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Dealing with Complex Parallel structures in process discovery 

Abstract: One of the aims of process mining is to discover a process model from a log. 

However, the quality of the discovered model depends on the completeness of the information 

about the process behaviour contained in the log. Incomplete logs do not provide all the 

possible behaviours. Existing process discovery algorithms dealing with incomplete logs, have 

troubles when working with complex parallel structures, because parallel behaviour has 

factorial rate of growth with respect to the number of branches. In this work, a new algorithm 

is proposed, which combines divide and conquer approach, with the existing mining algorithms 

to improve discovery of highly structured and highly concurrent process models from 

incomplete logs. This work describes the proposed algorithm, and explains how it works with 

illustrative step-by-step examples of the mining procedure. Finally, we evaluate the 

effectiveness and efficiency of our approach by using process models containing complex 

parallel structures and randomly generated models. 

 

Keywords: process model discovery, process mining, automated process discovery, BPMN, 

process trees, parallel block mining, parallel branch discovery, incomplete logs mining, log 

incompleteness 

 

Keerukate paralleelstruktuuridega toimetulek protsessiavastuses 

Lühikokkuvõte: Üks protsessikaeve eesmärkidest on leida protsessimudeleid logifailidest. 

Samas sõltub leitava protsessimudeli kvaliteet sellest, kui täielik informatsioon protsessi 

käitumise kohta logifailis on, kuna paralleelarvutuste keerukuse kasv on faktoraalses 

sõltuvuses harude hulgast. Selles lõputöös tutvustatakse uut algoritmi, mis kombineerib jaga-

ja-valitse võtet olemasolevate kaevealgoritmidega, et täiustada hästistruktureeritud ja 

samaaegselt toimuvate tegumitega protsessimudelite kaevet poolikutest logifailidest. See töö 

kirjeldab väljapakutud algoritmi ja selgitab, kuidas see töötab samm-sammu haaval 

illustratiivsete kaeveprotsessi näidete abil. Lõpuks hindame selle meetodi efektiivsust ja 

tulemuslikkust kasutades protsessimudeleid, mis sisaldavad samaaegselt toimuvaid tegumeid 

ja juhuslikult loodud mudeleid. 

 

Võtmesõnad: protsessikaeve, automatiseeritud protsessiavastus, BPMN 
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1 Introduction 

In this chapter we introduce the problem to be addressed in this thesis and the research 

questions we want to answer. Then we sketch the contribution of the thesis aimed at answering 

the research questions. 

1.1 Problem 

Process mining is a relatively young discipline for analysing process data, and improve 

business processes ( [1]). Process mining includes three main branches: automated process 

discovery, conformance checking and process enhancement. Automated process discovery 

aims at building process models from events logs without any apriori information. 

Conformance checking techniques allow users to detect discrepancies between a real behaviour 

of a business process, as recorded in an event log, and some expected behaviour described in a 

process model. Process enhancement allows users to enrich an input process model with 

information retrieved from logs. 

In this thesis we focus on process discovery. The problem we try to address in this context, is 

that existing approaches fail in the discovery of process models containing complex parallel 

structures. This is especially true in case of input logs with high level of incompleteness, and 

infrequent behaviour.  

Existing process discovery algorithms dealing with incomplete logs, have troubles when 

working with complex parallel structures, because parallel behaviour has factorial rate of 

growth with respect to the number of branches. Thus the existing algorithms output a model 

with a behaviour which does not correspond to the original process model. 

In this thesis, we want to answer the following research questions. 

Main research question: 

How to effectively discover business process models containing complex parallel 

structures? 

Partial research questions: 

 How to discover block structured from logs with high degree of incompleteness? 

 What is the best way to identify a group of events belonging to a parallel block using 
the information contained in an event log? 

 How to cluster events belonging to a parallel block into different branches? 

Research objectives: 

 Implement the approach as a plug­in of the ProM platform. 

 Evaluate the effectiveness of the proposed algorithm with respect to state of the art 

techniques. 

 Evaluate the efficiency of the proposed algorithm with respect of the size of the input 
log. 

1.2 Contribution 

The proposed algorithm combines a divide and conquer approach with existing mining 

algorithms to improve the discovery of highly structured and highly concurrent process models 

from incomplete logs. We introduce two theorems, which allow us to discover groups of events 

belonging to parallel blocks, and to determine the events belonging to each branch in each 

block. To discover a correct process structure, we iteratively replace every branch of every 
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parallel block with a placeholder. To reconstruct a final process model, we recursively apply 

the algorithm using a bottom-up approach. 

We implemented our algorithm as a plugin1 of the process mining tool ProM. 

To evaluate the efficiency and effectiveness of our approach, we performed several qualitative 

and quantitative tests. The efficiency was measured using logs with different characteristics, 

randomly generated starting from different process models. The effectiveness was evaluated 

using as a baseline the Inductive Miner. For this purpose, we generated a set of logs using the 

same models and characterised by different degrees of completeness.   

                                                 

1 https://github.com/sjbog/PBMiner 

https://github.com/sjbog/PBMiner
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2 Background and related work 

In this chapter, prerequisites and prior information needed to understand the thesis is described. 

2.1 Process models 

Process models try to capture and describe the behaviour of some processes, using elements 

with deterministic order of execution. There exist numerous model representation formats, but 

we will focus on the standard solutions in the field of Business Process Management [2]. 

The goal of any process model is to describe order of execution of activities. Almost any 

execution order could be achieved with 3 base flows: sequential, parallel and exclusive choice. 

Petri Net is a process modelling notation based on transition system, with 2 model elements: 

states (places) and transitions. It is represented as a directed graph, where transitions and states 

are represented by arcs and nodes respectively, and the notion of tokens to indicate the control 

flow. The process starts in one of the initial states and terminates in one of the final states, and 

a path of the graph, from start to a final state, corresponds to the process execution path. Petri 

Nets, as well as their sub-class Workflow Nets ( [3]), are one of the most widely used model 

representation formats. 

Business Process Modelling Notation (BPMN) is another widely used model representations 

standard, which was designed to describe business processes management ( [2], [4]). BPMN 

structural elements are divided into 4 categories: 

 Flow objects (events, activities and gateways) 

 Connecting objects (message flow, sequence flow, etc.) 

 Swim lanes (pool, lane) 

 Artefacts objects (data object, annotation, etc.) 

 

Figure 1: BPMN notation [2] 

Figure 1 shows main BPMN flow elements. The gateways indicate order of execution for 

activities: 

 AND-gateway specifies parallel behaviour, i.e., concurrent execution of all choices, 
without explicitly specifying the order of execution. 

 XOR-gateway denotes exclusive choice behaviour, i.e., only 1 of the choices is 

executed. 



 

7 

 

 OR-gateway specifies non-exclusive choice behaviour, i.e., 1 or more choices is 
executed is any possible order. 

Neither Petri Nets nor BPMN guarantees sound models, e.g. models without deadlocks or other 

anomalies [5], however for the implementation it is important. 

Process Tree [6] is an abstract hierarchical process model representation structure that are 

guaranteed to be sound. Process trees are one of the most popular formats for computer 

software, which allow conversion from and to different standardised formats (BPMN, Petri 

Net, etc.). Process Tree could be described as Directed Acyclic Graph, where edges denote 

hierarchical relationship of respective nodes. Nodes, which are generalisation for blocks 

(operators) and tasks (activities), describe causal relationship (order of execution) of its 

children. The most used blocks have the following notation: 

 Seq() – sequence flow of execution 

 And() – parallel / concurrent flow of execution 

 Xor() – exclusive choice execution 

Any block could have nested blocks, however leaf nodes (tasks) are final. Children of parallel 

and exclusive-choice Xor blocks are often called branches. 

2.2 Log representation 

Data generated from the execution of process models are called event logs. Events in a log refer 

to actions of a model, and sometimes events are also called actions. An event log contains a set 

of events grouped by execution instances, called traces. All these structural elements contain a 

set of defined attributes, among standardized ones are: 

 Id - provides unique identifiers (UUIDs) for elements. 

 Timestamp – date and time, at which the element has occurred 

 Name – non-unique, human understood label of element. For logs, it could be the 
name of the executed process. 

 Lifecycle transition – specifies stage of event’s execution lifecycle (usually 

atomic, thus complete), for example: start, schedule, suspend, resume, etc. 

 Resource / role – name or identifier of the resource / role, which have triggered 
the event. 

In addition there could be unlimited number of additional attributes. For example, costs is one 

of commonly used attributes, which describes action related costs, usually has 2 embedded 

attributes – currency and amount. Other examples would be costs, system being used and data 

of an instance, which allows to correlate and find causal relationships of event logs. 
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Figure 2 Structural elements of process mining event logs  [7] 

Usually traces in a log are unordered, whereas an events list of a trace is ordered [7]. Thus any 

two traces with the same order of events are usually considered equal. 

There are 2 commonly used formats for log representation within BPM environment: MXML 

and XES standards. Although different vendors and system define numerous log formats, 

standardized representation allows to leverage log analysis and process mining tools like ProM. 

MXML (Mining eXtensible Markup Language) is an extensible, XML-based format for storing 

process event logs, which emerged in 2003 and was adopted by the process mining community 

(ProM tools) as standard format. Since 2010, when IEEE Task Force on Process Mining 

adopted a less restrictive and truly extendible successor, it is considered a legacy standard [8]. 

XES (eXtensible Event Stream) is an open XML-based standard for storing and managing 

event logs [9], sometimes called OpenXES by its open-source reference implementation library 

[7]. It was designed primarily for process mining, with a main purpose to provide generally-

acknowledged format for event logs interchange. In addition, creators made it suitable for data 

mining and statistical analysis. 

The following principles were kept in mind, while developing XES standard: 

 Simplicity – represent information in a simplest possible way, while still being 
human-readable, allow fast and easy log generation and parsing. 

 Flexibility – aims to be general standard for event log data, without specificity or 

background of process mining or business processes. 

 Extensibility – ability to be transparently extended in the future, while 
maintaining backward and forward compatibility. In addition, ability to extend 

with special requirements or schemas to work with specific application domain 

or software implementations. 

 Expressivity – allow to attach human-interpretable semantics to strictly typed 
information elements, while aiming for generic format with as little loss of 

information as possible. 

Since XES aims to be generic log format, only most common elements, identifiable by any 

setting are explicitly defined by the standard. All the other information, in particular process 

mining specific, is deferred to the optional attributes, and the semantics is standardized by 

external implementation extensions. 



 

9 

 

 

Figure 3: XES meta-model structure 

The top level object is a log entity, which holds information related to the specific process, and 
contains traces that describe specific instance. Event objects represent atomic activities, 

observed during process execution. These objects don’t contain the actual information, which 

is stored in attributes, but only define the document structure. They could contain an arbitrary 

number of attributes. 

Attributes describe their enclosing container with a key-value pair, where keys should be 

unique within parent element. Standard defines commonly used attribute types: string, date, 

numeric, boolean, container, etc. High flexibility of standard even allows to have nested 

attributes. 

XES uses a concept of event classifiers, which assigns an identity to each event, thus making 

them comparable. Classifiers are defined as a set of attributes within log’s global attributes 

(which they are subset of), thus allowing to obtain high-level aggregate information and 

generate log summaries. Since XES doesn’t define specific set of attributes, extensions are 

used to introduce a set of common attributes within a specific perspective or dimension. In 

addition, extensions allow to resolve ambiguity of attribute naming via attribute keys prefixing. 

2.3 Existing automated process discovery algorithms 

Alpha-Algorithm process discover algorithm ( [3], [2]) is one the simplest and one the oldest 

process discovery algorithms, which could deal with concurrency. It uses straightforward naive 

approach to scan the log for predefined patterns and build N2 footprint matrix. Then builds a 

process model, adding one activity after another, and optimises (or reduces) the discovered 

relations. Hence, it has a lot of limitations, for instance it cannot deal with noisy logs, infrequent 
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and incomplete behaviour, complex nested structures, etc. Alpha-Algorithm is often considered 

a baseline and often embedded into other complex process discovery algorithms. 

Inductive Miner [10] is one of the best process discovery algorithms, which outputs a sound 

and fit block-structured model in a finite time. It applies divide and conquer strategy, first by 

partitioning the activities and ordering them according to predefined process construct ranking. 

Then, it uses most important construct as a cut point, to perform a log split. The steps are 

recursively repeated until base case is encountered. See example illustrated in Figure 4. 

 

Figure 4: Inductive Miner cut points example2 

The authors specify 1 major limitation, - the log should contain enough traces of activities 

execution behaviour. However, in the improved version Inductive Miner incompleteness 

(IMin) this limitation was lifted [5]. IMin is more complex algorithm than IM, where a simple 

activities partition step was replaced with an optimisation problem. The improved version 

estimates probabilities of the activities relations according to a predefined relationship 

formulas, and searches for a partition with the highest score. Authors performed a series of test, 

and concluded that Inductive Miner incompleteness is able to discover correct process models 

even from a small incomplete logs, and require less information than other process discovery 

algorithms.  

Heuristics Miner [11] is one of the few algorithms, which can mine process models from 

incomplete logs and is robust with respect to noisy logs. It is a control-flow mining algorithm, 

which first builds event dependency graph (DG), to analyse causal dependencies of events. The 

relations of event pairs are ranked by frequency-based metric, indicating the certainty of 

dependency relation between two events, and combined into a directed connected graph. 

                                                 

2 Process Discovery: Inductive Miner 

http://www.processmining.org/blogs/pre2013/process_discovery_inductive_miner
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Figure 5: Heuristics Miner Dependency Graph example 

Figure 5 shows a Dependency Graph example, where dependencies represented as edges and 

activities as nodes, and the strongest relations of event B3 inputs and outputs. Number inside 

each event box indicate the task frequency, while the numbers on arcs indicate the dependency 

relation reliability. 

To obtain a process model Heuristics Miner extends DG into an internal representation called 

augmented Causal Net, which allows to mine splits and joins. Finally, the algorithm analyses 

possible extensions of the process model, i.e. long-distance relationships, graph optimisation 

and pruning, etc. 

2.4 Related research 

There exist a lot of different process mining algorithms, which could be classified as discovery 

of procedural (structured) and declarative (unstructured) process models, according to [12]. 

Nowadays, procedural mining is a dominant process discovery technique, but processes, with 

high level of variability, could be represented with declarative language in a more compact 

way. The approach proposed by the authors of [13] combines the two techniques, in order to 

capture strictly structured and non-structured flexible blocks, and represent them in a single 

process model. 

To discover hybrid process models, the authors employ divide & conquer technique. First, they 

analyse the log in order to find events within structured and unstructured contexts, or as authors 

refer to it, - context analysis technique. Then, having these sets of events, the log is split into 

several pieces containing only either structured or unstructured events. Such division allows to 

employ appropriate mining algorithms, in particular, Inductive Miner for structured events and 

Declare Miner for unstructured. In the end, a hierarchical top-level process model is mined, 

usually represented as a structured process, with pseudo-activities representing child sub-

processes. 
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To represent the final hybrid model, recently 2 extensions to an imperative model presentation 

formats were proposed: R/I-net and BPMN-D. Authors of the first one [14] expressed Declare 

semantics in the form of Petri nets, where Declare constraint is mapped to a Petri net fragment 

with weighted, reset and inhibitor arcs. The authors of the latter [15] introduce Declare 

constructs into BMPN, by extending activity nodes and sequence flow arcs, preserving 

backwards compatibility. 

Authors of the BPMN Hierarchical Miner [16] used modularity or hierarchy, e.g. notions of 

parent process and groups of repetitive events, called sub-process, to represent process models 

with highly complex structures. The proposed approach has 3 steps. At first, sub-processes are 

identified. Using clustering techniques on event attributes, or analysing other dependencies of 

attributes combinations, unique event blocks are identified. Next, log is divided into smaller 

pieces according to event blocks of corresponding sub-processes. This allows to mine and 

discover a process model for each sub-process, with existing procedural (flat) mining 

algorithms, namely Inductive Miner. Lastly, knowing a hierarchy of logs, process model 

hierarchy is generated. Heuristics analysis of root log allows to identify boundary events, event 

sub-processes and markers, which then makes it possible to glue all discovered models 

together. There are 2 known limitations described by the authors: log should be noise-free and 

requires correctly assigned attributes for each event. 
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3 Contribution 

In this chapter, we describe the main contribution of this thesis. We first introduce some  

definitions and theorems useful to understand the proposed discovery algorithm. Then the 

algorithm itself is described in detail. Finally, a discussion about advantages and limitations of 

the proposed algorithm concludes the chapter. 

3.1 Definitions 

Definition 1 (block events): set of events between corresponding split and join gateways. 

Definition 2 (start / end events of a block): subset of the block events, which are directly 

connected to an opening / closing split gateway. 

Definition 3 (unassigned events of a block): subset of the block events, which are known to 

belong to an AND gateway (parallel) block (see also Theorem 1). However, these events could 

belong to any branch of the parallel block, because a branch assignment cannot be determined 

(see also Theorem 2). 

Definition 4 (incomplete log): log generated starting from a process model, which does not 

contain the complete set of all the possible paths ( [2], [5]). For example, a process model 

consisting of 10 activities, which are executed in parallel, would have 10! (3,628,800) possible 

combinations. 

Definition 5 (context analysis): technique that allows us to determine the set of immediate 

predecessors and successors for each event in the log. 

Definition 6 (filtered log): log derivative, in which only a selection of events is kept in every 

trace. As an example, let us consider a log L, with 2 traces and 3 activities. The filtered log 

L{B,C} would contain the same amount of traces, preserving the order, but containing only events 

B and C.

Original log L 

A, B, C;  
B, A, C; 

Filtered log L{B,C} 

B, C;  
B, C;  

Definition 7 (placeholder log): log derivative, in which some sequences of events are replaced 

with a pseudo-event (a placeholder). In particular, only the first occurrence of the sequence is 

replaced by the pseudo-event, whereas the other events are removed. As an example, let us 

consider a log L, with 2 traces and 3 activities. The placeholder log Lx
{B,C} would have the first 

occurrence of events B or C substituted by a placeholder X in every trace. The other 

occurrences of B and C are skipped.

Original log L{A,B,C} 

A, B, C;  
B, A, C; 

Placeholder log Lx{B,C} 

A, X;  
X, A; 
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Theorem 1 (grouping parallel block events): it is guaranteed that if an event belongs to a parallel 

block, then all its predecessors belong to the same block in case we are trying to identify the 

first block of a model. For identifying the following parallel blocks, we can iteratively group 

together events belonging to the same block based on the fact that if an event belongs to a 

block, then all its predecessors belong to the same block unless they are already tagged as 

belonging to a previously identified block. 

In a log, the branches of a parallel appear mixed with each other, meaning that predecessors of 

one branch start events could be events of another branch. Knowing the events that belongs to 

previously identified blocks, this property allows us to group together events belonging to a 

parallel block, knowing only the start events of the block. Proof of this theorem reuses the 

definition of concurrently executed events [17], but instead of considering branches with a 

single activity, we consider multiple events per branch.  

To illustrate the theorem, let us consider the process model in Figure 6. 

 

Figure 6: Theorem 1 example process model 

A log of two traces would be enough to find the events belonging to each block. 

T1: A1, A2, A3, A4, B1, B2, B3, B4, C1, C2, D1, D2; 
T2: B1, B2, B3, B4, A1, A2, A3, A4, D1, D2, C1, C2; 

Events A1 and B1 are start events of a block, and there are no events belonging to previous 

blocks. According to the theorem, predecessors of events belonging to the block belong to the 

same block. Let us focus on T1, events A1, A2, A3 and A4 are predecessors of B1, thus they 

belong to the same block as B1. The same idea applied to T2 (using A1 as an anchor), allows 

us to identify B2, B3 and B4 as members of the same parallel block. Next, we look for 

predecessors of the newly found events, but, in this case, there are no new block events to be 

identified. 
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Figure 7: Theorem 1 block events discovery 

After having identified events belonging to a parallel block, they are tagged and used as prior 

information for the identification of the next block. Events C1 and D1 are the start events of 

the following block. Applying the same procedure to the second block, we can identify its 

events. 

The example traces T1 and T2 are extreme cases, which reveal the structure of every branch. 

The theorem proves to be also useful for the discovery of process models from logs with highly 

intermixed parallel branches. For example, let us consider another log of two traces: 

T1: A1, A2, B1, A3, B2, A4, B3, B4, C1, C2, D1, D2; 
T2: B1, A1, B2, A2, B3, A3, B4, A4, D1, D2, C1, C2; 

In this example, the following steps are performed to identify events of the first block: 

Table 1: Steps performed to identify block events 

Identified 

events 

Action Block events 

A1, B1 A1 and B1 are start events of the block. A1, B1 

A2 A2 is a predecessor of B1 in T1 A1, B1, A2 

B2 T2: … B2, A2, … A1, B1, A2, B2 

A3 T1: … A3, B2, … A1, B1, A2, B2, A3 

B3 T2: … B3, A3, … A1, B1, A2, B2, A3, B3 

A4 T1: … A4, B3, … A1, B1, A2, B2, A3, B3, A4 

B4 T2: … B4, A4, … A1, B1, A2, B2, A3, B3, A4, B4 

{} No new predecessors, stop iterating A1, B1, A2, B2, A3, B3, A4, B4 
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Figure 8: 2 trace predecessors chaining example 

Figure 8 visualizes how knowledge about parallel block events percolates. Iteration repeats 

until no more events belonging to the block can be found. We assume that in a log all the 

interleavings needed to assign an event to the corresponding block are available. Thus, in some 

cases, we find less events than the block actually has, although we are never overestimating 

them (i.e., finding events, which do not belong to the block). For example in Figure 8, if we 

swap the position of B4 and A4 in T2, we would not have enough information to assign B4 to 

the first block. We therefore would discover the model: Seq(Block1, B4, Block2). 

Theorem 2 (identifying branches in a parallel block): after having identified start events of each 

branch in a process model, and the block events belonging to a parallel block, it is guaranteed 

that predecessors of a branch start event do not belong to the same branch. When there are 

several start events in a branch, then the rule applies to the first observed start event in a trace, 

see Figure 31 for an example. 

For any trace in a log, a non-start event can appear only after a branch-matching start event. It 

also means that the predecessors of one branch start event, are members of other branches.  

Proof of this theorem reuses directly follows and transitively follows theorems, initially 

proposed in [18], but scaled with respect to concurrency of a parallel block.  

To show an example, let us consider the process model in Figure 9. 

 

Figure 9 Open branches example model 

A*, B* and C* events are grouped by colour and name prefix, and belong to the same branch. 

Suppose that we know that A1, B1 and C1 are start events of the parallel block, consider the 

following trace (which is compliant with the model): 

T1: C1, C2, C3, B1, C4, B2, A1, A2, B3, C5 
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Figure 10 Example trace 

Processing the trace from left to right, the following steps are performed: 

Table 2: Theorem 2 steps 

Event Action Open branches 

C1 C1 is a start event, add to open branches. {} + { C* } => { C* }  

C2 Map C2 to open branches. C2 -> { C* } { C* } 

C3 C3 -> { C* } { C* } 

B1 B1 is a start event, update open branches. { C* } + { B* } => { C*, B* } 

C4 C4 -> { C*, B* } { C*, B* } 

B2 B2 -> { C*, B* } { C*, B* } 

A1 A1 is a start event, add to open branches. { C*, B* } + { A* } => { C*, B*, 

A*} 

A2 A2 -> { C*, B*, A* } { C*, B*, A* } 

B3 B3 -> { C*, B*, A* } { C*, B*, A* } 

C5 C5 -> { C*, B*, A* } { C*, B*, A* } 

After trace analysis it is obvious that everything between C1 and B1 belongs to C*, but not to 

A* or B*, because only C1 start event had appeared. Thus from the given trace one could 

deduce that: 

 [C2 ... C3] belong only to C* branch 

 [C4 ... B2] belong either to C* or B* branches, but not to A* 

 [A2 ... C5] could belong to any branch 

Note that there are some events that for sure belong to a specific branch. For example C2 and 

C3 belong to branch C* in Figure 10. Therefore the theorem above is useful to identify only 

these events. This theorem does not allow us to assign the other events to a specific branch. 

3.2 Algorithm description 

The algorithm tries to reconstruct a process model sequentially, from left to right. The idea is 

to identify and process the log in blocks, i.e., group of events between gateways. Each identified 

branch of a block is isolated into a sub-log and mined separately. Figure 11 gives a high level 

overview of the algorithm. 
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Figure 11: algorithm overview 

We first try to identify initial activity of a process model, if it is always the same, then we found 

an activity of a sequence, and continue analysing the next one. However, when initial event 

differs from trace to trace, then we assume that a split point exists, and the events appearing at 

this position are start events of a block. A split point in a log corresponds to an opening gateway 

in the process model. The algorithm considers XOR and AND gateway types. To identify the 

gateway type we filter out start events (see definition 2), and mine it with the Inductive Miner. 

XOR blocks have an exclusive execution of branches, meaning that for each trace only one 

branch of the block is observed. This property allows us to discover groups of events belonging 

to each branch, and the whole block. The Inductive Miner is able to mine XOR blocks properly, 

thus no further processing is needed. The discovery of complex AND blocks is more 

challenging with the Inductive Miner. 

Branches of AND blocks are executed concurrently, meaning that in each trace all branches of 

the block are observed and the different branches could appear mixed with each other. We use 

Theorem 1 to identify the group of events belonging to the same block. Next, we identify events 

belonging to each parallel branch. To this aim, first, we apply Theorem 2 , then we use 

Heuristics Miner to map the rest of unassigned events (remember that Theorem 2 is not always 

able to completely identify all the branches). 

After having identified the block events and branch mapping, we create a placeholder log in 

which events belonging to each branch of each parallel block are replaced by a placeholder 

(see definition 7). This is done iteratively until all the blocks in the model have been identified 

from left to right (see iteration in Figure 9). For the final part of creating the process model, we 

recursively apply the algorithm to each filtered sub-log representing a separate branch, and 

mine it with the Inductive Miner. Then, all the branches are being recursively merged into a 

parent process model (bottom up approach) up to the top-level. 

3.2.1 Step by step walkthrough 

To describe each step of the algorithm in detail, suppose that we have the following log 

(example S1): 

T1: S1, A1, B1, A2, B2, A3, B3, S2, C, End; 
T2: S1, B1, B2, A1, A2, B3, A3, S2, D, End; 
T3: S1, A1, B1, B2, B3, A2, A3, S2, C, End; 

Step 1 (find split point): Our algorithm is based on a technique called context analysis. In 

particular, it iterates over all traces of the log, and constructs a set of immediate predecessors 
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and successors for each event. Iterating the immediate successors from the process start, allows 

us to discover fixed-position events, as well as points of variability. Meaning, that event with 

more than 1 successor is considered a split. 

For our example S1, context analysis would construct the following successors table: 

__process_start__: { S1 }, S1: { A1, B1 }, … End: { __process_end__ } 

We sequentially iterate from process start to process end, or until a split point (more than 1 

successor) is found. 

__process_start__ -> S1 -> { A1, B1 } 

 

Figure 12: Context analysis finds and analyses gateway splits 

In our example, S1 is the first event in all the traces and, after event S1, we have a split, where 

A1 and B1 are start events of a block. To identify the block type we isolate start events A1 and 

B1 into a filtered log (see definition 6), and mine the log with the Inductive Miner. As a result 

we obtain not only the block type, but also the structure of the block branches. See Figure 31 

for an example of complex structure with embedded blocks mined from start events. 

The result is a parallel block, and the top-level process model is: 

Seq( S1, And( A1, B1 ) ) 

We need now to know which events belong to the newly discovered block. We use Theorem 1 

to identify the group of events that belong to the block. According to the theorem, predecessors 

of known parallel block events A1 and B1, also belong to the block, except for events preceding 

the split. There is only 1 event preceding the split – S1. 

The following steps are performed: 

Table 3: Block events identification steps 

Identified 

events 

Action Block events 

A1, B1 A1 and B1 are start events of the block. A1, B1 

B2 B2 is a predecessor of A1 from T2 A1, B1, B2 

A2 T1: … A2, B2, … A1, B1, B2, A2 

B3 T3: … B3, A2, … A1, B1, B2, A2, B3 

A3 T1: … A3, B3, … A1, B1, B2, A2, B3, A3 

{} No new predecessors found A1, B1, B2, A2, B3, A3 
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Figure 13: Block's events detection, knowing start events 

Predecessor detection technique works well with branch overlapping, often observed in logs of 

highly structured processes, because it doesn’t try to understand the internal structure of the 

block. 

Step 2 (map events to branches): there are 2 techniques used to assign each event of the parallel 

block to a branch. First, Theorem 2 is used, then remaining unassigned events are mapped via 

Heuristics Miner. 

From the previous step we know that there are 2 branches, which start with events A1 and B1. 

According to Theorem 2, all the events appearing in the log between A1 and B1 could be 

exclusively mapped. 

T1: … A1, B1 … 
T2: … B1, B2, A1 … 
T3: … A1, B1 … 

After analysing the log, event B2 is mapped to the branch starting with B1. In the 2nd trace, B2 

appears after B1 but before A1, meaning that it could not belong to the same branch as A1. The 

rest of unassigned block events B3, A2 and A3 have to be mapped with Heuristics Miner. 

Whereas Theorem 2 relies on edge cases to reveal branch content, the Heuristics Miner builds 

a dependency graph of observed paths, and relies on the most common patterns. 
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Figure 14: Heuristics Net (Dependency Graph) 

 

Figure 15: Dependency cause tables for events A2, A2 and A3 

Figure 15 shows the input patterns of the unassigned events A2, A3 and B3, produced by the 

Heuristics Net. We assign each event to a predecessor with the highest frequency.  

Table 4: Unassigned events mapping steps 

Unassigned event Action Branch mapping 

A2 A1 is the sole input of A2, thus belong 

to the same branch 

A2  A1 

A3 A2 has the highest frequency A3  A2 ( A3  A1 ) 

B3 B2 with 100% B3  B2 

 

Figure 16: Unassigned events mapping to branches 

As a result, we have mapped each event of the block to a branch, but the internal structure of 

each branch remains unknown. 

Step 3 (filter out each branch in a sub-log): From the previous step, we have group of events 

belonging to each branch. We now create a placeholder log (see definition 7) where we use a 

placeholder log instead of the original one and for each branch we create a filtered sub-log (see 

definition 6). 
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Figure 17: Example of branch separation into sub-logs 

Each branch sub-log and placeholder log should contain the same amount of traces as the top-

level log, and preserve the relative order of events. Filtered logs Branch_A and Branch_B are: 

L{A1, A2, A3} 

T1: A1, A2, A3; 
T2: A1, A2, A3; 
T3: A1, A2, A3; 

 

L{B1, B2, B3} 

T1: B1, B2, B3; 
T2: B1, B2, B3; 
T3: B1, B2, B3;

The placeholder log, with pseudo-events Branch_A and Branch_B (substituting by first 

occurrence), is (placeholder log S1): 

T1: S1, Branch_A, Branch_B, S2, C, End; 
T2: S1, Branch_B, Branch_A, S2, D, End; 
T3: S1, Branch_A, Branch_B, S2, C, End; 

The filtered out logs should be linked to an appropriate pseudo-events, and kept for further 

processing. At this point, the current block is considered identified, and we can continue 

processing the top-level log with context analysis.  
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Step 4: analyse events following the newly discovered block (repeating steps 1-3). From step 

1, with we found the following top-level structure:  

Seq( S1, Block_1 ) 

We continue looking for the next split with context analysis. 

__process_start__ -> S1 -> { Block_1 events } -> S2 -> { C, D } 

First, we find a fixed-position activity S2, then a new block with start events C and D. To 

identify block type, the algorithm filters out start events C and D. 

 

Figure 18: Illustration of sequential of model reconstruction 

The result is a XOR gateway, thus we use the Inductive Miner to find other events, which 

belong to the block. In this case, the block has only 2 events. 

Finally, the context analysis discovers the last activity of the top-level process: 

Seq( S1, And( Branch_A, Branch_B ), S2, Xor( C, D ), End ) 

Step 5 (create a process model): we discover the underlying structure of each extracted branch, 

and if necessary, we recursively apply the algorithm. Then, we merge the child process trees 

into a top-level tree. 

Logs L{A1, A2, A3} and L{B1, B2, B3} from step 3 are mined with the Inductive Miner, and the 

following results are obtained:    Seq( A1, A2, A3 ) and Seq( B1, B2, B3 ). 

 

Figure 19: Final process tree composition example 

Figure 19 illustrates the replacement of the placeholder activities of the top-level tree with the 

child process trees. Tree composition process uses a bottom-up approach, meaning that for 

hierarchy with several layers the lowest level children are replaced first. 
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Figure 20: Discovered process model 

The final process model discovered from example S1 is show on Figure 20. There are several 

outputs produced by the algorithm: 

1. A process tree, which could be converted by existing libraries into other model 

representation formats. 

2. Placeholder top-level log. 

3. All filtered child logs, which represent extracted the branches. 

3.2.2 Complex process model walkthrough 

Let us review a more complex process model, without fixed-position events between parallel 

blocks. Suppose that we have the following log (example S2): 

T1: A1, A2, B1, B2, B3, A4,  D1, D2, C1, E1, E2, E3, C2, C3,  End; 
T2: A1, A3, B1, B3, B2, A4,  D1, D3, E1, E2, C1, C2, C3, E3,  End; 
T3: B1, B2, A1, A2, A4, B3,  E1, E2, C1, E3, D1, C2, D3, C3,  End; 
T4: B1, A1, B2, B3, A2, A4,  C1, C2, E1, D1, C3, E3, E2, D2,  End; 
T5: A1, B1, A3, B3, A4, B2,  C1, D1, C2, E1, E3, E2, D3, C3,  End; 

The target top-level process tree should look like (source process model is shown on Figure 

27): 

Seq( And( A*, B* ), And( C*, D*, E* ), End ) 

Step 1: using context analysis we find a split gateway and block start events A1 and B1. 

 

Figure 21: Context analysis of first block 

Next, we mine filtered log containing start events A1 and B1 with the Inductive Miner. The 

discovered process tree provides information about the block type that is a parallel block. 

Step 2: applying Theorem 1 we discover events that belong to the block. 
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Figure 22: Set of events belonging to the block 

Step 3: using Theorem 2 allows us to distinctly map events A2, A3 and B2 to branches (from 

T1, T2 and T3 respectively). Next, we use the Heuristics Miner to find branch mapping for the 

rest of unassigned events. 

 

Figure 23: Event to branch mapping 

Steps 4-5: we create 2 filtered out logs for each branch, and create a placeholder top-level log 

with pseudo-events. Then we proceed with context analysis, and discover next block’s start 

events D1, C1 and E1. With the Inductive Miner we discover that there are 3 branches. 

 

Figure 24: Context analysis with prior information 

Steps 6-7: we find events, which belong to the block, then map them to the branches. From 

traces T1, T2, T3 and T4 we map events D2, D3, E2 and C2 respectively. 
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Figure 25: Event to branch mapping 

Steps 8-9: we filter out branches of the 2nd block, update top-level placeholder log and perform 

context analysis on the remaining events. 

Step 10-12: we mine a process tree from the top-level log with the Inductive Miner (the result 

is shown on Figure 26). Then recursively analyse each filtered log with the algorithm, and mine 

a respective process tree for each branch.  

 

Figure 26: Top-level process tree with placeholder events 

Finally, we replace the placeholder events in the top-level process tree with the discovered 

child process trees. The composed process tree is shown on Figure 28. 

In conclusion, we compare the discovered process model (Figure 29) with the source model 

(Figure 27), and find no difference – they are identical. 



 

Figure 27: Source process model of example log S2 

 

Figure 28: Discovered process tree from example log S2 

 

Figure 29: Discovered process model from example log S2



3.2.3 Why does the algorithm work? 

Procedural models go from start to end, meaning that the process has a start and an end. Top-

level process’ order of execution is always constant, - sequentially, from left to right. Every 

trace in a log is a reflection of this principle, it is an ordered list of events which follow the 

process from the beginning to the end. What if all events, of each block-structure, were known? 

Then mining a structural process model from a log would be possible with existing algorithms, 

by extracting events belonging to the same block-structure, into a separate logs preserving the 

order of events in a trace, and mining them separately. 

The idea of knowing block events allows us to mark block edges in the log, since top level 

block’s execution order is constant – it’s a sequence. For example, let all events starting with 

“A” and “B” would belong to 2 different blocks. Given a log of traces: 

Start, A1, A2, A3, B1, B2, End 
Start, A4, A5, B3, B1, B4, End 

=> Seq( Start, Block( A* ), Block( B* ), End ) 

The clear distinction of block edges allows us to determine top-level structure, without 

knowing the structure of blocks. This leads to another observation, - knowing only block edges 

would suffice to determine the top-level structure. The example above could be represented as: 

Start, A1, …, A3, B1, …, B2, End 
Start, A4, …, A5, B3, …, B4, End 

=> Seq( Start, Block( A* ), Block( B* ), End ) 

This allows us to change the requirement of knowing all events in each block to knowing only 

start/end events of each block, in order to find the structure of the top-level model. This could 

be improved even further, since end events of one block are directly followed (always) by start 

event of the next block. This property is symmetrical, meaning that start events of a block are 

always preceded by end events of previous block (or empty set in the beginning of the process). 

Since they duplicate each other, the requirement could be lifted to knowing only 1 set of events.  

Start, A1, …, A3, B1, …, B2, End 
Start, A4, …, A5, B3, …, B4, End 

=> Seq( Start, Block( A* ), Block( B* ), End ) 

Summing up, the algorithm focuses on block order of execution, gateway splits and their 

branches. It first tries to understand the structure of process, from meta-information and context 

analysis, and then guide the mining procedure. Combination with CSP-like process mining 

algorithms makes it possible to discover original process models without extreme edge cases, 

often absent in incomplete logs. 

3.3 Algorithm limitations 

The following limitations are inherent to the algorithm: 

 Not robust with respect to noisy logs. 

 Cannot handle loops, nor duplicate events names appearing in a trace. 

 Internally uses the Inductive Miner Incompleteness and inherits its limitations. 

 Unassigned events could be assigned to an incorrect branch. 

First and most important limitation is noise, meaning that the algorithm is precise and does not 

tolerate errors in a log. Having a single trace, which doesn’t correspond to a source model, 

might result in an output, different than a source model. This limitation usually inherent to all 
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process mining algorithms, which deal with incompleteness. Alternative solution would be to  

keep only the most common paths by some threshold, but it might remove edge cases which 

are crucial because log is incomplete. 

Next limitation concerns loops and duplicate events. Events classifier takes into account event 

name (and transition if needed), which means that 2 or more event occurrences, with the same 

name, will have a merged list of predecessors and a merged list of successors during context 

analysis.  

The reason for loop constraint is Theorem 1 (about finding block events). The theorem states 

that every predecessor of parallel block events is also parallel, however loop body would be 

seen as a predecessor without actually belonging to the parallel block. This could be seen as a 

disproof of theorem, but during algorithm design phase loops became a major burden, which 

heavily complicated the implementation. Thus was decided to drop the support of loops in 

favour of simpler and guaranteed working algorithm. For example let us consider the process 

model in Figure 30. 

 

Figure 30: Loop as predecessor limitation 

In Figure 30 light green events (S1, S2) are already processed events, yellow (A1, B1) and 

orange (An, Bn) – being processed and yet to be processed events respectively. A log 

corresponding to this model might contain traces like {… A1, B1 … LoopE1, LoopEn, A1, B1 

…}. While processing sucha  log, event LoopEn is seen as a predecessor to the parallel block, 

and since LoopEn does not belong to the XOR block, the theorem it will incorrectly assign it 

to the parallel block. 

To make the algorithm work in the most possible cases, we use the Inductive Miner to 

determine the structure of block start events. Let us consider the example in Figure 31. 
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Figure 31: Example of complex structure of block start events 

In Figure 31 a top-level parallel block has nested blocks, which influence the number of start 

events. Our goal is to determine number of block branches and group of events belonging to 

each of them. However this is not possible without first mining the underlying structure of each 

branch. Thus, the algorithm depends on and inherits limitations of the Inductive Miner. 

The algorithm reconstructs the process in a sequential manner, from the beginning to the end. 

Thus, mistakes made during block structure reconstruction could recursively propagate to child 

blocks or affect the parent block.  

 

Figure 32: Examples of error propagation 

Figure 32 shows original process model and 3 cases of incorrect models, which could be 

obtained when mining with our algorithm. Cases A and B illustrate incorrect assignment of 
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unassigned events to branches, and how it affects the nested blocks of the branches. The errors 

in these cases are caused by Heuristics Miner, i.e. the most common paths. Case C shows result 

of incorrect block events detection, which affects the parent block. 

In general the algorithm is robust to incompleteness, but in some cases could lead to incorrect 

solutions. However these solutions are still suboptimal.   
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4 Evaluation 

In this chapter, first, we compare process models produced by different process discovery 

algorithms from example logs S1 and S2, used in algorithm description chapters. Then we 

evaluate discovery of 6 artificial process models using randomly generated incomplete logs. 

Lastly, we measure performance of the mining algorithm. 

4.1 Comparison of process discovery algorithms 

The algorithm focuses on the discovery of parallel blocks from incomplete logs. In a parallel 

block branches are executed concurrently, they intermix creating “branch noise”. This does not 

allow most of the process discovery algorithms to mine the correct process model without 

having all the edge cases. 

We chose Alpha-Algorithm Miner and Inductive Miner for comparison with our algorithm, 

implemented as Parallel Block Miner (PB-Miner) test plugin for ProM tool3, because the 

former is stable and mature, and the latter is new and flexible. Note that there are several 

implementation variations of Inductive Miner, but we consider only baseline and 

incompleteness variants. 

4.1.1 Process model S1 

 

Figure 33: Process model S1 

Figure 33 shows a model discovered with PB-Miner from example S1, which also corresponds 

to the original process model. The log consists of 3 distinct traces. 

 

Figure 34: Model S1 discovered with Alpha-Algorithm Miner 

The model discovered from the log with Alpha-Algorithm Miner is shown in Figure 34. We 

can see that the parallel block is not reconstructed correctly. 

 

Figure 35: Model S1 discovered with Inductive Miner baseline 

Figure 35 shows a model mined with Inductive Miner baseline implementation. This model is 

incorrect, since the parallel block is split into several distinct parts. In addition, we can see a 

lot of loop and event skip structures. 

                                                 

3 https://github.com/sjbog/PBMiner 

https://github.com/sjbog/PBMiner
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Alpha-Algorithm and baseline implementation of Inductive Miner did not discover a correct 

process model because they were designed to work with complete logs, which reveal most edge 

cases. 

 

Figure 36: Model S1 discovered with Inductive Miner incompleteness 

The Inductive Miner incompleteness variant, shown in Figure 36, produces an incorrect result, 

but close to the original. The top-level structure is perfect, however branches of the parallel 

block have wrong body. The miner cannot discover a correct process model because there is 

not enough edge cases present in the log and the log completeness is too low. 

4.1.2 Process model S2 

 

Figure 37: Process model S2 

Figure 37 shows a model discovered with PB-Miner from example S2, which also corresponds 

to the original process model. The log consists of 5 distinct traces. 



 

34 

 

 

Figure 38: Model S2 discovered with Alpha-Algorithm Miner 

The model discovered from the log with Alpha-Algorithm Miner is shown in Figure 38. We 

can see that the mined model is a “spaghetti-like” model with a lot of arcs, and does not 

correspond to the original process model. This result is expected, taking into account that the 

log has low level of completeness. 

 

Figure 39: Model S2 discovered with Inductive Miner incompleteness 

Figure 39 shows process model discovered with the Inductive Miner incompleteness variant. 

The result is incorrect, although the miner was able to properly discover and group together 

events belonging to the 2 blocks of the top-level sequence. We conclude that the log does not 

contain enough edge case for this level of log completeness. 

4.2 Effectiveness analysis 

We have used 6 process models to evaluate process discovery results. S1 and S2 are models 

from example logs, S3 is an artificial model, and the rest are randomly generated models. All 

selected models have parallel blocks with more than 5 block activities, and some have nested 

blocks with maximum depth of 3. 

We evaluated log completeness by dividing the number of distinct traces in the log by the 

number of possible traces that can be generated by the model. There following formulas were 

used for each block: 

 Sum of branch choices for XOR block (because any of the branches could be 
executed). 

 Max of child elements for SEQ block. 
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 Formula 
𝑆𝑖𝑧𝑒( 𝑏𝑙𝑜𝑐𝑘  )!

 𝑆𝑖𝑧𝑒( 𝑏𝑟𝑎𝑛𝑐ℎ1 )! ∗ 𝑆𝑖𝑧𝑒( 𝑏𝑟𝑎𝑛𝑐ℎ2 )! …
 for AND block (this formula could vary 

depending on the nested blocks in each branch). 

Let us calculate the number of possible paths for the following process models: 

 Seq( A, B, C ) = 1, because sequence block has only 1 way to be executed. 

 Xor( A, B ) = 2. Here {A} or {B} are the only choices. Each branch of the block 

consists of a single event, and in case of several sequential events the result 

doesn’t change. 

 Xor( Seq( A, B ), Seq( C, D ) ) = 2 ({ A, B } or { C, D }). Each branch is a 
sequence with a single order of execution, meaning Sum( Seq, Seq ) = Sum( 1, 1 

) = 2. 

 Xor( Xor( A, B ), C ) = 3, could be calculated as Sum( Sum( 1, 1 ), 1 ). 

 Seq( A, Xor( B, C ) ) = 2, with choices {A, B} or {A, C}. Calculated as Max(1, 
Sum( 1, 1 )). 

 And( A, B, C ) = 6, it is permutation of events A, B and C (e.g. 3!).  

 However And( Seq( A, B ), C ) = 3, with choices {A,B,C}, {A,C,B} and {C,A,B}. 

It is almost the same as permutations of 3 events, but we discard the choices 

{B,A,C}, {B,C,A} and {C,B,A}, where B precedes A (not possible according to 

Seq( A, B )). To calculate we take factorial of the total number of activities in the 

parallel block, and divide by product of branch factorials (e.g. 3! / ( 2! * 1! )). 

 

Figure 40: Process model 

Figure 40 shows a model with nested blocks. First we analyse the top branch of the top-level 

parallel block: 

1. Branch has 3 events and 4 variations 

2. Branch is sequence of 1 event with 1 execution path 

The formula is: 
4∗1

3!∗1!
∗ (3 + 1)! =

4∗4!

3!
= 16 

List of all possible execution paths of the top branch is the following: 

 A,B,C 

 A,B,D 

 A,C,B 

 A,D,B 

Event E could appear in the beginning, in between or in the end of the listed paths, thus the 

result is 4*4. 
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4.2.1 Process model S1 

The process model is shown on Figure 33. To calculate number of distinct traces, first we 

consider each branch of the top parallel block separately: 

1. Top branch is a sequence of 3 activities, 1 possible execution path 

2. Bottom branch is a sequence of 3 activities with 1 path 

Next, we calculate possible combinations for the XOR block: Xor(C, D) = 2. 

Finally, the resulting is a maximum of 2 blocks: 𝑀𝑎𝑥 (
 1∗1

3!∗3!
∗ (3 + 3)!, 2) =

6!

3!∗3!
= 20 

The result is 20, meaning that there are 20 distinct ways the process model could be executed. 

First, we generate a log with N randomly selected traces, where N ranges from 2 to 30. Such 

process is repeated 1000 times for each value of N, meaning that we generate 1000 random 

logs with 2 traces, then with 3 traces, etc., up to N traces. For each N the log completeness is 

the average of the completeness of the corresponding 1000 random logs. The completeness of 

each log is evaluated as mentioned before. 

 

Figure 41: Graph S1 

To evaluate process discovery effectiveness, we mine each log with our algorithm and compare 

the discovered process tree with the original process model. Correctness is calculated as the 

ratio between correctly discovered process trees and the total number of trees mined. In 

addition, we use the Inductive Miner Incompleteness (IMin) as a baseline. 

In Figure 41 we see that in the beginning, while the average log completeness is below 40%, 

PB-Miner produces better results, than IM. After reaching 40% of the average log 

completeness, both graphs flatten with a discovery percent close to 100%. 

Table 5 shows more detailed information about the first 10 values for number of traces (from 

2 to 11, step 1) of the process model S1. We are showing in detail only these points because 

the results are different only in the first part of the graph. The table contains: 

 Traces per log 
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 Average log completeness 

 Correctness 

 Execution time, i.e., the time needed for discovering a process tree from a log. 

 Correctness comparison, i.e., a truth table for comparing discovered process tree 

of PB-Miner and Inductive Miner for 1000 logs. 

For example, 2nd row (3 traces per log) contains the following truth table: 

IM \ PB TRUE FALSE 

TRUE 2 20 

FALSE 125 853 

It means that out of 1000 logs, PB and IM correctly discovered 2 process trees (TRUE, TRUE) 

from the same logs. PB-Miner had correctly reconstructed 125 logs (TRUE, FALSE), which 

IM did not reconstruct. In addition, there are 20 logs (FALSE, TRUE) which IM recognized, 

but PB did not. Finally, there are 853 logs (FALSE, FALSE) which were not correctly 

discovered by any of the miners. 

Table 5: S1 

Traces 

per log 

Avg. log 

completeness, 

% 

Correctness, 

% 

Avg. execution 

time, ms 

Correctness comparison 

PB IM PB IM IM \ PB    TRUE    FALSE 

2 9.9 1.7 0.0 3 2 
TRUE  0 0 

FALSE 17 983 

3 14.5 12.7 2.2 2 2 
TRUE  2 20 

FALSE 125 853 

4 18.7 29.4 7.2 2 2 
TRUE  33 39 

FALSE 261 667 

5 22.7 46.4 24.1 3 3 
TRUE  157 84 

FALSE 307 452 

6 26.6 60.2 42.9 3 3 
TRUE  306 123 

FALSE 296 275 

7 30.0 71.6 61.6 3 3 
TRUE  493 123 

FALSE 223 161 

8 33.7 80.3 74.5 3 3 
TRUE  641 104 

FALSE 162 93 

9 37.1 85.1 82.7 3 3 
TRUE  733 94 

FALSE 118 55 

10 39.8 89.4 88.4 3 3 
TRUE  814 70 

FALSE 80 36 

11 43.3 91.7 92.0 4 3 
TRUE  851 69 

FALSE 66 14 

4.2.2 Process model S2 

The process model is shown on Figure 37. To calculate the distinct traces, we take the 

maximum number of distinct paths of the 2 top-level blocks: 

First block is a parallel block with 2 branches: 

1. 3 events, 2 variations 

2. 4 events, 2 variations 
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Second block is a parallel block with 3 branches: 

1. 2 events, 2 variations 

2. 3 events, 1 path 

3. 3 events, 2 variations 

Thus the formula is: 𝑀𝑎𝑥(
(2∗2)

3!∗4!
∗ (3 + 4)!,

2∗1∗2

2!∗3!∗3!
∗ (2 + 3 + 3)!) = 𝑀𝑎𝑥(

4∗7!

3!∗4!
,

4∗8!

2!∗3!∗3!
) =

2240 

For this and the rest process models we generated 100 random logs for each trace step. 

 

Figure 42: Graph S2 

In Figure 42 we see that in the beginning, while the average log completeness is below 4.5%, 

Inductive Miner produces better results, than PB-Miner. After reaching 4.5% of the average 

log completeness, both graphs flatten with a discovery percent close to 100%. 

Table 6 shows more detailed information about the first 10 values for number of traces (from 

10 to 100, step 10) of the process model S2. 

Table 6: S2 

Traces 

per log 

Avg. log 

completeness, 

% 

Equal 

trees, % 

Avg. execution 

time, ms 

Correctness comparison 

PB IM PB IM IM \ PB    TRUE    FALSE 

10 0.4 7.0 1.0 85 83 
TRUE  0 1 

FALSE 7 92 

20 0.9 26.0 30.0 41 49 
TRUE  6 24 

FALSE 20 50 

30 1.3 51.0 74.0 51 48 
TRUE  38 36 

FALSE 13 13 
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40 1.8 63.0 91.0 61 47 
TRUE  58 33 

FALSE 5 4 

50 2.2 71.0 92.0 70 44 
TRUE  67 25 

FALSE 4 4 

60 2.6 81.0 93.0 84 37 
TRUE  74 19 

FALSE 7 0 

70 3.1 95.0 99.0 73 28 
TRUE  94 5 

FALSE 1 0 

80 3.5 94.0 100 55 17 
TRUE  94 6 

FALSE 0 0 

90 3.9 95.0 99.0 66 19 
TRUE  94 5 

FALSE 1 0 

100 4.4 98.0 100 65 19 
TRUE  98 2 

FALSE 0 0 

4.2.3 Process model S3 

 

Figure 43: Process model S3 

Process model S3 shown in Figure 43, is an artificial mode which corresponds to the handling 

of health insurance claims in a travel agency. 

To compute the number of distinct traces, we analyse the top-level parallel block:  

 Bottom branch has 3 events, 2 variations. 

 Top branch has either 7 events and 3!*3! variations, or 6 events and 2!*3! 

variations.  

Thus the formula is: 
2∗3!∗3!

3!∗7!
∗ (3 + 7)! +

2∗2!∗3!

3!∗6!
∗ (3 + 6)! =

12∗10!

7!
+

4∗9!

6!
= 10656 
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Figure 44: Graph S3 

In Figure 44 we see that in the beginning, while the average log completeness is below 3%, 

PB-Miner produces better results, than Inductive Miner. The reason behind such difference 

could be explained with branch interference of the top-level parallel block. Top branch has 

several nested structured, which does not allow Inductive Miner to properly identify branches. 

Table 7 shows more detailed information about the first 10 values for number of traces (from 

10 to 100, step 10) of the process model S3. 

Table 7: S3 

Traces 

per log 

Avg. log 

completeness, 

% 

Equal 

trees, % 

Avg. execution 

time, ms 

Correctness comparison 

PB IM PB IM IM \ PB    TRUE    FALSE 

10 0.1 4.0 0.0 108 90 
TRUE  0 0 

FALSE 4 96 

20 0.2 35.0 9.0 31 60 
TRUE  5 4 

FALSE 30 61 

30 0.3 69.0 19.0 28 49 
TRUE  15 4 

FALSE 54 27 

40 0.4 80.0 22.0 30 46 
TRUE  21 1 

FALSE 59 19 

50 0.5 93.0 24.0 37 50 
TRUE  23 1 

FALSE 70 6 

60 0.6 91.0 23.0 41 47 
TRUE  23 0 

FALSE 68 9 

70 0.7 97.0 19.0 45 48 
TRUE  19 0 

FALSE 78 3 
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80 0.7 97.0 33.0 51 50 
TRUE  31 2 

FALSE 66 1 

90 0.8 98.0 39.0 59 52 
TRUE  38 1 

FALSE 60 1 

100 0.9 100 49.0 63 53 
TRUE  49 0 

FALSE 51 0 

4.2.4 Process model S4 

 

Figure 45: Process model S4 

To calculate the distinct traces, we analyse each branch of the top-level parallel block: 

1. Top branch - 6 events, 2 variations. 

2. Bottom branch – could be 2 events of 4 variations, or sequence of 1 event with 4 

variants. 

Thus the formula is: 
(2∗4)

6!∗2!
∗ (6 + 2)! +

2∗4

6!∗1!
∗ (6 + 1)! =

4∗8!

6!
+

8∗7!

6!
= 4 ∗ 7 ∗ 8 + 7 ∗ 8 =

280  
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Figure 46: Graph S4 

In Figure 46 both miners are less effective with dealing with incompleteness, since they are not 

able to discover a correct process tree for completeness values lower than 14%. One 

explanation for this behaviour is that the process model contains several start events. To 

discover the process model correctly they should appear at the first position in a trace. This is 

also an explanation why the PB-Miner is less effective than Inductive Miner in this case. 

Table 8 shows more detailed information about the first 10 values for number of traces (from 

10 to 100, step 10) of the process model S4. 

Table 8: S4 

Traces 

per log 

Avg. log 

completeness, 

% 

Equal 

trees, % 

Avg. execution 

time, ms 

Correctness comparison 

PB IM PB IM IM \ PB    TRUE    FALSE 

10 3.4 0.0 0.0 188 153 
TRUE  0 0 

FALSE 0 100 

20 6.7 0.0 0.0 125 212 
TRUE  0 0 

FALSE 0 100 

30 9.7 0.0 0.0 63 148 
TRUE  0 0 

FALSE 0 100 

40 12.2 0.0 1.0 66 136 
TRUE  0 1 

FALSE 0 99 

50 14.7 6.0 7.0 60 124 
TRUE  0 7 

FALSE 6 87 

60 17.0 13.0 32.0 49 119 
TRUE  4 28 

FALSE 9 59 

70 19.2 16.0 53.0 51 112 
TRUE  11 42 

FALSE 5 42 
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80 21.4 22.0 72.0 49 120 
TRUE  16 56 

FALSE 6 22 

90 23.2 38.0 82.0 48 128 
TRUE  32 50 

FALSE 6 12 

100 25.0 51.0 89.0 45 132 
TRUE  47 42 

FALSE 4 7 

4.2.5 Process model S5 

 

Figure 47: Process model S5 

To calculate the distinct traces, we analyse each branch of the top-level parallel block (from 

top to bottom): 

3. 1 event in branch, 2 variations 

4. 1 event, 1 path 

5. 1 event, 1 path 

6. 5 event sequence, 4 variations 

7. 3 event sequence, 3 variations 

Thus the formula is: 
(2∗1∗1∗4∗3)

1!∗1!∗1!∗5!∗3!
∗ (1 + 1 + 1 + 5 + 3)! =

4!∗11!

5!∗3!
= 1330560  
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Figure 48: Graph S5 

From Figure 48 it is clear that both miners can deal with incompleteness (both of them produce 

perfect results with 250 traces).  

Table 9 shows more detailed information about the first 10 values for number of traces (from 

10 to 100, step 10) of the process model S5. 

Table 9: S5 

Traces 

per log 

Avg. log 

completeness, 

% 

Equal 

trees, % 

Avg. execution 

time, ms 

Correctness comparison 

PB IM PB IM IM \ PB    TRUE    FALSE 

10 0.00450938 0.0 0.0 169 181 
TRUE  0 0 

FALSE 0 100 

20 0.009018759 4.0 0.0 64 153 
TRUE  0 0 

FALSE 4 96 

30 0.013528139 14.0 4.0 73 159 
TRUE  1 3 

FALSE 13 83 

40 0.018037518 27.0 14.0 23 183 
TRUE  3 11 

FALSE 24 62 

50 0.022542388 39.0 39.0 61 201 
TRUE  11 28 

FALSE 28 33 

60 0.027056277 49.0 57.0 30 223 
TRUE  29 28 

FALSE 20 23 

70 0.031565657 52.0 74.0 44 199 
TRUE  39 35 

FALSE 13 13 

80 0.036075036 70.0 82.0 38 187 
TRUE  56 26 

FALSE 14 4 
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90 0.040579906 73.0 85.0 42 161 
TRUE  66 19 

FALSE 7 8 

100 0.045093795 73.0 83.0 46 138 
TRUE  62 21 

FALSE 11 6 

4.2.6 Process model S6 

 

Figure 49: Process model S6 

To calculate number of distinct traces, we consider each branch of the top-level parallel block 

separately: 

1. Top branch - 8 events, 4 distinct paths 

2. Bottom branch – 7 events, 4 distinct paths 

Thus, the resulting formula is: 
4

8!
∗

4

7!
∗ (8 + 7)! =

4 ∗ 4 ∗ 15!

7! ∗ 8!
= 102960 

 

Figure 50: Graph S6 

Both plots in Figure 48 and Figure 50 show that that for a very high degree of incompleteness 

both miners can discover the correct process tree (a completeness value corresponding to 0.07 

and 0.1 respectively). 

Table 10 shows more detailed information about the first 10 values for number of traces (from 

10 to 100, step 10) of the process model S6. 
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Table 10: S6 

Traces 

per log 

Avg. log 

completeness, 

% 

Equal 

trees, % 

Avg. execution 

time, ms 

Correctness comparison 

PB IM PB IM IM \ PB    TRUE    FALSE 

10 0.00971251 14.0 0.0 61 469 
TRUE  0 0 

FALSE 14 86 

20 0.019425019 67.0 0.0 23 576 
TRUE  0 0 

FALSE 67 33 

30 0.029137529 86.0 38.0 26 595 
TRUE  33 5 

FALSE 53 9 

40 0.038830614 98.0 94.0 26 425 
TRUE  92 2 

FALSE 6 0 

50 0.048543124 98.0 97.0 32 284 
TRUE  95 2 

FALSE 3 0 

60 0.058255633 99.0 100 38 228 
TRUE  99 1 

FALSE 0 0 

70 0.067948718 100 100 43 218 
TRUE  100 0 

FALSE 0 0 

80 0.07767094 100 100 50 208 
TRUE  100 0 

FALSE 0 0 

90 0.087373737 100 100 55 205 
TRUE  100 0 

FALSE 0 0 

100 0.09705711 100 100 62 201 
TRUE  100 0 

FALSE 0 0 

4.3 Performance analysis 

To evaluate the efficiency we measured the process discovery time for all 6 process models, 

increasing the number of traces from 100 to 10000 (11 marks, step 1000) in a log. For every 

step we generated 100 random logs per model, and calculated the average execution time. 
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Figure 51: Performance graph 

The result is shown in Figure 51, where horizontal axis is number of traces and vertical is the 

average mining time in milliseconds. For exact values of performance measurement results see 

Performance analysis dataset. From the graphs we conclude that the algorithm execution time 

is linear, and directly proportional to the number of traces in a log. The slope angle positively 

correlates with the process model complexity.  
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5 Conclusions 

In this work, we introduced a process discovery algorithm for dealing with complex parallel 

behaviour. First, the algorithm discovers group of events belonging to a parallel block, then it 

determines the events belonging to each branch of the block. Finally, the algorithm iteratively 

replaces every branch of every parallel block with a placeholder event, which allows us to 

discover a correct process structure. Such a divide and conquer approach allows us to 

recursively apply the algorithm, and reconstruct a process model in a hierarchy. 

To evaluate mining abilities of our algorithm we performed several qualitative and quantitative 

tests. The effectiveness of the mining algorithm was compared to existing process discovery 

algorithms (the Inductive Miner incompleteness variant (IMin) was used as a comparison 

baseline) using an automated test suite on randomly generated logs of 6 artificial process 

models. The results showed that on average our algorithm has an effectiveness that is 

comparable with the one of IMin. However, for logs containing a small amount of traces (less 

than 20), the proposed approach always performed better than the baseline. In addition, 

quantitative analysis showed numerous cases, for each process model, where our approach 

produced a correct process model, whereas IMin did not. Efficiency tests on randomly 

generated logs showed a linear dependency of the execution time with respect to the number 

of traces in the log. 

5.1 Future work 

There are several directions for future work: 

 loops; 

 more precise mapping to branches of unassigned events; 

 qualitative comparison of discovery algorithms which work with incompleteness; 

The algorithm described in this work is novel, and implemented as proof of concept, thus has 

some limitations which could be lifted as future work. Using advanced loop unrol ling 

techniques, or a combination of several simple filtering techniques, could allow the algorithm 

to work with loops and duplicate events. For example, loop processing algorithms could pre-

process a log, and feed a placeholder log without loops to our algorithm.  

Unassigned events of a parallel block are not guaranteed to be assigned to a correct branch. We 

use Heuristics Miner, as it reflects the most common path, however incomplete logs might have 

skewed common paths, and thus other more precise techniques could be applied. One of the 

possible improvements would be directed (guided) assignment with the help of whitelist and 

blacklist of possible branches. Another idea is to use association rule mining (for example 

Apriori algorithm) to find frequent and interdependent group of events according to a 

predefined support threshold. 

In our work, we calculated log completeness ratio as a number of distinct traces observed in a 

log, divided by the total number of possible permutations. However, this metric is very generic 

and does not provide qualitative information about the distinct traces. For example, having N 

traces which reflect variations only in the second half of the original model, makes it impossible 

to correctly detect the first half of the model. Furthermore, by estimating log incompleteness 

qualitatively, we would be able to qualitatively compare discovery algorithms to understand 

what characteristics of a process model can be discovered more easily with one algorithm or 

another. 
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Appendices 

I. Performance analysis dataset 

The following table shows detailed information of performance analysis results. 

Traces Avg. model mining time in ms, using 1000 samples (random logs) 

S1 S2 S3 S4 S5 S6 

100 111 99 139 101 61 70 

1000 443 749 786 405 536 744 

2000 598 1508 1447 693 1127 1525 

3000 988 2319 2182 1051 1684 2316 

4000 1274 3006 2879 1425 2253 3049 

5000 1582 3931 3609 1771 2818 3794 

6000 1896 4555 4336 2156 3466 4614 

7000 2243 5407 5081 2551 3980 5431 

8000 2551 6199 5882 2940 4524 6154 

9000 2795 6986 6521 3344 5045 7016 

10000 3112 7798 7292 3667 5719 7845 
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