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Identification of malicious behavior patterns for soft-
ware
Abstract:

Over the years malware has increased in number and became increasingly harmful.
Traditionally, anti-virus suites are used to protect the computers from various forms
of malware. In recent years a new technique called “behavior based malware analysis”
has become common which overcomes some shortcomings of traditional anti-virus
suites. Just like anti-virus suites require signatures, behavior analysis systems
require pattern groups for malware identification. This thesis presents the design
and implementation of a Malware Pattern Generator (MPG). MPG is built to
automatically generate behavior based pattern groups from a given malicious dataset.
MPG uses hierarchical clustering to find similarities between malware and extracts
the similarities to generate pattern groups. Three variants of MPG are developed
during the work on this thesis and the results of their evaluation against malicious
datasets are presented.

Keywords:

MPG, Behavior based malware analysis

Tarkvara pahatahtlike käitumismustrite tuvastami-
ne
Lühikokkuvõte:

Aastate jooksul on pahavara hulk kasvanud ja pahavara on muutunud järjest kah-
julikumaks. Traditsioonilised viirusetõrje tööriistad kaitsevad arvuteid erinevate
pahavara vormide eest. Viimastel aastatel on aga muutunud populaarseks uus tehni-
ka "käitumispõhine pahavara analüüs", mis ületab mõned traditsiooniliste viiruse-
tõrjeprogrammide puudujäägid. Nagu viirusetõrjed vajavad pahavara signatuure,
kasutavad käitumispõhised tööriistad käitumismustrite gruppe, et pahavara tuvasta-
da. Käesolev töö tutvustab tööriista Malware Pattern Generator (MPG ehk pahavara
mustrite generaator) tööpõhimõtteid ja implementatsiooni. Tööriist MPG genereerib
automaatselt käitumispõhiseid mustrite gruppe kasutades selleks hulka teadaolevat
pahavara. MPG kasutab hierarhilist klasterdamist, et leida sarnasusi erinevate paha-
varade vahel ja ekstraheerib need sarnasused, et luua mustrite gruppe. Käesolev töö
kirjeldab kolme erinevat MPG versiooni ja võrdleb nende tulemusi.

Võtmesõnad:

MPG, käitumispõhine pahavara analüüs
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Chapter1Introduction

Cybercrime and other forms of malicious activities over the Internet are costing the
world from 300 billion to over a trillion dollars yearly [MC13]. There are multiple
anti-virus software suites available which can be used to fight against malware.
However, millions of new malware samples are detected every month by security
companies [McA13] which makes the task of keeping the anti-virus signature database
up to date a difficult and critical task. Malware now uses polymorphism and data
obfuscation to prevent their detection against traditional anti-viruses [YY10]. Due
to the limitations of the anti-virus software, a new state of the art technique for
analyzing malware called “behavior based malware analysis” has become widely
known.

Behavior based malware analysis not only focuses on the contents of the malicious
file but also analyzes the behavior of the malware samples under analysis. During
this process, a malware sample is executed in a virtualized environment where all the
system activities performed by the malware are recorded. These activities can then
be analyzed by a human to understand the behavior of malware. This understanding
of malware behavior can be used in prevention against the threat. This technique
was initially advantageous over the simple static analysis because of deeper insight
but after the maturity of this field, scalability of analysis has become the next big
challenge.

State of the art dynamic analysis systems such as Blue Coat’s MAA [Coa14]
provide the capability to analyze thousands of new malware samples every day
in virtualized environments. However, it is nearly impossible to manually read
and understand this many analysis reports. Some automated system needs to be
developed which can analyze the reports and extract important summarized data.

1



2 1. INTRODUCTION

1.1 Problem

One of the uses of behavior based analysis is to provide malware detection for the
samples which are difficult to detect using static methods. As mentioned above,
obfuscation techniques make the static analysis harder. Furthermore, malware writers
sometimes develop slightly different variants of same malware so it is not possible
to create a single static signature for them all. However, the behavior of all the
variants is the same because it is the same malware with variations only to prevent
the detection.

Behavior based analysis can be very useful in both of these cases. Multiple variants
of the same malware can be identified because their behavior is still consistent across
variants. Furthermore, obfuscated or packed binaries can also be detected as they
must unpack or de-obfuscate themselves before execution. In either of these cases
the behavior of the malware remains the same.

Dynamic behavior based detection relies on pattern groups: an entity similar to
signatures in traditional anti-virus detection. Pattern groups are unique behaviors of
malware which can be used to identify it. Manually finding behavior pattern groups
which can identify malware and only malware is a tedious task. First, a malware
sample is analyzed using a behavior based analysis system to generate an analysis
report. This report is then read by a malware analyst to understand the behaviors.
Based on knowledge of the analyst and his understanding of malware, such behaviors
are found which can identify the malware while keeping the chances of detecting a
non-malicious binary low. Because of high rates of new malware development, it
became more and more difficult to keep the pattern groups database up to date to
detect latest malware.

This thesis addresses this difficulty and studies the possibility of designing and
implementing a system which can produce the behavior pattern groups for malware
automatically. Successful design of such a system can help greatly in keeping up
dynamic analysis with the rate of malware discovery.

1.2 Goals

The central goal of this thesis is to create a software system which takes a set of
malicious files as input and produces a set of pattern groups which can be used to
identify those malicious files. The system should be completely automated which
requires no human intervention or intelligence in reaching from malware samples to
the pattern groups. Furthermore, the system is designed to produce pattern groups
satisfying the following quality criteria in order of their importance:
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1. Zero False Positives: Any behavior pattern group which identifies malicious
files as well as clean files is not usable in any practical scenarios. Therefore,
the system must produce pattern groups which detect some malicious files but
do not falsely detect any clean files.

2. Low False Negatives: In theory, it is very difficult to find a behavior which
would help in classifying all the malware however, it seems feasible to find
behavior pattern groups which cover a certain set of similar malware. So, the
system should be able to produce pattern groups which detect as many samples
from dataset as possible.

3. Sample to Pattern Ratio (SPR): Sample to pattern ratio is given by dividing the
number of samples by the number of pattern groups used to detect them. SPR
represents the approximate number of samples each generated pattern group
detects. It is desirable for pattern groups to consist of important behaviors
of malware which are shared by other similar malware. Therefore, sample to
pattern ratio should be high. If a pattern group detects many samples, it is
more desirable over pattern groups which detect only a few.

The quality criteria mentioned above are mentioned in the order of their impor-
tance. Avoiding the generation of pattern groups which cause False Positives (FPs)
has the first priority followed by coverage of the dataset. And finally, the number of
pattern groups created is kept to the minimum. The system should then be evaluated
on a dataset of real malware samples.

1.3 Preview of results

A software was developed to generate malicious behavior pattern groups from any
dataset of malware. The software was capable of producing behavior pattern groups
with detection rate of almost 100% for the dataset that was used to generate pattern
groups. Furthermore, the behavior pattern groups were able to detect approximately
60% of a three times bigger dataset which did not participate in pattern group
generation. All the pattern groups were false positive free on the basis of a reasonable
dataset of non-malicious files. Depending on the dataset, SPR in the range of 2.7 to
128 was observed.

1.4 Structure of Thesis

After this introduction chapter, chapter 2 summarizes the previous work done related
to behavior based malware pattern generation. The work done related to static and
dynamic automated signature generation is presented. Furthermore, some work on
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clustering the malware based on dynamic events is cited because of its importance
to the solution presented in this thesis.

Chapter 3 provides the background information on malware and explains the
behaviors of malicious software in detail. The definition of malware and some
examples of real world malware are presented. Furthermore, a detailed work-flow of
behavior based malware detection is provided. In section 3.4 detailed description of
behaviors of the software in Microsoft Windows is provided. This section provides an
explanation of each behavior along with its properties and its importance towards
detection of malware.

The system which is designed to generate automatic behavior pattern groups
relies on clustering the malware. Therefore, a separate chapter: chapter 4 explains
the clustering of malware based on dynamic events. Chapter 4 explains hierarchical
clustering and partition based clustering and concludes that hierarchical clustering is
a more usable alternative for the problem of pattern group generation.

Chapter 2, chapter 3 and chapter 4 provide the background information required
to design the system while chapter 5 presents the contribution by the author.

Chapter 5 presents Malware Pattern Generator (MPG) which is developed to
generate the pattern groups for the malware. Architecture of the system along
with different components is explained in detail. Implementation details of some
components are also presented where required.

Chapter 6 presents the evaluation of the system against datasets consisting of
real world malware samples. Evaluation results are also explained and discussed in
chapter 6. Chapter 7 contains the work that can be done in future to improve MPG.
Finally, chapter 8 concludes the thesis.

Examples of malware events and a pattern group are included in appendices. A
sample set of events produced by a malware are presented in appendix A and a
sample pattern group generated by MPG is presented in appendix B.



Chapter2Related Previous Work

Variety of malware existed in world for many decades now. It all started when
two brothers from Lahore a provincial capital of Pakistan created the first Personal
Computer (PC) virus. That virus was not intended to cause any harm, rather it
focused on proving that computers are not secure [Mil13]. From that time onwards
the number of viruses kept increasing and many new variants kept arising. Also,
many more viruses were created afterwards which were intended to cause harm to
people for financial gains.

With the increase in number and sophistication of malware, many anti-malware
studies have taken place. And more importantly, many commercial anti-malware
software suites were developed. The research on viruses started even before the first
PC virus was developed. Fred Cohen wrote an academic paper on computer viruses
in 1987 [Coh87]. In that paper, he discussed the possible scenario of a virus attack
and proposed different guidelines when designing systems to make them resistant to
virus attacks. He also demonstrated how easy it is to create viruses by providing the
source code of an example virus.

In late 1980s and early 1990s commercial anti-virus software such as Norton
Antivirus, McAfee and many others came on surface. In the beginning, all the
anti-virus software used signature generation as a method of malware detection.

2.1 Signature Generation

Traditionally, signatures usable to detect malware were generated by human mal-
ware analysts after reverse engineering malware. Typically this is done by using
disassembling software such as OllyDbg [Oll14] to convert the executable binary into
assembly language instructions. These instructions can then be executed line by line
to understand the behavior of the malware. Typically, malware is analyzed in an
isolated physical or virtual machine to protect the machine and the network from
the malicious effects of malware. By utilizing the understanding gained by reverse
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engineering, a binary string corresponding to some critical functionality of malware
is identified. This binary string then acts as a signature to identify the malware.

Since its a tedious task and the number of new malware is always increasing,
this strategy has proven to be very slow. Naturally many people researched into
generating the malware signatures automatically.

2.1.1 Automated Static Signature Generation

In 1990s several patents were filed which contained automatic virus signature genera-
tion in one way or another. Some of them were specifically focused on generating
signatures for anti-virus softwares while others generated signatures for network
anomaly detection.

In 1995 a patent was published which described a method to automatically extract
signatures of computer viruses [Kep95]. Another patent explains an automatic
immune system for computer networks. This work consists of automatically finding
anomalies over the network and then finding their signatures [ACKW95].

Karin Ask in her thesis [Ask06] proposed a system to generate automatic malware
signatures. The strategy used there was to cluster the malware into families. A
clustering algorithm was not invented by her, rather she used predefined clusters.
After receiving a cluster she compared the binary executable of the malware samples
within the same cluster to find out the common parts of the binaries. And then
she generated signatures out of the strings shared by malware. She stated in her
thesis that it is indeed possible to generate signatures which can identify malware.
Moreover she received good detection rate on her signatures.

Symantec used to use a hash based signature scheme for identifying malware.
They used the technique of generating hashes of the malware executables. These
hashes were then distributed as a signature with their anti-virus software. On the
client side, user files were scanned, their hashes were computed and those hashes
were then compared with hashes in malware hash database. If a match occurred,
the file was considered malicious. The biggest advantage of this scheme is that if
a malware hash is added to the database malware gets detected with 100 percent
certainty. And since hash functions are collision resistant, chances of FPs are quite
less. The shortcoming of this approach was that they needed to create a hash of
each file and the database of the hashes was too large which required too much space
and processing to match. However later [GSHC09] Symantec research laboratories
published a technical report explaining a system which replaces their hash based
static signature system with a different system where signatures consist of byte
strings from the malware. This system also generates automated signatures based on
bytes of the executables.
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2.1.2 Dynamic Behavior based signature Generation

Apart from generating signatures for the executable, several works have been done
to generate signatures based on the network traffic generated by malware. Since the
traffic is one of the behavior of the malware, it can be considered a behavior based
signature.

[SEVS04] discusses on how to generate signatures for worms. This research is
conducted based on analyzing the network traffic generated by the worms. Similar
other works also exist [KK04], [NKS05], [TC05], [SK03].

A similar work [KC04] proposed a system to generate automatic signatures from
network traffic of malware for Intrusion Detection Systems (IDSs). In another
research paper a honeypot based worm detection solution is presented. A honeypot
is deployed which analyzes the network traffic to capture suspicious traffic. This
network traffic is then used to generate the worm signatures [PB05].

Li et al. in [LWLR08] worked on generating automatic signatures for malware
based on their dynamic behavior. Their system is based on a security policy which
mentions which activities are suspicious and which activities are benign. The security
policy consists of things such as “hooking the keyboard is forbidden”. If a process
performs activities which violate the security policy, it is considered malicious and
signatures are generated for instances of such activities. So, although it uses dynamic
events, still a static database of security policy is required to find and make signatures
of malware.

2.2 Clustering

Clustering of malware helps in understanding what family the malware belongs to.
Generally, when a malware is released, it’s many variants are also released to make
it difficult for security companies to produce detection. These malware variants are
generally performing similar activities while changing those properties of malware
which are used for static detection. Clustering also helps in identifying the malware
which are similar to each other but may or may not have been written by same
authors.

Before the popularity of behavior based analysis, malware clustering was also
performed using static properties of malware. Some examples of these properties are:

– contents of malicious executable;

– function calls;

– dependencies on external components.
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In recent years much work has been done in clustering malware based on its
behavior. Different studies have used different methods for calculating distance
between samples followed by using standard clustering algorithms to cluster malware.

[BOA+07] is a basic research paper in this field. In this research the author uses
Normalized Compression Distance (NCD) to find the distance between behaviors of
two malware samples. This distance is then used to identify the samples which are
closest to each other from the whole sample set. [BCH+09] shows that the previous
clustering scheme can be improved considerably by using a different distance function.
Authors in [BCH+09] used Locality Sensitive Hashing (LSH) along with Jaccard’s
index to measure the distance between samples.

Another behavior based malware clustering approach used only Hypertext Transfer
Protocol (HTTP) traffic generated by malware to cluster them. The HTTP traffic
is decomposed into subcomponents such as Universal Resource Locater (URL) and
Universal Resource Name (URN) etc and then the distance between samples is
measured. To measure the distance, a combination of various distance functions
including Levenstein and Euclidean distance is used [PLF10].

The basic building block of any successful clustering algorithm is to identify the
similarities between samples. Since similarities between malware samples are already
calculated, clustering can be extended to generate signatures based on similarities
between samples of same cluster.

This thesis will therefore re-use techniques explained in this section to cluster
malware and then identify the signatures from them.

2.3 Signature Extraction

Machine learning is also a well studied research area. It has been used to solve many
problems. The problem of malware signature generation can also be approached
using machine learning.

[RHW+08] explains a Support Vector Machines (SVM) based algorithm to cluster
malware based on the dynamic properties. The work not only differentiates the
benign files from malicious files but also clusters the malicious files into different
clusters.

Generally, it is difficult to understand how any machine learning algorithm
classifies a certain malware instance. The reason for this is that in a very high
dimensional space the rules which classify a sample are too complex to be written in
a formal way. However, some work has been done in this field to find out the exact
rules which classify a file into a certain group.
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[BD04] explains a strategy which can be used to extract learned rules out of
SVMs based system.

2.4 Summary

This chapter gave a brief overview of other work which is related to this thesis.
Most anti-virus software suites use signatures for malware detection. Traditionally,
signatures were generated by human malware analysts based on static properties of
the malware. However, with increase in the number of new malware samples much
research work took place to automate the manual signature generation. Section 2.1.1
explains the research done in the field of automatically generating malware signatures.
In recent years more focus has been put on detecting malware based on its behavior.
Section 2.1.2 explains some research work in this field.

Malware clustering is useful for seeing relationship between different malware
samples. In this thesis, clustering is used as one of intermediate steps to generate
behavior based pattern groups as discussed in chapter 4. Much work has been done to
cluster the malware based on its dynamic behavior. This was discussed in section 2.2.

Finally, SVM can be used to differentiate malware from benign files. Some work
in this field is discussed in section 2.3.





Chapter3Malware and Software Behavior

A computer consists of physical hardware and software components which are installed
on top of hardware. The most important software on computers is an Operating
System (OS). On top of the OS further software can be installed by users. The
software installed on a computer can be both benign and malicious.

This chapter will start with a formal definition of software behavior followed by
in-depth explanation of malware in section 3.1. Section 3.1 will explain different types
of behaviors malware may produce and how these behaviors can be used to detect
the malware. After giving the brief description of malware behaviors, section 3.2
provides the example of some real malware found in the wild. Rest of the chapter is
focused on detection of malware based on behaviors. A typical work-flow of behavior
based malware detection is provided in section 3.3 followed by a detailed description
of different events a software may produce. Different properties of the events based
on their relevance for malware detection are also discussed.

Suppose there is a software soft1 installed on a computer but not yet executed.
This state of the system is named State1. After execution of soft1 the state of the
system will change to State2. The difference between State1 and State2 represents
the changes which are done in the system by soft1. This difference is named Diff1 as
shown in Equation 3.1.

Diff1 = State2− State1 (3.1)
Apart from the difference in the state there are many small changes that happen
after State1 but they disappear before system reaches State2. These changes are
usually temporary system changes such as creation of a file followed by its deletion or
a process launch followed by its termination etc. All such changes are named Temp
for scope of this thesis. This leads us to Equation 3.2.

Changes = Diff1 + Temp (3.2)

Later throughout this chapter and rest of the text, words such as behaviors, events
and system changes will be used to refer to Changes. The main topic which will be
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discussed in this chapter is what features in Changes can help us identify whether
soft1 was malicious or benign.

All the software when run on an OS exhibits the behavior mentioned above.
However, for the scope of this thesis more focus will be put on system changes caused
by malware.

3.1 Malware

The term malware stands for malicious software. Malicious software is the software
which causes some intentional harm to the computer where it is run. Additionally,
a malware may cause harm to the owner of computer by stealing some valuable
information belonging to him or, it may use the resources of computer without consent
of the owner of the computer. The harm is caused mostly without involvement of the
user in the process. However, sometimes users are tricked into performing malicious
activities on their system. This technique is called social engineering: where users
are led to believe that they are performing something which is useful for them but in
reality they are helping the malware to execute on their system.

Malware is a generic term which encompasses a wide range of malicious software.
Some malicious software is targeting the computers of the people with the goal to
recruit them in a botnet while others are targeted at specific corporations to extract
their intellectual property. The rest of this section will explain different malicious
behaviors found in the malware. There are many labels associated with malware
such as viruses, worms and trojan horses etc. However, such classifications are not
well defined. A malware may belong to several categories and one category may have
very diverse malware in it.

The initial malware samples were called viruses. The term virus is more widely
known compared to malware. A significant portion of malware self replicates. The
basic property of self replicating malware is that when its executed it normally
performs two activities. First, it replicates itself to other infect-able locations and
then it performs the malicious activities it is supposed to perform. The part of
the code which performs the malicious activities is called payload. However, not
all replicating malware samples have a payload. Some malware samples may just
replicate to consume the system resources without specifically performing any other
harm. Common locations where such samples stores their copies are: programs
running on the system, other locations of file system, boot sectors and removable
drives. A category of malware when run injects itself into other running programs to
perform its malicious activities. A more formal definition of viruses can be found
in [Coh].



3.1. MALWARE 13

For many years virus replication through removable hard drives was very common.
It was largely driven by the fact that users were using removable drives to transfer
data between computers. Using external storage medium propagation malware can
infect off-line computers.

Some malware samples replicate themselves by sending their copies over the
network. Such malware not only causes usual harm but also consumes network
bandwidth which the user is paying for.

Additionally it has been observed that some malware samples hide behind other
legitimate software to infiltrate computers. That software looks either useful or
interesting and users willingly install it on their system. After the software is
installed, the malware performs it’s malicious activities.

Majority of malware do not have administrator access to the system. How-
ever some malware samples manage to acquire the administrator or root access
to the system. Because of this access, they can perform many activities which a
standard malware sample cannot perform. This includes all the functions which
requires root access such as installing new administrator software, modifying system
files, interrupting and monitoring standard computer processes such as network
communication.

Some malware has ability to circumvent the detection. Since the anti-virus
software runs with root access, it is difficult for malware which does not have root
access to interfere with it but it is not impossible. However, malware which has root
access can stop the antivirus altogether or tamper with it so it doesn’t identify the
malware. Malware samples which run with root access are called rootkits. In recent
years much work has been done on rootkit detection. More information about this
can be found in this survey [KPL+12].

The text above explained different ways malware spreads, survives and infects
its victims. After successfully infecting a system, it may perform many different
malicious acts which are harmful to the owner of the computer. Some of such
activities are explained below.

A malware may keep a log of the keys users press on their computers. Primary
target of such malware is to steal the credit card numbers and passwords of different
high value on-line accounts such as bank accounts. However, keylogging malware
can also be used to intercept everything a user types on a computer. Keyloggers
are a typical example of how a very secure system can be breached by focusing on
the weakest link. All the important communication over the internet takes place
over encrypted connections. As encryption is a very well studied topic and it is
very difficult to break, so instead of breaking that, keyloggers focus on stealing the
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information before its encrypted.

A malware sample may be targeted at a specific user to spy on him, or can
be used to spy on a number of computers. Such spying malware collects the list
of programs people use and the websites they visit. The collected information is
then sent to Command and Control (CnC) servers. Those servers can then use that
information differently based on the victim. For most people it is used to serve ads
to the users based on their internet browsing habits. Some high profile people may
be blackmailed based on their system activities.

Some malware samples take some system resource hostage and promise the user
that it will release the hostage if a “ransom” is paid. This type of malware is referred
to as ransomware. One such type of ransomware is an encrypter. When it manages to
run on a system it encrypts the user files on that system with a strong cipher. After
encryption is completed, the user is told that all its files have been encrypted and
the user must pay the attacker some money to get the decryption key for decryption.
Once the user pays he gets the decryption key to decrypt the data. Apart from
the ransomware which relies on encryption, there is other ransomware which forces
the users to pay ransom through other methods. One such method is to display
pornographic images on the user’s screen and tell them that if they pay some money
the pornographic images will be stopped from displaying.

Some malware samples do not perform any malicious activity themselves, rather
they just download new malware and execute them on the system.

3.2 Malware Examples

The behaviors of malware which have been explained above are in no way complete.
There are many more types of malware in the wild. And the trend keeps changing.
Every now and then new techniques for creating new types of malware are discovered.
The reason why the field of security is so challenging is that malware writers are very
innovative and new techniques are developed very often. In this section two examples
of real malware will be given to give a feel of what capabilities real advanced malware
has. The two examples explained below are chosen based on their importance. Flame
described in section 3.2.1 is one of most sophisticated malware ever found and went
undetected for many years. ZeuS explained in section 3.2.2 is a famous banking
malware which is responsible for loss of millions of dollars.

3.2.1 Flame

Flame is one of very famous Microsoft Windows malware from 2012. It was first
analyzed in this report [BBFP12]. The reason for fame of this malware was that it
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went undetected for many years. Some people believe it first appeared in 2007 and
went on undetected for 5 years. One of the reasons behind the fact that it remained
hidden for so long was that it was very targeted and it was not widely spread. In
2012 when it was detected only 1000 computers were infected worldwide. It was
specifically targeted at government and educational institutions in Middle East.

Flame was technologically very sophisticated. It was able be spread to other
computers using Universal Serial Bus (USB) flash drives as well as using the local
network. It could also trick the system to believe that it is Microsoft Windows
update software which resulted in system installing it with administrator access.

It had a very advanced CnC server infrastructure. The servers were located
geographically in many different countries. Malware used to send all gathered
information to one of the CnC servers and was capable of receiving instructions from
its CnC servers and act accordingly. One of the instructions it could receive from
the server was “kill command”. If the malware received this command it could delete
itself from the infected system without leaving a trace. After it was detected in 2012,
a kill command was sent to all infected machines to remove the malware.

Apart from all the infrastructure it had in place for survival, the main payload
of Flame was used to gather intelligence. It included taking screenshots of the
system periodically, keylogging the keyboard activity and storing and monitoring
the network traffic. It was also capable of reading all the user files, recording audio
from microphone and communicating over both wired and wireless network. One
of the techniques it used was to make the infected computer a bluetooth hotspot
to connect to the bluetooth enabled devices. The user contacts were then fetched
from the bluetooth connected devices such as smart-phones and sent to CnC servers.
Another interesting capability was the ability to record Skype calls which took place
on the infected machine [BBFP12].

To conclude, the capability of the malware is as big as the imagination of the
malware programmer. If anything is possible it is likely exploited in some malware
already or is likely to be exploited in future.

3.2.2 ZeuS

ZeuS is a Trojan Horse with root-kit functionality. It is mainly used to steal credentials
of the important user accounts such as to steal the banking credentials. Other form
of credentials could also be stolen using ZeuS such as credentials of Facebook and
Twitter. After stealing the credentials, ZeuS sends them to one of its CnC servers.

ZeuS mainly relies on having multiple slightly modified copies of itself. There are
many variants of ZeuS in the wild and not all anti-viruses detect all variations of
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ZeuS. It is thought that Zeus has infected over 3 million machines and has stolen
over 70 million US Dollars (USDs).

More information on ZeuS can be found in [Inc10]

3.3 Behavior based Malware Detection

This section provides brief description of typical workflow of behavior based malware
detection.

A typical behavior based malware system consists of two main components, a
malware execution engine and a pattern matching engine. In this section, the word
pattern will be used to refer to dynamic behavior based patterns rather than a static
string based signature.

Figure 3.1: Work flow of malware detection based on it’s dynamic behavior

In Figure 3.1 dark circles represent the data while light circles represent the
processing modules.

Initially a set of files are obtained which need to be analyzed. These files can
be collected in a number of different ways. A typical example is to scan the whole
computer of a user and thus all the files present in the computer will be considered
as samples and will be submitted to the execution engine. Execution engine then
processes the samples to generate the behaviors of that sample in the form of events.
These behaviors are then matched against patterns to detect whether the sample was
malicious or benign. The final verdict is traditionally boolean (malicious or benign).
However, more detailed verdict may also be issued such as the sample is x% likely to
be malicious.
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3.3.1 Sample Execution Module

The sample execution engine runs the given sample in a virtualized environment.
Traditionally, it is a Virtual Machine (VM) with some OS installed on it. The Engine
executes the malware for a predefined period of time in the OS. In the meanwhile
every activity that sample performs in the OS is noted down. After the sample has
finished execution or a set amount of time has elapsed, the execution of malware is
stopped. Different types of events which can take place and their importance for
malware detection is discussed in detail in Section 3.4.

The events which occurred in the system are the output of this module and they
are then passed on to the Pattern Matching Engine.

3.3.2 Pattern Matching Module

The pattern matching module is responsible for matching the patterns in the pattern
database to the events produced by the sample. The pattern database contains
the behavior based patterns of malware. Such patterns are also called indicators of
compromise. If a pattern matches a sample, the sample is declared malicious. A
format of events and the patterns has to be agreed upon to make sure that patterns
are consistent with the behaviors generated with sample execution module.

All the components shown in Figure 3.1 except the patterns database are taken
as is. The objective of this thesis is to generate a pattern database automatically
which would result in declaring malicious samples as malicious without causing any
FPs.

3.4 Software Behaviors

The behavior of software can be categorized in different sections based on underlying
OSs. Since the architecture of different OSs is quite different, the behaviors generated
are also different and are usually not comparable to each other. Traditionally, majority
of malware has been designed for Microsoft Windows and most of the research data
sets contain the malware which only executes on Microsoft Windows. So, for the
scope of this thesis only the malware for Microsoft Windows will be discussed.

There are many software applications both commercially and freely available
which can record the system changes produced by a certain software. Cuckoo [Cuc14]
is one such software. A web based application called Anubis [Anu14] also exists
where samples can be submitted to retrieve their behaviors.

Depending on the software used to generate the behaviors, they might differ
slightly. The differences between different behavior generating systems is not im-
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portant for the scope of this thesis and will not be discussed here. Only the most
important type of events which are common among most such systems will be
discussed.

Malware comes in many forms and shapes. The most common form is Microsoft
Windows Portable Executable (PE) files. However certain other forms of malware
can also be found in wild such as:

– Portable Document Format (PDF) Files

– Microsoft Office files

– Various websites which infect the users upon visiting them using different
methods which may work on only some browsers

However, the common thing between all these forms of malware is that they
produce certain events when they are run inside a system. Since, we are only
considering Microsoft Windows so such files when run in Microsoft Windows produce
Windows events such as file creation, file deletion etc. Most important events which
can be useful for malware detection are listed below:

1. File Events

2. Network Events

3. Service Events

4. Process Events

5. Registry Events

In this section, these events will be explained in more detail and the specific
subsections of these events which can be used for pattern generation will be explained.

Each of different types of events mentioned above can have multiple specific
events. Such as file system events may be divided into file create events, file delete
events and so on. And each of the specific event can have multiple properties which
are basic unit of a malware behavior. An example of such property would be the
name of the file which was created. So, the knowledge that some file has been created
(boolean) is useful but more importantly the exact name of the file which has been
created is more valuable.
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3.4.1 File Events

Files have a central position in a Windows system. All the information stored on
the hard drive is in the form of files which includes all the code which is used to
run Windows along with the user generated information. There are many file events
which are important for malware detection. Most important of these are explained
below.

File Create

This event tells if a file has been created. When a file is created in Windows, a
unique handle is assigned to it [Mic14, aa363874]. The unique handle is very useful
for operating system to keep track of the file creation however it gets generated
dynamically so every time the same malware is run on the system, system may return
a new handle therefore it is not useful for pattern generation. Along with knowledge
that a file has been created, generally the name of the file, location of the file, mode
and attributes make up this event. The mode of the file can be for example read
only. The attributes can be, such as whether it should be compressed or not etc.
Apart from these properties the file name itself is consistent for some malware while
random for others. The random name is effective for avoiding the detection based on
name and some malware samples use it. However, many malware samples still use
consistent file names which can be used for detection.

File Delete

This event contains the information about file deletion. The name of the deleted file
is useful from this section.

File Open

Since most of critical information stored in a computer is stored in the form of files.
So, opening a file is an important event which can be helpful in pattern generation.
However, some malware samples open many files when they are scanning directories
like drivers directory etc. In that case the noise in file open is more than useful
information. None the less, file open events are important. Typically the path of the
file opened and the mode it was opened in are important characteristics of the event.
The list of different modes and their explanation can be found at [Mic14, aa363874].

File Read

A file open event takes place before a file can be read but it is possible for a file to
be opened but not actually read. So, this event can help in differentiating the files
which are opened but not read. A file read event consists of path of the file, the offset
at which the file was read and the size of the data which was read [Mic14, aa365467].

http://msdn.microsoft.com/en-us/library/windows/desktop/aa363874(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363874(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365467(v=vs.85).aspx
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File Seek

In Windows Application Programming Interface (API) a seek function [Mic14,
aa365227] is present which can be used to skip some bytes of a file to a certain offset.
Then the next bytes can be read from that location. These events are not very
common but can identify behaviors of malware who want to seek a certain amount
of bytes of a certain file to read some specific information.

File Write

File writes are very common by both legitimate and malicious software. Most malware
store their intermediate data in files with some specific names and in specific paths.
This information can be used to identify malware. A call to a WriteFile function
[Mic14, aa365747] provides us with data that was written, name of the output file,
size of written data and the offset at which the data was written. The file name
specifically is important because some viruses create files having consistent names
such as virusname.dat which can be very useful for their detection. Other viruses
use well known names such as skype.exe [Vir12]. But even in this case the path of
the file is different than the legitimate file. So, that change in path is useful for
detection based on this. The third case is the malware samples which generate a
random string for a filename. This makes the file name property of this event useless
for detection because if same malware is run twice it will just generate a different file
name. However, file path, size and contents of the file may still be the same.

3.4.2 Network Events

In the present age of connectivity, most machines are connected to Internet or
other local area networks. So, naturally malware takes advantage of the network
connectivity and uses it for various reasons such as uploading stolen information
to the CnC servers. Spreading the copies of same malware to other machines for
infection and so on. Most important of network events are explained in depth below.

Process to network binding

To start communication over the network, typically a process has to create a socket
and then communicate through that socket. This is achieved by calling the bind
function [Mic14, ms737550]. In this event a socket handle, local address of the
machine along with the port used are the properties. However, all of these values are
not reproducible because socket handle is generated by operating system dynamically.
The host Internet Protocol (IP) address depends on the host machine and its local
port is also generated dynamically. Rest of the properties such as remote IP address,
remote port and protocol are consistent.

http://msdn.microsoft.com/en-us/library/windows/desktop/aa365227(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa365747(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms737550(v=vs.85).aspx
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Network socket close

Socket close function [Mic14, ms737582] provides the functionality to close the sockets.
Since the socket name itself is not consistent across executions, this API call does
not have much value for detection.

Network connection

According to a study [LCB10] majority of Internet traffic consists of Transmission
Control Protocol (TCP) traffic. And TCP protocol requires that a connection is
established between hosts [ISI81]. This event explains the network connections
generated. Typically a connection consists of at least 5 elements. Source IP address,
Destination IP address, source port, destination port and protocol. From these
properties, the source IP and source port are not interesting due to the reasons
mentioned above. However, destination IP, port and protocol can be very useful in
identifying CnC servers.

Domain Name Server (DNS) query attempt

DNS queries are used to convert a URL to an IP address. Internet works internally on
IP addresses, however, it is difficult to remember IP addresses. DNS servers provides
the functionality of converting easy to remember string based domain names to an
IP address. The DNS query events contains the domain string which was requested
for resolution and it can be used in detection.

DNS query response

DNS query is usually responded by a DNS response. The response contains the name
of the URL for which query was made, the IP address it resolves to, and any aliases
this IP address has (CNAME) [Bar96]. If a known malicious domain name has been
resolved, it usually indicates strong malicious behavior.

Since DNS is not static and a single domain can resolve to many IPs and multiple
domains can resolve to a single IP [Bar96] the DNS request, response pair is not a
very strong measure of malware behavior. However only DNS request is very useful
as it is more likely that a malware will always request the resolution of same domain.
But depending on the DNS the same query may result in different responses.

Network data transfer

Data is transferred over the Internet in the form of flows or sessions. A flow is defined
by a unique tuple of 6 elements:

1. Source IP

http://msdn.microsoft.com/en-us/library/windows/desktop/ms737582(v=vs.85).aspx
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2. Destination IP

3. Source port

4. Destination port

5. Protocol

6. Direction of data flow

A session consists of same elements above except the direction. So, in other words
a flow is a set of data transferred between two machines in a specific direction on
specific ports, while session represents the data transferred in both directions between
two machines on predefined ports. This data transfer is very valuable because the
malware communicates with its CnC servers by receiving and sending data to them.
However, this can also cause FPs because many other applications also automatically
send and receive data. So, special care must be taken when using this information
to not classify standard traffic as malicious. Some common data transfer that takes
places automatically on a Windows computer consists of:

– Windows Update check and installations

– Checking Internet connectivity by contacting msftncsi.com [HHW+10]

– Third party installed software which checks for updates

Important properties of this event are the remote IP, remote domain, remote
port and transferred data.

URL Open

A URL acts as an address for Internet websites. URLs are generally descriptive and
human readable. Because of these reasons, it is very helpful to monitor the URLs
malware communicates with. This can lead to detection of malicious websites. The
properties of this event generally consists of the URL and URN which is the path of
the page which is accessed on the accessed domain.

3.4.3 Service Events

Windows service is just a process which runs in the background. It is very suitable for
running long processes which need to execute continuously in the background [Mic14,
d56de412]. Since services run non-stop in the background, they are very lucrative
targets for malware. If a malware can manage to run as a service, it can perform
continuous monitoring of the user activities, logging its key strokes or downloading
new malware to the system.

http://msdn.microsoft.com/en-us/library/d56de412(v=vs.110).aspx
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Create Service

Creation of service event usually consists of name of the service, its display name
and the process which it executes as the service [Mic14, ms682450]. There are also
some other properties of this API call but the above mentioned are most important.

Delete Service

Apart from running as a service, a malware may be interested in deleting existing
services such as Windows Firewall which prevents certain attacks on Windows systems.
A delete service function [Mic14, ms682562] can be called for this purpose.

3.4.4 Process Events

Whenever a program is run on a Windows computer it runs in the form a process.
A program may have more than one processes and a process may have additional
threads [Mic14, ms684841]. Most of times malware samples also run as processes and
some times as a thread of another process. Furthermore, it sometimes tries to interact
with existing processes by either terminating them or stealing the information they
have in memory. Therefore, the process events are very important for malware
detection.

Create Process

When any executable is run, it results in creation of a process for that executable.
Some arguments can also be passed to the executable before execution which act as
user input for the process [Mic14, ms682425]. Both the arguments and the name
of the process are useful for identifying malware. Some malware samples execute
standard non-malicious processes such as Internet Explorer or Command Prompt
(cmd). However, they pass certain arguments to these legitimate processes to perform
malicious activities such as passing a URL to Internet explorer for execution or
passing some batch script path to the cmd to execute that batch script.

Read Process Memory

It is possible to read the memory of another process by calling ReadProcessMemory
function [Mic14, ms680553]. The properties of this event include a handle to the
process, size and location of the memory being read. The handle is generally not
useful as its operating system generated but by using that handle it is possible to
get the name of the process which is usually more reliable.

http://msdn.microsoft.com/en-us/library/windows/desktop/ms682450(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682562(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms684841(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682425(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms680553(v=vs.85).aspx
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Terminate Process

A process can be terminated by calling Terminate Process [Mic14, ms686714] Function.
Only the name of the process is important from this event.

Write Process Memory

WriteProcessMemory [Mic14, ms681674] is similar to ReadProcessMemory except
that it writes to the process memory rather than reading it. The name of the process
which is writing and the name of process which is being written onto are important
properties of this event.

Create Thread

A process can have multiple threads. The major benefit of a thread over a process
is that multiple threads of a single process can run in parallel but the code which
is part of a single-threaded process runs sequentially. Therefore, threads are used
extensively in parallel applications where the execution of different parts of program
in parallel are more beneficial over sequential execution [Mic14, 6kac2kdh]. For the
purpose of malware detection, the name of the process which creates the thread can
be useful.

3.4.5 Registry Events

Registry is a database used to store and retrieve the configuration settings of software
installed on a Microsoft Windows system. Registry, not only contains the config-
uration of third party installed software but it also contains the configuration of
different components of Windows and its core software itself [Mic14, ms724871]. This
makes registry very critical because changing some values in registry can change
how core components of Windows behave. Similarly, registry changes can change
the behavior of other installed software. Malware leverages this power and uses the
cover of legitimate processes to hide its activities by changing their configuration
and making them perform the malicious activities for them.

Registry database is structured in the form of a tree. Each node in the tree is
called a registry key and each node may have child nodes [Mic14, ms724871]. Apart
from having children which are called subkeys, a node may also have value fields
which contain the configuration information.

Create Registry Key

CreateRegistryKey function [Mic14, ms724844] creates a key in a given location.
The location where registry gets created is important information which can help in

http://msdn.microsoft.com/en-us/library/windows/desktop/ms686714(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms681674(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/6kac2kdh.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724871(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724871(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724844(v=vs.85).aspx
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detection. An example of a suspicious registry key creation is creation of following
registry.

HKLM\ SYSTEM \ ControlSet001 \Enum\Root\ LEGACY_RASMAN \0000\
Control

ControlSet001 key contains configuration for device drivers and services. Malware
can create keys in this location with the name of their malicious services to store the
malware’s configuration information.

Delete Registry Key

Delete registry function [Mic14, ms724847] deletes the registry key specified as
parameter along with all the values that registry contains.

Read Registry Key

A registry key can be opened using RegOpenKeyEx function [Mic14, ms724897].
This function returns a handle which can be used to read the specific attributes such
as values and sub-keys of the given key. Malware may read current registry values to
detect the current state of the system and perform malicious activities accordingly.

For some software, both malicious and benign it may be enough to just create
or detect the presence of a key to indicate certain configuration. The boolean
configuration values can be stored in registry this way. However, for some advanced
configuration the registry value fields are used to store the explicit strings representing
the configuration. The remaining registry events in this section are about registry
values.

Delete Registry Value

RegDeleteKeyValue API lets the caller remove a specific value from a given key
[Mic14, ms724848]. Malware may use this to remove existing legitimate key values
to change behavior of system software.

Query Registry Value

Query registry value just returns the value of the registry queried [Mic14, ms724909].
The value and the name of registry are properties of this event.

Save Registry Value

This event saves a value in an already existing registry key. The value and the path
of registry are important for this event [Mic14, ms724921].

http://msdn.microsoft.com/en-us/library/windows/desktop/ms724847(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724897(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724848(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724909(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724921(v=vs.85).aspx
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Modify Registry value

This key is same as save registry key value except that it replaces an already existing
registry key which already has a value.

3.4.6 Miscellaneous Events

There are some further events which can be useful for malware detection. They are
explained below.

Create Event

An event [Mic14, ms682655] is a synchronization object which can be used for certain
synchronization functions. A function call can be used to set the state of the event
to signaled and other threads can check the current state of the event. One of the
use cases is to tell the waiting threads that a certain event has occurred so they
can continue their execution. They also have some other uses mentioned in [Mic14,
ms686915]. The name of the event can be useful for identifying malware as they
sometimes produce events with reproducible name.

Create Mutex

A Mutex is also a synchronization object [Mic14, ms684266]. It is used to give safe
access of a shared resource to multiple threads. One of the threads can acquire
the mutex and use the shared resource. After its done using the resource, it can
release its lock on mutex. The other threads can then acquire the mutex and perform
their activities. This prevents the cases where multiple threads are trying to use a
resource simultaneously and the end result of resource becomes something which
was not planned. Mutex can also be used to synchronize processes. Some malware
samples launch multiple copies of themselves at the same time and then use mutexes
to synchronize between multiple running instances. The name of the mutex is
sometimes random but sometimes the creating process sets it to a specific string.
Such consistent mutex name strings are useful for malware detection.

Create Semaphore

A semaphore is a synchronization object similar to mutex. A mutex can only be
released by a thread which acquires it but semaphore provides a more sophisticated
system where other threads and process can also signal the semaphores. A semaphore
provides a count value which is decremented every time a thread acquires the lock of
the resource. The same count value is incremented every time a thread releases the
lock [Mic14, ms685129]. If the value of the count variable reaches zero, no further
locks can be acquired on it. However, for the purpose of malware detection only
the name of semaphore provides a behavior specific to a program. Similar malware

http://msdn.microsoft.com/en-us/library/windows/desktop/ms682655(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms686915(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms684266(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms685129(v=vs.85).aspx
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samples may produce semaphores with same or similar names which can be used for
their detection.

3.5 Summary

This chapter explained what malware is and gave some examples of malicious activities
they perform. Some examples of real malware samples were also given to show what
malware is capable of. In the second half of the chapter behavior based malware
analysis was explained i.e. a malware sample is executed in a virtualized environment
to get all the activities it performs in the form of events. These events are then
matched against behavioral patterns to identify malware. In section 3.4, a detailed
description of important events generated by software in Microsoft Windows was
given. The importance of the events with respect to malware analysis was also
discussed. In the coming chapters these events will be used to cluster malware and
later generate behavior patterns based on them.





Chapter4Clustering

Clustering is a technique which can be used to group a set of objects into clusters.
The clusters should be such that the elements belonging to the same cluster should
be similar to each other. An element belonging to one cluster should be more similar
to other elements of its cluster compared to elements of other clusters. Figure 4.1
shows an example where data in 2 dimensions is clustered. Each color represents a
different cluster.

Since clustering helps in finding the elements which are similar to each other. It
can also help us identify the similarities between elements. This idea can be extended
to behavior based pattern generation of malware and similarities between elements
can be used as patterns to identify all the elements of that cluster.

In start of this chapter, clustering will be explained briefly with a simple example.
Followed by section 4.1 on hierarchical clustering which will explain hierarchical
clustering in detail with an example. Different clustering schemes and clustering
metrics will be explained. Towards the end of chapter in section 4.2 partition based
clustering algorithms will be described briefly and will be compared with hierarchical
clustering.

Consider a tourist visits a forest in another continent. He sees many new species of
animals and birds there which he has never seen before. He quickly gets overwhelmed
with so much diversity, so he decides to divide all the animals and birds into a set of
groups based on their properties. He starts with noting down all the characteristics
he can observe of each new specie he observes. For the sake of simplicity he starts
with only 4 properties and makes a table similar to Table 4.1.

From this table it is very easy to divide these species into groups based on their
properties. For example three species 2, 4 and 6, all have 4 legs and no wings and
their weight is considerably large (50 to 2000 kg). He initially makes one group out
of these. He then proceeds onto making a different group out of 1 and 3. Both of

29
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Figure 4.1: An example of clustering. Different colours represent different clusters
[CC11]

Table 4.1: Species and their properties

Serial No No of Legs Has Wings? Colour Weight (kg)
1 2 yes blue 2
2 4 no brown 100
3 2 yes white 20
4 4 no gray 2000
5 0 no black 1
6 4 no brown 50

these species have 2 legs, they have wings and their weight is comparatively small (2
to 20 kg). And finally he makes a third group of one remaining specie which has no
legs, no wings and doesn’t weight much.

So, after performing this classification the results can be seen in Table 4.2.
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Table 4.2: Species, their properties and the groups they belong to

Serial No Group No No of Legs Has Wings? Colour Weight (kg)
1 2 2 yes blue 2
2 1 4 no brown 100
3 2 2 yes white 20
4 1 4 no gray 2000
5 3 0 no black 1
6 1 4 no brown 50

The benefit of performing this computation is that now the tourist can explain
the species better by just explaining the three groups or clusters he generated rather
than explaining each of the species separately. He can understand each individual
specie better by observing the species which are similar to him. He might be able
to study the species belonging to one group to find some other characteristics of
the group which were not considered when clustering the data such as whether
a group is dangerous or not. This information can then be useful when another
specie is discovered and added to current clustering. If it gets classified into a group
which contains dangerous species, chances are that newly discovered specie is also
dangerous.

The process done above is a simple example of clustering. In the example above
a set of data was gathered and it was clustered into three groups. Elements in each
group were similar to each other and had more in common with elements of their own
cluster compared to elements of other clusters. This idea can be extended to cluster
much different and complex data. Clustering helps in understanding and visualizing
the data which is otherwise too big to be understood by a human being. However,
practical clustering problems are much more complex. The number of elements which
are to be clustered may be much larger. Millions of elements are quite possible in
certain situations. Secondly, in the example we saw only four properties of each
element. In practical problems, number of properties may be much larger and type
of properties may be complex such as a floating point number with no defined range
or text strings.

There are many systematic approaches to clustering data into groups. Usually,
first pair-wise distance of all the data points is calculated using some similarity metric.
After the distances of all points to all points are obtained then the points which are
closest to each other can be found and put into same cluster.

Majority of clustering schemes can be classified into two categories: hierarchical
clustering and partition based clustering [KR09]. Hierarchical clustering is a bottom
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up clustering algorithm where elements are assigned to small clusters and then clusters
are joined together to make larger clusters, whereas partition based clustering is
top down clustering algorithm where elements are divided into predefined number
of clusters and then each cluster is subdivided into more clusters if needed. In the
sections below hierarchical and partition based clustering will be discussed and how
they can help in clustering malware.

4.1 Hierarchical Clustering

Hierarchical clustering is an algorithm which divides data into clusters and produces
a structure which can be displayed as binary tree or a dendogram among other ways.
This tree can be traversed to find elements belonging to a specific cluster. Hierarchical
clustering algorithm is a very generic algorithm which performs clustering. It can
be used to achieve very different results by configuring the different parameters it
depends on. In this section the major skeleton of hierarchical clustering algorithm
will be explained. In the sections below the parameters which can be changed will
be explained further.

Figure 4.2: Hierarchical Clustering. Dark circles represent the data while light
circles represent the processes.

Given a dataset first the features of the data are selected based on the type of
problem. The selection of features is an important step and choice affects the results
heavily. However, there is no known correct method to choose features, the selection
depends heavily on the data and final goal of clustering. After feature selection,
distance between features of each point to features of each other point is calculated
using some clustering metric. Clustering metrics are further explained in section
4.1.2.

The step of measuring distances between points is a quadratic time and quadratic
space algorithm. If the number of elements to be clustered are n, the algorithm will
take O(n2) space and O(n2) operations to complete [Mül13]. The result of this step
is an n× n matrix.

To save memory, the distance matrix is usually stored in the form of upper
triangular matrix. Since the distance of an element to itself is 0, diagonals of the
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distance matrix can be omitted. And lower triangle of the distance matrix is a mirror
copy of upper triangle so it can also be omitted. An example of distance matrix can
be seen in Table 4.4.

After calculating the matrix the smallest value in that matrix is selected to get
the elements which are closest to each other. Those elements are then put into a
cluster. In the next step again the next smallest value is chosen to find the next
two closest elements and they are put together into a cluster. At the end, all the
elements are clustered together in the form of a tree.

This can be better explained using a small example.

4.1.1 Example

Four data points are taken in a 2D space. Each point contains two dimensions in a
2D plane, an x coordinate and a y coordinate. They are to be clustered based on
the distance between the points. So, the points which are close to each other go into
same cluster. Points are shown in Table 4.3 and their plot can be seen in Figure 4.3.

Table 4.3: Input data for hierarchical clustering algorithm

Serial No Element
1 (0.7, 0.8)
2 (0.2, 0.95)
3 (0.8, 0.8)
4 (0.87, 0.629)

Figure 4.3: Plot of data to be clustered
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Depending on the type of data, an appropriate distance function should be chosen.
There are many possibilities, some of them are discussed in section 4.1.2. For this
particular case data consists of 2D points. Each co-ordinate of the point is selected
as a feature. Then euclidean distance is the appropriate measure of distance between
points. For points (x1, y1) and (x2, y2) euclidean distance is given by Equation 4.1.

Euclidean distance =
√

(y2 − y1)2 + (x2 − x1)2 (4.1)

As a first step of calculations, distance of each point with each other point has to
be measured and stored in the form of a matrix. The resulting matrix is shown in
Table 4.4.

Table 4.4: Distance Matrix

1 2 3 4
1 0.52 0.10 0.24
2 0.62 0.74
3 0.18
4

After getting the distance matrix, the value which is smallest in whole matrix has
to be found. In this example that value is 0.10 which is the distance between point 1
and point 3. At this point, point 1 and point 3 are known to be closest to each other
so they can be put in one cluster. After deciding a cluster the rows and columns
representing point 1 and 3 can be merged to form a combined column. The next step
is to find the distance from that cluster to all other points. There are many ways to
calculate the distance between a cluster and a point or between multiple clusters.
They will be explained in depth in section 4.1.3. For now the distance between a
point a and a cluster B will be taken as distance between point a and the point
closest to a which belongs to B.

After merging column 1 and column 3, the distance between cluster (1,3) and all
other points in the table have to be calculated. After making these computations
the Table 4.4 shrinks down to Table 4.5.

Table 4.5: Distance Matrix

(1,3) 2 4
(1,3) 0.52 0.18
2 0.74
4
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Now using the same system the smallest value in the matrix is to be found which
is 0.18 in this table. 0.18 is the distance between cluster (1,3) and point 4. These
2 entities (a cluster and a point) can be combined to make a bigger cluster named
((1,3), 4). Similarly the Table 4.5 can now be further shrunk down to Table 4.6.

Table 4.6: Distance Matrix

((1,3),4) 2
((1,3),4) 0.52

2

Now the smallest entry in the table is 0.52 which is also the only entry. This
completes the clustering process to give the following result:

(((1,3),4),2)

The final result can be seen in Figure 4.4.

Figure 4.4: Hierarchical Clusters

.

This can be plotted in the form of a dendogram as shown in Figure 4.5.

The end result of hierarchical clustering is a dendogram which shows hierarchy
of relationship between elements. This dendogram can be cut down at a particular
point to retrieve the individual clusters. For example this dendogram can be cut at
root node to get 2 clusters. One containing elements 4, 1 and 3 while other containing
element 2.

The height of the dendogram represents how further apart the underlying clusters
are. In Figure 4.5 it can be seen that point 2 is much farther from cluster ((1, 3), 4).
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Figure 4.5: Dendogram of clustering. It can be seen that point 1 and 3 are closest
to each other followed by point 4 and finally point 2. The diagram was drawn using
the software [Wes12].

In the following sections different parameters which can be used to customize
hierarchical clustering will be explained.

4.1.2 Clustering Metrics

Finding the distance between two points is an essential component of hierarchical
clustering. In the example mentioned in section 4.1.1 euclidean distance was used to
compute the distance between points. Euclidean distance is a very good distance
measure for multidimensional numerical data where only the location of the points
contribute towards the distance. However for non-numerical data such as text,
euclidean distance is not always suitable.

As described in section 3.4 software generates many events of many different
types. Each event may have different number and different type of sub-events. This
makes distance computation between events of two software applications or malware
samples a complex task.

In the sections below different methods of computing the distance between software
events will be explained.

NCD

NCD is a distance metric which uses data compression algorithms to compute the
distance between two strings. Data is compressed by finding repetitions so multiple
copies of same data are stored only once with some extra information to reduce the
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space required to save the data. This feature of data compression is used to find
similarities or repetitions between two different strings.

If x and y are two strings and Z is an good compression function. Their NCD is
given by Equation 4.2.

NCD(x, y) = Z(x | y)−min{(Z(x), Z(y)}
max{(Z(x), Z(y)} (4.2)

Strings x and y are concatenated and compressed to compute Z(x | y) [CV05].

If all the events of a software are concatenated together in the form of a string
then NCD can be used to compute the distance between the events. NCD is useful for
general clustering as its fast and focuses more on similarities than distances but its
not very effective for pattern generation as the similarities are not easily extractable
without going in depth of compression algorithms. One other drawback of using
NCD for pattern generation is that, it considers all the events as a single string so if
two events are similar but they are of different types such as:

{ FileCreate : {" path ": "c:\ Program Files\ Common Files\
Microsoft Shared \Web Folders \ Microsoft Office 2003
Crack.exe "}}

{ ProcessStart : {" path ": "c:\ Program Files\ Common Files\
Microsoft Shared \Web Folders \ Microsoft Office 2003
Crack.exe "}}

The contents of these events are exactly the same but their types are different.
Since NCD does not take into consideration any sub parts of the string, they will be
considered very similar events but as their type is different they should be considered
completely different.

Bailey et al. used NCD to cluster data based on dynamic behavior in their
research paper [BOA+07].

Jaccard Index

Jaccard Index [Jac01] is a measure of similarity between two sets. If A and B are
two sets then their Jaccard index is defined by Equation 4.3.

J(A, B) = | A ∩B |
| A ∪B |

(4.3)
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The value of Jaccard index is between 0 and 1. Since Jaccard index is a measure of
how similar two sets are, it can be easily modified to find the distance or dissimilarity
between two sets. The distance based on Jaccard index is called Jaccard distance
and is given by Equation 4.4.

dJ(A, B) = 1− J(A, B) (4.4)

Because Jaccard distance is computed on sets, it can be used in many different
ways depending on how the data is converted to sets. In the problem of finding
distance between software events, each event can be be considered as one element
of a set. The distance of such sets will depend on the events which are completely
identical in both sets, while ignoring the events which are anything less than 100%
identical. In a different setting each property of event such as path of a FileCreate
event can be considered as an element of set. Then the set will consist of all such
properties and the resulting distance will be influenced by common properties created
by both software samples. Yet in another setting each character of the both events
can be considered an element of set and then similarity will be measured at character
level.

Ssdeep

Ssdeep is a fuzzy hash based similarity detection tool. The tool first computes the
hashes of both the files or strings which need to be compared. Then, rather than
matching the files with each other which are way bigger, only hashes of the files
are compared with each other. Ssdeep has a hash comparison tool included which
can calculate how similar two files were based on their hash values. Ssdeep can be
downloaded from [She14].

4.1.3 Linkage Criteria

When performing hierarchical clustering the first cluster always contains two data
points. The rest of clusters may consist of a point and a cluster or a cluster and
a cluster. This leads to the problem on how to compute the distance between two
clusters. There are many ways this can be achieved. Some of these criteria will be
discussed below.
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Complete linkage clustering

Complete linkage method finds the distance between two clusters as the maximum
distance between any two points of clusters.

max{d(a, b) : a ∈ A, b ∈ B} (4.5)

where A and B are two clusters and a and b are points belonging to A and
B respectively. This method is also called maximum linkage clustering. The best
hierarchical clustering algorithm based on complete linkage criteria has complexity
of O(n2).

Single linkage clustering

Single linkage method is opposite to complete linkage and it finds the distance
between two clusters as the minimum distance between any two points of clusters.

min{d(a, b) : a ∈ A, b ∈ B} (4.6)

where A and B are two clusters and a and b are points belonging to A and
B respectively. This method is also called minimum linkage clustering and its
computational complexity is also O(n2).

Average linkage clustering

Average linkage clustering computes the distance between clusters as the average of
distance between all points of clusters [RC58].

1
| A | . | B |

∑
a∈A

∑
b∈B

d(a, b) (4.7)

O(n2) algorithm also exists for computing hierarchical clustering using this
method.

There are many other methods which can be used, however only most commonly
used methods have been explained above.

More on hierarchical clustering can be read in this survey [XW05].



40 4. CLUSTERING

4.2 Partition based clustering

Hierarchical clustering is a bottom up clustering mechanism which is started by
putting two elements into a cluster and adding more and more elements to make
a hierarchy. This hierarchy provides a relationship between smaller clusters. And
each cluster can be further broken down in smaller clusters. All this information is
inherently present in hierarchical clustering output.

Partition based clustering is exactly opposite to that. It’s a top down approach
where the number of clusters are decided up front. Then, each element is mapped to
one of the clusters. There are many schemes that fall under the category of partition
based clustering. One such famous scheme is called k-means clustering [JD88].

This technique is very useful for certain clustering problems. One advantage it
has over hierarchical clustering is that it can be very easily parallelized and elements
can be broken down into any number of predefined clusters. However, the ability
to specify the clusters upfront is also one of biggest disadvantages of such schemes
because sometimes its not easy to determine how many clusters are reasonable for a
certain problem.

As will be explained in chapter 5 the tree structure of clustering is very helpful in
finding the patterns which detect maximum number of samples. The tree structure
of hierarchical clustering proves to be very critical for that. Since partition based
clustering does not have tree like structure, pattern extraction algorithm presented
in chapter 5 can not be applied to it.

4.3 Summary

This chapter explained the clustering of software based on its behaviors. General
clustering was introduced using some examples. The notion of hierarchical clustering
was explained in depth with examples. There are many different parameters which
can affect the result of hierarchical clustering. Those parameters were explained and
their importance with respect to software clustering based on events was discussed.
Towards the end of the chapter, partition based clustering was introduced and it
was mentioned that hierarchical clustering is more suitable for pattern extraction
algorithm developed in this thesis compared to partition based clustering.

The ideas from this chapter will be taken forward to chapter 5 where a scheme
will be presented which will extract patterns from malware samples after clustering
them using hierarchical clustering.



Chapter5Malware Pattern Generator

This chapter presents Malware Pattern Generator (MPG). A tool which can auto-
matically generate patterns for malware detection from a given dataset of malware
samples. This chapter will explain the design and implementation of MPG. Three
similar but slightly different systems were built and evaluated which will be explained
in the text below. In section 5.1 overall architecture of all three approaches will be
explained. From section 5.2 onwards, the components which constitute these systems
will be explained in depth.

5.1 Architecture

The software which is written to generate automatic patterns for malware is named
MPG. As explained in chapter 3, when software is run in a virtualized environment
the events it generates in the system can be recorded. These events act as features of
the malware which will be used in clustering the malware. Details of which features
are chosen and how important they are for malware clustering and pattern generation
was explained in section 3.4. After the system events generated by malware are
collected, they can be fed to MPG to get behavior pattern groups. A malware sample
may produce many events of many different types. Each event can have one or more
event properties. An example of events created by a malware sample is given in
appendix A.

After processing the events of the samples from dataset, MPG returns a set of
pattern groups which attempt to detect the samples present in the dataset. A pattern
group is a collection of patterns with some relationship between patterns. The
realtionship can be either “and” (intersection) or “or” (union) meaning all patterns
have to match for pattern group to match or one of patterns has to match for pattern
group to match. A pattern consists of one or more sub-patterns with similar “and”,
“or” relationship. Appendix B contains an example of a malware pattern group.

41
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Figure 5.1 shows this in the form of a diagram. If MPG is considered a blockbox,
it takes in events and produces pattern groups as output.

Figure 5.1: Input and Output of MPG.

MPG can be decomposed into different components. These components will be
explained in detail in the section 5.2 onwards. During the work done for this thesis
three slightly different versions of MPG were developed. They are named as

1. MPG Single-Events

2. MPG Multiple-Events

3. MPG Fine

This section will explain the architecture of all three approaches.

5.1.1 MPG Single-Events

The architecture of this approach can be seen in Figure 5.2. This approach is named
Single-Events because the resulting pattern groups consists of events of only a single
type.

Events from all the samples in the dataset are collected by running them in
Blue Coat’s Malware Analysis Appliance (MAA). They are then filtered to remove
un-necessary events. As can be seen in Appendix A, different events belonging to a
sample can be of different types. After filtering, the events are sliced into different
buckets based on type of event. After this step each bucket will contain events
from all the samples of a specific type. Section 5.2 explains the filtering and slicing
in more detail. Subsequently, each bucket is clustered hierarchically independent
of other buckets. The clustering will create a hierarchy of each bucket of events
based on their similarity with other events in the bucket. Details of clustering are
explained in section 5.3 and section 5.4. After finding which samples are close to
each other, events which are shared by multiple samples will be extracted and stored
in a tree in common events extractor and FP remover block (section 5.5). The events
which can cause false positives will also be removed in this block. Then, out of
all common events, the patterns which have maximum coverage will be selected in
patterns extractor block. This block will output a set of patterns for only its specific
category. Finally all patterns are collected from each category.
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Figure 5.2: Architecture of MPG Single-Events.

All the components of this approach will be explained in detail in section 5.2
onwards.

5.1.2 MPG Multiple-Events

Figure 5.3: Architecture of MPG Multiple-Events.

One of the shortcomings of the approach of Single-Events is that the resulting
pattern group consists of only one type of events. However, some malware samples
may share more than one events of different types and using multiple events of
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different types to create a pattern group has potential of generating patterns which
are stronger than Single-Event approach and are less false positive prone. Therefore,
a separate system was written to take into consideration multiple events. The
architecture of multiple events is very similar to Single-Events except the component
of slicing is removed. In this approach all the events are clustered hierarchically
together regardless of their type. The simplified architecture can be seen in Figure 5.3.

The disadvantage of this approach is that it requires more processing resources
than Single-Events approach as all events are clustered together.

Let m be the number of events in sample 1, while n be the number of events
in sample 2. In approach of Multiple-Events the number of comparisons required
are n ×m. While, in Single-Events approach each bucket is clustered separately
therefore the required operations are less than n×m.

5.1.3 MPG Fine

This approach is an extension of MPG Multiple-Events. The architecture is same as
MPG Multiple-Events but clusterer and pattern extractor components are changed
to incorporate finer details of events when clustering and extracting patterns. Exact
differences will follow in the text.

This approach requires even more processing power than both previous approaches
but it incorporates not only complete events but also event properties. Hence,
promising more accurate pattern groups.

5.2 Filter and Slicer

A malware sample may produce many events. Some complete events are known to
cause false positives while only some parts of some other events are not useful for the
purpose of pattern generation. These events are filtered out in this section. Since
filtering requires traversing all the events, they are also sliced in this step based on
their types. Sub-sections below will explain this in more detail.

5.2.1 Inconsistent event properties removal

When malware is run in a virtualized environment there are many events which
can be recorded. As explained in section 3.4 some properties of the events are not
consistent across multiple executions of same malware sample. The biggest portion
of such event properties are OS generated handles. File handles, process Identifiers
(IDs) and network sockets are examples of such properties.
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This section removes all the OS generated inconsistent event properties but keeps
the rest of properties intact. For example, if an event of type file_create has two
properties: file_path and file_handle, file_path will be kept while file_handle will be
removed because file_handle is generated by OS dynamically and does not remain
static across multiple executions of same malware sample. This module removes
following properties because of the same reason.

– thread handle

– file handle

– process ID

– socket

– source port

– source address

After removal of these properties, only the reproducible events remain in the system.

5.2.2 Event white-list

There are certain events which are not suitable for malware pattern creation. An
example of such an event is network communication with “windowsupdate.com”.
Such events are of a considerably large number and removing them at the earliest
stage helps in efficiency of the system because it does not have to process the events
which are known to be useless from the perspective of malware pattern generation.
Furthermore, because of early removal, they do not influence the clustering which
will be explained in section 5.3 and section 5.4.

This section does not only remove the property of the event which is in white-list
but it removes the complete event which contains a white-listed property.

Most common domains which are accessed by windows system itself or by non-
malicious software are white-listed. Such as “windowsupdate.com”, “google.com”
“akamai.net” and much more. The commonly accessed IP address 8.8.8.8 is white-
listed as this address is the address of google’s DNS service. Apart from this, the
private IP address ranges are white-listed. These ranges include 192.168.0.0/16,
172.16.0.0/12 and 10.0.0.0/8.
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5.2.3 Slicer

Slicing is only performed for MPG Single-Events. In this step, events belonging to
each malware are grouped together based on their type and then each type of events
are stored in a separate file on the hard-drive.

For MPG Multiple-Event and MPG Fine, slicing doesn’t take place. After
performing the filtering, filtered events are stored on hard-drive together without
slicing.

5.3 Distance Matrix generation

The objective of MPG is to generate detection patterns for malware. And events
which are common in multiple malware samples are strong candidates for those
patterns. To achieve this goal, malware samples are clustered to find the samples
which have common events amongst them. Chapter 4 presented two clustering
schemes and stated that hierarchical clustering is more suitable for the problem of
pattern generation. This will become more obvious in section 5.5 when the fact that
hierarchical clustering provides a tree structure as output will be used to extract
patterns from samples.

After pre-processing the input data, hierarchical clustering has to take place. In
this step the malware samples will be clustered together based on the similarities they
have in their events. The first step in clustering is generation of an n× n distance
matrix from the n malware samples. The theoretical details of hierarchical clustering
were explained in section 4.1. This and next section will only contain the details of
hierarchical clustering from implementation point of view.

As explained in section 4.1 a distance matrix can be stored in upper triangular
form to save space. However, still a table containing rows and columns has to be
created which has memory overhead. To get rid of this overhead the distance matrix
can be flattened by putting all the values next to each other in a list rather than in
a table. If this optimization is applied to Table 4.4 the output will be as below:

[0.52 , 0.10 , 0.24 , 0.62 , 0.74 , 0.18]

This format of storing distance matrices is called condensed distance matrix and
it can be given as input to many clustering libraries including fastcluster [Mül13]
and scipy [JOP01]. Condensed distance matrix requires less memory compared to
the standard table. Secondly, this list provides all the functionality of a table and
location of distance between any two points can be calculated easily. During the
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implementation of MPG the distance matrix was stored in condensed distance matrix
format. Algorithm 5.1 shows how to calculate the distance matrix in Python.

Algorithm 5.1 Distance matrix generation algorithm.

m = []
for i in xrange(len(files)):

for j in xrange(i + 1, len(files)):
m.append(jaccard_index(files[i], files[j]))

return m

Since generation of distance matrix is an O(n2) task, its output is saved on hard
disk and is read again from hard disk for clustering.

5.3.1 Jaccard Distance

MPG uses Jaccard distance as measure of distance between malware samples. All
clustering schemes classify the elements into clusters based on their similarity. As
a simple example if two elements are exactly the same they should be in same
cluster. In general clustering problems, it is not that important how extractable
the similarity is, but in our particular problem the objective is to find detection
patterns. So, it is important how similar two samples are but what exactly is similar
in them is more important. Section 4.1.2 presented three different clustering metrics.
Based on this criteria out of the three approaches presented, Jaccard distance was
chosen because it is calculated based on intersection and union. And the intersection
precisely provides the events which are common in two samples. This property is not
present in other techniques where extracting the common events out of samples is
not trivial. Furthermore, malware events can be easily converted to sets using set()
or frozenset() functions of Python. Different granularity can be used depending on
the problem.

MPG Single-Events and Multiple-Events

To calculate the Jaccard distance the data must first be converted into sets. In case
of MPG Single-Events and Multiple-Events, each complete event is considered one
element of set. Then the union and intersection of these sets is calculated. The
values of union and intersection are then plugged in equation 5.1 to calculate the
Jaccard distance. This algorithm can also be seen in Algorithm 5.2.

J(A, B) = 1− | A ∩B |
| A ∪B |

(5.1)
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Algorithm 5.2 Jaccard Index Algorithm

#data1, data2 : A list containing events in text format.

set1 = frozenset(data1)
set2 = frozenset(data2)

intersection = len(set1 & set2)
union = len(set1 | set2)

jaccard_coefficient = intersection/float(union)
jaccard_distance = 1 - jaccard_coefficient

MPG Fine

MPG Fine uses a slightly modified Jaccard distance to also take properties of events
into account. In the approach mentioned in Algorithm 5.2 if two events are 80%
similar they will not influence the Jaccard distance at all. Anything less than 100%
similarity has no effect on the distance. Due to this limitation the results are not as
good as they theoretically can be.

To overcome this problem a separate algorithm was designed to take into consid-
eration not only events but also their properties.

As a first step the normal Jaccard index is calculated using Algorithm 5.2. After
calculating this Jaccard index the final result is adjusted based on similarities between
other events which are not 100% identical.

Let Jf (Jaccard full) be normal Jaccard index calculated by Equation 5.2.

Jf (A, B) = | A ∩B |
| A ∪B |

(5.2)

Where A and B are sets of events from two malware samples. Each element of
set A and set B is a complete event with all its properties. So, A ∩B will contain
only the events which are completely identical in both A and B.

Let Ja (Jaccard adjustment) be adjustment to the Jf based on event properties
then J (Final Jaccard Index) will be

J(A, B) = Jf (A, B) + Ja(A, B) (5.3)
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And Final Jaccard distance will be

Jd(A, B) = 1− J(A, B) (5.4)

Method of computing Ja is explained below.

1. A′ and B′ are calculated using:

A′ = A− (A ∩B) (5.5)

B′ = B − (A ∩B) (5.6)

At this point A′ ∩ B′ should be {∅} because all the common elements have
already been subtracted from A and B to get A′ and B′.

2. A′ and B′ are sliced based on event type. Let a, b, c ... be event types, then
A′

a, A′
b, A′

c ... are sets containing only events of type a, b, c ... respectively.
Similarly slices of B′ are obtained.

3. Pair wise Jaccard index of elements belonging to each slice is calculated. For
this step Jaccard index is calculated on properties rather than the complete
events. Standard Jaccard index formula formalized in equation 5.2 is used for
measuring the index. This can be better explained using an example. Let:

A′
a = { {“path”:”file.txt”, “attributes”:534238}, {“path”:”file2.txt”, “attributes”:534238}}

B′
a = { {“path”:”file.txt”, “attributes”:233482}}

A′
a contains two events while B′

a contains only one event containing two
properties each. So, Jaccard index between first event of A′

a and first event
of B′

a will be 1/3 because length of union is 1 and length of intersection is 3.
Similarly by taking Jaccard index of remaining pairs a table such as Table 5.1
can be obtained.

Table 5.1: Jaccard index matrix

B′
a\A′

a event1 event2
event1 1/3 0

4. After calculating Jaccard index, matrix events from B′
a and A′

a can be linked
together based on how similar they are to each other. This is done by finding
the largest value in the table and linking the events it belongs to together. In
the example of Table 5.1, it can be seen that event1 of B′

a is closer to event1 of
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A′
a compared to the other options as they have largest value (1/3) in the table.

So, both these elements are eliminated from the table and their similarity is
noted down which is 1/3.
After removing the most similar events, the next most similar events are found
in the table by finding the maximum in the table. In this particular example
there are no elements left in B′

a set so the process will stop. But if there would
be more, entries procedure would be kept repeating until all entries belonging
to one of the sets in the table get removed.
At this point, all the similarity scores retrieved from the table are added
together to get the overall similarity of slice.
Let Sa be similarity of the slice a then,

Sa =
∑

Jaccard index of most similar elements (5.7)

The final adjustment of slice a is given by:

Adja = | A
′
a ∪B′

a |
| A ∪B |

× Sa

(| A′
a ∪B′

a |)− Sa
(5.8)

In equation 5.8, Sa is normalized by plugging it into Jaccard index formula.
That normalizes the similarity and brings it back in the range of 0 to 1.
After normalization of the similarity Sa, the normalized similarity is further
normalized according to A ∪B so that sum of Adjs (equation 5.9) of all slices
will be within the range of 0 and 1.
Using the same process adjustment of all slices is obtained.

5. All adjustments are added together to get the final adjustment Ja

Ja =
∑

x∈{a,b,c,...}

Adjx (5.9)

Final Jaccard distance is used for computing the clustering. This Jaccard distance
provides more accuracy than the distance calculated in previous step. However, this
process takes much more computing resources. Furthermore, this improved Jaccard
distance is still between 0 and 1 and can be used instead of the previous Jaccard
index without any other architectural changes (for clustering).

5.4 Hierarchical clustering

Hierarchical clustering is an O(n2) operation which has been studied extensively and
therefore many libraries exist which can be used to compute hierarchical clustering.
Fastcluster [Mül13] is a library implemented in C++ and supports most common
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hierarchical clustering algorithms. The library provides interface to Python and R.
So, the speed of C++ can be achieved without loosing the simplicity of programming
in Python.

All variations of MPG use fastcluster library with average linking as linkage
criterion (section 4.1.3). When calculating the distance between clusters, average
linkage criterion calculates the pair-wise distance between all points of both clusters
and then takes an average. It takes into consideration all the points of both clusters
which provides better accuracy than single or complete linkage criteria. Fastcluster
provides an algorithm to compute the hierarchy using average linkage criterion with
O(n2) complexity.

Fastcluster takes condensed distance matrix and returns the hierarchy tree. The
method of calculation of condensed distance matrix was explained in section 5.3.

The format of the output tree is different than a traditional binary tree and
understanding it is useful for following next sections. In a hierarchy, it is not required
to know if a child is right child or left child. Because of this relaxation it is possible
to store this tree in less memory than a traditional binary tree. The storage system
is further explained using an example.

If there are 4 points which need to be clustered.

points = [1, 2, 3, 4] (5.10)

And their distance matrix is given by:
condensed distance matrix = [0.52, 0.10, 0.24, 0.62, 0.74, 0.18]

Then, the fastcluster and other clustering libraries such as scipy will return the
following output

[[ 0. 2. 0.1 2. ]
[ 3. 4. 0.21 3. ]
[ 1. 5. 0.62666667 4. ]]

The output should be read and executed line by line. First and second column of
the output represent the index of the elements which should be clustered at this step.
The result of the merge always creates a cluster labeled as number of last cluster + 1.
The third column represents the distance between the two clusters while the last
column represents the number of elements in that cluster. This output can be seen
in the form of a dendogram in Figure 5.4.
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In the first row of this example, elements at location 0 and location 2 in points
array are clustered together to get the cluster no 4. The cluster is numbered four
because there are four input points which have the label of 0, 1, 2 and 3. So, the first
cluster will be labeled the next value in the sequence which is 4. Point at location
0 of array in expression 5.10 is 1, and point at location 2 is 3. As can be seen in
dendogram points 1 and 3 are joined first. Distance between points 1 and 3 is 0.1
and there are two elements in newly created cluster which is labeled 4.

In the second row, element at location 3 and cluster 4 (created in last step) are
merged together. Distance between them is 0.21 and the newly created cluster (5)
has 3 elements in it. And finally in the last row element at location 1 is joined with
cluster 5 to create cluster 6. Cluster 6 has all 4 elements in it.

Figure 5.4: Dendogram of clustering. Image was drawn using the software [Wes12].

This format of hierarchy output is called “linkage matrix” and can be easily stored
in a text file or database. It requires much less space as no references or pointers to
children need to be maintained. And using the linkage matrix and the input data,
dendogram can be easily created as explained above.

In MPG, linkage matrix is obtained using fastcluster library and it is stored in
the hard disk to be used in next step.

5.5 Pattern Extraction

At this stage a hierarchy has already been obtained. Now, in this step, hierarchy will
be followed as it is built to generate a binary tree. The parent of every two nodes of
the tree will contain the events which are common between those two nodes. The
process will be repeated until all the tree will be built. The process of generating the
tree will be explained in section 5.5.1. Section 5.5.4 will explain the procedure of
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extracting the patterns out of the tree. From here onwards, this tree will be referred
to as pattern tree.

5.5.1 Pattern tree generation

The sample events used in MPG are stored in files. The dendogram constructed
in clustering step contains name of the event files as leaf nodes. The pattern tree
generation module reads the linkage matrix generated by fastcluster line by line.
Each line provides a connection between two existing event files or clusters. After
reading the files which are linked, their intersection is taken to extract the events
which are common between them. These common events are stored in a separate file
and the name of the newly generated file is appended in a new column of linkage
matrix. At the end of this process all the lines in linkage matrix contain not only
the name of files which are linked but also the filename which contains the common
events between them. This step converts the hierarchy to a binary tree with data in
all nodes rather from just linkage information.

At the end of this step the linkage matrix for the example mentioned would look
like this:

[[ 0. 2. 0.1 2. node4.txt]
[ 3. 4. 0.21 3. node5.txt]
[ 1. 5. 0.62666667 4. node6.txt]]

And this can be shown in the form of a binary tree as shown in Figure 5.5. The
structure of the pattern tree is same for all approaches but how parent of two nodes
is populated differs from approach to approach.

MPG Single-Events and MPG Multiple-Events

For the case of MPG Single-Events and MPG Multiple-Events, simply an intersection
of two nodes is taken to populate the parent node. That means if two nodes have
identical events, they will move to parent nodes from child nodes. After the elements
in intersection are copied to the parent node, they are removed from the child nodes.

MPG Fine

Since the procedure of clustering is different for MPG Fine (explained in section 5.3.1),
the pattern tree generation is also slightly different.

1. Intersection of the nodes is taken to extract the identical events. The common
events are put in parent node and removed from both child nodes.
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Figure 5.5: Pattern tree

2. The remaining events are sliced and aligned to each other using the algorithm
mentioned in steps no 2, 3 and 4 of section 5.3.1. After aligning the events
with each other, the intersection of each pair is taken to extract the properties
which are common in both nodes. An event is then created out of only those
common properties and is stored in the parent node. The complete events still
exist in the child nodes.

Properties of pattern tree

For each variant, following the steps mentioned above, the pattern tree can be built.
A pattern tree is a binary tree with each non-leaf node having two children. The leaf
nodes of the tree represent the malware samples while all the nodes above leaf nodes
are combination of events from multiple malware samples. A node contains events
which are common in all of its descendant leaf nodes. The position of subtrees of any
node (left and right) can be swapped without any loss of information. In fact, the
tree does not store the location of its subtrees (left, right) at all in linkage matrix.
In MPG Single-Events and MPG Multiple-Events, any event which is present in a
node is not present in any of its descendant nodes. It saves the space by removing
duplicating. In MPG Fine, if a node has a partial event, the complete event is present
in the descendant nodes. If a parent node contains a complete event it is not present
in the child nodes.

Furthermore, as shown above, the tree can be stored as a 5× (n− 1) matrix. So,
it can be easily stored in hard drive and re-read again without the need of object
serialization. An example of pattern tree can be seen in Figure 5.5.
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5.5.2 Pattern tree traversal

Since a pattern tree is stored in the form of a 5× (n− 1) matrix, a special algorithm
is required to traverse it. To traverse a pattern tree following items are needed:

1. Number of leaf nodes

2. List of leaf nodes in the same order in which distance matrix was generated
from them

3. Pattern tree

The last row of pattern tree refers to the root node of the pattern tree. To
simplify the understanding of traversal, text below shows the list of leaf nodes and
the pattern tree written together.

leafnodes:
0: [leaf1.txt]
1: [leaf2.txt]
2: [leaf3.txt]
3: [leaf4.txt]

tree:
0: [ 0. 2. 0.1 2. node4.txt]
1: [ 3. 4. 0.21 3. node5.txt]
2: [ 1. 5. 0.62666667 4. node6.txt]

Algorithm 5.3 presents a depth first traversal algorithm for traversing the tree in
above mentioned format. Similarly, a breadth first algorithm can be written. The
algorithm starts at the root node and keeps traversing until all nodes have been
visited.

5.5.3 False positive removal

After creation, the pattern tree contains all events from malware samples. Some of
those events can also occur in the clean data set. To decrease the probability of false
positives a step of false positive removal is performed.

A relatively small dataset of known benign files was created. Their software
events were generated using Blue Coat’s MAA product [Coa14]. The pattern tree is
then traversed node by node and if all events present in any node are also present
in the clean files, all events from that node are removed as a pattern consisting of
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Algorithm 5.3 Pattern tree traversal

def traverse(node):
if(node < 0):

visit(leafnodes[node + len(leafnodes)])
else:

first_child = tree[node][0] - len(leafnodes)
second_child = tree[node][1] - len(leafnodes)
visit(tree[node][4])
traverse(first_child)
traverse(second_child)

traverse(len(tree) - 1)

those events will cause false positives. Section 5.5.4 will explain in detail that when
a pattern group is extracted from a node, the relationship between different patterns
in it is “and”. So, the nodes which have some events which cause FP but also some
other events which do not cause FP are kept because altogether they will not cause
an FP.

FPs are not removed before clustering because then some of the events which
are present in clean files alone may not be present in any clean files when they are
grouped with other such events, or when grouped with malicious events. Therefore,
to increase the strength of pattern groups, FPs are removed at last possible position.

5.5.4 Pattern group extraction

To extract the pattern groups from the pattern tree, the tree is traversed breadth
first. Usually the root node of the tree is empty and many top nodes also do not
have any data in them. It is because, its very less likely that a malware dataset will
contain some event which is common among all malware samples but it is not present
in any of benign files. Due to this reason the tree is continued to be traversed from
root in breadth first manner until a node is found which contains data.

A pattern group can have theoretically many patterns, but for MPG a limit of
five patterns per pattern group was chosen. If the number of patterns in a pattern
group are kept to a small number their strength decreases and the probability of
FPs increases. However, if the number is kept too high then it takes relatively long
time to match that pattern against malware which affects the system efficiency. So,
a trade-off number of maximum five patterns per pattern group was chosen. Some
further research can be done to fine tune the maximum number of patterns. A
research topic covering this is proposed in the chapter of future work, section 7.3.
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During breadth-first traversal, if a node is encountered which has more than five
events, five events are chosen randomly to generate a pattern group. If five or less
events are present, then all of them are used for pattern group generation. After
generating a pattern group out of a node, the subtree of that node is ignored because
the pattern group from that node will cover all its descendants. For the scope of
this thesis no intelligence was added in choosing which of the five events should be
chosen if there are more possibilities. Further research on this topic can be done as
proposed in chapter of future work, section 7.3.

This process is repeated until all tree has been traversed and pattern groups are
extracted.

5.6 Minimum patterns selector

All the pattern generated by MPG are FP free and useful for malware detection.
However, for a specific dataset some pattern groups may remain un-used. This
section presents a tool which can identify the minimum number of pattern groups
needed to detect a specific dataset. This tool will be used in chapter 6 to present the
minimum number of patterns needed to detect each dataset.

Figure 5.6: Example of a redundant pattern. P<x> represents a pattern, an
arrow from a pattern to a sample represents that the pattern detects the sample.

For a given dataset of malware samples and a set of pattern groups, a sample may
be detected by more than one pattern groups while a pattern group may detect more
than one samples. Figure 5.6 shows an example of this many to many relationship
between patterns and samples. In some cases it is possible to eliminate some of
the pattern groups without loosing any detection. In order to select the minimum
number of patterns which are needed, all generated patterns are matched against
all samples in dataset to get a pattern to sample mapping as shown in Figure 5.6.
Then, Algorithm 5.4 is used to select the minimum number of pattern groups needed
to maintain the same detection.

In the example of Figure 5.6, in the first iteration P1 will get selected as it detects
three samples (Sample 1, Sample 2 and Sample 6) while the other patterns detect
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Algorithm 5.4 Minimum patterns selector algorithm

Create a sample to pattern map which can return
the number of patterns which detect a sample

Create a pattern to sample map which can return
the number of samples a pattern detects

Initialize all samples to unchecked state
Initialize all patterns to unchecked state

while(there are unchecked samples):
best_pattern = From the pattern map, find an unchecked pattern

which detects maximum unchecked samples

Check all the samples which are covered by best_pattern
Check the best_pattern

Choose only checked patterns to get minimum\
patterns needed to maintain same detection rate

only two or one. And then Sample 1, Sample 2 and Sample 6 along with P1 will be
checked. This can be seen in Figure 5.7.

Figure 5.7: After first iteration of minimum patterns selector.

During second iteration P4 will be selected as it detects two unchecked samples
while the other patterns detect only one. This iteration will lead to checking of P4,
Sample 4 and Sample 5.

In the third iteration, P2 will be selected as it detects the last remaining Sample
3. This marks the end of while loop because all the samples have been checked and
all patterns have also been checked except P3. P3 is left unchecked which means
even without P3 same detection rate can be achieved.
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5.7 Final FP Testing

After collecting all pattern groups a final FP test takes place. The step of FP removal
(section 5.5.3) is very processing intensive. All clean events are matched against all
malicious events. Therefore, the dataset that is used in that step is kept very small.
However, at the end of all the above steps a larger dataset of clean files is used to
perform a final FP test.

During final FP test if a pattern group detects a clean sample, it is removed
from the patterns list. Furthermore, the clean sample which was detected by the
pattern group is added to the initial FP set to remove that FP in initial step for
future executions of MPG.

5.8 Summary

This chapter presented MPG: a tool to generate malware detection patterns automat-
ically. There are three variants of MPG : MPG Single-Events, MPG Multiple-Events
and MPG Fine. Design and implementation of all approaches is discussed in detail.

All malware samples are run in Blue Coat’s MAA to generate their events.
These events are then processed by MPG to generate pattern groups. MPG Single-
Events slices the malware events based on their type and processes each of the slice
independently. Each slice is hierarchically clustered. After the clustering, a pattern
tree is generated and finally patterns are extracted from the pattern tree. At the
end patterns from all slices are gathered together.

One of the limitations of MPG Single-Events was that each pattern group consisted
of patterns of only a single type. MPG Multiple-Events removes this limitation by
clustering all the events of all types together and generates pattern groups which
can have multiple patterns of different types.

MPG Fine improves on MPG Multiple-Events further by not only taking into
consideration identical events, but also the events which are partially identical. MPG
Fine is most resource intensive followed by MPG Multiple-Events and then MPG
Single-Events. After creation of the patterns FP testing takes place where the
patterns which cause any false positives are removed.





Chapter6Evaluation

This chapter presents the evaluation results of the all variants of MPG. In section 6.1
the criteria which will be used to evaluate the results will be presented. Section 6.2
will explain the datasets which were used in experiments. Section 6.3 onwards will
enlist and explain the results of each variant of MPG.

6.1 Criteria of Evaluation

The final goal of MPG is to automatically create the behavior patterns of malware
which can be used in malware detection. The pattern groups generated by system
will be evaluated based on criteria enlisted below in the order of their priority.

6.1.1 False Positives

Just like other signatures, behavior patterns are also prone to false positives. A
pattern which can identify a malware may also identify a file which is non-malicious.
The objective of MPG is to generate patterns for malware which can be used to
identify it. The most basic use-case is: if a set of benign and malicious files are
given to a system which uses MPG generated patterns as distinguisher, the malware
should get detected as malware whereas the benign files should not get detected. So,
a good pattern set should not contain any patterns which detect benign files or in
other words, cause false positives. This requirement has the highest priority among
all requirements.

6.1.2 Coverage

Coverage of dataset means what percentage of dataset samples were detected using
the patterns generated. The dataset used to generate the patterns should be able to
detect maximum number of samples from the dataset. The more the coverage, the
better are the results. This requirement ensures that any malicious dataset can be
given to MPG and the patterns generated will be enough to detect maximum number
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of samples from the dataset. In other words, the system should have least number of
false negatives. This requirement has second priority after the false positives.

6.1.3 Sample to pattern ratio

Sample to pattern ratio (SPR) is given by Equation 6.1.

SPR = No of Samples detected
No of Patterns groups used to detect them (6.1)

The process of matching a pattern group against datasets is an expensive process
and affects the performance of a system which processes high number of malware. So,
a situation where a small number of patterns can be used to identify a large number
of malware is desirable. Therefore a measure of SPR is introduced here. The larger
the value of SPR, the better the results are. This requirement has lower priority
compared to both false positives and false negatives.

6.1.4 Matching speed

The time it takes to match the generated pattern groups against malicious samples
has effect on efficiency of the system. The patterns which are faster to match will
result in an efficient system. This will be measured by noting down the matching
time when matching all MPG generated pattern groups against a dataset. Within
the scope of this thesis, this criterion has lowest priority.

6.2 Datasets

MPG requires that all the samples in malicious dataset should be known malware. If
some of the files in the dataset will be non-malicious, they will result in producing
pattern groups which detect those non-malicious files. Such patterns will cause false
positives. Secondly, some of the malware samples do not perform any activities in
virtual environments. There can be many reasons for that, such as: the malware
detects that it is being run in a virtual environment for detection and it does not
execute. There are some malware samples which require a certain condition to be
true before they can execute. Examples of such malware are: malware samples that
run only on a specific date, or a malware sample that executes only on a Windows
XP machine furthermore, only if a specific version of Adobe Reader is installed on it.
If such malware is executed in a virtual machine, it does not perform any activities
hence its detection using pattern matching is not possible. And detection of such
malware is out of scope of this thesis. Therefore, the datasets chosen only consist
of the malware which produces events. Based on this criteria, the datasets have
following properties:
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1. All samples are malicious, it is confirmed using Blue Coat’s malware database.

2. All samples are unique. This is confirmed by making sure no two samples have
same md5 hash.

3. All samples were executed in Blue Coat’s MAA [Coa14]. Samples were executed
on Microsoft Windows XP Service Pack 3 profile of MAA for 1 minute each
to generate events from samples. Microsoft Windows XP was chosen because
XP lacks User Account Control (UAC) [Rus07] which makes it less secure than
later version of Windows.

Three datasets following the properties mentioned above were selected. Dataset 1
and Dataset 2 were chosen to generate the pattern groups. Dataset 3 was chosen
specifically to see how the patterns generated by previous datasets help in detecting
larger set of malware. These datasets are analogous to training and evaluation
datasets used in machine learning. Dataset 1 and Dataset 2 are training datasets
while Dataset 3 is evaluation dataset.

Apart form this, a separate dataset named Clean Dataset of non-malicious files
was used to remove any patterns which cause false positives.

6.2.1 Dataset 1

Dataset 1 consists of 10000 samples chosen according to criteria mentioned above.
The dataset contains 8609 samples which have events in them while remaining samples
have no events which made their detection through patterns impossible. Therefore,
the samples with no events are discarded and tests are performed using only 8609
samples.

6.2.2 Dataset 2

Dataset 2 consists of 1000 malware with an already known pattern. The patterns
for that dataset were created manually by human analysts. This dataset helps in
comparing how MPG competes with manually generated patterns. To detect this
Dataset 27 human generated pattern groups were required. All samples in this
dataset have events and there are no silent samples.

6.2.3 Dataset 3

For selection of Dataset 3, 30000 malware samples were chosen according to criteria
mentioned above. Out of the 30,000 samples 3746 were silent which were discarded.
Remaining 26254 samples were used for experiments. This dataset is not used for
creating pattern groups but rather evaluating the pattern groups generated by other
datasets to see how effective they are for a different dataset.
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6.2.4 Clean Dataset

Clean Dataset consists of 74530 samples, all files are known to be clean and do not
contain any malicious samples. This dataset is used to make sure that any of the
malware patterns do not detect any of non-malicious files. The number of samples in
this dataset are chosen to be much larger than other datasets because avoiding false
positives is highest priority of MPG.

In the sections below each variant of MPG will be evaluated first against Dataset 1.
During this evaluation, Dataset 1 will be used to generate a set of behavior patterns.
These behavior patterns will then be matched against Dataset 1 to get the SPR and
detection rate. Finally, the patterns generated by Dataset 1 will be matched against
Dataset 3 to see how these patterns perform against a dataset which is different from
the one used to generate patterns.

The second experiment for each variant of MPG consists of evaluating the variant
against Dataset 2. Since, Dataset 2 has samples with known patterns generated by
human analysts, it is used to compare the performance of MPG patterns with manual
patterns. First a set of pattern groups will be generated using Dataset 2, then those
pattern groups will be evaluated against Dataset 2 to measure the detection rate and
finally, the pattern groups will be evaluated against Dataset 3. A brief comparison
of MPG pattern groups versus human generated pattern groups will also be given.

6.3 MPG Multiple-Events

MPG Multiple-Events produces pattern groups which can have multiple patterns in
each group. And all patterns can be of different types.

6.3.1 Experiment 1

During this experiment, pattern groups were generated by MPG Multiple-Events
using Dataset 1. Table 6.1 shows that 3643 pattern groups were generated from this
malicious data set.

Table 6.1: Experiment 1: Pattern groups generated by MPG Multiple-Events using
Dataset 1

Total samples 8609
Patterns generated 3643

Each of these pattern groups contain up to five patterns. Figure 6.1 shows that
1290 (35.4%) of the pattern groups had only one pattern in them while 1719 (47.2%)
had five patterns in them. Rest of the pattern groups have either 2, 3 or 4 patterns
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which make up 17% of the whole pattern set. The pattern groups with higher number
of patterns are stronger and are less FP prone.

Figure 6.1: Experiment 1: Frequency of number of patterns in pattern groups

In the second part of the experiment, the patterns generated in Table 6.1 were
matched on the same dataset (Dataset 1). Results of this experiment are presented
in Table 6.2. It can be seen that out of 3643 patterns generated only 3146 patterns
were used for detection. Even if the rest of them (497) were removed, detection rate
would still be the same. These 3146 patterns detected 8606 out of 8609 files giving a
detection rate of 99.96%. The 3 samples which were not detected did not have any
events left after events causing false positives were removed. From the results, it
can be seen that it happens very rarely that all the events in a malicious sample are
causing false positives. No false positives were encountered when these patterns were
matched against Clean Dataset.

Table 6.2: Experiment 1: Evaluation of MPG Multiple-Events on Dataset 1

Total samples 8609
Total patterns 3643

Patterns used in detection of this dataset 3146
Samples detected 8606

Sample to pattern ratio (SPR) 2.735
Detection Rate 99.96%
False Positives 0

FP Rate 0%

A pattern set of 3146 pattern groups detecting 8606 samples gives a sample to
pattern ratio of 2.73 which means on average each pattern detects 2.73 malware
samples. However, the average does not give the complete picture of relationship
between patterns and samples. Figure 6.2 shows the number of patterns needed to
detect the number of samples. Curve rises slowly for the first half of sample set. To
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detect first 2000 samples only 8 patterns are needed. To detect first 4000 samples the
patterns needed are around 50. And around 50% of the sample set can be covered by
approximately 72 (2.3%) of the patterns. It can also be seen in the curve that after
around 6000 samples the curve becomes more or less linear and each pattern detects
only a single sample. For the last 30% (after 6000 mark) of samples approximately
84% of pattern groups are needed.

Figure 6.2: Experiment 1: Dataset coverage by number of patterns

The trend explained in Figure 6.2 shows that majority of samples in a randomly
selected dataset have events in common. These events can be used to generate
patterns for them. However, a portion of dataset does not have any events in common
therefore, to detect those samples a separate pattern group must be generated for
each of those samples. And finally these results show that if a set of malware samples
are used to generate malicious patterns, it is indeed possible to generate false positive
free pattern groups which detect almost all the samples.

Table 6.3 shows the matching results of the pattern groups generated in Exper-
iment 1 against Dataset 3. Dataset 3 consists of 30,000 samples chosen randomly
to check the quality of generated pattern groups against a dataset which was not
used in pattern generation. From a total of 3643 pattern groups 3135 pattern groups
were used to detect 16596 (63.21%) of dataset. Since, only 8,609 samples were used
to generate the pattern groups, detection of 16596 samples shows that generated
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Table 6.3: Evaluation of patterns generated during Experiment 1 on Dataset 3

Total samples 26254
Total patterns 3643

Patterns used in detection of this dataset 3135
Samples detected 16596

Sample to pattern ratio (SPR) 5.294
Detection Rate 63.21%
False Positives 0

FP Rate 0%

pattern groups indeed detect not only the samples in training set but also other
samples.

6.3.2 Experiment 2

Experiment 2 is replica of Experiment 1 with a different dataset. During this
experiment Dataset 2 was used to evaluate MPG Multiple-Events. All the samples
chosen in this dataset had at-least one event. Therefore, there are no silent events.
Furthermore, malware analysts at Blue Coat have already created patterns for
these samples. During this experiment, the pattern groups generated by MPG
Multiple-Events will be compared with analyst generated behavior pattern groups.

Table 6.4 shows that Dataset 2 consisted of 1000 samples and 302 pattern groups
were generated from this dataset.

Table 6.4: Experiment 2: Pattern groups generated by MPG Multiple-Events using
Dataset 2

Total samples 1000
Patterns generated 302

Figure 6.3 shows that majority (89.5%) of the pattern groups for this dataset had
5 patterns in them. All other pattern groups had 1, 2, 3 or 4 pattern groups. It shows
that most of pattern groups generated during this test are strong pattern groups
because of having 5 patterns each. Therefore, the probability of them causing FPs is
lower. The reason for this is the nature of Dataset 2. As opposed to Dataset 1 which
consists of random samples, Dataset 2 consists of samples which already have human
generated pattern groups. Because the selection of samples was not random, the
selected samples have more common events than general dataset such as Dataset 1.
Therefore, the pattern groups generated also have more patterns as can be seen in
Figure 6.3.
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Figure 6.3: Experiment 2: Frequency of number of patterns in pattern groups

Similar to Experiment 1, patterns generated from Dataset 2 which are shown in
Table 6.4 are matched against Dataset 2. The matching results are shown in Table 6.5.
For this particular dataset only 253 pattern groups were used and detection rate was
100% with 0% FP rate.

Table 6.5: Experiment 2: Evaluation of MPG Multiple-Events on Dataset 2

Total samples 1000
Total patterns 302

Patterns used in detection of this dataset 253
Samples detected 1000

Sample to pattern ratio (SPR) 3.952
Detection Rate 100%
False Positives 0

FP Rate 0%

Similar to Experiment 1, the SPR of 3.952 in this case is also not smooth. The
relationship between number of pattern groups and number of samples it covers for
this experiment is shown in Figure 6.4. The curve is again non-linear with 19 (5.82%)
pattern groups detecting 50% of sample set and curve converts into a straight line
at 772 samples mark. The last 228 samples (22.8%) require 228 (70%) of pattern
groups which means one pattern group for each sample.

In the final part of this experiment the patterns generated during this experiment
are matched against Dataset 3. Table 6.6 shows the results.

It can be seen in Table 6.6 that out of 302 patterns, 251 were used to detect 4506
samples. The detection rate for the complete dataset is 17.16%. However, considering
that only 1000 samples were used to generate these pattern groups and 4506 samples
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Figure 6.4: Experiment 2: Dataset coverage by number of patterns

Table 6.6: Evaluation of patterns generated during Experiment 2 on Dataset 3

Total samples 26254
Total patterns 302

Patterns used in detection of this dataset 251
Samples detected 4506

Sample to pattern ratio (SPR) 17.952
Detection Rate 17.163%
False Positives 0

FP Rate 0%

from a different dataset get detected shows that the pattern groups generated are
not specific only to dataset used to generate them.

Comparison with human created pattern groups

This section provides a brief comparison of pattern groups created by MPG Multiple-
Events using Dataset 2 with patterns which were created by human malware analysts
at Blue Coat Norway.
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Both human generated pattern groups and MPG Multiple-Events generated
pattern groups were able to detect 100% of Dataset 2. Furthermore, both human
generated and MPG Multiple-Events generated pattern groups had no false positives.
To detect all samples of Dataset 2, only 27 human created pattern groups were
enough. Whereas, 253 pattern groups generated by MPG were required for same
detection rate.

The pattern groups created by malware analysts were much complicated then the
ones created by MPG. In MPG all patterns in a pattern group have and (intersection)
relationship with each other, meaning that all the patterns must occur in a sample
for it to be detected. Whereas, analyst created patterns had sometimes or (union)
relationship which makes it difficult to compare them side by side with MPG pattern
groups. Furthermore, regular expressions and partial sub-patterns are also often used
by malware analysts which is not the case in MPG.

MPG provides same detection and false positive rate as human generated pattern
groups. However, there is still much room for improvement in MPG Multiple-Events
by using regular expressions and or (union) relationship among pattern groups to
find patterns with better SPR without loosing detection. This is added as a future
work proposal in chapter 7.

MPG excels in providing most important pattern groups for thousands of malware
samples in very small period of time (hours). It will take months for human malware
analysts to generate pattern groups for such a dataset manually. However, human
malware analysts can use intelligence to select very concise pattern groups. If both
approaches are combined and human malware analysts see the generated pattern
groups from MPG and improve on them while inserting that intelligence in MPG
can provide very valuable results.

To conclude, MPG produces pattern groups which are capable of same detection
rate and false positive rate as human generated pattern groups. Furthermore, it takes
much less time to generate pattern groups using MPG compared to using human
malware analysts. And finally, MPG tends to generate more pattern groups than
human malware analysts.

6.4 MPG Single-Events

In this section MPG Single-Events will be evaluated. The MPG Single-Events takes
the events of a malicious dataset as input and breaks the events into slices based
on their type. Then, events of each type are processed independently to get pattern
groups. All patterns in a pattern group generated by MPG Single-Events are of the
same type. Due to slicing, events of each sample gets sliced into many slices and
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each sample gets a different pattern group from each slice. Due to this, the number
of patterns generated becomes very large. To reduce the amount of pattern groups,
only the pattern groups which cover more than one sample are chosen.

6.4.1 Experiment 3

In this experiment the MPG Single-Events is evaluated on Dataset 1. Table 6.7
shows that 8609 samples in Dataset 1 were used to generated 4757 pattern groups.
All the collected pattern groups detect at least two samples.

Table 6.7: Experiment 3: Pattern groups generated by MPG Single-Events using
Dataset 1

Total samples 8609
Patterns generated 4757

The frequency of these patterns is shown in Figure 6.5. 2754 (57.89%) of pattern
groups have only a single pattern while 876 (18.41%) pattern groups have 2 patterns
in them. this shows that majority of the pattern groups generated by MPG Single-
Events are statistically weaker and have higher chances of false positives.

Figure 6.5: Experiment 3: Frequency of number of patterns in pattern groups

Afterwards, the pattern groups shown in Table 6.7 are evaluated against Dataset 1.
Results for this evaluation are shown in Table 6.8. Only the pattern groups which
detect two or more samples were chosen in this case, therefore only 75.07% of the
dataset was detected. But the number of patterns required were much lesser (668)
with a SPR of 9.675.

Number of samples covered by number of pattern groups is shown in Figure 6.6.
This curve look exponential until approximately 6150 samples mark. After which
the curve becomes linear. Even in the linear part patterns detect approximately two
samples for each pattern group. And because of loss of approximately 25% detection
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Table 6.8: Experiment 3: Evaluation of MPG Single-Events on Dataset 1

Total samples 8609
Total patterns 4757

Patterns used in detection of this dataset 668
Samples detected 6463

Sample to pattern ratio (SPR) 9.675
Detection Rate 75.07%
False Positives 0

FP Rate 0%

the linear part (1 pattern group for each sample) of the curve, which was observed
in Experiment 1 and Experiment 2 is missing from this curve.

Figure 6.6: Experiment 3: Dataset coverage by number of patterns

In the final step of this experiment the generated pattern groups were matched
against Dataset 3. The results are shown in Table 6.9. Out of 4757 possible pattern
groups, 759 were used to detect 16334 samples providing a detection rate of 62.2%.
The trend again shows that pattern groups are capable of detecting samples other
than the samples used to generate them.
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Table 6.9: Evaluation of patterns generated during Experiment 3 on Dataset 3

Total samples 26254
Total patterns 4757

Patterns used in detection of this dataset 759
Samples detected 16334

Sample to pattern ratio (SPR) 21.52
Detection Rate 62.215%
False Positives 0

FP Rate 0%

6.4.2 Experiment 4

In this experiment, MPG Single-Events was evaluated using Dataset 2. From the
1000 samples of Dataset 2, MPG Single-Events generated 1070 pattern groups as
shown in Table 6.10.

Table 6.10: Experiment 4: Pattern groups generated by MPG Single-Events using
Dataset 2

Total samples 1000
Patterns generated 1070

Figure 6.7: Experiment 4: Frequency of number of patterns in pattern groups

The frequency of these pattern groups is shown in Figure 6.7. Frequency of
pattern groups from this experiment is similar to frequency of pattern groups from
Experiment 3 shown in Figure 6.5. 568 (53.08%) pattern groups have only one
pattern present in them and 187 (17.47%) patten groups have 2 patterns. The rest
(29.4%) of pattern groups have more than two pattern groups. It shows that majority
of pattern groups generated by MPG Single-Events have one or two patterns.
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In the next step of this experiment, patterns were evaluated against Dataset 2.
Out of 1070 pattern groups only 115 were used to detect 939 samples out of total
1000 samples. The matching percentage is again less than 100% (93.9%) percent.
However, detection improved on Dataset 2 compared to Dataset 1 which was 75.07%.
The reason of improvement is the same again: since, Dataset 2 contains of malware
samples which have more malicious events, it was possible to generate more pattern
groups which detect two samples each. Results can be seen in Table 6.11.

Table 6.11: Experiment 4: Evaluation of MPG Single-Events on Dataset 2

Total samples 1000
Total patterns 1070

Patterns used in detection of this dataset 115
Samples detected 939

Sample to pattern ratio (SPR) 8.16
Detection Rate 93.9%
False Positives 0

FP Rate 0%

A total of 115 pattern groups generated by MPG Single-Events were used to detect
93.9% of the dataset. However, only 27 pattern groups generated by human analysts
were enough for 100% detection. Human generated pattern groups provide better
detection rate than patterns generated by MPG Single-Events but false positive rate
is same for both cases. As explained in section 6.3.2, the human generated pattern
groups are more complicated than MPG patterns which makes the direct comparison
difficult.

The number of patterns needed to detect a certain percentage of dataset is again
non-linear as can be seen in Figure 6.8. The curve rises slowly in the start with rise
becoming steeper with increase in number of samples. The last part of the curve is
linear with each pattern group covering two samples as was the case in Experiment 3.

Table 6.12 shows the matching results of pattern generated in Experiment 4
against Dataset 3. 205 out of 1070 pattern groups were used to detect 9043 samples.
The overall detection rate of dataset is 34.44%.

6.5 MPG Fine

MPG Fine is an extension of MPG Multiple-Events. MPG Multiple-Events take
into consideration all events and performs clustering using Jaccard distance. The
Jaccard distance is calculated by taking intersection and union of complete events
produced by samples. MPG Fine extends on this idea by taking into consideration
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Figure 6.8: Experiment 4: Dataset coverage by number of patterns

Table 6.12: Evaluation of patterns generated during Experiment 4 on Dataset 3

Total samples 26254
Total patterns 1070

Patterns used in detection of this dataset 205
Samples detected 9043

Sample to pattern ratio (SPR) 128.068
Detection Rate 34.444%
False Positives 0

FP Rate 0%

also properties of events to get finer results. In the sections below first MPG Fine
will be evaluated against Dataset 1 followed by evaluation against Dataset 2.

6.5.1 Experiment 5

In this experiment the MPG Fine is evaluated on Dataset 1. Table 6.13 shows that
3411 pattern groups are generated from 8609 samples of Dataset 1.

The frequency of these patterns is shown in Figure 6.9. 1500 (43.97%) pattern
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Table 6.13: Experiment 5: Pattern groups generated by MPG Fine using Dataset 1

Total samples 8609
Patterns generated 3411

groups have five patterns present in them while 1267 (37.14%) pattern groups have
only one pattern in them. The frequency chart shows that considerable amount of
pattern groups have five or four patterns implying statistically they have less chances
of false positives.

Figure 6.9: Experiment 5: Frequency of number of patterns in pattern groups

The patterns generated are then matched against Dataset 1. Results of matching
can be seen in Table 6.14. Out of 3411 total pattern groups, 2593 were used to detect
8608 samples giving a matching percentage of 99.98%. The SPR of the matching is
3.32 i.e. on average each pattern group detects 3.32 samples.

Table 6.14: Experiment 5: Evaluation of MPG Fine on Dataset 1

Total samples 8609
Total patterns 3411

Patterns used in detection of this dataset 2593
Samples detected 8608

Sample to pattern ratio (SPR) 3.32
Detection Rate 99.98%
False Positives 0

FP Rate 0%

The number of patterns needed to detect a certain percentage of dataset for this
experiment can be seen in Figure 6.10. The curve rises slowly in start and then
converts into a linear curve just like previous experiments. Approximately last 2000
samples require 2000 pattern groups for detection.
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Figure 6.10: Experiment 5: Dataset coverage by number of patterns

In the final step of this experiment the patterns generated were matched against
Dataset 3. Out of 3411 pattern groups 2606 pattern groups were used to detect
17875 samples which is 68.085% of the dataset as shown in Table 6.15.

Table 6.15: Evaluation of patterns generated during Experiment 5 on Dataset 3

Total samples 26254
Total patterns 3411

Patterns used in detection of this dataset 2606
Samples detected 17875

Sample to pattern ratio (SPR) 6.859
Detection Rate 68.085%
False Positives 0

FP Rate 0%

6.5.2 Experiment 6

Experiment 6 is the last of experiments presented in this chapter. In this experiment,
MPG Fine is evaluated against Dataset 2. From 1000 samples, 249 pattern groups
were generated as shown in Table 6.16.
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Table 6.16: Experiment 6: Pattern groups generated by MPG Fine using Dataset 2

Total samples 1000
Patterns generated 249

Frequency chart in Figure 6.11 shows that majority of the pattern groups
(231, 92.77%) have 5 patterns in them. This implies that most of patterns gen-
erated by MPG Multiple-Events are statistically strong patterns.

Figure 6.11: Experiment 6: Frequency of number of patterns in pattern groups

Similar to previous experiments, the patterns were then evaluated against Dataset 2.
Only 118 out of 249 patterns were enough to detect 100% of the dataset. The SPR
for this matching is 8.47. These results can be seen in Table 6.17.

Table 6.17: Experiment 6: Evaluation of MPG Fine on Dataset 2

Total samples 1000
Total patterns 249

Patterns used in detection of this dataset 118
Samples detected 1000

Sample to pattern ratio (SPR) 8.475
Detection Rate 100%
False Positives 0

FP Rate 0%

The samples covered vs patterns used curve in Figure 6.12 is similar to previous
experiments. The curve rises slowly in start and finally becomes linear.

The evaluation of these pattern groups against Dataset 3 is shown in Table 6.18.
Out of 249 pattern groups 122 were used to detect 6975 (26.546%) of the dataset.
Because of low number of patterns the SPR is 57.172.
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Figure 6.12: Experiment 6: Dataset coverage by number of patterns

Table 6.18: Evaluation of patterns generated during Experiment 6 on Dataset 3

Total samples 26254
Total patterns 249

Patterns used in detection of this dataset 122
Samples detected 6975

Sample to pattern ratio (SPR) 57.172
Detection Rate 26.567%
False Positives 0

FP Rate 0%

6.6 Conclusion of Experiments

Table 6.19 shows a summary and comparison of all MPGs when run using Dataset 1.
The matching results of patterns generated by Dataset 1 against Dataset 3 are also
shown. Furthermore, the time it took to match the patterns against Dataset 3 are
also included to compare the matching speed of the final patterns.

Because of lack of space in tables, DS1 will be used as abbreviation of Dataset 1,
DS2 as abbreviation of Dataset 2, DS3 as abbreviation of Dataset 3, MPG Single
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as abbreviation of MPG Single-Events and MPG Multiple as abbreviation of MPG
Multiple-Events.

Table 6.19: Comparison of MPG evaluation against Dataset 1

MPG Single MPG Multiple MPG Fine
Total patterns 4757 3643 3411

Patterns used in detection of DS1 668 3146 2593
Samples detected DS1 6463 8606 8608

SPR DS1 9.68 2.73 3.32
Detection Rate DS1 75.07% 99.96% 99.98%

Patterns used in detection of DS3 759 3135 2606
Samples detected DS3 16334 16596 17875

SPR DS3 21.52 5.29 6.859
Detection Rate DS3 62.21% 63.21% 68.08%

FPs according to Clean Dataset 0 0 0
Matching time DS3 1 day, 7:34:45 2 days, 9:02:39 11:13:35

Figure 6.13: Comparison of MPG evaluation against Dataset 1

It can be seen in Table 6.19 and Figure 6.13 that MPG Single-Events has highest
number of pattern groups despite taking only the pattern groups which detect at least
2 samples followed by MPG Multiple-Events and finally MPG Fine. However, the
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number of patterns which were actually used in detection of Dataset 1 were highest
for MPG Multiple-Events followed by MPG Fine and finally MPG Single-Events.
Although the number of patterns used are lowest for MPG Single-Events, but if
they are correlated with the detection percentage of Dataset 1 (75.07%) it is not
extraordinary as the detection of last 25% of samples takes most of pattern groups
as shown in Figure 6.10 and other similar curves. The detection percentage of
Dataset 1 is highest for MPG Fine followed by MPG Multiple-Events and finally
MPG Single-Events.

The matching results with Dataset 3 in Table 6.19 show that MPGMultiple-Events
uses most pattern groups followed by MPG Fine and finally MPG Single-Events. The
detection percentage is highest for MPG Fine followed by MPG Multiple-Events and
then MPG Single-Events. However, if number of patterns used and detection rate is
seen together, it can be seen that MPG Single-Events uses far less pattern groups
than MPG Multiple-Events without loosing too much detection. MPG Single-Events
uses 2376 less pattern groups however detects only 262 samples less than MPG
Multiple-Events. Similarly, MPG Single-Events has a better SPR than MPG Fine
but the margin is lesser. MPG Single-Events uses 1875 less pattern groups but
detects 1541 less samples.

It can also be seen in the table that MPG Fine is fastest when it comes to
matching the pattern groups against DS3. It is mostly because the pattern groups
are simpler than MPG Multiple-Events. The number of overall patterns are lowest
for MPG Fine compared to other MPGs.

The evaluation of these results according to criteria mentioned in section 6.1 is
as follows. All MPG variants have no false positives, secondly MPG Fine has highest
coverage in both Dataset 1 and Dataset 3. And finally MPG Single-Events has
highest SPR. But according to the importance of criteria, MPG Fine outperforms the
MPG Multiple-Events completely and outperforms MPG Single-Events by coverage
which is more important than SPR.

Table 6.20 and Figure 6.14 summarizes results of all MPG variants when tested
against Dataset 2. Number of pattern groups generated using Dataset 2 followed
by their matching statistics against both Dataset 2 and Dataset 3 are given. MPG
Single-Events produces the most number of pattern groups (1070) followed by MPG
Multiple-Events (302) and finally MPG Fine (249). For Dataset 2 both MPG
Multiple-Events and MPG Fine provide 100% detection whereas MPG Single-Events
provides 93.90% detection. The number of pattern groups used are highest for MPG
Multiple-Events while MPG Single-Events and MPG Fine are almost the same.

However, the trend changes when matching results against Dataset 3 are analyzed.
MPG Single-Events provides the best detection of Dataset 3 and also provides



82 6. EVALUATION

Table 6.20: Comparison of MPG evaluation against Dataset 2

MPG Single MPG Multiple MPG Fine
Total patterns 1070 302 249

Patterns used in detection of DS2 115 253 118
Samples detected DS2 939 1000 1000

SPR DS2 8.16 3.95 8.47
Detection Rate DS2 93.90% 100% 100%

Patterns used in detection of DS3 205 251 122
Samples detected DS3 9043 4506 6975

SPR DS3 128.07 17.95 57.17
Detection Rate DS3 34.44% 17.16% 26.57%

FPs according to Clean Dataset 0 0 0
Matching time DS3 6:05:17 8:22:40 1:12:52

Figure 6.14: Comparison of MPG evaluation against Dataset 2

the highest SPR. The detection percentage is comparatively low but taking into
consideration that patterns were only generated using 1000 samples, the detection
seems significant.

The above results show that MPG Fine performs better than other variants
regardless of dataset used. The patterns generated are low in number and provide
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good detection. However, MPG Single-Events perform better if the training dataset
consists of malware samples which have easily extractable pattern groups (All samples
of Dataset 2 have already known pattern groups generated by human analysts).
Finally, MPG Fine again takes lowest matching time when matching patterns against
Dataset 3.

MPG Fine is also, closest to human generated pattern groups because it provides
100% coverage with only 118 pattern groups. However, it is still far from 27 human
generated pattern groups which shows there is still room for improvement.

6.7 Summary

In this chapter evaluation of all three variants of MPG against real-world datasets is
presented. In the start of the chapter the criteria of evaluation of results was given
i.e. Zero FPs, low False Negatives (FNs) and maximum coverage of the dataset.

In section 6.2 the criteria for selecting a dataset and details of each dataset were
presented. A total of three datasets were used. Dataset 1 contained 8609 malware
samples which were chosen randomly. Dataset 2 contained 1000 malware samples. All
of samples in Dataset 2 had pattern groups generated by human analysts. Dataset 3
contained 26254 samples chosen randomly. And a Clean Dataset containing 74530
contained non-malicious samples.

Section 6.3, section 6.4 and section 6.5 contains the experiments on each variant
of MPG. Each variant was first executed with Dataset 1 to generate pattern groups.
These pattern groups were then matched against Dataset 1 to get matching results.
As the last step of experiment the pattern groups were matched against Dataset 3.
In the second experiment, each variant of MPG was tested the same way against
Dataset 2. Finally, all the results were compared with each other and concluded in
section 6.6.





Chapter7Future Work

This chapter presents a few research topics which can be pursued to improve MPG.

7.1 Scalability

The rate of new malware development continued to increase over the years. It is
safe to say that thousands of new malware samples are found in the wild every week.
Current implementation of MPG is not suitable to cope with that level of load.

One of the key limitations of the MPG is that it performs hierarchical clustering
which is O(n2) operation. It is very difficult to scale such an operation for millions
of files. There are a few alternatives that can be explored. [BCH+09] presents a
scalable method of clustering which uses LSH for malware clustering. This approach
can be further explored to see if it can be useful for generating malware behavior
patterns.

Another limitation of hierarchical clustering is that no parallel algorithms exist for
computing it in its standard form. However, there are other schemes which provide
approximate hierarchical clustering and can be parallelized. One such scheme is
presented in [GCF12] called hierarchical affinity propagation. This algorithm can be
parallelized while providing approximate hierarchical clustering.

Hierarchical clustering is not only processing intensive but also memory intensive.
The biggest of the memory requirements comes from the fact that a distance matrix
has to be created and complete distance matrix is required in the memory for
standard clustering algorithms. Some research can be done to decrease the memory
requirements.

MPG uses multiprocessing to take advantage of multiple cores of the system.
But it is more expensive to purchase a single very powerful machine compared to
a cloud of small machines. Therefore, exploration of cloud based implementations

85



86 7. FUTURE WORK

which takes advantage of map-reduce algorithm [DG08] would ensure the ultimate
scalability. Hadoop [Apa14] is one such cloud implementation.

7.2 Incremental pattern generation

The current implementation of MPG relies on a dataset of malware. After a dataset
is processed, no new files can be added to the analysis. In fact, adding new samples
to analysis requires re-execution of the system resulting in re-calculation of previous
calculations. Some further research can be done on how to make the system incre-
mental so adding new samples to current analysis would update the patterns without
repetition of already done work.

7.3 Intelligence in pattern extraction

In MPG, when patterns are extracted from the pattern tree (section 5.5.4) the
patterns are selected based on their coverage. The patterns which detect maximum
samples have higher priority for extraction. However, some times a number of events
provide equal coverage. In that case, currently no deeper intelligence is introduced
in the system which can choose the patterns which are strongest. Furthermore, some
research can be done in finding out the optimum number of patterns for each pattern
group.

Another problem which has been observed in the system was that sometimes a
malicious event is common between many malicious files but it is weak because the
string is too short. An example of such event is creation of a mutex named “A”. As
the length of “A” is only 1 byte, even if this event is not found in any of available
uninfected files, there are chances that it might exist. Some research can be done to
overcome such weaknesses. One approach can be to combine it with other malicious
events to create multiple pattern groups. This will not only decrease the SPR but
also decrease the potential false positives.

Another area which can be explored by research is static scores. A Static score
can be assigned to patterns to based on their strength. It can depend on the factors
such as length of sub-patterns in a pattern, number of patterns in a patter group etc.
This score can then be used in pattern extraction from pattern tree step of MPG
(section 5.5.4). The pattern tree can be traversed and and only those pattern groups
can be extracted which have static score higher than a predefined threshold.

7.4 Improvement of MPG Fine

The MPG Fine approach takes into consideration properties of events. However, the
results showed that some properties of the events which are not very significant but
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very common rise up in the tree and hence result in creation of pattern groups which
are very weak. Some examples of such properties are like port no 80, network traffic
on TCP protocol etc. More research can be done in choosing the properties which
make a less FP prone, strong pattern.

Moreover, research can be conducted in extracting regular expressions from similar
but not identical event properties.

Currently MPG only uses and relationship between all patterns in a pattern
group. Some resesarch can be done in exploring pattern groups which consist of
patterns having a combination of and and or relationship among them.

7.5 Summary

This chapter presented several research topics which can be explored to improve
the performance, scalability and accuracy of MPG. Several challenges related to
scalability exist which can be resolved by implementing a memory-efficient cloud
based implementation. Secondly, more and more malware samples get discovered
every day. To keep the patterns up to date, some work can be done to make the
system incremental for processing of new malware samples without recalculating
all the work done before. And finally some intelligence can be added to the step of
pattern extraction to choose the best pattern out of possible patterns which provide
the same coverage.





Chapter8Conclusion

This thesis researched the problem of generating automatic behavior patterns for
malware. Based on hierarchical clustering a novel software tool named Malicious
Pattern Generator (MPG) was developed. The tool is capable of generating behavior
patterns from any given malicious dataset. All the generated pattern groups are free
of FPs based on a given non-malicious dataset. Three slightly different versions of
MPG (MPG Single-Events, MPG Multiple-Events and MPG Fine) were developed.
MPG Single-Events produces pattern groups with low detection rate, but number
of patterns are comparatively less. MPG Multiple-Events and MPG Fine provide
almost 100% detection on the dataset which was used to generate pattern groups
and significant detection rate on other datasets. It can be concluded from evaluation
results that it is indeed possible to generate reasonable pattern groups from any
given malicious dataset with good detection rate.

The thesis started with introduction to the problem and goals in chapter 1 and
provided an overview of previous related work in chapter 2. Chapter 3 introduced
the malware and different software events which can be used to detect the malware.
Chapter 4 presented different components of clustering and specifically explained
hierarchical clustering in detail. Based on hierarchical clustering and software events,
chapter 5 presented MPG. Three different variants of MPG were presented to produce
behavior patterns. Chapter 6 evaluated all versions of MPG using three real world
datasets and summarized the evaluation results. Chapter 7 suggested some research
topics to further improve MPG.

The evaluation results show that all versions of MPG can be used in two different
scenarios. If a user possesses a set of malware samples and wants to find the behavior
patterns which can be used to detect those samples, MPG can be used for this.
Secondly, a training dataset can be given to MPG to generate some behavior patterns
which can later be used for generic malware identification. The evaluation results
show that MPG is more successful in the first scenario and produces reasonable
results in the second scenario with much room for improvement.
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From all the variants of MPG, MPG Fine produces best results on a random
dataset, providing best coverage and highest SPR.
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AppendixASample Events

List of Events generated by a malware sample. The “type” field explains the type of
the event, while “event” field contains the actual contents of the event. The contents
of event can contain many subcomponents such as “new_pid” or “application”.

[{
"type ": " obj_createprocess ",
"event ": {

" new_pid ": 1578 ,
" application ": "C:\\ Program Files \\ Windows Media

Player \\ setup_wm .exe",
" commandline ": "\"C:\\ Program Files \\ Windows

Media Player \\ setup_wm .exe \" / RunOnce :\"C:\\
Program Files \\ Windows Media Player \\ wmplayer .
exe \" /OCX / NoLibraryAdd /Play \" file ://C:\\
Documents and Settings \\ Admin \\ Local Settings
\\ Temp \\ old_holarh .vi_.mpeg \" / prefetch :10"

}
}
{

"type ": " obj_createprocess ",
"event ": {

" new_pid ": 1579 ,
" application ": "C:\\ Program Files \\ Windows Media

Player \\ wmplayer .exe",
" commandline ": "\"C:\\ Program Files \\ Windows

Media Player \\ wmplayer .exe \" /OCX /
NoLibraryAdd /Play \" file ://C:\\ Documents and
Settings \\ Admin \\ Local Settings \\ Temp \\
old_holarh .vi_.mpeg \" / prefetch :10"
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}
}
{

"type ": " obj_createprocess ",
"event ": {

" new_pid ": 1660 ,
" application ": "C:\\ WINDOWS \\ system32 \\ regsvr32 .

exe",
" commandline ": " regsvr32 /s C:\\ WINDOWS \\ system32

\\ smtp.ocx"
}

}
{

"type ": " obj_createprocess ",
"event ": {

" new_pid ": 1723 ,
" application ": "C:\\ WINDOWS \\ Temp \\ old_holarh .vi_

.exe",
" commandline ": "\"c:\\ windows \\ temp \\ old_holarh .

vi_.exe \" "
}

}
{

"type ": " obj_createprocess ",
"event ": {

" new_pid ": 1580 ,
" application ": "C:\\ WINDOWS \\ explorer .exe",
" commandline ": " explorer .exe C:\\ DOCUME ~1\\ Admin

\\ LOCALS ~1\\ Temp \\ old_holarh .vi_.mpeg"
}

}
{

"type ": " obj_createmutex ",
"event ": {

"name ": "CTF.Asm. MutexDefaultS
-1 -5 -21 -1078081533 -842925246 -854245398 -1003"

}
}
{

"type ": " obj_createmutex ",
"event ": {
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"name ": "CTF. Layouts . MutexDefaultS
-1 -5 -21 -1078081533 -842925246 -854245398 -1003"

}
}
{

"type ": " obj_createmutex ",
"event ": {

"name ": " SHIMLIB_LOG_MUTEX "
}

}
{

"type ": " obj_createmutex ",
"event ": {

"name ": "Local \\ ZonesLockedCacheCounterMutex "
}

}
{

"type ": " obj_createmutex ",
"event ": {

"name ": "WMSetup -UI"
}

}
{

"type ": " obj_createmutex ",
"event ": {

"name ": " AMResourceMutex2 "
}

}
{

"type ": " obj_createmutex ",
"event ": {

"name ": "CTF. Compart . MutexDefaultS
-1 -5 -21 -1078081533 -842925246 -854245398 -1003"

}
}
{

"type ": " obj_createmutex ",
"event ": {

"name ": "MSCTF. Shared .MUTEX.EI"
}

}
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{
"type ": " obj_createmutex ",
"event ": {

"name ": "CTF.LBES. MutexDefaultS
-1 -5 -21 -1078081533 -842925246 -854245398 -1003"

}
}
{

"type ": " obj_createmutex ",
"event ": {

"name ": "eed3bd3a -a1ad -4e99 -987b- d7cb3fcfa7f0 - S
-1 -5 -21 -1078081533 -842925246 -854245398 -1003"

}
}
{

"type ": " obj_createmutex ",
"event ": {

"name ": "Local \\ ZoneAttributeCacheCounterMutex "
}

}
{

"type ": " obj_createmutex ",
"event ": {

"name ": "
Microsoft_WMP_70_CheckForOtherInstanceMutex "

}
}
{

"type ": " obj_createmutex ",
"event ": {

"name ": "CTF. TimListCache . FMPDefaultS
-1 -5 -21 -1078081533 -842925246 -854245398 -1003
MUTEX.DefaultS
-1 -5 -21 -1078081533 -842925246 -854245398 -1003"

}
}
{

"type ": " obj_createmutex ",
"event ": {

"name ": "CTF.TMD. MutexDefaultS
-1 -5 -21 -1078081533 -842925246 -854245398 -1003"
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}
}
{

"type ": " obj_createmutex ",
"event ": {

"name ": " VideoRenderer "
}

}
{

"type ": " obj_createmutex ",
"event ": {

"name ": "Local \\ ZonesCounterMutex "
}

}
{

"type ": " obj_createmutex ",
"event ": {

"name ": "Local \\ ZonesCacheCounterMutex "
}

}
{

"type ": " obj_createthread ",
"event ": {

" thread_id ": 608,
" thread_handle ": 1456 ,
" first8 ": 5254719917207715723 ,
"eip ": 2011137162

}
}
{

"type ": " obj_createevent ",
"event ": {

"name ": " Global \\ userenv : User Profile setup
event"

}
}
{

"type ": " obj_createevent ",
"event ": {

"name ": " Global \\ crypt32LogoffEvent "
}
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}
{

"type ": " obj_createevent ",
"event ": {

"name ": " DINPUTWINMM "
}

}
{

"type ": " obj_createsemaphore ",
"event ": {

"name ": "shell .{210 A4BA0 -3AEA -1069 - A2D9 -08002
B30309D }"

}
}
{

"type ": " obj_createsemaphore ",
"event ": {

"name ": " OleDfRoot000024245 "
}

}
{

"type ": " obj_createsemaphore ",
"event ": {

"name ": "C:? WINDOWS ?TEMP? OLD_HOLARH .VI_.EXE"
}

}
{

"type ": " obj_createsemaphore ",
"event ": {

"name ": "shell .{7 CB834F0 -527B -11D2 -9D1F -0000
F805CA57 }"

}
}
{

"type ": " obj_createsemaphore ",
"event ": {

"name ": "shell .{ A48F1A32 -A340 -11D1 -BC6B -00
A0C90312E1 }"

}
}
{
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"type ": " reg_openkey ",
"event ": {

"key ": "HKLM \\ software \\ microsoft \\ windows nt\\
currentversion \\ drivers32 "

}
}
{

"type ": " reg_openkey ",
"event ": {

"key ": "HKCR \\ exefile \\ shell \\ open \\ command "
}

}
{

"type ": " reg_openkey ",
"event ": {

"key ": "HKCU \\ exefile \\ shell \\ open \\ command "
}

}]





AppendixBSample Pattern Group

A malware pattern group consists of multiple patterns. These patterns either have
an "and" or "or" relationship between them. If the relationship is "or" then if either
of the patterns gets matched the whole pattern group will be considered matched.
Similarly for "and" all patterns must match for pattern group to match. Each pattern
has multiple subpatterns. They also have "and" or "or" relationship between them.
An example is shown below.

"pattern": {
"data_created": "2014-03-14 18:06:47.160325",
"date_modified": "2014-03-14 18:06:47.160331",
"description": "No description",
"is_enabled": 1,
"is_external": 0,
"is_global": 1,
"mode": "all_of",
"name": "Saad Test Pattern 808",
"owner": "Saad",
"pattern_group_id": 808,
"patterns": [

{
"event_type": "fs_open",
"pattern_group_id": 808,
"pattern_id": 2498,
"simple_subpatterns": [

{
"event_property": "path",
"operator": "equals",
"operator_id": 1,
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"pattern_id": 2498,
"subpattern_id": 7351,
"value": "c:\\Windows\\System32\\x2.dat"

},
{

"event_property": "mode",
"operator": "equals",
"operator_id": 1,
"pattern_id": 2498,
"subpattern_id": 7352,
"value": 18874432

}
],
"sub_mode": "all_of"

},
{

"event_type": "fs_write",
"pattern_group_id": 808,
"pattern_id": 2499,
"simple_subpatterns": [

{
"event_property": "first8",
"operator": "equals",
"operator_id": 1,
"pattern_id": 2499,
"subpattern_id": 7353,
"value": 29296

},
{

"event_property": "path",
"operator": "equals",
"operator_id": 1,
"pattern_id": 2499,
"subpattern_id": 7354,
"value": "c:\\Windows\\System32\\x2.dat"

},
{

"event_property": "size",
"operator": "equals",
"operator_id": 1,
"pattern_id": 2499,



105

"subpattern_id": 7355,
"value": 2

},
{

"event_property": "actual_size",
"operator": "equals",
"operator_id": 1,
"pattern_id": 2499,
"subpattern_id": 7356,
"value": 2

},
{

"event_property": "offset",
"operator": "equals",
"operator_id": 1,
"pattern_id": 2499,
"subpattern_id": 7357,
"value": 0

}
],
"sub_mode": "all_of"

},
{

"event_type": "fs_create",
"pattern_group_id": 808,
"pattern_id": 2500,
"simple_subpatterns": [

{
"event_property": "path",
"operator": "equals",
"operator_id": 1,
"pattern_id": 2500,
"subpattern_id": 7358,
"value": "c:\\Windows\\System32\\x2.dat"

},
{

"event_property": "mode",
"operator": "equals",
"operator_id": 1,
"pattern_id": 2500,
"subpattern_id": 7359,
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"value": 83886176
},
{

"event_property": "attributes",
"operator": "equals",
"operator_id": 1,
"pattern_id": 2500,
"subpattern_id": 7360,
"value": 128

}
],
"sub_mode": "all_of"

},
{

"event_type": "fs_delete",
"pattern_group_id": 808,
"pattern_id": 2501,
"simple_subpatterns": [

{
"event_property": "path",
"operator": "equals",
"operator_id": 1,
"pattern_id": 2501,
"subpattern_id": 7361,
"value": "c:\\Windows\\System32\\x2.dat"

}
],
"sub_mode": "all_of"

}
],
"revision": 1,
"risk_score": 10,
"type": "simple",
"uuid": "06ae2504-ab9b-11e3-bbb3-80ee7383c060"

}
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