
UNIVERSITY OF TARTU 

Institute of Computer Science 

Software Engineering Curriculum 

Vasyl Skydanienko 

Data-aware Synthetic Log Generation for De-
clarative Process Models 

Master’s Thesis (30 ECTS) 

Supervisor(s):  

Fabrizio Maria Maggi 

Chiara Di Francescomarino 

 Chiara Ghidini 

 

  

Tartu 2018 



2 

 

Data-aware Synthetic Log Generation for Declarative Process Models 

Abstract: 

In Business Process Management, process mining is a class of techniques for learning pro-

cess structure from an execution log. This structure is represented as a process model: either 

procedural or declarative. Examples of declarative languages are Declare, DPIL and DCR 

Graphs. In order to test and improve process mining algorithms a lot of logs with different 

parameters are required, and it is not always possible to get enough real logs. And this is 

where artificial logs are useful. There exist techniques for log generation from DPIL and 

declare-based models. But there are no tools for generating logs from MP-Declare – multi-

perspective version of Declare with data support. This thesis introduces an approach to log 

generation from MP-Declare models using two different model checkers: Alloy and 

NuSMV. In order to improve performance, we applied optimization to baseline approaches 

available in the literature. All of the discussed techniques are implemented and tested using 

existing conformance checking tools and our tests. To evaluate performance of our genera-

tors and compare them with existing ones, we measured time required for generating log 

and how it changes with different parameters and models. We also designed several metrics 

for computing log variability, and applied them to reviewed generators. 

Keywords: 

Business process, simulation, process model translation, declarative model, Declare, Alloy, 

first order logic, log generation 

CERCS: T120 Systems engineering, computer technology 

Andme toega sünteetilise logi genereerimine deklaratiivsetele protsessimudelitele 

Lühikokkuvõte: 

Äriprotsesside juhtimises on protsessikaeve klass meetodeid, mida kasutatakse protsessi 

struktuuri õppimiseks täitmislogist. Selle struktuur on esindatud kui protsessi mudel: kas 

menetluslik või deklaratiivne. Näited deklaratiivsetest keeltest on Declare, DPIL ja DCR 

Graphs. Selleks, et testida ja parandada protsessi kaevandamise algoritme on vaja palju lo-

gisid erinevate parameetritega ja alati ei ole võimalik saada piisavalt reaalseid logisid. See 

on koht, kus tehislikud logid tulevad kasuks. On olemas meetodeid logi genereerimiseks 

DPIL-ist ja deklaratiivsetest mudelitest, kuid puuduvad vahendid logi genereerimiseks MP-

Declare-ist, mis on multiperspektiivne versioon Declare-ist andmete toega. Käesolev mag-

istritöö käsitleb MP-Declare mudelitest logide genereerimist kasutades kaht erinevat 

mudelite kontrollijat: Alloy ja NuSMV. Selleks, et parandada jõudlust, optimeerisime kir-

janduses saadaval olevaid baaslähenemisi. Kõik käsitletud tehnikad implementeeritakse ja 

testitakse kasutades saadaval olevat sobivuse testimise tööriistu ja meie enda väljatöötatud 

teste.  

Meie generaatorite hindamiseks ja võrdluseks olemasolevate lahendustega mõõtsime me 

logide genereerimise aega ja seda, kuidas see muutub erinevate parameetrite ja mudelitega. 

Me töötasime välja erinevad mõõdupuud logide varieeruvuse arvutamiseks ja rakendasime 

neid uuritavatele generaatoritele. 

Võtmesõnad:  

Äri protsessi, simulatsiooni, protsessi mudel tõlge, deklaratiivne mudel, Declare, Alloy, es-

imest järku loogika, logi põlvkonna 

CERCS: T120 Süsteemitehnoloogia, arvutitehnoloogia 



3 

 

Table of Contents 

1 Introduction ................................................................................................................... 4 

2 Background ................................................................................................................... 6 

2.1 Process mining ........................................................................................................ 6 

Log ................................................................................................................................ 6 

Declarative process models ........................................................................................... 7 

2.2 Model checkers ....................................................................................................... 9 

Alloy .............................................................................................................................. 9 

NuSMV/NuXMV and LTL ......................................................................................... 10 

3 Problem and Approach ................................................................................................ 11 

4 Related work ............................................................................................................... 14 

5 A new format for MP-Declare .................................................................................... 16 

6 The Alloy-based log generator .................................................................................... 19 

6.1 A baseline solution investigation .......................................................................... 19 

6.2 Alloy: our proposal ............................................................................................... 22 

7 The NuSMV-based log generator ............................................................................... 32 

8 Implementation ........................................................................................................... 35 

9 Log quality evaluation ................................................................................................. 38 

Constraints shuffling ................................................................................................... 41 

Evaluation of numeric data attributes randomness ..................................................... 43 

9.1 Log entropy measurements ................................................................................... 43 

10 Execution time evaluation ........................................................................................... 45 

10.1 Models for execution time measurements ........................................................ 45 

10.2 Comparison with the state of the art ................................................................. 45 

10.3 Comparison with NuSMV ................................................................................ 48 

10.4 Impact of model parameters on the execution times ........................................ 48 

11 Conclusions ................................................................................................................. 53 

12 References ................................................................................................................... 54 

I. License ..................................................................................................................... 56 

 

  



4 

 

1 Introduction 

In Business Processes Management, process mining stands for a set of techniques designed 

to analyze and enhance processes by using data from previous executions. This data is stored 

in event logs by information systems supporting the processes. In process mining we can 

apply mining algorithms to learn the structure of the process from the log. Using this infor-

mation about the process behavior, we can identify the problems of our processes and make 

them more efficient. Learning a model from a log is a branch of process mining called pro-

cess discovery, and usually it is the first step in analyzing processes. When model is known, 

it can be used for conformance checking/process monitoring and performance mining. Dur-

ing conformance checking we can verify that the model is following the process, and find 

deviations. Process monitoring is similar to conformance checking, but applied to running 

processes. It detects a violation immediately after or even before it happens. Performance 

mining allows us to use time information from the process (duration of/between activities, 

cycle time, waiting time, etc.) to identify the bottlenecks and use this information for process 

redesign.  

In order to develop better process mining techniques it should be possible to compare and 

evaluate them. Usually, mining algorithm under testing tries to mine different logs generated 

using a known model, and then the discovered behaviors compared with the original model. 

Though there are some logs publicly available, most companies don’t share them, e.g., due 

to privacy issues. Also, real logs are not always good for testing, because we do not have 

control over their different parameters like length of traces, amount of noise, etc. To make 

testing more complete and predictable, artificial logs can be used.  

There are two major types of languages for modelling processes: procedural and declarative. 

Imperative business process modelling languages like BPMN are good for describing rou-

tine processes with low variability of execution. They consist in a graph containing all pos-

sible execution paths. With more flexible processes it is hard to use procedural languages 

for modelling, because the graphs become too large and hard to understand. Declarative 

languages allow to do it much easier. A declarative language consists of constraints, and 

any behavior is allowed, unless it violates at least one constraint.  

Most of the modelling languages and tools for process mining use only the control flow 

perspective of a process. In real life, activities may contain data, like who was executing the 

activity, what type of resources was used or what amount was paid (e.g. in a selling process), 

etc. This makes testing mining algorithms using real-life logs even harder, because the 

amount and type of data cannot be changed, and hence different aspects of the algorithm 

cannot be tested separately.  

Currently there are very few tools available for generating artificial logs from declarative 

process models. Though some of them support resources, none of them allow to use arbitrary 

constrained data and no tools support the generation of logs from the full set of MP-Declare 

(Multi Perspective Declare) constraints. Therefore, we investigate and evaluate the existing 

implementations, and use this information for designing a better log generator with complete 

Declare support and data. 

The generation of logs from declarative models is not an easy task, and having data support 

means that we cannot use some known algorithms, e.g., FSA-based algorithms. There are 

no well-defined execution paths like in imperative models, different constraints might in-

fluence and contradict each other, and some models do not even have valid finite traces. It 

might be hard to find traces for some models due to the combinatorics of the problem, so it 

is important for the log generator to work efficiently. 



5 

 

When generating a log, it is preferable to get diverse traces rather than similar ones, because 

this way the log contains more useful information about possible process execution patterns, 

and the chances that all constraints are fairly activated throughout the log are increased. 

In order to address these problems four research questions are investigated in this thesis: 

1. How can we encode declarative models with data? 

2. How can we efficiently generate event logs from MP-Declare models? 

3. How do different approaches and techniques perform in the generation of event logs 

from data-aware Declare models in terms of generation time and log variability? 

4. How can we measure quality of generated logs? 

In this thesis, we propose two approaches to log generation from MP-Declare models using 

Alloy [20] and NuSMV model checkers, and we compare our approaches with state of the 

art techniques solving the same problem.  

As it comes from the name, model checkers allow to check models – to verify that a given 

model meets certain specifications. In our case, the model is correct when at least one trace 

compliant with the model exists, which is not always the case as declare constraints may 

contradict each other (e.g., existence and absence of the same activity). Some model check-

ers go beyond this, and provide an example or a counterexample for a given model, which 

proves that it is valid. In our solution we use these examples/counterexamples to generate 

traces and save them in a suitable log format. Also we introduce a new format for specifying 

MP-Declare models, and use this format to provide the input for our log generator. 

To evaluate the performance of the generators, we came out with a wide experimentation, 

and developed a set of metrics for measuring the log variability. 

In the evaluation, we compared our solutions with each other, and with existing state of the 

art approaches. In details, we looked at available features (available generation parameters, 

supported constraints), readiness (is it complete product, prototype, demo, or not imple-

mented), generation time and log variability. 

The structure of this paper is the following:  Section 2 describes background information 

needed to understand main concepts used in this paper. Section 3 shows our proposed ap-

proaches for the generation of artificial logs from MP-Declare models. Section 4 gives a 

short overview of the existing literature on this topic. Section 5 and 6 describe the details of 

the implementation using Alloy and NuSMV, and how they were used in our generators. 

Section 7 illustrates the tool – interfaces of generators and modeler. Section 8 presents the 

metrics for the evaluation of log variability, and the comparison results for logs generated 

by different generators. Section 9 contains the evaluation and the comparison of our and 

other existing generators in terms of execution times. Section 10 concludes the paper and 

outlines directions for future work. 



6 

 

2 Background 

This section presents some basic definitions, which will be needed for understanding the 

rest of this paper. 

 

2.1 Process mining 

Process mining is a family of techniques aimed at analysing business processes from exe-

cution logs. 

Log 

A process log is a set of traces. Each trace describes one execution of a process as a sequence 

of events.  

The Figure 1 shows an example of an event log as a table. Each line represents one event. 

Events with the same case id form a trace. Here all the events grouped by case id and sorted 

by timestamp, so we can clearly see separate traces.  

 

Figure 1 – Event log in csv format 

A typical process log contains a case id, a timestamp and an activity for each event. In the 

example in Figure 1 we see additional columns with data attributes: medium, service line 

and urgency. Different processes can have different data attributes. If the value of an attrib-

ute never changes within one trace (like in our example), we can say that it is a trace attrib-

ute. Otherwise it is an event attribute. 

A process log can be stored as a XES [18] (Extensible Event Stream) file, which contains 

information about the process executions. An extract of a XES file is the following: 

…  

<trace> 

 <string key="concept:name" value="Synthetic trace no. 000"/> 

 <event> 

  <string key="concept:name" value="rehabilitation"/> 



7 

 

  <string key="lifecycle:transition" value="complete"/> 

  <date key="time:timestamp" value="2016-04-26T16:28:06.903+03:00"/> 

  <string key="duration" value="8"/> 

 </event> 

 <event> 

  <string key="concept:name" value="x-ray"/> 

… 

The root node is <log>. Inside the log there is a list of traces in <trace> tags. Each trace may 

have trace attributes and contains a list of events in the <event> tag. Events typically have 

a name and a timestamp. The case id is stored in the “concept:name” trace attribute. “dura-

tion” is an event attribute, with value equals to 8. The logs generated with our tool are stored 

in XES files. 

 

Declarative process models 

There are two ways currently used for specifying a process model: imperative and declara-

tive.  

In an imperative process model, we specify all possible execution paths. If some behavior 

is not specified in the model, then it cannot happen. Examples of imperative process mod-

elling languages are BPMN and Petri net. 

In declarative process model, we have the opposite approach: anything is allowed if it does 

not violate any rule (constraint) of the model. Example modelling languages are Declare, 

DPIL and DCR Graphs. 

A trace is considered to be compliant with a declarative model iff. it does not violate any 

rules in the model. 

Declare is a declarative process modelling language. It has two representations: graphical 

and textual. In this paper, the graphical representation will not be used. 

To understand how Declare works, consider two activities: A and B (e.g. Apply to Univer-

sity and Become graduated). 

If we do not have any constraints, then occurrence of the tasks in any order will produce a 

valid trace, for example: 

1. AAA 

2. ABABABBA 

3. BBAA 

4. BB 

But if we add the Precedence(B,A) constraint (which means, that before the execution of B, 

A should be executed), then the 3-rd and 4-th trace will no longer be compliant. 

Declare has a number of constraint templates, which restrict the possible control flow of a 

process. Table 1 shows the Declare constraints and their description. 

Init(A) First task is A 

Existence(A) Task A should be executed 



8 

 

Existence(A,N) Task A should be executed N or more times (N is number) 

Absence(A) Task A should not be executed 

Absence(A,N) Task A may be executed N times or less 

Exactly(A,N) Task A should be executed (exactly) N times 

Choice(A,B) Task A or task B should be executed (or both) 

ExclusiveChoice(A,B) Task A or task B should be executed, but not both 

RespondedExistence(A,B) If task A executed, task B executed as well 

Response(A,B) If task A executed, task B executed after A 

AlternateResponse(A,B) If task A executed, task B executed after A, without other A 

in between  

ChainResponse(A,B) If task A executed, task B executed next 

Precedence(A,B) If task A executed, task B was executed before A 

AlternatePrecedence(A,B) If task A executed, task B was executed before A, without 

other A in between 

ChainPrecedence(A,B) If task A executed, previous executed task was B 

NotRespondedExistence(A,B) If task A executed, task B is not executed 

NotResponse(A,B) If task A executed, task B will not be executed after A 

NotPrecedence(A,B) If task A executed, task B was not executed before A 

NotChainResponse(A,B) If task A executed, task B is not executed next 

NotChainPrecedence(A,B) If task A executed, previous executed task was not B 

Table 1 – Declare constraints 

Some models may not have any compliant traces of finite length (they are overconstrained).  

Suppose that we have tasks A B and C, and constraints ChainResponse(A,B) and NotRe-

sponse(A,B). This model cannot have task A in it, because it will lead to a conflict between 

the 2 constraints. If we add Existence(A) to it, then there will be no possible traces. 

Another example is: Existence(A), Response(A,B), Response(B,A). In this model there are 

no possible finite traces, as A and B need to interleave infinitely. 

In the multi-perspective version of Declare (MP-Declare) tasks may include data, and con-

straints may constrain this data. For example, if we have a task ‘buy ticket’ with attached 

the price (data of type float), then a possible constraint which includes data can be Exist-

ence(buy ticket) [price<10.0] 



9 

 

All declare constraints can be expressed as LTL. LTL is linear temporal logic model. It 

allows to use five temporal operators: next (X), globally (G), finally (F), until (U) and re-

lease (R). X, G and F are unary operators, U and R are binary. Their meaning is following: 

X x – x should be true in the next state 

G x – x should be true in all states 

F x – x should be true in current or at least one of the next states 

x U y – x should be true at least until y becomes true. y should become true. 

x R y – y should be true until and at the state x becomes true. x may not become true 

 

2.2 Model checkers 

Model checkers are tools for checking the model correctness. In our case a model is an MP-

Declare process model. We will use two model checkers: Alloy analyzer and NuSMV. They 

can produce counterexamples which demonstrates violation of the model constraints (Alloy 

can also produce valid examples). By using them we can build traces compliant with the 

original model.  

Alloy 

Alloy allows to describe a logical structure, and to find a model(s), which fits the described 

structure. Or it can find a counterexample – a model which does not fit the described struc-

ture.  

If we describe the notion of activities, trace, MP-Declare constraints in Alloy, it will find 

compliant traces which can be then transformed into a log. 

Internally, Alloy translates an input model to a boolean formula, and then uses SAT solver 

to get a solution. Its advantage is that it can find exhaustively all possible models which are 

compliant with the given formula. 

A simple example of an Alloy model for a trace with two events with possible activities A 

and B, and constraint Response(A,B) is the following: 

 

abstract sig Activity {} // this is definition of activity 

abstract sig Event{  // this is one event in trace 

 name: one Activity // each event is related to activity 

} 

 

one sig A extends Activity {} // activity A 

one sig B extends Activity {} // activity B 

 

one sig T1 extends Event {} // first event of the trace 

one sig T2 extends Event {} // second event of the trace 

 

fact {not T2.name=A and (T1.name=A implies T2.name=B)} // Response(A,B) 

// second event is not A (because in this case it will not be followed by B), 

// and if first is A then second is B 



10 

 

 

If we run this example in the Alloy analyzer, we will get two results: AB and BB. 

Note, that this example does not define any order of events in the trace, we just implicitly 

imply that T2 comes after T1. Also it does not include any data. Nonetheless, this example 

is close to the actual implementation which will be described in section 4. 

NuSMV/NuXMV and LTL 

NuSMV and NuXMV are symbolic model checkers. They allow to encode a model and then 

check it with LTL constraints. If the model violates the constraints, the tool produces a 

counterexample trace. The main difference between NuXMV and NuSMV is that NuSMV 

uses only a SAT solver (similarly to Alloy), while NuXMV can also use an SMT solver, 

which allows the use of infinite domain variables. As it can only produce counterexample, 

in our generator we need to negate all the constraint, so counterexample of negated model 

will be example of the model.  



11 

 

3 Problem and Approach 

Recently, more process logs containing data are becoming available. In order to work with 

these logs, different tools started to appear. One category of such tools is the one of synthetic 

log generators.  

Log generators are needed for different sorts of tasks. Some of them are: testing process 

mining algorithms [1][5][22], translation between process model languages (M2MT) [2][3], 

declarative process visualization [6]. When testing mining algorithms the standard proce-

dure is the following: a log is generated starting from a model, then another model is mined 

from this log and the initial model should match the mined one. One of the ways to do 

model-to-model translation is to generate a log from one model, and then mine this model 

in another notation. Model visualization allows to see potential scenarios of process execu-

tions, to better understand their behavior [21]. In some cases, it is more suitable to use syn-

thetic logs, because real logs may contain noise, deviations and other imperfections. 

Though log generation tools for declarative process models are needed in the above scenar-

ios, data support in the currently existing tools is not present or it does not cover the entire 

semantics of MP-Declare.  

In this thesis, we want to answer the following research questions were formulated:  

1. How can we encode declarative models with data? 

2. How can we efficiently generate event logs from MP-Declare models? 

3. How do different approaches and techniques perform in the generation of event logs 

from data-aware Declare models in terms of generation time and log variability? 

4. How can we measure quality of generated logs? 

To answer these research questions we propose a new format for expressing MP-Declare 

models (RQ1), two log generators based on two model checkers (Alloy and NuSMV) (RQ2, 

RQ3), and a set of metrics to evaluate the quality of the logs (RQ4). 

The log generator based on Alloy is implemented following the approach [16] shown in 

Figure 2: 

 

Figure 2 – Alloy based generator architecture 



12 

 

In the first step we parse the MP-Declare model – deriving separate statements in groups 

(activity definitions, constraints, etc.), build expression trees for functions of data con-

straints, define mapping between activities and data.  

In the preprocessing step we map names to identifiers (to allow the usage of names with 

characters not supported by Alloy) and generate intervals for numeric values according to 

constraints since Alloy does not support numeric variables (explained in more details in 

section 4). 

After the preprocessing we generate the Alloy code corresponding to the MP-Declare 

model. Then we run the Alloy analyzer. The analyzer generates the CNF (conjunctive nor-

mal form) for the model, and then solve it using a SAT (boolean satisfiability problem) 

solver [17]. 

In Alloy, when a model has several constraints on the same activity, the one which comes 

first activated more frequently. This causes generation of unbalanced logs. To overcome the 

problem, we introduced an option for the constraint shuffling. With this option enabled gen-

erator generates the log in several iterations, shuffling constraints order in between. 

When we have the Alloy solution, we can explore it and extract the trace. Finally, in the 

post-processing stage, we remove empty activities, replace intervals with actual numbers 

and decode all names. 

We then move to the next solution and repeat the last two steps until the required amount of 

traces is collected. When all traces are generated, they are saved in a file. 

The log generator based on NuSMV works differently as shown in Figure 3 

 

Fig 3 – SMV-based generator architecture 

The first two steps are the same as in the Alloy-based solution. The SMV generator uses 

the same format of MP-Declare model.  



13 

 

In the code generation step we create two files. First, a .smv model for the NuSMV tool. 

Second, a .json file, which describes data binding to activities and is used internally. Indeed, 

due to the peculiarities of NuSMV, this information is not used by the model checker. 

In the next step we run the model checker, which produces a counterexample for the gener-

ated model (where all the constraints are negated), so the counterexample is actually an 

example for input model. 

When a counterexample is obtained, it is possible to extract a trace from it and save it in  

XES format.  

After the generation of one trace, second run of the generator will produce exactly the same 

trace. To generate different traces, we modify a model in a way that it disallows the last 

trace. 

  



14 

 

4 Related work 

In this section we will discuss existing papers on the topic. We will take a closer look on the 

described solutions, their applicability to our problem, and find some baselines to improve. 

There are numerous approaches to the simulation and log generation for business processes. 

In [8] the authors describe the concept of abductive logic reasoning, and use SCIFF frame-

work for log generation. Both: declarative and imperative process models can be used, but 

no translation from process model to SCIFF has been implemented. Overall [8] is in very 

early stage and cannot be evaluated or used yet. 

The works in [9], [10] and [11] are three consecutive works about log generation from 

BPMN models (imperative). The approach of the authors is to simulate the process by main-

taining a set of enabled activities, and iteratively putting a randomly chosen activity from 

the set into a trace. After each iteration the set is updated. Additionally, this type of simula-

tion allows to specify the duration of activities, the time between activities and probabilities 

for control flow splits. 

There are also generators based on mixed model. In [12] authors show CPN tool, which 

allows adding declarative constraints to the transitions of colored Petri net. 

The works discussed in previous paragraphs of this section are mostly targeting procedural 

models. The following approaches are intended for declarative models, and use similar ap-

proaches to ours. 

In [1,2] the authors present a log generation technique from multi-perspective process mod-

els based on DPIL (declarative process intermediate language). 

Table 2 shows the list of possible constraints in language: 

 

Table 2 – DPIL constraints 

We can see that this language supports some data and has some constraints similar to De-

clare ones. Sequence(a,b) is equivalent to precedence(a,b), once(a) is equivalent to ex-

actly(1, a). Consumes, produces, role and binding are data constraints, but the restriction 

here is that data types can only be a document and a role. Therefore, there are two types of 

data constraints. 

After describing the model using DPIL, the first step toward the log generation is to translate 

it into another language – Alloy. Alloy is a declarative language for describing models. After 

the model is described we can do two things: try to find a valid example which satisfies our 



15 

 

assertion and try to find counterexample which proves that our assertion is wrong. For the 

log generation we need the first one – find instances which satisfy our model.  

In order to convert a declarative process model into Alloy we need first to define what a 

trace is, a task is, etc. in Alloy terms. After this we can convert the rules themselves. The 

paper contains the definition of the basic structures required, and also conversion rules for 

the constraints presented before. 

In [2] the authors present techniques for translating models from DPIL to BPMN and back-

wards. 

For translating models, they employ the following two steps:  

1. Generate traces from the model.  

2. Mine models in a different format from traces. For trace generation in this paper 

authors use the technique described in [1].  

Similarly to [2], in [3] authors also describes a model translation between DPIL and BPMN 

using simulation. But they use a different simulation technique.  

First they map all the task in a model to characters. Then they convert each constraint into 

a regular expression. For each regular expression they get corresponding finite state autom-

ata (FSA). After this they compute the product of all FSAs. Finally, when they have the 

product, they can traverse it through with random path, and each path will correspond to one 

trace. The work in [5] is focused on the generation part in more details using this technique. 

The disadvantage is that we cannot add data to it. 

 



16 

 

5 A new format for MP-Declare 

To provide a process model as an input to the generator, we need to have some file format 

for storing it. As existing XML-based format for graphical tools for editing Declare models 

like the “Declare designer” do not support data, we designed a format for defining the model 

which can be used for storing it as a plain text file. The format is a structured textual format 

since extending the graphical representation of Declare would make the model difficult to 

understand. 

There are 6 types of statements which can be written in the model: the definition of an 

activity, the definition of a data attribute, the binding of an activity to data, a constraint, a 

data constraint and the definition of a trace attribute.  

Here is the specification of the language: 

Definition of a Declare activity: 

activity activity_name 

activity_name :: name 

Example: 

activity SubmitApplication 

 

There are three types of data which can be defined: enumerative, integer and float.  

Definition of enumerative data: 

name: values 

values :: 

 data_value | 

 values, data_value 

data_value :: name 

 

Example: 

TransportType: Car, Plane, Train, Bus 

 

This will create data with key (attribute name in a log) "TransportType". Value can be either 

Car, Plane, Train or Bus. 

 

Definition of numeric data: 

num_data_name: num_type between number and number 

num_data_name :: name 

num_type :: one of 

 integer float 

 

number :: 

 digit | 

 number digit 



17 

 

 

(the definition of number is simplified for brevity; a float attribute can have values with 

decimals) 

Example: 

Price: integer between 0 and 300 

Angle: float between 0 and 180 

 

This will create two data attributes with keys “Angle” and “Price” 

 

Binding data to activity (iff activity has binded data, all ocurrences of this activity in a 

trace will have this data): 

bind activity_name: data_name 

Example: 

bind AssessApplication: AssessmentType, AssessmentCost  

 

Declare constraint: 

constraint ::  

 unary_constraint[activity_name] | 

 unary_constraint[activity_name]|function | 

 unary_nconstraint[activity_name, number] | 

 unary_nconstraint[activity_name, number]|function | 

 binary_constraint[activity_name] | 

 binary_constraint[activity_name]|function|function 

 

unary_constraint :: one of 

 Init Existence Absence 

  

unary_nconstraint :: one of 

 Existence Absence Exactly 

 

binary_constraint :: one of 

 Choice  ExclusiveChoice  RespondedExistence  Response  AlternateResponse  ChainRe-
sponse Precedence  AlternatePrecedence  ChainPrecedence NotRespondedExistence  NotResponse  
NotPrecedence  NotChainResponse NotChainPrecedence 

  

function ::  

 empty | 

 function or function | 

 function and function | 

 not function | 

 ( function ) | 



18 

 

 same data_name | 

 different data_name | 

 variable . data_name is data_value | 

 variable . data_name is not data_value | 

 variable . data_name in ( values ) | 

 variable . data_name not in ( values )  

 variable . num_data_name comparator number 

  

comparator :: one of 

 > < >= <= = 

 

variable :: one of  

 A B 

  

A corresponds to the first activity of the Declare constraint, and B to the second one (see 

examples). 

The variable name (A and B) can be overwritten for data constraints by adding a new name 

after the activity name. E.g., for unary constraint it will look like this: 

unary_constraint[activity_name variable_name]|function 

Example: 

 Exactly[bookTransport T, 2]|T.type is car 

 

Other examples of the format: 

 Exactly[bookTransport, 2] 

This is a Declare constraint without data. Activity bookTransport should occur exactly 

twice. If it has data attached, the value can be any. 

 Exactly[bookTransport, 2]| A.price<100 and A.transportType in (car, plane) 

This is an MP-Declare constraint. Activity bookTransport should occur exactly two times 

with value of price less than 100, and with value of transportType either equal to car or 

plane. More occurrences of bookTransport are possible, but with different data values 

(price>=100 or transportType not in (car, plane)) 

 ChainResponse[bookTransport, useTransport] || same transportType 

This is an MP-Declare constraint. Activity bookTransport should be immediately followed 

by activity useTransport. Data items with key transportType should have the same values in 

both these activities.   

 ChainResponse[bookTransport, bookTransport] | A.transportType is Plane | 
B.transportType is Car 

This is an MP-Declare constraint. Activity bookTransport where transportType has value 

Plane should be immediately followed by activity bookTransport with transportType equal 

to Car. 



19 

 

6 The Alloy-based log generator 

6.1 A baseline solution investigation 

In order to present our encoding of the MP-Declare rules in Alloy we will start investigating 

the existing solutions and, in particular, the solution presented in [1]. In this subsection we 

discuss what has been implemented, what problems the solution in [1] has, and then, in the 

next subsection, we extend and improve it. 

Model. In [1] the authors use an example of a “business trip” process in DPIL. Normal flow 

of this process is following: somebody applies for the trip, gets an approval for it, requests 

accommodation and transport and collect tickets. After trip is done related documents are 

archived. In this paper we will give the Declare version of their model. The model is: 

Precedence(Approve application, Book means of transport) 

Precedence(Approve application, Book accommodation) 

Precedence(Book means of transport, Collect tickets) 

Precedence(Book accommodation, Collect tickets) 

Absence(Apply for Trip, 1) 

Absence(Approve application, 1) 

Absence(Collect tickets, 1) 

Absence(Archive documents, 1) 

Precedence[Approve application, Apply for Trip B]||B.Application is Application.written 

Precedence[Archive documents, Apply for Trip B]||B.Application is Application.written 

Precedence[Archive documents, Collect tickets B]||B.TicketCollection is TicketCollec-
tion.written 

NotRespondedExistence[Book means of transport, Apply for Trip]||different org::resource 

NotRespondedExistence[Book accommodation, Apply for Trip]||different org::resource 

NotRespondedExistence[Collect tickets, Apply for Trip]||different org::resource 

NotRespondedExistence[Archive documents, Apply for Trip]||different org::resource 

The typical execution trace for this model will be following: 

(Apply for Trip, Approve application, Book means of transport, Book accommodation, Collect 
tickets, Archive documents) 

Now let’s discuss how did the log generator for this model was implemented in [1]. 

Similarly to classes in object-oriented languages, in Alloy we have signatures. These signa-

tures can be abstract. 

For example, in [1] tasks of the model were encoded in the following way: 

one sig ApplyForTrip extends Task {} 

one sig ApproveApplication extends Task {} 

one sig BookMeansOfTransport extends Task {} 

one sig BookAccomodation extends Task {} 

one sig CollectTickets extends Task {} 

one sig ArchiveDocuments extends Task {} 

We see, that each task extends the Task signature. In the Alloy the parent signature has 

somewhat different meaning from superclasses in OOP. The parent signature is the set of 



20 

 

all its children. So here (Task) = (Apply for Trip + Approve application + .. + Archive 

documents), where + is the union operation.  

The ‘one’ keyword before sig means singleton -- only one instance of this entity can exist 

in the model (though it can be referenced from many places). Other possible options are 

‘no’ (no instances), ‘lone’ (0 or 1 instance), ‘some’ (one or more), or undefined. In case of 

‘some’ or undefined multiplicity, we will need to specify the maximum amount of instances 

before starting simulation.  

The definition of Task is following: 

abstract sig Task extends AssociatedElement{} 

And AssociatedElement: 

abstract sig AssociatedElement { } 

Note that we are omitting some parts here, which are related to roles and resources (you can 

find them in the original paper). For now, AssociatedElement = Task. 

Trace. What we have seen so far is just a set of tasks, without any order or constraint. Now 

we give the trace definition. 

abstract sig PEvent {  

 pos: disj Int 

} 

one sig StartEvent extends PEvent{} 

one sig EndEvent extends PEvent {} 

sig TaskEvent extends PEvent{ 

 assoEl: some AssociatedElement 

}{ 

 #(Task & assoEl) = 1 

} 

(I made TaskEvent non-abstract unlike original definition, to make it more comprehensible) 

What we have here ise  a trace -- one StartEvent, one EndEvent, and some events in between. 

Each event has a position in thtrace (pos: disj Int). ‘Disj’ means that the position is unique 

(no two events are in the same position). In the signature definition, the first curly brackets 

define the block of variables in the signature, and the second ones define the constraints 

applicable to this signature. 

Each TaskEvent (event between start and end) is linked to one task. ‘#(Task & assoEl) = 1’ 

means that exactly one Task is in the set of associated elements of TaskEvent (field assoEl; 

# is a cardinality operator – returns count of items in a set. & is intersection of the sets. In 

the original code there are other types of associated elements which we omitted). 

Finally, there are three constraints aiming to ensure that all the events have a sequential 

position between start and end: 

// StartEvent has the lowest possible integer 

fact { all intVal: Int | intVal >= StartEvent.pos } 

 

// All events other than the StartEvent/EndEvent have a position greater than 0 and smaller 
than EndEvent.pos (sequence) 

fact{ 



21 

 

all e: (PEvent - StartEvent - EndEvent) | e.pos < (StartEvent.pos + #TaskEvent + 1)  

} 

 

// EndEvent is the last PEvent; finally leads to: Position increment is 1 

fact{ 

 EndEvent.pos <= (StartEvent.pos + #TaskEvent + 1)  

} 

The notes to the code above are given in the comments which start with ‘//’. The only thing 

to add is that the ‘-‘ operator in Alloy means difference of sets, and ‘|’ can be read as ‘where’. 

In the model there are ‘Absence’ and ‘Precedence’ constraints. 

For Absence(ApplyForTrip, 1) the corresponding code is following: 

fact { lone te: TaskEvent | ApplyForTrip in te.assoEl } 

This means, that there are zero or one (lone keyword) Events linked to the ApplyForTrip 

task. 

For Precedence(Approve application, BookMeansOfTransport) the corresponding code is 

the following: 

fun existsInBefore(currentEvent: TaskEvent, asso: AssociatedElement) : set TaskEvent { 

 { hte: TaskEvent | hte.pos < currentEvent.pos and asso in hte.assoEl } 

} 

//    ensure sequence(Approve application, BookMeansOfTransport) 

fact { all hte: TaskEvent | BookMeansOfTransport in hte.assoEl implies #existsInBe-
fore[hte,ApproveApplication] > 0 } 

Here, we have a function, which takes an event and a task (AssociatedElement), and return 

the set of events corresponding to the given task happened before the given event. The con-

straint itself ensures that for each occurrence of BookMeansOfTransport, ApproveApplica-

tion happened before more than zero times. 

What we have in this implementation is a log generator with limited amount of constraints 

and some potentially useful functions which were defined in Alloy code but were not used 

in the tool. Also we have some types of data like roles and resources (not shown here, see 

[1]). Finally, we have a working binary executable (without source code) for log generation, 

which proves that it is possible to use Alloy for this purpose. 

There are several problems and limitations in the current implementation. Performance: the 

generation of 1000 traces with length up to 80 events (and average length is lower) takes 

around one hour (see original paper for measurements). Generalization: the current tool pre-

sented by the authors is made specifically for their model (does not have an input for it, 

model is hardcoded). Generation parameters: Only maximum trace length and amount of 

traces can be altered. Constraints and data: a limited amount of constraints is supported. 

Data represented as role and resource.  

To sum up, the presented implementation is able to deal with specific type of constraints on 

data, which do not cover the whole spectrum of MP-Declare and it presents other perfor-

mance and expressiveness limitations. In this paper we would like to overcome these limi-

tations by proposing a solution able to generate a log from all types of the MP-Declare 

constraints. Also, we need to define some input format for MP-Declare model, and automate 

its conversion to Alloy. 



22 

 

6.2 Alloy: our proposal 

Now we show how the baseline approach can be improved and modified to fit our purposes.  

Trace. Our trace is a set of events, and each event has a reference to one activity. 

abstract sig Event {  

 task: one Activity 

} 

 

one sig TE0 extends Event {} 

one sig TE1 extends Event {} 

one sig TE2 extends Event {} 

one sig TE3 extends Event {} 

 

abstract sig Activity {} 

one sig ApplyForTrip extends Activity {} 

one sig ApproveApplication extends Activity {} 

one sig BookTransport extends Activity {} 

… 

In this representation the length of the trace is fixed. To represent a trace of unknown 

length we could use ’lone’ multiplicity like this: 

one sig TE0 extends Event {} 

… 

lone sig TE3 extends Event {} 

… 

However, it takes a lot of time to process this in cases where the difference between mini-

mum and maximum values is too high. Therefore, in order to be able to represent traces of 

different length more efficiently, we will use special activity called ‘DummyActivity’, 

which may appear only in optional events, and will be removed from final trace. For ex-

ample, if Alloy produce trace ‘A B DummyActivity C’, then it will be saved as ‘ABC’.  

one sig DummyActivity extends Activity {} 

… 

one sig TE3 extends Event {} {not task=DummyActivity} 

one sig TE4 extends Event {} 

… 

 

Finally, in all constraints we need order between events for two things: to see if one task is 

before/after another (Response, Precedence, etc.) and to see if one task is next to another 

(ChainResponse, etc). For this purpose, two predicates (Boolean function in Alloy) can be 

created: 

pred Next(pre, next: Event){pre=TE0 and next=TE1 or pre=TE1 and next=TE2 or pre=TE2 and 
next=TE3 or pre=TE3 and next=TE4 } 



23 

 

pred After(b, a: Event){// b=before, a=after 

b=TE0 or a=TE4 or b=TE1 and not (a=TE0) or b=TE2 and not (a=TE0 or a=TE1) or b=TE3 and 
a=TE4} 

This is an example for a trace of maximum length 4, but it is possible to write them for 

any length. An easier option would be to assign a number to each event, and use the com-

parison operators, but this would imply increasing the bitwidth with the length of trace, 

which is undesirable. 

Constraints conversion. To constrain the Alloy model the ‘fact’ keyword can be used. All 

the constraints specified in fact blocks will be true in the generated solution. 

In order to encode an arbitrary MP-Declare model to Alloy, we need to ensure that for each 

standard Declare constraint exists at least one possible way to encode it in Alloy (with ex-

isting trace definition). Some of the conversion rules are given in table 3: 

Constraint Alloy code 

Init[A] taskA = TE0.task 

Existence[A] some te: Event | te.task = A 

Absence[A] no te: Event | te.task = A 

Exactly[A,N] #{ te: Event | A = te.task } = n 

Choice[A,B] some te: Event | te.task = A or te.task = B 

ExclusiveChoice[A,B] some te: Event | te.task = A or te.task = B 

(no te: Event | A = te.task) or (no te: Event | B = te.task ) 

RespondedExist-

ence[A,B] 

(some te: Event | A = te.task) implies (some ote: Event | B = 
ote.task) 

Response[A,B] all te: Event | A = te.task implies (some fte: Event | B = 
fte.task and After[te, fte]) 

AlternateResponse[A,B] all te: Event | taskA = te.task implies (some fte: Event | taskB 
= fte.task and After[te, fte] and (no ite: Event | taskA = 
ite.task and After[te, ite] and After[ite, fte])) 

ChainResponse[A,B] all te: Event | A = te.task implies (some fte: Event | B = 
fte.task and Next[te, fte]) 

Table 3 – Declare constraints encoding in Alloy 

The full implementation is available in GitHub, and can be found here 

https://github.com/darksoullock/MPDeclareLogGenerator . 

Here we explain some of the constraints presented above in more details.  

Absence[A] 

no te: Event | te.task = A 

This can be read in the following way: There is no Event te (’te’ stands for ’task event’) 

where its task is equal to A. 

 

https://github.com/darksoullock/MPDeclareLogGenerator


24 

 

Exactly[A,n] 

#{ te: Event | A = te.task } = n 

This one uses the cardinality operator ‘#’, which means count or amount. The amount of 

Events such that task = A should be equal to n. 

Response[A,B] 

all te: Event | A = te.task implies (some fte: Event | B = fte.task and After[te, fte]) 

For all events where task is A there exists another event (named fte) whose task is B and 

which happened after A (after event te). 

Adding data. Usually, in any process there is more information available about activities 

than just a name and a timestamp. In a XES log this information appears as additional at-

tributes attached to events. The task of the log based MP-Declare generator is to provide a 

way of describing this data by specifying the type, possible values and additional constraints 

applied on this data. 

The data constraint will be specified as additional function(s) on standard Declare con-

straints. 

Based on examples and proposals in [4] and [7], we decided what data types can be used in 

event’s data, and how they can be constrained. 

The data types are the following ones: 

Type Description 

Enumeration The event attribute can have one of the values specified in the data 

definition. 

Integer The event attribute can have a value within the range of integers. 

Float The event attribute can have a value within the range of real numbers. 

Table 4 – Data types supported in MP-Declare 

We can use numbers in our solutions. However, numbers will affect the efficiency of the 

tool. Indeed, Alloy uses a SAT solver inside, and the numbers support is simulated through 

enumeration (not the most efficient way). Therefore, when running Alloy, one needs to 

specify a bitwidth, which defines the number of bits used in all int values. Then ALL the 

possible integers will be enumerated in signatures. This creates noticeable performance im-

pact. The maximum practical to use bitwidth is 7 (possible values within the range -64..63). 

This is the main reason why it is not possible to add date/time value as a data type. This is 

also one of the reasons of the poor performance of [1] – in their solution Alloy computes 

indices of activities in traces from declarative specification. 

Another problem with numbers is overflow. If bitwidth is 5 (possible values are -8..7), then 

cardinality operator #(Task) for 8 tasks will return -8, which can lead to wrong evaluation 

of constraints. For example, if we have a constraint Absence[A,2], then Alloy code #(A) < 

3 will also evaluate to true when A occurs 8 or more times. 

Based on this, we restricted the usage of numbers in our solution (will be discussed be-

low).  

 



25 

 

Each Declare constraint can have one or two data constraining function, depending on num-

ber of constraints. Examples: 

Existence[BookTransport B] | B.Price>50 

This constraint has one function and means ‘Activity BookTransport with Price>50 should 

present in a trace’. 

Another example from [23]: ‘a  bank  account  is  opened  only  in  case  risk  is  low‘. This 

can be written as: 

Precedence[AccountChng Acc, RiskEval Risk] | Acc.Status is Opened | Risk.Level is Low 

This means, that when event ‘account changed’ occurs with status ‘opened’, it has to be 

preceded by the event ‘risk evaluated’ with ‘level’=’low’. 

The operators thet can be used to constraint data are: 

Name Description Scope Example 

is Value is equal to something Enum A.Transport is Car 

is not Value is different to something Enum A.Transport is not Car 

in Value is equal to one of (…) Enum A.Transport in (Car, 
Train) 

not in Value is not one of (…) Enum A.Transport not in (Car, 
Train) 

or One of the arguments should hold true op A.Transport is Car or 
A.Transport is Car 

and Both arguments should hold true op A.Transport is Car and 
A.Transport is Car 

not Negation  op not A.Transport is Car 

same For constraints with two arguments (e.g. re-

sponse). ‘same X’ means A.X equals B.X  

Enum, 
numbers 

same Transport 

different ‘different X’ means A.X not equals B.X Enum, 
numbers 

different Price 

> 

< 

>= 

<= 

= 

Comparison of variable with constant. 

Comparison of two variables is not sup-

ported (e.g. A.Price>=B.Price) 

Numbers A.Price>50 

 

Incorrect: 
A.Price<B.Price 

Table 5 – Data constraints operators 

These operators can be combined in different ways (nested or, and, not). To ensure the cor-

rect order of constraint evaluation, parenthesis can be used. The priorities of the operators 

without parenthesis are the following: not, and, or. The empty function for a data constraint 

will be evaluated as true. 



26 

 

To encode the data in Alloy code we introduced the ‘Payload’ signature. 

abstract sig Payload {} 

And added in each event set of payloads. 

abstract sig Event { 

 task: one Activity, 

 data: set Payload 

} 

When we want to add a new datatype, we create anabstract signature inherited from payload. 

This signature will be the name of the new type (attribute in the log). From this signature 

we create more subsignatures, which will be the values. 

For example, if we want to create the data type ‘TransportType’ with possible values ‘Car’, 

‘Train’, and ‘Plane’, the code will be: 

abstract sig TransportType extends Payload {} 

fact { all te: Event | (lone TransportType & te.data)} 

one sig Car extends TransportType{} 

one sig Plane extends TransportType{} 

one sig Train extends TransportType{} 

In the second line we define the constraint indicating that one event can have at most one 

instance of this type of data (e.g., an event cannot have both: car and train). 

The next step is to bind the data to activities – define which type of data can be used in 

which events. Suppose that we want our TransportType data to be attached to Book-

Transport events. We write: 

fact { all te: Event | te.task = BookTransport implies (one TransportType & te.data) } 

fact { all te: Event | some (TransportType & te.data) implies te.task = BookTransport } 

This code ensures that for every BookTransport event a TransportType is attached and vice 

versa – the activity of an event with TransportType attached to it can only be BookTransport. 

In case of multiple data types bound to one event, or one type used in different events, the 

constraint is similar. The following example shows the binding of two activities Book-

Transport and Use transport to data type TransportType 

fact { all te: Event | te.task = BookTransport or te.task = UseTransport implies (one 
TransportType & te.data) } 

fact { all te: Event | some (TransportType & te.data) implies te.task = BookTransport or 
te.task = BookTransport } 

As Alloy does not really support big numbers, they are mapped to some intervals and written 

as enumerated values. This mapping is performed before running the Alloy analyzer in the 

pre-processing step. After a solution has been found, the values corresponding to numbers 

are unmapped. At this point, hence, each numeric variable is not associated to a single value 

but rather to an interval of admissible values. A random value within the admissible set of 

values is hence picked and assigned to the variable in the post-processing step. 

Data constraints encoding in Alloy. As mentioned before, constraints containing data will 

be the same as ordinary Declare constraints, but will include functions for data. Alloy al-

ready has all the necessary operators for implementing the following operations: is, in, not, 

or, and (all operations not related to numbers).  



27 

 

Consider the example: 

Precedence[AccountChng Acc, RiskEval Risk] | Acc.Status is Opened | Risk.Level is Low 

We can write predicates (Boolean functions) that take the event as a parameter, and return 

if the condition is true. For ‘Acc.Status is Opened’ it will be: 

pred p1 (A: Event) { { A.data & Status = Opened } } 

Predicate P1 will return true if the intersection of the data attached to the event and the set 

of possible statuses (this intersection will be always one value, as constrained before) will 

be equal to ‘Opened’. Similarly, for ‘Risk.Level is Low’ the predicate will be: 

pred p2 (A: Event) { { A.data & Level = Low } } 

Therefore, to encode original constraint, we first encode the constraint without data. 

Precedence[AccountChn, RiskEval] 

The corresponding Alloy code will be: 

all te: Event | te.task = AccountChn implies (some fte: Event | fte.task = RiskEval and 
After[fte, te]) 

And then we can add data constraints to it by calling the predicates defined above: 

all te: Event | (te.task = AccountChn and p1[te]) implies (some fte: Event | fte.task = 
RiskEval and After[fte, te] and p2[fte]) 

Note, that in Alloy arguments of functions and predicates are passed in square brackets.  

Data can be added in the same way also to other Declare constraints. 

For the ‘same’ and ‘different’ operators we need access both, activation and correlation ac-

tivities, therefore the second function will have two arguments. An example of predicate for 

the ‘same Level’ operation is: 

pred p3 (A, B: Event) { { A.data & Level = B.data & Level } } 

Handling numbers. Suppose we have an activity with associated price. Price should be a 

number. Also suppose that we have a constraint assessing that price should be greater than 

50. 

Existence[Activity]|Price>50 

 To implement this in Alloy we first we find all the numbers involved with this data type 

(price). In our case there is only one value – 50 (‘in the expression Price>50’). Then we split 

all numbers into intervals. In this case we have two intervals: more than 50 and less or equal 

to 50. Finally, we add a constraint in Alloy expressing the fact, that the value of price should 

be in the valid interval (in this case >50). 

some te: Event | te.task = A and Price = IntervalGreaterThan50 

Afterwards in the post-processing, the interval will be replaced by a random value within 

the interval. 

If there are more constraints involving different numbers, they will be split into more inter-

vals, and Alloy will try to find one, that satisfies all of them.  

Example: We have two constraints:  

Absence[SomeTask A]|A.price>100 

Absence[SomeTask A]|A.price<50 

(data definition omitted). In these constraints, price is compared with two numbers: 50 and 

100. Based on this, the following intervals are generated:  <50, >=50&<=100, >100. Then 



28 

 

they are encoded in Alloy as signatures: LessThan50, Between50And100, MoreThan100. 

The first constraint (A.price>100, converted to ‘A.price in (MoreThan100)’) allows only the 

LessThan50 and Between50And100 intervals, and the second constraint allows the Be-

tween50And100 and MoreThan100. Therefore, in the Alloy solution the price will be equal 

to Between50And100. This value is then replaced by a random number between 50 and 100. 

‘same’ and ‘different’ data constraints on numbers. With intervals representing numbers 

in Alloy we cannot use ‘same’ and ‘different’ constraints in the same way as we do for 

enumerated values. Indeed, if two values are within same interval, they might have same or 

different values (unless the interval has only one possible value, e.g., an integer between 1 

and 3 can only be equal to 2). If we constrain two values to belong to different intervals (e.g. 

LessThan50 and MoreThan50), they will surely be replaced with different values, but in 

many cases this is not possible. 

Our solution is the following: add tokens to events (these tokens are not related in any way 

to tokens in Petri Nets). We encoded in Alloy following rules for the tokens: 

 Each token has a matching pair. Like poles of the magnet, one cannot exist sepa-

rately.  

 Each token references data attribute of an activity, and the same attribute cannot be 

referenced from both token in pair.  

 If two numeric data attributes in two activities are referenced from pair of tokens, 

the value of these attributes will be the same interval (only for ‘same’ constraint). 

If two events have the same token, they will be guaranteed to get the same value in the 

interval of numeric data attribute, and during post-processing we will ensure, that the same 

random value will be selected for both attribute. The implementation of the tokens for 

‘same’ and ‘different’ constraints is identical in Alloy, only constraints themselves differ.  

The final definition of event, which includes tokens is following: 

abstract sig Event {  

 task: one Activity, 

 data: set Payload, 

 tokens: set Token 

} 

And the tokens definitions are following: 

abstract sig Token {} 

abstract sig SameToken extends Token {} 

abstract sig DiffToken extends Token {} 

For example we have following constraint: 

Response[BookTransport, UseTransport]||same Price 

Activity BookTransport should always be followed by activity UseTransport with the same 

value of the data attribute Price. To achieve this, we add a pair of tokens which will reference 

these two activities, and they will get the same interval for Price. Then in post-processing 

step we will know, that two activities with the same token should get exactly the same value 

in the corresponding data attribute (in this case it is Price). 

As we will handle tokens outside Alloy, we need to ensure that two values cannot be the 

same and different simultaneously. This also includes indirect relations like A=B, B=C, 



29 

 

A≠C. The encoding of such transitive relation would significantly affect the Alloy perfor-

mance (and could be complex, as recursion is not supported). To deal with this, we decided 

to restrict each data variable with either ‘same’ or ‘different’ token type with the following 

code: 

fact { all te:Event| no (te.tokens & SameToken) or no (te.tokens & DiffToken) } 

Though it may decrease the amount of possible traces, the models that are affected by this 

limitation are quite uncommon (we did not encounter any in related literature or real life 

models). A possibility for solving this type of limitation could be spliting each interval into 

two or more parts (it will make ‘different’ token is no longer necessary). 

Consider the example with two constraints: 

X: integer between 0 and 100 

Response[A,C]||different X  

ChainResponse[A,B]||same X  

Possible trace would be A[X=1]B[X=1]C[X=2] 

If X consists of one interval, a solution will not be found, as events A and C need ‘different’ 

tokens, and events A and B need the ‘same’ tokens; first event need to have tokens of both 

types (which we do not allow). But if we have two intervals, then events A and B will have 

‘same’ tokens, and event 3 will be in different interval, therefore nor requiring ‘different’ 

token, as different value now guaranteed even without it. You can look at ‘testSameDiffer-

entForOneEvent’ unit test in code, to see that it is work. 

 

As we see from the Event definition, tokens are not explicitly bound to data. Therefore, we 

use signatures’ names for distinguishing types and constraining the tokens usage in Alloy 

facts. For example: 

abstract sig SamePrice extends SameToken {} 

one sig SamePrice1 extends SamePrice {} 

fact { 

all te: Event | SamePrice1 in te.tokens implies (one ote: Event | not ote = te and 
SamePrice1 in ote.tokens) 

}  

The meaning is the following: if a token is present in event, it must appear only once in 

other event. Thus we always have no or two usages of token, hence it will not appear in 

random events, obscuring the model. Also, it will not persist the same value in multiple 

activations of constraint (e.g. if we have ‘ChainResponse[A,B]||same X’ and trace ABAB, 

X will not necessarily have the same value in all four events, but will rather have two dif-

ferent pairs).  

In this example we had only one non-abstract token, but in practice we have more. Other-

wise, if model will contain two activation of constraint, there will be not enough tokens for 

the second activation.  

The number of instances of some signatures in Alloy should always be bounded. In this case 

we use ‘one’ multiplicity. Without this bound we would need to specify the scope (maxi-

mum occurrences of signature in the model) when running the analyzer. This would weaken 

our control over individual tokens (i.e. made post-processing logic more complex), and 

would add complexity to evaluate required scope (lower performance).  



30 

 

The described idea work for simple cases, but as we can use arbitrary expressions, some of 

them may produce unwanted behavior. Suppose that we have ‘not same A’. For this expres-

sion generated code will look for something like ‘not (equal intervals and token present)’ 

which is the same as ‘not equal intervals or not token present’. This may lead to a broken 

model, which has different intervals with same token, and it will be discovered only in post-

processing. The solution for this problem is very obvious: replace all occurrences of negates 

same to different and vice versa. This should also take into account cases, where negation 

is indirect like ‘not (A and same B)’. This approach was implemented in the presented so-

lution and all the details can be found in the source code. https://github.com/dark-

soullock/MPDeclareLogGenerator 

Another similar problem occurs when we want to specify negative constraints, like NotRe-

sponse. Suppose we have ‘NotResponse[A,B]|| same X’. To make it work, we can encode 

it like ‘A should be not followed by B or A followed by B with different X’. As we have 

numbers and ‘different’ constraint implemented with intervals and tokens, it will be encodet 

following way: ‘if A present then it is not followed by B with same interval and without 

“different” token for X’.  

In Alloy terms the function ‘same X’ for this constraint looks like this:  

{ A.data & X = B.data & X and (not ( one (DiffX1 & A.tokens & B.tokens))) }  

Consider following model: 

X: integer between 0 and 100 

RespondedExistence[A,C]||same X  

RespondedExistence[B,C]||same X 

Our algorithm will iterate over tasks. A should have the same value as C, but as C does not 

have value yet we assign a random one. Suppose it is 1. The same happens for B, we assign 

a random value, suppose it is 2.  

 

Figure 4 – Deadlock example when assigning values in post-processing 

 Now we need to assign a value to C, but both A and B have a value, and they are different. 

Therefore, we have an invalid state in our program. To avoid this, we find all the groups of 

connected events (events which should all have the same value for a data attribute), and add 

tokens for all pairs within each group. In this example, we would add matching tokens in A 

and B, and this would lead to assigning the same value for B as for A. 

For ‘different’ constraint, this problem does not occur, because if A different from B, and B 

is different from C, then A can be the same as C.  

As mentioned in the background, traces have both trace and event attributes. The Alloy-

based log generator is able to support both of them. However, while for the event attributes 

the log generator is able to completely constrain them, for trace attributes, it only allows for 

constraining admissible values for enum and numerical variables. Moreover, they are not 

part of the Alloy model, and will be handled exclusively in java code (on pre- and post-

processing stages). 

https://github.com/darksoullock/MPDeclareLogGenerator
https://github.com/darksoullock/MPDeclareLogGenerator


31 

 

The entire procedure of log generation is following: 

1. Find all numeric data definitions in input 

2. For each of them find all usages in comparison operations and save numbers it com-

pared with 

3. Split space of possible values in intervals by found numbers 

4. Map each interval to codename 

5. Generate signatures for Alloy 

6. Run the Alloy analyser 

7. Unmap all codenames from the result back to intervals 

8. Replace intervals by one random value from it 

In this flow, step 1 is performed by model parser (Fig 3.1.1 – generator architecture), steps 

2, 3 and 4 are performed in pre-processing, 5 is code-generation, and 7..8 done in post-

processing. 

 



32 

 

7 The NuSMV-based log generator 

In NuSMV a model is stored in an smv file. It has several blocks. The VAR block contains 

all variables. Each variable present in all states of the trace. We will use four types of vari-

ables: Boolean, enumeration, integer and real. FROZENVAR stores constants – variables 

which do not change their value over states. In the ASSIGN block, we can define the possi-

ble values for the variables. We will use three constructions in this block: init(var) – assign 

initial value to the variable; next(var) – define in which way the value can change. 

LTLSPEC block – here we encode constraints as LTL formulas. 

To produce a trace, we generate a counterexample, negating all constraints. Consider 

‘ChainResponse’ example. 

Suppose we have an activity variable, which stores one of three values {a,b,c}. We want to 

add a constraint ChainResponse(a,b). In LTL it will be G (activity = a -> X activity = b). It 

means, that for all states if the current activity is a, next should be b. Now we need to negate 

it. I.e. we consider !G (activity = a -> X activity = b), and find a counterexample for it. The 

counterexample will provide us with an execution trace for the non-negated (original) 

model. 

Figure 6.1.1 shows translation of standard Declare constraints to negated LTL: 

Constraint !LTL 

AlternateResponse(a,b) !G (state = a -> X(state != a U state = b)) 

Response(a,b) !G (state = a -> X F state = b) 

Existence(a) !F (state = a) 

Absence(a) F (state = a) 

Choice(a,b) ((!F state = a) & (!F state = b)) 

ExclusiveChoice(a,b) ((!F state = a) & (!F state = b) | (F state = a) 

& (F state = b)) 

RespondedExistence(a,b) ((F state = a) & (!F state = b)) 

ChainResponse(a,b) !G (state = a -> X state = b) 

NotRespondedExistence(a,b) ((F state = a) & (F state = b)) 

NotResponse(a,b) !G (state = a -> X !F state = b) 

NotChainResponse(a,b) !G (state = a -> X state != b) 

Precedence(a,b) (state=a V state!=b) 

NotPrecedence(a,b) !G (state = b -> X !F state = a) 

NotChainPrecedence(a,b) !G (state = b -> X state != a) 



33 

 

AlternatePrecedence(a,b) !G (state = a -> (X(state != a U state = b))) 

| (state=a V state!=b) 

ChainPrecedence(a,b) !G(X state = b -> state = a) 

Table 6 – Encoding constraints in LTL 

Init, ExistenceN, ExactlyN and AbsenceN are not shown in Figure. To encode Init(a) we 

write “init(activity):=a;” in the ASSIGN block. There are two options to encode Exist-

ence(a,N), Exactly(a,N) and Absence(a,N): we can use a counter: 

VAR 

 state : {a, b}; 

 aCount:integer; 

ASSIGN 

 init(aCount):=0; 

 next(aCount):= 

  case 

   state= a: aCount +1; 

   TRUE: aCount; 

  esac; 

Then we can add LTL constraints to this counter to keep it within bounds. 

Alternatively we can express them in LTL. If we want to encode Existence(a,2), we use the 

negated formula !F (activity=a & F (activity=a)). Similarly, we can encode Absence. Ex-

actly(a,N) can be written as Existence(a,N) & Absence(a,N). 

In order to add data to the model, we define additional variables in the VAR block, and then 

data constraints can be attached almost as-is to the relevant part of LTL. Example encoding 

of two data attributes: 

VAR 

 transportType : {car, bus, train}; 

 price : integer; 

NuSMV generator supports all the data constraints allowed in our MP-Declare model except 

‘same’ and ‘different’. 

NuSMV produces infinite traces. In order to create a finite trace out of an infinite one, we 

will add at the end an infinite tail with a dummy activity. In particular the following LTL 

rule is used: "! F(activity = _tail) | !G (activity = _tail -> X activity = _tail)". In Declare 

terms this is Existence(_tail) and ChainResponse(_tail, _tail). Once it start it will never end, 

and therefore we keep only part of the trace, which is located before the first occurrence of 

_tail. 

Each run with the same model in NuSMV produces the same counterexample. In order to 

produce different traces, we can disallow in the model all previously generated traces. We 

don’t need to bind data to activities, because each state has all the variables (as if all activi-

ties were bound to all the attributes). Instead, we will remove variables from irrelevant 

events in post-processing. 



34 

 

Suppose we have a trace abc. The LTL rule “first & activity = a & X (activity = b & X 

(activity = c & X (activity = _tail)))“ will disallow this trace. “first” should be the Boolean 

variable, which is true only in the initial state (easily implementable in the ASSIGN block).  

NuSMV always generates the shortest trace possible. To allow generation of a log with 

traces of different length, we generate several smaller logs with fixed length of traces be-

tween minimum and maximum and then join them into one. For example, if we need a log 

with 1000 traces of length between 20 and 24, we generate 5 logs with 200 traces for each 

length, and then join them. This behavior also supported in Alloy generator as an additional 

option. 

The NuSMV generator is also available on github. It has two parts: .smv code generator is 

a module in the repository with Alloy generator (because they use a common module for 

parsing the MP-Declare model) https://github.com/darksoullock/MPDeclareLogGenerator. 

Second part is generator itself and located at https://github.com/darksoullock/SmvToXes. It 

also requires NuXMV binary, which can be downloaded separately at https://nuxmv.fbk.eu/ 

(it cannot be included in repository due to license). 

 

https://github.com/darksoullock/MPDeclareLogGenerator
https://github.com/darksoullock/SmvToXes
https://nuxmv.fbk.eu/


35 

 

8 Implementation 

There are three options to run the generators: API, command line and Rule Mining Web 

App (RuM). 

There are 5 mandatory parameters required to run the generators: minimum trace length, 

maximum trace length, amount of traces to generate, MP-Declare model, name of the out-

put file. Optional parameters are vacuity, noise (amount of negative traces), and whether 

uniform distribution of trace lengths required.  

Both of our generators support options for vacuity and noise. When vacuity constraint is 

enabled, all the constraints in the input model will be activated at least once in each trace 

of the log. The noise in the log is represented by negative traces – traces which have at 

least one of the constraints violated. 

Furthermore, Alloy has additional parameters:  

 constraints shuffling – which allows the generator to improve variability by reor-

dering priority of the constraints during generation 

 split of intervals – allows for the generation of more traces for overconstrained 

models 

 reuse of Alloy solutions – allows to get more traces for models with numeric data 

attributes 

 names encoding – allows to use spaces and special characters in names of activities 

and data attributes 

 maximum ‘same’ instances, do not request tokens for single-value interval – op-

tions which allow to balance performance and log variability in some very rare 

cases. Usable only for models with ‘same’ or ‘different’ constraints on numeric 

data attributes. 

API is the most convenient way to use the generators from another application (if stack of 

technologies matches). It is represented by exported functions from library. The Alloy-

based application is a jar package, and the NuSMV-based is a CLR assembly. The API is 

used internally in the command line interface, and in the RuM plugin. 

When the command line interface is started without arguments it shows a help page with 

the description of the parameters. 



36 

 

 

Figure 5 – Alloy-based generator CLI 

RuM is a web application, that contains different tools for process mining as plugins. We 

have implemented two plugins for it: a model designer and the generator itself. The model 

designer allows the user to specify in a graphical interface an MP-Declare model (that can 

be given as an input to the log generator) without knowing the syntax of the input lan-

guage. It also helps to avoid some errors (like typos in name of activity) and contains de-

scription of constraints. The model is stored in the proposed textual format 

 

Figure 6 – Adding data constraint in RuM 



37 

 

Figure 6 shows the dialog window for adding MP-Declare constraint.  

Figure 7 shows the RuM interface for the designer plugin opened 

 

Figure 7 – Declare designer in RuM interface 

The designer allows the user to specify the list of activities, the data attributes (enumera-

tive and numeric separately), the data binding, the constraints and the trace attributes to 

create an MP-Declare model 

The second plugin is the generator itself, where the generation parameters including the 

input model can be specified. 

 

Figure 8 – Log generator in the RuM interface 

The application runs all the tasks on a server backend, and stores them in the user’s pro-

jects. Therefore, when the generation is started, the user can close the browser tab and re-

turn to it later to download the log or check the status.  

    



38 

 

9 Log quality evaluation 

In order to compare and improve the generators, we need a way to evaluate the quality of 

the generated logs. For this we need to find what properties make a log good or bad. One of 

the important features of a good log is that it contains variegated execution paths. This 

means that in different traces different constraints are activated, activities occur in different 

order, etc.  

To find a metric to measure the quality of a log, we looked at the literature related to a trace 

clustering. Though we don’t need to cluster traces, clustering algorithms require a function 

which defines the distance between two objects (traces in our case). We can try to use these 

metrics for comparing traces and get a number, which shows how different are traces in the 

given log.  

In [13] the authors propose to use so-called profiles to convert a trace into the vector of 

integers, and then use distance metrics to compare these vectors. For example, an activity 

profile uses one dimension in the vector for each activity in a process. Its value will be equal 

to the number of occurrences of the activity in the trace. For instance, if a process has activ-

ities <a,b,c,d>, then for trace “aaacbc” the activity profile will be the vector <3, 1, 2, 0>, i.e. 

the amount of the corresponding activities in the trace. The transition profile – similar to the 

activity one, contains all possible combinations of two activities. Each pair (a, b) stands for 

transition a->b. The values in the vector are based on the amount of transitions. For example, 

if a process has activities <a,b,c>, then for the trace “aaacbc”, the transition profile has the 

following values <2, 0, 1, 0, 0, 1, 0, 1, 0> corresponding to the frequencies of the transitions 

{a->a, a->b, …, c->c}. As we have data attached to activities, we also need to evaluate their 

variability. There are two profiles for data: case attributes and event attributes. Then we 

count the amount of occurrences of each data attribute in a trace. The difference between 

these two profiles is, that for ‘case’ we count data attributes of the case, and for ‘event’ we 

distinguish between the same attribute attached to different events in the same case. For 

example, suppose we have two activities A and B with data attribute X attached to both of 

them. Then in ‘case attribute’ profile of trace ‘AB’ vector will be <2> for two occurrences 

of X in trace, and in ‘event attribute’ profile vector will be <1,1> for occurrences of X in 

activities A and B. The last profile ‘performance profile’ uses parameters of the traces, such 

as length, case duration, etc.  

After transforming each trace into a vector we can compare each trace with all others using 

distance metrics (such as Euclidian, Jaccard, Hamming, cosine, or other heuristics), and then 

use the average distance as a log quality score.  

With this approach we will consider the flow of events, and can compare traces of different 

length. Its disadvantage is that some different traces can get the same score, and therefore 

distance equal to zero (unlikely, though). Also we treat data separately from events, there-

fore same data attributes in different places will give the same values in vector.  

 In [14] the authors propose to assess the degree of similarity between two traces by consid-

ering subsequences of activities which are conserved between multiple traces. This approach 

is similar to k-grams. The introduced difference is that authors use not all possible subse-

quences of length k, but rather select only important ones (see the referenced paper for more 

details about which sequences are important). They count the amount of occurrences of each 

subsequence to transform a trace into the vector. However, rules for extracting features are 

quite complex and cannot be easily extended to use data. 



39 

 

In [15] the authors mention several options to get features from traces. Among them there 

are bag-of-activities (which does not capture order), k-gram model (which is computation-

ally expensive), Hamming distance (only for traces of the same length), edit distance. We 

have designed our own metric based on edit distance, and specifically adapted to capture 

trace similarity, and to produce a score between 0 and 1. 

The main idea of our Levenshtein-based edit distance metric (to compare two traces) is the 

following: in the first iteration we calculate the minimal amount of activities which can be 

inserted, deleted or replaced in one trace to obtain the other. For each of such modifications 

we add one to the distance score. Then, for each activity untouched at the first step, i.e. 

which is present in both traces and has the same data attributes, we count the amount of 

different data values, and add to the score this amount divided by the total number of data 

attributes (so it will be between 0 and 1). This will ensure that we are not comparing data 

attributes of unrelated activities. Finally, we divide our score by the length of the longer 

trace, and get a score value in the range between 0 and 1. For two completely different traces 

this metric will produce 1, and for identical traces 0. 

Suppose we have traces “aabxyca” and “abxzaa”, and that activity ‘b’ has two data attributes. 

At first we count the minimal amount of insertion/replacement/deletion operations. For 

these traces it is 2 – we can remove the first ‘a’ and replace ‘c’ with ‘a’. We see, that ‘b’ is 

not affected by these changes, so we can add 0.5 (1 different attribute value divided by 2 

total) to the score, and get 2.5. Finally, we divide it by the length of the longer trace (5), and 

get 0.5.  

When we have a metric to compare the variability of two traces, we can calculate the varia-

bility of a whole log by adding distances between each pair of traces, and dividing this sum 

by their amount (N2). So the output value will be within the same bounds as the metric value 

for two traces.  

For testing our generators, we generated 20 logs of 250 traces each from the model M4. 

Difference between the logs is length of traces, which starts from 7 and is increased by 1 up 

to 26. 

In Figure 9 we can see the scores obtained by each of the four metrics: first three of them 

are based on distance between vectors described above and in [13], and use Manhattan dis-

tance, Euclidian distance and sine distance (sin of angle between vectors) to compare vec-

tors. The fourth one is the Levenshtein-based edit distance metric. 

 



40 

 

 

Figure 9 – Variability metrics for generators 

On the X axis of these plots we have the length of the traces in the log. The values on the 

Y axis represent the variability score, where higher is better. The three lines represent val-

ues for NuSmv generator (orange), Alloy (blue), and Alloy with constraints shuffling ena-

bled (see Subsection 6.2 and Section 8). In the next subsection a more detailed analysis 

about how this parameter can influence the variability of the generated logs will be pre-

sented. 

As we see in the Figure, metric with Euclidian distance performs poorly (i.e. no relevant 

difference comes out when comparing the generators), so we will not include it in the fu-

ture tests.  

The difference in the results of the Levenshtein-based metric and the vector-based ones is 

that Levenshtein-based assigns scores to data variability only if data pertains to the same 

activity, whereas vector-based metrics treat data independently of activities. The Manhat-

tan and sine distances are very similar, but sine has limited maximum value, and therefore 

can be used for comparing logs of different sizes. 

We also compare the quality of the logs generated with our Alloy generator to the one of 

the logs generated by the approach presented in [1,2]. For this we recreated exactly the same 

model (M1) used in [1], and generated logs with the same amount and lengths of traces. 

After this we run our metrics on both logs. The results are shown in Figure 10. 

 



41 

 

 

Figure 10 – Log variability comparison with baseline 

As we can see, the scores are very similar for each log. Note, that we should not compare 

scores of different logs as they have different size, and therefore different probabilities of 

containing similar traces. 

Unfortunately, we cannot do the same with NuSMV generator because of unsupported ‘dif-

ferent’ constraint used in model M1. 

Constraints shuffling 

The order of statements in the Alloy matters, and for different ordering of constraints in the 

model we will get different logs generated. Based on this observation, constraints shuffling 

was implemented. When this option is enabled, instead of generating N traces in a single 

run we generate N/S traces S times (S is an input parameter defining how many times we 

want to perform shuffling), randomizing the order of constraints at each run. As a result, we 

are getting more variable logs with unbiased priority of constraints activation. 

Figure 11 and 12 show the results of the generation of 100 traces for two MP-Declare mod-

els: ‘business trip’ and ‘loan application’. 

 

Figure 11 – Alloy constraint shuffling test for the loan application model. 



42 

 

On the X axis of all graphs there is S – how many times constraints were shuffled during 

the generation of the log. On the Y axis of the first plot we have the generation time. It in-

creases from ~14 to ~17 seconds. In next three plots we have the variability scores meas-

ured using Manhattan and sine distance of vectors-based and our Levenshtein-based met-

rics. As we can see, S=2 and S=3 are improving the variability noticeably with very little 

impact on generation time, and S>=3 still tends to improve it further. 

 

Figure 12 – Alloy constraint shuffling test for the business trip model 

 

The same test was performed for the SMV-based generator to study, whether it has similar 

behaviour. The plots in Figures 13 and 14 show distance metric for logs, generated from the 

same two models as in the Alloy test. 

 

Figure 13 – loan application model constraint shuffling SMV test. 

 

 

Figure 14 – business trip model constraint shuffling SMV test. 



43 

 

From these plots  we can see, that shuffling variables/constraints order between trace gen-

eration does not help to improve the log quality, when using the SMV-based generator.  

We noticed that regardless of the order of constraints and variables in NuSMV, the first 

produced trace is always the same. Also, with each restart of the generator all numeric data 

attributes are getting the same values, which has a negative impact on the data variability. 

Evaluation of numeric data attributes randomness 

In our variability metrics we treat all data attributes as enumerative, because use the consid-

ered metrics cannot compare two numbers. To fill this missing part we performed another 

test for measuring randomness of generated numbers. 

Our test is based on one of the diehard tests [24] called “The count-the-1's test for specific 

byte”. In this test we count the 1 bits in last byte of each number. Then we convert the counts 

to "letters", and count the occurrences of five-letter "words". Finally, we apply Pearson’s 

chi squared test on them. As a result we get a single number, where lower value means better 

randomness. 

We tested the randomness of numerical values on the business trip model. In this model 

we have two numeric data attributes: ‘Speed’ and ‘Price’. We use 20000 values of price 

attribute, and 10000 for the ‘Speed’ because it occurs less frequently. Next table shows the 

results. 

 Price Speed 

NuSMV 2.06561064599396 4.06542653075637 

Alloy 11.1843106956579 9.59869070406868 

Alloy with shuffling 6.68381883718214 1.35307559528014 

Table 7 – Randomness test on generated logs 

In this test the Alloy-based generator performs worse than NuSMV. Though the Alloy-

based generator assigns values in java post-processing (which should assure proper ran-

domness), one of the constraints in this model is ‘RespondedExistence[BookTransport A, 

UseTransport B] | A.Price=50 | B.Price=80’. Therefore, we have two intervals consisting 

of a single value (50 and 80), which are selected with comparable frequency to other inter-

vals, and always replaced with the same value. That means that each time this constraint is 

activated, the sequence of generated numbers becomes less random because of these re-

peating two numbers. 

9.1 Log entropy measurements 

In [25] authors discuss the use of entropy and entropy rate as a measure of log variability. 

The tool presented in their paper allows to compute different metrics from logs. Unlike our 

metrics, it doesn’t support data, but can process larger logs, and results are independent from 

model meaning that we can compare entropy of logs obtained from different models.  

Using this tool, we will compare logs by our generators for the business trip model with 3 

real logs: NASA Crew Exploration Vehicle, Sepsis Cases and BPI2017 Challenge. Entropy 

means degree of randomness. Therefore, higher values table mean better result. The results 

are shown at the table 8. 



44 

 

 

 NuSMV Alloy with 

shuffling  

Alloy NASA 

CEV 

Sepsis 

Cases 

BPI2017 

Log Entropy(H)-

(trace-based) 

8.4896 8.2239 4.9453 11.265 9.334 11.9931 

Log Entropy(H)-

(prefix-based) 

10.7348 9.5445 6.6745 10.101 10.2271 12.934 

Log Entropy(H)-

(all block-based) 

13.2594 10.8403 8.3035 14.7233 14.5012 16.4566 

Log Entropy(H)-

(Nearest Neigh-

bor: Kozachenko-

Leonenko) 

44.7697 31.5661 30.6619 23.2223 23.7862 33.2025 

Log Entropy 

Rate(h)-(k-block: 

difference-based 

using cutoff 1) 

1.7894 1.456 0.8013 1.5563 1.8369 1.3031 

Log Entropy 

Rate(h)-(k-block: 

ratio-based using 

cutoff 1) 

2.7393 2.5523 2.6773 5.0989 3.2382 3.7863 

Log Entropy 

Rate(h)-(k-block: 

ratio-based using 

cutoff 5) 

1.2432 1.015 0.7172 1.145 0.4854 0.6042 

Table 8 – log entropy and entropy rate measured by tool from [25] 

As we can see, general trend is following: entropy of our synthetic logs and real ones is 

comparable. NuSMV has slightly better results. Alloy without constraint shuffling per-

forms worse.  

 

 



45 

 

10 Execution time evaluation 

In this section, we will compare the time performance of the generation tools presented in 

[1], [5] and [6], and our generators.  

In the first step we present the models used in the evaluation and encode them in our input 

format. Then we compare the time performance of the proposed generators with state-of-

the-art approaches.  In detail we first compare the Alloy generator with respect to the state-

of-the-art generators on the same models used in the papers. We then provide a preliminary 

evaluation of the NuSMV generator by comparing it with the performance of the Alloy 

generator on similar parameters. Finally, we investigate the impact of model parameters on 

the performance of the generators 

10.1 Models for execution time measurements 

As different generators support different set of constraints, features, and input formats, it is 

not possible to have a universal model to run on all generators. Therefore, we have 5 differ-

ent models for comparing our generators with others. 

Model M1. Business trip model. The original model presented in [1,2] uses the DPIL lan-

guage. We rewrote in Declare with exactly the same semantics. The model has 6 activities, 

3 data attributes (enumerative only), 7 data bindings and 15 constraints. 7 of these con-

straints have data.  

Model M2. Fracture treatment model. The original model is presented in [5] and also use 

Declare language (but without data), so we translated it in our format. The model has 8 

activities and 8 constraints. 

Model M3. Acme travel company model. This model was used in [6]. Since this model is 

originally an Alloy model, it is not possible to fully represent it in Declare, so we slightly 

modified the intermediate .als file to have an exact match for testing purposes. This model 

has 11 activities, 30 constraints and no data. 

Model M4. Business trip model (modified). We modified the business trip model from [1, 

2] by adding more activities, different constraints and data. It has 8 activities, 4 data attrib-

utes and 17 constraints. 2 of these constraints use data. 

Model M5. Loan application model. This model has 5 activities, 7 data attributes and 15 

constraints, 4 of them also constrain data. 

All the models can be found in the repository https://github.com/dark-

soullock/MPDeclareLogGenerator/tree/master/data 

 

10.2 Comparison with the state of the art 

In this section we compare our Alloy log generator with the tool presented in [1],[5]. The 

tool presented in [1] has as input parameters trace length (L) and number of traces (N). L 

represents the maximum length of the generated traces. It uses business trip model M1 de-

scribed above (cannot be changed), maximum traces length as 10..80 and amount of traces 

10..1000. Therefore, for comparison we will use the same model and generation parameters. 

In practice, given L, the tool produces traces of length lower than L (average length given 

in the column ‘Actual L’ at Figure 14), with maximum length of 2^(Round(Log[2,L])-1)-2. 

The actual length of generated traces is present in column ‘L range’ of table on Figure 14. 

https://github.com/darksoullock/MPDeclareLogGenerator/tree/master/data
https://github.com/darksoullock/MPDeclareLogGenerator/tree/master/data


46 

 

The minimum length (6) bounded only by constraints of the model (i.e. no traces with less 

than 6 activities exist for the model). 

We will have two measurements in our tool: one with the same input parameters (trace 

length from 2 to max), and another one with different parameters, where minimum and 

maximum trace length set according to actual minimal and maximal values (column ‘L 

range’ at Figure 14) generated by tool presented in [1] so as to generate a comparable output 

(column ‘our result with altered parameters’). 

L N Actual L L range Time (s) Actual L Time (s) Time % Actual L Time (s) Time %

10 10 6 6..6 1.8 9.5 2.5 138.89% 6 1.4 77.78%

20 10 10.7 6..14 19 19 3.3 17.37% 14 2.7 14.21%

20 100 13.33 6..14 24 19.5 5.3 22.08% 13.6 4.1 17.08%

20 1000 13.9 6..14 55 19.7 13.9 25.27% 13.9 10.6 19.27%

30 10 9.3 6..14 68 27.7 4.6 6.76% 14 2.7 3.97%

30 100 13 6..14 74 29.8 6.4 8.65% 13.6 4.1 5.54%

30 1000 13.9 6..14 118 29.6 17.3 14.66% 13.9 10.6 8.98%

40 10 22 7..30 153 38 5 3.27% 29.4 3.9 2.55%

40 100 28.45 7..30 173 39.4 7.6 4.39% 29.8 6.8 3.93%

40 1000 29.8 7..30 284 39.6 22.3 7.85% 29.9 18.1 6.37%

50 10 20.8 10..30 348 46.7 6.8 1.95% 29.2 4 1.15%

50 100 28 10..30 374 49.3 10 2.67% 29.8 6.4 1.71%

50 1000 29.8 10..30 535 49.6 28.4 5.31% 29.9 17.2 3.21%

60 10 26.5 9..30 604 56 8.8 1.46% 29.9 4.2 0.70%

60 100 29.6 9..30 627 58.3 11.8 1.88% 29.8 6.4 1.02%

60 1000 29.6 9..30 850 59.7 33.8 3.98% 29.9 17.7 2.08%

70 10 50 32..62 1148 63.3 11 0.96% 59.2 9.4 0.82%

70 100 59.2 32..62 1251 68.1 14.9 1.19% 61.9 12.4 0.99%

70 1000 61.7 32..62 1664 69.6 41.7 2.51% 61.9 35 2.10%

80 10 45.8 30..62 2005 68 14.7 0.73% 61.6 8.4 0.42%

80 100 57.4 30..62 2159 77.5 18.7 0.87% 61.6 11.9 0.55%

80 1000 61.5 30..62 2687 79.5 52.1 1.94% 61.9 36.7 1.37%

Schoenig's resultInput parameters Our result Our result with altered parameters

1

10

100

1000

10000

10 20 30 40 50 60 70 80 90

T
im

e
 (

Lo
g

(s
))

L (max length) parameter

Schoenig's Our Our (alt. parameters)
  

Figure 14 – Alloy generation time comparison with baseline 

Figure 14 shows the execution time (in seconds) required for generating logs of 1000 traces 

from model M1, each one containing traces of a given length (from 10 to 80). Unfortunately, 

the tool in [1] managed to produce only 4 traces with maximum length 10, therefore we start 



47 

 

reporting values from 20 on the plot. Note, that time axis has a logarithmic scale. The Figure 

shows that our Alloy generator always performs better than the tool in [1]. 

Table 8 shows execution times in milliseconds for generating log from model M2 with the 

tool presented in [5] and our Alloy-based tool. Note that in this experiment we do not include 

measurements for the generation of 10 traces because measuring error for such short periods 

is too high. 

 

Max. length # traces Time, ms. [5] Time, ms. (our) 

10 100 15 2747 

10 1000 123 6260 

20 100 21 4915 

20 1000 178 11753 

30 100 38 6168 

30 1000 332 13729 

40 100 49 7582 

40 1000 772 17294 

50 100 55 10058 

50 1000 585 19818 

60 100 69 10608 

60 1000 589 22474 

70 100 79 14470 

70 1000 569 29385 

80 100 83 18891 

80 1000 653 36651 

Table 9 – Comparison of Alloy and FSA log generation time 

 [5] always performs better, requiring less time than the Alloy generator. However, [5] only 

supports standard Declare and does not support MP-Declare. Another disadvantage of the 

too in [5] is that vacuity cannot be disabled. 

The approach presented in [6] is also based on Alloy, but it does not support data. In addi-

tion, it is designed to generate only one trace and it does not have a tool that can be used 

outside of Alloy (trace can be viewed in the Alloy analyser interface and cannot be saved in 

a file). To compare this approach with ours, we used the model they use (model M3 – “Acme 

Travel Company” case from [19]). We generate Alloy code in our tool, and then run both 

models in the Alloy analyser. As generating one trace takes a very low amount of time, we 

calculate the average of 10 runs. 

Alloy gives us two timespans: time for the generation of CNF, and time for solving it. the 

CNF is generated only once for log, while the solving step occurs for each trace. All timings 

are in milliseconds. 

Gen. CNF Solving Gen. CNF Solving

503.1 150 684.4 107.9

Their solution Our solution

 

Table 10 – Comparison of generation time of one trace in our and [6] solution 

Table 10 shows the execution times for generating the CNF and solving it (to obtain 1 trace) 

with the two approaches. We can observe that the results are comparable. 



48 

 

10.3 Comparison with NuSMV 

As NuSMV does not support the generation of multiple counterexamples, we have made a 

preliminary performance evaluation by running the generation of the same trace N times. 

The generation of the same amount of different traces cannot take less time because for each 

new trace we will need to negate all the previous ones, which will cause a model growth.  

To perform the preliminary performance test, we used the business trip model (model M4). 

In this test we didn’t add inverted traces to the model, so all the traces in the log generated 

by NuSMV are the same. 

Table 11 shows execution times (in seconds) in comparison with Alloy for maximum trace 

length equal to 40. 

#traces Time s. NuSMV Time s. Alloy 

10 33 4.7 

100 326 8 

1000 3260 23 

Table 11 – Generation time of N traces in NuSMV (no trace negation) and Alloy for 

model M4 

NuSMV is slower, but it allows to use constraints on numbers, whose support is limited in 

Alloy. 

Table 11 shows the execution time in milliseconds of NuSMV with trace negation in com-

parison with Alloy. Due to the long generation time of NuSMV we did not perform the test 

for 1000 traces and with trace length greater than 40. 

Max. length # traces Time, ms. NuSMV Time, ms. Alloy 

10 10 10998 3107 

10 100 138052 4048 

20 10 38229 4256 

20 100 714432 6605 

30 10 128209 5683 

30 100 3089107 7076 

40 10 346852 6945 

40 100 9515276 9606 

Table 12 – Generation time of N traces in NuSMV and Alloy from MP-Declare model 

As we can see in Table 12, generation time of NuSMV grew quadratically with the amount 

of traces, which makes it less suitable for generating large logs. 

10.4 Impact of model parameters on the execution times 

The main elements in an MP-Declare model are activities and constraints. As our generator 

supports data, we also have data attributes and data constraints. In order to determine how 

they influence the performance, we use a set of models with different characteristics. In 

order to improve the precision of the measurements, we performed each generation 4 times. 

Finally, we apply linear regression (with least squared error cost function) to fit the data, 

and look at the coefficients. 



49 

 

Varying the number of activities. For this test the initial model contains 10 activities. In 

the N-th test we add N activities and an existence constraint on them, to make sure that they 

will appear in the log. Figure 15 shows the generation time in milliseconds for N=1..10. 

 

Figure 15 – generation time for N activities 

As we can see, for NuSMV trend is slightly negative, and for Alloy is positive, but overall 

the lines are almost flat. We can observe, that NuSMV generation time is significantly less 

with even amount of activities. From regression coefficients, it takes 0.228 ms/trace more 

time for each added activity for Alloy, and -29.8 ms/trace less for NuSMV.  

Varying the number of constraints. For this test the initial model contains 11 activities: 

a1..a10, b and one constraint Existence[b] (only for b, to ensure activation). In the N-th 

model we add N response constraints as Response[b, a1], Response[b, a2], … Response[b, 

aN] 

 

Figure 16 – Generation time for N constraints 

Figure 16 shows the result. We can see that both – SMV and Alloy perform worse with more 

constraints. For SMV the time increases by 61.86 ms/trace for each added constraint, and 

for Alloy by 0.939 ms/trace. 

Adding data to constraints. The initial model for this test is similar to the previous one, 

but includes ten enumerative data attributes, each of them with two possible values and 

bound to one activity. It also contains ten response constraints. In the N-th model we add 

data to the N-th constraint. So Response[b, aN] is transformed to ‘Response[b, aN X]||X.xN 

is xN1’, which means that activity ‘b’ should be followed by activity ‘aN’ (where N is num-

ber) with data attribute xN limited by one of two values. I.e. if in activity A data attribute X 

has possible values Y and Z, then in our constraint we specify that after activity b, A must 

occur with X equal to Y (but not Z). 

 



50 

 

 

Figure 17 – Generation time for N functions in data constraints 

We can see a growth for SMV (100.99 ms/trace) and almost a flat line for Alloy (0.305 

ms/trace) 

Varying enumerative data constraints. The initial model for this test is similar to the orig-

inal model of the previous test, but does not include constraints. For the N-th model we add 

‘Response[b, aN X]||X.xN is xN1’ 

 

Figure 18 – Generation time for N data constraints 

Figure 18 shows the results. As we can see, the time increases when the amount of data 

constraints increases. The Figure looks similar to the one in the previous experiment, and 

shows a steady growth. However, the growth rate is greater than for constraints without data, 

and equal to 1.058 ms/trace for Alloy, and 179.69 ms/trace for NuSMV.  

Varying numeric data constraints. The initial model for this test is the same as in the 

previous test, but all data attributes are numeric (of type integer) instead of enumerative. In 

the constraints we limit the values to the positive numbers. 

 

Figure 19 – Generation time for N numeric data constraints 

The results are again similar to previous tests, but for Alloy the growth rate is bigger (1.4 

ms/trace), and for NuSMV is smaller (136.43 ms/trace) for numeric data constraints than 

one for enumerative. Increase in time for Alloy can be explained by the time needed for 

pre/post-processing steps, and by the fact that there are some workarounds in the model 

checker which allow us to arrange numeric constraints. 

Varying unconstrained data attributes. The initial model for this test contains 10 activi-

ties with existence constraints. In the N-th model we add 2 data attributes, each of them 

bound to the N-th activity. The type of attribute does not matter as we do not have any data 

constraint.  



51 

 

 

Figure 20 – Generation time for N data attributes 

Figure 20 shows the results. In this plot we see a growth again. In this case, the rate is 0.554 

ms/trace for Alloy, and 171.96 for SMV. 

Varying the number of values in enumerative data attributes. For this test we have ten 

activities a1..a10 with existence constraints on them. Each activity has two data attributes – 

x1 and x2. For each next model we add one value to these data attributes, so in the N-th 

model x1 and x2 have N possible values. 

 

 

Figure 21 – Generation time for N values presented in data attributes 

Figure 21 shows the results. In NuSMV the time is slowly decreasing with more values by 

-20.63 ms/trace, and for Alloy it is increasing by 0.379 ms/trace. The way enumerative data 

attributes are encoded in our NuSMV based generator is exactly the same as the activities 

are encoded, so this could be expected. 

Varying the constraint types. In this test we measure the time for the generation of logs 

for constraints of different types. The initial model consists of eleven activities, and an ex-

istence constraint to ensure the activation. For each test we add one constraint, a different 

type for each test.  

 

Figure 23 – Impact of different constraint types on generation time 



52 

 

Figure 23 shows the results. On the X axis we have generation time. As we can see, for 

NuSMV, the constraints that require more time are: responded existence, not responded ex-

istence, existence, exclusive choice, choice and alternate precedence. For Alloy less effi-

cient constraints are alternate response and alternate precedence. 

Summing up. Now with all these measurements we can summarize the impact of the dif-

ferent kind of model characteristics on generation time. 

Figure 22 – Impact of statements in the model on generation time  

Activities and data attribute values affect the performance least. For NuSMV data attributes 

and data constraints have the highest influence on performance. Biger impact of data attrib-

utes can be explained with the fact, that in NuSMV all data attributes are present in all 

activities. The biggest impact of Alloy performance is given by numeric data constraints. 

Overall, Alloy generator performs better in most cases. But as we use intervals for encoding 

numbers, with a lot of numeric data constraints we will get unevenly distributed numbers. 

NuSMV generates the same amount of traces much longer, but produces slightly better logs 

(in terms of variability) for models without data, and allows to use operations on numbers 

if we want dependent data attributes (i.e. data attributes ‘price’ and ‘discounted price’). Dis-

advantage of NuSMV generator is that it does not allow to express correlation between two 

data attributes in different activities (I.e. A should be followed by B with the same value of 

attribute X). 



53 

 

11 Conclusions 

In this paper we reviewed different approaches for the declarative log generation, existing 

in other papers. From these works we chose the most suitable parts, added more generic data 

support, and improved performance. After this, the found solution based on the Alloy ana-

lyzer was wrapped in a java application. This application supports input of declarative mod-

els in a textual language specifically designed and proposed in this thesis for dealing with 

multiperspective declarative constraints, does all necessary pre and post processing, and 

saves the results as a .xes file. Besides the Alloy-based solution we also developed a gener-

ator based on the NuSMV model checker.  Finally, performance and quality log evaluation 

was carried out to understand and collect the main characteristics of the generators and to 

compare our solutions with each other and with existing state of the art techniques. 

For future work I would like to approach the problem from the side of first order logic 

languages like Prolog, or to use SMT model checkers, which can handle numbers better. 

Also, it might be possible to improve performance of our tool by using the approach used 

in [6] for encoding trace (using standard implementation of ordered sequences in Alloy for 

storing traces). 



54 

 

12 References 

[1] Ackermann L., Schönig S., Jablonski S. (2017) Simulation of Multi-perspective 

Declarative Process Models. In: Dumas M., Fantinato M. (eds) Business Process 

Management Workshops. BPM 2016. Lecture Notes in Business Information 

Processing, vol 281. Springer, Cham 

[2] Ackermann L., Schönig S., Jablonski S. (2017) Towards Simulation- and Mining-

based Translation of Resource-aware Process Models. In: Dumas M., Fantinato 

M. (eds) Business Process Management Workshops. BPM 2016. Lecture Notes in 

Business Information Processing, vol 281. Springer, Cham 

[3] Ackermann L., Schönig S., Jablonski S. (2016) Towards Simulation- and Mining-

Based Translation of Process Models. In: Pergl R., Molhanec M., Babkin E., 

Fosso Wamba S. (eds) Enterprise and Organizational Modeling and Simulation. 

EOMAS 2016. Lecture Notes in Business Information Processing, vol 272. 

Springer, Cham 

[4] Andrea Burattin,Fabrizio M. Maggi,Alessandro Sperduti (2016) Conformance 

checking based on multi-perspective declarative process models In: Expert 

Systems with Applications Volume 65, Pages 194-211 

[5] C. Di Ciccio, M. L. Bernardi, M. Cimitile, and F. M. Maggi, “Generating event 

logs through the simulation of declare models,” in EOMAS, pp. 20–36, 2015. 

[6] Yoann Laurent, Reda Bendraou, Souheib Baarir, Marie-Pierre Gervais. Planning 

for Declarative Processes. SAC’14 - The 29th Annual ACM Symposium on 

Applied Computing, Mar 2014, Gyeongju, South Korea. ACM, pp.1126-1133, 

2014,<10.1145/2554850.2554998>.<hal-01088183> 

[7] Ubaier Ahmad Bhat  (2016) Runtime Monitoring of Data-Aware business rules 

with Integer Linear Programming 

[8] Federico Chesani, Anna Ciampolini, Daniela Loreti, Paola Mello, "Abduction for 

generating synthetic traces" 

[9] Andrea Burattin. "PLG2: Multiperspective Process Randomization with Online 

and Offline Simulations". In Online Proceedings of the BPM Demo Track 2016; 

Rio de Janeiro, Brasil; September 18, 2016; CEUR-WS.org 2016. 

[10] Andrea Burattin. "PLG2: Multiperspective Processes Randomization and 

Simulation for Online and Offline Settings". In CoRR abs/1506.08415, Jun. 2015. 

[11] Andrea Burattin and Alessandro Sperduti. "PLG: a Framework for the Generation 

of Business Process Models and their Execution Logs". In Proceedings of the 6th 

International Workshop on Business Process Intelligence (BPI 2010); Stevens 

Institute of Technology; Hoboken, New Jersey, USA; September 13, 2010. 

10.1007/978-3-642-20511-8_20. 

[12] Westergaard, M., Slaats, T.: Cpn tools 4: A process modeling tool combining 

declarative and imperative paradigms. In: BPM (Demos). (2013) 

[13] Song M., Günther C.W., van der Aalst W.M.P. (2009) Trace Clustering in 

Process Mining. In: Ardagna D., Mecella M., Yang J. (eds) Business Process 

Management Workshops. BPM 2008. Lecture Notes in Business Information 

Processing, vol 17. Springer, Berlin, Heidelberg 



55 

 

[14] Bose R.P.J.C., van der Aalst W.M.P. (2010) Trace Clustering Based on 

Conserved Patterns: Towards Achieving Better Process Models. In: Rinderle-Ma 

S., Sadiq S., Leymann F. (eds) Business Process Management Workshops. BPM 

2009. Lecture Notes in Business Information Processing, vol 43. Springer, Berlin, 

Heidelberg 

[15] R.P., Jagadeesh Chandra Bose & Aalst, Wil M. P.. (2009). Context Aware Trace 

Clustering: Towards Improving Process Mining Results. SDM. 

10.1137/1.9781611972795.35. 

[16] D. Jackson. Software Abstractions: logic, language and analysis. Mit Pr, 2011. 

[17] N. E´en and N. S¨orensson. An extensible sat-solver. In Theory and applications 

of satisfiability testing, pages 502–518. Springer, 2004. 

[18] Verbeek, H., Buijs, J., van Dongen, B., van der Aalst, W.: XES, XESame, and 

ProM 6. In: Information Systems Evolution. Volume 72. Springer (2011) 60–75 

[19] W. M. Van Der Aalst and M. Pesic. DecSerFlow: Towards a truly declarative 

service flow language. Springer, 2006. 

[20] D. Jackson, Software Abstractions: logic, language, and analysis. MIT press, 

2012. 

[21] U. Frank, “Multi-perspective enterprise modeling (memo) conceptual framework 

and modeling languages,” in HICSS, pp. 1258–1267, 2002. 

[22] S. Scho¨nig, C. Cabanillas, S. Jablonski, and J. Mendling, “Mining the 

organisational perspective in agile business processes,” in BPMDS, pp. 37–52, 

2015. 

[23] Awad A., Smirnov S., Weske M. (2009) Resolution of Compliance Violation in 

Business Process Models: A Planning-Based Approach. In: Meersman R., Dillon 

T., Herrero P. (eds) On the Move to Meaningful Internet Systems: OTM 2009. 

OTM 2009. Lecture Notes in Computer Science, vol 5870. Springer, Berlin, Hei-

delberg 

[24] Rényi, A. Acta Mathematica Academiae Scientiarum Hungaricae (1953) 4: 191. 

https://doi.org/10.1007/BF02127580 

 

[25] Back C.O., Debois S., Slaats T. (2018) Towards an Entropy-Based Analysis 

of Log Variability. In: Teniente E., Weidlich M. (eds) Business Process Manage-

ment Workshops. BPM 2017. Lecture Notes in Business Information Processing, 

vol 308. Springer, Cham 

 



56 

 

I. License 

Non-exclusive licence to reproduce thesis and make thesis public 

I, Vasyl Skydanienko, 

(author’s name) 

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to: 

1.1. reproduce, for the purpose of preservation and making available to the public, 

including for addition to the DSpace digital archives until expiry of the term of 

validity of the copyright, and 

1.2. make available to the public via the web environment of the University of Tartu, 

including via the DSpace digital archives until expiry of the term of validity of the 

copyright, 

of my thesis 

Data-aware Synthetic Log Generation for Declarative Process Models, 

(title of thesis) 

supervised by Fabrizio Maria Maggi, Chiara Di Francescomarino, Chiara Ghidini 

(supervisor’s name) 

2. I am aware of the fact that the author retains these rights. 

3. I certify that granting the non-exclusive licence does not infringe the intellectual property 

rights or rights arising from the Personal Data Protection Act.  

23.05.2018 

 


