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Oxidative stress is defined as a disturbance in the balance between the pro-
duction of oxidative stressors (pro-oxidants, free radicals) and antioxidants with 
a shift towards pro-oxidants which may lead to potential harmful processes. 
Glutathione (GSH) is a predominant non-enzymatic low molecular weight anti-
oxidant in eukaryotic cells (thiol-containing tripeptide) helping to control redox 
status.  

Diabetes generally has polygenic nature. It can be caused by multiple envi-
ronmental and genetic factors or their combination. Diabetes can also be caused 
by defects in a single gene (5–10% of cases). This type of diabetes consists of a 
heterogeneous group of rare disorders. An ongoing list of genes/loci has been 
associated with monogenic diabetes and insulin resistance. Every single gene 
associated with monogenic diabetes expresses a distinct phenotype and clinical 
features. Genome-wide association studies have found that one of the genes 
associated with development of diabetes is Wolfram syndrome 1 gene (WFS1).  

WFS1 encoding trans-membrane glycoprotein called wolframin is primarily 
located in the endoplasmic reticulum (ER). The exact biological function of 
wolframin is unknown, but it is postulated that given protein is a key factor in 
many specific interactions including post-translational modification and folding/ 
assembly of newly synthesized proteins (e.g. insulin), calcium storage, redox 
regulation and cell death. Previously it has been reported that pancreatic β-cells 
and neurons are sensitive to ER dysfunctions, most likely due to their high rates 
of protein synthesis (Fonseca et al. 2011). As a consequence of mutations in 
WFS1, it could lead to an elevated ER and oxidative stress level, activation of 
ER-stress associated cell death and therefore destruction of pancreatic β-cells.  

The deficiency in WFS1 gene causes Wolfram syndrome 1 (WS), which 
represents a valuable disease model currently available for studying the 
pathophysiology of endoplasmic reticulum (ER) stress, juvenile-onset diabetes 
and neurodegeneration. Over 200 mutations have been identified in WS patients 
and the majority of them are located in 8th exon (Piccinno et al. 2014). The 
Wfs1-deficient mouse generated in the University of Tartu has a deletion in 8th 
exon and serve as a relevant rodent model for studying WS and the role of ER 
and oxidative stress in its progression.  

Metabolomics provides comprehensive investigation methods for profiling 
tissues or bodily fluids. Metabolites show more expeditious fluctuations in 
response to a physiological change than the changes in gene expression or 
protein production. Studying oxidative stress and metabolic profiling of Wfs1-
deficient mice to find therapies aimed at reducing stress in patients or those at 
risk for developing diabetes. Also this might give new insight into the 
association between Wfs1 and its biological functions and describing the 
phenotype-genotype connections of WS. 

1. INTRODUCTION 
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Mild therapeutic hypothermia is another condition, which is proposed to be 
related to oxidative and ER stress. Therefore, the main aim was to describe the 
role of ER and oxidative stress in WS and hypothermia conditions. 

The metabolic profiling of Wfs1-deficient mouse revealed a broad spectrum 
of changes including indications of higher levels of glucose use, gluco-
neogenesis, and anaerobic glycolysis, especially in the early stages of the 
disease. In later stages of the WS, the energy demand is satisfied by intensified 
lipolysis. The analysis of glutathione system of Wfs1-deficient mouse revealed a 
decreased concentration of GSH and alterations in the activity of glutathione 
reductase and peroxidase. The administration of antioxidative UPF peptides 
improved the glutathione status mainly in the liver and heart tissue. Finally, the 
antioxidative defense system was upregulated in hypothermia conditions by 
similar pathway as UPF peptides, which activate Nrf2 and synthesis of GSH. 
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2. REVIEW OF LITERATURE 

2.1. Wolfram syndrome 1 

2.1.1. Wolfram syndrome 1 

Wolfram syndrome 1 (WS) (OMIM 222300) is a rare autosomal recessive 
neurodegenerative disease, which is also known and characterized by DIDMOAD 
(Diabetes Insipidus, Diabetes Mellitus, Optic Atrophy and Deafness) (Strom 
et al. 1998). The prevalence of WS is 1:160 000 in UK and 1:770 000 in North 
America (Kinsley et al. 1995; T. G. Barrett et al. 1995). It was first reported by 
Wolfram and Wagener in 1938 who found four siblings with optic nerve atrophy 
and juvenile diabetes mellitus (Wolfram & Wagener 1938). Diabetes mellitus is 
typically the first outcome of WS, diagnosed around age 6, followed by a loss 
of color vision and peripheral vision at age 11. Other common manifestations 
are diabetes insipidus, urinary tract problems, neurological manifestations and 
sensorineural deafness (all affecting around 70% of patients). Urinary tract 
problems include obstruction of ducts between the kidneys and bladder, disrupted 
urination (also controlling the urine flow), high-capacity atonal bladder, and 
bladder sphincter dyssynergia. Deafness can range in severity – deafness at birth 
to mild hearing loss, which worsens over time. Neurological manifestations are 
commonly bulbar dysfunction, ataxia and brain stem atrophy. The latter is also 
a prominent cause of death with central apnea at age 25–49 years (T. G. Barrett 
et al. 1995; Barrett & Bundey 1997). Approximately 60% of homozygous WFS1 
carriers have psychiatric disorder and heterozygotes have 26-fold higher likeli-
hood of psychiatric hospitalization, primarily for depression (Swift et al. 1990; 
Swift & Swift 2000). 

WS is caused by mutations in the Wolfram syndrome 1 gene (WFS1) that 
encodes a transmembrane glycoprotein called wolframin. It is ubiquitously 
expressed with the highest levels in heart, brain, pancreatic beta-cells, placenta 
and lungs (Inoue et al. 1998). Human wolframin consists of 87% same amino 
acids as its mouse homolog (Wfs1). Wfs1 has nine central transmembrane 
domains with a cytoplasmic N- and luminal C-terminus. N-glycosylation is 
essential for its biogenesis and stability (Hofmann et al. 2003). Wolframin is 
primarily located in the endoplasmic reticulum (ER) which has many roles 
including post-translational modification and folding/assembly of newly 
synthesized proteins (e.g. insulin). Perturbations such as Wfs1-deficiency cause 
imbalances between these processes leading to accumulation of misfolded or 
unfolded proteins, which in turn leads to ER stress and cell dysfunction. The 
expression of Wfs1 in mouse pancreatic islets is upregulated during glucose-
induced insulin secretion (Fonseca et al. 2005). It has been shown that Wfs1 
regulates a key transcription factor involved in ER stress signaling, ATF6α, 
(Yoshida et al. 1998) and intracellular Ca2+ homeostasis (Takei et al. 2006; Lu 
et al. 2014). Zatyka et al. found that WFS1 interacts with Na+/K+ ATPase beta-1 
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subunit, which is important for the maturation and this interaction may contribute 
to the pathology seen in WS (Zatyka et al. 2007; Zatyka et al. 2015).  

 
 

2.1.2. DIDMOAD (Diabetes Insipidus, Diabetes Mellitus,  
Optic atrophy, Deafness) 

The major diagnostic criteria for WS are diabetes mellitus and optic atrophy 
(both < 16 years). In addition to the first, the minor criteria are diabetes 
insipidus, sensorineural deafness, neurological signs (ataxia, neuropathy), renal 
tract abnormalities, a loss of function mutation in WFS1 and/or family history 
of WS (Figure 1). The minimum required for diagnosis are 2 major or 1 major 
plus 2 minor criteria. Commonly the patients also have hypogonadism, absence 
of type 1 diabetes auto-antibodies, bilateral cataracts, psychiatric disorder 
and/or gastrointestinal disorders (Maleki et al. 2015). 
 

 

Figure 1. The median age of onset of the complication in Wolfram syndrome by 
Minton et al. (Minton et al. 2003). DM – diabetes mellitus; OA – optic atrophy; DI – 
diabetes insipidus; D – deafness; Renal – renal tract complications; Neuro – 
neurological complications.  
 
 
Diabetes Mellitus 

Diabetes mellitus (DM) is usually the first manifestation to occur. The mean age 
of DM has been reported to be 5 ± 4 years (Rohayem et al. 2011). It is caused 
by insulinopenia and leading to degeneration of pancreatic β-cells. Wolframin is 
highly expressed in the pancreas (mainly in islet β-cells) and it may help to fold 
proinsulin into insulin (Fonseca et al. 2005). This leads to hyperglycemia which 
exceeds the renal threshold for reabsorption. The deficiency of insulin changes 
the energy metabolism into catabolism of proteins and fats. Proteolysis 
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increases the usage of amino acids for gluconeogenesis, and together with 
lipolysis, tends to induce negative energy balance, which sum up as weight loss.  

Diabetic ketoacidosis is also a key feature in DM patients, but patients 
affected with WS have approximately 10-fold lower activation of ketogenic 
machinery compared with DM patients (Garcia-Luna et al. 1988). Autoantibodies 
usually found in case of type I diabetes are absent in almost all WS patients 
(Maltoni et al. 2016). In addition, patients with WS have smaller glycemic 
variability compared to DM and this may be associated with persistent residual 
insulin secretion (Zmyslowska et al. 2015). Wfs1-deficient mice have a 
progressive β-cell loss, impaired glucose tolerance and activated unfolded 
protein response (UPR) in ER (Ishihara et al. 2004).  
 

Optic Atrophy 

Frequently apparent optic atrophy (OA) is the second major criteria for WS. It 
usually occurs after DM compilations at early stages of life (around age 11). 
Common findings are progressive ophthalmologic symptoms, constriction of 
visual fields, declined color vision and visual activity with clear indications to 
diabetic retinopathy (Fishman & Ehrlich n.d.). It has also been proposed that 
retinal thinning is a marker of disease progression in patients with WS 
(Zmyslowska et al. 2017). Wolframin is located primarily in retinal ganglion 
cells, photoreceptors, cells in inner nuclear layer and in glial cells in the 
proximal portion of the optic nerve (Schmidt-Kastner et al. 2009).  
 

Diabetes Insipidus 

Diabetes insipidus (DI) is caused by the deficiency of antidiuretic hormone 
(ADH). It leads to excessive urination due to an inability of the kidneys to 
resorb water from urine. In patients of WS it results mainly from disorder of 
hypothalamus and appears often in 2nd to 3rd decades (70% of patients). It has 
been shown that Wfs1 expression is widely distributed in the normal mouse 
brain during postnatal development (Kawano et al. 2009). Loss of vasopressin-
producing neurons and a defect in vasopressin precursor processing in the 
hypothalamus cause the WS-associated DI (Scolding et al. 1996).  
 

Deafness 

Wfs1 is expressed in the cochlear cells and it is possible that wolframin 
contributes to development and maintenance of cells in the auditory system. 
Sensorineural hearing loss occurs often in 2nd to 3rd decades probably due to the 
disruption of calcium homeostasis or membrane trafficking essential for hearing 
(Cryns et al. 2003). The severity can range from deafness beginning at birth to 
mild hearing loss in adolescence that worsens over time. Commonly the high 
frequencies are affected first and progresses relatively slowly (Karzon & Hullar 
2013). 
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Other complications 

In addition to DIDMOAD, several WS patients display neurological compli-
cations, psychiatric disorders and urinary tract abnormalities. More than half of 
WS patients have neurological manifestations such as problems with balance 
and coordination (ataxia), central apnea related to brain stem atrophy, dysfunc-
tions and/or death of neurons, psychiatric disorders include anxiety, depression, 
dysphagia and mood swings (T G Barrett et al. 1995; Urano 2016). Up to 90% 
of WS patients have urinary tract problems. Most common are high-capacity 
atonal bladder, obstructions of the ducts between the kidneys and the bladder, 
disrupted urination and difficulty controlling urine flow (T G Barrett et al. 
1995).  

 

2.1.3. Wfs1-deficient animal models 

Mouse models are important tools in medical research for understanding of 
disease mechanism and development of treatments. For rare diseases they are 
especially important because there is very small population of patients to 
evaluate the effect of therapeutic compounds in clinical studies. It is necessary 
to design relevant animal models for studying human diseases. Over 200 
mutations have been identified in WS patients and the majority of them are 
located in the 8th exon (Piccinno et al. 2014). Wfs1-deficient mice generated in 
the University of Tartu has the 8th exon at the C-terminal end replaced by NLS-
LacZ-Neo expression cassette, whereas the N-terminal domain of the wolframin 
remains functional. Mice used in the experiments are F2 hybrids with a 
[(129S6/SvEvTac × C57BL/6) × (129S6/SvEvTac × C57BL/6)] genetic back-
ground (Luuk et al. 2009). 

Previous research about Wfs1-deficient mouse has shown that Wfs1-
deficient animals display down-regulation of Gabra1 and Gabra2 genes, 
subunits of GABA(A) receptors in the frontal cortex and temporal lobe (Raud et 
al. 2009). Male mice have impaired fertility due to changes in sperm 
morphology and reduced number of spermatogenic cells and they have higher 
risk in developing diabetes, because of the disturbances in converting proinsulin 
to insulin (Noormets et al. 2009; K. Noormets et al. 2011). The most recent 
studies have shown that the WFS1 deficiency induces ER stress, leading to 
inositol 1,4,5-trisphosphate receptor dysfunction and disturbed cytosolic Ca2+ 
homeostasis (Cagalinec et al. 2016). Several antidepressants have stronger 
effects on Wfs1-deficient mice and selective serotonin reuptake inhibitors could 
be the most suitable for the management of WS-induced diabetes (Reimets et al. 
2016). A study of transcriptome of pancreatic islets in Wfs1-deficient mice 
showed lower islet and insulin content (Ivask et al. 2016). 

In addition to our Wfs1-deficient mouse model, Ishihara et al and Riggs et 
al have developed their own WS mouse models. Ishihara et al created a full 
body knock-out by inserting a neomycin-resistance gene into the 2nd exon of the 
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Wfs1 gene and Riggs et al used Cre recombinase under the control of insulin 
promoter and loxP sequences flanking the 8th exon of the Wfs1 gene (Ishihara et 
al. 2004; Riggs et al. 2005).  

In the recent years, Plaas et al have created a Wfs1-deficient rat model, 
which has the core symptoms of WS, including progressive glucose intolerance, 
hyperglycemia, glycosuria, optic atrophy and reduction of beta cell mass (Plaas 
et al. 2017). Furthermore, they have shown that treatment with liraglutide, the 
receptor agonist of glucagon-like peptide-1 (GLP-1), prevented the develop-
ment of glucose intolerance, improved insulin secretion and reduced ER stress 
(Toots et al. 2018). 
 
 

2.2. Endoplasmic reticulum and oxidative stress  

2.2.1. Endoplasmic reticulum stress 

ER stress is a situation in which misfolded proteins accumulate in the lumen of 
ER. The unfolded protein response (UPR) that follows upregulates survival 
related signaling and chaperone synthesis, and inhibits the synthesis of many 
other proteins (Walter & Ron 2011). Oxidative stress is considered to increase 
ER stress through the activity of oxidoreductin-1 and protein disulfide isomerases 
(Zeeshan et al. 2016; Delaunay-Moisan & Appenzeller-Herzog 2015). Protein 
folding depends on many factors other than chaperones; among these factors, 
proper reduction/oxidation (redox) ratio and glutathione (GSH) levels are 
directly and indirectly via GSH sensitive regulatory proteins involved in 
appropriate disulfide bridge formation (Ellgaard & Ruddock 2005). GSH is a 
thiol-containing tripeptide comprising γ-glutamate, cysteine and glycine, and its 
formation occurs in the cytosol and requires no folding compared with redox 
enzymes. ER stress is known to enhance GSH synthesis through the transcription 
factors cyclic AMP-dependent transcription factor 4 and nuclear factor 
erythroid 2-related factor 2 (Cullinan et al. 2003; Harding et al. 2003). Although 
the aim of UPR is cell survival, persistent stress may induce the cells to trigger 
apoptosis. It remains unknown how acute and chronic ER stress are managed by 
individual cells and organisms as a whole.  
 
 

2.2.2. Oxidative stress and antioxidants 

Oxidative stress (OxS) is an imbalance between the production of oxidative 
stressors (pro-oxidants, free radicals) and antioxidants with a shift towards pro-
oxidants which may lead to potential harmful processes. In human body, pro-
oxidants could be any factor that causes OxS (smoking, radiation, xenobiotics and 
drugs, excess of heavy metals) and diminish the capacity of antioxidants in the 
organism (Sies 1997). Free radicals are endogenous or exogenous short lived 
(unstable) and very reactive chemical compounds containing one or more 
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unpaired electrons, which induce damage to cells by passing the unpaired electron 
and resulting in oxidation of biological molecules (DNA, proteins and other 
macromolecules). The oxidation of biological molecules has been implicated in 
the pathogenesis of a wide variety of diseases. The most common stressors are 
reactive oxygen species (ROS) – superoxide radical (O2

•–), hydroxyl radical 
(OH•), peroxyl radical (ROO•), hydrogen peroxide (H2O2); reactive nitrogen 
species (RNS) – nitric oxide (NO), peroxynitrite (ONOO•) and reactive carbon 
species (RCS) – methylglyoxal (MGO). These compounds are continuously 
produced by the human metabolism and are not necessarily evil. Free radicals 
are important for activating different signaling pathways inside the cell, gene 
transcription, leukocyte adhesion, thrombosis, angiogenesis and they could also 
act as neurotransmitters or mediators of immunity (Fang et al. 2002).  

Human body has different mechanisms to produce antioxidants for 
scavenging the deleterious effects of free radicals. The antioxidant defense 
system consists of enzymes, low molecular weight substances (glutathione, 
vitamin E, ascorbate, etc.) and blood albumin, which prevent the formation of 
free radicals, convert the existing stressors to less toxic form or delay the 
oxidation of a substrate. A major mechanism in the defense against OxS is 
activation of Nrf2-ARE (nuclear factor-E2 related factor 2 – antioxidant 
response element) signaling pathway which is essential in the detoxification and 
elimination of oxidants (Moi et al. 1994). 

Nrf2 transcription factor is regulated by actin-associated Keap1 (Kelch-like 
ECH-associated protein 1) protein acting negative regulator and a binder of 
Nrf2 in the cytoplasm. In response to stress signals, activating of Nrf2 disrupts 
the association, releasing Nrf2 for translocation into the nucleus for the 
transcriptional activity (Itoh et al. 1999; Kensler et al. 2007). Many detoxifying 
endogenous antioxidant enzymes (for example glutathione peroxidase, super-
oxide dismutase, catalase and glutamate cysteine ligase) are reported to be 
targets of Nrf2 activation (Itoh et al. 1997). Improving the antioxidant defense 
by up-regulating detoxification potential by listed enzymes, represent a new 
class of therapeutic strategy to prevent cell damage against inflammation and 
OxS that are also a key mediators in diabetes and its complications (Giacco & 
Brownlee 2010). 

Aforementioned hormone GLP-1, which stimulates insulin secretion from 
pancreatic islets in a glucose-dependent manner, has also an antioxidative action 
reducing oxidative stress markers by activating Nrf2 (Guglielmi & Sbraccia 
2017). In addition, it is well-known that activation of Nrf2 plays a significant 
role in the protection of pancreatic beta cells from oxidative stress and improves 
insulin sensitivity and glucose uptake (Uruno et al. 2013). 
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2.2.3. Oxidative stress and diabetes 

Understanding the pathophysiology of global health burden DM is difficult 
because of its complex aetiology from a combination of genetic, epigenetic, 
environmental and lifestyle risk factors (Hu 2011). DM is defined by 
hyperglycemia in plasma, but it is definitely not simply a disorder of carbo-
hydrate metabolism as alterations in proteins, lipids and amino acids induce the 
insulin resistance likewise (DeFronzo & Tripathy 2009).  

It is a leading hypothesis that OxS is a common pathogenic factor leading to 
β-cell dysfunction, insulin resistance, impaired glucose tolerance and finally to 
DM (Ceriello 2004). Hyperglycemia can induce micro- or macrovascular 
damage to tissues through different pathways (Figure 2). Firstly, enhanced 
polyol pathway activity, where under hyperglycemic conditions blood sugar 
glucose is converted to polyalcohol sorbitol using NADPH as co-factor. There-
fore intracellular NADPH and glutathione (GSH) are depleted and this leads to 
overproduction of ROS and a decrease in antioxidant defense. Sorbitol is further 
metabolized to fructose by sorbitol dehydrogenase, which leads to the inhibition 
of glyceraldehyde-3-phosphate dehydrogenase and the increase of triose 
phosphate level by extent usage of NADH (Brownlee 2001). Higher triose 
phosphate level promotes increased formation of advanced glycation end 
products (AGEs) by more intense synthesis of AGE precursors – MGO and 
diacylglycerol.  

Figure 2. The relationship between oxidative stress and hyperglycemia by Vidigal et al. 
(de Carvalho Vidigal et al. 2012).  
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AGEs are non-enzymatic chemical modification to proteins, which perturb 
protein functions. MGO belongs to the group of RCS and can also be elevated 
by glucose autoxidation. MGO inhibits protein functions such as enzymatic 
activity or receptor-ligand interaction by modifying arginine residues in the 
protein active sites (Chetyrkin et al. 2011). This furthermore leads to activation 
of protein kinase C (PKC) isoforms, which is initiated by the concentration of 
cytokines, growth factors, endothelin-I, angiotensin II and also circulating free 
fatty acids (Robin et al. 2002). 

Studying OxS under hyperglycemic conditions is very important, mostly to 
find therapies aimed at reducing OxS in patients or those at risk for developing 
diabetes. 
 
 

Glutathione (GSH) is a thiol-containing tripeptide consisting of γ-glutamate, 
cysteine and glycine (Figure 3). GSH is a predominant non-enzymatic low 
molecular weight antioxidant in eukaryotic cells, and is mainly distributed in 
cytosol. Liver is the main site for producing and exporting GSH (concentration 
up to 10 mM). The biosynthesis of GSH occurs in the two steps: firstly, glutamate 
cysteine ligase (GCL) catalyzes the formation of dipeptide γ-glutamylcysteine 
and then glycine is added by glutathione synthetase (GS) to generate GSH (Wu 
et al. 2004). GCL is a heterodimer with a 72-kDa catalytic subunit (GCLc) and 
30-kDa modifying subunit (GCLm) (White et al. 2003). GSH acts as a potent 
scavenger of free radicals and other oxidant species in which it is oxidized by 
selenium-containing glutathione peroxidase (GPx) to oxidized glutathione 
(GSSG) and reduced back to GSH by glutathione reductase (GR) (Figure 4). 
The antioxidant capacity of cells is mostly described by the GSSG/GSH redox 
couple and is related to several pathological states, including neurodegenerative, 
cardiovascular and immune system diseases (Ballatori et al. 2009). Administ-
ration of GSH is not reasonable because of its degradation in the plasma and 
poor cellular uptake (Wendel & Cikryt 1980), but N-acetyl-L-cysteine (NAC) 
has been used for increasing level of amino acid cysteine which is need for the 
synthesis of GSH (Yim et al. 1994). 
 
 
 
 
 
 
 
 

Figure 3. Glutathione (L-γ-Glu-L-Cys-Gly). 
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In addition to being the most principal cellular antioxidant, GSH has s wide 
spectrum of biofunctions. Antioxidant function is conducted via non-enzymatic 
reactions with free radical or being a co-factor in GPx (Cnubben et al. 2001). 
By executing the antioxidant activity, GSH regulates important redox systems 
(GSH/GSSG and NADPH/NADP+), which are major determinants of cell 
homeostasis. These redox ratios are involved in the modulation of redox-sensitive 
proteins, regulation of cell growth, differentiations, apoptosis and stress factors 
(Jefferies et al. 2003). GSH acting as a nucleophile detoxifies electrophilic 
compounds in cooperation with glutathione S-transferase, an enzyme conjugating 
the thiol group of GSH to the xenobiotics (Dickinson & Forman 2002). Post-
translational S-glutathionylation is another important biofunction of GSH, 
where protein sulfhydryl groups are protected by GSH (Ghezzi 2005). Additional 
biofunctions of GSH are NO transport and storage, amino acid transport via  
γ-glutamyltrasferase, synthesis of proteins, nucleic acids and prostaglandins and 
restoration of the antioxidant capacity of vitamins E and C (Ballatori et al. 
2009).  

 
 
 
 
 
 
 
 
 
 
 

Figure 4. The synthesis and redox 
cycle of glutathione.  
GCL – glutamate cysteine ligase; 
GPx – glutathione peroxidase;  
GR – glutathione reductase;  
GS – glutathione synthetase;  
GSH – reduced glutathione;  
GSSG – oxidized glutathione. 
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Several GSH analogues have been designed and synthesized to increase the 
GSH level. Our research group has previously created a library of novel GSH 
analogues (Ehrlich et al. 2007). Two of them, UPF1 (L-Tyr(Me)-L-γ-Glu-L-
Cys-Gly) and UPF17 (L-Tyr(Me)-L-Glu-L-Cys-Gly) were used in this study 
(Figure 5). These tetrapeptides have an O-methyl-L-tyrosine residue added in 
the N-terminus of GSH molecule to increase the hydrophobicity and antioxidant 
properties. UPF17 contains α-glutamyl moiety while UPF1 has γ-glutamyl 
moiety similarly to GSH. We have previously shown that these peptides were 
up to 500-fold more effective hydroxyl radical scavengers in vitro compared to 
GSH itself (Ehrlich et al. 2007). Moreover, UPF17 and UPF1 have been shown 
to be non-toxic for K562 cells (200 µM) and for the primary culture of 
cerebellar granule cells (100 µM) (Ehrlich et al. 2007; Põder et al. 2004). UPF1 
has shown protective properties in oxidative stress status of myocardial 
stunning and in global brain in ischemia/reperfusion model of Wistar rats 
(Põder et al. 2004; Kals et al. 2008). 
 

 

 

 

 

 
Figure 5. Peptides UPF1 and UPF17. 
 
Thiol-containing N-acetyl-L-cysteine (NAC) is widely used as a mucolytic 
agent and as a precursor for L-cysteine, which is in turn a precursor for GSH. 
NAC can be used by cells in two different ways: NAC is hydrolyzed to cysteine 
and transported by Na+-dependent alanine-serine-cysteine transport system to 
the cells or free NAC can straightly enter a cell and release cysteine for 
synthesis of GSH (Bannai 1984). By protecting the loss of GSH in several 
multifactorial diseases, NAC is considered as potential therapeutic agent for 
example in multiple sclerosis (Stanislaus et al. 2005), Huntington´s disease 
(Sandhir et al. 2012), Alzheimer´s disease (Adair et al. 2001; Clark et al. 2010) 
and type II diabetes (Ozkilic et al. 2006). In type II diabetes, the beneficial 
effects and mechanisms of NAC on insulin resistance have been associated to 
its antioxidative or anti-inflammatory properties and its role on signaling 
pathways or apoptosis (El Midaoui et al. 2008; Diniz et al. 2006; Shoelson et al. 
2007). 
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Mild therapeutic hypothermia (28–32 °C) is used as a clinical treatment to 
reduce damage to several tissues including heart, kidneys and liver (Ostadal et 
al. 2013; Testori et al. 2011). The mechanism has been proposed to be the 
reduction of oxidative stress (Dohi et al. 2013). It is accomplished by increased 
activity of superoxide dismutase, GPx, glutathione S-transferase and altered 
xanthine oxidase activity (Hackenhaar et al. 2017). Additionally, hypothermia 
can also trigger the full activation of unfolded protein response and disrupt the 
cell secretory pathway (Fujita 1999) resulting in apoptosis through CCAAT-
enhancer-binding protein homologous protein (CHOP) activation and increased 
endoplasmic reticulum oxidoreductin-α (Ero1-α) expression (Tajiri et al. 2004; 
Poone et al. 2015).  

Wolfram syndrome 1 is tightly related to ER stress. Wfs1-deficient mice (9–
12 months old) have lower body temperature accompanied with lower food and 
water consumption. Moreover, they have higher oxygen consumption and 
carbon dioxide and heat production compared to WT mice (Ehrlich et al. 2016).  

 
 

It is postulated that the functional status of a biological system is reflected in the 
pattern of metabolites in biological fluids or tissues, which is termed as the 
metabolome (Pauling et al. 1971). The advantages of metabolomics compared 
to other “omics” is the close linkage to phenotype, since the metabolites reflect 
dynamic processes that have been already performed or were happening at the 
moment of sample collection. Metabolomics is widely used for the detection 
and quantification of all or selected groups of endogenous and exogenous small-
molecule metabolites (<1500 Da) measured in a biological sample (Fiehn 
2002). The methods of metabolomics provide comprehensive investigation of 
metabolome from body fluids such as plasma, urine or tissues. Metabolites 
show more expeditious fluctuation in response to a physiologic change than the 
changes in gene expression or protein production and analysis of the meta-
bolites may detect association between the genes and their functions. The endo-
genous metabolism for humans and mammalians is believed to involve a few 
thousands of metabolites.  

Most metabolomics studies can be divided into targeted and untargeted 
approaches. Targeted metabolomics is focused on a predetermined specified list 
or class of metabolites that are being investigated. The use of isotope-labeled 
internal standards allow clear identification and quantification of analytes, 
therefore targeted analysis usually result in high sensitivity and accurate 
detection of metabolites. On the contrary, untargeted metabolomics is directed 
to detect as many metabolites as possible, followed by identification of meta-
bolites using databases based on known or predicted spectral patterns. Data 

2.5. Hypothermia and stress 

2.6. Metabolomics 
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analysis and visualization (for example principal component analysis – PCA) 
can be used to classify phenotypes based on metabolite pattern. 

 

Endoplasmic reticulum and oxidative stress are tightly related to hypothermia 
and several pathologies including Wolfram syndrome, which is systemic and 
affects several organs throughout the body. Metabolomics provide comprehen-
sive investigation methods for profiling tissues or bodily fluids. Studying 
oxidative stress and metabolic profiling of Wfs1-deficient mice under hyper-
glycemic conditions is substantial to find therapies (such as antioxidants) aimed 
at reducing stress. Also this might give new insight of the association between 
the Wfs1 and its functions, and describing the phenotype-genotype connections 
and detect early biomarkers for complications of WS and diabetes. Therefore 
the disturbances of glutathione system as the main indicator of oxidative stress 
was studied in Wfs1-deficiency and hypothermia conditions.   

2.7. Summary of literature 
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The purpose of this study is oriented to the oxidative stress status and metabolic 
profiling in Wfs1-deficient mouse model and in hypothermia-conditions. In 
addition, the aim was to evaluate the effect of antioxidative therapies targeted to 
reduce the stress in Wfs1-deficient mouse model. 
 
The specific aims of the study were as follows: 
 
1. Describe the metabolic profile of Wfs1-deficient mouse model in several 

organs related to pathology of Wolfram syndrome. 

2. Describe the antioxidative glutathione system in several organs of Wfs1-
deficient mouse model. 

3. Evaluate the effect of antioxidants administered to the Wfs1-deficient mouse 
model on glutathione system in several organs. (Unpublished data) 

4. Evaluate the effect on glutathione level in hypothermia-induced conditions 
of different cell lines. 

 
 
  

3. AIMS OF THE STUDIES 
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4.1. Study subjects/materials 

4.1.1. Animals (Papers I and II) 

The animal experiments in papers I and II were carried out in accordance with 
European Communities Directive (86/609/EEC) from the Estonian National 
Board of Animal Experiments (permission number 36, 23.07.2014). During the 
study, mice were housed in groups of 8–9 under standard laboratory conditions: 
12 h light/dark cycle with free access to chow diet and water. Male 2- and  
6-months old wild-type (Wfs1+/+, WT) and Wfs1-deficient (heterozygous Wfs1+/–, 
HZ and homozygous Wfs1–/–, KO) were used. WS is known to be a progressive 
disease and therefore the study animals in the study are at different age to 
describe the mild and more severe stage of pathologies. A brief review of the 
detailed generation, breeding and genotyping analysis of Wfs1-deficient mice 
(8th exon at the C-terminal end replaced by NLS-LacZ-Neo expression cassette) 
can be seen in the review of literature (Chapter 2.1.3). Each experimental group 
consisted of 8 animals. 
 
 

4.1.2. Cell lines (Paper III) 

HeLa cells (CCL-2) (ATCC, United Kingdom) and mouse embryonic fibroblasts 
(MEFs) (Millipore, USA) were used for the measurement of total and oxidized 
glutathione. HeLa cells were cultured in low glucose minimum essential medium 
(Capricorn Scientific, Germany) supplemented with 10% fetal bovine serum 
(PAN Biotech, Germany), 1 × penicillin/streptomycin at 37 °C in a 5% CO2 and 
the switched to 32 °C incubator in 5% CO2 during hypothermia experiment.  
 
 

4.1.3. Antioxidants (Additional) 

Wfs1-mice were given i.p. injections of UPF1 peptides (0.1 mM) and NAC for 5 
days (1 mg/kg) and 0.9% NaCl was used as vehicle. The introduction to UPF 
peptides and NAC can be seen in the review of literature (Chapter 2.4). 
 
 

4.1.4. Materials (All papers) 

In paper II, DC Protein Assay was from Bio-Rad Laboratories, Inc. (Hercules, 
CA, USA) and Glutathione Assay, Glutathione Peroxidase Assay and Glutathione 
Reductase Assay kits were from Cayman Chemical Company (Ann Arbor, USA). 
The GSH/GSSG-GloTM Assay (V6612) used in paper III was purchased from 
Promega, USA. 

All other chemicals used throughout the studies were purchased from 
Sigma-Aldrich (Merck KGaA, Darmstadt, Germany). 

4. MATERIALS AND METHODS 
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4.2. Methods 

4.2.1. Peptide synthesis (Additional) 

UPF peptides were synthesized manually by solid phase peptide synthesis using 
Fmoc-chemistry as described previously (Ehrlich et al. 2007). The purity of 
peptides was > 99% as demonstrated by HPLC using reversed-phase column 
(Jupiter 5µm C18 300Å, 250 × 21.20 mm) and the peptides were identified with 
MALDI-TOF (matrix-assisted laser desorption ionization time-of-flight) mass-
spectrometry (Voyager DE Pro, Applied Biosystems). 
 
 

4.2.2. Tissue/bodily fluids collection (Papers I and II) 

After the treatment of UPF peptides, NAC or saline, the mice were euthanized 
by manual cervical dislocation. Urine samples were collected outside the cage 
with the aid of pipette the day before. Trunk blood was collected after decapi-
tation immediately post mortem and liver, heart, pancreas and kidney tissues 
were collected, perfused with ice-cold saline, snap frozen in liquid nitrogen and 
stored at –80 °C until processing. 
 
 

4.2.3. Sample preparation (Papers I and II) 

For mass-spectrometry in paper I, the widely used hydrophobic-hydrophilic 
phase extraction protocol for homogenization of tissues was used as slightly 
modified (Beckonert et al. 2007). For the extraction of metabolites, frozen 
samples were weighed and 4 ml/g of LC-MS grade methanol and 0.85 ml/g of 
water was added before homogenization. The samples were homogenized by 
ultrasound homogenizator (Bandelin Sonopuls, Germany) and followed by 
adding 4 ml/g of chloroform and 2 ml/g of water. The samples were mixed and 
centrifuged for 15 min 1000 × g at 4 °C, which allowed the mixture to settle into 
two layers (upper hydrophilic and lower lipophilic phase). Proteins of the 
hydrophilic phase and the samples of urine and trunk blood were precipitated with 
75% methanol and centrifuged for 15 min at 21250 × g 4 °C. All procedures were 
done on ice.  

For the measurement of GSH level and the activity of GR and GPx in paper 
II, the tissue samples (15–250 mg) were homogenized in 0.1 M phosphate buffer 
(1:10 w/v; pH 7.4) and centrifuged for 15 min at 10,000 × g 4 °C. Supernatants 
were collected and immediately aliquoted for the measurement of total GSH 
(tGSH) or the enzymatic activity of GR or GPx. For the measurement of tGSH 
and GSSG, proteins were precipitated with 10% metaphosphoric acid (1:1 w/v) 
to avoid interference owing to particulates and sulfhydryl groups in the assay. 
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4.2.4. Mass-spectrometry (Paper I) 

The samples were randomized and supernatants were evaluated on QTRAP 3200 
mass spectrometer (AB Sciex). Samples were analyzed for 5 min in isocratic flow 
of 0.05 ml/min of methanol and 0.1% of formic acid for the lipophilic phase 
(tissues) and binary flow 0.025 ml/min of water and methanol, followed by 
0.05 ml/min of methanol and 0.1% formic acid for the hydrophilic phase 
(tissues, urine and trunk blood). The full spectra (mass-to-charge ratio from 50 
to 1500) was obtained in positive and negative enhanced mass scan mode. The 
ionspray voltage, declustering and entrance potential were 4500 V, 20 V and 
10 V, respectively, and respective negative voltages were applied for negative 
scan mode.  

Multiple reaction monitoring (MRM) was performed for all metabolites in 
targeted analysis. The concentration of purines and pyrimidines were measured 
using the method described by la Marca et al. (la Marca et al. 2006). Amino 
acids and acylcarnitines were analyzed as butylesters and the sample 
preparation was performed using the method described by Matern et al. (Matern 
2008). Technical details of LC-MS conditions for amino acids, acylcarnitines 
and hydroxy acids have been reported previously (Zagura et al. 2015). For this, 
50 µl of labelled internal standards (Cambridge Isotopes Inc, USA) in methanol 
were added to 10 µl of sample. After 20 min of incubation, the samples were 
centrifuged at 4 °C and 21250 × g for 15 min and the supernatant was evaporated. 
After evaporation, the extracts were butylated using 60 µl butanol/HCl at 65 °C 
for 15 min and the samples were again evaporated and dissolved in 100 µl of 
acetonitrile/H2O/formic acid (50:50:0.025, respectively). Fifteen µl of the 
sample was injected into MS/MS. Acylcarnitines were analysed as precursors of 
m/z 85 ion and amino acids were analyzed by MRM scan with the following 
transitions: [2H3]Leu 191/89, [2H2]Orn 191/72, [2H3]Met 209/107, 
[2H4]Ala150/48, [2H5]Phe 228/126, [2H6]Val 182/80, [2H4,

13C ]Arg236/75, 
[2H2]Cit 234/115, [2H3]Glu 263/87, [13C6]Tyr 244/142, [15N, 13C]Gly 134/78, 
[2H3]Asp 249/147, Orn 189/70, Arg 231/70, Gly 132/76, Cit 232/113, Ala 
146/44, Asn 189/144, Asp 246/144, Cys 206/104, Gln 203/84, Glu 260/84, His 
212/110, Leu+Ile 188/86, Lys 203/84, Met 206/104, Phe 222/120, Pro 172/70, 
Ser 162/60, Thr 176/74, Trp 261/244, Tyr 238/136, Val 174/72 and hydroxy-
Pro 189/87. Ionization was performed at 4500 V and 400 °C, declustering 
potential was set to 40 V and collision energy to 38 V. For hydroxy acid analysis, 
5 μl plasma was mixed with 35 μl (500 μM [2H4]succinic acid and [2H4]mallonic 
acid in methanol). The samples were centrifuged for 15 min at 10 000 × g and 
20 μl was injected. An HILIC (Luna 5 μm HILIC 200 A, 150 × 3 mm2; Pheno-
menex, Torrance, CA, USA) column was used with a flow rate of 0.2 ml/min− 1 
and the eluents used were: A – 5 mM ammonium formate in water and B – 
5 mM ammonium formate in methanol. The gradiential was 5 min isocratic 
95% eluent B, gradiental decline to 5% eluent B within 15 min and 5 isocratic 
flow of 5% eluent B. MRM transitions in negative polarization mode were 
[2H4]succinic acid 121/77, [2H4]mallonic acid 106/59, citrate 191/111, α-oxoglu-
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tarate 145/101, pyruvate 87/43, succinate 117/73, mallonic acid 103/41,  
β-hydroxybutyrate 103/59 and oxaloacetate 131/87. Ionization was performed at 
–4500 V and 200 °C, declustering potential was set to –20 V and collision 
energy from –10 to –30 V.  
 
 

4.2.5. Measurement of intracellular glutathione (Papers II and III) 

In paper II, the concentration of glutathione was measured using a commercial 
glutathione assay kit (Cayman Chemicals), which utilizes optimized enzymatic 
GR recycling method first described by Tietze (Tietze 1969). Briefly, the thiol 
group of GSH reacts with 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB) resulting 
in formation of yellow-colored 5-thio-2-nitrobenzoic acid (TNB) and mixed 
disulfide of GSH and DTNB. The latter is reduced by GR to recycle the GSH 
and produce extra TNB. The production of total TNB is directly proportional to 
the concentration of GSH in the sample. The quantification of GSSG is 
accomplished by first derivatizing GSH with 2-vinylpyridine and needs to be 
analyzed separately. The samples were measured at 412 nm spectrophoto-
metrically (Sunrise Tecan).  

The concentration of total and oxidized glutathione in paper III was measured 
using the commercial GSH/GSSG-GloTM Assay, which is a luminescence-based 
system, where GSH-dependent reaction leads to production of luciferin and 
finally the activity of luciferase is dependent on the amount of GSH. The 
concentration of GSSG is measured in parallel as reduced glutathione is blocked 
by a specific reagent. Luminescence was measured using the ConcertTM Triad 
microplate reader (Dynex Technologies). This luminescence-based method is 
more sensitive compared to the spectrophotometrical assay used in paper II. 

Data were analyzed using GraphPad Prism version 5.0.0 for Windows 
(GraphPad Software). The results are presented as the mean ± standard error of 
the mean (SEM). The comparisons between groups were made using the 
Student’s t-test. 
 
 

4.2.6. Measurement of the activity of glutathione reductase and 
peroxidase (Paper II) 

The overexpression of mRNA or protein does not necessarily result in an 
increase in activity, therefore in paper II the activity of GPx and GR was 
measured (both with a commercial Cayman Chemicals assay kit). GR catalyzes 
the NADPH-dependent reduction of GSSG to GSH and therefore maintains 
adequate level of cellular GSH. GPx catalyzes the reduction of hydrogen 
peroxide to protect the cell from oxidative stress and uses GSH as the ultimate 
electron donor. The assay measures GR activity by the rate of NADPH 
oxidation and GPx activity indirectly by coupled reaction with GR (Ursini et al. 
1985; Carlberg & Mannervik 1985). The samples were measured at 340 nm 
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spectrophotometrically (Sunrise Tecan). Data were analyzed using GraphPad 
Prism version 5.0.0 for Windows (GraphPad Software). The results are 
presented as the mean ± standard error of the mean (SEM). The comparisons 
between groups were made using the Student’s t-test. 
 
 

4.2.7. Data analysis (all papers) 

In paper I, the spectral signals of samples were binned with the resolution of 
1 Da and normalized to the mean intensity of the spectra. Principal component 
analysis (PCA) of full mass spectra was used to detect and illustrate the genotype- 
and/or age-dependent variances. One- and two-way analysis of variance 
(ANOVA) for univariate factor analysis was used to compare the mean 
differences between the Wfs1 genotypes and/or age. All statistical analyses were 
performed with R version 3.2.2 (The R Foundation for Statistical Computing).  

In papers II and III, the data were analyzed using GraphPad Prism version 
5.0.0 for Windows (GraphPad Software, Inc., La Jolla, CA, USA). The results 
are presented as the mean ± standard error of the mean (SEM). Comparisons 
between groups were made using one-way analysis of variance followed by 
Tukey’s test or Student´s t-test in paper III. P<0.05 was considered to indicate a 
statistically significant difference. 
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5. RESULTS 

5.1. Untargeted metabolomics  

Wfs1-deficient mice have been genotyped and phenotyped in behavioral studies 
(Luuk et al. 2009). The most obvious difference in phenotype is retarded growth 
of KO mice. This, and the fact that growth hormone production is increased in 
the growth retarded mice, have raised the question if more specific metabolic 
pathways could be behind the Wfs1-deficient mice phenotype and WS pathology 
in general. Anxiety-like behaviour is increased and therefore serotonergic, 
dopaminergic and adrenergic signaling in brain have been characterized with 
significant changes in neurotransmitter systems (Reimets et al. 2016; Visnapuu 
et al. 2013). Thyroid axis and the metabolic activity measured by O2 con-
sumption and CO2 production has not been found to depend on genotype at 
3 months of age (Noormets et al. 2014).  

Firstly, for an overview, principal component analysis (PCA) was perfor-
med to visualize the variance between the metabolome of Wfs1-deficient and 
WT mice. In the first principal component, mice were separated mainly by age, 
but not by genotype (Figure 6). The next components showed levels of effi-
ciency in separating genotypes. This result may, however, be biased due to 
patch effect from the 4 month time difference between the analysis of younger 
and older animals.  

Factor loading comparisons revealed that the metabolic profiles of liver and 
pancreas were the highest contributors to component 1 (i.e. aging effects) 
(Table 1). The next 8 principal components after the first were all related to 
genotype effects, meaning that the genotype causes changes, which cannot be 
described by a single or a few pattern changes in the global metabolic profiles. 
While some principal components are specific to one tissue (e.g. component 2 is 
based on the metabolic profile of pancreas mainly), others (e.g. components 4, 
5, 7, 8, and 9) hint for metabolic processes that occur in several or all tissues.  

One-way analysis of variance with post-hoc Tukey HSD test was used to 
determine the significantly changed m/z values in untargeted metabolic profiles 
of different ages and genotypes. At 2 months of age, the lowest number of 
statistically different (level p<0.05) metabolites was found between WT and 
HZ. Knock-out mice had 392 (1.4% of all metabolome) and 357 (1.2%) 
statistically different signals from WT and HZ, respectively (Figure 7A). At 6 
months the differences between KO and WT had increased to 1319 signals 
(4.6%), while KO and HZ differed by 600 signals (2.1%). Aging caused the 
highest number of significantly (p<0.05) altered metabolites in liver, kidney and 
heart. In these tissues 18–38% of the metabolic profile was altered at p<0.05 
significance and 2–11% with Bonferroni corrected significance threshold 
(p<10–6).The extent of metabolic changes due to age were similar for all 
genotypes in liver, heart, urine and trunk blood, but pancreas and kidney 
showed significantly (χ2 test; p<10–10) more changes due to age in KO and HZ 
animals compared with WT mice (Figure 7B).  
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Figure 6. Principal component analysis of Wfs1-deficient mice, with components 1 and 
2 as the highest separation with age and genotype, respectively. In parenthesis in axis 
titles is the percentage of total variance that the component describes. Each dot 
represents an array of metabolic profiles from liver, kidney, heart, trunk blood, urine 
and pancreas. The symbols are as follows: 2-month old mice: filled circle – knock-out, 
cross – heterozygote, circle – wild-type; 6-month old mice: triangle point up – knock-
out, star – heterozygote, filled triangle point up – wild-type. (Porosk et al. 2017) 
 
 
Table 1. The key characteristics of the top nine components explaining >95% of total 
variance in untargeted metabolic profiling. (Porosk et al. 2017)  

Principal 
compo- 
nent 

% of 
total 

variance 

Stronger 
association 

with: 

Relative importance of tissue profiles  
in respective principal component 

Blood Heart Kidney Liver Pancreas Urine 

1 70 age 1% 6% 2% 49% 42% 0% 

2 9.2 genotype 0% 4% 1% 4% 90% 0% 

3 6.3 genotype 1% 2% 2% 90% 5% 0% 

4 4.5 genotype 0% 2% 1% 47% 50% 0% 

5 1.9 genotype 0% 39% 42% 7% 11% 1% 

6 1.1 genotype 0% 78% 2% 1% 17% 1% 

7 0.95 genotype 1% 14% 31% 33% 19% 2% 

8 0.75 genotype 7% 9% 5% 37% 39% 3% 

9 0.62 genotype 5% 25% 26% 20% 22% 2% 
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While the untargeted metabolic profiling helps to understand which tissues are 
affected the most, targeted analysis of specific metabolites is necessary to 
identify the role of specific metabolic pathways.  

 

Figure 7. Number of statistically significant (p<0.05) changed metabolites in trunk 
blood, urine, pancreas, heart, kidney and liver tissue within Wfs1 knock-out (KO), 
heterozygous (HZ) and wild-type (WT) 2- and 6-month old mice (Figures A and B, 
respectively). (Porosk et al. 2017) 
 
 

5.2. Targeted metabolomics 

Subsequently, targeted analysis of metabolites was carried out. The most 
significant changes due to Wfs1 deficiency were found in glucose and amino 
acid metabolism (see Paper 1, table 2). Changes in individual organic and fatty 
acid levels were more subtle, although as discussed in discussion section, even 
small changes in individual compounds may be physiologically relevant if viewed 
in the context of metabolic pathways. 
 
 

5.2.1. Glucose utilization 

Energy metabolism depends on glucose utilization, gluconeogenesis and keto-
genesis. Therefor the levels of hexoses, phosphohexoses and lactate were 
measured in several tissues and bodily fluids of mice. The most significant were 
that at 6 months of age the KO mice had the highest blood hexose levels and in 
the younger KO mice the hexoses in urine were increased (Figure 8). Moreover, 
lactate levels were increased in insulin sensitive tissues of the 2 months old KO 
and in older HZ animals.  
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Figure 8. A simplified overview of glucose metabolism in Wfs1-deficient (KO – knock-
out, HZ – heterozygous, WT – wild-type) mice. In blood and urine glucose was not 
modified, in parenchymatous tissues phosphohexoses were more relevant as glycolysis 
starting points. Lactate is the endpoint of glucose metabolism under anaerobic 
conditions, but is converted back to glucose in liver. A) 2-month old mice, B) 6-month 
old mice. (Porosk et al. 2017) 
 
 

5.2.2. Other energy sources 

Untargeted metabolic profiles from chloroform extract of tissues with negative 
ionization were used to evaluate the relative abundance of neutral lipid species. 
There was a remarkable increase in triglyceride levels in pancreas and heart of 
young KO animals compared with WT and signs of lipolysis in older animals in 
the same tissues (Figure 9).  

Additionally, the levels of hydroxybutyrate and acetoacetate (ketone body), 
acyl- (acetyl-, propionyl-, butyryl-, palmitoyl- and stearoyl-) and free carnitines 
along with branched chain amino acids (BCAA) were measured by targeted 
metabolomics approach. The levels of long chain acylcarnitines were increased 
or remained unchanged in the KO mice compared to WT animals. Short-chain 
acyl- and free carnitine levels were not affected by the Wfs1- deficiency. From 
the BCAA, we found that Val and Leu/Ile were decreased the most in the liver 
of the KO mice between the genotypes. The concentration of acetoacetate was 
not changed significantly in the tissues of the KO mice. 

 



 
 

34 

 
Figure 9. The relative change in negative ionization mass spectra (untargeted global 
metabolic profiling) from chloroform extract of Wfs1 knock-out tissues in comparison 
to wild-type. Liver – solid black line, kidney – solid gray line, heart – dashed line, 
pancreas – dotted line. The regions of tri-, di- and monoglycerides as well as steroids 
are given. The free fatty acids are grouped with monoglycerides. A) 2-month old mice, 
B) 6-month old mice. The signal is smoothed by moving average approach with 25 Da 
range. (Porosk et al. 2017) 
 
 

5.2.3. Protein metabolism 

For the analysis on protein metabolism, the levels of several free amino acids 
and intermediates from amino acid metabolism were measured (see Section 
4.2.4). We found elevated levels of Ala, Arg, Asn, Gly, Leu+Ile, hydroxyl-Pro, 
Pro and Thr in the heart tissue of the younger KO mice. In the liver, where to 
the urea cycle mainly takes place, only Cit did not show a tendency to decrease 
in the KO mice. We also found the increased levels of free amino acids in the 
pancreatic tissue of HZ mice. In the urine hippuric acid was increasingly 
excreted by the KO mice. Also significant changes of Pro and hydroxyl-Pro 
were found. 

 

5.2.4. Uric acid and cysteine metabolism 

The genotype effects on the levels of purine and pyrimidine nucleobases and 
nucleosides were found to be highly variable between tissues. The level of uric 
acid was significantly increased in trunk blood and kidney of 6-month old KO 
mice (Figure 10). At younger age the same genotype, however, had a significant 
reduction of uric acid production in liver. Additionally, uric acid was non-
significantly decreased in trunk blood and increased in urine at young age. 
Decreased hypoxanthine and inosine levels under hyperuremic condition were 
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detected and ascorbic acid level was decreased in the heart of older KO mice. 
Homocysteine, the amino acid related to glutathione system and oxidative stress 
status, was decreased in the pancreas at young age, but Cys or Met levels were 
not disturbed by genotype. 
 

 
 
Figure 10. Hypoxanthine and uric acid levels in Wfs1-deficient (KO – knock-out,  
HZ – heterozygous, WT – wild-type) mice. (Porosk et al. 2017) 
 
 

5.3. Oxidative stress and glutathione system 

The concentration of total glutathione and the activities of glutathione peroxidase 
and reductase were measured in the heart, liver, kidneys and pancreatic tissue of 
KO, HZ and WT mice. Additionally, the concentration of total and oxidized 
glutathione was measured in HeLa, wild-type and Nrf2 KO mouse embryonic 
fibroblasts. 

Kidneys. The 2-month-old KO mice exhibited a significantly lower level of 
tGSH concentration in the kidney tissue compared with tGSH concentration in 
the WT littermates (1.6-fold; F2,15=5.9; P<0.05; Figure 11A). HZ 6-month-old 
mice exhibited a 1.2-fold higher concentration of tGSH in the kidney tissue 
compared to WT mice (F2,19=8.2; P<0.05; Figure 11B). The level of GSSG was 
below the detection limit and could not be measured. GPx activity was 1.7-fold 
higher in 2-month-old KO mice compared with WT mice (F2,21=18.0; P<0.0001; 
Figure 12A). GR activity was 1.4-fold higher in 2-month-old KO mice, but this 
was not indicted to be statistically significant (Figure 12B). GPx and GR 
activities in 6-month-old mice could not be measured due to their insufficient 
activity in the available amount of renal tissue.  
 



 
 

36 

 
 
Figure 11. The concentration of total glutathione (tGSH) in kidneys of Wfs1 wild-type 
(WT), heterozygous (HZ) and knockout (KO) 2- and 6-month (Figures A and B, 
respectively) old mice (n=8). Asterisk with the line indicates significance between HZ 
and KO and asterisk without a line significance compared to WT. Values are mean  
± SEM. * p < 0.05; ** p < 0.01 (Porosk et al. 2017) 
 
 

 
 
Figure 12. The activity of glutathione peroxidase (GPx, Figure A) and reductase (GR, 
Figure B) in kidneys of Wfs1 wild-type (WT), heterozygous (HZ) and knockout (KO) 
2-month old mice (n=8). Asterisk indicates significance compared to WT. Values are 
mean ± SEM. ** p < 0.01; *** p < 0.001 (Porosk et al. 2017) 
 
 
Heart. Analyses on heart tissues identified slightly lower, albeit not statistically 
significant, levels of GSSG and GSH compared with WT. In 6-month-old KO 
mice, the GSH concentration was 1.5-fold lower (F2,20=10.9; P<0.001; Figure 
13) compared with WT littermates. GPx activity was slightly higher and GR 
activity lower in KO 2-month-old mice compared with WT mice, but these 
differences were not statistically significant. The GSSG/GSH ratio was 2-fold 
higher (F2,20=4.9; P<0.05) in older and slightly higher in younger Wfs1-deficient 
mice compared with WT (Figure 14). 
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Figure 13. Schematic figure of glutathione system affected by knock-out of Wfs1 in 2- 
and 6-month old mice in heart tissue. The x-axis corresponds to the concentration 
(nmol/mg protein) or the enzyme activity (nmol/min/mg protein). Asterisk with the line 
indicates significance between HZ and KO and asterisk without a line significance 
compared to WT. Values are mean ± SEM. ** p < 0.01; n=8. Abbreviations: GPx – 
glutathione peroxidase, GR – glutathione reductase, GSH – reduced glutathione, 
GSSG – oxidized glutathione, HZ – Wfs1 heterozygous, KO – Wfs1 knockout, WT – 
Wfs1 wild-type. (Porosk et al. 2017) 
 

 
Figure 14. The glutathione redox ratio (GSSG/GSH) in the heart of 6-month old Wfs1 
wild-type (WT), heterozygous (HZ) and knockout (KO) mice (n=8). Asterisk indicates 
significance compared to WT. Values are mean ± SEM. * p < 0.05 (Porosk et al. 2017) 
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Liver. In the liver, there was a 1.1-fold higher level (not statistically significant) 
of GSH in 2-month-old KO mice and a 1.7-fold lower level of GSH in 6-month-
old mice compared with WT littermates (F2,21=4.2; P<0.05; Figure 15). GR 
activity was 1.6-fold lower in 2-month-old KO mice compared to WT mice 
(F2,21=6.4; P<0.001). Notably, the activity of GPx (1.3-fold; F2,21=5.6; P<0.05) 
and GR (1.6-fold; F2,20=5.2; P<0.05) were significantly increased in 6-month-
old KO and HZ mice compared with WT littermates. These data indicated more 
intensive usage of GSH by GPx in older mice, whereas the activity of GR is 
recovered. 
 

 
Figure 15. Schematic figure of glutathione system affected by knock-out of Wfs1 in 2- 
and 6-month old mice in liver tissue. The x-axis corresponds to the concentration 
(nmol/mg protein) or the enzyme activity (nmol/min/mg protein). Asterisk with the line 
indicates significance between HZ and KO and asterisk without a line significance 
compared to WT. Values are mean ± SEM. * p < 0.05, ** p < 0.01; n=8. Abbreviations: 
GPx – glutathione peroxidase, GR – glutathione reductase, GSH – reduced glutathione, 
GSSG – oxidized glutathione, HZ – Wfs1 heterozygous, KO – Wfs1 knockout, WT – 
Wfs1 wild-type. (Porosk et al. 2017) 
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5.4. The administration of UPF peptides and  
N-acetyl-L-cysteine 

Firstly, to address the oxidative stress status after the administration of NAC, 
UPF1 or UPF17, the glutathione concentration in kidney, heart and liver was 
measured. Later, the activity of glutathione peroxidase and reductase was 
analyzed in the liver tissue as a main pool of glutathione in human body. 
Kidneys. The administration of UFP17 increased the tGSH level by 1.8-fold 
(F3,16=12.79, p<0.001) in 2-month old WT mice (Figure 16A). The con-
centration of GSSG was below the detection limit. Furthermore UPF peptides 
increased the tGSH concentration in WT and HZ, but did not have an effect in 
KO mice. In 6-month old mice, studied peptides did not alleviate tGSH 
concentration in kidney tissue (Figure 16B). Our previous results show reduced 
tGSH concentration in Wfs1-deficient KO mice (Porosk et al. 2017) and 
administration of antioxidative peptides seem not to improve tGSH level. 
(Unpublished data) 

 

Figure 16. The concentration of total glutathione (tGSH) in kidneys of Wfs1 wild-type 
(WT), heterozygous (HZ) and knockout (KO) 2- and 6-months old mice (A and B, 
respectively, n=8). Values are mean ± SEM. ** p<0.01. The relative concentration of 
tGSH of Co is 1.0 and NAC, UPF1 or UPF17 are normalized to Co (0.9% NaCl). 
(Unpublished data) 
 
Heart. In the heart tissue of 2-month old mice, the reduced glutathione concent-
ration was decreased in KO mice (Porosk et al. 2017). After the administration 
of UPF17 and UPF1, the GSH concentration was increased in WT and HZ, 
respectively (Figure 17A). The most informative, GSSG/GSH ratio, was 
decreased after the administration of UPF peptides in WT, but not significantly 
(Figure 17D). The oxidized glutathione level in HZ and KO was increased after 
the influence of NAC or UPF17, respectively (Figure 17B). This was also 
reflected to the GSSG/GSH ratio. (Unpublished data) 

In 6-month old mice, only GSSG concentration was increased after the 
administration of every studied peptide and this also reflected in GSSG/GSH 
ratio (Figure 18)). Also in WT mice, UPF17 increased the concentration of GSH 
and the concentration of GSSG was slightly decreased after the administration 
of UPF peptides. As a result the GSSG/GSH ratio was decreased in WT mice, 
but not statistically significant. (Unpublished data) 
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Figure 17. The concentration of total glutathione (tGSH) (A), oxidized glutathione 
(GSSG) (B), reduced glutathione (GSH) (C) and the glutathione redox ratio 
(GSSG/GSH) (D) in the heart of 2-months old Wfs1 wild-type (WT), heterozygous 
(HZ) and knockout (KO) mice (n=8) after treatment with NAC, UPF1 or UPF17. 
Asterisk indicates significance to Co. * p<0.05; ** p<0.01; *** p<0.001. Values are 
mean ± SEM. (Unpublished data) 

 
 

 
 
Figure 18. The concentration of oxidized glutathione (GSSG) (A) and the glutathione 
redox ratio (GSSG/GSH) (B) in the heart of 6-months old Wfs1 wild-type (WT), 
heterozygous (HZ) and knockout (KO) mice (n=8) after treatment with NAC, UPF1 or 
UPF17. Asterisk indicates significance to Co. * p<0.05; ** p<0.01; *** p<0.001. Values 
are mean ± SEM. (Unpublished data) 
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Liver. The GSH and GSSG concentration and the activity of GR and GPx were 
measured in the liver tissue of Wfs1-deficient mice after the administration of 
saline, NAC, UPF1 or UPF17 (Figure 19). In 2-month old KO mice, the 
peptides reduced the concentration of GSH and GSSG, but the activity of 
enzymes did not change. In 6-month old mice, the UPF peptides slightly 
increased the concentration of GSH in WT mice, but did not alter the GSSG 
concentration and therefore the GSSG/GSH ratio was significantly reduced 
(Figure 20). (Unpublished data) 
 

 
 
Figure 19. Schematic figure of glutathione system affected by the administration of 
NAC (white), UPF1 (light grey) and UPF17 (dark grey) in liver tissue of 2- and  
6-month old Wfs1 mice. The x-axis corresponds to the normalized concentration 
(nmol/mg protein) of GSH or GSSG or the enzyme activity (nmol/min/mg protein) against 
Control (0.9% NaCl). Values are mean ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001; 
n=8. Abbreviations: GPx – glutathione peroxidase, GR – glutathione reductase, GSH – 
reduced glutathione, GSSG – oxidized glutathione, HZ – Wfs1 heterozygous, KO – 
Wfs1 knockout, WT – Wfs1 wild-type (Porosk et al. 2017) 
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Figure 20. The glutathione redox ratio (GSSG/GSH) in the liver of 6-months old Wfs1 
wild-type (WT), heterozygous (HZ) and knockout (KO) mice (n=8) after treatment with 
NAC, UPF1 or UPF17. The relative GSSG/GSH ratio of Co is 1.0 and NAC, UPF1 or 
UPF17 are normalized to Co (0.9% NaCl). ** p<0.01; *** p<0.001. Values are mean ± 
SEM. (Unpublished data) 
 
 

5.5. Hypothermia induces the stress response  
in different cell lines 

There is little evidence provided about the therapeutic mechanisms of 
hypothermia, which is beneficial in several medical procedures. In paper III, we 
examined the effect of hypothermia on cellular stress pathways that have been 
related to ischemia reperfusion injury. One of the studied parameter was the 
measurement of intracellular reduced and oxidized glutathione level in HeLa, 
wild-type and Nrf2 KO mouse embryonic fibroblasts.  

The concentration of total glutathione was significantly higher in wild-type 
fibroblasts after 24h of hypothermia when compared to normothermia 
(Figure 21). The opposite pattern was seen in Nrf2 KO cells, where tGSH was 
lower in hypothermic conditions. The concentration of oxidized glutathione was 
lower in WT cells in hypothermia conditions.  

Hypothermic treatment of HeLa cells lead to an increase in tGSH 
(Figure 22). There was no effect on the concentration of GSSG. 
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Figure 21. Effect of hypothermia on total cellular glutathione and glutathione disulfide 
(GSSG) levels in wild-type and Nrf2-deficient mouse embryonic fibroblasts. Mean 
values (+SEM) are shown. Statistical analysis was performed with Student’s t-test. 
* p<0.05, # p<0.0001. (Eskla et al. 2018) 

 
 

 

Figure 22. Effect of hypothermia (24 h) on total cellular glutathione and glutathione 
disulphide (GSSG) levels in HeLa cells. Mean values (+SEM) are shown. Statistical 
analysis was performed with Student´s t-test. ** p<0.01. (Eskla et al. 2018) 
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6. DISCUSSION 

The pathology of Wolfram syndrome 1 is tightly related to endoplasmic reticulum 
stress, which mediates the upregulation of oxidative stress. The therapeutic 
mechanism of hypothermia lack widely accepted explanations, but it is known 
that it somehow leads to decreased status of oxidative stress. Therefore the 
molecular metabolic studies were carried out to describe the stress status in both 
models. Glutathione is the most abundant low-molecular-weight antioxidant 
peptide found in all tissues and functions to mitigate the harmful effects of 
oxidative compounds and the glutathione system is one of the main indicators 
of oxidative stress.  

In the present study we firstly described the overall metabolism, including 
energetics and certain antioxidants of Wfs1-deficient mouse and continued with 
more specific characterization of the glutathione system of the mouse model.  

Subsequently, we evaluated the effect of the administration of antioxidative 
peptides to reduce the stress in Wfs1-deficient mouse. And finally conducted a 
study to gather a knowledge about the hypothermia-induced stress response 
onto the different cell lines.  

 

6.1. Untargeted metabolomics 

Statistical analysis on metabolic profiles revealed that at 2 months of age there 
are relatively few statistically significantly different signals between WT and 
HZ while for both the number is high if compared with KO. At 6 month of age 
KO and WT have the highest number of different signals. Thus PCA and 
ANOVA both imply that KO and WT are different at both ages and HZ profile 
changes from WT-like profile towards KO-like profile over time. Due to the 
gene-dose effect HZ animals are expected to have intact wolframin, although at 
lower quantities than in WT mice (Punapart et al. 2014). Thus, the shift from 
WT-like profile towards KO profile is expected. The 2-month old KO mice 
have not yet fully developed the clinical WS or diabetes symptoms (Luuk et al. 
2009). Our results show that, at the metabolome level, they already have 
significant disturbances in all investigated tissues.  

Statistically significant changes were found in all tissues and the results in 
Table 1 and Figure 7 may initially seem controversial. However, in PCA the 
amplitude of signals determines the profile shape, thus the signals with higher 
absolute values are likely to get higher factor loadings. This is not the case for 
ANOVA and putting both analyses together we can conclude that liver and 
pancreas have more statistically significant changes among the high intensity, 
profile determining signals, and most of the statistical changes in blood and 
urine are of minor components. 

Both PCA and ANOVA point to liver and pancreas as the organs with the 
most changed metabolism. Pancreas is indeed a tissue with high Wfs1 expression 
(Inoue et al. 1998). Liver, however, is expected to have lower expression than 
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heart or kidney (Inoue et al. 1998). The high number of changes in liver may 
suggest its role in countering the systemic metabolic alterations. At younger age 
the liver keeps, maybe on its own expense, blood metabolome unchanged and 
therefore alterations in other tissues relatively low. Yet, surprisingly, liver has 
its metabolic profile nearly identical in all genotypes at older age, which 
contradicts a hypothesis for a permanent damage or metabolic reprogramming 
due to the observed early life events. Pancreas, on the other hand, degenerates 
over time.  
 
 

6.2. Targeted metabolomics of Wfs1-deficient mice 

6.2.1. Glucose utilization 

With the development of diabetes in WS, the energy metabolism was expected 
to be severely affected, particularly in older animals. Indeed, at 6 month of age 
KO had the highest blood hexose levels (Figure 8). The lack of hyperglycemia 
at young age has been reported before (Ishihara 2004; Sedman et al. 2016), but 
interestingly despite normoglycemia the hexoses in urine were increased in KO 
animals. Hence, the kidneys leaked glucose, which may imply to decreased 
glucose reabsorption. In classical diabetic nephropathy the non-enzymatic glyco-
sylation products from continuously high blood glucose are believed to cause 
glomerular basement membrane thickening leading to glomerular dysfunction. 
In humans the WS renal biopsy has been found compatible with diabetic 
nephropathy (Sumboonnanonda et al. 1997). With WS and hyperglycemia 
progression it may be that the initial tubular dysfunction is at later disease 
stages overshadowed by glomerular dysfunction explaining the contradiction 
between our results and the histological finding. Most importantly, the presence 
of early tubular dysfunction would give glycosuria a diagnostically different 
meaning than in diabetes, as in WS it would be an early marker while in 
diabetes it is a marker for late complication.  

Lactate is the product of anaerobic glycolysis in most tissues and a source 
for gluconeogenesis in liver. The observed pattern where lactate level increases 
in insulin sensitive tissues of young KO animals and in older HZ mice 
(Figure 8) is in good accordance with the hypothesis that HZ genotype has the 
disease progression delayed. The heart of older HZ genotype may have its 
lactate in normal range due to decreased phosphohexose levels, which disallows 
further intensification of glycolysis and lactate rise. The insulin deficiency and 
intolerance might deny glucose use in older KO animals, and without glucose 
the lactate level normalizes again in KO genotype. In cardiac muscle the lactate 
increase was statistically not significant, but at the same time there was a 
significant increase of Ala levels. In muscles with high protein turnover and 
nitrogen excess, the pyruvate formed in glycolysis is converted to Ala via 
transamination. Increased lactate and Ala imply that glycolysis has intensified 
in KO mice heart.  
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6.2.2. Other energy sources  

Lipids can be used for energy production directly in beta-oxidation. Additionally, 
lipids and amino acids can be used by the liver to produce ketone bodies, 
glucose or both in parallel. Acyl- and free carnitines reflect the availability of 
beta-oxidation substrates. Two to five carbon acyl residues depend on amino 
acid and ketone body utilization, but longer chains originate directly from fatty 
acids.  

The levels of acylcarnitines suggest that availability of long chain acyl-
carnitines in tissues has increased or remained at the WT level in Wfs1-deficiency, 
and the short-chain acyl and free carnitine imply that there is no stress on the 
carnitine shuttle. The initiation of insulin deficiency may lead to increased 
lipolysis, which increases availability of non-esterified fatty acids. In KO and 
WT comparison at young age pancreas and heart had increased triglyceride 
levels (Figure 9). At 6 months of age, a significant lipolysis had occurred in 
both tissues. At the same time liver had increased levels of di- and triglycerides 
or steroids. Increased lipolysis and decreased peripheral fat amount is further 
supported by the reportedly low leptin levels in Wfs1-deficient mice at 3 months 
of age (Noormets et al. 2014). 

The branched chain amino acids (BCAAs) are also particularly valuable for 
covering energetic needs. Leu+Ile and Val were among of the most significant 
differences between the genotypes and also the few amino acids with a signi-
ficant decrease in the liver of 2 month old KO mice. The striking difference 
between liver and extrahepatic tissues suggests that the use of BCAAs may be a 
more specific process than energy extraction. Interestingly, a very recent paper 
with branched-chain aminotransferase over-expression mouse model reported a 
liver specific decrease of BCAAs and development of glucose intolerance 
(Ananieva et al. 2017). It is unknown whether the mitochondrial branched-chain 
aminotransferase is somehow affected by WS or the observed effect on liver 
BCAAs can develop as a result of impaired glucose maintenance.  

The few and small changes in the levels of ketone bodies leads us to conclude 
that the animals had no clinically significant ketosis. Only a minority of WS 
patients present with ketosis (Kinsley et al. 1995), thus this finding is in 
accordance with WS in humans. 

 
 

6.2.3 Protein metabolism  

As mentioned above in conjunction with glycolysis, Ala was significantly 
increased in the young KO heart (Figure 23). In liver, the place where Ala should 
be recycled to pyruvate and ammonia converted to urea, its level was not 
genotype dependent. From the urea cycle intermediates in the liver only citrulline 
did not show a tendency to decrease, which may be due to excessive ammonia 
and carbamoylphosphate, which keep the citrulline level up. Deficiency of 
oxaloacetate, possibly due to its use in gluconeogenesis limits available aspartate 
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for citrulline conversion to argininosuccinate. With urea also not significantly 
increased, accumulation of ammonia would remain the most plausible destination 
for excessive nitrogen. Unfortunately, free ammonia could not be measured 
reliably. From the measured amino acids only homocysteine and Orn showed 
no increase in the cardiac muscle of KO animals. Except for Orn, and the 
aromatic amino acids (Trp, Phe, Tyr and also His) young HZ mice had a similar 
increase of free amino acids in the heart. In a possibly related note, hippuric 
acid, one of the end products of Phe metabolism was increasingly excreted into 
urine in KO but not in HZ animals. Another tissue with global tendency of 
increased free amino acids was the pancreas. Here, however, was HZ not KO 
the main outstanding genotype. Two possible scenarios can explain the 
anomalous HZ pancreas. First is that the increase reflects a pathology, such as 
protein turnover increase due to improper folding in ER and HZ are developing it 
faster than KO. Tissue specific compensatory mechanisms for wolframin 
deficiency would be required for such effect. The second possibility is that both 
KO and HZ are affected, but due to different rates in KO a decrease in total 
protein, not an increase in free amino acids, is observed.  
 

 
 
Figure 23. The citric acid cycle and nitrogen metabolism in Wfs1-deficient (KO – 
knock-out, HZ – heterozygous, WT – wild-type) mice. The nitrogen from peripheral 
tissues is transported to liver in form of alanine, glutamine and glutamate mainly. From 
glutamine/glutamate in liver ammonia is released and bound to carbamoylphosphate. 
Via transamination glutamate and alanine are closely related to the citric acid cycle and 
the latter is also related to the urea cycle where nitrogen is processed further to generate 
urea. (Porosk et al. 2017) 
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Significant changes in Pro and hydroxy-Pro levels were found. Pro itself has 
been shown to be required for ER stress tolerance in yeast (Liang et al. 2014). 
Therefore, higher incorporation of Pro into proteins and respective decrease in 
the pool of free Pro, may partly be a countermeasure to ER stress. Pro 
hydroxylation is a major post-translational modification for collagen. The 
process normally occurs in ER and is vital for collagen stability. Other proteins 
contribute minimally to hydroxy-Pro pool and it has therefore been suggested to 
reflect collagen amount or turnover (Neuman & Logan 1950). The mouse model 
used in this study is previously characterized by growth retardation despite 
increased growth hormone levels (Kõks et al. 2009). With ER stress being a 
molecular pathophysiology of WS the abnormal production of collagen and 
connective tissues may be the reason for limited growth and recompensatory 
increase in growth hormone. In relation to sports and recovery from traumas the 
role of growth hormone on protein synthesis has been studied and collagen been 
found to be a major product for growth hormone stimulation (Doessing et al. 
2010). Excretion with urine is likely due to renal dysfunction (Selby et al. 1995). 
 
 
 

6.3. Oxidative stress and glutathione system 

6.3.1. Uric acid and cysteine metabolism 

Purine and pyrimidine metabolism is most directly linked via nucleic acids and 
nucleotide pools. Varying responses in different tissues and involvement of both 
purines and pyrimidines may relate to different cellular proliferation in tissues. 
Kidney and liver having a higher rate of cell proliferation at young age causes 
nucleotide deficiency. The cardiomyocytes not undergoing proliferation, on the 
other hand, accumulate nucleosides and nucleobases.  

Uric acid is a key intermediate in purine catabolism and it was non-signi-
ficantly decreased in trunk blood and increased in urine at young age, suggesting 
a potential renal loss of uric acid in a similar way as noted for glucose. Decreased 
hypoxanthine and inosine indicates overproduction of uric acid not matching 
the purine catabolism. Both steps in hypoxanthine to uric acid conversion are 
performed by xanthine oxidase. This enzyme has in numerous studies linked to 
oxidative stress via superoxide generation, and may be relevant for diabetes 
development (Desco et al. 2002; Romagnoli et al. 2010). Evolutionarily uric and 
ascorbic acids have been suggested to have an overlapping role in antioxidative 
defence (Benzie 2000). The ascorbic acid level did not correlate with hypo- or 
hyperuricemia in Wfs1-deficiency undermining the potential uric acid and 
oxidative stress relationship hypothesis for WS. 

The homocysteine, Cys and Met balance is also interesting because of thiol 
group redox sensitivity, their association with methylation reactions needed for 
nucleobase synthesis and homocysteine is also known to be an independent ER 
stress causing factor (Yu et al. 2013). KO mice had homocysteine decreased in 
the pancreas at young age, but other than that neither homocysteine nor Cys or 
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Met levels were disturbed by genotype. Therefore, homocysteine itself as ER 
stress factor, or Met and homocysteine involving methylation reaction are 
unlikely to have a significant impact to WS pathophysiology. In diabetes patients 
homocysteine levels have shown controversial values (Meigs et al. 2001; 
Smulders et al. 1999; Mazza et al. 2005), so the results are not contradicting 
diabetes pathogenesis either. 

 
 

6.3.2. Glutathione system 

Oxidative stress is strongly associated with ER stress. ER and oxidative stress 
reduce the GSH capacity and induce the synthesis of reduced GSH (Zeeshan et 
al. 2016; Harding et al. 2003). The present study examined the GSH system in 
Wfs1-deficient mice to characterize the extent of oxidative stress in several 
tissues under chronic ER stress. The results indicated that the GSH system was 
not identical in all tissues of Wfs1-deficient mice. It is particularly complex for 
the heterozygous mice, in which the tGSH levels may be up- or downregulated 
depending on tissue type and age. 

One of the highest expression levels of Wfs1 is found in heart tissue (Strom 
et al. 1998). In this research, Wfs1 deficiency also exhibited the greatest effects 
on the GSH system in the heart. At 2-months old, when the disease has not yet 
fully manifested its clinical symptoms (Strom et al. 1998; Hofmann et al. 2003; 
Fonseca et al. 2005), the levels of both GSH and GSSG were slightly decreased 
in KO mice, but the GSSG/GSH ratio was increased, though not significantly. 
The administration of UPF peptides increased the concentration of GSH and 
decreased the GSSG/GSH in the heart tissue of younger WT and HZ mice. No 
positive effects on the glutathione system were found regarding to older litter-
mates. This shows that the administration of UPF peptides reduce the GSSG/GSH 
only in the younger mice as the disease is not yet prolonged in 2-months old mice.  

Enzyme levels favor the change in the ratio with a tendency of increased 
GPx activity and reduced GR activity. As the disease progresses, the changes 
become more significant. A previous GPx-1-KO study has suggested that GPx 
may have anti-ER stress effects (Geraghty et al. 2016), and therefore its 
upregulation may also be part of the UPR (Eletto et al. 2014). In addition to ER 
stress response, particularly at the older age (6 months), the GSH system may 
be altered by complications of systemic WS manifestations such as diabetes. In 
streptozotocin-induced diabetes, a decrease of GR activity in heart has been 
reported (Li et al. 2007). 

The pancreas is another organ with high levels of Wfs1 expression. Its 
exocrine and endocrine functions require active synthesis of proteins, and 
makes the pancreas particularly susceptible to the effects of Wfs1 deficiency and 
UPR. Pancreatic β-cells have low levels of antioxidant enzyme expression and 
activity, including superoxide dismutases, catalase and GPx (Tiedge et al. 1997). 
By contrast, the catalytic subunit of γ-glutamylcysteine ligase, which is the rate-
limiting enzyme for GSH biosynthesis, is highly expressed in pancreatic islet 



 
 

50 

cells (Tran et al. 2004). The inability to properly process insulin is a key event 
in WS pathophysiology and the development of diabetes is triggered by the 
deficiency of insulin (Shang et al. 2014). In the present study, whole pancreas 
tissue was examined, making the results more relevant for the larger exocrine 
function. With no identified significant changes in tGSH levels and with GSSG 
under the detection limit, oxidative stress is seemingly well controlled.  

Liver has lower Wfs1 expression compared with heart or pancreas (Inoue et 
al. 1998). The liver serves a major role in the regulation of carbohydrate meta-
bolism, such as maintaining the blood glucose level and homeostasis in general. 
An entire spectrum of liver diseases have been associated with type 2 diabetes, 
including abnormal liver enzymes, nonalcoholic fatty liver disease, cirrhosis, 
hepatocellular carcinoma and acute liver failure (Tolman et al. 2007). A decrease 
in GSH levels in the diabetic liver and remarkable increment of GSSG/GSH ratio 
have been reported previously (Furfaro et al. 2012). In the present study,  
2-month-old Wfs1-KO mice at young age had GSH expression similar to WT 
expression levels. At 2 months of age hyperglycemia and diabetes has not yet 
manifested itself in mouse models (Ishihara et al. 2004; K Noormets et al. 
2011), therefore changes from diabetic complications are not expected. At 
6 months of age, however, the expected decrease was observed. A small GSH 
increase at young age could be expected in response to ER stress (Cullinan et al. 
2003; Harding et al. 2003), which at that time is not overwhelming the 
compensatory mechanisms. It may be considered that the heart has either 
stronger stress owing to higher dependency on Wfs1 or its compensatory 
mechanisms are weaker, which may lead to a tendency of GSH reduction even 
early on. The administration of antioxidative peptides in the liver increased the 
concentration of GSH in older mice and reduced the concentration of GSSG and 
GSH in younger littermates. This leads to the reduced GSSG/GSH and 
improved antioxidative status in both age groups. 

Similar to the liver, kidneys express Wfs1 at low levels. A commonly 
observed complication of WS and type 2 diabetes is diabetic nephropathy, 
which is a frequent cause of mortality in diabetic patients (Ibrahim & Hostetter 
1997). It has been postulated that oxidative stress may be a key component in 
the development of nephropathy (Kashihara et al. 2010). Chronic exposure to 
high levels of glucose leads to a decrease in GPx activity in vascular endothelial 
and kidney cells (Urata et al. 1996; Catherwood et al. 2002). It has been 
demonstrated that exposure to oxidative stress inducers such as carbon 
tetrachloride increases GPx activity in rat kidneys (Szymonik-Lesiuk et al. 
2003). Rats treated with ethanol exhibited increases in both GPx and GR 
activity in kidneys (Jurczuk et al. 2006). High glucose concentration has been 
reported to decrease γ-glutamylcysteine ligase expression and GSH levels in 
mesangial cell culture (Catherwood et al. 2002). Therefore increased GPx 
activity indicates an increased rate of GSH usage and the depletion of tGSH 
pool as seen in the present results. The administration of antioxidative peptides 
(NAC and UPF peptides) seem not to improve tGSH level. 
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In conclusion, the concentration of GSH was generally decreased in KO 
Wfs1-deficient mice. A slight, but not statistically significant increase was seen 
in liver at young age. In HZ mice, statistically significant or minimal increases 
of tGSH were observed in the kidneys and pancreatic tissue at older age. The 
upregulation of GSH in the liver of 2-month old KO mice is probably an 
attempt to control ER stress and depends on the expected expression of Wfs1.  

The activity of the two main GSH redox enzymes, GPx and GR, also suggest 
that the early and late liver tissues are experiencing different situations. Early 
on, GPx activity remains unchanged in KO mice compared with ‘healthy’ WT, 
although GR activity is reduced. At 6 months old, GR activity in KO mice 
returns to similar levels as WT (or even surpasses the WT activity in HZ), but 
GPx activity was increased. The administration of studied antioxidants mainly 
reduced the activity of GR and GPx in older mice and inversely in the younger 
littermates. 

The intraperitoneal administration of antioxidants seem to improve the 
glutathione status only in the liver and heart tissue of studied mice. 

 

6.4. Hypothermia 

The concentration of total glutathione was significantly higher in wild-type cells 
after 24h of hypothermia when compared to normothermia and the opposite 
pattern was seen in Nrf2 KO cells, where tGSH was lower in hypothermic 
conditions. This indicates that the activation of Nrf2 is required for the increase 
of GSH in hypothermic cells. The concentration of oxidized glutathione was 
lower in WT cells suggesting that hypothermia lowers the oxidative stress. 
GSSG was undetectable in Nrf2 KO cells probably due to low level of tGSH.  

Hypothermic treatment of HeLa cells lead to the increase of tGSH. There 
was no effect on the concentration of GSSG, which once again suggests that 
there is no increase in oxidative stress.  

In sum, we found evidence for increased levels of total glutathione and 
reduced oxidative stress after hypothermic pre-incubation. 

 

6.5. The models of endoplasmic reticulum and  
oxidative stress  

Hypothermia upregulated the expression of GCLc gene and the concentration of 
reduced glutathione both in MEFs and HeLa cells (Paper III) (Eskla et al. 
2018)(Eskla et al. 2018) In addition, hypothermia temporarily activated Nrf2 
transcription factor, which is a master downstream regulator of antioxidant 
response system. To add with, we have previously seen that the incubation of 
different cell lines with UPF peptides increases the expression of both catalytic 
(GCLc) and modifying (GCLm) subunit of GCL as well as the level of Nrf2 and 
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the concentration of GSH (unpublished data). These different oxidative stress 
models seem to be correlating and lead to the activation of Nrf2 transcription 
factor, up-regulation of Nrf2 target genes and GSH. 

On the other point of view, hypothermia had negligible impact on the 
activity of ER-stress. No increase in the activity of endoplasmic reticulum stress 
response element reporter nor in the level of spliced isoform of X-box binding 
protein 1 (XBP1) was found in response to hypothermia (Paper III).  

In conclusion, hypothermia seems to be more preferable model for studying 
oxidative stress as the pathology of Wolfram syndrome 1 corresponds to both 
upregulated ER and oxidative stress.  
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7. SUMMARY AND CONCLUSIONS 

The metabolomic characterization of Wfs1-deficient mice revealed a broad 
spectrum of metabolic complications and affected glutathione redox status in 
the knock-out mice. Wolfram syndrome 1 is systemic and affects all organs 
(kidneys, liver, pancreas and heart) and bodily fluids (urine, blood) studied. The 
glutathione system in the heart, kidneys, liver and pancreatic tissues of Wfs1-
deficient mice was characterized before and after the administration of 
antioxidants (N-acetyl-L-cysteine, UPF1 and UPF17), which improved the 
glutathione status in Wfs1-deficient mice. Additionally the glutathione redox 
status was analyzed under hypothermia conditions. Hypothermia reduced the 
oxidative stress status in different cell lines. 

The results suggest the following conclusions: 
1. Global profiling revealed that at 2 months of age the metabolism of WT and 

HZ mice is very similar, but the metabolism of KO mice is already affected 
by the disease. At 6 months of age the difference is even more striking.  

 Targeted metabolomics approach revealed that at the whole organism level, 
the glucose use, gluconeogenesis and anaerobic glycolysis appear to be 
increased in the early stages of the disease, but later the energy demand is 
satisfied by intensified lipolysis. Furthermore, in the blood and liver tissue 
of KO mice, the progression of the WS proceeds from hypouricemia into 
hyperuricemia. Other low-molecular-weight antioxidants measured were 
inconclusive about oxidative stress in Wolfram syndrome. 

 In conclusion, the metabolic profile of several tissues of Wfs1-deficient 
mouse model was thoroughly characterized by the metabolomics approach, 
which is essential for future research of WS. 

2. The concentration of GSH was generally decreased in KO Wfs1-deficient 
mice, but a slight upregulation of GSH in the liver is probably an attempt to 
control ER stress. In the liver and heart the activity of glutathione peroxidase 
was increased and the activity of glutathione reductase was decreased in KO 
mice compared to WT littermates. In the kidneys KO mice, the activity of 
both enzymes increased. The results suggest that the glutathione system 
(GSH and related enzymes) has a distinct outcome in all studied tissues and 
confirms higher oxidative stress status in Wfs1-deficient mice.  

3. The antioxidants had the highest effect improving the glutathione status in 
the liver and heart tissue of Wfs1-deficient mice. In the liver tissue, the 
studied antioxidants mainly reduced the activity of GR and GPx in older 
mice and inversely in the younger littermates. The UPF peptides could be 
potential antioxidants for reducing oxidative stress. (Unpublished data) 

4. Hypothermia induced the highest level of total glutathione in wild-type 
mouse embryonic fibroblasts and HeLa cells, whereas the concentration of 
oxidized glutathione was decreased or remained unchanged, respectively. 
This suggests that there is no increase in oxidative stress level and the 
antioxidative defense system is upregulated. 
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SUMMARY IN ESTONIAN 

Oksüdatiivse stressi roll Wolframi sündroom 1 ja hüpotermia korral 

Sissejuhatus  

Wolframi sündroom on haruldane autosomaalne retsessiivne haigus, mida ise-
loomustavad juveniilne diabeet (magediabeet, tüüp I suhkrudiabeet), nägemis-
närvi kahjustus, kuulmishäired, progressiivne neurodegeneratsioon, endokriin-
sed kahjustused ja psühhiaatrilised probleemid. Wolframi sündroom on põhjus-
tatud mõlemas alleelis esinevatest mutatsioonidest WFS1 geenis, mille tõttu 
geeni produkt, wolframiin, ei oma enam tavapärast funktsiooni. Mutantse 
wolframiini puhul kuhjuvad voltumata valgud endoplasmaatilise retiikulumi 
luumenisse ning põhjustavad endoplasmaatilise retiikulumi stressi (ka oksü-
datiivset stressi) ja sealse homoöstaasi häirumist ja apoptootilise raja käivitumist.  

Metaboloomika on kiirelt arenev teadusharu, mis koos genoomika ja trans-
kriptoomikaga võimaldab saada paremat ülevaadet organismis toimuvatest prot-
sessidest. Metaboloomika keskendub organismi rakkudes, biovedelikes ja 
kudedes leiduvate madalmolekulaarsete ühendite ehk metaboliitide identifit-
seerimisele ja nende kontsentratsioonide kvantifitseerimisele. Antud metoodika 
abil on võimalik teada saada, milliste metaboliitide osakaal on muutunud võrrel-
des terve organismiga ja rakendada seda infot haiguste varajaste biomarkerite 
kindlakstegemiseks, haiguste diagnoosimiseks ning ravi kulu jälgimiseks. 
Uuritavate ühendite gruppi kuuluvad kõik madalmolekulaarsed struktuursed 
ehitusüksused, signalisatsioonielemendid ja metabolismi vaheühendid nagu 
nukleotiidid, aminohapped, suhkrud, vitamiinid, rasvhapped, lipiidid ning samuti 
ravimid ja nende metaboolsed derivaadid. 
 

Eesmärgid 

Antud töö peaeesmärgiks oli kirjeldada Wfs1-defektiga hiire metaboloomi ning 
oksüdatiivse stressi taset erinevates kudedes (maks, süda, neerud ja pankreas) ja 
biovedelikes (veri ja uriin) enne ja pärast antioksüdantide (N-atsetüül-L-tsüsteiin 
ja UPF peptiidid) manustamist. Lisaks analüüsida missugune on hüpotermia 
mõju glutatiooni süsteemile erinevates rakuliinides.  
 
Täpsemad eesmärgid: 
1. Kirjeldada Wfs1-defektiga hiire metaboolset profiili erinevates kudedest ja 

biovedelikest. 
2. Kirjeldada terviklikku glutatiooni süsteemi arvestades ensüümide glutatiooni 

peroksüdaasi ja glutatiooni reduktaasi aktiivsuse muutust Wfs1-puudulikku-
sega hiirtel.  

3. Analüüsida manustatud antioksüdatiivsete ühendite mõju glutatiooni süs-
teemile erinevates kudedes.  

4. Kirjeldada kuidas hüpotermia mõjutab glutatiooni taset hiire embrüonaal-
setes fibroblastides ja HeLa rakkudes. 
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Materjal ja metoodika  

Uurimistöö läbiviimiseks kasutati isaseid Wfs1-puudulikkusega homosügootseid 
(KO), heterosügootseid (HZ) ja metsiktüüpi (WT) 2 ja 6 kuu vanuseid hiiri, 
kellele manustati 5 päeva intraperitoneaalselt antioksüdante 0,1 mg/kg  
(N-atsetüül-L-tsüsteiin ja UPF peptiidid). Wfs1-puudulikkusega hiir on hea 
mudel uurimaks Wolframi sündroomiga, endoplasmaatilise retiikulumi häiretega 
seotud patoloogiate ja ka üldiselt diabeeti, sest Wolframi sündroomi korral on 
diabeet põhjustatud ainult ühe geeni (Wfs1) defektist, mitte multifaktoriaalsetest 
põhjustest nagu enamasti. 

Eksperimentaalses osas kasutati glutatiooni süsteemi uurimiseks laialdaselt 
kasutatud ja standardiseeritud spektrofotomeetrilisi test-komplekte. Enamik 
metaboloomilisi mõõtmisi viidi läbi mass-spektromeetriliselt, kasutades vedelik-
kromatograaf tandem mass-spektromeetrit QTRAP 3200. Kogu eksperiment oli 
kooskõlas Euroopa Komisjoni direktiivi (86/609/EEC) ja Eesti loomkatse läbi-
viimise loakomisjoni loaga (nr. 36).  
 

Tulemused ja arutelu 

Wfs1-puudulikkusega hiire metaboolsel profileerimisel selgusid mitmed aspektid, 
mis viitasid kudedes esinevatele Wolframi sündroomi komplikatsioonidele, 
kaasa arvatud glutatiooni süsteemi muutustele. Glutatiooni süsteem oli muutu-
nud ka hüpotermia tingimustes. Täpsemalt: 
1. Wolframi sündroom on süsteemne haigus ning suunamata metaboloomilisel 

analüüsil selgus, et arvestades muutusi kõikides kudedes, erinevad nii 2 kui 
ka 6 kuu vanused KO hiired märgatavalt võrreldes HZ ja WT hiirtega.  

 Suunatud analüüs näitas, et nooremad KO hiired kasutavad energia saa-
miseks eelkõige glükoosi, glükoneogeneesi ja anaeroobset glükolüüsi, kuid 
hilisemas vanuses kui haigus rohkem progresseerunud, eelistatult lipolüüsi. 
Lisaks esines noorematel KO hiirtel glükosuuria, mis tüüpiliselt diabeedi 
varajases staadiumis ei esine. 

2. Redutseeritud glutatiooni kontsentratsioon on üldiselt KO hiirte kudedes 
madalam kui metsiktüüpi liigikaaslastel. Maksakoes täheldati mõningast 
GSH taseme tõusu noortel hiirtel, mis viitab GSH sünteesi intensiivistu-
misele stressitingimustes. Antioksüdantse ensüümi glutatiooni peroksüdaasi 
aktiivsus oli südames ja maksas KO hiirtel kõrgem ja glutatiooni reduktaasi 
aktiivsus madalam võrreldes WT hiirtega. Neerukoes oli mõlema ensüümi 
aktiivsus KO hiirtel kõrgem.  

3. Antioksüdantite manustamine parandas eelkõige glutatiooni taset südames 
ja maksakoes ning suurendas vanematel ja vähendas noorematel hiirtel 
glutatiooni redoksüsteemi ensüümide aktiivsust. 

4. Hüpotermia-indutseeritud rakkudes on kõrgem totaalse glutatiooni kont-
sentratsioon metsik-tüüpi hiire embrüonaalsetes fibroblastides ja HeLa 
rakkudes, kusjuures esimestes vähenes oksüdeeritud glutatiooni tase ja 
teises jäi see muutumatuks. 
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Kokkuvõte 

Antud uurimustöös kirjeldati põhjalikult mitme koe tasandil Wfs1-puudulikku-
sega hiirte metabolism Wolframi sündroomi tingimustes ning analüüsiti endo-
plasmaatilise retiikulumi ja oksüdatiivse stressi taset WS ja ka hüpotermia 
korral. Lisaks vaadati millist effekti omab antioksüdantide manustamine nende 
glutatiooni süsteemile ja kuidas hüpotermia mõjutab glutatiooni süsteemi 
mitmetes rakuliinides.   
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