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1. INTRODUCTION

1.1. Trees' nocturnal water use

Most plant species have small pores called stomata on the leaf surface, through
which prevailing part of gas exchange between the plant and the surrounding
atmosphere takes place. Major fluxes through stomata are CO, diffusion into the
plant and efflux of water vapour from the leaf. Optimization theory states that
stomata should act to maximize carbon gain while minimizing water loss (Cowan
and Farquhar 1977). According to that, plants should keep their stomata open
during daytime to assimilate CO, — input for photosynthesis — and keep them
closed during night-time to minimize the loss of water while there is no sunlight
and photosynthesis is not possible. Nevertheless, it has been demonstrated that
many plant species keep their stomata at least partially open at night (Caird et al.
2007; Zeppel et al. 2014; Kupper et al. 2018).

Stomatal openness is usually expressed as stomatal conductance (gs, mmol
m %), the rate of passage of water vapour exiting the leaf through the stomata.
The highest mean nocturnal stomatal conductance (g,) values have been
demonstrated by hemiparasites (~500 mmol m 2 s™'), but tropical tree species also
demonstrate relatively high values (~100 mmol ms™"). Relatively low values of
O (mean ~25 mmol m 2 s') have been recorded in gymnosperm and evergreen
angiosperm tree species (Resco de Dios et al. 2019). Consequently, gy is highest
in the tropics, and lowest in Mediterranean and boreal biomes, where it is
approximately three times lower compared to the tropics (Resco de Dios et al.
2019). On average the ratio of g, and daytime stomatal conductance (gq) is highest
(~0.5) in deserts, and lowest (~0.1) again in the Mediterranean biomes (Resco de
Dios et al. 2019). However, g, has been recorded to reach up to 90% of gq (Caird
et al. 2007).

Depending on atmospheric evaporative demand (AED) during the night,
plants may lose a considerable amount of water as a result of nocturnal tran-
spiration (E,). However, as night-time AED is usually much lower than daytime
AED, g, is not reflected proportionally in nocturnal water losses (Caird et al.
2007). In many studies (Dawson et al. 2007; Scholz et al 2007; Sellin and
Lubenets 2010; Alvarado-Barrientos et al. 2013) nocturnal sap flow has been used
as a proxy of E,. Respective measurements on various tree species from diverse
habitats have shown that nocturnal water use on average makes up 10—15% of
the total daily (24 h) transpiration (Forster 2014). One should consider that E,
usually constitutes less than 10—15% of the total daily transpiration, since part of
the data obtained from sap flow measurements includes the refilling of the tissues
that have been depleted during the daytime (Fisher et al. 2007).

Factors affecting g, and E, can roughly be divided into biotic and abiotic
factors, but specific factors or the direction of their effect may vary between day-
and night-time. For example, there is no reason to discuss the effect of incident
radiation on g». Meanwhile, the effect of soil moisture and different atmospheric



conditions have been investigated in numerous experiments. Soil moisture has a
similar effect on g, and E, as it has on the respective daytime values: moist soil
improves leaf water status, which in turn favours higher stomatal conductance,
and dry soil, on the contrary, causes stomata to close, which in turn reduces E,
(Zeppel et al. 2014). Therefore, the higher the soil moisture content, the higher
the g, and E,, and vice versa. However, previous studies have only investigated
the effect of soil moisture content on g, in one or a couple of species at a time.
So far, also the effect of soil oversaturated with water on g, or on E, has not been
studied experimentally. Atmospheric vapour pressure deficit (VPD) is most often
used to quantify AED: the higher VPD, the higher AED. It is a product of both
air temperature and relative air humidity (RH). Based on current knowledge, the
effect of VPD on g, is controversial. Some studies have demonstrated a positive
effect (Dawson et al. 2007; Zeppel et al. 2012) or no effect on g, (Pfautsch et al.
2011). More studies have demonstrated a negative effect of VPD on g, (Bucci et
al. 2004; Christman et al. 2009; Ogle et al. 2012; O’Keefe and Nippert 2018) like
it is commonly observed during daytime. Many studies have reported a strong
positive relationship between VPD and nocturnal sap flow (Benyon 1999;
Mitchell et al. 2009; Alvarado-Barrientos et al. 2013; Gotsch et al. 2014, Zeppel
et al. 2014), but the majority of them have not measured actual E,. According to
some studies that have used nocturnal sap flow as an indirect estimate of E,, wind
speed possesses a positive effect on E, (Benyon 1999; Sellin and Lubenets 2010;
Kupper et al. 2018). It has also been shown that nocturnal water use depends on
nutrient availability in the soil, however, the directions of the responses of plants
could be different — in savanna trees, g, and nocturnal sap flow were greater under
nutrient deficiency (Scholz et al. 2007; Bucci et al. 2016), while hybrid aspen
trees growing in fertilized soil exhibited greater nocturnal sap flow (Kupper et al.
2012).

Among biotic drivers, plant intrinsic factors have been studied, but much less
than abiotic factors. It is known that younger leaves have weaker stomatal control
than mature leaves and therefore g, is usually higher in the former (Zeppel et al.
2010). In eucalypt trees, post-fire regrowth exhibits higher nocturnal sap flow
compared to mature trees, which is probably related to overall higher stomatal
conductance, including ¢, in regrowth (Buckley et al. 2012). Lower stomatal
conductance in taller trees is related to sustaining leaf water status under burdens
of water transport in tall trees (Delzon et al. 2004). Also, on the contrary, a young
Pinus patula Schiede ex Schitdl. et Cham. stand demonstrated an approximately
two-fold higher ratio of nocturnal to daily total water loss compared to a mature
stand (Alvarado-Barrientos et al. 2013). In addition, fast-growing tree species
tend to exhibit higher g, or nocturnal transpiration rates compared to species with
relatively slow growth (Daley and Phillips 2006; Marks and Lechowicz 2007;
Howard and Donovan 2010).

It is important to acknowledge that g, and E, enhance water uptake by plants
from the soil. That knowledge is essential for accurate assessment of water reserves
in the soil. Previous land-surface models assessing water reserves assumed that
plants keep their stomata closed at night and E, is zero (Lombardozzi et al. 2017).



More recent models also take into account g, and concomitant E,, which has led
to the understanding that globally the water loss due to E, is 5% larger, in the
tropics and in drier regions even ca 30% larger, than previously thought. That
results in 10% lower soil water content in arid and semiarid ecosystems, in some
regions even up to 50% lower available soil moisture (Lombardozzi et al. 2017).
On the other hand, E, prevents plant tissues to completely recharge with water by
the beginning of the day (Donovan et al. 2001; Bucci et al. 2004). This means
that in the morning or during midday, plant water status may drop to a level
inducing stomatal closure earlier than without nocturnal water loss, to protect
vascular tissues from hydraulic failure (Brodribb and Holbrook 2004). Early
stomatal closure shortens the period when photosynthetic carbon acquisition can
take place (Medrano et al. 2002).

1.2. Predawn water potential disequilibrium

Water potential () is the measure of potential energy of water that drives the
movement of water through plants. It is widely used to describe plant water status
or the water status of a plant’s particular part (e.g. leaf, branch) that is of interest.
Y is usually expressed in pressure units (megapascal, MPa; kilopascal, kPa) and
has a negative value, as it is expressed relative to pure water in reference con-
ditions. The higher (i.e. the less negative) ¥ in a particular plant organ is, the closer
to water saturated state that organ is and the more difficult it is for water to move
into that organ. The lower (i.e. more negative) Y is, the further away from saturated
state that part is and water can move towards that part more easily. Plant ¥ is
mainly determined by environmental factors like soil water status, i.e. soil water
potential (Ws), and AED, i.e. VPD, and on the other hand by stomatal openness
controlling transpiration from leaves. Additionally, solute concentration (i.e.
osmotic component) in a plant and tree height (i.e. gravitational component) also
affect ¥ (Kramer and Boyer 1995) but these components are not important in the
context of the current thesis.

Y5 determines how well plants are supplied with water and basically also the
maximum ¥ that could theoretically be reached in a plant. VPD and stomatal
openness combined determine how much plants lose water. Plants exhibit the
lowest ¥ under drought conditions when water movement to plants is hindered
by low soil water availability. When soil water supply is sufficient, then the lowest
Y in plants occurs around midday in sunny days, when VPD is the highest and
stomata are wide open, which cause rapid loss of water from leaves. Plants exhibit
the highest ¥ when soil water supply is adequate, i.e. ¥s does not limit plant water
uptake, VPD is zero or close to it and stomata are completely closed and tran-
spiration from leaves is negligible (Larcher 2003). Such a situation usually occurs
at night. During that time plants refill their tissues with water that has been
depleted during the daytime and, as a result, plants reach the highest ¥ values at
the end of the night — at dawn.
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For a long time, it was assumed that plants keep stomata tightly closed at night
and as a result plant ¥ should equilibrate with that of the soil at predawn. That
assumption has been widely used in ecophysiological studies (Drake and Franks
2003; Tramontini et al. 2013; Martinez-Vilalta et al. 2014; Zhang et al. 2019): for
estimating Ws one could measure predawn leaf water potential (‘Wpa), as the latter
should be equal to Ws. However, considering the g, and concomitant E, that is
observed in quite many species, Wpq tends to be lower than it would be with
completely closed stomata and therefore equilibration between ¥s and ¥pq cannot
take place. In that situation Wpq gives a biased estimation of Ws. It has been
demonstrated in woody species from the Brazilian tropical savanna, the North
American cold desert and temperate forests that those species exhibit lower Wpa
than Ws because of nocturnal transpiration (Donovan et al. 1999; 2003; Bucci et
al. 2004; 2005; Kavanagh et al. 2007). The phenomenon when ¥4 does not equi-
librate with Ws is called water potential predawn disequilibrium (PDD; Donovan
et al. 1999). In the case of open stomata, PDD should be larger with higher VPD,
as transpirational water loss is highly dependent on atmospheric conditions.

Besides nocturnal transpiration there are other mechanisms that might con-
tribute to PDD. The second one could be severe soil water deficit, which leads to
weakened contact between root surface and soil solution, which in turn constrains
the entering of water into the roots (Cochard et al. 1996). However, Ourcival and
Berger (1995) found that the drier the soil became, the more equal Wpq and Ws
became. The third mechanism is associated with plants’ high capacitance and/or
too short nights. Bucci et al. (2004) demonstrated that the period necessary to
recharge large tropical savanna trees might be longer than the length of a night.
At high latitudes, midsummer nights are very short, which may also prevent equi-
librium between Wpq and s to be reached, as it was demonstrated for Picea abies
(L.) H. Karst. and Vaccinum myrtillus L. (Sellin 1999). The fourth mechanism
contributing to PDD could be hydraulic lift, which is more common in dry
biomes. This phenomenon is caused by differences in Ws between different soil
layers. Water is absorbed by roots from deeper, wetter layers, but in upper dry
layers water is passively sucked out from the roots, which partly constrains water
reaching plant aboveground parts. Therefore, the aboveground tissues might not
be refilled with water during night and equilibrium is not reached (Donovan et al.
1999). The fifth mechanism is associated with leaf apoplastic solutes. Some salt
tolerant plant species accumulate salts in their apoplast in high concentrations,
which, through changes in osmotic potential, lowers leaf water potential (Donovan
et al. 2003). As a consequence, Yp¢ might also remain significantly lower than Ws.

Several studies (Dawson 1998; Limm et al. 2009; Eller et al. 2013; Hill et al.
2015) demonstrate that some plants are able to absorb water from the leaf surface,
i.e. weather events making leaves wet (precipitation, fog, dew formation) can
induce a phenomenon called foliar water uptake (FWU). On average, those events
occur over 100 days a year across all ecoregions of the world (Dawson and Gold-
smith 2018), making FWU potentially a very common mechanism across biomes
(Schreel and Steppe 2020). FWU may improve plant water status and increase its
photosynthetic capacity (Dawson and Goldsmith 2018). The water assimilated
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through the leaves can release tension on the water column inside plants, enable
turgor-driven growth, promote embolism repair and could delay the increased
probability of reaching the critical or lethal water potential threshold leading to
tree mortality (Schreel and Steppe 2019). As summer nights in Estonia are
relatively cool and humid, which are good preconditions for dew formation, it is
likely that deciduous trees growing here might also exhibit FWU, which in turn
may influence predawn leaf water status and development of PDD.

1.3. Possible impact of climate change

Climate models predict that during the following decades various environmental
conditions will change around the world. It is a universal trend that the average
air temperature will rise in different regions (IPCC 2013). In most regions across
low- and mid-latitude continental areas, that rise is coupled with a decrease in
precipitation, which leads to drier soils and more frequent and extreme droughts.
However, at higher latitudes in northern Europe and North America rain events
will become heavier and more frequent. In northern Europe, annual precipitation
since 1960 shows an increasing trend of up to 70 mm per decade and mean summer
precipitation, up to 18 mm per decade (EEA 2017). In Estonia, during 19662015
the average summer precipitation increased by 12.3 mm per decade, and the trend
was significant in June — the period of the fastest development of foliage (Jaagus et
al. 2018). The models project an increase of up to 20-30% in summer precipitation
for northern Europe by the end of the century (Scoccimarro et al. 2015). Relative
air humidity (RH) remains approximately constant on climatological time scales
and planetary space scales, implying a strong constraint by the Clausius—
Clapeyron relationship on how specific humidity will change (O’Gorman and
Muller 2010). However, RH increases due to rising amount and frequency of
rainfalls on regional or local scales (Betts et al. 2014). On average, the climate in
those regions will become more humid. This is particularly characteristic for
forested areas, as mean interception rates for different tree species range 10-58%
of the gross rainfall (Yang et al. 2004; Yang et al. 2019); from forest canopies
water eventually evaporates back to the atmosphere, raising RH on a local scale.
On the other hand, it is proposed that all kinds of extreme weather events will
become more frequent and extreme (IPCC 2013). Thus, despite of the shift towards
moister climate at higher latitudes, it is probable that drought events will also
become more frequent and severe.

The aforementioned changes in environmental conditions should have an
impact on plant water relations, including nocturnal water use and status. In the
regions where the amount of precipitation and soil moisture will decrease, there
is a high probability that g, and E, will decrease as well (Zeppel et al. 2014).
When the contact between roots and soil solution remains adequate, then decreased
E. favours equilibration between Wpq and Ws (Ourcival and Berger 1995). However,
under severe water deficit, when the contact weakens (Cochard et al. 1996), there
will be an increasing probability for the development of PDD. At higher latitudes
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where climate becomes more humid, higher soil water content and higher RH
should favour higher g, in plants (Zeppel et al. 2014; O’Keefe and Nippert 2018).
As water saving is not very important in such conditions, it might happen that
control over stomatal regulation becomes weaker. It has been demonstrated that
leaves developed in high RH conditions close their stomata slower in stress
conditions compared to leaves developed in moderate RH conditions (Fanourakis
et al. 2011, 2016, 2020). In the first case, plants keep their stomata more open
and transpire at higher rates also at night, which results in lower W4 and greater
PDD compared to the latter case. In fact, Nejad and van Meeteren (2005) demon-
strated on Tradescantia virginiana L. plants that the effect of high RH during leaf
development was stronger on night-time stomatal responses (conductance, aperture
and transpiration) compared to those in the daytime.

1.4. Aims of the thesis

The general objectives of the thesis are:

e To compare nocturnal stomatal conductance and PDD in temperate deciduous
tree species differing in ecological demands and life strategies.

e To elucidate the environmental factors that govern nocturnal transpiration and
water potential predawn disequilibrium (PDD) in northern broadleaved trees.

e To test whether increasing atmospheric humidity — a climate trend predicted
for high latitudes — affects nocturnal water use in northern trees.

The following hypotheses were set:

1. Under ample soil water availability, fast-growing tree species are characterized
by higher night-time stomatal conductance compared to slow-growing species,
but this difference disappears under drought conditions.

2. High night-time atmospheric evaporative demand enhances PDD in deciduous
trees under sufficient soil water supply.

3. During nights with dew formation, temperate broadleaved trees are able to
harness foliar water uptake in case of soil water deficit.

4. Growing under elevated RH weakens nightly stomatal control, leading to
larger nocturnal sap flux density and PDD in trees.
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2. MATERIALS AND METHODS

2.1. Experimental set-up and species

All field experiments were conducted at the Free Air Humidity Manipulation
(FAHM) site located at Roka village (58°14' N, 27° 17" E), eastern Estonia. The
study area belongs to the hemiboreal forest zone. The long-term average annual
precipitation in the region is 650 mm, and the average air temperature is 17.0 °C
in July and —6.7 °C in January. The growing season usually lasts 175-180 days,
from mid-April to October. The soil is a fertile Endogleyic Planosol (WRB) with
an A-horizon thickness of 27 cm. Total nitrogen content in the A-horizon is 0.11—
0.14%; C/N ratio is 11.4, and pH is 5.7-6.3. The study site was established on
abandoned agricultural land in 2006-2007. It is a fenced area of 2.7 ha consisting
of nine hexagonal experimental plots (& 14 m) planted with hybrid aspen
(Populus tremula L. x P. tremuloides Michx.) and silver birch (Betula pendula
Roth), which are surrounded by a hybrid aspen buffer zone. One-year-old
micropropagated hybrid aspen plantlets were planted in the experimental area in
the autumn of 2006. The stand density in the buffer zone is 2500 trees ha™' and in
experimental plots, 10,000 trees ha'. In 2012, the trees were felled and the
coppice shoots (stump and root sprouts) were allowed to emerge in hybrid aspen.
Three sample plots were used as control plots (C), and three plots were
humidified (H). Air relative humidity (RH) was increased in H plots using a
misting technique to atomize/vaporize water, combined with a FACE-like
technology to mix humidified air inside the plots. Humidification was applied in
the daytime 6 days a week when ambient RH was <75% and mean wind speed
<4ms™.

Paper |

In 2013, the study was conducted on hybrid aspen coppice (mean height +
SE 1.40 = 0.03 m) that had sprouted the same spring. Shoots were sampled from
both C and H plots to find out if elevated daytime air humidity affects the
development of PDD. In 2014, the study was carried out on 9-year-old hybrid
aspen trees growing in the buffer zone of the FAHM site. Leaves from upper and
lower thirds of the canopy were sampled to evaluate the effect of the length of
the water transport pathway on PDD.

Paper 11

In 2015, the study was conducted on 2-year-old hybrid aspen coppice shoots
sampled from both C and H plots. Mean height (+ SE) of the shoots was 3.25 +
0.15 m, and mean diameter at 0.3 m height was 24.1 + 1.2 mm at the end of the
growing season. The relatively big size of coppice shoots was probably caused
by the large root systems of the parent trees removed in 2012. Sapwood to leaf
area ratio estimated by litterfall averaged 2.13x10* m? m 2 prior to the beginning
of leaf shedding.
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Paper 111

In 2017 and 2018, experiments were carried out in Percival AR-95 HIL (Percival
Scientific Inc., USA) growth chambers. 48 micro-propagated hybrid aspen and
30 seed-grown silver birch saplings were planted into 10-L pots. A detailed de-
scription of the growing medium is given in the paper. The pots with saplings
were weighed and watered every morning to restore the soil water reserve and to
maintain the upper limit of the soil water content at 60% of the field capacity.
From the weighting data, water consumption (g) of each plant was calculated.
The night/day length in the chambers was 8/16 h. The night-time in growth
chambers lasted from 9:00-17:00 and 8:30-16:30 h for hybrid aspen and silver
birch, respectively. The daily photosynthetically active radiation (PAR) was kept
at 800 umol m™ s for the top of the saplings. The sample trees were grown at
two (hybrid aspen) or three (B. pendula) different air humidity regimes (high,
moderate and low-RH treatment) at air temperature ~21.6 °C. The high-RH and
low-RH treatments were characterised by the ~80 and 65% RH twenty-four hours
a day, respectively. The moderate-RH treatment was characterised by the ~80 and
65% RH during night and day, respectively. In hybrid aspen, a jump of VPD was
conducted in the middle of the night (Fig. 1A in III). The latter was not conducted
on silver birch, as it was not applicable for low-RH treatment trees.

Paper 1V

The experiment was conducted in a greenhouse of the Laboratory of Plant
Ecology, Faculty of Bioscience Engineering, Ghent University, Belgium, in nine
temperate tree species: 3- to 4-year-old Alnus glutinosa L. Gaertn., Betula pendula,
FagussylvaticaL., Liquidambar styracifluaL., Quercusrobur L., Robinia pseudo-
acacia L., Sorbus aucuparia L. and Tilia cordata Mill. (plant height 150-175 cm),
and 2-year-old Populustremula L. (plant height 125-150 cm) plants. The growth
substrate was organic soil with organic matter content of 10% (Peltracom,
Belgium), enriched with 4 g L' slow releasing fertiliser (Osmocote Standard
8-9 M, Osmocote Garden, USA). Ten seedlings per species were planted in 25-L
pots (< 40 cm, height 25 cm) on 21 March 2018. Measurements were conducted
from 9 May to 28 June 2018. Prior to measurements, five to eight of the healthiest
trees per species were chosen for the study. After planting, all trees were regularly
watered by drip irrigation every evening. On 29 May 2018, irrigation was stopped
for half of the trees of all species in order to investigate the effect of drought on
nocturnal water relations. The soil of these trees gradually dried out and the trees
that showed visual signs of wilting (Wpa < —5...—3 MPa) were removed from the
experiment.

2.2. Recording of environmental factors

In all the studies, several environmental variables were continuously recorded in
experimental sites. Air temperature (Ta) and RH were measured with HMP45A
humidity and temperature probes (Vaisala, Finland) in the field studies (I, IT) and
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growth chamber study (III), and with SHT25 sensor (Sensirion, Switzerland) in
the greenhouse experiment (IV). Soil water potential (Ws) was measured with
EQ2 equitensiometers (Delta-T Devices, UK) in field studies and with MPS-2
dielectric water potential sensors (Decagon Devices, USA) in the growth chambers.
In the greenhouse, volumetric soil water content (SWC) was measured instead
using a portable Theta Probe type ML2 (Delta-T Devices), and data was con-
verted to Ws by calibration with a tensiometer (CV5 U, Tensio-Technik, Germany)
in a separate pot containing both sensors and filled with the same soil that was
used for the experiment. In field studies, soil temperature (Ts) was also measured,
using ST1 (Delta-T Devices) or 107-L soil temperature probes (Campbell Scienti-
fic, USA). Leaf wetness (LW) was monitored with LWS-1 dielectric surface
wetness sensors installed next to the sample shoots and connected to Em50 data
loggers (Decagon Devices). In field studies, the readings of Ta, RH, ¥s and Ts
were stored as average values every 1-10 min with DL2e (Delta-T Devices) or
CR1000 (Campbell Scientific) data loggers. In the greenhouse, the readings of Ta
and RH were stored in custom-built loggers; the readings of SWC with a HH2
logger (Delta-T Devices). VPD was calculated according to Bolton (1980):

RH 17.67'T
VPD = (1— 53) - 0.6112 - expT+ess, (1)

2.3. Water relations measurements

In all the studies, leaf water potential was measured with Scholander-type pressure
chambers — custom-built (I, II) or industrially manufactured (PMS Instrument
Company, USA; III, IV) instruments. Leaves were excised with a razor blade
and inserted into a plastic bag with a wet tissue to prevent transpiration in the
time between the excision and insertion into the pressure chamber. ¥ou was
determined during 0.5 (I, II), 1 (III) or 1.5 hours (IV) prior to sunrise or before
turning on the light in growth chambers (III). In 2013 and 2014 (I), Y. was
additionally measured 1 and 2 h after dawn to test whether the highest ¥ occurs
always before dawn or could it happen later. In growth chambers, Wi was
additionally measured in the early- and middle-night, and daytime. In order to
prevent night-time water losses and to estimate the contribution of nocturnal
transpiration to PDD and the xylem water potential of branches (¥'s), we applied
the bagged leaves technique (Brodribb and Holbrook 2003). Sample leaves were
enclosed airtightly in Minigrip bags and covered with aluminum foil on the
previous evening. In the field studies (I, II), three uncovered and two covered
leaves per tree (2013 and 2015) or per canopy position (2014) were sampled to
obtain Wpe. In 2013 and 2014, the same was repeated also 1 and 2 h after the
sunrise. In the greenhouse study (IV), W« was determined immediately after
measuring predawn stomatal conductance to water vapour (gpq) on the same leaf.
PDD between soil and leaf water potentials was calculated as a difference
between Ws and Wpq.
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In 2015 (II), sap flow was measured to estimate nocturnal water losses in
hybrid aspen. We applied SFM1 sap flow meters (ICT International, Australia)
based on the heat ratio method thoroughly described by Burgess et al. (2001).
That method has the benefit of detecting low sap flow rates that are common
during night-time. Because of the small diameter of the sample trees we installed
only one sensor per tree just below the live crown. Twelve trees from four
experimental plots were sampled simultaneously. To calculate the total water flux
in the stem we measured stem diameter: two perpendicular measurements were
taken above the sensors and two below the sensors approximately once a week.
Bark thickness was subtracted from the average value of the four measurements
to calculate the cross-sectional area of xylem. Sap flux density (F) was expressed
on an hourly basis per unit leaf area (g m™~ h™'). Zero flow was determined by
constant readings at the end of the growing season after trees had shed all their
leaves. Nocturnal sap flow (Qn.) was separated into nocturnal transpiration (E,)
and tissue refilling (R,) using a forecasted model (Fisher et al. 2007; Alvarado-
Barrientos et al. 2015; Yu et al. 2018). Refilling was interpolated using expo-
nential decay function:

y=a-bf, 2

where t is time, and a and b are empirical constants. E, was calculated as Q, minus
R, (Fig. 1 in II).

In the growth chamber study (III), sap flow was recorded with a T4.2 sap flow
systems (EMS Brno, Czech Republic). To express the sap flux density (F; mmol
m s'), the tree foliage area was measured with a LI-3100C optical area meter
(LI-COR Biosciences, USA). The daily tree water consumption, based on the
weighing of the pots, was used to calibrate the sap flow data. The soil-to-leaf
hydraulic conductance (Ks 1; mmol m? s MPa™') was calculated from F and
water potential difference between the soil and leaf (AY):

Ks-1 = - (3)
In the greenhouse study (IV), g« was measured (AP4 cycling porometer, Delta-T
Devices) to estimate nocturnal stomatal openness. The measurements were started
approximately 1.5 h before sunrise, sampling one leaf per tree. Also minimum
leaf conductance (QOmin) Wwas determined, which was defined as the conductance
through the cuticle and stomata at their maximum closure (Howard and Donovan
2010), induced by severe drought. Leaves of the drought-treated trees showing
signs of wilting were used for this purpose before the entire tree was removed
from the experiment.
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2.4. Data analysis

The data from years 2013 and 2015 (I, II) collected from H and C plots was
treated for most of the analysis as one dataset, since the effect of air humi-
dification was statistically insignificant. In the 2014 study (I), ¥ and PDD data
from different canopy layers were also pooled, as the mean values from the two
layers were not significantly (P > 0.05) different from one another. In that study,
the data points with negative PDD values that occurred at the end of the study
period were removed from the analysis. In the greenhouse study (IV), on some
occasions, when SWC exceeded field capacity (~60%) and water accumulated in
a shallow vessel placed under the pot, the respective values of g,qand PDD were
excluded from the main data analysis.

Statistical analysis was conducted using Statistica 7 (StatSoft Inc., Tulsa, OK).
The assumptions of normality and homogeneity of variances were checked using
the Kolmogorov-Smirnov D statistic and the Levene test, respectively. When
necessary, logarithmic or complex transformations were applied to the data.
Relationships between the focal characteristics and independent continuous
variables were analyzed by using simple linear, multiple linear or non-linear least
squares regressions, and the effect of continuous variables was quantified by the
coefficient of determination (R?). The difference between the means of two groups
was assessed with the Student’s t-test. Analysis of variance (ANOVA) was applied
to assess effects of categorical variables. The post hoc mean comparisons between
the means of more than two groups were conducted using the Tukey’s HSD test
(I, IL, IV). A repeated-measures and factorial ANOVA were applied to compare
different treatment groups in the growth chamber study (III). Analysis of
covariance (ANCOVA) was applied when the effect of both categorical and
continuous factors on focal traits were assessed. The goodness of the models was
expressed as R?. Type III or type IV (in case of unbalanced data sets) sums of
squares were used in the calculations. Effect sizes of single variables were
estimated as SSefrect/(SSefecttSSerror) (I) OF SSeffect/SStota (11, IV).
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3. RESULTS AND DISCUSSION

3.1. Environmental variables governing nocturnal stomatal
conductance and water use

In the greenhouse experiment (IV), predawn stomatal conductance (gpa), used as
an estimate of nocturnal stomatal conductance, differed significantly (ANCOVA,
P < 0.001) between the nine temperate tree species involved in the experiment.
Soil volumetric water content (SWC) was the only environmental factor that had
an effect on gy4, describing 22% (P < 0.01) of the variation in gy« when all the
species were pooled in one dataset. Nocturnal stomatal conductance increased
with increasing SWC. When analysing all the species separately, then eight out
of nine species demonstrated a significant positive relationship between SWC and
Opd (Fig. 1). This is an expected result — at night stomata of deciduous trees respond
to soil water availability similarly as in the daytime. The same has been demon-
strated for different species from various ecosystems and plant functional groups
(Barbour and Buckley 2007; Howard and Donovan 2010; Ogle et al. 2012;
Zeppel et al. 2012). However, the response of g,a to SWC was in practice
determined by species stomatal openness in moist soil conditions (Qpd wet;
SWC =40-60%; Fig. 5 in IV), but not by that in dry soil conditions (Gpd dry;
SWC < 25%; P = 0.68). Thus, steeper slopes between SWC and gpg in some
species were caused by higher stomatal conductance under ample soil water
content rather than by higher sensitivity to soil water deficit. Qpq wet varied signifi-
cantly (P < 0.001) among the species, ranging from 10.9 to 102.7 mmol m? s~
(Table 2 in IV). Tree species was the only significant factor responsible for the
variation in Gy wer. This result suggests that different species keep their stomata
open at night to varying degrees when there is ample water in the soil. Bucci et
al. (2016) proposed that night-time transpiration has probably a genetic basis. The
highest mean Gpq we (102 mmol m2 s™') was observed in P. tremula. A. glutinosa,
B. pendula and F. sylvatica demonstrated moderate values (30—50 mmol m 2 s™),
and the rest lower values of gy wet (10-22 mmol m~s™").

P. tremula demonstrated substantially higher nocturnal stomatal openness than
all the other species (P < 0.001) sampled in the greenhouse experiment (IV). It is
considered a characteristic of fast-growing shade intolerant pioneer and aniso-
hydric tree species (Aasamaa and Sdber 2001). Our finding is supported by high
predawn soil-to-leaf hydraulic conductance (Ks_r; Fig. 2B in III), necessary to
provide adequate water supply to the leaves losing water through stomata kept
open at night. B. pendula is also characterised as a fast-growing light-demanding
tree species (Ellenberg 1988), but in contrast has isohydric stomatal behaviour
(Uddling et al. 2004; Kupper et al. 2018). Similar nocturnal sap flux densities in
B. pendula and hybrid aspen recorded in the growth chamber study (Figs. 1B and
3B in III) confirm that their stomata were open during the night. Species growing
slower, like Quercusrabur, Tilia cordata, Sorbus aucuparia, demonstrated quite
low Qpd wet (10-19 mmol m? s7'; Table 2 in IV). These results confirm my first
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hypothesis, that fast-growing tree species keep their stomata more open at night
in case of ample soil water availability, reducing stomatal constraints to gas
exchange in the early morning and supporting, in this way, high growth rate.

L. styraciflua and R. pseudoacacia are also considered pioneer species (Ruiz-
Sanchez and Ornelas 2014; Sitzia et al. 2016) but their stomatal behaviour
differed from what we observed in B. pendula and P. tremula. These species
originate from warmer southern regions, and they demonstrated quite 10w Qpa wet.
Our data suggests that the first hypothesis is valid for species from cooler and
more humid regions. It has been proposed that fast-growing species may benefit
from nocturnal or predawn stomatal opening through various mechanisms:
enhanced nutrient transport to the leaves, enhanced O delivery to parenchyma
cells in the stem, removal of excess CO; or circadian priming of stomata for early
morning photosynthesis (Caird et al. 2007; Dawson et al. 2007; Bucci et al. 2016).
Resco de Dios et al. (2019) recently concluded from an extensive meta-analysis
that the last mechanism — enhancement of photosynthesis in the early morning —
is the most plausible one supporting higher growth rate of the respective species.
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Figure 1. Relationships between soil volumetric water content (SWC) and natural
logarithm of predawn stomatal conductance (Log gyq) in seedlings of nine deciduous tree
species. Open symbols denote the cases when SWC exceeded field capacity. The trendline
is based on closed symbols.
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Nocturnal stomatal behaviour of Q. robur differed from that of all other species —
Opd Was insensitive to SWC (P =0.51; Fig. 1). Moreover, mean gpa wet of Q. robur
was very low (10.9 mmol m™? s™') and did not significantly differ from Qpq ay OF
from gpa measured on wilted leaves, Omin (ANOVA, P = 0.45). In S aucuparia,
R. pseudoacacia, L. styraciflua and T. cordata gyq wet Was also relatively low
(Table 2 in IV), whereas in the first two species it did not differ from Qpd dry
(P>0.05). Low nocturnal stomatal conductance (4-16 mmol m? s™') also
appears to be characteristic of other Quercus species, but it differs significantly
between drought-treated and well-watered trees (Cavender-Bares et al. 2007).

On the other hand, g, is insensitive to SWC also in Ulmus laevis Pall., but itis
relatively high both in well-watered and in drought-affected (85-220 and
75-225 mmol m? s, respectively) trees (Eller et al. 2017). Our results suggest
that even in moist soil conditions some tree species keep stomata basically as
closed as possible at night. There is no one single and universal explanation for
this phenomenon. For example, Q. robur, S aucuparia and T. cordata all are
characterised by quite low growth rates (Ellenberg 1988). The same has been
confirmed also for other tree species with relatively low growth rate (Daley and
Phillips 2006; Marks and Lechowicz 2007; Howard and Donovan 2010).
L. styraciflua and R. pseudoacacia are pioneer species, but compared to other
studied species they originate from drier southern areas, where water deficiency
is more common. That could be the reason why stricter stomatal control has
evolved in these species, and the negative aspect of losing water during nights
probably outweighs potentially positive consequences of nocturnal transpiration.
Q. robur, L. styraciflua and R. pseudoacacia are also characterised as isohydric
species (Aasamaa and Sober 2001; Kjelgren et al. 2016; Moser et al. 2016), which
refers to an overall conservative water-use strategy, including strict stomatal
control during the night. One more trait is common for Q. robur and R. pseudo-
acacia: their highly conservative nocturnal water use is probably, at least partly,
associated with the anatomical structure of their wood. They are ring-porous
trees, whose xylem contains large vessels prone to embolism and only a few outer
growth rings stay functional.

Several studies have compared nocturnal stomatal conductance of well-watered
plants with that of drought-treated (Barbour and Buckley 2007; Ogle et al. 2012;
Zeppel et al. 2012) or wilted plants (Howard and Donovan 2007; 2010), but we
also compared the latter two with each other. In our greenhouse experiment, mean
Omin ranged from 5.6 to 10.3 mmol m 2 s™', but it did not significantly (P > 0.05)
differ among the species. These values fall well within the range reported in the
literature for other species (Caird et al. 2007; Howard and Donovan 2007; 2010).
Mean Q4 ary varied from 7.7 to 14.6 mmol m 2 s and it did not also differ among
the species involved (P > 0.05). In addition, Qpd ary and Qmin did not differ from
each other in any of the species (P > 0.05). As we assume that Qmin represents
conductance of water vapour through the cuticle and stomata at maximum closure
(Howard and Donovan 2007), the results indicate that under drought stress all of
the studied species kept stomata tightly closed before sunrise. This kind of uni-
form response in all the species suggests that the trees that typically demonstrate
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anisohydric behaviour during daytime do not necessarily follow the same pattern
of behaviour during the night-time if they face soil water deficit. This means that
species benefitting from nocturnal stomatal openness lose that advantage during
drought. As drought episodes are predicted to become more frequent in Central
and Sothern Europe in the future, it might occur that the fast-growing trees will
prove more susceptible to the climate change compared to slow-growing species.

In eight species out of nine involved in our greenhouse experiment, gpq did not
respond to VPD (P > 0.05), which ranged from 0.6 to 1.2 kPa. Only T. cordata
demonstrated a significant positive trend (R*= 0.61; P < 0.01) with VPD. The
data on the response of g, to VPD variability reported in the literature are also
controversial, but there are more reports about the negative effect of VPD on g,
(Ogle et al. 2012). Why should higher VPD enhance g, in some cases is not still
clear. Zeppel et al. (2012) suggest that VPD might affect stomatal regulation
differently during night-time compared to daytime. The absence of VPD effect
might be caused by too small range of nocturnal VPD in some studies, like in our
experiment. The opposite was shown, for example, for RicinuscommunisL., where
O» demonstrated negative response to VPD, while the latter ranged from 0.1 to
2.7 kPa (Barbour and Buckley 2007). However, as our analysis is based on
predawn measurements, at a time when the stomatal responses are very likely
under circadian control, i.e. late-night stomatal conductance is actively controlled
(Resco de Dios et al. 2015), then small changes in VPD have only a slight effect
on Qpd.

Although gpe might not respond when changes in VPD are small, nocturnal
sap flux density (F,) and water use definitely depend on VPD. The field experi-
ment on hybrid aspen (II) demonstrated that despite the fact that nocturnal VPD
only ranged from 0 to 0.45 kPa, it had a strong positive influence on F,, (R*= 0.82;
P < 0.001), whereas the stimulating effect was weaker in wet soil (Fig. 2). Our
result confirms that even at low VPD, nocturnal water-use of broadleaved trees
may be highly dependent on atmospheric conditions. As F, represents both
nocturnal refilling (R,) and nocturnal transpiration (E,), it is probable that E, can
respond to VPD even more sensitively than F, reported here. The relationship
between VPD and F, was linear (Fig. 2), like it has been reported in other studies
conducted in humid regions where nocturnal VPD remains low (Rosado et al.
2012; Kupper et al. 2018). These papers also confirm that g, does not depend on
changes in AED at low VPD values. Several studies conducted in drier regions
report that the relationship between VPD and F, becomes less steep at higher
nocturnal VPD, compared to steeper VPD vs F, slopes observed at low VPD
values (Barbeta et al. 2012; Rosado et al. 2012; Alvarado-Barrientos et al. 2013;
Resco de Dios et al. 2013). This suggests that even at night stomata react to high
VPD with closing, to limit water losses.
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Figure 2. The relationship between vapour pressure deficit (VPD) and nocturnal sap flux
density (F.) in hybrid aspen coppice at different soil water statuses. Each data point
represents a mean value of all trees (N = 12) in a single night.

3.2. Proportion of nocturnal water loss
in daily total transpiration

The study on field-grown hybrid aspen (II) revealed that nocturnal sap flow (Qn)
constituted on average 7.0% of daily total sap flow, which equals daily total tran-
spiration (E). However, Q, consists of two components — nocturnal transpiration
(Ev) and tissue refilling (R,). E, and R, averaged 62% and 38% of Q,, respectively,
which means that E, constituted 4.5% of the daily total transpiration (E./E). In
many studies Q, has been quantified, but only a relatively small number of them
have separated Q, into E, and R,. However, a strong positive relationship between
VPD and nocturnal sap flow described hereinabove and observed in several studies
(Sellin and Lubenets 2010; Gotsch et al. 2014; Zeppel et al. 2014) suggests that
most of that sap flow is attributable to E,. Compared to other studies (Fisher et
al. 2007; Phillips et al. 2010; Alvarado-Barrientos et al. 2015; Yu et al. 2018) that
have separated Q, into the two components, E,/E ratio in hybrid aspen is positioned
at the lower end of the range (2.3—30%). That can be explained by cool and humid
nights prevailing typically in Estonian forests during summers. However, in dry
nights, E./E reached 14% in hybrid aspen. Mean E,/E values exceeding 15% have
been recorded in tropical montane cloud forest during the dry season (Alvarado-
Barrientos et al. 2015). As regards congeneric species, Cirelli et al. (2016) demon-
strated that E, makes up 6-12% of total daily transpiration in different Populus
species.

In our study on hybrid aspen, the contribution of E, to Q, (E./Q,) was on average
62%, however, it varied in a wide range — 17-95%. Such high variability can
primarily be explained by the variation of VPD during the previous day
(P<0.001). The latter determines to what extent trees’ water stores deplete
during a day, which in turn determines how large proportion of Q, will be covered
by R, in the following night. Theoretically, the variation of E./Q, should also be
explained by the variation in nocturnal VPD: the higher the nocturnal VPD, the
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bigger the contribution of E, to Q, (Phillips et al. 2010). However, our results do
not support this conclusion. The average E./Q, reported in other studies also
differs a lot: it varies from 15% (Fisher et al. 2007) to 95% (Alvarado-Barrientos
et al. 2015). This can be explained by two factors: (1) studies have been con-
ducted in different ecosystems with various environmental conditions (incl.
interactive effects on several ecological factors) and in diverse tree species;
(2) different methods have been used to distinguish E, from R, in different
studies. In arid and nutrient-deficient ecosystems, the percentage of both noc-
turnal transpiration and stomatal conductance significantly depends on soil
nutrient availability (Bucci et al. 2016).

Our results suggest that on average 5% of the total daily water loss takes place
during the dark period in hybrid aspen, which is a common tree species widely
cultivated in northern countries. Considering also other studies and global climate
trends leading to the rise in air temperature and AED, the absolute amount of
water lost from the soil via nocturnal transpiration will rise. At an ecosystem
level, that proportion is probably higher, as herbaceous plants also exhibit noc-
turnal transpiration (Costa et al. 2015; O’Keefe and Nippert 2018; Groh et al.
2019). Therefore, night-time transpiration should be taken into account in esti-
mating stand and ecosystem water balance, and in making model-based pre-
dictions for future vegetation water use.

3.3. Environmental and intrinsic factors governing PDD

Predawn water potential disequilibrium (PDD) was observed in all the ten tree
species tested in four studies (I, II and IV), while its magnitude depended on the
experimental approach, being lower in field experiments. Mean PDD was
small in the experiments conducted in hybrid aspen in 2013 and 2014 — 0.04 and
0.07 MPa, respectively, although single records after dry nights extended to
0.2—0.4 MPa (I); in 2015 it averaged 0.19 MPa (II). These values are within the
range reported for Picea abies and Vaccinum myrtillus growing in the same
region in the hemiboreal vegetation zone (Sellin 1999), and for tropical savanna
trees sampled during the wet season (Bucci et al. 2005). In seedlings of nine
temperate tree species grown in a greenhouse the mean PDD ranged from 0.24 to
0.67 MPa (IV). Higher PDD values recorded in the greenhouse experiment are
similar with those reported for the savanna tree Schefflera macrocarpa (C & S.)
Seem during dry season (Bucci et al. 2005), and for some desert shrubs and salt
marsh perennials (Donovan et al. 2001). The relatively big difference in PDD
values between the field experiments and greenhouse experiments is primarily
attributable to VPD levels, which were significantly lower in natural conditions
compared to the greenhouse (P < 0.001; 0—0.45kPa versus 0.6—1.2 kPa, respect-
ively). The effect of AED on the development of PDD is unequivocally proved
by substantial differences in W,q between bagged and unbagged leaves. Freely
transpiring uncovered leaves demonstrated significantly lower Wpq values, leading
to greater PDD (Fig. 2 in I). These findings seem to support the second hypothesis
that higher atmospheric evaporative demand at night brings about larger PDD.
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However, in my studies, PDD depended on VPD only in the field experiments
with hybrid aspen (Fig. 3 and Table 3 in II), but not in any of the nine species in
the greenhouse experiment (Table 3 in IV). On the one hand, the range of VPD
(0.6—1.2 kPa) could be too small to induce significant variation in PDD in the
greenhouse. But on the other hand, that raises a question why even smaller
changes in VPD (0-0.45 kPa) in field conditions had an effect on PDD? Bucci et
al. (2005) unequivocally demonstrated that the variation in PDD depends on
VPD, however, VPD varied in a much wider range (0.3-3.5 kPa) in their study.
Sellin (1999) showed that also in a conifer, PDD is still dependent on nocturnal
AED under low VPD (0-0.6 kPa) conditions, which is in line with the current
results on hybrid aspen.
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Figure 3. Predawn disequilibrium between soil and plant water potentials (PDD) in
hybrid aspen as a function of atmospheric vapour pressure deficit (VPD) and soil water
potential (Ws). A) Coppice shoots, Ws measured at a depth of 30 cm, VPD is a current
vapour pressure deficit (R? = 0.83; P < 0.001). B) Young trees, ¥s measured at a depth
of 40 cm, VPD,, is vapour pressure deficit averaged across 4 h prior to dawn (R? = 0.71;
P <0.001).

In field conditions (II), the major factor explaining the variation in PDD in
2-year-old hybrid aspen was soil-to-leaf hydraulic conductance (Ks-), which
explained 34.2% of the total variation (P < 0.001). PDD was inversely related to
Ks-r. This result shows that lower plant hydraulic conductance, i.e. a less efficient
hydraulic system, impedes water transfer to foliage and the achievement of
equilibrium between leaf and soil water potentials by sunrise. In this study, Ks
was also inversely related to Ws (P < 0.001), which means that the hydraulic system
conducted water less efficiently in trees exposed to wetter soil. That can likely be
explained by overall moist soil conditions that prevailed throughout the whole
study period in 2015. For some period, the soil was very wet (s> 0.01 MPa),
which was probably unfavourable for the trees because of possible hypoxic
conditions that developed in the soil (Sellin et al. 2017). That conclusion is sup-
ported by lower F, under very wet soil conditions compared to drier conditions
(Fig. 2). Reduced hydraulic conductance due to temporary soil hypoxia might
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also explain why mean PDD was significantly higher (P < 0.001) in 2015 com-
pared to 2013 and 2014 studies. Hypoxia inhibits aquaporin gating, reduces root
hydraulic conductivity and triggers stomatal closure (Kozlowski 1997; Kama-
luddin and Zwiazek 2002; Tan et al. 2018). Reduced stomatal conductance in
very wet conditions was demonstrated by some species in our greenhouse study
(Fig. 1). In fact, the processes contributing to the inhibition of root hydraulic
conductivity and root system conductance are complex and involve changes in
both root morphology and the functions of aquaporins.

In greenhouse-grown trees, mean PDD was the greatest in P. tremula (0.67
MPa), differing significantly from that of all other species (P < 0.001). When
analysing the whole dataset across all species, tree species, Qpa wet, and night length
combined described 54% of the total variation in PDD (Table 3 in IV). When
analysing species separately, the results differed among the species. In
A. glutinosa, PDD was almost entirely explained by Qpa wee and night length
(R*=0.94; P <0.001), in B. pendula and P. tremula, gpq wet Was the only relevant
independent factor (R*=0.50; P < 0.05 and R?= 0.34; P < 0.05, respectively), but
in S aucuparia, night length was the only relevant independent factor (R*= 0.34;
P < 0.05), and in the rest of the species none of the factors was statistically
significant. The positive effect of gpa wet on PDD in A. glutinosa, B. pendula and
P. tremula is an expected result as they were among the species with highest
nocturnal stomatal openness. Our results confirm that nocturnal transpiration is
one of the primary factors contributing to the development of PDD. The negative
effect of night length in A. glutinosa and S aucuparia shows that, in certain cases,
nights may be too short for complete recharge of tree tissues with water, and
therefore the equilibrium between Wy¢ and W¥s cannot be achieved. The factors
responsible for the variation in PDD in the other tree species still remain unclear.
It is true that even small g, allows some loss of water from the foliage. However,
there are probably some other mechanisms for substantial discrepancy between
W,q and Ws present in tree species with very low Qpq.

Under certain conditions — in case of dry soil (s <—0.2 MPa) and formation
of dew on the leaves — Ws proved lower than W, resulting in negative values of
PDD in the droughty summer of 2014 (Fig. 1 in I). This indicates that leaves
should have had an extra source of water. It is obvious that hybrid aspen leaves
absorbed dew water formed during cool nights. The additional experiment a year
later, where I submerged visually healthy leaves overnight suggests that hybrid
aspen leaves indeed can absorb water through cuticle or microscopic damages.
That approves the third hypothesis, confirming that northern trees growing in
mesic sites can also absorb water from the leaf surface. Moreover, a Wpq higher
(i.e. less negative) than Ws proves that nocturnal FWU not only affects predawn
leaf water status and the magnitude of PDD, but can also reverse PDD (change
from positive to negative). A study (Schreel et al. 2019) conducted in the frame-
work of our greenhouse experiment at Ghent University on nine temperate tree
species demonstrated that six out of nine and eight out of nine species were able
to absorb water via their leaves in well-watered and drought conditions, respect-
ively. Only Q. robur did not exhibit FWU in either treatment. Cavallaro et al.
(2020) reported that all eight dominant plant species of the Patagonian steppe
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tested in their study exhibited FWU. Foliar water uptake rates varied between 1.5
and 15% of the maximum transpiration rates across species. Taking into account
the percentage of coverage of each species, cumulative FWU represented 1.6%
of the total annual transpiration in this ecosystem. In recent years several studies
have been conducted to shed light upon the phenomenon of FWU, which suggest
that it is much more common and widely spread in diverse ecosystems than
previously thought (Berry et al. 2019; Cavallaro et al. 2020; Schreel and Steppe
2020), and it can considerably affect leaf water status. The paradigm of water
transfer in the soil-plant-atmosphere continuum is changing: water may enter the
plant via different sites and move in two directions (e.g. reversed sap flow)
depending on the water potential gradients.

The results of the field studies (I, II) suggest that under relatively moist
(RH > ~90%) and cool (Ta < ~15°C) atmospheric conditions during night-time,
Yoa (means ranging from —0.19 to —0.04 MPa) is a satisfactory estimate of Ws.
One should also consider the possibility that in very humid nights, the value of
W,q might be altered by the formation of dew on leaf surfaces. Thus, using Wpq as
an accurate estimate of Ws is constrained to nights with certain atmospheric
conditions. In addition, it is necessary to test particular species for ¥pq, since our
results demonstrated that broadleaved tree species differ largely in their nocturnal
water relations and PDD (IV). High variation of PDD in the greenhouse
experiment indicates that the Wpq response is species-specific, being partly
explained by differences in nocturnal stomatal openness between the species.
More specifically, species keeping stomata more open during the night (e.g. P.
tremula) lose more water, which leads to more negative Wpq and its greater
discrepancy from ¥s (Fig. 4). However, based on the results of the greenhouse
experiment, one cannot conclude that W,q of the species keeping stomata basically
closed (e.g. Q. robur, S aucuparia) represents an adequate estimate of Ws, because
PDD remains moderately high in those species (Table 4 in IV and Fig. 4).
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Figure 4. Relationship between predawn stomatal conductance (Log gpd) and predawn
water potential disequilibrium (Log PDD) in wet soil (SWC > 40%). The trendline is
based on single measurements (grey open symbols). Solid black rings denote the average
of each species: Aln— Alnusglutinosa, Bet — Betula pendula, Fag — Fagus sylvatica, Liq —
Liquidambar styraciflua, Pop — Populus tremula, Que — Quercus robur, Rob — Robinia
pseudoacacia, Sor — Sorbus aucuparia, Til — Tilia cordata.
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3.4. Effect of elevated air humidity on nightly
water use and PDD

The effect of artificially elevated air humidity on nocturnal plant water relations
was investigated on hybrid aspen in field studies in 2013 (PDD, I) and 2015 (PDD
and sap flow, II), and on hybrid aspen and silver birch in growth chambers (sap
flow, II). In 2013, air humidification reduced daytime VPD by 5-10% (Niglas
et al. 2015); in the rainy summer of 2015, humidification had no significant
(P> 0.05) effect on mean daytime VPD. Our results indicate that elevating air
humidity artificially through misting during daytime in field conditions affected
neither nocturnal water use (II) nor development of predawn water potential
equilibrium (I, IT). However, F, of hybrid aspen trees grown in a growth chamber
under higher daytime RH (80%) responded positively to VPD increase at night
(Fig. 1C in III), but not trees grown under moderate daytime RH (65%; Fig. 1D
in III). That indicates that the stomata of the trees exposed to higher daytime RH
did not respond or responded sluggishly to increased night-time evaporative
demand compared to the trees exposed to moderate daytime RH. That might
result from lower abscisic acid (ABA) concentration or reduced sensitivity to
ABA in trees grown under high RH. It has been shown on Lycopersicon
esculentum Mill. that plants grown under high RH had lower ABA concentration
at night compared to moderate-RH conditions (Arve and Torre 2015). Therefore,
too small and insignificant difference (II) in VPD between H and C plots does
not allow us to state that increasing atmospheric humidity has no effect on trees’
nocturnal water use at all. A study on hybrid aspen shoots cut from the FAHM
site demonstrated that shoots grown in H plots exhibited higher predawn stomatal
conductance compared to shoots from C plots when exposed to higher evapor-
ative demand in a growth chamber (Rohula et al. 2017). Greater shifts in VPD
and different species should be applied in future manipulative experiments. In a
growth chamber experiment, saplings of B. pendula exposed to ~40% lower
daytime VPD used significantly more water in the night-time (Kupper et al.
2017). These findings and study III demonstrate that in controlled conditions that
create a greater difference in daytime VPD between manipulations, elevated RH
may have an effect on plant nocturnal water relations, weakening stomatal control
over water loss.

There could be several reasons why humidification had no effect on night-
time water use of hybrid aspen in the field. First, the stump sprouts sampled in
2013 were too small and the effect of humidification might have been diminished
by the high and lush herb layer. Second, the rainy summer in 2015 reduced the
humidification effect — there were small but statistically non-significant
(P > 0.05) differences in daytime VPD and RH between the humidity-treated and
control plots. However, PDD in H plots was significantly larger compared to the
control (Fig. 5). Third, exact measurement of small values of nocturnal water
relations parameters (W4, gn, Fn) is complicated due to relatively big measurement
errors, while morphological, anatomical (Kupper et al. 2011; Tullus et al. 2012;
Jasinska et al. 2015; Sellin et al. 2015) and ecophysiological acclimations (Sellin
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etal. 2013, 2017; Oksanen et al. 2019) induced by elevated air humidity may also
flatten the responses of trees’ water relations.
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Figure 5. The magnitude of predawn water potential disequilibrium (PDD) in hybrid
aspen coppice in humidified (H) and control (C) plots in 2013 and 2015, and in hybrid
aspen saplings growing in buffer zone (B) in 2014. The significance of the difference
between the treatments was estimated using the Students’ t-test; * P <0.05.

On a global scale, climate change endangers forests due to a decrease in precipita-
tion, rising temperatures and heatwaves accompanied by forest fires and pest
bursts, while at higher northern latitudes the climate rather will become more
humid (IPCC 2013; Scoccimarro et al. 2015; EEA 2017). It has been suggested
that, compared to conifers, broadleaved tree species can better acclimate to the
conditions accompanying climate change, forcing boreal coniferous forests to
retreat northward (Wang et al. 2013; Boisvert-Marsh et al. 2014; Linder et al.
2014). However, several studies conducted in the framework of the FAHM
experiment have revealed that increasing air humidity has various effects on the
morphology and functioning of deciduous tree species (Sellin et al. 2017; Oksanen
et al. 2019). Reduced height, stem diameter and volume (Tullus et al. 2012), de-
creased carbon sequestration in trees, but increased sequestration in the under-
story (Lohmus et al. 2019), lower intrinsic water-use efficiency (Niglas et al
2014), decreased transpirational water flux and concomitant diminished nutrient
supply to the foliage (Sellin et al. 2013) are only some of many alterations evoked
by increased air humidity in hybrid aspen and silver birch. Thus, the advantages
of deciduous tree species over conifers might not be realized in the context of
climate change, when warming is accompanied by increasing air humidity and
soil moisture.
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4. CONCLUSIONS

This thesis aimed to elucidate nocturnal and predawn water relations of temperate
deciduous tree species and the possible effect of elevated air humidity on them.
The following conclusions can be drawn based on the results obtained:

1.

Under ample soil water availability, fast-growing pioneer tree species (e.g.
Populus tremula, Betula pendula, Alnus glutinosa) exhibit relatively high
night-time stomatal conductance (gn) compared to slow-growing late succes-
sional species (e.g. Quercusrobur and Tilia cordata). The exceptionally low
On observed in pioneer species Liquidambar styraciflua and Robinia pseudo-
acacia is probably attributable to their origin from warmer southern regions
of the temperate zone, where, growing in drought-prone habitats, they have
evolved a for more conservative stomatal behaviour. Northern tree species
originating from cool and more humid environments probably benefit from
higher g,, reducing stomatal constraints and supporting high photosynthetic
rates in the early morning, which is typical to pioneer species. Under drought
conditions the differences between the species diminished, resulting in low
O» in all species. Most likely the harm from keeping stomata open during
night under drought conditions is greater than its potential positive effect.
Due to incomplete stomatal closure, high night-time atmospheric evaporative
demand brings about water losses from the foliage of deciduous trees at
night, which leads to considerable predawn water potential disequilibrium
(PDD) between soil and leaves. Tree species differing in ecological demands
and life strategies differ in the magnitude of PDD under identical environ-
mental conditions. Even in natural conditions of the hemiboreal vegetation
zone, PDD can develop in trees after drier and warmer summer nights, sug-
gesting that predawn leaf water potential (W) is not a reliable estimate of
soil water potential (Ws).

Our experiments proved that hybrid aspen trees are able to absorb water from
the leaf surface, exhibiting foliar water uptake. Less negative Wpq compared
to s in several nights coincided with the occurrence of dew in a drought
period, when water film formed on leaf surfaces. Dew formation and foliar
water uptake are additional factors that might bias Wpq and undermine its
usage as a proxy of Ws.

In the growth chamber experiment, hybrid aspen saplings grown under
elevated air humidity responded with increased sap flux density to a rise in
atmospheric evaporative demand at night, which is evidence of weakened
stomatal control over water loss. Although the field studies did not support
that finding, this point should be addressed in further studies. Taking into
account the regional climate trends, it is very likely that the proportion of
nocturnal water losses in total daily transpiration of trees as well as the
necessity for considering nocturnal transpiration in calculations of landscape
or ecosystem water balance will increase in the future.
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SUMMARY IN ESTONIAN

Oine veevahetus ja koidueelne veepotentsiaalide
tasakaalustumatus parasvéétme heitlehistel puuliikidel

Taimelehtede epidermis paiknevad véiksed poorid — 6huldhed, mille kaudu CO,
difundeerub taime sisemusse ja taimest viljub veeaur — toimub transpiratsioon.
Taimed on vdimelised soltuvalt keskkonnatingimustest Shuldhede avatust regu-
leerima, et kontrollida veekadusid lehest. Traditsiooniline késitlus ecldab, et
00sel, kui fotosiintees ei ole valguse puudumise tottu voimalik, hoiavad taimed
ohuldhed suletuna. Praeguseks on siiski teada, et paljud liigid hoiavad neid ka
oosel avatuna. Oist Shuldhede avatust vdivad mdjutada mitmed keskkonna-
tegurid: mulla niiskus, suhteline Shuniiskus, 6hu temperatuur, tuul, toitainete
sisaldus mullas. Oisest Shuldhede avatusest tingituna kaotavad puud ka &osel
vett, mis moodustab keskmiselt 10-15% kogu O6pédevasest transpiratsioonist.
Soltuvalt geograafilisest regioonist, kasvukoha eripérast ja liigi omadustest v3ib
see number oluliselt varieeruda.

Oine veekadu voib pohjustada vorreldes olukorraga, kui dhuldhed oleksid
00sel tédielikult suletud, koidueelsel ajal lehtede madalama veestaatuse, kui seda
vOimaldaks mullavee kédttesaadavus. Taimede veestaatuse mdodduna kasutatakse
kdige sagedamini veepotentsiaali (), mis véljendab mingis keskkonnas, orga-
nismis, koes vm. oleva vee potentsiaalset energiat (tavaliselt negatiivse vairtu-
sega) puhta vee suhtes normaaltingimustes (selle vdértus on null). Lehe koidu-
eelset veepotentsiaali (Wpq) kasutatakse okofiisioloogilistes uuringutes tihtipeale
mulla veestaatuse hinnanguna, kuna taime veestaatus peaks péikesetousueelseks
ajaks tasakaalustuma mulla omaga. Kuid diste veekadude tagajérjel ei pruugi Wpa
mulla veepotentsiaaliga tasakaaluseisundit saavutada, mistottu esineb néhtus,
mida kutsutakse koidueelseks veepotentsiaalide tasakaalustumatuseks (ingl.
k. predawn disequilibrium, PDD). Sellises olukorras ei kanna Wyq vdértus enam
adekvaatset hinnangut mulla veestaatuse kohta. Lisaks Gisele dhuldhede ava-
tusele voivad PDD-d mojutada muudki faktorid, mida kdesolevas to0s uuriti.

Praegused kliimamudelid ennustavad troposféddri alumistes kihtides tempera-
tuuri tousu lile kogu maakera. Enamikes piirkondades madalatel ja keskmistel
laiuskraadidel kaasneb sellega sademete vihenemine ning poudade ja kuuma-
lainete sagenemine. Kuid pohjapoolkera korgematel laiuskraadidel, s.h. Pdhja-
Euroopas, kus asub ka Eesti, ennustatakse sademete hulga suurenemist ja sagene-
mist. Sagenevad vihmahood suurendavad lokaalsel voi regionaalsel tasandil ka
suhtelist Shuniiskust, eriti metsadkosiisteemides, kus suur osa vihmaveest seo-
takse puude vdrastikus. Suurenenud ohuniiskusel voib olla taimedele suurem
mdju vegetatsiooniperioodi alguses, kui toimub lehtede areng. Senised Metsa-
Okosiisteemi Shuniiskusega manipuleerimise eksperimendi (FAHM) tulemused
nditavad, et suurenenud Ohuniiskusel on oluline mdéju lehtpuude kasvule ja
mitmetele flisioloogilistele niitajatele (vihenenud toitainete omastamine mullast,
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vahenenud fotosilinteesivoime, hdiritud lammastiku metabolism, tarklise akumu-
leerumine lehtedes jm.). Seni pole aga teada, kas suureneval Shuniiskusel on
mdju ka disele dhuldhede regulatsioonile ja taimede koidueelsele veestaatusele.

To0 iildisemateks eesmaérkideks olid:

e Vorrelda odist/koidueelset dhuldhede juhtivust (gs) ja PDD-d parasvootme
heitlehistel puuliikidel, mis erinevad 6koloogiliste ndudluste ja elustrateegiate
poolest.

e Selgitada vélja, millised keskkonnafaktorid mdjutavad looduslikes tingimustes
puude odist/koidueelset dhuldhede juhtivust ja transpiratsiooni ning PDD-d.

e Selgitada vélja, kas kasvamine suurenenud suhtelise Shuniiskusega kesk-
konnas mojutab puude dist veekasutust ja PDD esinemist.

Doktoritd6 aluseks olevad katsed viidi 14bi hiibriidhaaval (Populus tremula L. x
P. tremuloides Michx.) vélitingimustes Rdka kiilas asuval FAHMi katsealal,
liheksa parasvodtme lehtpuuliigi seemikutel Genti Ulikooli (Belgia) kasvuhoones
ning hiibriidhaaval ja arukasel (Betula pendula Roth.) TU okofiisioloogia
oppetooli kasvukambrites.

Keskmine koidueelne g, varieerus uuritud liikide vahel laiades piirides
(10.9-102.7 mmol m™? s™"), kui muld oli mdddukalt niiske (mullaveesisaldus,
SWC > 40%). Kdrgem dhuldhede juhtivus registreeriti kiirema kasvuga liikidel,
millest omakorda eristus korgeima keskmise koidueelse gs-ga harilik haab
(Populus tremula L.). Aeglasema kasvuga liigid nagu harilik tamm (Quercus
robur L.) ja harilik parn (Tilia cordata Mill.) demonstreerisid vordlemisi madalat
Ohuldhede avatust. Saadud tulemus viitab sellele, et dine/koidueelne 6hulohede
avatus annab osadele liikidele teatud eelise, mis soodustab puude kiiremat kasvu.
Selle seose kodige toendolisemaks seletuseks on varahommikune korge foto-
stinteesi intensiivsus neil litkidel, mis oma Shuldhed aegsasti enne koitu avavad,
viltimaks piiranguid gaasivahetusele. Kuid on néidatud, et Gine transpiratsioon
soodustab ka toitainete efektiivsemat omastamist mullast, toetades sellega
produktsiooni.

Koidueelne g korreleerus positiivselt mulla veesisaldusega kaheksal puuliigil
tiheksast. Vaid tamm hoidis 60siti huldhed tihtlaselt suletuna nii kuiva kui mérja
mulla tingimustes. Samas kuiva mulla (SWC < 25%) korral hoidsid koik liigid
oma Oohuldhed praktiliselt suletuna. Sellest voib jareldada, et osa litke reageerib
mulla niiskuse muutustele sarnaselt nii pdeval kui 60sel — pdua tingimustes dhu-
16hede juhtivus vdheneb, dhuldhed sulguvad. Teiselt poolt liigid, mis ka pdua
tingimustes hoiavad pédevasel ajal dhuldhed suhteliselt avatuna (anisohiidrilised
liigid), sellist suundumust koidueelsel ajal ei demonstreerinud, vaid vdhendasid
samuti Shuldhede juhtivust. Seega erineva veekasutusstrateegiaga liikide Shu-
16hed kiituvad pdua tingimustes pimedal ajal viga sarnaselt.

Hiubriidhaava 6ise ksiileemivoolu — s.0. veevoog modda juhtkudesid juurtest
lehtedesse — andmetest arvutatud Oine transpiratsioon moodustas keskmiselt
4.5% kogu dopievasest transpiratsioonist. Oine ksiileemivool korreleerus posi-
titvselt atmosfaari veeaururdhu defitsiidiga (VPD), olgugi et viimane varieerub
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hemiboreaalses voondis 60siti metsas vordlemisi vihe. Kdrgema VPD korral, s.t.
kuivematel ja soojematel 60del oli ksiileemivoolu intensiivsus keskmisest kuni
kuus korda korgem. Saadud tulemused kinnitavad iihemotteliselt, et hiibriidhaava
ohuldhed pidid olema 66sel vihemalt osaliselt avatud ning et dine veevoog 1dbi
puu sdltub oluliselt atmosfairi tingimustest.

Nii kasvuhoones kui vilitingimustes korraldatud eksperimentides leidis kinni-
tust PDD esinemine parasvootme puudel. PDD suurus oli oluliselt viaiksem vali-
katsetes (0.04—0.19 MPa) vorreldes kasvuhoone katsega (0.24—0.67 MPa). Selle
ttheks pohjuseks voib kindlasti pidada kdrgemat VPD-d kasvuhoones, mis toetas
kdrgemat dist transpiratsiooni ja mis omakorda tingis madalama Wpq. Eestis 18bi
viidud vélikatsete kdigus olid 66d pigem jahedad ja niisked, mistdttu enamikel
60del esines kaste, mis takistas vee aurumist lehtedest ning ¥4 oli 1dhedal tasa-
kaaluseisundile mullaga, s.t. PDD oli nullilihedane. Avatud ShulShede olulisust
PDD kujunemise juures kinnitab kasvuhoone katses kdige suurema PDD esine-
mine h. haaval, mille koidueelne dhuldhede juhtivus oli liikidest korgeim. Osadel
liikidel s6ltus PDD ka 66 pikkusest — mida lithem oli 66, seda suurem oli PDD.
See tulemus néitab, et mone liigi jaoks ei ole 68d alati piisavalt pikad, et puu kdik
osad (tiivi, oksad, lehed) jouaksid 66 jooksul veega uuesti tdituda, mistdttu ei
tasakaalustu lehtede veepotentsiaal koidueelseks ajaks mulla omaga. See vaib olla
seotud nende liikide anatoomiliste isedrasustega, mis ei lase mullast omastataval
veel piisavalt kiiresti koikidesse taimeosadesse jouda.

Teatud keskkonnatingimustes — kuiv muld koos kaste esinemisega 60sel — tuli
ette olukordi, kus hiibriidhaava lehtede W4 oli vihem negatiivne kui mulla vee-
potentsiaal, mis tdhendab seda, et lehtede veestaatus olid kdrgem kui mullal. See
viitab asjaolule, et lehed pidid kusagilt mujalt kui mullast lisavett saama, milleks
oligi kastevesi. Tédiendavalt 14bi viidud katse, mille kdigus visuaalselt tervete
lehtede labad 60ks vette sukeldati, kinnitas, et hiibriidhaab on v6imeline lehtede
pinnalt vett absorbeerima. See aga lisab tdiendava tingimuse Wy« kasutamisele
mulla veestaatuse hinnanguna — jahedatel ja kastestel 6ddel, kuid kui mullas
valitseb veedefitsiit, ei pruugi Wps mulla seisundit adekvaatselt peegeldada.

Kasvukambris korraldatud eksperiment néitas, et kdrgema péevase Shuniiskuse
tingimustes kasvanud hiibriidhaabade ksiileemivool tegi mérgatava tdusu 66sel,
kui ohuniiskust jarsult vdhendati. Mddduka Shuniiskuse tingimustes kasvanud
puude puhul sellist tdusu ei tdheldatud. Ksiileemivoolu tous esimesel juhul viitab
sellele, et kdrgema Shuniiskuse kées kasvanud puud ei vihendanud 6huldhede
avatust voi tegid seda vdiksemal méaéral, mis néitab nende Shuldhede tundlikkuse
viahenemist dhuniiskuse muutuste suhtes. Vilikatsed FAHM katsealal ei kinni-
tanud suurendatud dhuniiskuse moju hiibriidhaava oisele ksiileemivoolule ega
PDD kujunemisele. Sellisel tulemuste lahknevusel voib olla erinevaid seletusi.
Uhelt poolt olid suved, mil vilikatsed toimusid, keskmisest sajusemad, mis
niisutustootluse moju vélitingimustes kahandas. Lisaks olid eksperimendi esi-
mesel aastal puud veel viiksed, nii et lopsakas alustaimestik v3is samuti niisutuse
mdju vihendada. Teisest kiiljest ei pruugi ksiileemivool ega ka W4 olla piisavalt
tundlikud karakteristikud, eriti arvestades Shuniisutusest indutseeritud puude
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morfoloogilist, anatoomilist ja fiisioloogilist kohanemist. Seda eriti jahedatel
pOhjamaistel 66del, mil atmosfaéri evaporatiivne ndudlus on viga madal.

Doktoritdost selgus:

Parasvootme lehtpuuliikide koidueelne Shuldhede juhtivus varieerub piisava
mulla veevarustuse tingimustes liigiti méarkimisvéérselt, olles kiirekasvulistel
puudel kdrgem kui aeglase kasvuga liikidel. Poua tingimustes see erinevus
kaob.

Hiibriidhaaval s6ltub dine ksiileemivool atmosfddri ndudluse tasemest, mis
viitab samuti Gisele dhuldhede avatusele ja sellega kaasnevale transpirat-
sioonile. Umbes 5% kogu 66paevasest transpiratsioonist toimus 6osel.

Nii vélikatsetes uuritud hiibriidhaaval kui ka t{iheksal kasvuhoones testitud
lehtpuuliigil esineb koidueelne veepotentsiaalide tasakaalustumatus, mille
suurus soltub positiivselt VPD-st ja dhuldhede juhtivusest. Mida enam on
Ohuldhed avatud ja kdorgem on atmosfaéri noudlus, seda suurem on PDD, mis-
tottu tuleks teatud tingimustes olla ettevatlik Wpq kasutamisel mulla vee-
staatuse hinnanguna.

Hiibriidhaab on voimeline 66sel lehe pinnalt kastevett omastama, mistottu
tuleb arvestada selle voimaliku mdjuga Wpq ja PDD kujunemisele niiskete ja
jahedate 60de jargselt.

Korgenenud péevasel suhtelisel Shuniiskusel on moju lehtpuude disele dhu-
16hede regulatsioonile — stomataarne kontroll veekadude iile ndrgeneb, kuid
seda on keeruline tuvastada vélikatse tingimustes. Vottes arvesse regionaal-
seid kliimatrende, on viga tdendoline, et tulevikus suureneb Oiste veekadude
osakaal puude O00pdevases transpiratsioonis ning ka vajadus arvestada Oise
transpiratsiooniga maastike voi dkosiisteemide veebilansi koostamisel.
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