimaluste viljapakkumiseks. Samuti saab pa-
kutud ldhenemist kasutada dppijate arusaamise uurimisel. Seda ldhenemist saab
taiustada ja kasutada ka teiste teemade puhul.
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