
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science
Software Engineering Curriculum

Bogdan Semiletko

Dealing with Complex Parallel Structures in

Process Discovery
Master’s Thesis (30 ECTS)

Supervisor(s):

Fabrizio Maria Maggi

Tartu 2015

2

Dealing with Complex Parallel structures in process discovery

Abstract: One of the aims of process mining is to discover a process model from a log.

However, the quality of the discovered model depends on the completeness of the information

about the process behaviour contained in the log. Incomplete logs do not provide all the

possible behaviours. Existing process discovery algorithms dealing with incomplete logs, have

troubles when working with complex parallel structures, because parallel behaviour has

factorial rate of growth with respect to the number of branches. In this work, a new algorithm

is proposed, which combines divide and conquer approach, with the existing mining algorithms

to improve discovery of highly structured and highly concurrent process models from

incomplete logs. This work describes the proposed algorithm, and explains how it works with

illustrative step-by-step examples of the mining procedure. Finally, we evaluate the

effectiveness and efficiency of our approach by using process models containing complex

parallel structures and randomly generated models.

Keywords: process model discovery, process mining, automated process discovery, BPMN,

process trees, parallel block mining, parallel branch discovery, incomplete logs mining, log

incompleteness

Keerukate paralleelstruktuuridega toimetulek protsessiavastuses

Lühikokkuvõte: Üks protsessikaeve eesmärkidest on leida protsessimudeleid logifailidest.

Samas sõltub leitava protsessimudeli kvaliteet sellest, kui täielik informatsioon protsessi

käitumise kohta logifailis on, kuna paralleelarvutuste keerukuse kasv on faktoraalses

sõltuvuses harude hulgast. Selles lõputöös tutvustatakse uut algoritmi, mis kombineerib jaga-

ja-valitse võtet olemasolevate kaevealgoritmidega, et täiustada hästistruktureeritud ja

samaaegselt toimuvate tegumitega protsessimudelite kaevet poolikutest logifailidest. See töö

kirjeldab väljapakutud algoritmi ja selgitab, kuidas see töötab samm-sammu haaval

illustratiivsete kaeveprotsessi näidete abil. Lõpuks hindame selle meetodi efektiivsust ja

tulemuslikkust kasutades protsessimudeleid, mis sisaldavad samaaegselt toimuvaid tegumeid

ja juhuslikult loodud mudeleid.

Võtmesõnad: protsessikaeve, automatiseeritud protsessiavastus, BPMN

3

Contents

1 Introduction ... 4

1.1 Problem ... 4

1.2 Contribution... 4

2 Background and related work .. 6

2.1 Process models .. 6

2.2 Log representation ... 7

2.3 Existing automated process discovery algorithms .. 9

2.4 Related research .. 11

3 Contribution ... 13

3.1 Definitions ... 13

3.2 Algorithm description.. 17

3.2.1 Step by step walkthrough ... 18

3.2.2 Complex process model walkthrough .. 24

3.2.3 Why does the algorithm work? .. 28

3.3 Algorithm limitations .. 28

4 Evaluation .. 32

4.1 Comparison of process discovery algorithms ... 32

4.1.1 Process model S1 ... 32

4.1.2 Process model S2 ... 33

4.2 Effectiveness analysis.. 34

4.2.1 Process model S1 ... 36

4.2.2 Process model S2 ... 37

4.2.3 Process model S3 ... 39

4.2.4 Process model S4 ... 41

4.2.5 Process model S5 ... 43

4.2.6 Process model S6 ... 45

4.3 Performance analysis... 46

5 Conclusions ... 48

5.1 Future work ... 48

Bibliography .. 49

Appendices ... 51

I. Performance analysis dataset .. 51

II. License... 52

4

1 Introduction

In this chapter we introduce the problem to be addressed in this thesis and the research

questions we want to answer. Then we sketch the contribution of the thesis aimed at answering

the research questions.

1.1 Problem

Process mining is a relatively young discipline for analysing process data, and improve

business processes ([1]). Process mining includes three main branches: automated process

discovery, conformance checking and process enhancement. Automated process discovery

aims at building process models from events logs without any apriori information.

Conformance checking techniques allow users to detect discrepancies between a real behaviour

of a business process, as recorded in an event log, and some expected behaviour described in a

process model. Process enhancement allows users to enrich an input process model with

information retrieved from logs.

In this thesis we focus on process discovery. The problem we try to address in this context, is

that existing approaches fail in the discovery of process models containing complex parallel

structures. This is especially true in case of input logs with high level of incompleteness, and

infrequent behaviour.

Existing process discovery algorithms dealing with incomplete logs, have troubles when

working with complex parallel structures, because parallel behaviour has factorial rate of

growth with respect to the number of branches. Thus the existing algorithms output a model

with a behaviour which does not correspond to the original process model.

In this thesis, we want to answer the following research questions.

Main research question:

How to effectively discover business process models containing complex parallel

structures?

Partial research questions:

 How to discover block structured from logs with high degree of incompleteness?

 What is the best way to identify a group of events belonging to a parallel block using
the information contained in an event log?

 How to cluster events belonging to a parallel block into different branches?

Research objectives:

 Implement the approach as a plug­in of the ProM platform.

 Evaluate the effectiveness of the proposed algorithm with respect to state of the art

techniques.

 Evaluate the efficiency of the proposed algorithm with respect of the size of the input
log.

1.2 Contribution

The proposed algorithm combines a divide and conquer approach with existing mining

algorithms to improve the discovery of highly structured and highly concurrent process models

from incomplete logs. We introduce two theorems, which allow us to discover groups of events

belonging to parallel blocks, and to determine the events belonging to each branch in each

block. To discover a correct process structure, we iteratively replace every branch of every

5

parallel block with a placeholder. To reconstruct a final process model, we recursively apply

the algorithm using a bottom-up approach.

We implemented our algorithm as a plugin1 of the process mining tool ProM.

To evaluate the efficiency and effectiveness of our approach, we performed several qualitative

and quantitative tests. The efficiency was measured using logs with different characteristics,

randomly generated starting from different process models. The effectiveness was evaluated

using as a baseline the Inductive Miner. For this purpose, we generated a set of logs using the

same models and characterised by different degrees of completeness.

1 https://github.com/sjbog/PBMiner

https://github.com/sjbog/PBMiner

6

2 Background and related work

In this chapter, prerequisites and prior information needed to understand the thesis is described.

2.1 Process models

Process models try to capture and describe the behaviour of some processes, using elements

with deterministic order of execution. There exist numerous model representation formats, but

we will focus on the standard solutions in the field of Business Process Management [2].

The goal of any process model is to describe order of execution of activities. Almost any

execution order could be achieved with 3 base flows: sequential, parallel and exclusive choice.

Petri Net is a process modelling notation based on transition system, with 2 model elements:

states (places) and transitions. It is represented as a directed graph, where transitions and states

are represented by arcs and nodes respectively, and the notion of tokens to indicate the control

flow. The process starts in one of the initial states and terminates in one of the final states, and

a path of the graph, from start to a final state, corresponds to the process execution path. Petri

Nets, as well as their sub-class Workflow Nets ([3]), are one of the most widely used model

representation formats.

Business Process Modelling Notation (BPMN) is another widely used model representations

standard, which was designed to describe business processes management ([2], [4]). BPMN

structural elements are divided into 4 categories:

 Flow objects (events, activities and gateways)

 Connecting objects (message flow, sequence flow, etc.)

 Swim lanes (pool, lane)

 Artefacts objects (data object, annotation, etc.)

Figure 1: BPMN notation [2]

Figure 1 shows main BPMN flow elements. The gateways indicate order of execution for

activities:

 AND-gateway specifies parallel behaviour, i.e., concurrent execution of all choices,
without explicitly specifying the order of execution.

 XOR-gateway denotes exclusive choice behaviour, i.e., only 1 of the choices is

executed.

7

 OR-gateway specifies non-exclusive choice behaviour, i.e., 1 or more choices is
executed is any possible order.

Neither Petri Nets nor BPMN guarantees sound models, e.g. models without deadlocks or other

anomalies [5], however for the implementation it is important.

Process Tree [6] is an abstract hierarchical process model representation structure that are

guaranteed to be sound. Process trees are one of the most popular formats for computer

software, which allow conversion from and to different standardised formats (BPMN, Petri

Net, etc.). Process Tree could be described as Directed Acyclic Graph, where edges denote

hierarchical relationship of respective nodes. Nodes, which are generalisation for blocks

(operators) and tasks (activities), describe causal relationship (order of execution) of its

children. The most used blocks have the following notation:

 Seq() – sequence flow of execution

 And() – parallel / concurrent flow of execution

 Xor() – exclusive choice execution

Any block could have nested blocks, however leaf nodes (tasks) are final. Children of parallel

and exclusive-choice Xor blocks are often called branches.

2.2 Log representation

Data generated from the execution of process models are called event logs. Events in a log refer

to actions of a model, and sometimes events are also called actions. An event log contains a set

of events grouped by execution instances, called traces. All these structural elements contain a

set of defined attributes, among standardized ones are:

 Id - provides unique identifiers (UUIDs) for elements.

 Timestamp – date and time, at which the element has occurred

 Name – non-unique, human understood label of element. For logs, it could be the
name of the executed process.

 Lifecycle transition – specifies stage of event’s execution lifecycle (usually

atomic, thus complete), for example: start, schedule, suspend, resume, etc.

 Resource / role – name or identifier of the resource / role, which have triggered
the event.

In addition there could be unlimited number of additional attributes. For example, costs is one

of commonly used attributes, which describes action related costs, usually has 2 embedded

attributes – currency and amount. Other examples would be costs, system being used and data

of an instance, which allows to correlate and find causal relationships of event logs.

8

Figure 2 Structural elements of process mining event logs [7]

Usually traces in a log are unordered, whereas an events list of a trace is ordered [7]. Thus any

two traces with the same order of events are usually considered equal.

There are 2 commonly used formats for log representation within BPM environment: MXML

and XES standards. Although different vendors and system define numerous log formats,

standardized representation allows to leverage log analysis and process mining tools like ProM.

MXML (Mining eXtensible Markup Language) is an extensible, XML-based format for storing

process event logs, which emerged in 2003 and was adopted by the process mining community

(ProM tools) as standard format. Since 2010, when IEEE Task Force on Process Mining

adopted a less restrictive and truly extendible successor, it is considered a legacy standard [8].

XES (eXtensible Event Stream) is an open XML-based standard for storing and managing

event logs [9], sometimes called OpenXES by its open-source reference implementation library

[7]. It was designed primarily for process mining, with a main purpose to provide generally-

acknowledged format for event logs interchange. In addition, creators made it suitable for data

mining and statistical analysis.

The following principles were kept in mind, while developing XES standard:

 Simplicity – represent information in a simplest possible way, while still being
human-readable, allow fast and easy log generation and parsing.

 Flexibility – aims to be general standard for event log data, without specificity or

background of process mining or business processes.

 Extensibility – ability to be transparently extended in the future, while
maintaining backward and forward compatibility. In addition, ability to extend

with special requirements or schemas to work with specific application domain

or software implementations.

 Expressivity – allow to attach human-interpretable semantics to strictly typed
information elements, while aiming for generic format with as little loss of

information as possible.

Since XES aims to be generic log format, only most common elements, identifiable by any

setting are explicitly defined by the standard. All the other information, in particular process

mining specific, is deferred to the optional attributes, and the semantics is standardized by

external implementation extensions.

9

Figure 3: XES meta-model structure

The top level object is a log entity, which holds information related to the specific process, and
contains traces that describe specific instance. Event objects represent atomic activities,

observed during process execution. These objects don’t contain the actual information, which

is stored in attributes, but only define the document structure. They could contain an arbitrary

number of attributes.

Attributes describe their enclosing container with a key-value pair, where keys should be

unique within parent element. Standard defines commonly used attribute types: string, date,

numeric, boolean, container, etc. High flexibility of standard even allows to have nested

attributes.

XES uses a concept of event classifiers, which assigns an identity to each event, thus making

them comparable. Classifiers are defined as a set of attributes within log’s global attributes

(which they are subset of), thus allowing to obtain high-level aggregate information and

generate log summaries. Since XES doesn’t define specific set of attributes, extensions are

used to introduce a set of common attributes within a specific perspective or dimension. In

addition, extensions allow to resolve ambiguity of attribute naming via attribute keys prefixing.

2.3 Existing automated process discovery algorithms

Alpha-Algorithm process discover algorithm ([3], [2]) is one the simplest and one the oldest

process discovery algorithms, which could deal with concurrency. It uses straightforward naive

approach to scan the log for predefined patterns and build N2 footprint matrix. Then builds a

process model, adding one activity after another, and optimises (or reduces) the discovered

relations. Hence, it has a lot of limitations, for instance it cannot deal with noisy logs, infrequent

10

and incomplete behaviour, complex nested structures, etc. Alpha-Algorithm is often considered

a baseline and often embedded into other complex process discovery algorithms.

Inductive Miner [10] is one of the best process discovery algorithms, which outputs a sound

and fit block-structured model in a finite time. It applies divide and conquer strategy, first by

partitioning the activities and ordering them according to predefined process construct ranking.

Then, it uses most important construct as a cut point, to perform a log split. The steps are

recursively repeated until base case is encountered. See example illustrated in Figure 4.

Figure 4: Inductive Miner cut points example2

The authors specify 1 major limitation, - the log should contain enough traces of activities

execution behaviour. However, in the improved version Inductive Miner incompleteness

(IMin) this limitation was lifted [5]. IMin is more complex algorithm than IM, where a simple

activities partition step was replaced with an optimisation problem. The improved version

estimates probabilities of the activities relations according to a predefined relationship

formulas, and searches for a partition with the highest score. Authors performed a series of test,

and concluded that Inductive Miner incompleteness is able to discover correct process models

even from a small incomplete logs, and require less information than other process discovery

algorithms.

Heuristics Miner [11] is one of the few algorithms, which can mine process models from

incomplete logs and is robust with respect to noisy logs. It is a control-flow mining algorithm,

which first builds event dependency graph (DG), to analyse causal dependencies of events. The

relations of event pairs are ranked by frequency-based metric, indicating the certainty of

dependency relation between two events, and combined into a directed connected graph.

2 Process Discovery: Inductive Miner

http://www.processmining.org/blogs/pre2013/process_discovery_inductive_miner

11

Figure 5: Heuristics Miner Dependency Graph example

Figure 5 shows a Dependency Graph example, where dependencies represented as edges and

activities as nodes, and the strongest relations of event B3 inputs and outputs. Number inside

each event box indicate the task frequency, while the numbers on arcs indicate the dependency

relation reliability.

To obtain a process model Heuristics Miner extends DG into an internal representation called

augmented Causal Net, which allows to mine splits and joins. Finally, the algorithm analyses

possible extensions of the process model, i.e. long-distance relationships, graph optimisation

and pruning, etc.

2.4 Related research

There exist a lot of different process mining algorithms, which could be classified as discovery

of procedural (structured) and declarative (unstructured) process models, according to [12].

Nowadays, procedural mining is a dominant process discovery technique, but processes, with

high level of variability, could be represented with declarative language in a more compact

way. The approach proposed by the authors of [13] combines the two techniques, in order to

capture strictly structured and non-structured flexible blocks, and represent them in a single

process model.

To discover hybrid process models, the authors employ divide & conquer technique. First, they

analyse the log in order to find events within structured and unstructured contexts, or as authors

refer to it, - context analysis technique. Then, having these sets of events, the log is split into

several pieces containing only either structured or unstructured events. Such division allows to

employ appropriate mining algorithms, in particular, Inductive Miner for structured events and

Declare Miner for unstructured. In the end, a hierarchical top-level process model is mined,

usually represented as a structured process, with pseudo-activities representing child sub-

processes.

12

To represent the final hybrid model, recently 2 extensions to an imperative model presentation

formats were proposed: R/I-net and BPMN-D. Authors of the first one [14] expressed Declare

semantics in the form of Petri nets, where Declare constraint is mapped to a Petri net fragment

with weighted, reset and inhibitor arcs. The authors of the latter [15] introduce Declare

constructs into BMPN, by extending activity nodes and sequence flow arcs, preserving

backwards compatibility.

Authors of the BPMN Hierarchical Miner [16] used modularity or hierarchy, e.g. notions of

parent process and groups of repetitive events, called sub-process, to represent process models

with highly complex structures. The proposed approach has 3 steps. At first, sub-processes are

identified. Using clustering techniques on event attributes, or analysing other dependencies of

attributes combinations, unique event blocks are identified. Next, log is divided into smaller

pieces according to event blocks of corresponding sub-processes. This allows to mine and

discover a process model for each sub-process, with existing procedural (flat) mining

algorithms, namely Inductive Miner. Lastly, knowing a hierarchy of logs, process model

hierarchy is generated. Heuristics analysis of root log allows to identify boundary events, event

sub-processes and markers, which then makes it possible to glue all discovered models

together. There are 2 known limitations described by the authors: log should be noise-free and

requires correctly assigned attributes for each event.

13

3 Contribution

In this chapter, we describe the main contribution of this thesis. We first introduce some

definitions and theorems useful to understand the proposed discovery algorithm. Then the

algorithm itself is described in detail. Finally, a discussion about advantages and limitations of

the proposed algorithm concludes the chapter.

3.1 Definitions

Definition 1 (block events): set of events between corresponding split and join gateways.

Definition 2 (start / end events of a block): subset of the block events, which are directly

connected to an opening / closing split gateway.

Definition 3 (unassigned events of a block): subset of the block events, which are known to

belong to an AND gateway (parallel) block (see also Theorem 1). However, these events could

belong to any branch of the parallel block, because a branch assignment cannot be determined

(see also Theorem 2).

Definition 4 (incomplete log): log generated starting from a process model, which does not

contain the complete set of all the possible paths ([2], [5]). For example, a process model

consisting of 10 activities, which are executed in parallel, would have 10! (3,628,800) possible

combinations.

Definition 5 (context analysis): technique that allows us to determine the set of immediate

predecessors and successors for each event in the log.

Definition 6 (filtered log): log derivative, in which only a selection of events is kept in every

trace. As an example, let us consider a log L, with 2 traces and 3 activities. The filtered log

L{B,C} would contain the same amount of traces, preserving the order, but containing only events

B and C.

Original log L

A, B, C;
B, A, C;

Filtered log L{B,C}

B, C;
B, C;

Definition 7 (placeholder log): log derivative, in which some sequences of events are replaced

with a pseudo-event (a placeholder). In particular, only the first occurrence of the sequence is

replaced by the pseudo-event, whereas the other events are removed. As an example, let us

consider a log L, with 2 traces and 3 activities. The placeholder log Lx
{B,C} would have the first

occurrence of events B or C substituted by a placeholder X in every trace. The other

occurrences of B and C are skipped.

Original log L{A,B,C}

A, B, C;
B, A, C;

Placeholder log Lx{B,C}

A, X;
X, A;

14

Theorem 1 (grouping parallel block events): it is guaranteed that if an event belongs to a parallel

block, then all its predecessors belong to the same block in case we are trying to identify the

first block of a model. For identifying the following parallel blocks, we can iteratively group

together events belonging to the same block based on the fact that if an event belongs to a

block, then all its predecessors belong to the same block unless they are already tagged as

belonging to a previously identified block.

In a log, the branches of a parallel appear mixed with each other, meaning that predecessors of

one branch start events could be events of another branch. Knowing the events that belongs to

previously identified blocks, this property allows us to group together events belonging to a

parallel block, knowing only the start events of the block. Proof of this theorem reuses the

definition of concurrently executed events [17], but instead of considering branches with a

single activity, we consider multiple events per branch.

To illustrate the theorem, let us consider the process model in Figure 6.

Figure 6: Theorem 1 example process model

A log of two traces would be enough to find the events belonging to each block.

T1: A1, A2, A3, A4, B1, B2, B3, B4, C1, C2, D1, D2;
T2: B1, B2, B3, B4, A1, A2, A3, A4, D1, D2, C1, C2;

Events A1 and B1 are start events of a block, and there are no events belonging to previous

blocks. According to the theorem, predecessors of events belonging to the block belong to the

same block. Let us focus on T1, events A1, A2, A3 and A4 are predecessors of B1, thus they

belong to the same block as B1. The same idea applied to T2 (using A1 as an anchor), allows

us to identify B2, B3 and B4 as members of the same parallel block. Next, we look for

predecessors of the newly found events, but, in this case, there are no new block events to be

identified.

15

Figure 7: Theorem 1 block events discovery

After having identified events belonging to a parallel block, they are tagged and used as prior

information for the identification of the next block. Events C1 and D1 are the start events of

the following block. Applying the same procedure to the second block, we can identify its

events.

The example traces T1 and T2 are extreme cases, which reveal the structure of every branch.

The theorem proves to be also useful for the discovery of process models from logs with highly

intermixed parallel branches. For example, let us consider another log of two traces:

T1: A1, A2, B1, A3, B2, A4, B3, B4, C1, C2, D1, D2;
T2: B1, A1, B2, A2, B3, A3, B4, A4, D1, D2, C1, C2;

In this example, the following steps are performed to identify events of the first block:

Table 1: Steps performed to identify block events

Identified

events

Action Block events

A1, B1 A1 and B1 are start events of the block. A1, B1

A2 A2 is a predecessor of B1 in T1 A1, B1, A2

B2 T2: … B2, A2, … A1, B1, A2, B2

A3 T1: … A3, B2, … A1, B1, A2, B2, A3

B3 T2: … B3, A3, … A1, B1, A2, B2, A3, B3

A4 T1: … A4, B3, … A1, B1, A2, B2, A3, B3, A4

B4 T2: … B4, A4, … A1, B1, A2, B2, A3, B3, A4, B4

{} No new predecessors, stop iterating A1, B1, A2, B2, A3, B3, A4, B4

16

Figure 8: 2 trace predecessors chaining example

Figure 8 visualizes how knowledge about parallel block events percolates. Iteration repeats

until no more events belonging to the block can be found. We assume that in a log all the

interleavings needed to assign an event to the corresponding block are available. Thus, in some

cases, we find less events than the block actually has, although we are never overestimating

them (i.e., finding events, which do not belong to the block). For example in Figure 8, if we

swap the position of B4 and A4 in T2, we would not have enough information to assign B4 to

the first block. We therefore would discover the model: Seq(Block1, B4, Block2).

Theorem 2 (identifying branches in a parallel block): after having identified start events of each

branch in a process model, and the block events belonging to a parallel block, it is guaranteed

that predecessors of a branch start event do not belong to the same branch. When there are

several start events in a branch, then the rule applies to the first observed start event in a trace,

see Figure 31 for an example.

For any trace in a log, a non-start event can appear only after a branch-matching start event. It

also means that the predecessors of one branch start event, are members of other branches.

Proof of this theorem reuses directly follows and transitively follows theorems, initially

proposed in [18], but scaled with respect to concurrency of a parallel block.

To show an example, let us consider the process model in Figure 9.

Figure 9 Open branches example model

A*, B* and C* events are grouped by colour and name prefix, and belong to the same branch.

Suppose that we know that A1, B1 and C1 are start events of the parallel block, consider the

following trace (which is compliant with the model):

T1: C1, C2, C3, B1, C4, B2, A1, A2, B3, C5

17

Figure 10 Example trace

Processing the trace from left to right, the following steps are performed:

Table 2: Theorem 2 steps

Event Action Open branches

C1 C1 is a start event, add to open branches. {} + { C* } => { C* }

C2 Map C2 to open branches. C2 -> { C* } { C* }

C3 C3 -> { C* } { C* }

B1 B1 is a start event, update open branches. { C* } + { B* } => { C*, B* }

C4 C4 -> { C*, B* } { C*, B* }

B2 B2 -> { C*, B* } { C*, B* }

A1 A1 is a start event, add to open branches. { C*, B* } + { A* } => { C*, B*,

A*}

A2 A2 -> { C*, B*, A* } { C*, B*, A* }

B3 B3 -> { C*, B*, A* } { C*, B*, A* }

C5 C5 -> { C*, B*, A* } { C*, B*, A* }

After trace analysis it is obvious that everything between C1 and B1 belongs to C*, but not to

A* or B*, because only C1 start event had appeared. Thus from the given trace one could

deduce that:

 [C2 ... C3] belong only to C* branch

 [C4 ... B2] belong either to C* or B* branches, but not to A*

 [A2 ... C5] could belong to any branch

Note that there are some events that for sure belong to a specific branch. For example C2 and

C3 belong to branch C* in Figure 10. Therefore the theorem above is useful to identify only

these events. This theorem does not allow us to assign the other events to a specific branch.

3.2 Algorithm description

The algorithm tries to reconstruct a process model sequentially, from left to right. The idea is

to identify and process the log in blocks, i.e., group of events between gateways. Each identified

branch of a block is isolated into a sub-log and mined separately. Figure 11 gives a high level

overview of the algorithm.

18

Figure 11: algorithm overview

We first try to identify initial activity of a process model, if it is always the same, then we found

an activity of a sequence, and continue analysing the next one. However, when initial event

differs from trace to trace, then we assume that a split point exists, and the events appearing at

this position are start events of a block. A split point in a log corresponds to an opening gateway

in the process model. The algorithm considers XOR and AND gateway types. To identify the

gateway type we filter out start events (see definition 2), and mine it with the Inductive Miner.

XOR blocks have an exclusive execution of branches, meaning that for each trace only one

branch of the block is observed. This property allows us to discover groups of events belonging

to each branch, and the whole block. The Inductive Miner is able to mine XOR blocks properly,

thus no further processing is needed. The discovery of complex AND blocks is more

challenging with the Inductive Miner.

Branches of AND blocks are executed concurrently, meaning that in each trace all branches of

the block are observed and the different branches could appear mixed with each other. We use

Theorem 1 to identify the group of events belonging to the same block. Next, we identify events

belonging to each parallel branch. To this aim, first, we apply Theorem 2 , then we use

Heuristics Miner to map the rest of unassigned events (remember that Theorem 2 is not always

able to completely identify all the branches).

After having identified the block events and branch mapping, we create a placeholder log in

which events belonging to each branch of each parallel block are replaced by a placeholder

(see definition 7). This is done iteratively until all the blocks in the model have been identified

from left to right (see iteration in Figure 9). For the final part of creating the process model, we

recursively apply the algorithm to each filtered sub-log representing a separate branch, and

mine it with the Inductive Miner. Then, all the branches are being recursively merged into a

parent process model (bottom up approach) up to the top-level.

3.2.1 Step by step walkthrough

To describe each step of the algorithm in detail, suppose that we have the following log

(example S1):

T1: S1, A1, B1, A2, B2, A3, B3, S2, C, End;
T2: S1, B1, B2, A1, A2, B3, A3, S2, D, End;
T3: S1, A1, B1, B2, B3, A2, A3, S2, C, End;

Step 1 (find split point): Our algorithm is based on a technique called context analysis. In

particular, it iterates over all traces of the log, and constructs a set of immediate predecessors

19

and successors for each event. Iterating the immediate successors from the process start, allows

us to discover fixed-position events, as well as points of variability. Meaning, that event with

more than 1 successor is considered a split.

For our example S1, context analysis would construct the following successors table:

__process_start__: { S1 }, S1: { A1, B1 }, … End: { __process_end__ }

We sequentially iterate from process start to process end, or until a split point (more than 1

successor) is found.

__process_start__ -> S1 -> { A1, B1 }

Figure 12: Context analysis finds and analyses gateway splits

In our example, S1 is the first event in all the traces and, after event S1, we have a split, where

A1 and B1 are start events of a block. To identify the block type we isolate start events A1 and

B1 into a filtered log (see definition 6), and mine the log with the Inductive Miner. As a result

we obtain not only the block type, but also the structure of the block branches. See Figure 31

for an example of complex structure with embedded blocks mined from start events.

The result is a parallel block, and the top-level process model is:

Seq(S1, And(A1, B1))

We need now to know which events belong to the newly discovered block. We use Theorem 1

to identify the group of events that belong to the block. According to the theorem, predecessors

of known parallel block events A1 and B1, also belong to the block, except for events preceding

the split. There is only 1 event preceding the split – S1.

The following steps are performed:

Table 3: Block events identification steps

Identified

events

Action Block events

A1, B1 A1 and B1 are start events of the block. A1, B1

B2 B2 is a predecessor of A1 from T2 A1, B1, B2

A2 T1: … A2, B2, … A1, B1, B2, A2

B3 T3: … B3, A2, … A1, B1, B2, A2, B3

A3 T1: … A3, B3, … A1, B1, B2, A2, B3, A3

{} No new predecessors found A1, B1, B2, A2, B3, A3

20

Figure 13: Block's events detection, knowing start events

Predecessor detection technique works well with branch overlapping, often observed in logs of

highly structured processes, because it doesn’t try to understand the internal structure of the

block.

Step 2 (map events to branches): there are 2 techniques used to assign each event of the parallel

block to a branch. First, Theorem 2 is used, then remaining unassigned events are mapped via

Heuristics Miner.

From the previous step we know that there are 2 branches, which start with events A1 and B1.

According to Theorem 2, all the events appearing in the log between A1 and B1 could be

exclusively mapped.

T1: … A1, B1 …
T2: … B1, B2, A1 …
T3: … A1, B1 …

After analysing the log, event B2 is mapped to the branch starting with B1. In the 2nd trace, B2

appears after B1 but before A1, meaning that it could not belong to the same branch as A1. The

rest of unassigned block events B3, A2 and A3 have to be mapped with Heuristics Miner.

Whereas Theorem 2 relies on edge cases to reveal branch content, the Heuristics Miner builds

a dependency graph of observed paths, and relies on the most common patterns.

21

Figure 14: Heuristics Net (Dependency Graph)

Figure 15: Dependency cause tables for events A2, A2 and A3

Figure 15 shows the input patterns of the unassigned events A2, A3 and B3, produced by the

Heuristics Net. We assign each event to a predecessor with the highest frequency.

Table 4: Unassigned events mapping steps

Unassigned event Action Branch mapping

A2 A1 is the sole input of A2, thus belong

to the same branch

A2  A1

A3 A2 has the highest frequency A3  A2 (A3  A1)

B3 B2 with 100% B3  B2

Figure 16: Unassigned events mapping to branches

As a result, we have mapped each event of the block to a branch, but the internal structure of

each branch remains unknown.

Step 3 (filter out each branch in a sub-log): From the previous step, we have group of events

belonging to each branch. We now create a placeholder log (see definition 7) where we use a

placeholder log instead of the original one and for each branch we create a filtered sub-log (see

definition 6).

22

Figure 17: Example of branch separation into sub-logs

Each branch sub-log and placeholder log should contain the same amount of traces as the top-

level log, and preserve the relative order of events. Filtered logs Branch_A and Branch_B are:

L{A1, A2, A3}

T1: A1, A2, A3;
T2: A1, A2, A3;
T3: A1, A2, A3;

L{B1, B2, B3}

T1: B1, B2, B3;
T2: B1, B2, B3;
T3: B1, B2, B3;

The placeholder log, with pseudo-events Branch_A and Branch_B (substituting by first

occurrence), is (placeholder log S1):

T1: S1, Branch_A, Branch_B, S2, C, End;
T2: S1, Branch_B, Branch_A, S2, D, End;
T3: S1, Branch_A, Branch_B, S2, C, End;

The filtered out logs should be linked to an appropriate pseudo-events, and kept for further

processing. At this point, the current block is considered identified, and we can continue

processing the top-level log with context analysis.

23

Step 4: analyse events following the newly discovered block (repeating steps 1-3). From step

1, with we found the following top-level structure:

Seq(S1, Block_1)

We continue looking for the next split with context analysis.

__process_start__ -> S1 -> { Block_1 events } -> S2 -> { C, D }

First, we find a fixed-position activity S2, then a new block with start events C and D. To

identify block type, the algorithm filters out start events C and D.

Figure 18: Illustration of sequential of model reconstruction

The result is a XOR gateway, thus we use the Inductive Miner to find other events, which

belong to the block. In this case, the block has only 2 events.

Finally, the context analysis discovers the last activity of the top-level process:

Seq(S1, And(Branch_A, Branch_B), S2, Xor(C, D), End)

Step 5 (create a process model): we discover the underlying structure of each extracted branch,

and if necessary, we recursively apply the algorithm. Then, we merge the child process trees

into a top-level tree.

Logs L{A1, A2, A3} and L{B1, B2, B3} from step 3 are mined with the Inductive Miner, and the

following results are obtained: Seq(A1, A2, A3) and Seq(B1, B2, B3).

Figure 19: Final process tree composition example

Figure 19 illustrates the replacement of the placeholder activities of the top-level tree with the

child process trees. Tree composition process uses a bottom-up approach, meaning that for

hierarchy with several layers the lowest level children are replaced first.

24

Figure 20: Discovered process model

The final process model discovered from example S1 is show on Figure 20. There are several

outputs produced by the algorithm:

1. A process tree, which could be converted by existing libraries into other model

representation formats.

2. Placeholder top-level log.

3. All filtered child logs, which represent extracted the branches.

3.2.2 Complex process model walkthrough

Let us review a more complex process model, without fixed-position events between parallel

blocks. Suppose that we have the following log (example S2):

T1: A1, A2, B1, B2, B3, A4, D1, D2, C1, E1, E2, E3, C2, C3, End;
T2: A1, A3, B1, B3, B2, A4, D1, D3, E1, E2, C1, C2, C3, E3, End;
T3: B1, B2, A1, A2, A4, B3, E1, E2, C1, E3, D1, C2, D3, C3, End;
T4: B1, A1, B2, B3, A2, A4, C1, C2, E1, D1, C3, E3, E2, D2, End;
T5: A1, B1, A3, B3, A4, B2, C1, D1, C2, E1, E3, E2, D3, C3, End;

The target top-level process tree should look like (source process model is shown on Figure

27):

Seq(And(A*, B*), And(C*, D*, E*), End)

Step 1: using context analysis we find a split gateway and block start events A1 and B1.

Figure 21: Context analysis of first block

Next, we mine filtered log containing start events A1 and B1 with the Inductive Miner. The

discovered process tree provides information about the block type that is a parallel block.

Step 2: applying Theorem 1 we discover events that belong to the block.

25

Figure 22: Set of events belonging to the block

Step 3: using Theorem 2 allows us to distinctly map events A2, A3 and B2 to branches (from

T1, T2 and T3 respectively). Next, we use the Heuristics Miner to find branch mapping for the

rest of unassigned events.

Figure 23: Event to branch mapping

Steps 4-5: we create 2 filtered out logs for each branch, and create a placeholder top-level log

with pseudo-events. Then we proceed with context analysis, and discover next block’s start

events D1, C1 and E1. With the Inductive Miner we discover that there are 3 branches.

Figure 24: Context analysis with prior information

Steps 6-7: we find events, which belong to the block, then map them to the branches. From

traces T1, T2, T3 and T4 we map events D2, D3, E2 and C2 respectively.

26

Figure 25: Event to branch mapping

Steps 8-9: we filter out branches of the 2nd block, update top-level placeholder log and perform

context analysis on the remaining events.

Step 10-12: we mine a process tree from the top-level log with the Inductive Miner (the result

is shown on Figure 26). Then recursively analyse each filtered log with the algorithm, and mine

a respective process tree for each branch.

Figure 26: Top-level process tree with placeholder events

Finally, we replace the placeholder events in the top-level process tree with the discovered

child process trees. The composed process tree is shown on Figure 28.

In conclusion, we compare the discovered process model (Figure 29) with the source model

(Figure 27), and find no difference – they are identical.

Figure 27: Source process model of example log S2

Figure 28: Discovered process tree from example log S2

Figure 29: Discovered process model from example log S2

3.2.3 Why does the algorithm work?

Procedural models go from start to end, meaning that the process has a start and an end. Top-

level process’ order of execution is always constant, - sequentially, from left to right. Every

trace in a log is a reflection of this principle, it is an ordered list of events which follow the

process from the beginning to the end. What if all events, of each block-structure, were known?

Then mining a structural process model from a log would be possible with existing algorithms,

by extracting events belonging to the same block-structure, into a separate logs preserving the

order of events in a trace, and mining them separately.

The idea of knowing block events allows us to mark block edges in the log, since top level

block’s execution order is constant – it’s a sequence. For example, let all events starting with

“A” and “B” would belong to 2 different blocks. Given a log of traces:

Start, A1, A2, A3, B1, B2, End
Start, A4, A5, B3, B1, B4, End

=> Seq(Start, Block(A*), Block(B*), End)

The clear distinction of block edges allows us to determine top-level structure, without

knowing the structure of blocks. This leads to another observation, - knowing only block edges

would suffice to determine the top-level structure. The example above could be represented as:

Start, A1, …, A3, B1, …, B2, End
Start, A4, …, A5, B3, …, B4, End

=> Seq(Start, Block(A*), Block(B*), End)

This allows us to change the requirement of knowing all events in each block to knowing only

start/end events of each block, in order to find the structure of the top-level model. This could

be improved even further, since end events of one block are directly followed (always) by start

event of the next block. This property is symmetrical, meaning that start events of a block are

always preceded by end events of previous block (or empty set in the beginning of the process).

Since they duplicate each other, the requirement could be lifted to knowing only 1 set of events.

Start, A1, …, A3, B1, …, B2, End
Start, A4, …, A5, B3, …, B4, End

=> Seq(Start, Block(A*), Block(B*), End)

Summing up, the algorithm focuses on block order of execution, gateway splits and their

branches. It first tries to understand the structure of process, from meta-information and context

analysis, and then guide the mining procedure. Combination with CSP-like process mining

algorithms makes it possible to discover original process models without extreme edge cases,

often absent in incomplete logs.

3.3 Algorithm limitations

The following limitations are inherent to the algorithm:

 Not robust with respect to noisy logs.

 Cannot handle loops, nor duplicate events names appearing in a trace.

 Internally uses the Inductive Miner Incompleteness and inherits its limitations.

 Unassigned events could be assigned to an incorrect branch.

First and most important limitation is noise, meaning that the algorithm is precise and does not

tolerate errors in a log. Having a single trace, which doesn’t correspond to a source model,

might result in an output, different than a source model. This limitation usually inherent to all

29

process mining algorithms, which deal with incompleteness. Alternative solution would be to

keep only the most common paths by some threshold, but it might remove edge cases which

are crucial because log is incomplete.

Next limitation concerns loops and duplicate events. Events classifier takes into account event

name (and transition if needed), which means that 2 or more event occurrences, with the same

name, will have a merged list of predecessors and a merged list of successors during context

analysis.

The reason for loop constraint is Theorem 1 (about finding block events). The theorem states

that every predecessor of parallel block events is also parallel, however loop body would be

seen as a predecessor without actually belonging to the parallel block. This could be seen as a

disproof of theorem, but during algorithm design phase loops became a major burden, which

heavily complicated the implementation. Thus was decided to drop the support of loops in

favour of simpler and guaranteed working algorithm. For example let us consider the process

model in Figure 30.

Figure 30: Loop as predecessor limitation

In Figure 30 light green events (S1, S2) are already processed events, yellow (A1, B1) and

orange (An, Bn) – being processed and yet to be processed events respectively. A log

corresponding to this model might contain traces like {… A1, B1 … LoopE1, LoopEn, A1, B1

…}. While processing sucha log, event LoopEn is seen as a predecessor to the parallel block,

and since LoopEn does not belong to the XOR block, the theorem it will incorrectly assign it

to the parallel block.

To make the algorithm work in the most possible cases, we use the Inductive Miner to

determine the structure of block start events. Let us consider the example in Figure 31.

30

Figure 31: Example of complex structure of block start events

In Figure 31 a top-level parallel block has nested blocks, which influence the number of start

events. Our goal is to determine number of block branches and group of events belonging to

each of them. However this is not possible without first mining the underlying structure of each

branch. Thus, the algorithm depends on and inherits limitations of the Inductive Miner.

The algorithm reconstructs the process in a sequential manner, from the beginning to the end.

Thus, mistakes made during block structure reconstruction could recursively propagate to child

blocks or affect the parent block.

Figure 32: Examples of error propagation

Figure 32 shows original process model and 3 cases of incorrect models, which could be

obtained when mining with our algorithm. Cases A and B illustrate incorrect assignment of

31

unassigned events to branches, and how it affects the nested blocks of the branches. The errors

in these cases are caused by Heuristics Miner, i.e. the most common paths. Case C shows result

of incorrect block events detection, which affects the parent block.

In general the algorithm is robust to incompleteness, but in some cases could lead to incorrect

solutions. However these solutions are still suboptimal.

32

4 Evaluation

In this chapter, first, we compare process models produced by different process discovery

algorithms from example logs S1 and S2, used in algorithm description chapters. Then we

evaluate discovery of 6 artificial process models using randomly generated incomplete logs.

Lastly, we measure performance of the mining algorithm.

4.1 Comparison of process discovery algorithms

The algorithm focuses on the discovery of parallel blocks from incomplete logs. In a parallel

block branches are executed concurrently, they intermix creating “branch noise”. This does not

allow most of the process discovery algorithms to mine the correct process model without

having all the edge cases.

We chose Alpha-Algorithm Miner and Inductive Miner for comparison with our algorithm,

implemented as Parallel Block Miner (PB-Miner) test plugin for ProM tool3, because the

former is stable and mature, and the latter is new and flexible. Note that there are several

implementation variations of Inductive Miner, but we consider only baseline and

incompleteness variants.

4.1.1 Process model S1

Figure 33: Process model S1

Figure 33 shows a model discovered with PB-Miner from example S1, which also corresponds

to the original process model. The log consists of 3 distinct traces.

Figure 34: Model S1 discovered with Alpha-Algorithm Miner

The model discovered from the log with Alpha-Algorithm Miner is shown in Figure 34. We

can see that the parallel block is not reconstructed correctly.

Figure 35: Model S1 discovered with Inductive Miner baseline

Figure 35 shows a model mined with Inductive Miner baseline implementation. This model is

incorrect, since the parallel block is split into several distinct parts. In addition, we can see a

lot of loop and event skip structures.

3 https://github.com/sjbog/PBMiner

https://github.com/sjbog/PBMiner

33

Alpha-Algorithm and baseline implementation of Inductive Miner did not discover a correct

process model because they were designed to work with complete logs, which reveal most edge

cases.

Figure 36: Model S1 discovered with Inductive Miner incompleteness

The Inductive Miner incompleteness variant, shown in Figure 36, produces an incorrect result,

but close to the original. The top-level structure is perfect, however branches of the parallel

block have wrong body. The miner cannot discover a correct process model because there is

not enough edge cases present in the log and the log completeness is too low.

4.1.2 Process model S2

Figure 37: Process model S2

Figure 37 shows a model discovered with PB-Miner from example S2, which also corresponds

to the original process model. The log consists of 5 distinct traces.

34

Figure 38: Model S2 discovered with Alpha-Algorithm Miner

The model discovered from the log with Alpha-Algorithm Miner is shown in Figure 38. We

can see that the mined model is a “spaghetti-like” model with a lot of arcs, and does not

correspond to the original process model. This result is expected, taking into account that the

log has low level of completeness.

Figure 39: Model S2 discovered with Inductive Miner incompleteness

Figure 39 shows process model discovered with the Inductive Miner incompleteness variant.

The result is incorrect, although the miner was able to properly discover and group together

events belonging to the 2 blocks of the top-level sequence. We conclude that the log does not

contain enough edge case for this level of log completeness.

4.2 Effectiveness analysis

We have used 6 process models to evaluate process discovery results. S1 and S2 are models

from example logs, S3 is an artificial model, and the rest are randomly generated models. All

selected models have parallel blocks with more than 5 block activities, and some have nested

blocks with maximum depth of 3.

We evaluated log completeness by dividing the number of distinct traces in the log by the

number of possible traces that can be generated by the model. There following formulas were

used for each block:

 Sum of branch choices for XOR block (because any of the branches could be
executed).

 Max of child elements for SEQ block.

35

 Formula
𝑆𝑖𝑧𝑒(𝑏𝑙𝑜𝑐𝑘)!

 𝑆𝑖𝑧𝑒(𝑏𝑟𝑎𝑛𝑐ℎ1)! ∗ 𝑆𝑖𝑧𝑒(𝑏𝑟𝑎𝑛𝑐ℎ2)! …
 for AND block (this formula could vary

depending on the nested blocks in each branch).

Let us calculate the number of possible paths for the following process models:

 Seq(A, B, C) = 1, because sequence block has only 1 way to be executed.

 Xor(A, B) = 2. Here {A} or {B} are the only choices. Each branch of the block

consists of a single event, and in case of several sequential events the result

doesn’t change.

 Xor(Seq(A, B), Seq(C, D)) = 2 ({ A, B } or { C, D }). Each branch is a
sequence with a single order of execution, meaning Sum(Seq, Seq) = Sum(1, 1

) = 2.

 Xor(Xor(A, B), C) = 3, could be calculated as Sum(Sum(1, 1), 1).

 Seq(A, Xor(B, C)) = 2, with choices {A, B} or {A, C}. Calculated as Max(1,
Sum(1, 1)).

 And(A, B, C) = 6, it is permutation of events A, B and C (e.g. 3!).

 However And(Seq(A, B), C) = 3, with choices {A,B,C}, {A,C,B} and {C,A,B}.

It is almost the same as permutations of 3 events, but we discard the choices

{B,A,C}, {B,C,A} and {C,B,A}, where B precedes A (not possible according to

Seq(A, B)). To calculate we take factorial of the total number of activities in the

parallel block, and divide by product of branch factorials (e.g. 3! / (2! * 1!)).

Figure 40: Process model

Figure 40 shows a model with nested blocks. First we analyse the top branch of the top-level

parallel block:

1. Branch has 3 events and 4 variations

2. Branch is sequence of 1 event with 1 execution path

The formula is:
4∗1

3!∗1!
∗ (3 + 1)! =

4∗4!

3!
= 16

List of all possible execution paths of the top branch is the following:

 A,B,C

 A,B,D

 A,C,B

 A,D,B

Event E could appear in the beginning, in between or in the end of the listed paths, thus the

result is 4*4.

36

4.2.1 Process model S1

The process model is shown on Figure 33. To calculate number of distinct traces, first we

consider each branch of the top parallel block separately:

1. Top branch is a sequence of 3 activities, 1 possible execution path

2. Bottom branch is a sequence of 3 activities with 1 path

Next, we calculate possible combinations for the XOR block: Xor(C, D) = 2.

Finally, the resulting is a maximum of 2 blocks: 𝑀𝑎𝑥 (
 1∗1

3!∗3!
∗ (3 + 3)!, 2) =

6!

3!∗3!
= 20

The result is 20, meaning that there are 20 distinct ways the process model could be executed.

First, we generate a log with N randomly selected traces, where N ranges from 2 to 30. Such

process is repeated 1000 times for each value of N, meaning that we generate 1000 random

logs with 2 traces, then with 3 traces, etc., up to N traces. For each N the log completeness is

the average of the completeness of the corresponding 1000 random logs. The completeness of

each log is evaluated as mentioned before.

Figure 41: Graph S1

To evaluate process discovery effectiveness, we mine each log with our algorithm and compare

the discovered process tree with the original process model. Correctness is calculated as the

ratio between correctly discovered process trees and the total number of trees mined. In

addition, we use the Inductive Miner Incompleteness (IMin) as a baseline.

In Figure 41 we see that in the beginning, while the average log completeness is below 40%,

PB-Miner produces better results, than IM. After reaching 40% of the average log

completeness, both graphs flatten with a discovery percent close to 100%.

Table 5 shows more detailed information about the first 10 values for number of traces (from

2 to 11, step 1) of the process model S1. We are showing in detail only these points because

the results are different only in the first part of the graph. The table contains:

 Traces per log

0

10

20

30

40

50

60

70

80

90

100

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of traces

avg_log_completeness_percent PB_correctness IM_correctness

37

 Average log completeness

 Correctness

 Execution time, i.e., the time needed for discovering a process tree from a log.

 Correctness comparison, i.e., a truth table for comparing discovered process tree

of PB-Miner and Inductive Miner for 1000 logs.

For example, 2nd row (3 traces per log) contains the following truth table:

IM \ PB TRUE FALSE

TRUE 2 20

FALSE 125 853

It means that out of 1000 logs, PB and IM correctly discovered 2 process trees (TRUE, TRUE)

from the same logs. PB-Miner had correctly reconstructed 125 logs (TRUE, FALSE), which

IM did not reconstruct. In addition, there are 20 logs (FALSE, TRUE) which IM recognized,

but PB did not. Finally, there are 853 logs (FALSE, FALSE) which were not correctly

discovered by any of the miners.

Table 5: S1

Traces

per log

Avg. log

completeness,

%

Correctness,

%

Avg. execution

time, ms

Correctness comparison

PB IM PB IM IM \ PB TRUE FALSE

2 9.9 1.7 0.0 3 2
TRUE 0 0

FALSE 17 983

3 14.5 12.7 2.2 2 2
TRUE 2 20

FALSE 125 853

4 18.7 29.4 7.2 2 2
TRUE 33 39

FALSE 261 667

5 22.7 46.4 24.1 3 3
TRUE 157 84

FALSE 307 452

6 26.6 60.2 42.9 3 3
TRUE 306 123

FALSE 296 275

7 30.0 71.6 61.6 3 3
TRUE 493 123

FALSE 223 161

8 33.7 80.3 74.5 3 3
TRUE 641 104

FALSE 162 93

9 37.1 85.1 82.7 3 3
TRUE 733 94

FALSE 118 55

10 39.8 89.4 88.4 3 3
TRUE 814 70

FALSE 80 36

11 43.3 91.7 92.0 4 3
TRUE 851 69

FALSE 66 14

4.2.2 Process model S2

The process model is shown on Figure 37. To calculate the distinct traces, we take the

maximum number of distinct paths of the 2 top-level blocks:

First block is a parallel block with 2 branches:

1. 3 events, 2 variations

2. 4 events, 2 variations

38

Second block is a parallel block with 3 branches:

1. 2 events, 2 variations

2. 3 events, 1 path

3. 3 events, 2 variations

Thus the formula is: 𝑀𝑎𝑥(
(2∗2)

3!∗4!
∗ (3 + 4)!,

2∗1∗2

2!∗3!∗3!
∗ (2 + 3 + 3)!) = 𝑀𝑎𝑥(

4∗7!

3!∗4!
,

4∗8!

2!∗3!∗3!
) =

2240

For this and the rest process models we generated 100 random logs for each trace step.

Figure 42: Graph S2

In Figure 42 we see that in the beginning, while the average log completeness is below 4.5%,

Inductive Miner produces better results, than PB-Miner. After reaching 4.5% of the average

log completeness, both graphs flatten with a discovery percent close to 100%.

Table 6 shows more detailed information about the first 10 values for number of traces (from

10 to 100, step 10) of the process model S2.

Table 6: S2

Traces

per log

Avg. log

completeness,

%

Equal

trees, %

Avg. execution

time, ms

Correctness comparison

PB IM PB IM IM \ PB TRUE FALSE

10 0.4 7.0 1.0 85 83
TRUE 0 1

FALSE 7 92

20 0.9 26.0 30.0 41 49
TRUE 6 24

FALSE 20 50

30 1.3 51.0 74.0 51 48
TRUE 38 36

FALSE 13 13

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210

Number of traces

avg_log_completeness_percent PB_correctness IM_correctness

39

40 1.8 63.0 91.0 61 47
TRUE 58 33

FALSE 5 4

50 2.2 71.0 92.0 70 44
TRUE 67 25

FALSE 4 4

60 2.6 81.0 93.0 84 37
TRUE 74 19

FALSE 7 0

70 3.1 95.0 99.0 73 28
TRUE 94 5

FALSE 1 0

80 3.5 94.0 100 55 17
TRUE 94 6

FALSE 0 0

90 3.9 95.0 99.0 66 19
TRUE 94 5

FALSE 1 0

100 4.4 98.0 100 65 19
TRUE 98 2

FALSE 0 0

4.2.3 Process model S3

Figure 43: Process model S3

Process model S3 shown in Figure 43, is an artificial mode which corresponds to the handling

of health insurance claims in a travel agency.

To compute the number of distinct traces, we analyse the top-level parallel block:

 Bottom branch has 3 events, 2 variations.

 Top branch has either 7 events and 3!*3! variations, or 6 events and 2!*3!

variations.

Thus the formula is:
2∗3!∗3!

3!∗7!
∗ (3 + 7)! +

2∗2!∗3!

3!∗6!
∗ (3 + 6)! =

12∗10!

7!
+

4∗9!

6!
= 10656

40

Figure 44: Graph S3

In Figure 44 we see that in the beginning, while the average log completeness is below 3%,

PB-Miner produces better results, than Inductive Miner. The reason behind such difference

could be explained with branch interference of the top-level parallel block. Top branch has

several nested structured, which does not allow Inductive Miner to properly identify branches.

Table 7 shows more detailed information about the first 10 values for number of traces (from

10 to 100, step 10) of the process model S3.

Table 7: S3

Traces

per log

Avg. log

completeness,

%

Equal

trees, %

Avg. execution

time, ms

Correctness comparison

PB IM PB IM IM \ PB TRUE FALSE

10 0.1 4.0 0.0 108 90
TRUE 0 0

FALSE 4 96

20 0.2 35.0 9.0 31 60
TRUE 5 4

FALSE 30 61

30 0.3 69.0 19.0 28 49
TRUE 15 4

FALSE 54 27

40 0.4 80.0 22.0 30 46
TRUE 21 1

FALSE 59 19

50 0.5 93.0 24.0 37 50
TRUE 23 1

FALSE 70 6

60 0.6 91.0 23.0 41 47
TRUE 23 0

FALSE 68 9

70 0.7 97.0 19.0 45 48
TRUE 19 0

FALSE 78 3

0

10

20

30

40

50

60

70

80

90

100

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
00

1
10

1
20

1
30

1
40

1
50

1
60

1
70

1
80

1
90

2
00

2
10

2
20

2
30

2
40

2
50

2
60

2
70

2
80

2
90

3
00

3
10

3
20

Number of traces

avg_log_completeness_percent PB_correctness IM_correctness

41

80 0.7 97.0 33.0 51 50
TRUE 31 2

FALSE 66 1

90 0.8 98.0 39.0 59 52
TRUE 38 1

FALSE 60 1

100 0.9 100 49.0 63 53
TRUE 49 0

FALSE 51 0

4.2.4 Process model S4

Figure 45: Process model S4

To calculate the distinct traces, we analyse each branch of the top-level parallel block:

1. Top branch - 6 events, 2 variations.

2. Bottom branch – could be 2 events of 4 variations, or sequence of 1 event with 4

variants.

Thus the formula is:
(2∗4)

6!∗2!
∗ (6 + 2)! +

2∗4

6!∗1!
∗ (6 + 1)! =

4∗8!

6!
+

8∗7!

6!
= 4 ∗ 7 ∗ 8 + 7 ∗ 8 =

280

42

Figure 46: Graph S4

In Figure 46 both miners are less effective with dealing with incompleteness, since they are not

able to discover a correct process tree for completeness values lower than 14%. One

explanation for this behaviour is that the process model contains several start events. To

discover the process model correctly they should appear at the first position in a trace. This is

also an explanation why the PB-Miner is less effective than Inductive Miner in this case.

Table 8 shows more detailed information about the first 10 values for number of traces (from

10 to 100, step 10) of the process model S4.

Table 8: S4

Traces

per log

Avg. log

completeness,

%

Equal

trees, %

Avg. execution

time, ms

Correctness comparison

PB IM PB IM IM \ PB TRUE FALSE

10 3.4 0.0 0.0 188 153
TRUE 0 0

FALSE 0 100

20 6.7 0.0 0.0 125 212
TRUE 0 0

FALSE 0 100

30 9.7 0.0 0.0 63 148
TRUE 0 0

FALSE 0 100

40 12.2 0.0 1.0 66 136
TRUE 0 1

FALSE 0 99

50 14.7 6.0 7.0 60 124
TRUE 0 7

FALSE 6 87

60 17.0 13.0 32.0 49 119
TRUE 4 28

FALSE 9 59

70 19.2 16.0 53.0 51 112
TRUE 11 42

FALSE 5 42

0

10

20

30

40

50

60

70

80

90

100

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
00

1
10

1
20

1
30

1
40

1
50

1
60

1
70

1
80

1
90

2
00

2
10

2
20

2
30

2
40

2
50

2
60

2
70

2
80

2
90

3
00

3
10

3
20

Number of traces

avg_log_completeness_percent PB_correctness IM_correctness

43

80 21.4 22.0 72.0 49 120
TRUE 16 56

FALSE 6 22

90 23.2 38.0 82.0 48 128
TRUE 32 50

FALSE 6 12

100 25.0 51.0 89.0 45 132
TRUE 47 42

FALSE 4 7

4.2.5 Process model S5

Figure 47: Process model S5

To calculate the distinct traces, we analyse each branch of the top-level parallel block (from

top to bottom):

3. 1 event in branch, 2 variations

4. 1 event, 1 path

5. 1 event, 1 path

6. 5 event sequence, 4 variations

7. 3 event sequence, 3 variations

Thus the formula is:
(2∗1∗1∗4∗3)

1!∗1!∗1!∗5!∗3!
∗ (1 + 1 + 1 + 5 + 3)! =

4!∗11!

5!∗3!
= 1330560

44

Figure 48: Graph S5

From Figure 48 it is clear that both miners can deal with incompleteness (both of them produce

perfect results with 250 traces).

Table 9 shows more detailed information about the first 10 values for number of traces (from

10 to 100, step 10) of the process model S5.

Table 9: S5

Traces

per log

Avg. log

completeness,

%

Equal

trees, %

Avg. execution

time, ms

Correctness comparison

PB IM PB IM IM \ PB TRUE FALSE

10 0.00450938 0.0 0.0 169 181
TRUE 0 0

FALSE 0 100

20 0.009018759 4.0 0.0 64 153
TRUE 0 0

FALSE 4 96

30 0.013528139 14.0 4.0 73 159
TRUE 1 3

FALSE 13 83

40 0.018037518 27.0 14.0 23 183
TRUE 3 11

FALSE 24 62

50 0.022542388 39.0 39.0 61 201
TRUE 11 28

FALSE 28 33

60 0.027056277 49.0 57.0 30 223
TRUE 29 28

FALSE 20 23

70 0.031565657 52.0 74.0 44 199
TRUE 39 35

FALSE 13 13

80 0.036075036 70.0 82.0 38 187
TRUE 56 26

FALSE 14 4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

10

20

30

40

50

60

70

80

90

100

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
00

1
10

1
20

1
30

1
40

1
50

1
60

1
70

1
80

1
90

2
00

2
10

2
20

2
30

2
40

2
50

2
60

2
70

2
80

2
90

3
00

PB_correctness IM_correctness avg_log_completeness_percent

45

90 0.040579906 73.0 85.0 42 161
TRUE 66 19

FALSE 7 8

100 0.045093795 73.0 83.0 46 138
TRUE 62 21

FALSE 11 6

4.2.6 Process model S6

Figure 49: Process model S6

To calculate number of distinct traces, we consider each branch of the top-level parallel block

separately:

1. Top branch - 8 events, 4 distinct paths

2. Bottom branch – 7 events, 4 distinct paths

Thus, the resulting formula is:
4

8!
∗

4

7!
∗ (8 + 7)! =

4 ∗ 4 ∗ 15!

7! ∗ 8!
= 102960

Figure 50: Graph S6

Both plots in Figure 48 and Figure 50 show that that for a very high degree of incompleteness

both miners can discover the correct process tree (a completeness value corresponding to 0.07

and 0.1 respectively).

Table 10 shows more detailed information about the first 10 values for number of traces (from

10 to 100, step 10) of the process model S6.

0

0.05

0.1

0.15

0.2

0.25

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Number of traces

PB_correctness IM_correctness avg_log_completeness_percent

46

Table 10: S6

Traces

per log

Avg. log

completeness,

%

Equal

trees, %

Avg. execution

time, ms

Correctness comparison

PB IM PB IM IM \ PB TRUE FALSE

10 0.00971251 14.0 0.0 61 469
TRUE 0 0

FALSE 14 86

20 0.019425019 67.0 0.0 23 576
TRUE 0 0

FALSE 67 33

30 0.029137529 86.0 38.0 26 595
TRUE 33 5

FALSE 53 9

40 0.038830614 98.0 94.0 26 425
TRUE 92 2

FALSE 6 0

50 0.048543124 98.0 97.0 32 284
TRUE 95 2

FALSE 3 0

60 0.058255633 99.0 100 38 228
TRUE 99 1

FALSE 0 0

70 0.067948718 100 100 43 218
TRUE 100 0

FALSE 0 0

80 0.07767094 100 100 50 208
TRUE 100 0

FALSE 0 0

90 0.087373737 100 100 55 205
TRUE 100 0

FALSE 0 0

100 0.09705711 100 100 62 201
TRUE 100 0

FALSE 0 0

4.3 Performance analysis

To evaluate the efficiency we measured the process discovery time for all 6 process models,

increasing the number of traces from 100 to 10000 (11 marks, step 1000) in a log. For every

step we generated 100 random logs per model, and calculated the average execution time.

47

Figure 51: Performance graph

The result is shown in Figure 51, where horizontal axis is number of traces and vertical is the

average mining time in milliseconds. For exact values of performance measurement results see

Performance analysis dataset. From the graphs we conclude that the algorithm execution time

is linear, and directly proportional to the number of traces in a log. The slope angle positively

correlates with the process model complexity.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

100 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ex
ec

u
ti

o
n

 t
im

e,
 m

s

Number of traces

avg_S1_mining_time_ms avg_S2_mining_time_ms avg_S3_mining_time_ms

avg_S4_mining_time_ms avg_S5_mining_time_ms avg_S6_mining_time_ms

48

5 Conclusions

In this work, we introduced a process discovery algorithm for dealing with complex parallel

behaviour. First, the algorithm discovers group of events belonging to a parallel block, then it

determines the events belonging to each branch of the block. Finally, the algorithm iteratively

replaces every branch of every parallel block with a placeholder event, which allows us to

discover a correct process structure. Such a divide and conquer approach allows us to

recursively apply the algorithm, and reconstruct a process model in a hierarchy.

To evaluate mining abilities of our algorithm we performed several qualitative and quantitative

tests. The effectiveness of the mining algorithm was compared to existing process discovery

algorithms (the Inductive Miner incompleteness variant (IMin) was used as a comparison

baseline) using an automated test suite on randomly generated logs of 6 artificial process

models. The results showed that on average our algorithm has an effectiveness that is

comparable with the one of IMin. However, for logs containing a small amount of traces (less

than 20), the proposed approach always performed better than the baseline. In addition,

quantitative analysis showed numerous cases, for each process model, where our approach

produced a correct process model, whereas IMin did not. Efficiency tests on randomly

generated logs showed a linear dependency of the execution time with respect to the number

of traces in the log.

5.1 Future work

There are several directions for future work:

 loops;

 more precise mapping to branches of unassigned events;

 qualitative comparison of discovery algorithms which work with incompleteness;

The algorithm described in this work is novel, and implemented as proof of concept, thus has

some limitations which could be lifted as future work. Using advanced loop unrol ling

techniques, or a combination of several simple filtering techniques, could allow the algorithm

to work with loops and duplicate events. For example, loop processing algorithms could pre-

process a log, and feed a placeholder log without loops to our algorithm.

Unassigned events of a parallel block are not guaranteed to be assigned to a correct branch. We

use Heuristics Miner, as it reflects the most common path, however incomplete logs might have

skewed common paths, and thus other more precise techniques could be applied. One of the

possible improvements would be directed (guided) assignment with the help of whitelist and

blacklist of possible branches. Another idea is to use association rule mining (for example

Apriori algorithm) to find frequent and interdependent group of events according to a

predefined support threshold.

In our work, we calculated log completeness ratio as a number of distinct traces observed in a

log, divided by the total number of possible permutations. However, this metric is very generic

and does not provide qualitative information about the distinct traces. For example, having N

traces which reflect variations only in the second half of the original model, makes it impossible

to correctly detect the first half of the model. Furthermore, by estimating log incompleteness

qualitatively, we would be able to qualitatively compare discovery algorithms to understand

what characteristics of a process model can be discovered more easily with one algorithm or

another.

49

Bibliography

[1] “Process Mining Manifesto,” in Business Process Management Workshops, Springer,

2012, pp. 169-194.

[2] W. v. d. Aalst, Process Mining - Discovery, Conformance and Enhancement of Business

Processes, Eindhoven: Springer, 2011.

[3] W. v. d. Aalst, T. Weijters and L. Maruster, “Workflow mining: Discovering process

models from event logs,” IEEE Transactions on Knowledge and Data Engineering -

TKDE, vol. 16, no. 9, pp. 1128-1142, 2004.

[4] “Wikipedia: BPMN,” [Online]. Available:

https://en.wikipedia.org/wiki/Business_Process_Model_and_Notation. [Accessed April

2015].

[5] S. J. Leemans, D. Fahland and W. v. d. Aalst, “Discovering Block-Structured Process

Models from Incomplete Event Logs,” Eindhoven, 2014.

[6] D. Schunselaar, H. Verbeek, B. v. Dongen and S. Leemans, “Process Tree Package,”

Eindhoven, 2014.

[7] C. W. Günther and E. Verbeek, “OpenXES Developer Guide v2.0,” Eindhoven, 2014.

[8] W. v. d. Aalst, “Process Mining tools,” 2011. [Online]. Available:

http://www.processmining.org/logs/start. [Accessed April 2015].

[9] C. W. Günther and E. Verbeek, “XES Standard Definition v2.0,” Eindhoven, 2014.

[10] S. J. Leemans, D. Fahland and W. v. d. Aalst, “Discovering block-structured process

models - A Constructive Approach,” Springer, Eindhoven, 2013.

[11] A. Weijters and J. Ribeiro, “Flexible Heuristics Miner,” Eindhoven, 2011.

[12] H. A. Reijers, T. Slaats and C. Stahl, “Declarative modeling – An academic dream or the

future for BPM?,” in BPM, 2013.

[13] F. M. Maggi, T. Slaats and H. A. Reijers, “The Automated Discovery of Hybrid

Processes,” in BPM, 2014.

[14] J. D. Smedt, S. v. d. Broucke, J. D. Weerdt and J. Vanthienen, “A Full R/I-net Construct

Lexicon for Declare Constraints,” Leuven, 2015.

[15] G. D. Giacomo, M. Dumas, F. M. Maggi and M. Montali, “Declarative Process Modeling

in BPMN,” 2015.

50

[16] R. Conforti, M. Dumas, L. Garcıa-Banuelos and M. L. Rosa, “Beyond Tasks and
Gateways: discovering BPMN models with subprocesses, boundary events and activity

markers,” in BPM, 2014.

[17] M. Dumas, M. L. Rosa, J. Mendling and H. A. Reijers, Fundamentals of Business Process

Management, Springer, 2013.

[18] W. v. d. Aalst, T. Weijters and L. Maruster, “Workflow mining: Discovering process

models,” IEEE Transactions on Knowledge and Data Engineering - TKDE, vol. 16, no.

9, pp. 1128-1142, 2004.

51

Appendices

I. Performance analysis dataset

The following table shows detailed information of performance analysis results.

Traces Avg. model mining time in ms, using 1000 samples (random logs)

S1 S2 S3 S4 S5 S6

100 111 99 139 101 61 70

1000 443 749 786 405 536 744

2000 598 1508 1447 693 1127 1525

3000 988 2319 2182 1051 1684 2316

4000 1274 3006 2879 1425 2253 3049

5000 1582 3931 3609 1771 2818 3794

6000 1896 4555 4336 2156 3466 4614

7000 2243 5407 5081 2551 3980 5431

8000 2551 6199 5882 2940 4524 6154

9000 2795 6986 6521 3344 5045 7016

10000 3112 7798 7292 3667 5719 7845

52

II. License

Non-exclusive licence to reproduce thesis and make thesis public

I, Bogdan Semiletko (date of birth: 28.08.1989),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of validity

of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,

including via the DSpace digital archives until expiry of the term of validity of the

copyright, of my thesis

 Dealing with Complex Parallel Structures in Process Discovery,

supervised by Fabrizio Maria Maggi.

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual property

rights or rights arising from the Personal Data Protection Act.

Tartu, 25.05.2015

	1 Introduction
	1.1 Problem
	1.2 Contribution

	2 Background and related work
	2.1 Process models
	2.2 Log representation
	2.3 Existing automated process discovery algorithms
	2.4 Related research

	3 Contribution
	3.1 Definitions
	3.2 Algorithm description
	3.2.1 Step by step walkthrough
	3.2.2 Complex process model walkthrough
	3.2.3 Why does the algorithm work?

	3.3 Algorithm limitations

	4 Evaluation
	4.1 Comparison of process discovery algorithms
	4.1.1 Process model S1
	4.1.2 Process model S2

	4.2 Effectiveness analysis
	4.2.1 Process model S1
	4.2.2 Process model S2
	4.2.3 Process model S3
	4.2.4 Process model S4
	4.2.5 Process model S5
	4.2.6 Process model S6

	4.3 Performance analysis

	5 Conclusions
	5.1 Future work

	Bibliography
	Appendices
	I. Performance analysis dataset
	II. License

