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Abstract: In this paper, we analyse the dynamic partial correlation network of the con-

stituent stocks of S&P Europe 350. We focus on global parameters such as radius, which is

rarely used in financial networks literature, and also the diameter and distance parameters.

The first two parameters are useful for deducing the force that economic instability should

exert to trigger a cascade effect on the network. With these global parameters, we hone the

boundaries of the strength that a shock should exert to trigger a cascade effect. In addition,

we analysed the homophilic profiles, which is quite new in financial networks literature. We

found highly homophilic relationships among companies, considering firms by country and

industry. We also calculate the local parameters such as degree, closeness, betweenness,

eigenvector, and harmonic centralities to gauge the importance of the companies regarding

different aspects, such as the strength of the relationships with their neighbourhood and

their location in the network. Finally, we analysed a network substructure by introducing

the skeleton concept of a dynamic network. This subnetwork allowed us to study the stability

of relations among constituents and detect a significant increase in these stable connections

during the Covid-19 pandemic.

Keywords: Financial Networks, Centralities, Homophily, Multivariate GARCH, Networks

Connectivity, Gaussian graphical model, Covid-19

JEL Clasification: C32, C58, G15.

[1]Corresponding author: ariana.paola.cortes.angel@ut.ee.
[2]Department of Economics, University of Tartu, Narva Mnt. 18, 51009, Tartu, Estonia.
The financial support of the GrowInPro project (Horizon 2020, grant agreement No. 822781) is gratefully

acknowledged. We are very grateful to Luca Alfieri for very useful comments and suggestions.
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1 Introduction

The global financial crisis of 2007-2008 encouraged researchers to adopt an interdisci-

plinary approach to studying the systemic risk in the financial sector to understand and

model it. Caccioli, Barucca, and Kobayashi (2018) delve into this topic, developing a sur-

vey that focuses mainly on network analysis. The interest in understanding the topology

of financial networks was born to realise its possible reaction when impacted by economic

shocks and the possible consequences that these shocks entail.

This paper aims to analyse the topology of the network derived from the interrelationships

between the stocks that constitute the S&P Europe 350 index, considering adjusted closing

prices from January 2016 to September 2020. This index contains 350 blue-chip companies

from 16 developed European countries. These companies can be considered as ”too big

to fail” and are likely to have the most resilient connections that would survive a crisis.

We especially want to know which firms are the most central in a dynamic network set-

up, how the connectedness of the graph evolves under the influence of the pandemic shock,

and determine if the network links follow a homophilic behaviour. To capture the effect of

the trends in the world economy on these stock prices, we use the Morgan Stanley Capital

International World (MSCI World) index as the common factor.

In general, the network analysis on financial networks has primarily focused on the study

of over a handful of graph parameters, like diameter, average path length, and various cen-

trality measures (Anufriev and Panchenko, 2015, Diebold and Yılmaz, 2014, and Kuzubaş,

Ömercikoğlu, and Saltoğlu, 2014 to mention some). Two main topics studied in a network

are connectivity and centrality. To study different vertex characteristics, we study three

centralities (degree, closeness, harmonic, betweenness, and eigenvector). Regarding connec-

tivity, we focus on two types: network connectivity; that is, its number of edges, and local

connectivity of a node, meaning its number of adjacent neighbours.

We use the consistent dynamic conditional correlation model (cDCC-GARCH), and the

multivariate model presented by Aielli (2013). Following the same theoretical approach as in

Eratalay and Vladimirov (2020) and Anufriev and Panchenko (2015), we obtain the partial

correlation network by applying the Gaussian Graphical Model algorithm (GGM). Then

we obtain global and local measurements of the network to identify which companies are

most sensitive to external changes given the system’s structure; for this, we will rely on

Demirer et al. (2018), and Kuzubaş, Ömercikoğlu, and Saltoğlu (2014) for the betweenness

and closeness centralities.

In addition to the diameter and average path length, we calculate the radius of the partial

correlation network; with these complementary measures, we can enhance our understanding

of the topology of the network given the following: assuming that a shock has a single node
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as an entry point from which it will spread throughout the network, the diameter and radius

can be interpreted as the minimum force a shock should have to ensure its propagation all

over the network in two different scenarios: the diameter, when the entry point is unknown,

and the radius, when the entry point can be selected. On the other hand, the average path

length shows the average force needed for shock transmission between any pair of vertices.

We perform a homophilic profile, where we measure the tendency of the edges of the

network to create bonds with similar nodes; we found a direct relationship between the partial

correlations and the proportion of homophilic edges, which helps us get a clearer perspective

of the underlying network structure. Homophily is a novel approach since, regardless of

being a well-known topic in social sciences, it has been barely mentioned in the financial

networks literature, such as Elliott, Hazell, and Georg (2020), and Barigozzi and Brownlees

(2019) where it is referred to as similarity. Moreover, based on the daily network pictures,

we capture the system’s dynamics by introducing the concept of the skeleton of a dynamic

network, which may be used as a forecast enhancing tool or interpreted as a shock strength

measure. Thanks to the analysis of this new substructure, we found that during the Covid-19

pandemic there was an increase in the number of stable relationships.

To sum up, we studied two kinds of parameters: global (radius, diameter, average dis-

tance) and local (degree, closeness, harmonic, betweenness, and eigenvector centralities).

Moreover, we developed a homophilic profile by industry and country; we introduce the

definition of the skeleton of a dynamic network, which results from collecting the resilient

edges over time. This paper focuses on the methodology to obtain and analyse some of the

most representative global and local centrality measures of a network, allowing us to map

the topology of the network under study. These measures could serve as input in systemic

risk studies and could be complemented with more information such as the risk profile of

each firm and its balance sheet, among others.

What remains of this work is structured as follows. In Section 2, we make a literature

review of Network Analysis and Financial Networks. In Section 3, we describe the data

under study. Later, in Section 4, we present the methodology implemented for Financial

Econometrics and Network Analysis. In Section 5, we analyse the results, and in Section 6,

we conclude.

2 Literature Review

By analysing centralities, central banks can identify Global Systemically Important Insti-

tutions (G-SIIs), which can help regulate them, as already suggested in several other studies.

For instance, the work of Martinez-Jaramillo et al. (2014) bases a large part of its analy-

sis on the topology of the interbank network, creating a measure of centrality composed

of the closeness, betweenness, and the degree centralities (the latter being called strength).
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Kuzubaş, Ömercikoğlu, and Saltoğlu (2014) take as an example the Turkish crisis that oc-

curred in 2000, and in addition to the degree, closeness, and betweenness centralities, they

calculate the Bonacich centrality. These two studies describe the interbank network.

Several more articles develop the centralities, focusing mainly on degree and eigenvector,

such as Millington and Niranjan (2020) and Anufriev and Panchenko (2015), or Iori and

Mantegna (2018), where average distance is added to their analysis, and Billio et al. (2012),

who calculate proximity and eigenvector.

2.1 Network Analysis

During the 1960s and 1970s, several mathematical and statistical tools started to be used

by social scientists to get a better understanding of the structure and behaviour of social

networks (Milgram, 1967, Zachary, 1977, Killworth and Bernard, 1978). While the statistical

tools are used to obtain quantitative results, the mathematical devices borrowed from graph

theory allow us to discover and visualise the underlying structure of the studied data.

In the late 20th century and the beginning of the 21st century, with the seminal works

made by Albert, Jeong, and Barabási (1999), Faloutsos, Faloutsos, and Faloutsos (1999), and

Watts and Strogatz (1998), among others, the above mention set of tools, combined with the

growing availability of information to the general public and the increased computational

power to analyse big data sets led to the creation of network theory as a discipline on its

own. Since then, this type of research was applied to study a wide variety of topics, such

as genomics, epidemics, cybersecurity, communication, financial markets, social interactions,

linguistics and more (Lewis, 2011, Keeling and Eames, 2005, Solé et al., 2010).

The primary strength of network analysis lies in the fact that it incorporates a multidis-

ciplinary approach that utilises a range of theories, from social sciences, such as economics

to exact sciences, such as biology. A great amount of detail about this can be found in Jack-

son (2011), who suggests that all that is needed for this approach is to identify agents and

the relationships that connect them. For instance, using the labour market to understand

searching and matching models, or using social networks to analyse human behaviour.

2.2 Financial Networks

The financial network is one example of a complex system, where there are many actors

(financial institutions, where mainly interbank connections have been studied) and an un-

countable number of interrelations among them. Caccioli, Barucca, and Kobayashi (2018)

delve into systemic risk, utilizing network analysis as their primary tool.

The application of network theory to financial networks has shown that high connectivity

can produce one of two effects when a disruption to the system occurs – absorption (Allen
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and Gale, 2000, Freixas, Parigi, and Rochet, 2000) or contagion (Gai and Kapadia, 2010,

Elliott, Golub, and Jackson, 2014). If the disruption to the system is minor and within a

certain threshold, the connectivity of the network helps to alleviate the shock, which can

be interpreted as absorption. However, if the disruption exceeds the threshold, instead of

softening the impact, the interconnections augment the spread of it, as shown in Acemoglu,

Ozdaglar, and Tahbaz-Salehi (2015).

The relationships in a network can be direct or indirect. One example of a direct network

is the interbank market, where the relationship is the trade of currency executed directly by

the banks Allen and Babus (2009).

In our case, the relationship is indirect and describes how the behaviour of one company

can lead to the behaviour of others in response; as an example, we can imagine that there

is a waltz, where the couples are the firms, there are several couples, they may or may not

know each other, but they all dance considering the movements of the other couples.

We derive this relationship from the partial correlation matrix. This method has been

widely applied and modified; to mention some Eratalay and Vladimirov (2020), Kenett et al.

(2010), Anufriev and Panchenko (2015) and Iori and Mantegna (2018) write a compendium

of several studies and their different applications, some of them using this same approach,

all with the idea of understanding how a network reacts to disruption in greater depth.

Many studies of financial systemic risk based on network theory developed since 2007,

consider a worldwide assortment of components, such as in Diebold and Yilmaz (2009), which

assesses equity stocks of developed and emerging countries, or Anufriev and Panchenko

(2015), considering the Australian market or Diebold and Yilmaz (2015) among US and

European contexts.

3 Data

We use the constituent stocks of the S&P Europe 350 index, which is made up of 350

blue-chip companies from 16 different developed European countries. This index provides us

with a significant sample of the European stock market, which is why we take it as the basis

for this study, which mainly focuses on the methodology of the study of financial networks.

The S&P Europe 350 index components, along with their market capitalizations and

tickers, were directly provided by Standard and Poors, with figures from December 2019.

We use the provided data to gather the daily adjusted closure price history from January

2014 to October 2020 from Yahoo Finance. We also used the returns from the Morgan

Stanley Capital International (MSCI World) for which we collected the data for the same

dates and from the same source.

From the raw data received, we synchronised the time periods and removed the series for

which there were fewer observations. Also, if a company had preferred and common stocks,
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we removed the preferred stocks from our list to avoid contamination of the results with the

evident strong correlation. After these adjustments, we had the price data of 331 firms from

S&P Europe 350. We considered the time period from January 2016 to September 2020 for

stocks in the S&P Europe 350 and for the MSCI World index, which gave us 1,202 price

observations for each series.

For all firms, we calculated their log-returns and after that we treated the data with a

generalised Hampel filter. Using a 20-day moving window, on average 0.42% of the data

was identified as outliers, which were replaced by the local medians in the corresponding

window. [3] Details about this method can be found in Pearson et al. (2015). From this

point forward, we use this outlier filtered return data.

The COVID pandemic started to become evident in Europe by the end of February 2020,

Plümper and Neumayer (2020), we can observe in Figure 1 a significant increase in the index

volatility being a consistent reaction to the pandemic shock. Given that our sample has 331

firms with 1,201 observations each, we use box plots to summarise the descriptive statistics.

From Figure 2, we can notice that the returns lie around zero; with a standard deviation

of around two. On average, returns are slightly negatively skewed, but for some series the

skewnesses are less than minus one, implying that their distributions are highly negatively

skewed. The average kurtosis is around nine but with many outliers above 20, suggesting

leptokurtic distributions for all series.

[3]The maximum percentage of outliers was 1.8%, while the median was 0.41%. The percentage was above
1% for only four firms.
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Figure 1: S&P Europe 350 Index Returns from January 2016 to September 2020. By the
beginning of March 2020, we can notice a sudden increase in the volatility. Source: Authors’
calculations.
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Figure 2: Descriptive statistics of the S&P Europe 350 index returns from January 2016 to
September 2020 Source: Authors’ calculations.
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4 Methodology

The methodology will be divided in two main parts, the econometric approach and the

network theory approach.

4.1 Econometrical Analysis

The econometric analysis will be based mainly on the work of Eratalay and Vladimirov

(2020). Instead of the unobservable factor in their model, we consider the Morgan Stanley

Capital International World (MSCI World) index as a common observable factor. [4] We

include the common observable factor, which otherwise would bring about spurious con-

nections in the network. (See a discussion in Barigozzi and Brownlees, 2019 and Eratalay

and Vladimirov, 2020). We chose MSCI World as an indicator of the general trend in the

behaviour of developed economies worldwide.

A return series rt can be modelled as:

rt = Et(rt | It−1) +
√

Vart(rt | It−1)εt (1)

where Et(rt|It−1) is the conditional mean, V art(rt|It−1) is the conditional variance, and

the εt is the standardised disturbance such that εt ∼ N(0, 1). The conditional mean and the

conditional variance are functions of the information up to t− 1, denoted by It−1.

4.1.1 Conditional mean

For modelling the return vector, we will use a vector autoregressive model, VAR(1).

rt = µ+Φrt−1 +ΘrMt−1 + ηt (2)

where µ is a n× 1 column vector representing the intercept; Φ and Θ are n×n matrices

of parameters of the returns lagged one period from S&P Europe 350 stock returns and the

MSCI World index, respectively. In particular Θ is a diagonal matrix. For each series i, ηt,i

is the error term represented by a random process with mean zero and variance ht,i, such

that ηt,i =
√
ht,iεt,i, and εt,i are the standardised errors.

[4]Given the cross-sectional size of our data, the model with an unobservable factor would be very param-
eter intensive and infeasible.
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4.1.2 Conditional variance

Let us denote the conditional mean and the conditional variance of series i as µt,i and ht,i,

respectively. Therefore, the error term ηt,i can be expressed as:

ηt,i = rt,i − µt,i =
√
ht,iεt,i, where ηt,i ∼ N(0, ht,i) (3)

For each time series i the conditional variance of the error term can be represented as a

GARCH(1,1):

ht+1,i = ωi + αi(rt,i − µt,i)
2 + βht,i

= ωi + αiht,iε
2
t,i + βiht,i

= ωi + αiη
2
i + βiht,i (4)

where the parameters ωi > 0, αi ≥ 0, βi ≥ 0 and αi + βi < 1, hence each ht,i process is

stationary.

In the matrix representation, we can write that rt | It−1 ∼ N(µt,Ht), and εt ∼ N(0, In),

with Ht = Var(rt | It−1) = Var(ηt | It−1) and rt = µt +Ht
1/2εt. Here Ht is the conditional

variance-covariance matrix and it can be decomposed as as:

Ht = DtRtDt (5)

Dt = diag{
√

ht,i} (6)

where Ht depends on Rt, the conditional correlation matrix, and Dt, a diagonal matrix

of the standard deviations.

4.1.3 Dynamic conditional correlations

In this section we discuss Rt, the matrix of conditional correlations. Each of its elements is

in the interval [−1, 1] and, according to (5), Rt should be positive definite in order for Ht to

be positive definite as well.

We follow the consistent dynamic conditional correlation (cDCC) model of Aielli (2013):

Rt = Q∗−1
t QtQ

∗−1
t (7)
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Q∗−1
t =


1/
√
q11t 0 . . . 0

0 1/
√
q22t . . . 0

...
...

. . .
...

0 0 . . . 1/
√
qnnt

 (8)

Qt = (1− θ − κ)Q̄+ θ{Q∗
t−1εt−1ε

′
t−1Q

∗
t−1}+ κQt−1 (9)

where using ε∗t = Q∗
t εt and ε∗

′
t = ε′tQ

∗
t , we can simplify the previous equation:

Qt = (1− θ − κ)Q̄+ θ{ε∗t−1ε
∗′
t−1}+ κQt−1 (10)

Q̄ = Cov(ε∗t ε∗
′

t ) = E(ε∗t ε∗
′

t ) (11)

Where κ ≥ 0 and θ ≥ 0 are scalars ensuring κ+θ < 1, and Q̄ represents the unconditional

covariance of the standardised disturbances, also known as the long-run covariance matrix,

and for this work it will be replaced by the sample covariance of the residuals ε∗t . This is

called the variance targeting approach. (See Engle, 2002 for details.)

The estimation for the conditional mean, conditional variance and conditional correlation

parameters is realised using the three-step estimation following the Eratalay and Vladimirov

(2020) path. The resulting quasi-maximum likelihood estimators are consistent and asymp-

totically normal.[5]

4.2 Network Analysis

Once we have the conditional correlation matrix, we compute the partial correlation matrix

using the GGM algorithm. From this partial correlation matrix, we construct our network,

where each vertex will represent a firm, and the strength of the correlation between them

will be represented by edges.

It should be noted that the range of partial correlations is [−1, 1]; that is, there are

negative and positive values, leading to data distortion or data loss in some instances (e.g.,

when adding values). For this reason, we take into account the following cases throughout

this work:

• Net data, the original partial correlation values, positive and negative.

[5]Discussion and examples of such three step estimation can also be found in Bauwens, Laurent, and
Rombouts (2006), Carnero and Eratalay (2014), Almeida, Hotta, and Ruiz (2018).
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• Absolute data; that is, the absolute value of original partial correlation.

• Positive data; that is, only positive values within the partial correlation.

In addition, each partial correlation matrix will also be a symmetric arrangement, and it

will correspond to the adjacency matrix of its respective network. We will consider an edge

in all the cases except when aij = 0, which means that there is not a linear interdependence

among i and j.

Formally, a graph or network , denoted byG, is an ordered pair of disjoint sets (V (G), E(G)),

where V (G) is a non-empty set of vertices or nodes , and E(G) is the set of edges or links ,

where each edge is an unordered pair of distinct vertices {i, j} simply denoted as ij[6]. When-

ever two nodes i and j form a link ij, it is said that they are adjacent with each other, and

that they are neighbors .

The simplest parameters of a network G are its number of vertices, called the order of

G and denoted by N , and its number of edges, called the size of G and denoted by m(G).

The most usual way to visually represent a graph is a diagram where each node is

represented by a point or small circle and an edge is represented by a line that connects its

end-vertices without crossing over any other vertex. Any unweighted graph of N vertices

can be represented by a N × N matrix A, called its adjacency matrix , where the entry aij

of A is equal to 1 if there is an edge between the nodes i and j, or otherwise aij = 0.

When modelling some practical problems, we could assign a real number w(ij) to every

link ij, representing its weight [7]. In such a case, graph G together with the collection of

weights on its edges is called a weighted graph, and we can add this extra information into the

adjacency matrix of G, so instead of 0’s and 1’s we have that aij = w(ij). This allows us to

present in the adjacency matrix not only the existence of a relation between the end vertices

of a link, but also take into account some characteristic that allows us to quantitatively

differentiate between links, depending on the context.

In fact there is a one-to-one correspondence between symmetric matrices and weighted

graphs, which allows us to define a network from any such matrix. In our case, the partial

correlation matrices will play the role of the adjacency matrices in our graphs, where its values

represent how close the co-movement of two firms are after controlling for the correlations

with other firms, and how similar their behaviour over time[8].

[6]Although edges that go from one vertex to itself (called loops) can be defined, they have no useful
interpretation within the scope of this study.

[7]For instance, such values could represent the cost of communicating or the distance between two lo-
cations, or the flow capacity in a transportation network, or the strength of the relationship between the
elements etc.

[8]Notice that, since the adjacency matrix is symmetrical, we cannot infer any causality within the network.
Rather it presents the contemporaneous reactions of stock returns to different financial or economic shocks.
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This way, the weight w(ij) of the link ij will be equal to the partial correlation between

the two corresponding firms.

u
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x y
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1.7

G

u v x y z

u 0 4.1 1.7 0 3.1

v 4.1 0 0.3 0 0

x 1.7 0.3 0 1.2 0

y 0 0 1.2 0 5

z 3.1 0 0 5 0

A

Figure 3: Weighted graph G and its adjacency matrix A

In addition, in any network, a path between vertices i and j is a sequence of distinct

vertices x0, x1, . . . , xk, where i = x0 and j = xk, such that xi and xi+1 form an edge in the

network. For unweighted graphs the integer k represents the length of such a path; that is,

the number of edges contained in the path, while for weighted networks the length of the

path is the sum of the weight of its edges. Any shortest path connecting i and j is called

a geodesic and its length is called the distance between its end vertices, denoted by d(i, j).

In other words, the distance between two vertices is the minimum length that separates one

node from the other. If there is no path connecting two nodes, the distance between them

is defined as infinite.

Before continuing, we first need to highlight an important aspect of a distance metric.

Distance is a value that represents how closely related two objects are in the following

way: the lower the value, the closer those objects are[9]. In contrast, the higher the partial

correlation between two firms, the more related they are. Therefore, it is necessary to reverse

the order of the partial correlations so the respective new values can be handled like a proper

distance metric (Opsahl, Agneessens, and Skvoretz, 2010), where lower values correspond to

closeness. For this reason, we will use the inverse of the weight for each link whenever we

calculate lengths and distances; in other words, a new weight w∗(ij) = [w(ij)]−1 is assigned

to each edge when computing any distance-related measure in the network.

From here, three relevant graph parameters are directly derived. First, the average path

length of graph G, denoted by d(G), is defined as the average distance between every pair

[9]To get into the mathematical theory behind metric spaces, please see Willard (2012).
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of nodes in the network; that is,

d(G) =
1(
N
2

) ∑
i ̸=j

d(i, j). (12)

Second, the radius of G is the minimum length k such that there is a node whose distance

to any other node is at most k, and is denoted by rad(G). And, finally the diameter of G,

denoted by diam(G), is the maximum distance between any two nodes in the graph. Clearly

rad(G) ≤ diam(G) and d(G) ≤ diam(G)[10]hold.

The radius and diameter tell us the minimum and maximum distance respectively that

we expect to cover from one random node to reach all the other nodes. In other words, they

help us set boundaries that measure the distance a shock should transit to propagate over

the entire network despite its starting point.

It is worth mentioning that there are some graphs on which a proper distance can not be

defined. When defining a distance on a network we are implicitly looking at an optimization

problem where we want to find the shortest or cheapest way to move between any pair of

nodes. We are guaranteed to find a solution to this problem and define a distance provided

that all weights assigned to the edges are positive.

Unfortunately, when dealing with negative weights, this task cannot be fulfilled whenever

there is a negative cycle, which is a sequence of distinct vertices C = x1, x2, . . . , xk such that

every pair of consecutive nodes form an edge and x1xk is also an edge, and w(C) < 0. In such

a case, the minimization problem has no solution since any path connected to this negative

cycle can become cheaper and cheaper by walking inside the negative cycle and looping

indefinitely. On the bright side, despite the fact that some algorithms (like Dijkstra’s) are

not designed to handle negative weights and fall into an infinite loop, there are some that can

determine if there is any negative cycle, namely Bellman-Ford’s algorithm (Wu and Chao,

2004).

4.3 Centralities

Centrality measures are tools that allow us to quantify the importance or influence that a

vertex has over the network as a whole or in a locally delimited region.

For unweighted graphs, the degree centrality of vertex i, denoted by CD(i), is the number

of neighbours that such a node has, while for weighted graphs the degree centrality of i is

the sum of the weights of all the edges incident to i[11]:

[10]The radius and average path length cannot be related to an inequality, since there are graphs whose
radius is greater than, or less than, or equal to the average path length. See Figure 8.

[11]Graph theorists refer to the degree centrality in unweighted graphs simply as degree, and in weighted
graphs as the weight of the vertex.
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CD(i) =
∑
j

w(ij). (13)

This measure evaluates how strong the local connectivity or influence of each node individ-

ually is.

The Closeness centrality of a node is defined as the inverse of the sum of its distances to

all other nodes in the network; that is:

CC(i) =

[∑
j ̸=i

d(i, j)

]−1

=
1∑

j ̸=i d(i, j)
. (14)

Since this value is at most equal to 1
N−1

, then the normalised closeness centrality of the node

i is

C∗
C(i) = (N − 1)CC(i). (15)

On the same note, the harmonic centrality of a vertex is defined as

CH(i) =
∑
j ̸=i

1

d(i, j)
, (16)

where 1/d(i, j) = 0 if the distance between i and j is infinite. The normalized harmonic

centrality of a node is

C∗
H(i) =

1

N − 1
CH(i). (17)

Both closeness and harmonic centralities measure how close a node is to all remaining nodes

and have quite similar behaviour. The main difference between them is that closeness cen-

trality is not defined for disconnected graphs while harmonic centrality is. Both normalised

versions lie in the real interval [0, 1], where the closer these values are to 1, the closer the

respective vertex is to the others.

Alternatively, the betweenness centrality of a node is defined as

CB(i) =
∑
s ̸=i ̸=t

σst(i)

σst

, (18)

where σst denotes the number of distinct geodesics from s to t, and σst(i) is the number of
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those geodesics that contain node i. The normalized betweenness centrality of a node is

C∗
B(i) =

2

(N − 1)(N − 2)
CB(i). (19)

In this case, we measure the importance of node i given its location within the topology of

the network. In a sense, we are quantifying how essential i is to the connectivity of any pair

of the remaining nodes i.e. if i acts (or not) as a bridge that connects the other members of

the graph.

Given the adjacency matrix of the network, A, and its largest eigenvalue, λ, the eigen-

vector centrality of vertex i, denoted as CE(i), is the i-th entry of the eigenvector x, which

is the unique solution to equation

Ax = λx

such that x has only positive entries and xx⊤ = 1. Hence CE(i) = xi, where x⊤ =

(x1 x2 · · · xN). According to eigenvector centrality, a node is important in the network

if its neighbours are important.

4.4 Homophily

When analysing a network, one can wonder if certain attributes of the vertices, or their

combination, play a role in the existence of edges or the lack thereof within the network.

For instance, in social networks, friendships generally tend to be established between people

with similar characteristics (gender, age, beliefs, spoken language, etc). By contrast, couples

are prone to form between persons of the opposite gender on a dance floor. We can detect

such behaviour by measuring what is called homophily : to assess if there is a bias (in favour

or against) on the number of links between nodes with similar characteristics.

To measure any network’s bias in the distribution of edges towards one or more regions,

we have to compare the relative number of edges inside such regions against the whole graph.

Given the network G, and X1, X2, . . . , Xk disjoint subsets of vertices with size n1, n2, . . . , nk

respectively, we first compute the maximum possible number of edges such that both of its

ends are in the same subset Xi, which is
(
ni

2

)
for each i. Then, we sum all of these values and

divide the result by the maximum number of edges of the whole network; that is,
(
N
2

)
, this

quotient is called the baseline homophily ratio of the network G and is denoted by hr∗(G),

in other words:

[11]The existence of such a solution is guaranteed by the Perron–Frobenius Theorem, see Horn and Johnson
(2012)
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hr∗(G) =

(
N

2

)−1 k∑
i=1

(
ni

2

)
=

k∑
i=1

ni(ni − 1)

N(N − 1)
. (20)

Later, we compute the homophily ratio of network G, denoted by hr(G), which is the

quotient of the total number of edges in the network whose ends are both in the same subset

Xi to the total number of edges in the network; that is:

hr(G) =
k∑

i=1

mi

m(G)
, (21)

where mi is the number of links with both ends in Xi.

When a network is constructed in such a way that each link has the same probability

of forming despite the attributes of its end vertices, it is fair to expect that both ratios

would be pretty close [12]. So, whenever the homophily ratio is significantly greater than its

baseline, then G is called homophilic, and when it is significantly lower it is said that G is

heterophilic[13]. For example, in Figure 4 we can see two networks with opposite homophilic

behaviour. In both cases, the subsets of vertices considered are the same and coloured red,

blue, and green, respectively, so the baseline homophily is equal to 2/7 = 0.29 for the two

networks. On the other hand, the homophily ratios are 5/7 = 0.71 and 3/19 = 0.16 for the

left and right networks, respectively. In other words, for the network on the left side, the

nodes tend to create links within the groups, while in the network on the right side, this

tendency occurs between nodes of different groups.

[12]Clearly both will differ, so a statistical significance test is often used to quantify how significant their
difference is. In our case, we will not use such a test since we will focus on how the difference of the homophily
ratios is related to the strength of the relations of the network by considering a sequence of increasing cut-offs
to the weight of the edges.

[13]Sometimes referred as inversed homophily (Easley and Kleinberg (2010)).
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A homophilic network A heterophilic network

Figure 4: Examples of homophilic and heterophilic networks. In both cases three subsets of
vertices are considered and marked with different colors.

4.5 Network Skeleton

To better understand and analyse a complex system, we often use different networks to

represent the state of the system at different points in time, so at the end, we have a

collection of networks that enable us to study the evolution of the system over time. Taking

that into account, we define dynamic network as an ordered sequence of networks defined

over the same set of vertices[14]. When working with weighted networks, we can interpret

the weight of each link in a given moment as the strength of the relationship it represents

at that particular point in time, and no matter how strong, some of these relations tend to

appear and disappear over time. In contrast, another critical aspect to consider about any

link is its resilience which does not consider its weight; instead, we are looking for edges

whose presence is constant over time, leading us to the following definitions.

[14]In general, the number of vertices is not set from the beginning since vertices can pop in and out of
existence depending on the analysed phenomenon; in our case, the set is fixed as we consider the same
collection of firms for the whole period under study.
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Figure 5: Skeleton of a dynamic network.

In a dynamic network, an edge is resilient if it appears in the network at every point

during the studied period; that is, in every network of the sequence. The set containing all

resilient edges and their corresponding vertices forming a network is called the skeleton of its

respective dynamic network. When dealing with weighted networks, we define the weight of

each edge in the skeleton as the mean of the corresponding weights in the dynamic network

sequence. Figure 5 shows a dynamic network sequence labelled by day, and the respective

network skeleton. The weights of the edges are calculated as explained above.

5 Results and Analysis

From the cDCC-GARCH model, and after applying the GGM, we obtained partial corre-

lation matrices related to 1,201 days. From here, we can construct 1,201 individual networks,

one per day; this grants us a broader scope for depicting the behaviour of the dynamic net-

work over time. In addition, we analysed the period around the Covid-19 pandemic, where

we considered four stages, Sans-Covid, Pre-Covid, During-Covid and Post-Covid. The corre-

sponding periods are from January 2016 to October 2019, November 2019 to February 2020,

March to June 2020, and July to September 2020, which throughout this paper we will refer

to as Sans, Pre, Dur, and Post, respectively.

For a better visualization, understanding and interpretation of each network, we set the
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partial correlations between (-0.0558,0.0558) equal to zero. The cutoff value 0.0558 corre-

sponds to a 10% confidence level in a Fisher’s test for the significance of partial correlations.

(See Fisher et al., 1924).

While calculating the distances in the network, we encountered negative cycles when

using the net data, which makes it impossible to measure distances. To avoid these negative

cycles, it is necessary to consider only positive and absolute weights for calculating any

distance-related parameter (radius, diameter, average distance, betweenness, closeness, and

harmonic centralities).

Figure 6: Weights of Positive and Negative Edges. Source: Authors’ calculations.

5.1 Global Measures

A first glimpse into the network structure can be made by analysing the number of edges

and their weights (Table 1). Over the 1,201 days, the mean number of edges in the network

was 13,227 and always stayed between 22.6% and 24.7% of the total possible edges (54,615).
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Table 1: Edge weight and edge count

Mean Minimum Maximum

Positive edges 7245.7 6818 7397
Negative edges 5981.8 5547 6145
Total edges 13227.5 12365 13504
Normalised total edges 0.242 0.226 0.247

Positive weights 615.6 574.6 627.2
Negative weights -467.7 -482.3 -427.1
Total (absolute) weights 1083.3 1001.7 1107.7

% Positive edges 54.8 54.2 55.341
% Positive weight 56.8 56.4 57.443

Notes: Number of edges and their aggregated weight by type, positive and negative. Source:
Authors’ calculations.

It is worth noticing that the number of positive weighted edges against the total is

remarkably stable since it remained around the 54.7% during the whole period, deviating

by no more than 0.57%, which implies that the numbers of negative and positive edges are

closely related. This relation extends to their weights, where positive edges represent 56.8%

with a maximum deviation of 0.62%. The negative and positive edges almost behave like a

mirror of each other, as shown in Figure 6 where we plotted the aggregate weights against

time.

Figure 7: Partial correlation distribution. On the right side, we can see subfigures showing
a zoom of the tails distribution. Above, the left tail, where the maximum negative value is
-0.24; and below, the right tail, with the maximum positive value of 0.68 Source: Authors’
calculations.

In Figure 7, we can observe that almost half of the relations in each network are negative;

in fact, the maximum magnitude is -0.24. The proportion of negative weights affects the net
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weights since they counterweight the strength of instability phenomena. Moreover, Figure 9

shows how the positive weights and the absolute value of the weights have similar behaviour,

just transferred to a different scale.

On the other hand, we can observe that before the beginning of the Pre period there

is a meaningful shortage in the average path length. However, this decline was gradual

since May 2018 and reached its lowest value in February 2019. Again, in the Dur period,

there is a sudden increase followed by a sudden decay in the length of the shortest path, as

shown in Figures 10 and 11. This behaviour suggests that although there was no increase in

connectedness, there was an inconstancy alternation in the intensity of existing relationships.

In the network of positive values, we do not find a visible change in the behaviour of the

radius and diameter over time. In the network of absolute values, specifically the radius, a

more pronounced peak is perceived just inside the Dur dates.

On average, the positive and absolute networks have average distance, radius, and diam-

eter of 16.7, 20.8, and 25.8, and 18.5, 23.3, and 29.2, respectively. We notice in Table 2 that

the radius is greater than the average distance in every case. This is important given that

the radius is the minimum distance that needs to be travelled from a particular vertex to

cover the network. Therefore, for this network, we need the radius and diameter to deter-

mine boundaries. In addition to the average distance, these parameters give us a broader

description of the network’s topology.

Table 2: Global Measures

Network Parameter Mean Min. Max.

Pos d(G) 18.53 18.36 21.66

rad(G) 23.33 22.29 27.53

diam(G) 29.22 27.97 37.17

Abs d(G) 16.65 16.51 18.9

rad(G) 20.83 19.69 24.30

diam(G) 25.79 24.74 30.73

Notes: Positive and absolute network global parameters for 2016-2020. Source: Authors’
calculations.
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Table 3: Top 1 centralities, by industry and country

Industry Country

Centrality Max. Code Max. Code

Cabs
E 0.061 BLD 0.058 ES

C+
E 0.060 BVG 0.059 ES

Cnet
D 1.273 THQ 1.146 PT

Cabs
D 7.278 REX 6.932 ES

C+
D 4.070 THQ 3.977 ES

Cabs
C 0.062 ALU 0.061 CH

C+
C 0.057 COM 0.055 ES

Cabs
H 21.98 SEM 21.34 ES

C+
H 20.24 SEM 19.34 ES

Cabs
B 0.005 FRP 0.004 FI

C+
B 0.006 FRP 0.004 BE

Notes: Top 1 average centralities by industry and country from 2016-2020. Source: Authors’
calculations.

5.2 Local Measures

To analyse the centralities of the dynamic networks (with positive and absolute weights), we

took as a basis the average centrality per day of the degree, closeness, harmonic, betweenness,

and eigenvector[15] centralities. In the case of degree centrality, we also calculated the net

value.

We considered the mean of each centrality measure by industry, obtaining eleven central-

ity measures for each industry. The highest of each of the centrality measures constitutes

the top 1 highest centrality measures by industry. We used an equal treatment to calculate

the top 1 highest centrality measures by country. Of the top 1 with highest centralities by

industry, shown in Table 3, we noticed that three industries stand out: the Computers &

Peripherals and Office Electronics (THQ) for net and positive degree centralities; the Semi-

conductors & Semiconductor Equipment (SEM) in both harmonic centralities; and Paper &

Forest Products industries (FRP) in both betweenness centralities.

In the case of the top 1 by country, in Table 3, Spain excels for seven centrality measures

(Cabs
E , C+

E , C
abs
D , Cpos

D , C+
C , C

abs
H and C+

H), representing 7/11 of the firms with the highest

centralities.

[15]The obtained net partial correlation matrices with cut-off are not positive definite for all periods, and
the obtained eigenvector centralities present positive and negative values, which does not allow us to rank
the firms according to their influence on the network.
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Considering the positive and absolute networks, from the Top 20 of the highest central-

ities[16], only the sixth and seventh firms, respectively, transmitted simultaneously positive

and negative effects, please see Table 4. And from this only three, STERV.HE, CABK.MC

and SSE.L, appear in the eleven tables simultaneously.

Table 4: Simultaneous effects of centralities in the Top 20

Code %Mkt.

Tickers Ind. Ctry. Cap CC CH CE CB CD

Abs CFR.SW TEX CH 0.395 0.067 23.896 0.073 0.01 8.583

BBVA.MC BNK ES 0.359 0.066 23.213 0.069 0.007 8.277

CABK.MC BNK ES 0.181 0.066 23.422 0.071 0.01 8.606

SSE.L ELC GB 0.19 0.066 22.985 0.074 0.007 8.700

UPM.HE FRP FI 0.178 0.065 23.179 0.067 0.008 7.963

STERV.HE FRP FI 0.086 0.065 23.182 0.072 0.008 8.689

TUI1.DE TRT DE 0.072 0.064 22.513 0.072 0.006 8.696

HNR1.DE INS DE 0.225 0.064 22.484 0.066 0.006 7.886

DGE.L BVG GB 1.052 0.064 22.549 0.069 0.006 8.272

Pos BBVA.MC BNK ES 0.359 0.06 21.361 0.069 0.01 4.6415

STERV.HE FRP FI 0.086 0.06 21.394 0.075 0.012 5.120

CABK.MC BNK ES 0.181 0.06 21.112 0.074 0.011 5.082

CFR.SW TEX CH 0.395 0.06 21.306 0.071 0.01 4.778

SSE.L ELC GB 0.19 0.059 20.891 0.076 0.01 5.080

INVE-B.ST FBN SE 0.24 0.058 20.363 0.07 0.009 4.799

HNR1.DE INS DE 0.225 0.058 20.536 0.067 0.008 4.541

Notes: Most relevant centralities simultaneously for positive and absolute values, respec-
tively. Source: Authors’ calculations.

Taking into account the market capitalization by industry, the twelve most capitalised

industries represent 59.8% and constitute 45.9% of the firms (Table 26). On the other hand

considering it by country, United Kingdom, France, Switzerland, and Germany represent

70.7% of market capitalization and host 62.2% of the firms (Table 30). We can notice that

in both partitions, the countries or industries with the highest centralities are not precisely

the most capitalised.

On the other hand, when analysing the network’s connectedness again by its constituents,

the United Kingdom’s connections remained unaffected in their number and their strength

by the effect of the pandemic. France and Germany have a slight increase in number and

[16]The comprehensive Top 20 highest centralities are in Tables: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, and
25.
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strength of connections in the Pre and Dur periods. Austria was the country which strength-

ened its relations the most, although it has only one connection. We present these results in

Table 31.

In addition, we observe in Table 31 that all but two countries, Ireland and Luxembourg,

have a standardised number of edges greater than the average per day for the whole network,

24.2%. This is a clear indication of homophilic behaviour. Therefore, we reviewed the number

of connections between industries, please see Table 32. We took 12 firms, representing 50%

of the index constituents, and we noticed the same behaviour.

5.3 Homophily

To generate the homophily profile, we established an increasing sequence of cut-offs to obtain

the links that represent the stronger relations between firms. It is worth mentioning that

those cut-offs are applied to the absolute value of the edge weight. For instance, two links

with weight 0.4 and −0.4 represent equally strong relations, but not of the same kind. Since

to calculate the homophilic ratio and profile, we only take into account the magnitude of the

links, regarding the homophilic representation, the net and absolute networks are the same,

regardless of the subsets of nodes considered. Moreover, we know that the partial correlations

are in the interval [−0.24, 0.68]; therefore, the positive network will also be the same as the

net and absolute ones for values greater than |− 0.24|. Also, we studied homophily over two

distinct partitions of the vertex set of the network: by country and by industry. In both

cases, we calculated the homophily ratio for the 1,201 days of period.

Dividing the firms by country, we obtain a homophily baseline of 0.125 and the homophily

ratio of the networks exhibited in Table 5. It is clear not only that each homophily index

exceeds the baseline, but the homophily index is higher in each network, under stronger

edges. Hence, once we reach a cut-off of 0.45, every existing link is between firms belonging

to the same country for every daily network.
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Table 5: Homophily ratios by country.

Net/Abs Pos
Cut-
offs[17]

Mean Min Max Mean Min Max

0.05 0.149 0.145 0.153 0.192 0.187 0.197
0.1 0.214 0.201 0.229 0.290 0.271 0.308
0.15 0.469 0.433 0.512 0.528 0.486 0.568
0.2 0.670 0.621 0.718 0.674 0.626 0.723
0.25 0.745 0.703 0.779 0.745 0.703 0.779
0.3 0.755 0.714 0.816 0.755 0.714 0.816
0.35 0.814 0.778 0.852 0.814 0.778 0.852
0.4 0.947 0.857 1.0 0.947 0.857 1.0
0.45 1.0 1.0 1.0 1.0 1.0 1.0

Notes: The mean, minimum and maximum for the whole period of 1,201 days are presented
for the net/absolute data on the left, and positive data on the right. Source: Authors’
calculations.

Considering the division of firms by the respective industry, we have a baseline homophily

equal to 0.028 and, as in the previous case, all homophily ratios are above the baseline, and

again, as the strength of the links we consider increases, the homophily increases as well,

reaching full homophily with a cut-off of 0.55 in every daily skeleton.

As a result, we found that the stronger relations tend to be established between firms

that belong to the same country and industry. This finding can also be observed visually

in Figures 12 and 13, where most of these strong connections are within sectors or within

countries [18].

[17]Recall that by using Fisher’s transformation we applied a cut-off of 0.558 since the beginning, then the
first cut-off for tables 5 and 6 correspond to all the edges in the studied networks.

[18]A cut-off value equal to 0.3 was applied in these networks, i.e., only links between firms whose partial
correlation was greater than or equal to 0.3 were drawn. In each figure, there are networks for the Pre,
Dur, and Post periods where the colour of a node corresponds to the country or industry that it belongs to,
respectively.
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Table 6: Homophily ratios by industry.

Net/Abs Pos
Cut-
offs[19]

Mean Min Max Mean Min Max

0.05 0.051 0.049 0.053 0.083 0.079 0.087
0.1 0.141 0.131 0.160 0.217 0.204 0.242
0.15 0.554 0.519 0.611 0.633 0.584 0.683
0.2 0.843 0.802 0.876 0.848 0.809 0.876
0.25 0.869 0.831 0.897 0.869 0.831 0.897
0.3 0.892 0.846 0.929 0.892 0.846 0.929
0.35 0.888 0.875 0.900 0.888 0.875 0.900
0.4 0.904 0.800 0.944 0.904 0.800 0.944
0.45 0.905 0.889 0.917 0.905 0.889 0.917
0.5 0.945 0.833 1.0 0.945 0.833 1.0
0.55 1.0 1.0 1.0 1.0 1.0 1.0

Notes: The mean, minimum and maximum for the whole period of 1,201 days are presented
for the net/absolute data on the left, and positive data on the right. Source: Authors’
calculations.

5.4 Skeleton

We consider the skeletons of each data type encompassing the whole time frame. We also

construct the skeletons for each of the Covid related periods (Whole, Sans, Pre, Dur, and

Post) to examine if there is another piece of evidence about the impact of the pandemic onto

the topology of the network.

Table 7: Daily Networks – Edge Statistics

Whole Sans Pre Dur Post

Net
Count 13227.5 13223.3 13273.8 13211.9 13255.9

Weight 147.8 147.9 146.7 147.4 148.3

Abs
Count 13227.5 13223.3 13273.8 13211.9 13255.9

Weight 1083.3 1083.1 1086.0 1081.7 1085.1

Pos
Count 7245.7 7245.2 7257.8 7230.5 7260.1

Weight 615.6 615.5 616.4 614.6 616.7

Notes: Average by Covid related periods. Source: Authors’ calculations.

When looking into the daily networks’ average statistics (Table 7), we notice no particular

change in its number of edges or its added weight.

Since the Pre and Dur periods include precisely 84 days, we divided the Sans period
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into 84-day intervals (from March 2016 to February 2020). We compute the mean, standard

deviation, minimum, and maximum of the first twelve uniformly divided periods, and by

comparing these against the values of the Dur skeleton (Table 8), we can see that the

measures of the Dur period are above the maximum or below the observed minimum for the

previous periods. In fact, the edge count and weight of the Dur period are higher than the

corresponding maximum of the other periods. In contrast, all its other measures are lower

than the respective minimum, with only one exception, the diameter of the absolute data.

Table 8: 84-Day Skeletons – Global Measures

March 2016 to February 2020

Mean Std Dev Min Max Dur

Edges

Net

Count 6716.00 217.47 6349 7155 8160

Weight 130.33 2.74 125.17 135.27 140.00

W/C 0.019 0.001 0.018 0.020 0.017

Abs

Count 6716.00 217.47 6349 7155 8160

Weight 649.01 18.38 619.82 687.20 756.96

W/C 0.097 0.001 0.096 0.098 0.093

Pos

Count 3864.83 111.39 3668 4063 4650

Weight 389.67 9.33 374.17 407.04 448.48

W/C 0.101 0.001 0.100 0.102 0.096

Distance

Abs

d(G) 17.37 0.10 17.14 17.50 17.07

rad(G) 21.71 0.30 21.08 22.03 21.03

diam(G) 27.59 0.34 26.96 28.12 27.66

Pos

d(G) 19.47 0.12 19.23 19.63 19.07

rad(G) 24.43 0.42 23.92 25.05 23.74

diam(G) 31.37 0.73 30.53 33.45 29.62

Notes: We show the edge count, edge weight, and ratio (weight over count), average distance,
radius, and diameter for each corresponding network kind. We have the mean, standard
deviation, minimum and maximum for the first twelve 84-day skeletons in the first four
columns. At the same time, the last column shows the respective values for the last period,
Dur, which goes from March to June 2020. Source: Authors’ calculations.

So, even when there is no remarkable change in the edge count and weight of the overall

network (Table 7), it is noteworthy that the number of resilient edges in the Dur period is
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over 14% higher than the maximum in the previous 84-Day Skeleton’s intervals (Table 8).

This finding implies that the number of relations did not substantially change, but their

stability increased.

While studying the centralities of the skeletons corresponding to the Covid periods,

we observe two types of behaviour. On the one hand, rankings of degree and eigenvector

centralities did not maintain much stability, while closeness, harmonic, and betweenness were

pretty stable during all periods.

Table 9: Simultaneous Top 20 (Degree Centrality)

Ticker Total Sans Pre Dur Post

Net
BN.PA 1.93 1.93 1.76 2.38 1.98

SU.PA 1.59 1.68 1.83 1.76 2.14

Abs

CABK.MC 3.96 4.04 6.04 7.17 6.30

CFR.SW 3.38 3.47 5.52 6.45 6.02

SSE.L 3.32 3.49 5.35 6.83 6.72

Pos

CABK.MC 2.60 2.68 3.77 4.45 3.96

STERV.HE 2.47 2.55 3.41 3.65 3.64

SSE.L 2.16 2.16 3.48 4.31 4.41

ATCO-A.ST 2.06 2.14 3.24 3.59 3.57

Notes: Simultaneous Degree Centrality of the Top 20 firms for every period for net, absolute
and positive data. Source: Authors’ calculations.

Table 10: Simultaneous Top 20 (Eigenvector Centrality)

Ticker Total Sans Pre Dur Post

Abs

CABK.MC 0.101 0.099 0.081 0.083 0.071

CFR.SW 0.098 0.095 0.079 0.079 0.075

SSE.L 0.092 0.092 0.079 0.084 0.081

DGE.L 0.085 0.085 0.073 0.072 0.073

ATL.MI 0.084 0.084 0.077 0.088 0.078

Pos
BBVA.MC 0.113 0.11 0.076 0.079 0.076

CABK.MC 0.109 0.107 0.085 0.089 0.076

DGE.L 0.099 0.098 0.074 0.072 0.071

CFR.SW 0.097 0.091 0.079 0.074 0.072

ATCO-A.ST 0.091 0.089 0.076 0.072 0.073

Notes: Simultaneous Eigenvector Centrality of the Top 20 firms for every period for absolute
and positive data. Source: Authors’ calculations.
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As we can see in Table 9, no firm simultaneously appears in the top 20 of the three types

of data. When we consider the top 30 rankings, one firm accomplishes the simultaneous

occurrence, namely, CABK.MC, whose net degree centralities are 1.24, 1.32, 1.5, 1.74, and

1.62 for the Total, Sans, Pre, Dur and Post periods, respectively.

In contrast, when considering all types of data available for the eigenvector centrality,

three firms appear simultaneously in the top 20 rankings, CABK.MC, CFR.SW, and DGE.L.

We should notice that CABK.MC appears simultaneously in the degree and eigenvector

centrality (positive and absolute networks), which means that it is one of the most influential

firms in the skeleton network.

Table 11: Simultaneous Top 10 (Closeness Centrality)

Ticker Total Sans Pre Dur Post

Abs

CFR.SW 0.061 0.061 0.065 0.066 0.065
BBVA.MC 0.061 0.061 0.064 0.065 0.065
CABK.MC 0.060 0.060 0.064 0.066 0.065
SSE.L 0.059 0.060 0.063 0.065 0.064
UHR.SW 0.059 0.059 0.063 0.063 0.063
GLE.PA 0.059 0.059 0.063 0.064 0.064

Pos

BBVA.MC 0.055 0.055 0.058 0.060 0.059
CABK.MC 0.054 0.054 0.058 0.059 0.058
STERV.HE 0.053 0.053 0.058 0.058 0.057
CSGN.SW 0.053 0.054 0.057 0.058 0.058
GLE.PA 0.053 0.053 0.057 0.058 0.057
CFR.SW 0.052 0.052 0.057 0.058 0.058
SSE.L 0.052 0.052 0.057 0.058 0.058

Notes: Simultaneous Closeness Centrality of the Top 10 firms for every period for absolute
and positive data types. Source: Authors’ calculations.
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Table 12: Simultaneous Top 10 (Harmonic Centrality)

Ticker Total Sans Pre Dur Post

Abs

CFR.SW 22.00 22.10 23.19 23.43 23.25
BBVA.MC 21.58 21.62 22.63 23.03 22.98
CABK.MC 21.57 21.60 22.87 23.40 23.02
UPM.HE 21.22 21.25 22.79 22.73 22.50
UHR.SW 21.13 21.19 22.20 22.43 22.47
STERV.HE 21.06 21.17 22.69 22.55 22.36
SSE.L 21.06 21.18 22.18 22.75 22.51
GLE.PA 21.00 21.01 22.06 22.70 22.45

Pos

BBVA.MC 19.74 19.76 20.76 21.25 20.96
CABK.MC 19.38 19.42 20.56 21.03 20.44
STERV.HE 19.31 19.42 20.83 20.88 20.55
CSGN.SW 19.17 19.34 20.38 20.62 20.49
CFR.SW 19.02 19.06 20.61 20.77 20.69
GLE.PA 18.79 18.81 20.01 20.44 20.29
UPM.HE 18.74 18.79 20.47 20.51 20.19

Notes: Simultaneous Harmonic Centrality of the Top 10 firms for every period for absolute
and positive data types. Source: Authors’ calculations.

In contrast, five firms, BBVA.MC, CABK.MC, CFR.SW, GLE.PA and SSE.L, appear

in the Top 10 of the closeness centrality ranking for every period and every data type (see

Table 11). For the harmonic centrality, six firms consistently appear in all top 10 rankings,

namely, CFR.SW, BBVA.MC, CABK.MC, GLE.PA, STERV.HE and UPM.HE (Table 12).

Moreover, BBVA.MC, CABK.MC, CFR.SW, CSGN.SW, and STERV.HE are always present

in the top 10 of betweenness centrality despite data type and period (Table 13). So three

firms, BBVA.MC, CABK.MC, and CFR.SW, accomplished being in each top 10 ranking of

three centralities of every skeleton by period.
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Table 13: Simultaneous Top 10 (Betweenness Centrality)

Ticker Total Sans Pre Dur Post

Abs

CABK.MC 0.017 0.017 0.012 0.013 0.012
CFR.SW 0.016 0.016 0.012 0.011 0.009
BBVA.MC 0.014 0.013 0.009 0.009 0.009
CSGN.SW 0.014 0.014 0.009 0.008 0.008
UPM.HE 0.013 0.012 0.010 0.009 0.009
STERV.HE 0.012 0.012 0.010 0.008 0.008

Pos

BBVA.MC 0.022 0.020 0.012 0.013 0.012
CABK.MC 0.021 0.021 0.014 0.014 0.012
STERV.HE 0.020 0.020 0.015 0.013 0.012
SSE.L 0.019 0.018 0.012 0.012 0.012
CSGN.SW 0.019 0.020 0.012 0.011 0.010
BAS.DE 0.017 0.016 0.011 0.010 0.012
CFR.SW 0.016 0.015 0.013 0.011 0.010

Notes: Simultaneous Betweenness Centrality of the Top 10 firms for every period for absolute
and positive data types. Source: Authors’ calculations.

Finally, as in the case of daily networks in Section 5.3, we observed that the stronger ties

in the network have homophilic behaviour, since the homophilic ratios are greater in every

instance than the respective homophilic baselines of 0.125 for countries and 0.028 for indus-

tries. When taking different thresholds for edge strength we observe that the homophilic

ratio also increased as the cut-off also increased (see Figures 14 and 15). Moreover, by com-

paring the homophily ratios of skeletons (Table 14) and daily networks (Tables 5 and 6), we

observed that skeletons always have greater homophily ratios than the mean of their respec-

tive daily networks. In fact, when considering the partition by industries, the homophily

in the skeletons exceeds the maximum homophily of the daily networks for each cut-off.

Therefore, we can say that resilient edges tend to be more homophilic; in other words, stable

relations are more likely to form when firms share the same country and industry. [20]

[20]Notice that this is a network derived from the relations of the stock returns. In this context, an edge
is formed between two stocks because they reacted similarly or oppositely to some news. Whether there is
trade or some other exchange between these firms is outside of the focus of this paper.
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Table 14: Homophily ratios over the skeletons

Country Industry
Cut-offs Net/Abs Pos Net/Abs Pos
0.05 0.199 0.269 0.114 0.180
0.10 0.227 0.307 0.163 0.244
0.15 0.488 0.540 0.604 0.674
0.20 0.692 0.692 0.850 0.850
0.25 0.758 0.758 0.871 0.871
0.30 0.750 0.750 0.900 0.900
0.35 0.815 0.815 0.889 0.889
0.40 1.0 1.0 0.929 0.929
0.45 1.0 1.0 0.909 0.909
0.50 1.0 1.0 1.0 1.0

Source: Authors’ calculations.

6 Conclusions

We analysed the network’s topology derived from the relationships among the firms that

constitute the S&P 350 Europe index, using their adjusted closing prices from January 2016

to September 2020. For this, we calculated local and global parameters of the network.

The analysis of centralities was carried out through two approaches, first considering daily

networks and second using the skeletons – the most resilient relations. In the first one, only

three firms were found simultaneously in the top 20 of each of the eleven centralities calcu-

lated, so these firms are the ones that best transmitted positive and negative effects during

the whole period. These are Scottish & Southern Energy (SSE.L), CaixaBank (CABK.MC),

and Stora Enso OYJ R. (STERV.H.). These firms are from the Paper & Forest Products,

Banks, and Electric Utilities industries, and they are located in Finland, Spain, and the

United Kingdom, respectively. In the second approach, for the degree and eigenvector cen-

tralities, no firms were simultaneously present in the top 20 rankings, indicating a lack of

stability. At the same time though, closeness, harmonic, and betweenness were pretty sta-

ble during all periods, and three firms, managed to appear simultaneously in each top 10

rankings. These firms are Banco Bilbao Vizcaya Argentaria S.A. (BBVA.MC) in Spain,

CaixaBank (CABK.MC) in Spain, and Compagnie Financière Richemont S.A. (CFR.SW)

from Switzerland. The first two are from the bank industry and the third from Textiles,

Apparel & Luxury Goods.

Placing the firms with the highest centralities serves to complement the company’s risk

profile and locate the systemic risk entities. Identifying them allows the corresponding

authorities to regulate them.
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Using the 84-day skeleton construction, we detected an increase of 20% over the number

of resilient relationships during the Covid-19 pandemic, while the total number of edges do

not have a similar change. However, we could not conclude whether there was a significant

change, either in the number of edges, or in the centrality values over time.

The financial network turned out to be highly homophilic, and in fact, a direct rela-

tionship between the partial correlation coefficient and the homophilic ratio was discovered,

where the stronger relations tend to be established between firms that belong to the same

country and industry. On the same note, homophily ratios of the skeletons proved to be

greater than in the daily networks, which suggests resilient relations have a larger proclivity

to be homophilic than unstable ones.

This paper can be extended in multiple ways. Although average distance, radius, and

diameter help us better understand the power needed to be travelled by a shock to trigger

a cascade effect over a network; the fact that, in this case, the radius is always greater than

the average distance makes us wonder whether an analysis of average eccentricities would be

more useful for a systemic risk analysis than the average distance. In addition, estimating

the clustering coefficient could be helpful to measure the density of the neighbourhood of

the vertices and the graph, complementing the topological analysis. Furthermore, a skeleton

generalisation could be made, allowing flexibility in the absence of connections. On the other

hand, we considered an undirected network, preventing us from deriving the causality of the

relationships; looking for their causality will be fruitful for a better understanding of the

network and its reaction in case of systemic risk.

A Appendix

A.1 Radius versus Average Path Length

The graphs shown below are examples where radius and average distance hold different

inequality outcomes. In each of them the top vertex can reach any other vertex in at most

rad(Gi) steps for i = 1, 2, 3.

1 = rad(G1) < d(G1) = 1.1

2 = rad(G2) > d(G2) = 1.5

2 = rad(G3) = d(G3) = 2
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G1 G2 G3

Figure 8: Graphs where its radius and average distance have different order relationships.

A.2 Tables and Figures

Tables and figures appear in this section in the same order they were mentioned in the main

text.
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From Section 5.1

Figure 9: Weights over time. Notice there is no change in the behaviour of net weight, posi-
tive weight, and absolute weight in the Covid-related periods. Source: Authors’ calculations.
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Figure 10: Global measures over time. Diameter, radius, average distance, and the nor-
malised number of edges, where positive values are considered. Source: Authors’ calcula-
tions.
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Figure 11: Global measures over time. Diameter, radius, average distance, and the nor-
malised number of edges, where absolute values are considered. Notice that the normalised
number of edges is the same for the net scenario. Source: Authors’ calculations.
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From Section 5.2

Table 15: Average net degree centrality Cnet
D - 2016-2020

Ticker Industry Num. Edges Cnet
D ISO Code Market Cap. %

INVE-B.ST FBN 225 1.956 SE 0.240
BN.PA FOA 230 1.787 FR 0.548
SN.L MTC 212 1.779 GB 0.209
SU.PA ELQ 214 1.769 FR 0.576
LEG.DE REA 205 1.768 DE 0.078
CBK.DE BNK 214 1.767 DE 0.075
AC.PA TRT 222 1.697 FR 0.122
ZURN.SW INS 233 1.696 CH 0.595
WEIR.L IEQ 230 1.669 GB 0.050
ACA.PA BNK 229 1.582 FR 0.403
CSGN.SW FBN 218 1.558 CH 0.333
CABK.MC BNK 227 1.557 ES 0.181
STERV.HE FRP 249 1.551 FI 0.086
SAF.PA ARO 235 1.550 FR 0.609
PSN.L HOM 214 1.531 GB 0.109
OR.PA COS 227 1.510 FR 1.590
SY1.DE CHM 218 1.471 DE 0.137
SSE.L ELC 229 1.460 GB 0.190
INF.L PUB 202 1.452 GB 0.137
ORA.PA TLS 217 1.439 FR 0.376

Notes: The twenty firms with most local influence, considering net degree centrality. The
number of edges represents the average number of edges during the whole period 2016-2020.
Source: S&P Global and authors’ calculations.

Table 16: Average absolute degree centrality (Cabs
D ), 2016-2020

Ticker Industry Num. Edges Cabs
D ISO Code Market Cap. %

ATL.MI TRA 241 8.810 IT 0.186
SSE.L ELC 229 8.700 GB 0.190
TUI1.DE TRT 236 8.696 DE 0.072
STERV.HE FRP 249 8.689 FI 0.086
CABK.MC BNK 227 8.606 ES 0.181
CFR.SW TEX 228 8.583 CH 0.395
LR.PA ELQ 226 8.320 FR 0.208
BBVA.MC BNK 232 8.277 ES 0.359
DGE.L BVG 236 8.272 GB 1.052
BOL.ST MNX 232 8.191 SE 0.070
AGS.BR INS 234 8.130 BE 0.113
BRBY.L TEX 235 8.122 GB 0.116
KNIN.SW TRA 217 8.086 CH 0.195
SOLB.BR CHM 238 8.072 BE 0.118
LHN.SW COM 232 8.028 CH 0.329
UPM.HE FRP 222 7.963 FI 0.178
EN.PA CON 236 7.948 FR 0.152
PGHN.SW REA 226 7.938 CH 0.236
ASML.AS SEM 233 7.891 NL 1.211
HNR1.DE INS 225 7.886 DE 0.225

Notes: The twenty firms with most local influence, considering absolute degree centrality.
The number of edges represents the average number of edges during the whole period 2016-
2020. Source: S&P Global and authors’ calculations.
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Table 17: Average positive degree centrality (C+
D), 2016-2020

Ticker Industry Num. Edges C+
D ISO Code Market Cap. %

STERV.HE FRP 126 5.12 FI 0.086
CABK.MC BNK 113 5.082 ES 0.181
SSE.L ELC 118 5.08 GB 0.19
INVE-B.ST FBN 119 4.8 SE 0.24
CFR.SW TEX 116 4.778 CH 0.395
WEIR.L IEQ 126 4.74 GB 0.05
ATL.MI TRA 127 4.711 IT 0.186
BRBY.L TEX 121 4.679 GB 0.116
ZURN.SW INS 119 4.665 CH 0.595
BBVA.MC BNK 114 4.642 ES 0.359
BN.PA FOA 115 4.628 FR 0.548
LAND.L REA 118 4.624 GB 0.095
OR.PA COS 112 4.582 FR 1.59
ATCO-A.ST IEQ 107 4.576 SE 0.323
LR.PA ELQ 119 4.554 FR 0.208
CPG.L REX 116 4.552 GB 0.385
HNR1.DE INS 114 4.541 DE 0.225
KNIN.SW TRA 111 4.537 CH 0.195
BARC.L BNK 121 4.535 GB 0.393
TUI1.DE TRT 125 4.533 DE 0.072

Notes: The twenty firms with most local influence, considering positive degree centrality.
The number of edges represents the average number of edges during the whole period 2016-
2020. Source: S&P Global and authors’ calculations.

Table 18: Average absolute closeness centrality (Cabs
C ), 2016-2020

Ticker Industry Num. Edges Cabs
C ISO Code Market Cap. %

CFR.SW TEX 228 0.067 CH 0.395
BBVA.MC BNK 232 0.066 ES 0.359
CABK.MC BNK 227 0.066 ES 0.181
SSE.L ELC 229 0.066 GB 0.19
UPM.HE FRP 222 0.065 FI 0.178
UHR.SW TEX 232 0.065 CH 0.083
STERV.HE FRP 249 0.065 FI 0.086
GLE.PA INS 241 0.065 FR 0.284
MUV2.DE INS 213 0.064 DE 0.41
TUI1.DE TRT 236 0.064 DE 0.072
NG.L MUW 225 0.064 GB 0.453
ALV.DE INS 221 0.064 DE 0.985
ATL.MI TRA 241 0.064 IT 0.186
LLOY.L BNK 217 0.064 GB 0.561
LHN.SW COM 232 0.064 CH 0.329
HNR1.DE INS 225 0.064 DE 0.225
DGE.L BVG 236 0.064 GB 1.052
CSGN.SW FBN 218 0.064 CH 0.333
ATCO-A.ST IEQ 217 0.064 SE 0.323
MC.PA TEX 220 0.064 FR 2.282

Notes: The twenty firms with the highest closeness centrality, considering absolute values.
The number of edges represents the average number of edges during the whole period 2016-
2020. Source: S&P Global and authors’ calculations.
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Table 19: Average positive closeness centrality (C+
C ), 2016-2020

Ticker Industry Num. Edges C+
C ISO Code Market Cap. %

BBVA.MC BNK 114 0.06 ES 0.359
STERV.HE FRP 126 0.06 FI 0.086
CABK.MC BNK 113 0.06 ES 0.181
CFR.SW TEX 116 0.06 CH 0.395
UPM.HE FRP 109 0.059 FI 0.178
CSGN.SW FBN 105 0.059 CH 0.333
GLE.PA INS 127 0.059 FR 0.284
SSE.L ELC 118 0.059 GB 0.19
MUV2.DE INS 109 0.058 DE 0.41
UHR.SW TEX 123 0.058 CH 0.083
NG.L MUW 116 0.058 GB 0.453
INVE-B.ST FBN 119 0.058 SE 0.24
LHN.SW COM 118 0.058 CH 0.329
ATCO-A.ST IEQ 107 0.058 SE 0.323
IFX.DE SEM 106 0.058 DE 0.275
HNR1.DE INS 114 0.058 DE 0.225
DGE.L BVG 120 0.058 GB 1.052
BNP.PA BNK 107 0.058 FR 0.711
SAN.MC BNK 101 0.058 ES 0.67
ASML.AS SEM 121 0.057 NL 1.211

Notes: The twenty firms with the highest closeness centrality, considering positive values.
The number of edges represents the average number of edges during the whole period 2016-
2020. Source: S&P Global and authors’ calculations.

Table 20: Average absolute harmonic centrality (Cabs
H ), 2016-2020

Ticker Industry Num. Edges Cabs
H ISO Code Market Cap. %

CFR.SW TEX 228 23.896 CH 0.395
CABK.MC BNK 227 23.422 ES 0.181
BBVA.MC BNK 232 23.213 ES 0.359
STERV.HE FRP 249 23.182 FI 0.086
UPM.HE FRP 222 23.179 FI 0.178
SSE.L ELC 229 22.985 GB 0.19
UHR.SW TEX 232 22.906 CH 0.083
GLE.PA INS 241 22.715 FR 0.284
CSGN.SW FBN 218 22.655 CH 0.333
ALV.DE INS 221 22.61 DE 0.985
DGE.L BVG 236 22.549 GB 1.052
TUI1.DE TRT 236 22.513 DE 0.072
HNR1.DE INS 225 22.484 DE 0.225
NG.L MUW 225 22.384 GB 0.453
LAND.L REA 232 22.381 GB 0.095
MC.PA TEX 220 22.375 FR 2.282
IFX.DE SEM 214 22.345 DE 0.275
ATCO-A.ST IEQ 217 22.344 SE 0.323
VNA.DE REA 222 22.341 DE 0.282
MUV2.DE INS 213 22.314 DE 0.41

Notes: The twenty firms with the highest harmonic centrality, considering absolute values.
The number of edges represents the average number of edges during the whole period 2016-
2020. Source: S&P Global and authors’ calculations.
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Table 21: Average positive harmonic centrality (C+
H), 2016-2020

Ticker Industry Num. Edges C+
H ISO Code Market Cap. %

STERV.HE FRP 126 21.394 FI 0.086
BBVA.MC BNK 114 21.361 ES 0.359
CFR.SW TEX 116 21.306 CH 0.395
CABK.MC BNK 113 21.112 ES 0.181
UPM.HE FRP 109 20.954 FI 0.178
CSGN.SW FBN 105 20.911 CH 0.333
SSE.L ELC 118 20.891 GB 0.19
IFX.DE SEM 106 20.678 DE 0.275
GLE.PA INS 127 20.641 FR 0.284
HNR1.DE INS 114 20.536 DE 0.225
LAND.L REA 118 20.516 GB 0.095
UHR.SW TEX 123 20.5 CH 0.083
MUV2.DE INS 109 20.493 DE 0.41
SAN.MC BNK 101 20.4 ES 0.67
INVE-B.ST FBN 119 20.363 SE 0.24
ASML.AS SEM 121 20.341 NL 1.211
ALV.DE INS 122 20.305 DE 0.985
NG.L MUW 116 20.301 GB 0.453
LLOY.L BNK 111 20.298 GB 0.561
ATCO-A.ST IEQ 107 20.297 SE 0.323

Notes: The twenty firms with the highest harmonic centrality, considering positive values.
The number of edges represents the average number of edges during the whole period 2016-
2020. Source: S&P Global and authors’ calculations.

Table 22: Average absolute eigenvector centrality (Cabs
E ), 2016-2020

Ticker Industry Num. Edges Cabs
E ISO Code Market Cap. %

ATL.MI TRA 241 0.074 IT 0.186
SSE.L ELC 229 0.074 GB 0.19
CFR.SW TEX 228 0.073 CH 0.395
TUI1.DE TRT 236 0.072 DE 0.072
STERV.HE FRP 249 0.072 FI 0.086
CABK.MC BNK 227 0.071 ES 0.181
BBVA.MC BNK 232 0.069 ES 0.359
DGE.L BVG 236 0.069 GB 1.052
LR.PA ELQ 226 0.069 FR 0.208
BOL.ST MNX 232 0.068 SE 0.07
BRBY.L TEX 235 0.068 GB 0.116
LHN.SW COM 232 0.068 CH 0.329
AGS.BR INS 234 0.067 BE 0.113
KNIN.SW TRA 217 0.067 CH 0.195
PGHN.SW REA 226 0.067 CH 0.236
EN.PA CON 236 0.067 FR 0.152
UPM.HE FRP 222 0.067 FI 0.178
ASML.AS SEM 233 0.066 NL 1.211
SOLB.BR CHM 238 0.066 BE 0.118
HNR1.DE INS 225 0.066 DE 0.225

Notes: The twenty firms with the highest eigenvector centrality, considering absolute values.
The number of edges represents the average number of edges during the whole period 2016-
2020. Source: S&P Global and authors’ calculations.
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Table 23: Average positive eigenvector centrality (C+
E ), 2016-2020

Ticker Industry Num. Edges C+
E ISO Code Market Cap. %

SSE.L ELC 118 0.076 GB 0.19
STERV.HE FRP 126 0.075 FI 0.086
CABK.MC BNK 113 0.074 ES 0.181
CFR.SW TEX 116 0.071 CH 0.395
BRBY.L TEX 121 0.07 GB 0.116
INVE-B.ST FBN 119 0.07 SE 0.24
ATL.MI TRA 127 0.069 IT 0.186
BBVA.MC BNK 114 0.069 ES 0.359
UPM.HE FRP 109 0.069 FI 0.178
REP.MC OGX 110 0.068 ES 0.241
WEIR.L IEQ 126 0.068 GB 0.05
LR.PA ELQ 119 0.068 FR 0.208
BN.PA FOA 115 0.068 FR 0.548
PGHN.SW REA 114 0.067 CH 0.236
ATCO-A.ST IEQ 107 0.067 SE 0.323
OR.PA COS 112 0.067 FR 1.59
HNR1.DE INS 114 0.067 DE 0.225
ZURN.SW INS 119 0.067 CH 0.595
TUI1.DE TRT 125 0.066 DE 0.072
DGE.L BVG 120 0.066 GB 1.052

Notes: The twenty firms with the highest eigenvector centrality, considering positive values.
The number of edges represents the average number of edges during the whole period 2016-
2020. Source: S&P Global and authors’ calculations.

Table 24: Average absolute betweenness centrality (Cabs
B ), 2016-2020

Ticker Industry Num. Edges Cabs
B ISO Code Market Cap. %

AGS.BR INS 234 0.007 BE 0.113
ALV.DE INS 221 0.007 DE 0.985
BBVA.MC BNK 232 0.007 ES 0.359
BAS.DE CHM 207 0.007 DE 0.669
CABK.MC BNK 227 0.01 ES 0.181
CSGN.SW FBN 218 0.007 CH 0.333
DGE.L BVG 236 0.006 GB 1.052
EZJ.L AIR 233 0.007 GB 0.072
HNR1.DE INS 225 0.006 DE 0.225
INVE-B.ST FBN 225 0.006 SE 0.24
LAND.L REA 232 0.006 GB 0.095
CFR.SW TEX 228 0.01 CH 0.395
SSE.L ELC 229 0.007 GB 0.19
GLE.PA INS 241 0.006 FR 0.284
STERV.HE FRP 249 0.008 FI 0.086
SY1.DE CHM 218 0.006 DE 0.137
TUI1.DE TRT 236 0.006 DE 0.072
UPM.HE FRP 222 0.008 FI 0.178
VNA.DE REA 222 0.006 DE 0.282
ZURN.SW INS 233 0.006 CH 0.595

Notes: The twenty firms with the highest betweenness centrality, considering absolute values.
The number of edges represents the average number of edges during the whole period 2016-
2020. Source: S&P Global and authors’ calculations.
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Table 25: Average positive betweenness centrality (C+
E ), 2016-2020

Ticker Industry Num. Edges C+
E ISO Code Market Cap. %

STERV.HE FRP 126 0.012 FI 0.086
CABK.MC BNK 113 0.011 ES 0.181
BBVA.MC BNK 114 0.01 ES 0.359
SSE.L ELC 118 0.01 GB 0.19
CFR.SW TEX 116 0.01 CH 0.395
LAND.L REA 118 0.009 GB 0.095
BAS.DE CHM 105 0.009 DE 0.669
CSGN.SW FBN 105 0.009 CH 0.333
INVE-B.ST FBN 119 0.009 SE 0.24
ALV.DE INS 122 0.008 DE 0.985
HNR1.DE INS 114 0.008 DE 0.225
UPM.HE FRP 109 0.008 FI 0.178
OR.PA COS 112 0.007 FR 1.59
LGEN.L BNK 109 0.007 GB 0.229
LLOY.L BNK 111 0.007 GB 0.561
NG.L MUW 116 0.007 GB 0.453
SBRY.L FDR 116 0.007 GB 0.065
EZJ.L AIR 121 0.007 GB 0.072
GLE.PA INS 127 0.007 FR 0.284
BARC.L BNK 121 0.007 GB 0.393

Notes: The twenty firms with the highest betweenness centrality, considering positive values.
The number of edges represents the average number of edges during the whole period 2016-
2020. Source: S&P Global and authors’ calculations.
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Table 32: Normalized Number of Edges per Industry

Firm Total Sans Pre Dur Post
BNK 27 0.344 0.344 0.340 0.351 0.343
INS 19 0.386 0.385 0.384 0.398 0.392
FBN 16 0.359 0.359 0.358 0.360 0.360
CHM 15 0.365 0.364 0.387 0.355 0.354
IEQ 14 0.392 0.391 0.386 0.412 0.396
TLS 14 0.474 0.474 0.481 0.464 0.486
REA 11 0.501 0.503 0.484 0.503 0.486
PRO 11 0.342 0.340 0.349 0.360 0.346
DRG 11 0.450 0.452 0.427 0.455 0.444
TEX 10 0.448 0.449 0.440 0.440 0.454
AUT 9 0.495 0.497 0.501 0.479 0.467
ELC 9 0.493 0.497 0.473 0.480 0.460
OGX 9 0.722 0.728 0.700 0.699 0.677
MUW 9 0.432 0.432 0.410 0.424 0.463
FOA 8 0.348 0.343 0.386 0.331 0.391
PUB 7 0.580 0.578 0.589 0.588 0.585
ARO 7 0.641 0.64 0.658 0.659 0.598
FDR 6 0.641 0.643 0.645 0.603 0.650
CON 6 0.412 0.415 0.379 0.392 0.433
TRA 6 0.604 0.603 0.583 0.652 0.572
ELQ 5 0.543 0.545 0.476 0.582 0.538
TRT 5 0.794 0.793 0.800 0.800 0.800
TCD 5 0.639 0.648 0.63 0.600 0.533
BVG 5 0.704 0.705 0.693 0.699 0.700
MNX 5 0.873 0.874 0.839 0.887 0.900
TSV 4 0.391 0.406 0.264 0.339 0.397
BLD 4 0.374 0.378 0.383 0.345 0.337
FRP 4 0.837 0.825 0.865 0.875 0.962
AIR 4 1.0 1.0 1.0 1.0 1.0
MTC 4 0.790 0.784 0.819 0.833 0.785
RTS 4 0.388 0.382 0.383 0.433 0.446
IDD 4 0.390 0.390 0.383 0.363 0.452
SOF 4 0.838 0.842 0.833 0.833 0.785

Notes: Industries with more than 3 firms. Source: Authors’ calculations.
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From Section 5.3
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From Section 5.4
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(a) k = 0.058, hr = 0.199 (b) k = 0.1, hr = 0.227

(c) k = 0.15, hr = 0.488 (d) k = 0.25, hr = 0.758

(e) k = 0.35, hr = 0.815 (f) k = 0.4, hr = 1

Figure 14: Homophily by country in the net skeleton, each subfigure was drawn using a
different cut-off value k, obtaining the homophily ratio hr. Source: Authors’ calculations.
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Figure 15: Homophily by sector in the net skeleton, each subfigure was drawn using a
different cut-off value k, obtaining the homophily ratio hr. Source: Authors’ calculations.
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A.3 Tickers, Countries and Industries
Table 33: Firms Part I

ISO Industry
Ticker Firm Market Cap Code Code
1COV.DE Covestro AG 7585 350000 DE CHM
AAL.L Anglo American PLC 35532 325635 GB MNX
ABBN.SW ABB Ltd 46631 121398 CH ELQ
ABF.L Associated British Foods 24306 770982 GB FOA
ABI.BR Anheuser Busch Inbev NV 123000 000000 BE BVG
ABN.AS ABN AMRO Group NV 15246 800000 NL BNK
AC.PA Accor 11274 420500 FR TRT
ACA.PA Credit Agricole SA 37284 605325 FR BNK
ACS.MC ACS Actividades de 11217 807250 ES CON

Construccion y Servicios SA
AD.AS Ahold Delhaize NV 26391 148875 NL FDR
ADP.PA ADP Promesses 17427 032100 FR PRO
ADS.DE Adidas AG 58080 556800 DE TEX
AENA.MC Aena SA 25575 000000 ES TRA
AGN.AS Aegon NV 8523 000416 NL INS
AGS.BR AGEAS 10450 342320 BE INS
AHT.L Ashtead Group 14359 138055 GB TCD
AI.PA L’Air Liquide S.A. 59445 121800 FR CHM
AIR.PA Airbus SE 101000 000000 FR ARO
AKE.PA Arkema 7242 750700 FR CHM
AKZA.AS Akzo Nobel NV 20643 260000 NL CHM
ALFA.ST Alfa Laval AB 9490 388121 SE IEQ
ALO.PA Alstom 9472 357920 FR IEQ
ALV.DE Allianz SE 91110 583200 DE INS
AMS.MC Amadeus IT Group SA 31396 310400 ES TSV
ASML.AS ASML Holding NV 112000 000000 NL SEM
ASSA-B.ST Assa Abloy B 22025 237708 SE BLD
ATCO-A.ST Atlas Copco AB A 29893 459353 SE IEQ
ATL.MI Atlantia SpA 17153 267670 IT TRA
ATO.PA AtoS SE 8115 372400 FR TSV
AV.L Aviva 19478 435620 GB INS
AZN.L AstraZeneca PLC 118000 000000 GB DRG
BA.L BAE Systems PLC 23152 520936 GB ARO
BAER.SW Julius Baer Group 10284 124741 CH FBN
BALN.SW Baloise Hldg Reg 7859 340301 CH INS
BARC.L Barclays 36376 018151 GB BNK
BAS.DE BASF SE 61859 560650 DE CHM
BATS.L British American 94014 870214 GB TOB
BAYN.DE Bayer AG 67899 111120 DE DRG
BBVA.MC Banco Bilbao Vizcaya 33226 080921 ES BNK

Argentaria SA
BDEV.L Barratt Developments 8981 456822 GB HOM

Tobacco PLC
BEI.DE Beiersdorf AG 26875 800000 DE COS
BHP.L BHP Group Plc 44349 528279 GB MNX
BIRG.IR Bank of Ireland Group 5270 162938 IE BNK

Source: S&P Global and authors.
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Table 34: Firms Part II

ISO Industry
Ticker Firm Market Cap Code Code
BKG.L Berkeley Group 7860 684449 GB HOM

Holdings Plc
BLND.L British Land Co 7108 239101 GB REA
BMW.DE Bayer Motoren Werke 44029 914300 DE AUT

AG (BMW)
BN.PA danone 50625 564500 FR FOA
BNP.PA BNP Paribas 65744 980290 FR BNK
BNR.DE Brenntag AG 7490 160000 DE TCD
BNZL.L Bunzl 8190 216743 GB TCD
BOL.ST Boliden AB 6478 950144 SE MNX
BP.L BP p.l.c 120000 000000 GB OGX
BRBY.L Burberry Group 10719 812115 GB TEX
BT-A.L BT Group 22669 956904 GB TLS
BVI.PA Bureau Veritas SA 10512 101140 FR PRO
CA.PA Carrefour SA 12068 626700 FR FDR
CABK.MC CaixaBank 16736 063524 ES BNK
CAP.PA Capgemini SE 18218 316600 FR TSV
CARL-B.CO Carlsberg AS B 15807 271025 DK BVG
CBK.DE Commerzbank AG 6909 259086 DE BNK
CCL.L Carnival Plc 9321 627486 GB TRT
CFR.SW Richemont, Cie 36538 864514 CH TEX

Financiere A Br
CHR.CO Christian Hansen Holding A/S 9341 145735 DK LIF
CLN.SW Clariant AG Reg 6598 424555 CH CHM
CLNX.MC Cellnex Telecom S.A. 14784 996990 ES TLS
CNA.L Centrica 6152 218228 GB MUW
CNHI.MI CNH Industrial NV 13325 257110 IT IEQ
COLO-B.CO Coloplast AS B 21897 018624 DK HEA
CON.DE Continental AG 23052 691560 DE ATX
CPG.L Compass Group 35582 324369 GB REX
CRDA.L Croda Intl 7981 408595 GB CHM
CRH CRH Plc 28198 133760 IE COM
CS.PA AXA 60928 360380 FR INS
CSGN.SW Credit Suisse Group AG 30826 778129 CH FBN
DAI.DE Daimler AG 52817 852690 DE AUT
DANSKE.CO Danske Bank A/S 12437 947310 DK BNK
DASTY Dassault Systemes SA 38532 098400 FR SOF
DB Deutsche Bank AG 14295 868841 DE BNK
DB1.DE Deutsche Boerse AG 26628 500000 DE FBN
DCC.L DCC 7836 826228 IE IDD
DG.PA Vinci 59918 562000 FR CON
DGE.L Diageo Plc 97310 307888 GB BVG
DLG.L Direct Line Insurance 5078 020620 GB INS

Group
DNB.OL DNB ASA 26283 427706 NO BNK
DPW.DE Deutsche Post AG 41805 942250 DE TRA
DSM.AS Koninklijke DSM NV 21063 442500 NL CHM
DSV.CO Dsv Panalpina A/s 24146 014608 DK TRA
DTE.DE Deutsche Telekom AG 69374 457630 DE TLS
DWNI.DE Deutsche Wohnen AG BR 13100 456100 DE REA
EBS.VI Erste Group Bank AG 14424 088000 AT BNK
EDEN.PA Edenred 11211 750500 FR TSV

Source: S&P Global and authors.
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Table 35: Firms Part III

ISO Industry
Ticker Firm Market Cap Code Code
EDF.PA Electricite de France 30290 030160 FR ELC
EDP.LS Energias de Portugal SA 11931 027360 PT ELC
EL.PA EssilorLuxottica 58853 004000 FR TEX
ELE.MC Endesa SA 25187 710080 ES ELC
ELISA.HE Elisa Corporation 8190 669000 FI TLS
ELUX-B.ST Electrolux AB B 6571 380437 SE DHP
EN.PA Bouygues 14072 723040 FR CON
ENEL.MI Enel SpA 71827 885376 IT ELC
ENG.MC Enagas SA 5428 811160 ES GAS
ENGI.PA Engie 34731 072000 FR MUW
ENI.MI ENI SpA 50318 925510 IT OGX
EOAN.DE E.ON SE 25155 922156 DE MUW
EQNR.OL Equinor ASA 59422 071034 NO OGX
ERIC-B.ST Ericsson L.M. Telefonaktie B 23660 551313 SE CMT
EXO.MI EXOR NV 16648 280000 IT FBN
EXPN.L Experian Plc 29221 182071 GB PRO
EZJ.L Easyjet 6659 805941 GB AIR
FCA.MI Fiat Chrysler Automobiles NV 20446 042518 IT AUT
FER.MC Ferrovial SA 19942 211340 ES CON
FERG.L Ferguson PLC 18780 339920 GB TCD
FGR.PA Eiffage 9996 000000 FR CON
FLTR.L Flutter Entertainment plc 8465 277150 IE CNO
FME.DE Fresenius Medical Care AG 20259 086320 DE HEA
FORTUM.HE Fortum Oyj 19544 074000 FI ELC
FP.PA TOTAL SA 131000 000000 FR OGX
FR.PA Valeo 7546 346730 FR ATX
G.MI Assicurazioni Generali SpA 28638 458095 IT INS
G1A.DE GEA AG 5320 904160 DE IEQ
GALP.LS Galp Energia SGPS SA 11490 447900 PT OGX
GBLB.BR Groupe Bruxelles Lambert 15161 197680 BE FBN
GEBN.SW Geberit AG Reg 18517 002581 CH BLD
GFC.PA Gecina 12155 614800 FR REA
GFS.L G4S Plc 3997 388193 GB ICS
GIVN.SW Givaudan AG 25757 519041 CH DRG
GLE.PA Societe Generale 26292 438995 FR INS
GLEN.L Glencore Plc 40569 355368 GB MNX
GLPG.AS Galapagos Genomics NV 12060 395500 BE BTC
GMAB.CO Genmab AS 12880 438320 DK BTC
GRF.MC Grifols SA 13393 265900 ES BTC
GSK.L GlaxoSmithKline 113000 000000 GB DRG
GVC.L GVC Holdings PLC 6041 813756 GB CNO
HEI.DE HeidelbergCement AG 12889 103360 DE COM
HEIA.AS Heineken NV 54674 204760 NL BVG
HEN3.DE Henkel AG & Co. KGaA 16426 628600 DE HOU

Nvtg - Pref
HEXA-B.ST Hexagon AB 17520 937593 SE ITC
HL.L Hargreaves Lansdown Plc 10846 590177 GB FBN
HLMA.L Halma 9449 553980 GB ITC
HM-B.ST Hennes & Mauritz AB B 26521 955023 SE RTS
HNR1.DE Hannover Ruck SE 20778 863100 DE INS
HO.PA Thales 19586 946600 FR ARO
HSBA.L HSBC Holdings Plc 144000 000000 GB BNK

Source: S&P Global and authors.
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Table 36: Firms Part IV

ISO Industry
Ticker Firm Market Cap Code Code
IAG.L International Consolidated 14713 577672 GB AIR

Airlines Group SA
IMB.L Imperial Brands PLC 22548 389450 GB TOB
IMI.L IMI 3988 017359 GB PRO
INDU-A.ST Industrivarden AB A 5938 978289 SE FBN
INF.L Informa PLC 12676 181930 GB PUB
INGA.AS ING Groep NV 41645 321728 NL BNK
IBE.MC Iberdrola SA 58403 820960 ES ELC
IFX.DE Infineon Technologies AG 25391 338590 DE SEM
IHG.L InterContinental Hotels 11553 634759 GB TRT

Group PLC
III.L 3I Group 12602 800553 GB FBN
INVE-B.ST Investor AB B 22195 627041 SE FBN
ISP.MI Intesa SanPaolo 41114 341692 IT BNK
ITRK.L Intertek Group PLC 11119 592874 GB PRO
ITV.L ITV PLC 7183 377677 GB PUB
ITX.MC Inditex SA 98018 642500 ES RTS
JMAT.L Johnson, Matthey 7043 813456 GB CHM
KBC.BR KBC Group NV 27961 807020 BE BNK
KER.PA Kering 73803 668400 FR TEX
KGP.L Kingspan Group PLC 9888 392250 IE BLD
KINV-B.ST Kinnevik Investment AB B 5280 737098 SE FBN
KNEBV.HE Kone Corp B 26178 851480 FI IEQ
KNIN.SW KUEHNE & NAGEL 18023 105439 CH TRA

INTL AG-REG
KPN.AS Koninklijke KPN NV 11057 682564 NL TLS
KYGA.L Kerry Group A 19531 935500 IE FOA
LAND.L Land Securities Group PLC 8789 760224 GB REA
LDO.MI Leonardo S.p.a. 6041 667500 IT ARO
LEG.DE LEG Immobilien AG 7237 880150 DE REA
LGEN.L Legal & General Group 21154 473153 GB BNK
LHA.DE Deutsche Lufthansa AG 7772 662140 DE AIR
LHN.SW LafargeHolcim Ltd 30439 194891 CH COM
LI.PA Klepierre 10406 302400 FR REA
LISN.SW Lindt & Sprungli AG Reg 10701 218854 CH FOA
LLOY.L Lloyds Banking 51831 247152 GB BNK

Group PLC
LOGN.SW Logitech International SA 7301 174195 CH THQ
LONN.SW Lonza AG 24206 078639 CH LIF
LR.PA Legrand Promesses 19234 418240 FR ELQ
LSE.L London Stock 32084 185501 GB FBN

Exchange PLC
LXS.DE Lanxess AG 5231 139360 DE CHM
MAERSK-A.CO AP Moller - Maersk AS A 12997 745612 DK TRA
MB.MI Mediobanca SpA 8648 440290 IT BNK
MC.PA LVMH-Moet Vuitton 211000 000000 FR TEX
MCRO.L Micro Focus International 4561 232100 GB PRO
MKS.L Marks & Spencer Group 4920 181628 GB FDR
ML.PA Michelin CGDE B Brown 19645 200600 FR ATX
MNDI.L Mondi PLC 10171 043700 GB FRP
MONC.MI Moncler SpA 10336 016430 IT TEX
MOWI.OL Mowi ASA 11942 557638 NO FOA

Source: S&P Global and authors.
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Table 37: Firms Part V

ISO Industry
Ticker Firm Market Cap Code Code
MRK.DE MERCK KGaA 13615 644700 DE DRG
MRO.L Melrose Industries PLC 13785 236033 GB IEQ
MRW.L Morrison (WM) 5650 440187 GB FDR

Supermarkets
MT.AS ArcelorMittal Inc 15888 392784 LU STL
MTX.DE MTU Aero Engines AG 13239 200000 DE ARO
MUV2.DE Munich Re AG 37955 634000 DE INS
NDA-FI.HE Nordea Bank Abp 29111 104460 FI BNK
NESN.SW Nestle SA Reg 287000 000000 CH FOA
NESTE.HE Neste Oyj 23860 956240 FI OGR
NG.L National Grid PLC 41881 362823 GB MUW
NHY.OL Norsk Hydro AS 6848 706583 NO ALU
NN.AS NN Group N.V. 11619 063920 NL INS
NOKIA.HE Nokia OYJ 18561 447072 FI CMT
NOVN.SW Novartis AG Reg 216000 000000 CH DRG
NOVO-B.CO Novo Nordisk AS B 96373 738885 DK DRG
NTGY.MC Naturgy Energy Group SA 22044 332800 ES GAS
NXT.L Next 11049 786129 GB RTS
NZYM-B.CO Novozymes AS B 10350 570630 DK CHM
OCDO.L Ocado Group PLC 10685 197490 GB RTS
OMV.VI OMV AG 16389 831840 AT OGX
OR.PA L’Oreal 147000 000000 FR COS
ORA.PA Orange 34750 589760 FR TLS
ORK.OL Orkla AS 9034 708498 NO FOA
PAH3.DE Porsche Automobil 10204 250000 DE AUT

Holding SE
PGHN.SW Partners Group Hldg 21805 141471 CH REA
PHIA.AS Koninklijke Philips 39397 568000 NL MTC

Electronics NV
PNDORA.CO Pandora A/S 3878 179176 DK TEX
PROX.BR Proximus 8626 398000 BE ELQ
PRU.L Prudential PLC 44280 510043 GB INS
PRY.MI Prysmian SpA 5762 414560 IT ELQ
PSN.L Persimmon 10114 746939 GB HOM
PSON.L Pearson 5876 761866 GB PUB
PUB.PA Publicis Groupe 9701 292840 FR PUB
QIA.DE QIAGEN NV 6913 384360 DE LIF
RACE.MI Ferrari NV 28681 211700 IT AUT
RAND.AS Randstad NV 9960 451280 NL PRO
RB.L Reckitt Benckiser 53348 811760 GB HOU

Group PLC
RDSA.L Royal Dutch Shell PLC 110000 000000 GB OGX
REE.MC Red Electrica 9698 859000 ES ELC

Corporacion SA
REL.L RELX PLC 45300 422373 GB PRO
REP.MC Repsol SA 22271 158630 ES OGX
RI.PA Pernod-Ricard 42290 573400 FR BVG
RIO.L Rio Tinto PLC 67920 021937 GB MNX
RMS.PA Hermes Intl 70330 067800 FR TEX
RNO.PA Renault SA 12473 553960 FR AUT
ROG.SW Roche Hldgs AG 203000 000000 CH DRG

Ptg Genus

Source: S&P Global and authors.
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Table 38: Firms Part VI

ISO Industry
Ticker Firm Market Cap Code Code
RR.L Rolls-Royce Holdings PLC 15590 884245 GB ARO
RSA.L RSA Insurance Group PLC 6861 117604 GB INS
RTO.L Rentokil Initial 9836 210575 GB ICS
RWE.DE RWE AG 16813 303100 DE MUW
RY4C.IR Ryanair Holdings PLC 15859 007780 IE AIR
SAB.MC Banco de Sabadell SA 5840 797040 ES BNK
SAF.PA Safran SA 56314 955050 FR ARO
SAMPO.HE Sampo Oyj A 21562 054320 FI INS
SAN.MC Banco Santander SA 61985 568950 ES BNK
SAN.PA Sanofi-Aventis 113000 000000 FR DRG
SAND.ST Sandvik AB 21857 965979 SE IEQ
SAP.DE SAP SE 148000 000000 DE SOF
SBRY.L Sainsbury (J) 6008 030226 GB FDR
SCA-B.ST SCA - B shares 5774 424878 SE FRP
SCHN.SW Schindler-Hldg AG Reg 14642 544020 CH IEQ
SCMN.SW Swisscom AG Reg 24437 307425 CH TLS
SCR.PA SCOR SE 6980 326800 FR INS
SDR.L Schroders PLC 8905 494694 GB FBN
SEB-A.ST SEB-Skand Enskilda 18219 828720 SE BNK

Banken A
SECU-B.ST Securitas AB B 5354 462712 SE ICS
SESG.PA SES 4793 225000 LU PUB
SEV.PA Suez SA 8406 050055 FR MUW
SGE.L Sage Group 9912 283546 GB SOF
SGO.PA Saint-Gobain, Cie de 19940 789500 FR BLD
SGRO.L SEGRO PLC 11627 787008 GB REA
SGSN.SW SGS-Soc Gen Surveil 18624 735178 CH PRO

Hldg Reg
SHB-A.ST Svenska Handelsbanken A 18699 691239 SE BNK
SIE.DE Siemens AG 99059 000000 DE IDD
SK3.IR Smurfit Kappa Group PLC 8096 425980 IE CTR
SKA-B.ST SKANSKA AB-B 8072 421673 SE CON
SKF-B.ST SKF AB B 7588 180375 SE IEQ
SLA.L Standard Life Aberdeen 9100 512935 GB FBN
SLHN.SW Swiss Life Reg 15019 669587 CH INS
SMDS.L DS Smith 6209 762969 GB CTR
SMIN.L Smiths Group 7829 724427 GB IDD
SN.L Smith & Nephew 19295 676774 GB MTC
SOLB.BR Solvay 10936 990800 BE CHM
SOON.SW Sonova Holding AG 13127 267443 CH MTC
SPSN.SW Swiss Prime Site AG 7821 016722 CH REA
SPX.L Spirax-Sarco Engineering 7724 540020 GB IEQ
SREN.SW Swiss Re Reg 32752 395869 CH INS
SRG.MI Snam SpA 15908 224926 IT GAS
SSE.L Scottish & Southern Energy 17583 650712 GB ELC
STAN.L Standard Chartered 26909 227396 GB BNK
STERV.HE Stora Enso OYJ R 7939 610420 FI FRP
STJ.L St James’s Place 7280 987158 GB FBN
STM.MI STMicroelectronics NV 21820 346430 IT SEM
STMN.SW Straumann AG Reg 13888 578547 CH MTC
SU.PA Schneider Electric SE 53251 444500 FR ELQ
SVT.L Severn Trent 7138 539011 GB MUW

Source: S&P Global and authors.
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Table 39: Firms Part VII

ISO Industry
Ticker Firm Market Cap Code Code
SW.PA Sodexo 15578 620750 FR REX
SWED-A.ST Swedbank AB 15047 719773 SE BNK
SWMA.ST Swedish Match AB 7821 532927 SE TOB
SY1.DE Symrise AG 12703 052600 DE CHM
TATE.L Tate & Lyle 4187 414119 GB FOA
TEF.MC Telefonica SA 32331 405964 ES TLS
TEL.OL Telenor ASA 23032 664468 NO TLS
TEL2-B.ST Tele2 AB B 8621 912671 SE TLS
TELIA.ST Telia Company AB 16151 169427 SE TLS
TEMN.SW Temenos Group AG 10213 002525 CH SOF
TEN.MI Tenaris SA 11864 396850 IT OGX
TEP.PA Teleperformance 12735 509400 FR PRO
TIT.MI Telecom Italia SpA 8459 017637 IT TLS
TKA.DE ThyssenKrupp AG 7495 285280 DE IDD
TPK.L Travis Perkins 4730 642257 GB TCD
TRN.MI Terna SpA 11913 412186 IT ELC
TSCO.L Tesco 29294 351743 GB FDR
TUI1.DE TUI AG 6612 159756 DE TRT
UBI.PA Ubisoft Entertainment SA 6939 327040 FR IMS
UBSG.SW UBS Group AG 43098 836809 CH FBN
UCB.BR UCB SA 13790 475400 BE DRG
UCG.MI Unicredit SpA Ord 28956 662280 IT BNK
UG.PA Peugeot SA 19272 836400 FR AUT
UHR.SW Swatch Group AG-B 7663 132882 CH TEX
UMI.BR Umicore 10683 904000 BE CHM
UNA.AS Unilever NV 79136 415440 NL COS
UPM.HE UPM-Kymmene Oyj 16448 725590 FI FRP
URW.AS Unibail Rodamco Westfield 19358 644050 FR REA
UTDI.DE United Internet AG Reg 6002 400000 DE TLS
UU.L United Utilities Group Plc 7602 365565 GB MUW
VIE.PA Veolia Environnement 13332 180420 FR MUW
VIFN.SW Vifor Pharma Group 10567 085500 CH DRG
VIV.PA Vivendi SA 30564 528280 FR PUB
VNA.DE Vonovia SE 26029 152000 DE REA
VOD.L Vodafone Group 49971 317452 GB TLS
VOLV-B.ST Volvo AB B 24537 431397 SE AUT
VOW.DE Volkswagen AG 51124 342500 DE AUT
VWS.CO Vestas Wind Systems AS 17918 957786 DK IEQ
WDI.DE Wirecard AG 13275 282500 DE FBN
WEIR.L Weir Group 4631 300556 GB IEQ
WKL.AS Wolters Kluwer NV 17751 500320 NL PRO
WPP.L WPP Plc 16725 083182 GB PUB
WRT1V.HE Wartsila Oyj ABP 5828 501100 FI IEQ
WTB.L Whitbread 8407 368452 GB TRT
YAR.OL Yara International ASA 10188 092051 NO CHM
ZURN.SW Zurich Insurance Group AG 55011 937615 CH INS

Source: S&P Global and authors.
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Table 40: Countries

ISO Code Country ISO Code Country ISO Code Country
AT Austria FI Finland NL Netherlands
BE Belgium FR France NO Norway
CH Switzerland GB United Kingdom PT Portugal
DE Germany IE Ireland SE Sweden
DK Denmark IT Italy
ES Spain LU Luxembourg

Source: S&P Global and authors.

Table 41: Industries

Industry Code Industry Industry Code Industry
AIR Airlines ITC Electronic Equipment,
ALU Aluminum Instruments &
ARO Aerospace & Defense Components
ATX Auto Components LIF Life Sciences Tools
AUT Automobiles & Services
BLD Building Products MNX Metals & Mining
BNK Banks MTC Health Care Equipment
BTC Biotechnology & Supplies
BVG Beverages MUW Multi & Water Utilities
CHM Chemicals OGR Oil & Gas Refining
CMT Communications Equipment & Marketing
CNO Casinos & Gaming OGX Oil & Gas Upstream
COM Construction Materials & Integrated
CON Construction & Engineering PRO Professional Services
COS Personal Products PUB Media, Movies
CTR Containers & Packaging & Entertainment
DHP Household Durables REA Real Estate
DRG Pharmaceuticals REX Restaurants & Leisure
ELC Electric Utilities Facilities
ELQ Electrical Components RTS Retailing

& Equipment SEM Semiconductors
FBN Diversified Financial Services & Semiconductor

& Capital Markets Equipment
FDR Food & Staples Retailing SOF Software
FOA Food Products STL Steel
FRP Paper & Forest Products TCD Trading Companies
GAS Gas Utilities & Distributors
HEA Health Care Providers TEX Textiles, Apparel

& Services & Luxury Goods
HOM Homebuilding THQ Computers & Peripherals
HOU Household Products & Office Electronics
ICS Commercial Services TLS Telecommunication

& Supplies Services
IDD Industrial Conglomerates TOB Tobacco
IEQ Machinery & Electrical TRA Transportation

Equipment & Transportation
IMS Interactive Media, Services Infrastructure

& Home Entertainment TRT Hotels, Resorts
INS Insurance & Cruise Lines

TSV IT services

Source: S&P Global and authors.
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*Symbol Index

C+
C (i) Positive closeness centrality of vertex i.

Cabs
D (i) Absolute degree centrality of vertex i.

Cnet
D (i) Net degree centrality of vertex i.

C+
D(i) Positive degree centrality of vertex i.

Cabs
E (i) Absolute eigenvector centrality of vertex i.

C+
E (i) Positive eigenvector centrality of vertex i.

Cabs
H (i) Absolute harmonic centrality of vertex i.

C+
H(i) Positive harmonic centrality of vertex i.

d(i, j) Distance from nodes i to j.

d(G) Average path length or average distance of graph G.

diam(G) Diameter of graph G.

h(G) Homophily ratio of graph G.

h∗(G) Homophily baseline ratio of graph G.

m(G) Number of edges of the network G.

N Number of vertices of the network.

rad(G) Radius of graph G.

w(ij) Weight of the edge ij.

w(G) Weight of the graph G.
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