
1Tartu 2021

ISSN 2613-5906
ISBN 978-9949-03-707-0

DISSERTATIONES
INFORMATICAE
UNIVERSITATIS

TARTUENSIS
29

IV
O

 K
U

B
JA

S	
A

lgebraic A
pproaches to Problem

s A
rising in D

ecentralized System
s

IVO KUBJAS

Algebraic Approaches to Problems Arising
in Decentralized Systems

DISSERTATIONES INFORMATICAE UNIVERSITATIS TARTUENSIS

29

DISSERTATIONES INFORMATICAE UNIVERSITATIS TARTUENSIS

29

IVO KUBJAS

Algebraic Approaches to Problems Arising
Decentralized Systems ini

Institute of Computer Science, Faculty of Science and Technology, University of
Tartu, Estonia.

Dissertation has been accepted for the commencement of the degree of Doctor of
Philosophy (PhD) in computer science on September 3, 2021 by the Council of
the Institute of Computer Science, University of Tartu.

Supervisor

Assoc. Prof. Vitaly Skachek
Institute of Computer Science
University of Tartu
Tartu, Estonia

Opponents

Prof. Parastoo Sadeghi
School of Engineering and Information Technology
University of New South Wales, Canberra
Canberra, Australia

Prof. Tadashi Wadayama
Department of Computer Science, Faculty of Engineering
Nagoya Institute of Technology
Nagoya, Japan

The public defense will take place on October 26, 2021 at 10:15 via Zoom.

The publication of this dissertation was financed by the Institute of Computer
Science, University of Tartu.

Copyright © 2021 by Ivo Kubjas

ISSN 2613-5906
ISBN 978-9949-03-707-0 (print)
ISBN 978-9949-03-708-7 (PDF)

University of Tartu Press
http://www.tyk.ee/

i
i

http://www.tyk.ee/

To my wonderful wife
To my sweet daughter

To my supporting family
To my excellent teacher

To my great friends

ABSTRACT

With the increased usage of cloud hosting platforms and new wireless technolo-
gies, the communication paradigm has changed from server-client models to com-
plex decentralized models. The service providers need to distribute their services
across different data centers to be able to handle the enormous traffic loads gen-
erated by the customers and to be close to the clients to provide a low level of
latency for a good user experience. However, duplicating the data across multiple
servers is resource wasteful and cost-inefficient.

In this dissertation, we consider three directions that allow reducing the com-
munication between the servers and users. For all three directions, we represent
the problems as mathematical structures and apply algebraic methods to provide
solutions to the corresponding problems.

The first problem we consider is data synchronization. In data synchronization,
there are nodes with their data sets and their goal is to obtain the union of the sets.
A naive approach of exchanging the sets (or even the indexes of the elements)
becomes quickly infeasible if the number of data elements grows large. There is
a method using invertible Bloom filters (IBFs) which requires transmitting only
the number of elements in the symmetric set difference. However, the method
requires the knowledge of the number of elements missing in every nodes’ set
and obtaining this number itself yields significant overhead on the data synchro-
nization protocol. We seek to overcome this limitation in Chapter 3. For that, we
present a matrix representation of IBFs and a combinatorial argument to estimate
the failure probability of being able to extract only a subset of inserted elements.
We call the new representation partially extractable IBF. We then present an it-
erative data synchronization protocol which allows us to obtain the union of the
sets even if the size of the symmetric set difference is unknown or inexact. The
theoretical results are complemented with experimental simulations.

The second direction we consider is data distribution. In data distribution,
the graph representing the network topology can be an arbitrary strongly con-
nected graph. The goal of the nodes is to recover the requested elements from
other nodes. In Chapter 4, we formulate a new condition called ρ-solvability of
a network topology which gives the minimal number of rounds for any proto-
col satisfying the nodes’ requests. We build on the ideas from index coding and
data exchange to propose protocols for any ρ-solvable network. For 1-solvable
networks, the described protocol uses a minimal amount of exchanged bits over
all possible protocols. For arbitrary ρ-solvable networks, the protocol achieves a
minimal number of rounds over all possible protocols.

Finally, we consider the problem of function computation on synchronized
data in Chapter 5. This problem differs from data synchronization as the goal of
the nodes is to compute the value of a function on the union of the sets. We see
that the change in the problem definition allows achieving a significant reduction
in the number of transmitted bits. We give an upper bound on the communication

vi

complexity of a family of functions using F-monochromatic rectangles. We also
consider a reduction to set intersection and set disjointness functions and obtain
corresponding asymptotic bounds. Finally, we describe and study an error-free
protocol using a family of hash functions.

vii

CONTENTS

1. Introduction 1
1.1. Set reconciliation . 1
1.2. Index coding and data exchange problem 2

2. Notation and system model 6
2.1. Basic definitions . 7
2.2. Network model . 8
2.3. Data exchange models . 12

2.3.1. Data distribution problem 13
2.3.2. Data synchronization problem 14
2.3.3. Function computation . 15

2.4. Randomness models in protocols 16
2.5. Notation for describing a protocol 16
2.6. List of problems in decentralized systems for exchanging data . . 18

2.6.1. Criteria for data exchange scenarios 18
2.6.2. Overview of different data exchange scenarios 19

2.7. Invertible Bloom filters . 19
2.7.1. IBF construction . 19
2.7.2. Listing elements in IBF 22
2.7.3. Minimizing IBF overhead 26
2.7.4. Examples of IBF procedures 26

2.8. Data distribution problem in star and complete networks 29
2.8.1. Index coding problem . 29
2.8.2. Data exchange problem 34

3. Data synchronization using Partially Extractable Invertible Bloom Fil-
ters 39

3.1. Partially extractable invertible Bloom filters 40
3.1.1. IBF state matrix representation 40
3.1.2. Counting argument for estimating success probability of par-

tial IBF extraction . 43
3.1.3. Experimental results on partial IBF extraction 48

3.2. Iterative data synchronization . 54
3.2.1. Data synchronization using IBFs 54
3.2.2. Iterative data synchronization 58
3.2.3. Experimental results . 58

4. Data dissemination problem 63
4.1. Data distribution problem in an arbitrary network 64

4.1.1. 1-solvable networks . 65
4.1.2. Arbitrary networks . 71

viii

4.2. Experimental results . 79

5. Function computation on synchronized data 82
5.1. Problem definition . 83

5.1.1. Connection to data synchronization 83
5.2. Lower bounds on function computation on synchronized data using

F-monochromatic rectangles . 85
5.2.1. Sum over integers . 86
5.2.2. Multiplication over integers 89

5.3. Reduction to known problems using Monte-Carlo style protocols . 91
5.3.1. Lower bounds using reduction to set disjointness problem . 91
5.3.2. Upper bound using reduction to finding the set intersection

problem . 93
5.4. Las-Vegas style randomized protocol for computing sum function 95
5.5. Summary of results . 99

6. Conclusion and future work 101
6.1. Summary of contributions . 101

6.1.1. Proposed data exchange scenarios 102
6.2. Future directions . 102

6.2.1. Data synchronization in arbitrary network topologies 103
6.2.2. Function computation in arbitrary network topologies . . . 104

Bibliography 105

Acknowledgement 110

Sisukokkuvõte (Summary in Estonian) 111

Curriculum Vitae 113

Elulookirjeldus (Curriculum Vitae in Estonian) 114

List of original publications 115

ix

LIST OF FIGURES

1. Example of unicast network . 9
2. Example of broadcast network 10
3. Example of complete graph . 11
4. Example of strongly connected graph 11
5. Example of bipartite graph . 11
6. Example of star graph . 12
7. Example of index coding . 33
8. Side information graph corresponding to Example 9 33
9. An example of data exchange instance 37

10. Comparison of experimental and theoretical number of rounds for it-
erative data synchronization when f < β/χ . Relations (3.35) and (3.36)
are used to compute the upper bound. 62

11. Comparison of experimental and theoretical number of rounds for
iterative data synchronization when f ≥ β/χ . Relation (3.34) is
used to compute the upper bound. 62

12. Example of an 1-solvable network 71
13. Example of f -monochromatic rectangles in the proof of Theorem 28

for n = 2 . 88

x

LIST OF TABLES

1. Overview of data exchange scenarios 19
2. Thresholds for IBF overhead for different number of hash functions

from [28]. 24
3. Hash function values for elements in Example 6 26
4. IBF F in Example 6 . 27
5. Non-zero cells of IBF F in Example 6 after the first extraction loop 28
6. Non-zero cells of IBF F in Example 8 after the third extraction round 28
7. IBF extraction failure probabilities for β = 120 and h = 2 50
8. IBF extraction failure probabilities for β = 120 and h = 3 51
9. IBF extraction failure probabilities for β = 120 and h = 4 52

10. IBF extraction failure probabilities for β = 120 and h = 5 53
11. The efficiency of Theorem 24 compared to Lemma 21 81
12. Overview of protocols for computing sum over synchronized data. 100
13. Overview of positive results in this thesis 103

xi

NOMENCLATURE AND ABBREVIATIONS

IBF invertible Bloom filter
LDPC low-density parity-check

Set theory

A set (denoted with calligraphic capital letters)
x element in set (denoted with lower capital letter)
|A| number of elements in A
2A powerset of A
A×B Cartesian product of sets A and B
An Cartesian product of n sets A
A∗ A∗ = ∪∞

n=0An

A4B symmetric difference of sets A and B
A\B set difference of sets A and B
d size of symmetric difference of sets
d̃ upper bound on d
[n] set of integers {1, . . . ,n}
[m,n] set of integers {m, . . . ,n}
{xi}i∈[n] set with elements xi, i ∈ [n]

Group theory

F finite (Galois) field
Fp finite field of size p
Fpn finite field of size pn

F? finite field F with an additional element ?
N the set of natural numbers

Vector spaces

x vector (denoted with bold lower case letters)
|x| length of x
v ·w inner product of vectors v and w
0 vector of zeros
ei vector with one at position i and zeros elsewhere
1 vector of ones
(xi)i∈[n] vector with elements xi, i ∈ [n]
V vector space (denoted with capital letters)
rowspace(M) vector space induced by rows of M

xii

W⊥ orthogonal vector space of W
U +W sum of vector spaces U and W
U⊕W direct sum of vector spaces U and W

Matrices

M matrix (denoted with bold upper case letters)
ϕ number of matrix rows
κ number of matrix columns
I identity matrix
E all-ones matrix
Z all-zeros matrix
diag(x) diagonal matrix induced from vector x
rank(M) rank of the matrix
Sϕ×κ set of all ϕ×κ dimensional matrices
SF

ϕ×κ set of all ϕ×κ dimensional matrices over finite field F
M[i] i-th row of matrix M
(M)i, j element in i-th row and j-th column of matrix M
M> transpose of matrix M
Mn matrix product of M with itself n times
M⊗N tensor product of matrices M and N

Complexity theory

O(·) bounded above asymptotically
Θ(·) bounded above and below asymptotically
Ω(·) bounded below asymptotically

Graph theory

V nodes in graph
E edges in graph
G graph (V,E)
D adjacency matrix of a graph
ts,t path from node s to t
Ls,t all paths from node s to t
µv(j) length of shortest path from node v to any node possessing

element x j

Eout(v) all outgoing edges from node v
Ein(v) all incoming edges to node v
Wout(v) all out-neighbors of v
Win(v) all in-neighbors of v

xiii

ηv number of in-neighbors of v
u number of nodes
σ number of edges
τ number of sink nodes

Probability theory

Pr
x∈F

(I(x)) probability that indicator function I(·) returns true for uni-
formly chosen element x ∈ F

Pr(Y = y) probability that random value Y obtains value y
E(Y) expected value of random variable Y
n! factorial of n

Protocol notation

Π protocol
COMM(Π) communication complexity of protocol Π

P set of all packets
p transmitted packets
π number of transmitted packets
πv number of transmitted packets by node v
Rv received packets by node v
r round count variable
ρ number of rounds in protocol
X domain where the nodes sets are sampled from
ω size of X
n base-2 logarithm of ω

xv has-vector of node v
Sv has-set of node v
uv request-vector of node v
Kv decoded set of node v
Cv encoding functions for node v
Dv decoding functions of node v

Data synchronization

F IBF
F IBF represented as state matrix
h number of hash functions for IBF
β number of cells in IBF
f number of elements inserted into IBF
g number of extracted elements from an IBF
Sβ , f set of β × f -dimensional state-matrices

xiv

c cell in an IBF
rExtract extraction rate from an IBF
χ overhead required from an IBF for successful extraction

with high probability
Q Strata Estimator
ζ (β , f) number of stopping matrices in Sβ , f
ν(β , f ,h,g) number of state matrices in Sβh, f allowing to extract at least

g elements

Data dissemination

Pv set of matrices representing elements possessed by node v
P set of matrices representing elements possessed by all

nodes
Γ(·) function returning a representative of Pv

Γv(·) function returning a representative of Pv from P
Zv indices of elements possessed by node v
Tv indices of elements requested by node v
Qv information matrix of node v
Tv query matrix of node v
Yv transmission matrix of node v
Y transmission matrix of all nodes
min-rank(G) minimum rank over all matrices which fit G

Function computation

F(·, ·) function to be computed
Φ(·) function to be computed

Hash functions

H(·) hash function
Hset(·) set-hash function
Hch(·) checksum-hash function
Hstrata(·) strata-hash function
H set of all hash functions
m length of hash function output
γ length of checksum-hash function output

Various notation

x | y concatenation of bit-string representations of x and y
dxe ceiling function, the least integer greater than or equal to x

xv

1. INTRODUCTION

1.1. Set reconciliation

Set reconciliation problem [49] considers a scenario where two parties A and B
possess the sets of data SA and SB, respectively, SA,SB ⊆ X . The size of the
symmetric difference of the two sets d is small when compared to the sizes of SA

and SB. The goal of the problem is to design an efficient protocol, such that after
it terminates, both parties possess the set SA∪SB. The number of parties can also
be larger than two.

Set reconciliation is useful in practical applications which requires data consis-
tency of across multiple devices [26]. For example, to synchronize data between
smart devices in low-power environments or to broadcast routing information [48]
in a network.

A naïve protocol, which is based on broadcasting the whole sets by each party,
is sub-optimal in the cases where d is small. Several solutions which achieve com-
munication complexity linear in d have been proposed for this scenario. Minsky,
Trachtenberg and Zippel were the first to propose a protocol with communication
complexity linear in d in [49]. Their approach is based on construction of a char-
acteristic polynomials of the sets and divide the corresponding polynomials. As
the common monomials cancel out, then the resulting quotient polynomial con-
tains only the monomials from the elements in the symmetric set difference. The
linear communication complexity in d is obtained by representing the polynomi-
als by d evaluation points. The drawback of this approach is that recovering the
elements from the quotient polynomial has computational complexity of O(d3)
due to the need to interpolate a polynomial from d evaluation points.

Goodrich and Mitzenmacher described a data structure called Invertible Bloom
Filters (IBFs) in [28] and described set reconciliation as one potential application
for IBFs. The protocol was described in full by Eppstein, Goodrich, Uyeda and
Varghese in [22].

Another approach for optimal set reconciliation was proposed by Skachek and
Rabbat in [62] using encoding of sets as vector spaces. Using the encoding, the
problem of set reconciliation is reduced to finding a sum of two vector spaces and
an efficient algorithm for doing so was given.

The extensions of two-party set reconciliation protocols by using characteristic
polynomials and by using IBFs to multi-party setting were considered by Boral
and Mitzenmacher in [6] and by Mitzenmacher and Pagh in [50], respectively.

All the previous results on the set reconciliation require existing knowledge of
d or an upper bound d̃ on it. It was shown by Yao in [63] that any deterministic
protocol for computing k-element set equality requires k bits of communication.
As set equality can be reduced to finding the size of the symmetric set differ-
ence, then this also implies that estimating the size of symmetric set difference is
expensive in terms of transmitted bits.

1

A method of random sampling of elements was described by Indyk and Mot-
wani in [30]. With this method, a small subset of the elements from the sets SA

and SB are sampled. The sampled sets can be exchanged to learn the size of the
symmetric set difference of the sampled sets. This, in turn can be used to estimate
d. However, if d � |SA∪SB|, then for accurate estimation of d, the size of the
sampled sets must be relatively large compared to the d.

Another approach to estimate the size of the symmetric set difference is based
on using Min-Wise sketches as introduced by Broder in [7] and further studied
by Broder, Charikar, Frieze and Mitzenmacher in [8]. Min-Wise sketches use a
family of set element permutations to estimate the similarity of two sets, which is
defined as

υ =
|SA∩SB|
|SA∪SB|

.

The size of the symmetric set difference d can then be estimated by

1−υ

1+υ
(|SA|+ |SB|) .

Similarly to random sampling, if d is significantly smaller than |SA∪SB|, then the
size of transmitted Min-Wise sketches becomes large.

Strata Estimator protocol uses constant-size IBFs where increasing subsets of
the set are inserted into it [22]. When extraction succeeds, the parties can de-
termine the value of d within a factor of two and perform a full reconciliation
protocol.

Even as Strata Estimators are more efficient than the other approaches in terms
of used transmitted bits, it still requires that the sets SA and SB are finite. In some
applications, it is infeasible to store the complete sets and the algorithms need
to operate on data streams [52]. Mayur and Muthukrishnan described updatable
sketches in [13] based on Min-Wise sketches to efficiently characterize and com-
pare different streams. The approach of using updatable sketches was developed
further by Cormode and Muthukrishnan in [11] and Schweller et al. in [60].

Recently, consensus algorithm have been studied with the widespread adaption
of blockchain technology. In a consensus, in addition to synchronizing the state
of the nodes, they have also to agree on the collective state in the presence of a
potentially malicious participant. The study of consensus algorithms was initiated
by Lamport in [39] where the Paxos algorithm was proposed. As the Paxos algo-
rithm is complicated, a new consensus algorithm Raft was proposed by Ongaro
and Ousterhout in [55].

1.2. Index coding and data exchange problem

Coding on demand by an informed source (ISCOD) as a communication problem
was introduced by Birk and Kol in [5]. They considered a case where there is a
single central server pushing messages to caching clients. The forward channel

2

from the server to the clients is a fast broadcast channel, but the reverse channel
from the clients is slow (this, for example, is a case in satellite communication
where clients call in with dial-up).

By using the reverse channel the server learns the contents of the clients caches
and their requests. By only requiring that the clients can recover their requested
messages, it is possible to significantly reduce number of transmitted bits by the
use of algebraic codes. The server constructs an algebraic code on demand by
taking into account the clients’ caches and their requests. Now, instead of sending
all the requested messages, the server only sends the redundant data obtained by
encoding the messages.

The problem was further developed by Bar-Yossef, Birk, Jayram and Kol
in [2], where they assume that data is given as full error-free messages and ev-
ery node requests a single data message given by its index (thus, coining the term
index coding). They showed that the minimum length linear code can be charac-
terized by a function of a graph called minrank on the side-information graph of
the network and that it is smaller than the bound given by Birk and Kol.

In addition to describing the minimum length of any linear index code, the au-
thors also showed that the matrix achieving minrank of the side-information graph
can also be used to define the index code for transmitting the messages. They also
showed that this technique is also applicable for almost-linear index codes, where
a few transmitted messages can be obtained using non-linear functions.

Even though the previous method gives a precise lower bound, computing the
minrank of a side-information graph is a NP-hard problem and thus very slow to
compute for arbitrary graphs. Chaudhry and Sprintson presented the reduction
to boolean satisfiability (SAT) problem [10], which allows to use efficient SAT-
solvers for finding a solution for small networks. For larger networks, they pro-
posed several heuristics to simplify the search space for finding an approximate
solution.

Network coding was described by Ahlswede, Ning Cai, Li and Yeung as a
method to improve transmission rates by employing coding of information from
the incoming edges at the intermediate nodes [1]. El Rouayheb, Sprintson and
Georghiades showed in [20] that any instance of network coding problem can be
reduced to a problem in index coding.

This had two significant implications – first, it can be shown that vector linear
coding (where the messages are sub-packetized and linear combinations of the
packets are transmitted instead) outperforms simple scalar linear coding (where
the encoding functions encode whole messages). Secondly, as shown by Langberg
and Sprintson in [40], even finding the universal approximate solution is NP-hard.

The equivalence between network coding and index coding was shown by Ef-
fros, El Rouayheb and Langberg in [19], where they additionally gave reductions
from network coding to index coding in non-linear case and from index coding to
network coding in both linear and non-linear cases.

An alternative view on index coding comes from interference alignment. In

3

interference alignment problem, there is a potential interference between any two
nodes in the network which would allow them to transmit information directly.
However, in wireless setting the residual noise may be too large for effectively
transmitting information between some node pairs, preventing information trans-
mission in practice. Inversely, in wired setting, the effective channel capacity
between some of the node pairs may be infinite (i.e. any amount of information is
transmitted instantly). Then, the capacity of the whole network is reduced to the
capacity of some transmission bottleneck.

Jafar first showed in [31] that the capacities of the wired and wireless networks
are bounded above by the capacity of the index coding problem defined through
the corresponding network topology. Furthermore, it was shown that all three
problems are equivalent and a solution to the interference alignment problem can
be given by a solution to an index coding problem.

This line of research was continued by Maleki, Maleki and Jafar in [47] where
the equivalence between interference alignment and index coding was used to
show the equivalence between multiple unicast index coding and multiple group-
cast index coding, where the optimal code for the latter is known to be non-linear.

Multiple groupcast index coding was introduced by Ji, Tulino, Llorca and
Caire in [32] as a generalization of index coding. Compared to (unicast) index
coding, in multiple groupgast index coding every node requests more than one
message (multiple) and there is overlap between the nodes’ requests (groupcast).
By applying techniques from coded caching, they achieve a significant improve-
ment over a naive protocol where every request from the node is considered in-
dependently. Furthermore, they are able to prove that the proposed protocol is
order-optimal with a constant factor.

Index coding in the presence of errors has been studied from different perspec-
tives. First, Dau, Skachek and Chee studied in [15] the case where the transmitted
messages are subject to errors. Kim and No looked in [34] at the alternative case
where the side information may have errors but the transmissions are without er-
rors.

Secure index coding is another generalization of index coding where the goal
is to transmit messages to receivers in a manner that a receiver which knows some
side information can not deduce the transmitted messages. Dau, Skachek and
Chee considered the problem in [14] and showed that an index code can be char-
acterized by an error-correcting code. The dimension of the error-correcting code
gives the number of total transmissions for the corresponding index code while the
minimum distance between the codewords defines the number of side-information
messages an eavesdropper may have such that it is not able to recover additional
messages. Additionally, the authors developed new constructions for linear index
codes which additionally are resistant to random and malicious errors.

The idea of secure index coding was further developed in [43] by Liu, Vel-
lambi, Kim and Sadeghi. They showed that if a legitimate node requests same
information what the eavesdropper intends to obtain, it has to know at least two

4

additional side-information messages. These additional messages can be consid-
ered as a secret key between the transmitter and receivers, allowing to achieve
information-theoretic security compared to using data encryption.

While most of the works on index coding consider a scenario with a single
transmitter, Ong, Ho and Lim initiated the study of multi-sender extension in [54].
They looked at a restricted case where every receiver has only a single message as
side-information and every data message is owned only by a single receiver. They
allow to have a single or multiple transmitters where the information cached by
the transmitters does not have to be complete.

A general form of distributed index coding was studied by Sadeghi, Arbab-
jolfaei and Kim in [59] where for a side-information set of size k, there can be
2k− 1 possible transmitters. They showed that existing lower bounds for single-
transmitter index coding instances can be generalized to the distributed case.
For the upper bound, they present a grouping strategy of the servers such that
the servers in every group collectively encode messages to be transmitted. Liu,
Sadeghi, Arbabjolfaei and Kim improved the method in [42] using a method of
fractional grouping, where individual transmitters can belong to multiple groups
by dedicating a fraction of their capacity.

In index coding problems, the receivers are not able to communicate directly
with each other. El Rouayheb, Sprintson and Sadeghi initiated a study of coding
for cooperative data exchange in [21], where every receiver also becomes a trans-
mitter. They looked at a case where the network topology is a complete graph and
the goal of every receiver is to obtain all the missing messages. They presented
initial upper and lower bounds on the number of transmissions and gave a deter-
ministic algorithm for encoding the packets. They also showed that the optimal
number of transmissions can be presented as a matrix rank minimization problem,
which for general case is computationally infeasible to solve.

Courtade and Wesel in [12] and Gonen and Langberg in [27] extended the
study to general multihop topologies. Courtade and Wesel represented the prob-
lem as a linear optimization problem which can be efficiently approximated. How-
ever, they require that the network topology graph is regular, i.e. every node has
exactly the same number of neighbours. Gonen and Langberg follow alternative
route, reducing the problem to dominating set problem. As solving the domi-
nating set problem is NP-hard, then due to reduction to dominating set problem
computing the optimal number of transmissions in cooperative data exchange in
general topologies is NP-hard. Furthermore, finding the number of transmissions
within a fixed constant of exact value is NP-hard.

5

2. NOTATION AND SYSTEM MODEL

In this chapter, in Section 2.1, we introduce the notation used in the disserta-
tion. Then, in Section 2.2 we describe a graph-theoretic representation of network
topologies.

We describe different data exchange models in Section 2.3. We consider three
kinds of models - data distribution in Section 2.3.1, data synchronization in Sec-
tion 2.3.2, and function computation in Section 2.3.3.

We further specify the framework by describing different randomness models
in Section 2.4 and by describing protocol notation in Section 2.5. The framework
allows to us identify different scenarios, which we list in Section 2.6.

We describe existing results which we use in our dissertation in Sections 2.7
and 2.8.

6

2.1. Basic definitions

We denote sets with calligraphic symbols, e.g. S and a powerset of S as

2S , {A :A⊆ S}.

Cardinality of a set S is given by |S|. The Cartesian product of sets A and B is
the set

A×B , {(a,b) : a ∈ A,b ∈ B}.

We generalize the Cartesian product of a set A with itself as

An ,A× . . .×A︸ ︷︷ ︸
n times

. (2.1)

If (2.1) is for any n≥ 0, then we denote it as A∗.
We denote

[n], {1, . . . ,n}

and
[m,n], {m, . . . ,n}.

We use Fp to denote integers modulo p, where p is a prime, thus forming a
finite field. If p is apparent from context, we also use a short-hand description
F, Fp. We denote the extension field of Fp as Fpn .

Vector spaces are denoted with upper-case letters, e.g. V . We use lower-case
bold symbols to denote vectors, e.g.

x, (x1, . . . ,xn),

where the length of the vector depends on the context. The length of a vector x is
given by |x|. We reserve the notation 0 for an all-zeros vector, 1 for an all-ones
vector and ei for a unit vector with 1 at position i and zeros elsewhere.

Let W be a subspace of V . The orthogonal vector space of W is given by

W⊥ , {v ∈V : ∀w ∈W,v ·w = 0},

where v ·w denotes the inner product of the two vectors.
Let U,W ⊆V be two vector subspaces. We define

U +W , {u+w : u ∈U,w ∈W} ⊆V.

If U ∩W = {0}, then we also write U⊕W instead of U +W .
We denote the matrices with bold upper-case letters, e.g. M, where the dimen-

sions of the matrix depends on the context. We use M[i] to denote the i-th row M
and (M)i, j to denote the entry in the i-th row and j-th column. The transpose of a

7

matrix M is given by M>. The matrix product of matrices M and N is denoted as
MN. We denote

Mn ,M · · ·M︸ ︷︷ ︸
n times

.

The rank of the matrix M is the number of linearly independent rows. It is denoted
as rank(M). If the matrix elements are over F2, then we denote the matrix rank as
rank2(M).

We denote the set of all ϕ×κ-dimensional matrices as Sϕ×κ and the set of all
ϕ×κ-dimensional matrices over the finite field F as SF

ϕ×κ .
We reserve the symbol I for the identity matrix, i.e the matrix with ones on the

diagonal and zeros elsewhere. We reserve the symbol E for an all-ones matrix and
Z for an all-zeros matrix. For a vector x = (x1,x2, · · · ,xn), we denote by diag(x)
the n×n-dimensional matrix where the element in i-th row and i-th column is xi

and 0 else.
We use the notation M⊗N for the standard tensor product of the matrices M

and N. If M is ϕ ×κ-dimensional and N is ϕ
′×κ dimensional, then the tensor

product is ϕϕ
′×κκ

′-dimensional matrix

M⊗N,

(M)1,1N · · · (M)1,κN
...

. . .
...

(M)ϕ,1N · · · (M)ϕ,κN


We use the notation rowspace(M) to denote the row space of the matrix M. If

M is ϕ×κ-dimensional and the elements of M are from F, then

rowspace(M),

{
∑

i∈[ϕ]
λiM[i] : λi ∈ F

}
.

2.2. Network model

In what follows, we describe a network topology using graph-theoretic represen-
tation. This representation allows us to use the well-known results for describing
and studying different network models.

Let the number of nodes in the network be denoted as u. The participating
nodes in a decentralized system can be described as a directed graph

G , (V,E),

where V is the set of nodes in the network and E ⊆ V ×V are the directed edges
between the nodes. An edge e, (s, t) indicates that the source node s can transmit
a packet to the sink node t via a direct channel without intermediaries.

For a node v ∈ V , we define outgoing edges Eout(v) as a set of edges which
have v as a source:

Eout(v) , {e : e = (v, t) ∈ E for some t ∈ V}.

8

For a node v ∈ V , we define incoming edges Ein(v) as a set of edges which have v
as a sink:

Ein(v) , {e : e = (s,v) ∈ E for some s ∈ V}.

The sink nodes in Eout(v) are called out-neighbors of v and are denoted as

Wout(v) , {t : (v, t) ∈ E}.

The source nodes in Ein(v) are called in-neighbors of v and are denoted as

Win(v) , {s : (s,v) ∈ E}.

Additionally, we denote the number of in-neighbors of v as ηv.
We assume that the graph contains no self-loops. Self-loops are edges from a

node to itself, i.e. (v,v) for every v ∈ V . Furthermore, we assume that for any two
nodes s, t ∈ V there is at most one edge (s, t) ∈ E .

We consider two transmission models – broadcast and unicast model. In
broadcast model, only a single transmission is required to transmit a packet to
all out-neighbors of a source node s. In unicast model, a transmission is required
to transmit a packet over every edge.

A transmission occurs when the source node s encodes a packet p and transmits
it to sink nodes. We give a more detailed definition of the encoding function and
a packet later. We also do not restrict the throughput of the edges.
Example 1 (Unicast and broadcast networks). We illustrate the unicast network
in Figure 1 and broadcat network in Figure 2.

v1

v3v2 v4

x x
x

has x

Figure 1. Example of unicast network

In both cases, the underlying graph of the network topology has nodes V =
{v1,v2,v3,v4} with edges E = {(v1,v2),(v1,v3),(v1,v4)}. If v1 transmits element
x to all other nodes, then in unicast network this requires three transmissions. In
broadcast network, it requires a single transmission. �

We say that there exists a path from a node s to t if there are edges e1, . . . ,eσ

such that

e1 = (s,v1)

9

v1

v3v2 v4

x

has x

Figure 2. Example of broadcast network

e2 = (v1,v2)...
eσ = (vσ−1, t).

We denote the path between s to t as

ts,t , (e1, . . . ,eσ)

and all possible paths from s to t as Ls,t . The length of the path ts,t is the number
of edges in the path and is given by |ts,t |.

The distance from node s to node t is the length of the shortest path between
s and t, and infinity if there is no directed path. The diameter of a graph is the
maximum distance between any two nodes in the graph.

The graph G is strongly connected if there exists a directed path between any
s, t ∈ V . If the graph is not strongly connected, but there exists an undirected path
between every two node in the corresponding undirected graph, then we say that
the graph is weakly connected.

It is complete if for any s, t ∈ V , s 6= t, there exist an edge (s, t). Trivially, any
complete G is also strongly connected.

If the nodes V in the graph can be partitioned into disjoint sets W1 and W2
such that for every edge e ∈ E , e = (s, t), either s ∈W1 and t ∈W2, or s ∈W2 and
t ∈W1, then we say that the graph is bipartite.

Furthermore, ifW1 = {s} and every edge e ∈ E is e = (s, t) for some t ∈W2,
then we say that the graph is a star.

Finally, if there are only two nodes in the graph and the graph is complete, then
we say that the graph is a pair.
Example 2 (Complete graph). A complete graph is illustrated in Figure 3. The
nodes are V = {v1,v2,v3,v4} and there is an edge (s, t) for every s, t ∈ V , s 6= t.

�

Example 3 (Strongly connected graph). A strongly connected graph is illustrated
in Figure 4. The nodes are V = {v1,v2,v3,v4}. We see that there are no direct
edges between nodes v2 and v3, and nodes v3 and v4. However, there exist paths
tv2,v3 =((v2,v1),(v1,v3)) and tv3,v4 =((v3,v1),(v1,v4)), making the graph strongly
connected.

10

v1 v2

v3 v4

Figure 3. Example of complete graph

v1 v2

v3 v4

Figure 4. Example of strongly connected graph

�

Example 4 (Bipartite graph). The graph in Figure 5 is bipartite. The set of nodes
is V = {v1,v2,v3,v4,v5}. The nodes can be grouped into two distinct setsW1 =
{v1,v2} and W2 = {v3,v4,v5}. We see from the illustration that for every edge
e ∈ E , we have e = (s, t) with s ∈W1 and t ∈W2.

v1 v2

has x1, x2 has x2, x3

v3 v4 v5

Figure 5. Example of bipartite graph

�

Example 5 (Star graph). A star graph is given in Figure 6. Here, the sink nodes
areW = {v2,v3,v4,v5} and for every t ∈W there exists an edge (v1, t) ∈ E .

�

11

v2

v3

v4

v5 v1

Figure 6. Example of star graph

2.3. Data exchange models

In general, we consider problems which are related to transmitting data between
the nodes in a network according to some transmission schedule.

Let X represent the domain where the data elements are chosen from. We
require that the domain is finite. Due to finiteness, every element x ∈ X can be
identified by its index. Usually, the domain is some finite field F.

We denote the number of elements in the domain X as

ω , |X |

and the number of bits to represent any element in X as n:

n, dlog2(ω)e,

i.e. the base-2 logarithm of the number of elements in the domain rounded up to
the nearest integer.

We associate with the network topology an information vector x∈X k for some
k ≥ 0. Every node v ∈ V possesses subvector xv of vector x. We call the vector
xv a has-vector of node v. We denote the set which contains all elements in xv as
Sv ⊆X and call it has-set of node v.

We denote the domain of all packets as P .
The transmission of information between nodes happens in rounds. A round

consists of the following phases:
1. computation phase – nodes apply some encoding functions on their has-

vector to obtain a set of packets for every outgoing edge.
2. transmission phase – nodes transmit the packets over every outgoing edge.

Receiving nodes store the packets for the next phase.
3. recovery phase – every node applies decoding functions on their has-vector

and received packets to recover additional elements. Recovered elements
are added to nodes’ has-vectors.

12

We emphasize that during a transmission phase, the nodes can not use already
received packets to update their has-vectors and packets not yet transmitted. This
ensures that the rounds can be considered as asynchronous and we do not define
the exact order for transmissions within rounds.

After the recovery phase, the current round concludes and new round starts if
there are additional packets to transmit. Otherwise, the protocol stops. We denote
the total number of rounds in the protocol as ρ and the individual round as r.

We consider two settings – in a possession oracle model there is an oracle
which knows the indices of elements in every has-vector xv, v ∈ V . In the al-
ternative model, there is no such oracle. This distinction leads to corresponding
problem statements we consider in this dissertation – data distribution and data
synchronization problem.

For the protocols described in this thesis, every node has a particular goal.
For example, to obtain additional elements or to compute some value. Thus, we
require that the protocols are complete, i.e. the nodes have achieved their goal
after protocol execution.

We further describe the notation used to describe a protocol in Section 2.5.

2.3.1. Data distribution problem

In data distribution problem, every node v ∈ V , in addition to the has-vector xv,
maintains a subvector of unknown elements uv from the information vector x.
We call the vector uv a request-vector of node v. The goal of every node in data
distribution problem is to recover all elements in their request-vector.

To achieve this goal, the possession oracle takes into account the has- and
request-vectors of every node. For every node, it then defines encoding functions
for every outgoing edge from that node

Cv , {Ev,e : e ∈ Eout(v)},

where Ev,e : X ∗ → P∗ takes as an input the current has-vector of the node and
outputs a vector of packets to transmit using the outgoing edge.

The oracle also defines decoding functions for every element in the request-
vector

Dv , {Dv,x : x ∈ uv},

where Dv,x :X ∗×P∗→X takes as an input the current has-vector of the node and
received packets from all incoming edges, returning an element in the request-
vector.

The encoding and decoding functions Cv and Dv are transmitted to the corre-
sponding node v. In the computation phase, every node v computes the packets
pv,e to be sent over every outgoing edge as

pv,e , Ev,e(xv).

13

Then, during the transmission phase, every node v uses edge e = (v, t)∈ Eout(v)
to transmit every packet in pv,e to the sink node t. The sink node t stores the
received packet in its received packet setRt .

In the recovery phase, every node v has received and stored a set of packets
Rv from the incoming edges. The nodes apply the decoding functions on their
has-vector and received packet set to obtain the decoded element set

Kv , {Dv,x(xv,Rv) : Dv,x ∈ Dv}.

The decoded elements are then included in the has-vector of the node.
To generalize the data distribution problem over many rounds, we introduce

additional notation. First, we denote the initial has-vector of the node before the
protocol starts as x(0)v = xv. The request-vector uv is constant over all rounds.

In round r, the encoding and decoding functions are denoted as

C(r)v , {E(r)
v,e : e ∈ Eout(v)}

and
D(r)

v , {D(r)
v,x : x ∈ uv}.

However, here the decoding function D(r)
v,x may also output ⊥ which indicates that

the element x can not be recovered in round r.
We denote the packets to transmit as

p(r)
v,e , Ev,e(x

(r−1)
v).

The received packets are denoted asR(r)
v and the elements are decoded as

K(r)
v , {D(r)

v (x(r−1)
v ,R(r)

v) : D(r)
v ∈ D(r)

v }.

The decoded packets K(r)
v are then used to update the has-vector x(r−1)

v to obtain
x(r)v . The protocol concludes when uv = x(r)v for every node v.

2.3.2. Data synchronization problem

In data synchronization problem, the goal of the nodes is to obtain the missing
elements from the information vector. In this and the next section the order of
the elements does not matter, thus, for every v ∈ V , instead of has-vector xv we
consider the corresponding has-set Sv. We denote the union of all has-sets as

SREC ,
⋃
v∈V
Sv. (2.2)

Every node is missing and seeks to recover elements from the set SREC \Sv. How-
ever, as in the current setting there is no possession oracle, all nodes share the
same encoding function E and decoding function D.

14

During the computation phase, the nodes apply the encoding function on their
has-set to obtain the packets to be transmitted

pv , E(Sv).

In transmission phase, the packets are then transmitted to all sink nodes over all
edges which store them in their received packet setsRv.

Finally, in the recovery phase, the nodes apply decoding function on the re-
ceived packets and their has-set to obtain decoded elements:

Kv , Dv(Sv,Rv).

The decoded elements are then added to the nodes’ has-sets. As the nodes do not
have specific request-sets, then the protocol terminates if the decoded element sets
Kv are empty for all nodes.

To generalize the data synchronization problem over many rounds, we also
introduce notation for round-specific sets. We denote the initial has-set of node v
as S(0)v , encoded packets in round r as

p(r)
v , E(S(r−1)

v),

received packets asR(r)
v , decoded packets as

K(r)
v , Dv(S(r−1)

v ,R(r)
v)

and the has-set is updated as

S(r)v , S(r−1)
v ∪K(r)

v .

The protocol concludes when S(r)v = SREC for all v ∈ V .

2.3.3. Function computation

In the function computation problem, the goal of the nodes is to cooperatively
compute a value of some function F of their has-sets Sv, v ∈ V . Let the function
be F : (2X)u→Y , where u = |V| and Y is the function range. The goal of nodes
is to obtain

w, F(Sv1 , . . . ,Svu).

Function computation problem can also be considered as a generalization of
the data synchronization problem. However, the problem differs from data syn-
chronization as the nodes may not necessarily learn the union of sets SREC as given
in (2.2).

Function computation protocols usually run in rounds. In order to compute
the packets to be transmitted in round r ∈ [ρ], the nodes take into account their

15

has-sets and all previously received packets. We denote the set of all previously
received packets by node v asR(r)

v . We also observe that initiallyR(0)
v =∅.

Then, in order to compute the packets to be transmitted in round r, the node
takes their has-set Sv and previously received packets R(r)

v and applies encoding
function E:

p(r)
v , E(Sv,R(r)

v).

The transmission concludes when all nodes have indicated that they do not
have any additional packets to transmit by sending an halting message. Then, the
nodes can recover the value w of the function by applying the decoding function
on their has-sets and all received packets:

w = D(Sv,R(ρ)
v).

2.4. Randomness models in protocols

We consider different models of how the protocols use randomness. The protocol
can either be deterministic or randomized. In deterministic protocols, the encod-
ing function E does not use any randomness and is uniquely determined only by
the has-set Sv and previously received packets. Thus, for fixed has-sets of the
nodes, the transmitted packets are always the same.

In randomized protocols, the encoding function E has access to infinite se-
quence of unbiased random bits. We follow the discussion in [29] and consider
the following special cases of randomized protocol models. In protocols with
shared randomness, the nodes have access to the same sequence of random bits.
Alternatively, in private randomness models, all nodes have access to their own
sequences of random bits. It is shown in [38] that the number of transmitted pack-
ets is in general lower for protocols utilizing shared randomness. Additionally, it
is also shown that any private randomness protocol can be simulated by a shared
randomness protocol with communication overhead O(log(n)) for inputs of size
n.

Furthermore, we have to consider the failure rate of the randomized protocols.
If the protocol occasionally fails to output the correct value, i.e. the failure rate is
close to 1 (but not exactly 1), then we call the protocol Monte-Carlo style. If the
protocol does not fail, then we call such protocol Las-Vegas style. In Las-Vegas
style protocols, the number of transmitted packets is a random variable and we
instead measure the expected number of transmitted bits contrary to Monte-Carlo
style protocols, where the number of transmitted bits is exact.

2.5. Notation for describing a protocol

To describe a protocol for data distribution, data synchronization or function com-
putation, we use the notation as given in Protocol 1.

16

Protocol 1 Example protocol description

Label
Π1

Network topology
Nodes V = {A,B}, edges E = {(A,B),(B,A)}.
Randomness model
Private randomness
Input
Information vector x = (x1, . . . ,xk). Node v ∈ V possesses subset described by
indices Zv.
Goal
Node v ∈ V requests subset of information vector described by indices Tv.
Offline phase
Oracle distributes encoding function Ev to every v ∈ V .
Online phase

For r ∈ [ρ]
Computation phase

1. Every node v ∈ V computes p(r)
v = Ev(Z(r−1)

v).
Transmission phase

2. Every node vi transmits p(r)
v to other node.

Recovery phase
3. Every node v ∈ V computes Kv = Dv(Zv,p′v).
4. Every node updates has-set as S(r) = S(r−1)∪Kv.

In this notation, the problem instance is described by the following fields: la-
bel field defines the variable used to denote the protocol for further reference,
network topology field describes the underlying graph of the network, random-
ness model field defines the used randomness model as in Section 2.4, input field
defines the initial has-sets of the nodes, and goal field defines the requested val-
ues of the nodes. The protocol run is given by the following parts: offline phase
describes the actions of an oracle which ensures that the nodes start the protocol
with some specific state, and online phase describes the communication as given
in Section 2.3.

The communication complexity of the protocol is the number of bits sent dur-
ing the transmission phases. We denote the communication complexity of the
protocol Π as COMM(Π).

17

2.6. List of problems in decentralized systems for exchanging
data

2.6.1. Criteria for data exchange scenarios

By having described different types of network topologies, communication meth-
ods, and data exchange models, we can systematically describe different scenarios
for exchanging data in decentralized systems.
Graph of the network topology: In networks with many participants, the graph
representing the network topology can be a pair, complete, star or connected.

As complete graphs allow to apply 2-party protocols for all possible node pairs,
we consider only the scenarios where the communication complexity is decreased
due to sending and receiving packets to and from multiple nodes.

Star graphs correspond to the networks where there is a single transmitter and
many receivers. This scenario depicts the case of a wireless or satellite station
broadcasting data to many receivers in the range.

Finally, we consider all other network topologies which do not fall into the
previous types of graphs. To ensure that there is a solution to the problem, we
require that the graph is strongly connected.
Transmission model: For networks with two nodes, there is no distinction be-
tween unicast and broadcast transmission models. Thus, we only consider unicast
transmission model.

As previously mentioned, for complete graphs we only consider the case where
we achieve reduction in communication complexity due to coding and thus only
consider the broadcast model.

As there is only a single transmitter in a star graph, then we are interested only
in the broadcast model.

For strongly connected graphs, we consider both the unicast and broadcast
transmission models.
Data exchange model: For networks with two nodes, we do not consider the
data distribution model, as due to existence of the possession oracle, the solution
is trivial (i.e. the possession oracle transmits the functions which output only the
elements in the request-set as packets). For all other graphs with more than two
nodes, we consider all possible data exchange models, i.e. data distribution and
data synchronization problem.
Function computation: We also look at scenarios which allow to compute the
value of a function. As mentioned in Section 2.3.3, the function to be computed
takes as inputs all has-sets Sv, v ∈ V , and as such is only relevant in the context of
data synchronization problem. Thus, for function computation, we consider the
same scenarios as for data synchronization.

18

2.6.2. Overview of different data exchange scenarios

Considering the restrictions in Section 2.6.1, we have compiled a list of different
scenarios. The scenarios are given in Table 1.

Table 1. Overview of data exchange scenarios

scenario graph type trans. model data exchange
1 pair unicast synchronization
2 complete broadcast distribution
3 complete broadcast synchronization
4 star broadcast distribution
5 star broadcast synchronization
6 strongly connected unicast distribution
7 strongly connected unicast synchronization
8 strongly connected broadcast distribution
9 strongly connected broadcast synchronization
10 pair unicast function comp.
11 complete broadcast function comp.
12 star broadcast function comp.
13 strongly connected unicast function comp.
14 strongly connected broadcast function comp.

2.7. Invertible Bloom filters

We describe invertible Bloom filters (IBF) [28] for representing a set of elements
efficiently. IBF is a probabilistic data structure which allows testing for inclusion
of an element in the data structure and listing all stored elements. The inclusion
testing using IBF may cause a small rate of false positives and element extraction
failure in exchange for decreasing the size of IBF significantly.

In the following, we assume that the domain is finite field F. Usually, the
actual used field is a binary extension field F= F2n , and the elements in the field
are considered to be binary vectors of length n.

2.7.1. IBF construction

IBFs are constructed using hash functions which map inputs from the domain F
to a significantly smaller set [β]:

H : F→ [β].

We denote the set of all possible such hash functions asH. We assume that the
hash functions can be described efficiently and that they can be indexed, i.e. we
can uniquely define Hi ∈H by i.

19

For the analysis, we require that the hash function output is distributed uni-
formly. That is, for any fixed j ∈ [β], then for uniformly chosen x ∈ F the proba-

bility that event H(x) = j happens is exactly
1
β

:

∀ j ∈ [β] : Pr
x∈F

(H(x) = j) =
1
β
.

When constructing an IBF, we choose h hash functions H1, . . . ,Hh ∈ H. The
hash functions should be pairwise non-colliding for any x ∈ F, i.e.

Hi(x) 6= H j(x), for any i 6= j. (2.3)

This can be obtained by splitting [β] into h disjoint partitions

[1,β1], [β1 +1,β2], . . . , [βh−1 +1,β]

and having every hash function Hi output values in the i-th partition.
Additionally, we require another hash function Hch for checksum, which maps

elements from domain F to a smaller field F′:

Hch : F→ F′.

The invertible Bloom filter is an array of cells c with fields count, val and ch.
The field count contains an integer, field val contains an element in F and the
field ch contains an element in F′. If we denote the i-th cell as ci, then invertible
Bloom filter is defined as F ← 〈c1, . . .cβ 〉.

The procedure Init initializes an IBFF using given parameters and is described
in Algorithm 1. During the procedure, every cell c j, j ∈ [β], is initialized by
setting the value of every field in the cell as identity.

Algorithm 1 Initialize an IBF
1: procedure Init(h,β ,F,F′)
2: for all j ∈ [β] do
3: c j.count← 0
4: c j.val← 0
5: c j.ch← 0
6: F ← 〈c1, . . . ,cβ 〉
7: return F

For an initialized IBF F and an element x ∈ F, the procedures Insert() inserts
the element into IBF, Test() queries if the element is inserted to the IBF and
Remove() removes the element if it is already inserted. Finally, the procedure
Extract() lists all inserted elements in the IBF.

The procedure Insert() is described in Algorithm 2. It works by iterating over
all hash functions Hi, i ∈ [h], hashing the element x with Hi to obtain an index ji.

20

Algorithm 2 Insertion of an element into an IBF
1: procedure Insert(F ,x)
2: for all i ∈ [h] do
3: ji← Hi(x)
4: c ji ←F [ji]
5: c ji .count← c ji .count+1
6: c ji .val← c ji .val+ x
7: c ji .ch← c ji .ch+Hch(x)
8: F [ji]← c ji

Algorithm 3 Test if an element is inserted into the IBF
1: procedure Test(F ,x)
2: for all i ∈ [h] do
3: ji← Hi(x)
4: c ji ←F [ji]
5: if c ji .count= 0 then
6: return false

7: return true

This index defines the cell c ji to be updated by incrementing the field count by
one, adding x to field val and adding Hch(x) to field ch.

The procedure Test() is described in Algorithm 3. It iterates over the hash
functions Hi, i ∈ [h], to obtain the corresponding indices { ji}i∈[h] and tests if all
cells c ji , i ∈ [h], contain an element. If so, it returns a positive answer, otherwise
rejects.

The procedure can return false-positive for a tested element if the hash func-
tions Hi, i ∈ [h], are assigned such that every checked cell in F contains another
element.
Algorithm 4 Remove an element from the IBF

1: procedure Remove(F ,x)
2: for all i ∈ [h] do
3: ji← Hi(x)
4: c ji ←F [ji]
5: c ji .count← c ji .count−1
6: c ji .val← c ji .val− x
7: c ji .ch← c ji .ch−Hch(x)
8: F [ji]← c ji

The procedure Remove() is described in Algorithm 4. It iterates over all hash
functions Hi, i ∈ [β], to obtain indices { ji}i∈[h] of the cells to remove the element
from. The element is removed from the cell c ji by decreasing the field count

by one, subtracting element x from the field val and subtracting Hch(x) from the
field ch.

The Remove() procedure should only be called with an element x which has

21

been inserted to the IBF. If the procedure Remove() is called on an element x
which has not been inserted into an IBF, then the cells are updated incorrectly.
This could lead to collisions when removing further elements.

2.7.2. Listing elements in IBF

Algorithm 5 Extract all elements inserted into the IBF
1: procedure Extract(F)
2: SF ←∅
3: repeat
4: removed← false

5: for all j ∈ [β] do
6: c j←F [j]
7: if c j.count 6= 0 then

8: (x,ch)←
(

c j.val

c j.count
,

c j.ch

c j.count

)
9: if Hch(x) = ch then

10: SF ←SF ∪{x}
11: for all [c j.count] do
12: Remove(F ,x)
13: until removed= false

14: return SF

The final procedure Extract() differentiates IBF from a standard Bloom filter.
With storage overhead, it allows to recover the elements inserted to IBF. The pro-
cedure is described in Algorithm 5 and works by iterating over all cells c j, j ∈ [β]
(lines 5-12) to check if the cell can be used to extract an element.

For being able to extract an element from cell c j for some j∈ [β], the following
two conditions have to be met:

1. The count field has to be positive (line 7).
2. The checksum-hash of the field val must be equal to the one stored in the

field ch (line 9).
In the procedure description, the multiplicity of the element insertion is taken

into account when checking for the condition 2, allowing to extract elements
which have been inserted multiple times.

If all of the conditions hold, every copy of the element x obtained from the j-th
cell is removed from the IBF F and added to the extracted set SF . The inner loop
in lines 5-12 continues.

If any elements were extracted during the inner loop, the procedure re-runs it as
removing an element from the IBF may have updated a cell in a way which allows
for extracting another element. Only when no elements are extracted during a full
inner loop, the procedure returns with the set SF .

22

We remark that the procedure modifies the underlying filter. To keep the initial
IBF unmodified, a copy of it should be provided to the Extract() algorithm.

We consider
[β]

∑
j=1
F [j].count

as the count of all elements inserted in the IBF. As during the Insert() procedure
the element is added into h number of cells, then, correspondingly, the count in-
creases by h. Similarly, during removal of an element from the IBF, the count de-
creases by h. This property allows to count the total number of elements currently
contained in the IBF. We denote the cardinality of an IBF F as f and calculate it
as

f , |F|=
∑
[β]
j=1F [j].count

h
.

If after running the procedure Extract() the IBFF is empty (i.e. |F|= 0), then
the procedure succeeded perfectly. Otherwise, the procedure failed, but some
elements are still extracted. We can measure the rate of elements extracted by
considering the cardinality f of F before extracting and the number of extracted
elements |SF |. The extraction rate is defined as

rExtract ,
|SF |

f
. (2.4)

In the description of the procedure Extract() we can see that if a single element
x is inserted multiple times into the IBF, then all copies are removed from the
IBF (lines 11 - 12). As this does not change the number of elements extracted
from the IBF |SF |, but does change the cardinality f , then in order to achieve
comparable extraction failure probabilities for a fixed extraction rate rExtract, we
need to assume that the elements in a particular IBF are unique. The following
Lemma 1 shows that for a particular IBF F with also non-unique elements, there
exists an IBF F ′ where all elements are unique and the extracted elements SF ′ are
equal to SF .
Lemma 1. Given an IBF F , the extracted elements set SF = Extract(F) does
not depend on the multiplicities of the elements inserted in F .

Proof. Consider the IBF F with non-unique elements and the corresponding IBF
F ′ is initialized using the same hash functions containing the same elements only
once. Let

SF , Extract(F)

and
SF ′ , Extract(F ′).

23

If SF 6= SF ′ then there must exist x ∈ SF \SF ′ or x ∈ SF ′ \SF . This implies that
there must exist multiplicity count> 1 such that

count · x
count

6= x

or
count ·Hch(x)

count
6= Hch(x),

which is a contradiction. Thus SF = SF ′ .

In [28], the probability of procedure Extract() succeeding was only considered
for the case where rExtract = 1. The result is given as Theorem 2.
Theorem 2 ([28, Theorem 1]). Define χh as

χ
−1
h , sup{α : 0 < α < 1;∀x ∈ (0,1),1− e−hαxh−1

< x}.

Then, as long as β is chosen such that

β > (χh + ε) f0

for some ε > 0, Extract() fails with probabilityO(f−h+2
0) over all possible choices

of the hash functions H1, . . . ,Hh whenever f ≤ f0.
Theorem 2 indicates that the number of cells in the IBF has to be at least χh

times larger than the number of inserted elements in order to be able to perform
full extraction. Fortunately, χh is close to 1 for different choices of h. Table 2
gives the values for χh as computed in [28].

Table 2. Thresholds for IBF overhead for different number of hash functions from [28].

h 3 4 5 6 7
χh 1.222 1.295 1.425 1.570 1.721

Theorem 2 describes the probability of being able to extract all elements from
the IBF, but it can not be used to estimate the number of extracted elements when
the procedure Extract() fails, i.e. when rExtract < 1. We look at proof of Theo-
rem 2 to see why it is so.

Proof of Theorem 2. Rephrased from [28]. We first show that an IBF can be de-
scribed as an (undirected) hypergraph. Let the cells ci, i ∈ [β], of an IBF corre-
spond to vertices in a hypergraph, and every inserted element x corresponds to a
hyperedge

ex = {ci : ∀ j ∈ [h], i = H j(x)}

between the vertices. An edge ex corresponds to the element x being inserted into
the corresponding cells ci where i=H j(x) for all j∈ [h]. Such a hypergraph where
the cardinality of every hyperedge is h, is also called h-uniform hypergraph.

Due to Lemma 1, we can assume that every element is inserted only once
into the IBF. Similarly to Algorithm 5, in order to extract an element from the

24

hypergraph representation, there must exist a vertex with degree 1. If there is such
vertex, the hyperedge corresponding to that vertex is also removed. The process
continues until there are no more vertices of degree 1 left in the hypergraph.

The extraction succeeds when the degree of all vertices in the end is zero.
Otherwise, the degrees of the vertices in the resulting hypergraph must be at least
2. A maximum sub-hypergraph where the minimum degree of every vertex is
larger or equal to 2 is called a 2-core of a hypergraph. Thus, the extraction process
fails if the 2-core of the hypergraph is non-empty.

In other words, the extraction failure probability corresponds to the probabil-
ity of finding a 2-core from h-uniform hypergraph. This is well-studied graph-
theoretic problem and is considered for example in [16] and [51].

Let f ≤ f0 for some f0. We look at the probability that j hyperedges use only
jh/2 vertices. There are (

f
j

)
choices for choosing j hyperedges out of f and(

β

jh/2

)
choices for choosing the corresponding jh/2 vertices out of β vertices. For every
vertex, the probability for choosing the vertex in a 2-core is jh/2

β
. Thus, we obtain

that the probability is at most(
f
j

)(
β

jh/2

)(
jh

2β

) jh

. (2.5)

Expression (2.5) can be upper bounded by(
f
e

) j(2β

jh

) jk/2(jh
2β

) jh

=
f j

β jk/2

(
jhe
β

) jh/2(e
j

) j

. (2.6)

If h is constant and β > (χ + ε) f then the sum of (2.6) over all 2 ≤ j ≤ f is
dominated by j = 2. Thus, the extraction failure is dominated by a case of having
two hyperedges which share the same vertices. This leads to the failure probability

O(f−h+2)

as given in the theorem statement.

Summarizing the proof, the method for estimating the failure probability of
an IBF is to reduce the probability computation to the probability of finding a
non-empty 2-core in a hypergraph. However, this reduction does not provide any
information about the corresponding 2-core. For partial extraction, in the hyper-
graph terms, we need to estimate the probability of having at least one 2-core
where the sum of size of the 2-cores is fixed. In our review of the current state of
the art, we have not found solution to this problem.

25

2.7.3. Minimizing IBF overhead

Considering the hypergraph representation of an IBF, there are two main direc-
tions to reduce the required overhead for ensuring full extractability with high
probability. The first direction is to use non-uniform hypergraphs [44, 58]. In
non-uniform hypergraphs, the cardinalities of the hyperedges are not constant and
depend on the hyperedge. In the IBF terminology, this means that the number
of hash functions depends on the element to be inserted into the IBF. With un-
bounded hyperedge cardinality, it is possible to achieve IBF overhead arbitrary
close to 1 [44] and with bounded hyperedge cardinality the overhead can be re-
duced to approximately 1.08 [58].

Another direction is to use a family of h-uniform hypergraphs which is given
by a probability distribution on the hyperedges. This approach is further studied
in [17] and allows to reach IBF overhead close to 1 (χ3 ≈ 1.09, χ4 ≈ 1.02, χ5 ≈
1.01, χ6 ≈ 1.00, χ7 ≈ 1.00).

2.7.4. Examples of IBF procedures

We present an example for extracting elements from an IBF in Example 6. Ad-
ditionally, to illustrate the false-positive output of procedure Test() and failure of
procedure Extract() to extract all elements, we give Examples 7 and 8.
Example 6. Let the field where the elements are sampled from be F256. For con-
venience, we associate numbers 0, . . . ,255 with the corresponding field elements
in the vector form, where a binary vector is associated with the corresponding
binary representation of the number.

Table 3. Hash function values for elements in Example 6

x H1(x) H2(x) H3(x) H4(x)
13 4 8 15 16
24 1 10 13 17
98 1 6 12 17

124 1 8 13 20
136 2 10 13 17
161 4 8 15 18
166 3 8 11 18
167 1 7 12 20
175 4 10 13 17
198 2 6 14 19
199 5 10 14 19
232 5 6 14 19

Let the elements be

S = {13,24,98,124,136,161,166,167,175,198,199,232}.

We initialize IBF F with h = 4 hash functions and β = 20 cells. The hash values

26

for the elements are given as Table 3. The values of the cells of F after inserting
all elements in S into it are given as Table 4.

Table 4. IBF F in Example 6

i ci.count ci.val ci.ch

1 4 24+98+124+167 Hch(24)+Hch(98)+Hch(124)+
Hch(167)

2 2 136+198 Hch(136)+Hch(198)
3 1 166 Hch(166)
4 3 13+161+175 Hch(13)+Hch(161)+Hch(175)
5 2 199+232 Hch(199)+Hch(232)
6 3 98+198+232 Hch(98)+Hch(198)+Hch(232)
7 1 167 Hch(167)
8 4 13+124+161+166 Hch(13)+Hch(124)+Hch(161)+

Hch(166)
9 0
10 4 24+136+175+199 Hch(24)+Hch(136)+Hch(175)+

Hch(199)
11 1 166 Hch(166)
12 2 98+167 Hch(98)+Hch(167)
13 4 24+124+136+175 Hch(24)+Hch(124)+Hch(136)+

Hch(175)
14 3 198+199+232 Hch(198)+Hch(199)+Hch(232)
15 2 13+161 Hch(13)+Hch(161)
16 1 13 Hch(13)
17 4 24+98+136+175 Hch(24)+Hch(98)+Hch(136)+

Hch(175)
18 2 161+166 Hch(161)+Hch(166)
19 3 198+199+232 Hch(198)+Hch(199)+Hch(232)
20 2 124+167 Hch(124)+Hch(167)

In order to extract an element from an IBF cell, only a single element should be
contained in the val field. We observe in Table 4 that such cells are c3,c7,c11,c16
and thus the extractable elements in the first loop are 13, 166 and 167.

The cells of F after the first extraction round are given as Table 5. As after
extracting the elements in the first loop, new cells now contain only a single el-
ement. Such cells are c12,c15,c18,c20 and they allow to extract the elements 98,
124 and 161.

By continuing in the same manner, we remove elements 24 and 175 in the
third loop, 136 in the fourth loop, 198 and 199 in the fifth loop and 232 in the
sixth loop. After the sixth loop no cell in F contain any element and thus the
extraction succeeded. �

Example 7. We continue with the setting of Example 6. Let there additionally be

27

Table 5. Non-zero cells of IBF F in Example 6 after the first extraction loop

i ci.count ci.val ci.ch

1 3 24+98+124 Hch(24)+Hch(98)+Hch(124)
2 2 136+198 Hch(136)+Hch(198)
4 2 161+175 Hch(161)+Hch(175)
5 2 199+232 Hch(199)+Hch(232)
6 3 98+198+232 Hch(98)+Hch(198)+Hch(232)
8 2 124+161 Hch(124)+Hch(161)
10 4 24+136+175+199 Hch(24)+Hch(136)+Hch(175)+

Hch(199)
12 1 98 Hch(98)
13 4 24+124+136+175 Hch(24)+Hch(124)+Hch(136)+

Hch(175)
14 3 198+199+232 Hch(198)+Hch(199)+Hch(232)
15 1 161 Hch(161)
17 4 24+98+136+175 Hch(24)+Hch(98)+Hch(136)+

Hch(175)
18 1 161 Hch(161)
19 3 198+199+232 Hch(198)+Hch(199)+Hch(232)
20 1 124 Hch(124)

an element 55 with H1(55) = 4, H2(55) = 6, H3(55) = 13 and H4(55) = 17. Then
for F from Example 7 the output of Test(F ,55) would be true as c4.count= 3,
c6.count= 3, c13.count= 4 and c17.count= 4 even though the element has not
been inserted into F . �

Example 8. Again, we continue with the setting of Example 6 and with an ele-
ment 55 from Example 7. If this element is additionally inserted into F , then after
third iteration loop there are no elements available to extract as seen in Table 6.
The set of extracted elements is SF = {13,24,98,124,161,166,167} and thus the
extraction rate is rExtract = 7/13.

Table 6. Non-zero cells of IBF F in Example 8 after the third extraction round

i ci.count ci.val ci.ch

2 2 136+198 Hch(136)+Hch(198)
4 2 55+175 Hch(55)+Hch(175)
5 2 199+232 Hch(199)+Hch(232)
6 3 55+198+232 Hch(55)+Hch(198)+Hch(232)
10 3 136+175+199 Hch(136)+Hch(175)+Hch(199)
13 3 55+136+175 Hch(55)+Hch(136)+Hch(175)
14 3 198+199+232 Hch(198)+Hch(199)+Hch(232)
17 3 55+136+175 Hch(55)+Hch(136)+Hch(175)
19 3 198+199+232 Hch(198)+Hch(199)+Hch(232)

28

�

2.8. Data distribution problem in star and complete networks

In this section, we describe the index coding problem which considers data distri-
bution in a network described by a star graph and data exchange problem which
considers data distribution in a network described by a complete graph.

We assume that the network is described by a graph G = (V,E) with nodes
V = (v1, . . . ,vu) and some set of edges E as defined in the subsequent sections.
Let x = (x1, . . . ,xk) ∈ Fk be an information vector over some field F of length
k. Every node vi possesses some side information described by a set of indices
Zvi ⊆ [k], where if the node possesses the element x j ∈ x, then j ∈Zvi . We denote
the size of Zvi as kvi , |Zvi |. Every node is also interested in receiving some
elements after the protocol run. The set of requested elements are described by a
set Tvi ⊆ [k], where if node requests x j, then j ∈ Tvi .

2.8.1. Index coding problem

Assume that the network consists of a single source node s and τ sink nodesW .
Only the source node can transmit to the sink nodes, i.e. the network topology
corresponds to a star graph. This means that the set of edges E is defined as

E , {(s, t) : t ∈W}.

We assume that the length of the information vector in this setting is exactly τ and
the source node possesses all information, i.e. Zs = [τ].

Every sink node ti possesses a subset of the information vector, excluding the
element xi ∈ x and requests the element xi ∈ x. Thus we have Tti = {i} and Zti (
[τ], i 6∈ Zti .

The index coding problem is a problem of finding optimal transmissions from
the source such that every sink node can decode their request. As this is a data dis-
tribution problem, then we assume that the transmitter knows the corresponding
possession indices Zti for every ti ∈W .

In order to describe a protocol for index coding, we firstly assume that the field
where the elements are sampled from is binary field F2 and later generalize the
approach to any extension field of F2.

In order to solve the index coding problem, we use a side information graph as
defined in [2].
Definition 1. Given sink nodes ti ∈ W , i ∈ [τ], and corresponding has-sets de-
scribed by Zvi , the side information graph GSI , (VSI,ESI) is a graph consisting
of vertices VSI , [τ] and edges ESI , {(i, j) : j ∈ Zti}.

In plain terms, a side information graph has a corresponding vertex for every
sink node and has a directed edge from node i to node j if sink node ti has bit x j.

In the following definitions, we define a minimum rank of the side information
graph.

29

Definition 2. Let GSI = (VSI,ESI) be a graph with a vertex set VSI = [τ]. We
say that a τ × τ-dimensional binary matrix M fits GSI if for all i ∈ [τ] we have
(M)i,i = 1, and for all i, j ∈ [τ] we have (M)i, j = 0 if there is no edge (i, j) in ESI.
Definition 3. The minimum rank of graph GSI is

min-rank2(GSI), min
M∈SF

τ×τ

M fits GSI

rank2(M).

In [2], the authors showed that the optimal number of transmissions of an index
coding problem is given by a minimum rank of the corresponding side information
graph. The result is referred to in Theorem 3.
Theorem 3 ([2, Theorem 1]). Consider an instance of index coding problem rep-
resented by a side information graph GSI. The minimum number of transmissions
in any solution for this instance using linear code is given by min-rank2(GSI).

The proof of Theorem 3 is constructive as it also describes the min-rank2(GSI)
encoding functions Cs for the source node and a single decoding function Dti for
every sink node ti to recover its requested bit xi. In order to define the encoding
and decoding functions, we look at one of the matrices M which minimizes the
rank of the side information graph of the index coding instance, i.e.

rank2(M) = min-rank2(GSI). (2.7)

We denote π , min-rank2(GSI) and assume that the first π rows of M span the
whole vector space rowspace(M). This means that there exist coefficients λi, j ∈
F2, i ∈ [τ], j ∈ [π], such that for every i ∈ [τ]

M[i] =
π

∑
j=1

λi, jM[j]. (2.8)

Encoding function: The encoding function E is defined as

E(x), (M[i] ·x)i∈[π] (2.9)

for a matrix M such that (2.7) holds and where x ∈ Fτ is an information vector.
We denote

b, E(x) (2.10)

= (b1, . . . ,bπ)

as a vector to be transmitted.
Decoding functions: For a matrix M which is used to define the encoding func-
tion (2.9), let the coefficients λi, j be such that (2.8) holds. Given the received
vector b, the decoding function for sink node ti is defined as

Dti(Zti ,b),
π

∑
j=1

λi, jb j− ∑
j∈Zti

(M)i, jx j (2.11)

We see that the decoding functions are correctly defined in Lemma 4.

30

Lemma 4. Given an index coding instance represented by a side information
graph GSI and a corresponding matrix M which fits GSI, the decoding functions
Dti in (2.11) outputs xi if the input vector b to Dti is obtained as (2.10) by encoding
x.

Proof. From (2.9), we have bi = M[i] ·x, i ∈ [π]. Due to the choice of M, we have

from (2.8) that M[i] =
π

∑
j=1

λi, jM[j] and thus

M[i] ·x =
π

∑
j=1

λi, jb j. (2.12)

Additionally, we consider a vector

ci ,M[i]− ei. (2.13)

As M fits the side information graph GSI, then the only non-zero elements in ci

correspond to the bits which sink node ti possesses. Thus, we have

ci ·x =
τ

∑
j=1

(M)i, jx j. (2.14)

However, as (M)i, j = 0 if j 6∈ Zti , (2.14) can be computed only using elements
indexed by Zti :

ci ·x = ∑
j∈Zti

(M)i, jx j. (2.15)

Finally, we can replace (2.12) and (2.15) into right hand side of (2.11) and then
use definition (2.13):

Dti(Zti ,b) = (M[i] ·x)− (ci ·x)
= (M[i]−M[i]+ ei) ·x = ei ·x = xi

So far, we have described the construction in a case where the elements are
from F2, i.e. a single bit. The construction can be generalized to arbitrary n-bit
elements by applying the encoding and decoding functions to the corresponding
bits of the element. By using this generalization, the source node instead possesses
the vector x = (x1, . . . ,xτ) ∈ Fτ

2n and obtains the packet p to be transmitted as

E(Ss) = ((M[j] ·x`) j∈[π])`∈[n]. (2.16)

The requested element is decoded as

Dti(Zti ,p) =

 π

∑
j=1

λi, j(p`) j− ∑
j∈Zti

(M)i, j(x j)`


`∈[n]

. (2.17)

31

We now have all the tools for describing fully a protocol for data distribution
in a network represented by a star graph. The detailed description is given in
Protocol 2.
Protocol 2 Data distribution in star graph

Label
Π2

Network topology
Single source node s. τ sink nodesW = {t1, . . . , tτ}. Edges E = {(s, ti) : ti ∈W}.
Randomness model
Deterministic
Input
Information vector x = (x1, . . . ,xτ). Every sink node possesses side information
described by Zti ([τ], i 6∈ Zti

Goal
Every sink node has xi.
Offline phase
The oracle uses side information graph GSI to define the encoding function E as
in (2.16) and decoding functions Dti as in (2.17).
Online phase

r = 1
Computation phase

1. Source computes packet p = E(Ss)

Transmission phase
2. Source transmits p to all sink nodes.

Recovery phase
3. Every sink node si computes xi = Dti(Zti ,p).

Example 9. In Figure 7, we have illustrated an instance of index coding. There is
a single transmitter s and sink nodesW = {t1, t2, t3, t4}. The transmitter possesses
bits x1,x2,x3 and x4. Every sink node ti ∈W has bit xi+1 (mod 4) and requests xi,
i.e. Zvi = {i+1 (mod 4)} and Tvi = {i}.

There are four independent requests, but the source node can satisfy all re-
quests by transmitting only three field elements in a packet p = (x1 + x2,x2 +
x3,x3 + x4). Nodes t1, t2, and t3 can recover xi by subtracting xi+1 from received
xi + xi+1. Node t4 can recover x4 by adding received packets and subtracting x1,
i.e.

(x1 + x2)+(x2 + x3)+(x3 + x4)− x1,

considering that operations are performed over F2.
We show that this transmission schedule is indeed optimal. For that, we first

illustrate the corresponding side information graph GSI in Figure 8. The graph GSI
consists of nodes VSI = {1,2,3,4} and edges ESI = {(1,2),(2,3),(3,4),(4,1)}.

32

t1 t2 t3 t4

s
x1 + x2,x2 + x3,x3 + x4

has x1,x2,x3,x4

has x2 has x3 has x4 has x1

requests x1 requests x2 requests x3 requests x4

Figure 7. Example of index coding

1 2

34

Figure 8. Side information graph corresponding to Example 9

An example matrix which fits the side information graph is

M =


1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

 . (2.18)

We observe that rank2(M) = 3 and by enumerating over all matrices which fit
GSI that M indeed minimizes min-rank2(GSI). Thus, the matrix M also defines
optimal transmission schedule.

For matrix M as given in (2.18), first three rows are linearly independent and
can be used to define the encoding function. This means that the coefficients λi, j

from (2.8) are
λ1,1 = 1, λ1,2 = 0, λ1,3 = 0,
λ2,1 = 0, λ2,2 = 1, λ2,3 = 0,
λ3,1 = 0, λ3,2 = 0, λ3,3 = 1,
λ4,1 = 1, λ4,2 = 1, λ4,3 = 1.

By using the encoding function definition (2.9), we get

E(x) = ((1,1,0,0) ·x,(0,1,1,0) ·x,(0,0,1,1) ·x).

33

From (2.11) we get the decoding functions

Dv1(Zv1 ,b) = b1− x2,

Dv2(Zv2 ,b) = b2− x3,

Dv3(Zv3 ,b) = b3− x4,

Dv4(Zv4 ,b) = b1 +b2 +b3− x1.

�

2.8.2. Data exchange problem

Let there be u nodes V = {v1, . . . ,vu} where every node vi possesses arbitrary side
information information described by indices Zvi ⊆ [k], and requests the elements
missing in its side information, i.e. Tvi = [k]\Zvi .

The underlying graph of the network is a complete graph, i.e. for every node
vi there are edges (vi,v j) for every v j ∈ V \{vi}. We consider the data exchange
problem as a case of the data distribution problem. Thus, we assume that there
exists an oracle which knows the indices of the elements of current has-sets of
every node.

In [21], a solution to the data exchange problem was given using a matrix
rank minimization approach. In order to describe the protocol, we introduce an
additional representation for the has-sets of the nodes. We associate with every
node vi ∈ V a set of kvi× k-dimensional matrices Pvi ⊆ SF

kvi×k:

Pvi , {Mvi ∈ SF
kvi×k : ∀` ∈ [kvi],(Mvi)`, j = 0 if j 6∈ Zvi} (2.19)

Otherwise, if j ∈ Zvi , then (Mvi)`, j can take any value in the underlying field F.

We denote the set of

(
∑

vi∈V
kvi

)
× k-dimensional matrices P⊆ SF

kvi×k which is

concatenation of matrices in matrix sets Pvi :

P,


Mv1

...
Mvu

 : Mvi ∈ Pvi

 . (2.20)

For every node vi, we fix a matrix Nvi from the set of matrices Pvi where in the
j-th row the vector induced by columns Zvi form j-th unit vector.

In [21], the following Theorem 5 establishes the optimal number of packets to
be exchanged such that all the nodes can recover the elements in S .
Theorem 5 ([21, Theorem 5]). The minimum number of transmissions π achieved
by linear codes is given by

π = min
M∈P

rank(M) (2.21)

34

subject to constraints

rank
([

M
Nvi

])
= k, ∀vi ∈ V. (2.22)

Even though Theorem 5 was given without a proof, it can be shown that the
proof is constructive, giving specific encoding and decoding functions for the data
exchange problem. Let M be the matrix which satisfies the optimization problem
in (2.21) such that there are exactly π non-zero rows. Let Mvi , vi ∈ V , be the
corresponding partition of M as given in (2.20).
Encoding functions: Every node vi encodes the packets pvi to be transmitted as

Evi(Zvi),Mvix
>. (2.23)

Additionally, when the j-th row (Mvi)
[j] is 0, then transmission of the packet is

omitted.
Decoding functions: From the received packets pvi , vi ∈ V , we construct a single
packet by considering packets pvi as a single-column matrices:

p′ ,

(pv1)
>

...
(pvu)

>

 . (2.24)

We additionally consider a vector xvi which is induced from x by the columns Zvi .
Node vi can recover elements in the request set by solving the system of linear

equations [
M
Nvi

]
X =

[
p′

(xvi)
>

]
for an unknown variable X.

By denoting the function for solving a system of linear equations as LinSolve(),
we get the decoding function:

Dvi(Zvi ,p
′), LinSolve

([
M
Nvi

]
,

[
p′

(xvi)
>

])
. (2.25)

Lemma 6. Given a data exchange problem instance described by nodes V and
corresponding has-sets described by the indices Zvi for every node vi ∈ V , a ma-
trix M which is a solution to an optimization problem in (2.21) subject to con-
straints (2.22), by encoding the packets using encoding functions Evi as defined in
(2.23) and decoding the packets using functions Dvi as defined in (2.25), node vi

recovers x.
We omit the proof of Lemma 6 for now as it follows directly from Theorem 18.

We give the description of protocol for the data exchange problem in Protocol 3.

35

Protocol 3 Data distribution in a complete graph

Label
Π3

Network topology
u nodes V . Edges E = {(vi,v j) : vi,v j ∈ V,vi 6= v j}.
Randomness model
Deterministic
Input
Information vector x = (x1, . . . ,xk). Every node vi ∈ V possesses a subset of the
information vector described by the indices Zvi ⊆ [k].
Goal
Ever node vi ∈ V requests all missing elements Tvi = [k]\Zvi .
Offline phase
The oracle finds M ∈ P which minimizes (2.21) such that (2.22) holds for ev-
ery vi ∈ V . For every node vi ∈ V , the oracle defines encoding functions Evi as
in (2.23) and decoding function Dvi as in (2.25).
Online phase

r = 1
Computation phase

1. Every node vi computes packet pvi = Evi(Svi).
Transmission phase

2. Every node vi transmits pvi to all other nodes.
Recovery phase

3. Every node vi uses received packets pv` , v` ∈ V to construct p′vi
as

in (2.24) and obtains missing elements from Dvi(Svi ,p
′
vi
).

Example 10. An instance of data exchange problem is illustrated in Figure 9.
There are four nodes V = {v1,v2,v3,v4} in a complete graph. The possessed bits
are given by Zv1 = {1}, Zv2 = {2,4}, Zv3 = {2,3} and Zv4 = {1,2}. Every node
requests all missing elements.

If node v2 transmits x2 + x4, v3 transmits x2 + x3 and v4 transmits x1 + x3, then
we observe that all nodes can recover all elements.

In this complete example, we look at how the solution is obtained and that it is
optimal. For this, we first choose matrices Mvi from Pvi as defined in (2.19):

Mv1 =
[
0 0 0 0

]
, Mv2 =

[
0 1 0 1
0 0 0 0

]
,

Mv3 =

[
0 0 1 1
0 0 0 0

]
, Mv4 =

[
1 0 1 0
0 0 0 0

]
.

36

v1 v2

v3 v4

has x1 has x2,x4

has x2,x3 has x1,x3

transmits x2 + x4

transmits x2 + x3 transmits x1 + x3

Figure 9. An example of data exchange instance

The corresponding matrix M is

M =



0 0 0 0
0 1 0 1
0 0 0 0
0 0 1 1
0 0 0 0
1 0 1 0
0 0 0 0


The following matrices are fixed:

Nv1 =
[
1 0 0 0

]
, Nv2 =

[
0 1 0 0
0 0 0 1

]
,

Nv3 =

[
0 1 0 0
0 0 1 0

]
, Nv4 =

[
1 0 0 0
0 0 1 0

]
.

First, we see that for every vi ∈ V , we have

rank
([

M
Nvi

])
= 4.

By exhaustive search, we can also verify that such M has minimum rank 3 over
all matrices in P and thus any protocol transmits at least three elements.

From (2.23), the packets to be transmitted are

pv1 = (0),

pv2 = (x2 + x4,0),

pv3 = (x3 + x4,0),

pv4 = (x1 + x3,0).

Due to the remark, the zeros are omitted from transmissions and the nodes trans-
mit three elements in total.

37

The concatenated received packet is

p′ = (0,x2 + x4,0,x3 + x4,0,x1 + x3,0)>

and the vectors xvi are

xv1 = (x1), xv2 = (x2,x4),

xv3 = (x2,x3), xv4 = (x1,x3).

For now, we only look the system of linear equations node v1 has to solve
as it follows analogously for other nodes. Node v1 solves the system of linear
equations for X: 

0 0 0 0
0 1 0 1
0 0 0 0
0 0 1 1
0 0 0 0
1 0 1 0
0 0 0 0
1 0 0 0


X =



0
x2 + x4

0
x3 + x4

0
x1 + x3

0
x1


. (2.26)

As the matrix on the left-hand side of (2.26) is full rank, then there is a solution.
This solution gives the complete information vector x. �

38

3. DATA SYNCHRONIZATION USING PARTIALLY
EXTRACTABLE INVERTIBLE BLOOM FILTERS

In this chapter, we use an alternative matrix-based representation for an IBF. In
Section 3.1.1 we show an alternative condition for extraction failure from an IBF.
We use this condition in Section 3.1.2 to present a novel method for analyzing IBF
efficiency for all possible parameters even in case of partial extraction. The result
is given as Theorem 11. We supplement the theoretical results with experimental
simulations in Section 3.1.3.

Then, in Section 3.2.1 we describe a data synchronization protocol using IBFs.
We identify a hard requirement on knowing the size of the symmetric difference
between the sets to be synchronized. In Section 3.2.2, we present a novel protocol
for data synchronization in case the estimate on the size of symmetric difference
is unknown or inexact. The result is based on our new method in Section 3.1.2
and is given as Lemma 15.

Finally, in Section 3.2.3, we present theoretical estimates on the number of
rounds for the new data synchronization protocol and compare it to numerical
simulations.

39

3.1. Partially extractable invertible Bloom filters

In Section 2.7, invertible Bloom filters were described as an efficient data structure
for storing data. However, it is currently unknown how IBFs behave when we aim
at extracting only a subset of the inserted elements.

The extraction rate rExtract was defined in (2.4) as the ratio between the number
of extracted elements to the total number of inserted elements. In this section, we
estimate the probability of having extraction rate

rExtract < 1.

3.1.1. IBF state matrix representation

Extracting elements from an IBF is similar to iterative decoding of low-density
parity-check (LDPC) codes. Gallager introduced LDPC codes and iterative de-
coding algorithm in [24]. LDPC codes can be used to reconstruct codewords sent
over an erasure channel. By associating the elements which are inserted into an
IBF with variable nodes of the Tanner graph of the parity-check matrix, and by as-
sociating the IBF cells with the check nodes, the Extract() procedure corresponds
to codeword decoding procedure of an LDPC code.

Richardson and Urbanke defined a stopping set as a subset of check nodes such
that there exists no variable node with exactly one edge to the stopping set [57].
If there is a stopping set in a parity-check matrix of an LDPC code, then it is
not possible to recover the erasures of the variable nodes corresponding to the
stopping set. As in the case of IBFs, the goal is to extract all inserted elements
and as such, the existence of any stopping set leads to a failure of the procedure.

Yugawa and Wadayama gave more detailed description of an IBF as a parity
check matrix, which they called state matrix of an IBF in [64]. We give their
description as Definition 4.
Definition 4. The state matrix F of an IBFF which contains f elements x1, . . . ,x f

is a β × f binary matrix which contains f ·h non-zero entries, where the value in
the cell (F)i, j is one if there exists `∈ [h], such that H`(x j) = i and zero otherwise.

We emphasize that as the elements x1, . . . ,x f can be arbitrary, then this repre-
sentation is not sufficient for determining the elements which have been inserted
into the IBF. As such, the state matrix representation allows us to determine which
cells can be used to extract elements from an IBF. After determining these cells,
we have to use the initial IBF where the values of the elements to be extracted are
contained in the val field of these cells.

Due to (2.3), the outputs of the hash functions are distinct for every x ∈ F and
thus the Hamming weight of every column is exactly h. Without loss of generality,
we take

βH ,
β

h

40

and assume that the output of i-th hash function is in the range

[(i−1)βH +1, iβH].

This allows to partition the IBF F as sub-IBFs Fi, i ∈ [h], where every element is
included in only a single cell. Correspondingly, the matrix F can be partitioned
into βH × f submatrices Fi for i ∈ [h]:

F,


F1
F2
...

Fh

 . (3.1)

We now consider the set of these βH × f submatrices, i.e. matrices of column
weight one. We denote the set as

SβH , f , {M : M is βH × f binary matrix with every column of weight 1}.

As the number of weight one vectors is βH and there are f columns, the number
of such matrices is

(βH)
f .

We denote the set of matrices where h state matrices are concatenated as in (3.1)
by
(
SβH , f

)h. The number of such matrices is

(βH)
h f . (3.2)

We can see that if the i-th row of F has Hamming weight one, then it cor-
responds to a count field value 1 in the corresponding i-th cell F [i]. Thus, it is
possible to extract element x j fromF corresponding to the j-th column in F where
one appeared. Such a cell (F)i, j is called a pivot.

If the element x j is removed from F , then in the corresponding state matrix
the j-th column is removed. By removing the j-th column, we can now look
for another row of weight one in the remaining matrix to extract another value.
This process corresponds to the peeling nature of the Extract() procedure and
stops until there are no rows of weight one. As we partitioned the matrix F into
submatrices, then this also means that in every submatrix Fi, i ∈ [h], we have no
row of weight one. The matrix which has no rows of weight one is also called a
stopping matrix. The count of stopping matrices in SβH , f is given by

ζ (βH , f),
∣∣{M ∈ SβH , f : M is a stopping matrix}

∣∣ .

41

Example 11. We continue with the setting of Example 6. The corresponding state
matrix representation F of the IBF F in Example 6 is given as (3.3).

F =

0 1 1 1 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1
0 0 1 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 1 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1
1 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 1 0 0 0 1 0 0 0 0





13 24 98 12
4

13
6

16
1

16
6

16
7

17
5

19
8

19
9

23
2

(3.3)

We have highlighted the pivots in F to indicate which cells allow extracting
the elements. By considering the columns of the pivots, we see that the elements
which can be extracted are 13, 166 and 167. The columns corresponding to the
extracted elements can be removed, and therefore in the next iteration new pivot
elements could appear. �

In [64], the authors proposed a recursive equation for counting the number of
stopping matrices in SβH , f . Their result is given as Theorem 7.
Theorem 7 ([64, Theorem 1]). The number of stopping matrices in SβH , f can be
expressed as

ζ (βH , f) = (βH)
f −

min(βH , f)

∑
i=1

i!
(

βH

i

)(
f
i

)
ζ (βH − i, f − i),

for βH ≥ 1 and f ≥ 1.

42

3.1.2. Counting argument for estimating success probability of
partial IBF extraction

We can now state the first result which gives us the number of such state matrices
from (SβH , f)

h which allow for extraction of at least g elements.
Lemma 8. For IBFs with h hash functions, β cells and f inserted elements, the
number of state matrices allowing to extract at least g elements is

ν(βH , f ,h,g) =
(

f
g

)
∑

b∈[0,g]h
∑b≥g

(
Ψ(g,b)∏

b∈b

[(
βH

b

)
b!ζ (βH −b, f −b)

])
,

where βH =
β

h
and the function Ψ is defined recursively as

Ψ(g,b) =


1 if g = 0 and b = 0
0 if g = 0 and b 6= 0

∏
b∈b

(
g
b

)
−

g−1

∑
i=1

((
g
i

)
Ψ(i,b)

)
otherwise

. (3.4)

Proof. We first consider the case where h = 1 and then extend to a general case
h≥ 1.
h = 1: in order to be able to extract exactly g elements from F = F1, there has
to exist exactly g rows of weight one. We denote the indices of these rows as T
and the indices of columns where these rows have ones as U . We consider the
following non-overlapping submatrices of F:

1. induced by rows-columns pair (T ,U) – as every row and column has only
a single one, then this is a permutation of the identity matrix I;

2. induced by rows-columns pair (T , [f] \U) – as rows T have only a single
one in every row, then this submatrix must be a zero matrix;

3. induced by rows-columns pair ([βH] \ T ,U) – as every column has only a
single one in every row and they were in T , then must be a zero matrix;

4. induced by rows-columns pair ([βH] \ T , [f] \U) – as it is not possible to
extract any further element, then it must be a stopping matrix.

There are (
f
g

)
(3.5)

ways to choose the rows T and (
βH

g

)
(3.6)

ways to choose columns U . Additionally, in case 1 there are

g! (3.7)

43

permutations of I and in case 4

ζ (βH −g, f −g) (3.8)

ways to choose the stopping matrix. For both cases 2 and 3 there is only a single
zero matrix. Thus, to obtain the total number of matrices which allow extracting
g elements, we have to combine different choices, i.e. (3.5), (3.6), (3.7) and (3.8):

ν1(βH , f ,g),
(

f
g

)(
βH

g

)
g!z(βH −g, f −g). (3.9)

Any h: we consider the partition of F into submatrices Fi, i ∈ [h] as given in (3.1).
In order to extract at least g elements, we first can choose the columns where

g elements are extracted from. There are(
f
g

)
(3.10)

ways to choose such columns. We denote the indices of these columns as U .
Now, we consider the individual matrices Fi, i ∈ [h]. We analyze how we can

extract elements from all such matrices. It is not necessary that all g elements are
available for extraction from every matrix Fi, i ∈ [h]. It is sufficient that for every
element there exists at least a single matrix where it can be extracted from. By
denoting the set of column indices where elements are extracted from matrix Fi

as Ui, then this means that we require⋃
i∈[h]
Ui = U .

Alternatively, by denoting bi = |Ui|, b = (b1, . . . ,bh), and the number of ways
to choose the columns Ui, i ∈ [h], as

Ψ(g,b), (3.11)

we obtain that the number of state matrices in SβH , f which allow for extracting bi

elements from Fi is

ν(βH , f ,h,g) =
(

f
g

)
Ψ(g,b)∏

b∈b

[(
βH

b

)
b!ζ (βH −b, f −b)

]
by multiplying (3.9) for every b ∈ b with (3.10) and (3.11).

To iterate over all such Ui, i ∈ [h], which allow to extract at least g elements,
we denote

b ∈ [0,g]h (3.12)

such that
∑b≥ g. (3.13)

44

By summing over all vectors b where (3.12) and condition (3.13) holds, we have

ν(βH , f ,h,g),
(

f
g

)
∑

b∈[0,g]h
∑b≥g

(
Ψ(g,b)∏

b∈b

[(
βH

b

)
b!ζ (βH −b, f −b)

])
.

This completes the first part of the lemma statement.
To prove the second part of the statement, we need to show that the function

Ψ(g,b) counts the number of choices for columns Ui, i ∈ [h], such that⋃
i∈[h]
Ui = U

where bi = |Ui| and b = (b1, . . . ,bh).
First, we define Ψ(g,b) = 0 for the case g = 1 and b = 0, and Ψ(g,b) = 0 for

the case g = 1 and b 6= 0. For g > 0, we first compute all possible ways to choose
every Ui ⊆ U where |Ui|= bi for i ∈ [h], which is

∏
i∈[h]

(
g
bi

)
. (3.14)

However, these assignments also contain the cases where∣∣∪i∈[h]Ui
∣∣= j < g. (3.15)

For every 0≤ j < g, the number of such assignments is

Ψ(j,b)

and there are (
g
j

)
ways to choose ∪i∈[h]Ui such that (3.15) holds. By summing over all 0 ≤ j < g,
we have that the number of unsuitable assignments is

g−1

∑
j=0

((
g
j

)
Ψ(j,b)

)
. (3.16)

By subtracting (3.16) from (3.14), the number of ways to choose the columns
(Ui)i∈[h] becomes

Ψ(g,b), ∏
i∈[h]

(
g
bi

)
−

g−1

∑
j=0

((
g
j

)
Ψ(j,b)

)
.

By rewriting the variables, we obtain the recursive function in the lemma state-
ment.

45

In order to speed up the computations, we also present a non-recursive form of
(3.4) in Corollary 9.
Corollary 9. Recursive equation Ψ(g,b) in Theorem 8 can be written as

Ψ(g,b),
g

∑
i=0

(−1)g−i
(

g
i

)
∏
b∈b

(
i
b

)
(3.17)

for any g≥ 0.

Proof. To prove the claim, we use induction. The claim trivially holds for g = 1.
Let us assume that the claim holds for all 1≤ j ≤ g, i.e.

Ψ(j,b) =
j

∑
i=0

(−1) j−i
(

j
i

)
∏
b∈b

(
i
b

)
. (3.18)

We show that the claim holds also for g+1:

Ψ(g+1,b) = ∏
b∈b

(
g+1

b

)
−

g

∑
j=0

(
g+1

j

)
Ψ(j,b) (3.19)

= ∏
b∈b

(
g+1

b

)
−

g

∑
j=0

(
g+1

j

)[j

∑
i=0

(−1) j−i
(

j
i

)
∏
b∈b

(
i
b

)]
(3.20)

= ∏
b∈b

(
g+1

b

)
−

g

∑
j=0

j

∑
i=0

(−1) j−i
(

g+1
j

)(
j
i

)
∏
b∈b

(
i
b

)
(3.21)

= ∏
b∈b

(
g+1

b

)
−

g

∑
i=0

g

∑
j=0

(−1) j−i
(

g+1
j

)(
j
i

)
∏
b∈b

(
i
b

)
(3.22)

= ∏
b∈b

(
g+1

b

)
−

g

∑
i=0

∏
b∈b

(
i
b

) g

∑
j=0

(−1) j−i
(

g+1
j

)(
j
i

)
(3.23)

= ∏
b∈b

(
g+1

b

)
−

g

∑
i=0

∏
b∈b

(
i
b

) g

∑
j=0

(−1) j−i
(

g+1
i

)(
g+1− i

j− i

)
(3.24)

= ∏
b∈b

(
g+1

b

)
−

g

∑
i=0

(
g+1

i

)
∏
b∈b

(
i
b

) g

∑
j=0

(−1) j−i
(

g+1− i
j− i

)
(3.25)

= ∏
b∈b

(
g+1

b

)
−

g

∑
i=0

(
g+1

i

)
∏
b∈b

(
i
b

)
(−1)g−i (3.26)

= ∏
b∈b

(
g+1

b

)
+

g

∑
i=0

(
g+1

i

)
∏
b∈b

(
i
b

)
(−1)g+1−i (3.27)

= (−1)g+1−(g+1)
(

g+1
g+1

)
∏
b∈b

(
g+1

b

)
+

g

∑
i=0

(
g+1

i

)
∏
b∈b

(
i
b

)
(−1)g+1−i

(3.28)

46

=
g+1

∑
i=0

(
g+1

i

)
∏
b∈b

(
i
b

)
(−1)g+1−i. (3.29)

We get (3.19) from definition (3.4). (3.20) is obtained by applying induc-

tion assumption (3.18). (3.21) is obtained by expanding by
(

g+1
j

)
. (3.22) is

obtained by reordering the indexing variables from 0 ≤ j ≤ g and 0 ≤ i ≤ j to

0 ≤ i ≤ g and 0 ≤ j ≤ g. (3.23) is obtained by grouping by ∏
b∈b

(
i
b

)
. (3.24)

is obtained by applying binomial identity
(

n
m

)(
m
k

)
=

(
n
k

)(
n− k
m− k

)
. (3.25) is

obtained by grouping by
(

g+1
i

)
. (3.26) is obtained by applying binomial iden-

tity
n

∑
k=0

(−1)k
(

n
k

)
= 0. (3.27) is obtained by grouping by −1. (3.28) is obtained

by multiplying by (−1)g+1−(g+1) = 1 and
(

g+1
g+1

)
= 1. (3.29) is obtained by

collecting individual addend in the sum variable.
We see that the induction step holds and thus (3.17) holds for any g ≥ 1. We

also see that (3.17) holds for g = 0 as
(

0
b

)
= 0 for any b ∈ N.

The result in Lemma 10 below gives a lower bound for the probability of being
able to extract a given ratio of elements from an IBF.
Lemma 10. Let the IBF be initialized with β cells and h hash functions. After
choosing uniformly f elements and inserting these elements to an IBF, we denote
the number of elements the procedure Extract() returns as a random variable
YβH ,h, f .

Then, the probability that the number of extracted elements is at least y is lower
bounded by

Pr(YβH ,h, f ≥ y)≥
f

∑
g=y

ν(βH , f ,h,g)
(βH)h f . (3.30)

Proof. The number of all state matrices representing IBFs with β cells, h hash
functions and f inserted elements is given by (3.2). We apply Lemma 8 to obtain
the number of state matrices which allow for extracting at least y elements. The
inequality (3.30) follows by summing over all y≤ g≤ f .

We note that the result of Lemma 8 gives us a lower bound on the number of
state matrices which allow to extract at least g elements. For some state matrices
in (SβH , f)

h, new elements may become available for extraction after g elements
are removed from the initial IBF. Thus, the actual number of extracted elements
is strictly larger or equal to the estimate. However, in Lemma 10, as we sum over
all y≤ g≤ f , we already account for these additional elements.

47

On the other hand, the result in Lemma 8 is exact for g = 0 as the elements
contained in the IBF are not changed. Thus

Pr(YβH ,h, f = 0) =
ζ (βH , f)h

(βH)
h f .

We can now state the complementary result to Theorem 2 which gives the
lower bound for extraction success given an extraction rate.
Theorem 11. An IBF with β cells, h hash functions and f inserted elements fails
to achieve extraction rate rExtract with probability less or equal than

1−
f

∑
g=d f rExtracte

ν(βH , f ,h,g)
(βH)h f .

Proof. In order to achieve the target extraction rate rExtract, due to (2.4) we need
to extract at least y = d f rExtracte elements. As failing to extract at least y elements
is a complementary event to succeeding to extract at least y elements, we can
directly apply Lemma 10.

3.1.3. Experimental results on partial IBF extraction

Before we look at the experimental results, we introduce another result for esti-
mating the probability of failing to extract all elements from an IBF for compari-
son. The result is from [64] and given here as Theorem 12.
Theorem 12 ([64, Theorem 2]). For given β ≥ 1, f ≥ 1 and h≥ 1, the probability
of being able to extract all elements from an IBF is less or equal than

f

∑
i=2

(
f
i

)(
ζ (βH , i)
(βH)i

)h

.

The previous results give the probability that the Extract() procedure fails to
extract all of the inserted elements. However, using Theorem 11 we can compute
the failure probability of the Extract() procedure returning only a subset of the
inserted elements. This allows us to gain additional insight into IBF efficiency in
edge cases.

As mentioned earlier, these result require that the IBFs are initialized with pa-
rameters which provide sufficient overhead. However, this requires prior knowl-
edge on the number of elements being inserted into an IBF. As we later see in
the construction of a data synchronization protocol in Section 3.2, this assump-
tion does not hold and requires additional protocol on top of data synchronization
protocol. Independently, the requirement for prior knowledge of element count
prevents using IBFs in a setting where the elements to be inserted into an IBF are
obtained from a stream.

48

For comparative results, we compute the probabilities for failing to achieve
extraction rate rExtract = 1 using Theorems 2 and 12. For

rExtract ∈ {0.1,0.2,0.5,1} (3.31)

we use Theorem 11.
Additionally, for every choice of parameters, we compare the theoretical es-

timate to the outcome of a numerical simulation. For numerical simulations, for
every run we uniformly sample f elements from a finite field Fp where p is a
256-bit prime. We initialized h hash functions H1, . . .Hh by randomly sampling a
256-bit random seed seedi, i ∈ [h], and defining

Hi(x), (i−1)βH +(SHA-256(seedi | x) mod βH)+1,

where seedi | x is a concatenation of bit-string representations of seedi and x. Us-
ing the elements and hash functions, we initialized an IBF F with β cells and
inserted all sampled elements to F .

For every run, we extract the elements from F , compute and store the extrac-
tion rate rExtract. Finally, we count the number of runs where the actual extraction
rate is above the parameters given in (3.31).

The number of runs for every set of parameters is 10000. The number of cells
in an IBF β is fixed to 120, the number of hash functions is h ∈ {2,3,4,5}, and
the number of inserted elements is f ∈ {20,40,60,80,100,120}. The parameter
choices for the number of hash functions is motivated by simulations from [22],
where h = 3 and h = 4 outperformed other choices. We included h = 2 and h = 5
for additional insight.

The theoretical and simulation results are given in Tables 7, 8, 9 and 10.
In the tables, we denote that Theorem 2 fails if the number of inserted elements

is above the threshold, i.e. f > β χh for χh as given in Table 2. Additionally, for
h = 2, we used the value χ2 = 2. We denote that Theorem 12 fails if the result is
larger or equal to 1.

We observe that the choices for the number of hash functions is critical for
decreasing the probability of extraction failure. However, more specific behavior
also depends on the overhead ratio of IBF cell count to the number of inserted
elements.

If the number of inserted elements equals the number of cells in the IBF,
i.e. overhead ratio of 1, then a smaller number of hash functions allows to par-
tially extract more elements both in simulations and in theory using Theorem 11.
The extraction almost always fails if rExtract ∈ {0.5,1} for all choices of h in sim-
ulation and in theory. The extraction also almost always fails if h ∈ {4,5} and if
rExtract ∈ {0.1,0.2}. However, if h = 2 then it is always possible to extract at least
rExtract = 0.1 elements and almost always possible to extract at least rExtract = 0.2
elements. If h = 3, then it with low failure probability it is possible to extract
rExtract = 0.1 elements and high failure probability rExtract = 0.2 elements.

49

Table 7. IBF extraction failure probabilities for β = 120 and h = 2

f Theorem 2 Theorem 12 rExtract Theorem 11 Simulation

20 1.05 ·10−1 5.64 ·10−2

0.1 2.38 ·10−16 0

0.2 3.48 ·10−13 0

0.5 1.73 ·10−6 0

1 7.40 ·10−1 2.89 ·10−2

40 4.30 ·10−1 3.07 ·10−1

0.1 1.99 ·10−18 0

0.2 1.49 ·10−13 0

0.5 1.58 ·10−4 0

1 1 1.76 ·10−1

60 9.75 ·10−1 fails

0.1 3.68 ·10−17 0

0.2 3.12 ·10−11 0

0.5 3.86 ·10−2 0

1 1 5.19 ·10−1

80 fails fails

0.1 2.86 ·10−14 0

0.2 6.56 ·10−8 0

0.5 7.43 ·10−1 3.60 ·10−3

1 1 9.40 ·10−1

100 fails fails

0.1 1.04 ·10−10 0

0.2 1.34 ·10−4 0

0.5 1 2.82 ·10−1

1 1 1

120 fails fails

0.1 3.67 ·10−7 0

0.2 4.36 ·10−2 7.00 ·10−4

0.5 1 9.84 ·10−1

1 1 1

50

Table 8. IBF extraction failure probabilities for β = 120 and h = 3

f Theorem 2 Theorem 12 rExtract Theorem 11 Simulation

20 1.30 ·10−2 3.00 ·10−3

0.1 1.35 ·10−19 0

0.2 5.11 ·10−16 0

0.5 3.95 ·10−8 0

1 6.58 ·10−1 5.00 ·10−4

40 5.35 ·10−2 1.28 ·10−2

0.1 1.73 ·10−19 0

0.2 2.83 ·10−14 0

0.5 1.51 ·10−4 0

1 1 2.70 ·10−3

60 1.21 ·10−1 3.17 ·10−2

0.1 2.88 ·10−15 0

0.2 1.99 ·10−9 0

0.5 2.37 ·10−1 0

1 1 7.90 ·10−3

80 2.17 ·10−1 fails

0.1 6.80 ·10−10 0

0.2 1.65 ·10−4 0

0.5 9.99 ·10−1 1.40 ·10−3

1 1 3.35 ·10−2

100 fails fails

0.1 3.77 ·10−5 0

0.2 1.92 ·10−1 6.00 ·10−4

0.5 1 5.50 ·10−1

1 1 8.73 ·10−1

120 fails fails

0.1 4.34 ·10−2 4.80 ·10−3

0.2 9.80 ·10−1 3.89 ·10−1

0.5 1 1

1 1 1

51

Table 9. IBF extraction failure probabilities for β = 120 and h = 4

f Theorem 2 Theorem 12 rExtract Theorem 11 Simulation

20 2.38 ·10−3 2.35 ·10−4

0.1 2.11 ·10−3 0

0.2 2.11 ·10−3 0

0.5 2.11 ·10−3 0

1 6.36 ·10−1 0

40 9.77 ·10−3 9.74 ·10−4

0.1 1.84 ·10−3 0

0.2 1.84 ·10−3 0

0.5 2.72 ·10−3 0

1 1 3.00 ·10−4

60 2.22 ·10−2 2.25 ·10−3

0.1 2.95 ·10−3 0

0.2 2.96 ·10−3 0

0.5 8.21 ·10−1 0

1 1 0

80 3.96 ·10−2 fails

0.1 4.93 ·10−3 0

0.2 9.33 ·10−2 1.00 ·10−4

0.5 1 1.85 ·10−2

1 1 2.48 ·10−2

100 fails fails

0.1 1.03 ·10−1 8.60 ·10−3

0.2 9.83 ·10−1 3.38 ·10−1

0.5 1 9.93 ·10−1

1 1 9.99 ·10−1

120 fails fails

0.1 9.03 ·10−1 6.09 ·10−1

0.2 1 9.98 ·10−1

0.5 1 1

1 1 1

52

Table 10. IBF extraction failure probabilities for β = 120 and h = 5

f Theorem 2 Theorem 12 rExtract Theorem 11 Simulation

20 5.71 ·10−4 2.39 ·10−5

0.1 6.39 ·10−3 0

0.2 6.39 ·10−3 0

0.5 6.39 ·10−3 0

1 6.56 ·10−1 0

40 2.34 ·10−3 9.83 ·10−5

0.1 8.52 ·10−3 0

0.2 8.52 ·10−3 0

0.5 1.80 ·10−2 0

1 1 0

60 5.32 ·10−3 2.64 ·10−4

0.1 1.56 ·10−2 0

0.2 1.68 ·10−2 0

0.5 9.97 ·10−1 0

1 1 0

80 9.50 ·10−3 fails

0.1 5.05 ·10−2 1.00 ·10−3

0.2 8.24 ·10−1 5.06 ·10−2

0.5 1 4.29 ·10−1

1 1 4.45 ·10−1

100 fails fails

0.1 8.47 ·10−1 4.94 ·10−1

0.2 1 9.83 ·10−1

0.5 1 1

1 1 1

120 fails fails

0.1 1 9.96 ·10−1

0.2 1 1

0.5 1 1

1 1 1

53

If the overhead ratio is larger than one but smaller than the threshold in Table 2,
then the behavior is similar. The smallest extraction failure probability is obtained
with h = 2 and is slightly larger for h = 3. However, we start seeing that there
are a few cases in simulation where h = 3 allows extracting all elements when
h = 2 does not. For h ∈ {4,5} the failure probability of being able to extract even
rExtract = 0.1 elements is high.

If the overhead ratio is approximately the threshold in Table 2, then with
h ∈ {3,4} the failure probability for extracting all elements is around 10−2 and
h ∈ {2,5} almost always fails. Between h ∈ {3,4}, h = 3 behaves better in case
rExtract < 1.

For the overhead ratio above the threshold in Table 2, larger number of hash
functions ensure that there are less extraction failures. We observed that for ex-
tracting all elements from an IBF, with h = 5 there were no failures, with h = 4
there is a negligible number of failures and with h = 3 the number of failures
was low. However, for h = 2 the failure probability for being able to extract all
elements is high.

In conclusion, even though if the overhead ratio is fixed, other h values are
optimal, then h = 3 is the best choice for different cases while having close to
optimal extraction failure probabilities.

3.2. Iterative data synchronization

3.2.1. Data synchronization using IBFs

Data synchronization using IBFs was first proposed in [28] and then studied
in [22]. In this section, we remind the construction in [28] and consider an im-
provement using partially extractable IBFs as proposed in the previous section.

Let the network consist of two nodes A and B. The nodes have the correspond-
ing sets SA ⊆ F and SB ⊆ F. We denote the symmetric difference of the sets as

S∆ , SA4SB

and its cardinality as
d , |S∆| . (3.32)

We additionally define a procedure Add() for adding two IBFs F1 and F2
which contains all elements inserted into F1 and F2. The description of the pro-
cedure Add() is given in Algorithm 6. Even though the current description is
given for two input IBFs, we see that the description could trivially be generalized
to any number of input IBFs.

By comparing the definitions of procedures Insert() and Add() (Algorithms 2
and 6), we can see that the IBF F returned by Add() procedure is constructed as
if all the elements inserted into F1 and F2 were inserted to F . Thus, all the results
applying to an individual IBF F ′ apply to IBF which is obtained using Add()
procedure.

54

Algorithm 6 Add two IBFs
1: procedure Add(F1,F2)
2: F ← Init(h,β ,F,F′)
3: for all j ∈ [β] do
4: c j←F [j]
5: c̄ j←F1[j]
6: ĉ j←F2[j]
7: c j.count← c̄ j.count+ ĉ j.count
8: c j.val← c̄ j.val+ ĉ j.val
9: c j.ch← c̄ j.ch+ ĉ j.ch

10: F [j]← c j

11: return F

For a two-node data synchronization protocol we assume that the domain of
elements is F2n , the checksum hash range is F2γ and the count field is defined
over F2. In this case, the addition of the elements in the corresponding fields in an
IBF cell corresponds to the bit-wise XOR operation.

A high-level idea of the data synchronization protocol between the two nodes
is that the nodes construct IBFs FA and FB of their sets and exchange them. The
exchanged IBFs are then added to the local IBFs, resulting in an IBF F which
contain elements both from SA and SB. Due to Lemma 1, the resulting IBF would
allow to extract the elements in the union of the sets if the initial IBF are con-
structed with large enough β .

However, as we required that the IBFs are defined over a binary field, we
obtain a significant performance improvement. As the elements which belong to
the intersection SA∩SB appear both in FA and FB, then during the addition they
cancel out as x+ x = 0 for any x in F2 and the corresponding extension fields
F2n and F2γ . Thus, the resulting F obtained by adding the IBFs contain only the
elements in the symmetric set difference S∆.

Now, if the nodes A and B have an estimate d̃ on the size of S∆, they can
initialize their IBFs such that all elements can be extracted from F . The protocol
that summarizes the high-level description is given in Protocol 4.

We formally give the result on the correctness of the Protocol 4 as Lemma 13.
Lemma 13. If p= 2 and d̃≥ d, then pairwise data synchronization protocol given
in Protocol 4 is correct with probability O(d̃−h+2).

Proof. Follows directly from previous discussion and Theorem 2.

In order for Protocol 4 to function properly, there needs to be an initial estimate
on the size of symmetric difference. In [22], the authors describe a data structure
called Strata Estimator. The idea of Strata Estimator is to split the domain F2n

into n partitions F21 , . . . ,F2n of increasing size and perform data synchronization
between elements of the corresponding partitions. When encountering a partition

55

Protocol 4 Pairwise data synchronization

Label
Π4

Network topology
Nodes V = {A,B}, edges E = {(A,B),(B,A)}.
Randomness model
Private randomness
Input
Node A possesses SA and B possesses SB.
Goal
Both nodes obtain SREC = SA∪SB.
Offline phase
Nodes have estimated the size d̃ of symmetric set difference SA4SB. Nodes have
agreed on h and γ .
Online phase

r = 1
Computation phase

1. Node A initializes FA← Init(h,χhd̃,F2n ,F2γ).
2. Node B initializes FB← Init(h,χhd̃,F2n ,F2γ).
3. For every x ∈ SA node A does Insert(FA,x).
4. For every x ∈ SB node B does Insert(FB,x).

Transmission phase
5. Node A transmits FA to node B.
6. Node B transmits FB to node A.

Recovery phase
7. Nodes A and B compute F∆← Add(FA,FB).
8. Nodes A and B extract S∆← Extract(F∆).
9. Node A obtains SREC←SA∪S∆.

10. Node B obtains SREC←SB∪S∆.

where the protocol fails, the parties can estimate the actual difference size from
the failing partition.

We describe the procedures StrataEncode() and StrataDecode() for construct-
ing a Strata Estimator and using it for estimating the size difference in Algo-
rithms 7 and 8.

The procedure StrataEncode() uses an hash function Hstrata : F2n → F2n which
ensures that the output is uniformly distributed in F2n . By counting the number of
trailing zeroes in the output, the procedure decides on an IBF where the element
is inserted. As the number of trailing zeroes is unique for every element, then we
obtain partitions of F2n of decreasing sizes. The procedure outputs the array of
IBF for transfer.

56

Algorithm 7 Encode a Strata Estimator
1: procedure StrataEncode(S)
2: for all i ∈ [n] do
3: Fi← Init(h,β ,F2n ,F2γ)

4: for all x ∈ S do
5: i← TrailingZeroes(Hstrata(x))
6: Insert(Fi,x)
7: Q← 〈F1, . . . ,Fn〉
8: return Q

We also note that the parameters for constructing the IBFs are defined on the
protocol level. It was suggested in [22] to have h = 4 and β = 80.

Algorithm 8 Decode a Strata Estimator
1: procedure StrataDecode(Q,S)
2: count← 0
3: Q′← StrataEncode(S)
4: i← n
5: while i≥ 0 do
6: Fi← Add(Q[i],Q′[i])
7: Si← Extract(Fi)
8: if |Fi|> 0 then
9: return 2i+1 ·count

10: count← count+ |Si|
11: i← i−1
12: return count

The StrataDecode() procedure receives the encoded strata and a local has-
set. It starts looping over from IBF which corresponds to the smallest partition
and constructs the IBF which corresponds to the symmetric set difference. If
the decoding of IBF succeeds, then the number of extracted elements are added
to the count and the procedure continues with an IBF corresponding to a larger
partition. However, if complete extraction fails from the IBF, then the procedure
assumes that the rest of IBFs contain the same proportion of elements and returns
the approximation.

The following Theorem 14 states that for any given error rate, it is possible
to construct a Strata Estimator which approximates the actual difference size. By
combining it with Protocol 4, it is possible to obtain a complete pairwise data
synchronization protocol.
Theorem 14 ([22, Theorem 2]). Let ε and δ be constants in the interval (0,1), an
let SA and SB be two sets where (3.32) holds. If we encode the two sets with Strata
Estimator, in which each IBF in the estimator has β cells using h hash functions,
where β and h depend only on ε and δ , then with probability at least 1− ε it is
possible to estimate d within a factor of 1±δ .

57

3.2.2. Iterative data synchronization

We propose an alternative approach for data synchronization which allows for un-
derestimating the size of symmetric difference d. For example, in order to have a
compact Strata Estimator, the parameters in Theorem 14 have to be chosen care-
fully to balance between the estimator size and its error rate. If the parameters
are chosen inadequately, the Strata Estimator outputs an underestimation and Pro-
tocol 4 fails. With the use of a protocol which allows underestimation, it is still
possible to recover and perform full data synchronization.

For the description of the improved protocol, we need an additional hash func-
tion Hset which is used for testing set equality. It takes as input a subset of F2n and
outputs a short value to ensure low collision rate, e.g. in F2256 . For defining the
hash functions Hi, i ∈ [h], we assume that there exists well-defined hash function
H and define

Hi(x), (i−1)βH +(H(seedi | x) mod βH)+1, (3.33)

using randomly sampled seed seedi. The description of Hi is then given as (seedi, i).
The full description for iterative data synchronization protocol between two

parties is given in Protocol 5. We show in Lemma 15 that with probability close
to 1, the protocol succeeds to synchronize the sets for any estimate d̃.

The following Lemma 15 shows that for any estimate d̃ the protocol is correct.

Lemma 15. For any initial has-sets S(1)A and S(1)B , Protocol 5 terminates with
high probability with both A and B possessing S(1)A ∪S

(1)
B if βH > 1.

Proof. Similarly to the discussion in proof of Lemma 13, we observe that the IBF
F (r)

∆
corresponds to the set S(r)A 4S

(r)
B and thus the extracted elements S(r)

∆
is a

subset of S(r)A 4S
(r)
B .

If in a round r we have
∣∣∣S(r)∆

∣∣∣> 0, then

S(r+1)
A 4S(r+1)

B (S(r)A 4S
(r)
B

and after sufficient number of rounds there exists r′ such that

S(r
′)

A 4S
(r′)
B

which corresponds to S(r
′)

A = S(r
′)

B .

We now ensure that the probability that
∣∣∣S(r)∆

∣∣∣> 0 is non-zero. This holds due
to Lemma 10 by taking y = 1 as ν(βH , f ,h,1)> 0 if βH > 1.

3.2.3. Experimental results

As the number of rounds in Protocol 5 is not deterministic and the parties halt the
protocol only if the corresponding set-hashes Hset(S(r)A) and Hset(S(r)B) are equal in

58

Protocol 5 Iterative pairwise data synchronization

Label
Π5

Network topology
Nodes V = {A,B}, edges E = {(A,B),(B,A)}.
Randomness model
Private randomness
Input

Nodes A and B have initial has-sets S(1)A and S(1)B .
Goal
Both nodes obtain SREC = S(1)A ∪S

(1)
B .

Offline phase
Nodes have agreed on d̃, h and γ .
Online phase

For r ∈ N
Computation phase

1. Node A computes ch(r)A = Hset(S(r)A).

2. Node B computes ch(r)B = Hset(S(r)B).

3. Node A samples seed(r)i for i ∈ [h].

4. Node A initializes F (r)
A ← Init(h,χhd̃,F2n ,F2γ) using hash functions as

in (3.33) with seed(r)i , i ∈ [h].

5. For every x ∈ S(r)A , node A does Insert(F (r)
A ,x).

Transmission phase
6. Node A transmits ch(r)A to B.

7. Node B checks that ch(r)A 6= ch
(r)
B and aborts otherwise.

8. Node A transmits seed(r)i , i ∈ [h].

9. Node A transmits F (r)
A .

Recovery phase
10. Node B initializes F (r)

B using hash functions with received seed(r)i , i ∈
[h].

11. For every x ∈ S(r)B , node B does Insert(F (r)
A ,x).

12. Node B computes F (r)
∆
← Add(F (r)

A ,F (r)
B).

13. Node B extracts S(r)
∆
← Extract(F (r)

∆
).

14. Node B takes S(r+1)
B ←S(r)B ∪S

(r)
∆

.
15. Nodes A and B swap sides, take r← r+1 and go to step 1

59

Step 7, then it would be beneficial to be able to estimate the approximate number
of rounds in the protocol. In this section, we apply the analysis of absorbing
Markov chains for estimating the number of protocols rounds. Additionally, we
compare the estimated values against the simulated runs.

Define the sequence of the random variables R(i), i ≥ 0, whose values denote
the number of the elements in the symmetric difference SA4SB after completion
of round i in Protocol 5. In the sequel, we call the variable R(i) the i-th state
of the protocol. We remark that the transition from the state R(i) into the next
state R(i+1) does not depend on the states R(j) for j < i, thus forming a Markov
chain. It follows from Lemma 15 that for any its realization, the sequence R(i) is
monotonically non-increasing with i, and it approaches 0 for i→ ∞.

Next, we use Lemma 8 and the counting argument from the proof of Theorem 2
for estimation of the transition probabilities between different states. If R(i) ≥
β/χh, then from Lemma 8 we have:

Pr(R(i+1) = f −g | R(i) = f) =
ν(βH , f ,h,g)

β
h f
H

. (3.34)

For R(i)< β/χh it was observed in [28] and [64] that the extraction failure prob-
ability was dominated by the case where two elements were inserted in the same
IBF cells. From (2.5), this yields the probability that two elements are left in the
IBF after extraction as

Pr
(

R(i+1) = 2 | R(i)< β

χh

)
=

(
f
2

)(
β

h

)(
h
β

)2h

, (3.35)

and the probability that all elements are successfully extracted is

Pr
(

R(i+1) = 0 | R(i)< β

χh

)
= 1−

(
f
2

)(
β

h

)(
h
β

)2h

. (3.36)

We observe that the result of Lemma 8 yields a lower bound on the number
of extracted elements. Thus, the expected number of steps obtained from the
relations (3.34), (3.35) and (3.36) imply an upper bound on the expected number
of rounds in Protocol 5.

We compute the expected number of steps for β = 120, h ∈ {2,3,4,5} and
f ∈ [20,200]. For h = 2, we used χ2 = 2. For h > 2, the values of χh are as
in Table 2. The results are shown in Figures 10 for the case f < β/χh (where
relations (3.35) and (3.36) apply) and Figure 11 for the case f ≥ β/χh (where
relation (3.34) applies).

We compare the numerical bounds with the simulation results, for the same
choices of β , h and f ∈ [20,200]. For every set of parameters, we ran the protocol
100 times with randomly chosen elements and hash functions. The elements are
chosen from F uniformly at random, one by one, while ensuring that the same

60

element is not chosen twice. The domain F is the field of 256-bit long integers
modulo the prime number

p =11579208923731619542357098500868790785326998466564

0564039457584007913129640233.

For the hash functions, we use the 256-bit long version of SHA-2 with uni-
formly chosen 32-bit long random seeds [53]. The received value is converted
into an integer, and its residue modulo βH is used as the index of the cell in the
subfilter. The average number of rounds for full data synchronization are shown
in Figures 10 and 11 by using solid lines.

In Figure 10, we can see that for some cases, the number of rounds for full
data synchronization exceeds the theoretical bounds. This is due to the claim
in the proof of Theorem 2 that the failure probability of extracting all elements
is dominated by the case where two elements remain in the IBF. This claim in
general holds for the case β → ∞. For fixed values of β , the probability of cases
of having three- or more elements collide in the IBF is non-negligible and the
bound given by (3.35)-(3.36) does not take these cases into account.

We observe in Figure 11 that the analytical estimates are quite close to the sim-
ulated results. We also observe that, for the selected parameters, the number of
rounds is smaller for h ∈ {3,4} than for h = 5 in both under- and over-threshold
IBFs. By comparing the results for h = 3 and h = 4, we observe that the perfor-
mance is similar for the under-threshold IBF, but the choice h = 3 allows for a
smaller number of rounds for over-threshold IBF. Since the threshold for h = 3 is
larger than for h = 4, larger number of elements can be synchronized in a single
round. We also observe that for h = 2, the protocol underperforms when IBF is
under-threshold. In this case the performance is weaker than for h = 3 if f ≤ β ,
yet it allows for a smaller number of rounds in the case where f > β .

61

20 30 40 50 60 70 80 90 100

100

100.2

100.4

f

ro
un

ds
h = 2

h = 2 bound
h = 3

h = 3 bound
h = 4

h = 4 bound
h = 5

h = 5 bound

Figure 10. Comparison of experimental and theoretical number of rounds for iterative
data synchronization when f < β/χ . Relations (3.35) and (3.36) are used to compute the
upper bound.

60 80 100 120 140 160 180 200

100

101

102

f

ro
un

ds

h = 2
h = 2 bound

h = 3
h = 3 bound

h = 4
h = 4 bound

h = 5
h = 5 bound

Figure 11. Comparison of experimental and theoretical number of rounds for iterative
data synchronization when f ≥ β/χ . Relation (3.34) is used to compute the upper bound.

62

4. DATA DISSEMINATION PROBLEM

In this chapter, we generalize the index coding and data exchange problem de-
fined in Sections 2.8.1 and 2.8.2. For that, we first give a definition of ρ-solvable
network in Section 4.1.

In Section 4.1.1 we consider 1-solvable network topologies and give a com-
plete description of an optimal protocol which satisfies the requests of all nodes
in a single round. The main result is given as Theorem 18.

We extend the method to any ρ-solvable network topology in Section 4.1.2.
In order to solve the data distribution problem in arbitrary networks, we present a
new algebra which allows to apply matrix operations to study the data dissemina-
tion in the network over many rounds. The main result is given as Theorem 24.

We conclude the chapter with the simulation results in Section 4.2.

63

4.1. Data distribution problem in an arbitrary network

In this section, we generalize and extend the results in Sections 2.8.1 and 2.8.2 to
different types of network topologies.

To recall the setting from Section 2.8, there is an information vector x =
(x1, . . . ,xk) ∈ Fk of length k. Every node already knows some elements of the
information vector. For every node vi ∈ V , the indices of the known elements are
denoted as Zvi ⊆ [k]. Every node also requests some of the elements of x it is
missing. The indices of requested elements are denoted as Tvi ⊆ [k].

We assume that the transmissions are broadcast and the protocols are determin-
istic. As described in Section 2.3.1, we assume in general that the transmissions
are performed in rounds and we denote the number of rounds in the protocol as ρ .

When considering different network topologies and assignment of has- and
request-sets to the nodes, the specific data distribution problem instance may not
always allow to construct a protocol where every node can recover the elements
in the request-set. In order to ensure that the instance can be solved, we introduce
the following definition which allows us to consider the feasibility of the data
distribution problem instance.
Definition 5. Consider a network topology based on the graph G = (V,E). The
assignment of the sets Zvi and Tvi is called feasible if for any j ∈ Tvi , vi ∈ V , there
exists a node v` ∈ V with j ∈ Zv` such that there is a finite directed path from ` to
i in G.

Definition 5 describes the condition for existence of a protocol, in which the
nodes recover the requested elements. This can be achieved by transmitting the
un-encoded elements from every node until all requests are eventually satisfied.
Next, we define a measure on the minimal number of rounds in any protocol for a
feasible instance of data distribution problem.
Definition 6. The network topology based on the graph G = (V,E) is said to be
ρ-solvable, ρ ∈ N, if for any feasible assignment of the sets Zvi and Tvi , vi ∈ V ,
ρ communication rounds are sufficient for the protocol to satisfy all the node
requests, but ρ−1 rounds are not sufficient. If the network is not ρ-solvable for
any ρ ∈ N, then we say that it is not solvable.

The following simple Lemma 16 defines the condition for a data distribution
problem to be ρ-solvable.
Lemma 16. The network topology based on graph G = (V,E) is ρ-solvable for
some ρ ∈ N if the maximum of the shortest length directed path from the node vi

to the node v j for any two nodes vi,v j ∈ V is exactly ρ .

Proof. Let there be a network topology G such that ρ is the maximum of the short-
est length between any nodes vi,v j ∈ V . Then, if all nodes transmit all elements
in their current has-sets in every round, all nodes recover all elements in at least ρ

rounds. This ensures that every node also recovers all requested elements.

64

On the other hand, let vi and v j be specific nodes where the shortest path be-
tween them has length ρ . Define Zvi = {1} and Zv` =∅ for v` ∈ V \{vi}. Define
Tv j = {1} and Tv` =∅ for all v` ∈ V \{v j}. Then, for any protocol we require at
least ρ rounds to satisfy request of node v j.

Next, we also define matrix representation of a graph which allows us to apply
algebraic methods to compute the ρ-solvability for ρ .
Definition 7. Let the number of nodes in a graph G = (V,E) be u = |V|. The
transposed u× u-dimensional integer matrix D is called adjacency matrix of a
graph G if

(D)i, j =


1 if (v j,vi) ∈ E
1 if i = j
0 otherwise

.

Ones on the main diagonal indicate that the nodes retain their memory over
rounds.
Corollary 17. The network topology based on the graph G = (V,E) is ρ-solvable
if ρ is the smallest integer, ρ > 0, such that all the entries in the matrix Dρ are
strictly positive.

Proof. The network topology corresponding to a graph G which is ρ-solvable has
diameter ρ . It is well-known result that the lowest power of the corresponding ad-
jacency matrix where all elements are non-zero, the exponent yields the diameter
of the graph [18].

4.1.1. 1-solvable networks

In this section, we consider the data distribution problem instances, where the
underlying network is 1-solvable.

Similarly to Section 2.8.2, we define a set Pvi ⊆ SF
k×k of k× k-dimensional

matrices for every node vi ∈ V:

Pvi , {Yvi ∈ SF
k×k : ∀` ∈ [k],(Yvi)`, j = 0 if j 6∈ Zvi}. (4.1)

Similarly, we define the set of matrices P ⊆ SF
uk×k which is a set of matrices

consisting of concatenation of matrices in Pvi for every vi:

P,


Yv1

...
Yvu

 : Yvi ∈ Pvi

 . (4.2)

Given the in-neighborsWin(vi) = {v1, . . . ,vη} of the node vi and a matrix Y ∈
P, we denote by YWin(vi)

the matrix

YWin(vi)
,

Yv1
...

Yvη

 .

65

For every node vi ∈ V we define the k× k-dimensional information matrix Qvi

where

(Qvi)`, j =

{
1 if `= j and j ∈ Zvi

0 otherwise
. (4.3)

Similarly, for every node vi we define k× k-dimensional query matrix Tvi where

(Tvi)`, j =

{
1 if `= j and j ∈ Tvi

0 otherwise
. (4.4)

We can now present the first result which generalizes the result of Theorem 5
to any network topology which is 1-solvable.
Theorem 18. Let the network topology based on graph G = (V,E) be 1-solvable.
Let P be a set of uk× k-dimensional matrices as defined in (4.2). For every node
vi ∈ V the matrices Qvi and Tvi are defined as in (4.3) and (4.4), respectively.
There exists a protocol with a single round to satisfy the requests of all nodes V
using π packets, where

π = min
Y∈P ∑

vi∈V
rank(Yvi), (4.5)

subject to following constraint for every vi ∈ V:

rowspace
([

YWin(vi)

Qvi

])
⊇ rowspace(Tvi). (4.6)

Additionally, such a protocol has the minimal number of transmitted packets
over all linear protocols satisfying the node demands. If there is no such matrix
Y ∈ P which satisfies the constraints (4.6), then there is no linear protocol which
satisfies the demands of the nodes’ in a single round.

Before we prove Theorem 18, we first state two technical Lemmas 19 and 20.
Lemma 19. Let V be an ambient vector space and W ⊆V be a linear subspace.
If there is a vector x ∈ V such that x 6∈W, then there exists y ∈W> such that
x ·y 6= 0.

Proof. Assume that there exists x ∈ V such that x 6∈ W . Suppose that for all
y ∈W> we have x · y = 0. This implies that x belongs to the dual space of W>.
However, as the dual space of a dual space is the space itself, then this implies
that x ∈W which contradicts the assumption. Thus, there must exist y ∈W> such
that x ·y 6= 0.

Lemma 20. Let V be an ambient vector space and W ⊆V be a linear subspace.
If x ∈W>, then for every subspace U ⊆W and for every vector y ∈U we have
x ·y = 0.

Proof. Let x ∈W>. By picking any y ∈U we have that y ∈W as U ⊆W . Thus,
by the definition of the dual space we have x ·y = 0.

66

Proof of Theorem 18. We prove the claim in two steps. First, we show that if there
exists a matrix Y ∈ P such that the conditions (4.6) hold, then we can construct a
protocol which allows to satisfy all the requests of the nodes.

In the second step, we show that for any protocol which satisfies the requests
of the nodes, we can construct a corresponding matrix Y ∈ P which satisfies the
constraints (4.6). This also implies that if there is no such matrix Y∈ P, then there
is no one-round protocol.

1. Existence of the protocol:
We define the encoding and decoding functions for every node vi ∈ V such
that every node can recover the requested elements described by the indices
Tvi .
Let Y ∈ P be the matrix which minimizes (4.5) such that (4.6) holds for all
vi ∈ V . We can assume that for every partition Yvi the first rank(Yvi) rows
span the whole rowspace(Yvi). Denote the rank of Yvi as πvi .
As (4.6) holds, this means that for every t ∈ Tvi by (4.3) and (4.4) we have
that there is a vector et as a row in Tvi and it can be written as a linear
combination of rows in YWin(vi)

and Qvi :

et = ∑
v`∈Win(vi)

∑
j∈[πv`]

λv`, jY
[j]
v` + ∑

j∈[k]
α jQ

[j]
vi , (4.7)

where λv`, j and α j are elements in F.
Given et , we can now recover xt by et · x = xt . By replacing into (4.7), we
get

xt = ∑
v`∈Win(vi)

∑
j∈[πv`]

λv`, j(Y
[j]
v` ·x)+ ∑

j∈[k]
α j(Q

[j]
vi ·x), (4.8)

Then, every node v` transmits the packets

(Y[j]
v` ·x) j∈[πv`]

(4.9)

to all out-neighbors. Due to (4.1), the packets are computed using the ele-
ments the node v` possesses and thus is correctly defined.
Every node vi can compute (Q[j]

vi ·x) using the elements it possess and thus
it can recover every requested element xt for t ∈ Tvi using (4.8).
As every node vi sends πv` = rank(Yvi) number of packets,

π = ∑
vi∈V

πv` = ∑
vi∈V

rank(Yvi)

gives the total number of sent packets over all nodes.
2. Minimality of the number of transmitted packets:

Assume, that there exists an optimal linear protocol satisfying the requests
of the nodes where the total number of packets which are sent is π

opt.

67

Because we consider linear protocols, then this means that there exists a
π
opt
vi
× k-dimensional matrix Yvi for every node vi such that the node trans-

mits the packets
(Y[j]

vi ·x) j∈[πopt
vi].

As every node transmits π
opt
vi

packets, the total number of transmitted pack-
ets can be written as

π
opt = ∑

vi∈V
π
opt
vi

.

Next, we show that for all nodes vi, if the node has requested for an element
xt , i.e. t ∈ Tvi , then the unit vector et belongs to the vector space Wvi ⊆ Fk,
where

Wvi , ∑
v`∈Win(vi)

rowspace(Yv`)+ rowspace(Qvi). (4.10)

For that, we fix a node vi ∈ V and t ∈ Tvi . In contrary, lets assume that
et 6∈Wvi . Due to Lemma 19, there must exist some information vector x
such that

et ·x 6= 0. (4.11)

From (4.10) and Lemma 20 we have that x ·Y[j]
v` = 0 for every v` ∈Win(vi)

and j ∈ [πopt
v`] as rowspace(Yv`) ⊆Wvi . Similarly, due to (4.3) we have

x · e j = 0 for all j ∈ Zvi . Rephrasing, this means that

• every node v` ∈Win(vi) transmits only zeroes;
• the side information available to node vi is only zeroes.

The only vector which satisfies these requirements is 0. However, due
to (4.11), we had that x had nonzero element at location t and thus x 6= 0.
Thus we have a contradiction and et ∈Wvi .
Now, we construct a matrix Yvi which belongs to the matrix set Pvi for every
node vi. We define

Y[j]
vi =

{
Y[j]

vi if j ∈ [πopt
v`]

0 otherwise
. (4.12)

As we did not add any vectors to the rowspace(Yvi), then rowspace(Yvi) =
rowspace(Yvi) and we have

Wvi , ∑
v`∈Win(vi)

rowspace(Yv`)+ rowspace(Qvi)

As

∑
v`∈Win(vi)

rowspace(Yv`)+ rowspace(Qvi) = rowspace
([

YWin(vi)

Qvi

])
,

68

we obtain that (4.6) holds.
Finally, due to definition of Yvi in (4.12), we have that rank(Yvi)≤ π

opt
vi

for
every vi ∈ V . Thus also the total number of transmissions is subject to

∑
vi∈V

rank(Yvi)≤ π
opt.

As we assumed that the number of transmission in the protocol is optimal,
we get

∑
vi∈V

rank(Yvi) = π
opt.

Thus, also (4.5) also holds.

Theorem 18 describes only the communication complexity of data distribution
problem in 1-solvable networks. The protocol which achieves the minimal num-
ber of transmitted bits is obtained by solving a matrix rank minimization problem
which is on its own is an NP-hard problem [23]. However, if the set of matrices P
is restricted, then faster methods exist for solving the minimization problem [4].
Alternatively, an approximate solution to matrix rank minimization can be found
efficiently [46].
Example 12. Trivially, both a star and a complete graph are 1-solvable. This
allows to use Theorem 18 for constructing protocols for both index coding and
data exchange problem instances. �

To conclude this section, we give the complete protocol for data distribution
problem in 1-solvable networks. The protocol description is given in Protocol 6.

We emphasize that the computation complexity of Protocol 6 is dominated
by the offline phase of determining the encoding and decoding functions. In the
online phase, every node v only computes πv inner products to encode and πv + k
multiplications to decode the packets.
Example 13. Consider an example network in Figure 12. There are five nodes
v1, v2, v3, v4 and v5, which in total possesses three bits of information x1, x2 and
x3. We see that for any feasible assignment of has- and request-sets the requests
could be satisfied in a single round, i.e. the network topology is 1-solvable.

The has-sets of the nodes are given through the corresponding indices of the
information vector, i.e.

Zv1 = {1,2}, Zv2 = {2,3}, Zv3 = {1}, Zv4 = {2}, Zv5 = {1,3}.

The request-sets are also given through the indices of the information vector, i.e.

Tv3 = {2,3}, Tv4 = {1,3}, Tv5 = {2}.

69

Protocol 6 Data distribution in 1-solvable networks

Label
Π6

Network topology
1-solvable network with u nodes V .
Randomness model
Deterministic
Input
Information vector x = (x1, . . . ,xk). Node vi ∈ V possesses subset described by
indices Zvi .
Goal
Node vi ∈ V requests subset of information vector described by indices Tvi .
Offline phase
The oracle finds Y ∈ P which minimizes (4.5) such that (4.6) holds for every
vi ∈V . For every node vi ∈V , the oracle defines encoding functions Evi as in (4.9)
and for every requested index j ∈ Zvi the oracle defines decoding functions Dvi, j

as in (4.8).
Online phase

r = 1
Computation phase

1. Every node vi computes packet pvi = Evi(Svi).
Transmission phase

2. Every node vi transmits pvi to out-neighbors inWout(vi).
Recovery phase

3. Every node vi uses received packets (pv`)v`∈Win(vi)
to compute the re-

quested element for all j ∈ Tvi as x j = Dvi, j(Svi ,(pv`)v`∈Win(vi)
).

The corresponding information and query matrices are

Qv1 =

1 0 0
0 1 0
0 0 0

 ,Qv2 =

0 0 0
0 1 0
0 0 1

 ,Qv3 =

1 0 0
0 0 0
0 0 0

 ,
Qv4 =

0 0 0
0 1 0
0 0 0

 ,Qv5 =

1 0 0
0 0 0
0 0 1

 ,
Tv3 =

0 0 0
0 1 0
0 0 1

 ,Tv4 =

1 0 0
0 0 0
0 0 1

 ,Tv5 =

0 0 0
0 1 0
0 0 0


and Tv1 = Tv2 = Z.

70

v1 v2

has x1, x2 has x2, x3

v3 v4 v5

has x1 has x2 has x1, x3

requests x2, x3 requests x1, x3 requests x2

Figure 12. Example of an 1-solvable network

By choosing Y ∈ P such that

Yv1 =

1 1 0
0 0 0
0 0 0

 ,Yv2 =

0 1 1
0 0 0
0 0 0

 ,Yv3 = Yv4 = Yv5 = Z.

For these choices, we can confirm that the following inclusions hold:

rowspace

Yv1

Yv2

Qv3

⊇ rowspace(Tv3),

rowspace

Yv1

Yv2

Qv4

⊇ rowspace(Tv4),

rowspace
[

Yv2

Qv5

]
⊇ rowspace(Tv5).

This means that the constraints (4.6) hold. We can verify through iterative search
that such matrix Y has also minimal rank over all matrices in P. By Theorem 18
we have that there exists a protocol for allowing all nodes to recover their requests
and that it is optimal. The transmissions corresponding to Y are x1 + x2 by the
node v2 and x2 + x3 by the node v2.

�

4.1.2. Arbitrary networks

In this section, we consider a more general scenario. We allow the underlying
network topology to be any strongly connected graph G = (V,E). The information

71

vector is x ∈ Fk and every node v ∈ V possess a subset of it described by indices
Zv and requests all missing elements, i.e. Tv = [k]\Zv.

Even though the graph in Section 4.1.1 is allowed to be arbitrary, it is required
that the data distribution problem instance has to be 1-solvable as in Definition 6.
In this section, we consider instances, which are not 1-solvable.

Next, we give a very simple lower bound on the number of transmissions in
Lemma 21.
Lemma 21. For any node vi ∈ V and for any j ∈ [k], we denote by µvi(j) the
shortest path from any node v` ∈ V to vi such that j ∈ Zv`:

µvi(j), min
tvi ,v`∈Lvi ,v`

j∈Zv`

|tvi,v` | ,

Furthermore, we denote

µvi , ∑
j∈Tvi

µvi(j)

and
µmax ,max

vi∈V
µvi .

Then, the minimum number of transmissions in any protocol for data distribution
which satisfies the requests of all nodes is at least µmax.

Proof. Let v` be the node which maximizes µmax. We see that the value µv` de-
notes the minimum number of transmissions which allows to recover the requests
of v`. As there may be additional transmissions for enabling other nodes to recover
their requests, then µmax = µv` yields a lower bound on the number of transmis-
sions.

We use the definition of sets of matrices Pvi ⊆ SF
k×k, vi ∈ V as in (4.1) and

P⊆ SF
uk×k as in (4.2). However, we give an alternative representation which allows

us to apply algebraic operations on the sets of matrices. For that, we define a
symbol ? which can take any value in the field F. Now, for node vi ∈ V , we define
the set of matrices Pvi as a k× k-dimensional matrix over F? , F∪{?} such that

(Pvi) j,` =

{
? if ` ∈ Zvi

0 otherwise
(4.13)

and P as a concatenation of Pvi in matrix form

P,

Pv1
...

Pvu

 (4.14)

Now, we give some definitions for the matrix representation of the set of ma-
trices.

72

Definition 8. The maximum rank of the set of matrices P is defined as

max-rank(P),max
Y∈P

rank(Y).

Definition 9. Let Pvi be a set of matrices as in (4.13). The operator Γ() takes as
input Pvi and outputs a matrix Nvi ∈ Pvi where

(Nvi) j,` =

{
1 if j = ` and (Pvi) j,` = ?

0 otherwise
.

Furthermore, the operator Γvi() takes as input P as defined in (4.14) and outputs
Γ(Pvi).

Essentially, Definition 9 generalizes the description of information matrix in (4.3).
Example 14. Let Pvi be

Pvi =


? 0 ? ?
? 0 ? ?
? 0 ? ?
? 0 ? ?

 .
Then,

Γ(Pvi) =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 .
�

Definition 10. Let x,y ∈ F?. Then the sum of x and y is defined as

x+ y,

{
? if x = ? or y = ?

x+ y otherwise
.

Definition 11. Let x,y ∈ F?. Then the product of x and y is defined as

x · y,


0 if x = 0 or y = 0
? if (x = ?,y 6= 0) or (x 6= 0,y = ?)

x · y otherwise

.

The addition and multiplication of matrices over F? corresponds to usual ma-
trix addition and multiplication where the element-wise operations are performed
as in Definitions (10) and (11), while keeping in mind that the resulting matrix
over F? represents a set of matrices.

In what follows, we use a binary operation of matrix multiplication, where
one of the arguments is an integer matrix and the second argument is a family of
matrices over F, and the result is a family of matrices over F. In order to be able

73

to do so, by slightly abusing the notation, we use the product of an integer matrix
with a matrix over F?, according to the rules defined in Definitions 10 and 11. The
result of this operation is a matrix over F?, which can be interpreted as a family
of matrices over F.
Example 15. Let a 3×3 matrix M over F and a 3×3 matrix family P over F be
given by

M =

1 2 0
4 5 6
0 7 8

 and P =

? 0 0
0 0 ?
0 ? 0

 .
Multiplying M by P yields

MP =

1 2 0
4 5 6
0 7 8

? 0 0
0 0 ?
0 ? 0

=

? 0 ?
? ? ?
0 ? ?

 .
�

As Pvi describes the elements in the possession of node vi at a specific round of
the protocol run, it is useful to give a relation for the possible elements in node’s
possession in the next round. The following Lemma describes the relationship
between the elements in consecutive rounds.
Lemma 22. Let P be the matrix over F? describing the elements possessed by
nodes as in (4.14). Let D be the adjacency matrix of the graph G as defined in
Definition 7. Let E be an k× k all-one matrix. There exist encoding functions Evi

and decoding functions Dvi for every node vi such that the matrix P+ describing
the elements possessed by nodes after a round is related to P as

P+ = (D⊗E) ·P. (4.15)

Proof. The matrix P can be partitioned into Pvi , vi ∈ V due to (4.14). From (4.13)
we see that every Pvi has k identical rows. Thus, we can write

Pvi = P[1]
vi ⊗1>,

where 1> is a column vector of length k containing only ones.
By defining

P̂,

P[1]
v1
...

P[1]
vu

 ,
we can thus write

P = P̂⊗1>.

By using the properties of tensor product, we can write the right-hand side
of (4.15) as

(D⊗E) ·P = (D · P̂)⊗1>. (4.16)

74

By using the addition and multiplication rules as defined in Definitions 10
and 11, we have that

(D · P̂)`, j = ∑
i∈[u]

(D)`,i(P̂)i, j,

where we have (D · P̂)`, j = ? when there is an edge (vi,v`) ∈ E such that node vi

has j ∈ Zvi . By defining Evi such that it includes x j as a transmitted packet and
Dv` such that it returns all received packets, then v` can recover the element x j,
i.e. we have that j ∈ Z+

v` after the protocol run.
Thus, we can conclude that the matrix (D · P̂)⊗ 1> correctly represents the

elements every node has after the protocol run and due to (4.16) the claim (4.15)
holds.

By using induction principle, we can extend the result of Lemma 22 over any
number of rounds of the protocol run. For that, we write the matrix P in round
r as P(r). We further use the notation P(0) = P, where the matrix P describes the
elements possessed by nodes initially.
Corollary 23. Let P(0) be the matrix over F? which describes the elements pos-
sessed by the nodes before the protocol runs. After r rounds of protocol run the
matrix P(r) describing the elements possessed by nodes is related to P(0) as

P(r) = (Dr⊗E) ·P(0). (4.17)

Proof. For matrix tensor product, the following property holds:

(M⊗N) · (V⊗W) = (M ·V)⊗ (N ·W).

This allows us to apply Lemma 22 iteratively for P(r):

P(r) = (D⊗E) ·P(r−1)

= (Dr⊗Er) ·P(0). (4.18)

By observing that for a k× k-dimensional ones matrix E we have

Er = kr−1E,

we can write (4.18) as

(Dr⊗Er) ·P(0) = (Dr⊗ kr−1E) ·P(0)

= kr−1(Dr⊗E) ·P(0).

Now, as P(0) has only zero or symbol ? in every cell, then also (Dr⊗E) ·P(0) has
also only zero or symbol ? in every cell due to Definitions 10 and 11. Multiplying
zero by kr−1 is zero and multiplying symbol ? is ?. Thus we can omit kr−1 and
get

kr−1(Dr⊗E) ·P(0) = (Dr⊗E) ·P(0)

as claimed.

75

We can now state the main result of this section. The following Theorem 24
generalizes the result of Theorem 18 to any network topology where there exists
a protocol for data distribution.
Theorem 24. Let G = (V,E) be the graph describing the network topology of a
data distribution problem, where every node vi ∈ V possesses subset of the in-
formation vector x = (x1, . . . ,xk) described by the indices Zvi ⊆ [k] and requests
missing elements described by indices Tvi = [k]\Zvi .

Let the graph be ρ0-solvable for some ρ0 ∈ N. Let the adjacency matrix of the
graph G be D and let the set of matrices P describe the elements possessed by the
nodes at round 0.

Then, for any ρ ≥ ρ0, there exist encoding and decoding functions E(r)
vi and

D(r)
vi , vi ∈ V , r ∈ [ρ], such that at the end of the protocol every node has recovered

requested elements. Furthermore, the total number of transmitted packets for such
defined encoding and decoding functions is

π =
ρ

∑
r=1

min
Y(r)∈(D(r−1)⊗E)·P

u

∑
vi∈V

rank(Y(r)
vi) (4.19)

for matrices Y(r) which for every vi ∈ V are subject to constraints

rank
([

(diag(D[vi])⊗ I) ·Y(r)

Γvi((D
r−1⊗E) ·P)

])
= max-rank((diag(evi)⊗ I) · (D(r)⊗E) ·P),

(4.20)
where matrices I and E are u×u-dimensional.

We emphasize that Theorem 24 is an existence result, and it does not necessar-
ily imply that the number of packets in (4.19) is optimal.

Before we prove Theorem 24, we state and prove a technical result used for
the proof.
Lemma 25. Let G be a graph defined by the adjacency matrix D. Let the set of
matrices P describe the elements possessed by nodes as in (4.14). Then, there
exists a matrix Y ∈ P such that for every vi ∈ V

rank
([

(diag(D[vi])⊗ I) ·Y
Γvi(P)

])
= max-rank((diag(evi)⊗ I) · (D⊗E) ·P). (4.21)

Proof. We consider the left-hand and right-hand side of (4.21) separately for every
vi ∈ V .
Right-hand side: We consider the matrix (diag(evi)⊗I)·(D⊗E)·P in the max-rank
of (4.21). First, similarly as in the proof of Lemma 22, we can write

P = P̂⊗1>,

and thus

(diag(evi)⊗ I) · (D⊗E) ·P = (diag(evi)⊗ I) · (D⊗E) · (P̂⊗1>)

76

= (diag(evi) ·D · P̂)⊗ (I ·E ·1>)
= (diag(evi) ·D · P̂)⊗ (u1>)

= u(diag(evi) ·D · P̂)⊗1>. (4.22)

As u > 0, we can omit the scalar. (4.22) becomes

(diag(evi)⊗ I) · (D⊗E) ·P = (diag(evi) ·D · P̂)⊗1>.

The only non-zero row of u× k-dimensional matrix diag(evi) ·D · P̂ is the vi-th
row. The values in the row for all ` ∈ [k] are

(diag(evi) ·D · P̂)vi,` = ∑
v j∈V

(D)vi,v j(P̂)v j,`. (4.23)

As
∣∣∣1>∣∣∣ = k, then max-rank((diag(evi) ·D · P̂)⊗ 1>) is the number of symbols ?

in the only non-zero row of diag(evi) ·D · P̂.
Left-hand side: First, we look at (diag(D[vi])⊗ I) ·Y and show how to choose the
values in Y such that the equality in (4.21) holds.

First, the matrix diag(D[vi])⊗ I is a block-diagonal matrix
Dvi,1 Z · · · Z

Z Dvi,2 · · · Z
...

...
. . .

...
Z Z · · · Dvi,u,

 ,
where Dvi,`, ` ∈ [u], is a k× k-dimensional matrix with value (D)vi,` in every cell
in the main diagonal.

Then, we have that

(diag(D[vi])⊗I) ·Y =



(D)vi,1(Y)1,1 · · · (D)vi,1(Y)1,k
... · · ·

...
(D)vi,1(Y)k,1 · · · (D)vi,1(Y)k,k

... · · ·
...

(D)vi,u(Y)(u−1)k+1,1 · · · (D)vi,u(Y)(u−1)k+1,k
... · · ·

...
(D)vi,u(Y)uk,1 · · · (D)vi,u(Y)uk,k


. (4.24)

We now describe, how to set the values in the matrix Y such that Y ∈ P and
the equality in (4.21) holds. We see from (4.23) that in the matrix diag(evi) ·D · P̂
the value in the vi-th row and `-th column is ? if there exists a node v j ∈ V such
that there is an edge (v j,vi) ∈ E and ` ∈ Zv j .

As
∣∣Zv j

∣∣≤ k, then we can choose different s ∈ [k] for every ` ∈ Zv j and set the
cell (Y)(v j−1)k+s,` to 1. After setting ones in Y, we set all other cells to 0 in Y.

77

Thus, as the ones in matrix (4.24) are all in distinct row and columns, the rank
of it equals the number of ones. As the number of ones in (4.24) is the number of
symbols ? in (4.23), we have

rank((diag(D[vi])⊗ I) ·Y) = max-rank((diag(evi)⊗ I) · (D⊗E) ·P). (4.25)

We also see that as we set only such cells to 1 in Y where in the corresponding
cell in P has value ?, then Y ∈ P.

Now, we show that when we extend the matrix (diag(D[vi])⊗ I) ·Y by Γvi(P),
the rank does not change.

Due to the construction of Y ∈ P, the matrix (diag(D[vi])⊗ I) ·Y has no more
than a single one in every row. The ones are in columns where there is ? in the
same columns of (diag(evi)⊗ I) · (D⊗E) ·P. As the adjacency matrix D has ones
in its main diagonal, then if there is a column with ? in (diag(evi)⊗I) ·(D⊗E) ·P,
there must also exist a row in P with ? in the same column.

Due to Definition 9, this means that if there is a single one in a row in any
column of (diag(D[vi])⊗ I) ·Y, then there is also a single one in a row in the
corresponding column of Γvi . Due to (4.25), we have

rowspace(Γvi(P))⊆ rowspace((diag(D[vi])⊗ I) ·Y)

and thus

rank
([

(diag(D[vi])⊗ I) ·Y
Γvi(P)

])
= rank((diag(D[vi])⊗ I) ·Y),

completing the proof of the claim (4.21).

We remark that Lemma 25 claims that there is such matrix Y ∈ P, but does not
imply that the constructed matrix is optimal.

Proof of Theorem 24. From Lemma 25, there exist matrices Y(r) for every round
r ∈ [ρ] which satisfies the condition (4.20). As in (4.14), we can partition Y(r) as
Y(r)

vi , vi ∈ V . Without loss of generality, we can assume that only the first

π
(r)
vi , rank(Y(r)

vi)

rows of Y(r)
vi are non-zero. We take the first π

(r)
vi rows as linear coefficients for

encoding the transmitted packets, i.e. the encoding function is

E(r)
vi (Z(r−1)

vi), ((Y(r)
vi)

[j] ·x)
j∈[π(r)

vi]
.

We indeed see that the encoding function is correctly defined as Y(r)
vi ∈ P(r−1)

vi , for
P(r−1)

vi as defined in Corollary 23 and thus uses values available to node vi in that
round.

78

Additionally, as the number of the transmitted elements is π
(r)
vi , then by sum-

ming up over all nodes, we obtain that the number of the transmitted packets in
the round r is

π
(r) , ∑

vi∈V
π
(r)
vi . (4.26)

We still have to ensure that every node vi can recover all the elements. How-
ever, as the encoding function corresponds to the encoding functions defined in
Lemma 22, we have that there is a decoding function such that the elements pos-
sessed by the nodes after the round r is described by the matrix (Dr⊗E) ·P.

Finally, by considering the matrices which minimize the number of transmis-
sions (4.26) in every round and summing up over all rounds, we get that the total
number of packets transmitted in the protocol is as given in (4.19).

Similarly to the remark in Section 4.1.1, the computation complexity of the
protocol given by Theorem 24 is dominated by finding the matrices Y(r), r ∈ [ρ].
In every round r, every node v ∈ V has to compute π

(r)
v inner product to encode

the packets and solve a system of linear equations, which can be done in cubic
time in the number of variables.

The results in this Chapter are close to the results by Courtade and Wesel
in [12] and Gonen and Langberg in [27]. Compared to [12], we do not require
that the underlying network topology of 1-solvable network to be complete. For
arbitrary networks, they require that the underlying network topology is regular,
meaning that every node has the same number of neighbors. Furthermore, there is
a restriction that the elements have to be divisible into partitions which is unnec-
essary for our results.

The paper [27] was published approximately at the same time as our similar
results in [35]. Our current setting is close to the model in Section V-B in [27].
Their result is given as a reduction to Directed Weighted Steiner Tree, which is
known to be NP-hard. As such, the results are comparable but based on reductions
to different problems computationally difficult problems.

In order to conclude this section, we provide a full protocol description for
data distribution problem in a network topology, where the underlying graph is a
strongly connected graph. The protocol is given as Protocol 7.

4.2. Experimental results

We remark that the result of Theorem 24 may not be optimal in the number of
transmitted packets. This is due to the greedy nature of the protocol as the packets
are constructed in such a way that the nodes could recover missing elements in
the minimal number of rounds.

In order to test the efficiency of Theorem 24, we ran numerical simulations to
compare the number of packets obtained from the theorem to the lower bound in
Lemma 21. For every run we generate a random graph described by its adjacency

79

Protocol 7 Data distribution in arbitrary strongly connected network

Label
Π7

Network topology
Strongly connected graph with u nodes V .
Randomness model
Deterministic
Input
Information vector x = (x1, . . . ,xk). Initially, node vi ∈ V possesses a subset of
the information vector described by the indices Z(0)

vi ⊆ [k]
Goal
Node vi ∈ V requests remaining elements Tvi = [k]\Z(0)

vi .
Offline phase
Oracle finds Y(r) ∈ P(r) for every r ∈ [ρ] for P(r) defined in (4.17) such that (4.20)
holds and number of transmitted packets is minimized as in (4.19). For every Y(r),
the oracle defines encoding and decoding functions E(r)

vi and D(r)
vi and transmits

them to corresponding nodes vi ∈ V .
Online phase

For r ∈ [ρ]
Computation phase

1. Every node vi computes packet p(r)
vi = E(r)

vi (Z(r−1)
vi).

Transmission phase
2. Every node vi transmits p(r)

vi to out-neighbors inWout(vi).
Recovery phase

3. Every node vi uses received packets (p(r)
v`)v`∈Win(vi)

to recover the ele-

ments described by P(r)
vi as K(r)

vi = D(r)
vi (Z

(r)
vi ,(p(r)

v`)v`∈Win(vi)
).

4. Every node vi updates their sets S(r)vi =K(r)
vi ∪S

(r−1)
vi and corresponding

indices set Z(r)
vi .

matrix and randomly assign elements to the nodes. The graphs are generated in
such a way that the longest path between any two nodes (i.e. the diameter of the
graph) is fixed.

The number of nodes and information bits in every run is fixed at 4. The
diameter of graph is either 2 or 3. We ran 1000 experiments for every choice of
the parameters. Within every run, we computed the lower bound on the number
of packets given by Lemma 21 and the number of packets given by Theorem 24
and computed the ratio.

As the computational complexity of finding the matrix which minimizes (4.19)
is exponential in k ∑

vi∈V
|Zvi |, we instead perform an iterative search over the ma-

80

trices described by P. Additionally, for computation of the max-rank of a set of
matrices, we use the algorithm described in [25].

The numerical simulation results are given in Table 11.

Table 11. The efficiency of Theorem 24 compared to Lemma 21

Ratio [1,1.2) [1.2,1.4) [1.4,1.6) [1.6,1.8) [1.8,2.0) [2,∞)

Cases (diam. 2) 54% 22% 6% 4% 0% 14%
Cases (diam. 3) 30% 18% 24% 0% 6% 22%

81

5. FUNCTION COMPUTATION ON SYNCHRONIZED
DATA

In this chapter, we present protocols for computing particular functions over the
union of the sets of vectors in the possession of the nodes. We show in Sec-
tion 5.1.1 that the problem of computing such functions generalizes the data syn-
chronization problem. We also show that the naive approach of first synchronizing
the sets and then computing the value of function is sub-optimal.

In Section 5.2, we use F-monochromatic rectangles to bound from below the
communication complexity of the protocols. The main results of the section are
Theorems 28 and 29.

In Section 5.3, we use reduction to known protocols in order to compute the
values of the given functions. Specifically, in Section 5.3.1 we use a reduction
to set disjointness problem and in Section 5.3.2 we use a reduction from a set
intersection problem. The main results are given as Lemmas 30 and 32.

In Section 5.4, we describe an error-free function for computing a particular
function F and analyze its communication complexity. The main result is given
as Theorem 33.

82

5.1. Problem definition

Let the underlying field in this chapter be F= F2. We denote the vectors of length
n over F as Fn. Furthermore, the vectors in Fn allow to represent integers of bit
length n, i.e. the range [0,2n−1].

In this chapter, we look at the networks which have only two nodes A and B.
Both of the nodes possess a subset of the elements SA,SB ⊆ Fn. We denote the
intersection of the sets as S0 , SA∩SB. We denote the sizes of the sets as

k0 , |S0| ,
kA , |SA| ,
kB , |SB| ,

and the number of unique elements as

dA , |SA \S0| ,
dB , |SB \S0| ,
d , dA +dB.

We assume that the node A knows values kA and dA and the node B knows kB and
dB.

Additionally, we assume that the sizes of the sets are bounded by k:

max{kA,kB} ≤ k.

Instead of considering general functions, we instead restrict the functions to be
in the form

F(SA,SB) = Φ(SA∪SB),

where SA∪SB is the standard set-union of the sets SA and SB and

Φ : 2F
n →Y

is an arbitrary function. In essence, the nodes want to compute some function Φ

on the union of their sets.

5.1.1. Connection to data synchronization

We can consider the data synchronization problem as a special case of the function
computation problem on synchronized data, where the function Φ to be computed
is an identity function

Φ(S), S,

and thus we have that the nodes have to cooperatively compute the function F as

F(SA,SB) = SA∪SB.

83

In Chapter 3 we saw that there exists optimal data synchronization protocols
which achieve the communication complexity ofO(dn). By using reduction to the
data synchronization protocol, it is possible to construct a protocol for computing
any function F by first letting the nodes to synchronize the elements with com-
munication complexityO(dn), and then having the nodes to compute the value of
corresponding function Φ on the synchronized data. Sometimes it may be benefi-
cial if the synchronization happens only one-way, i.e. only a single node obtains
the union of the sets, and sends the computed value to the other node.

However, we can construct a very trivial counter-example which shows that
the approach of reducing function computation on synchronized data problem to
data synchronization problem is not optimal in general. The counter-example is
given as Example 16.
Example 16. Assume that the nodes A and B are interested in computing

F(SA,SB) = max(SA∪SB),

where all entries in SA ∪SB are viewed as non-negative integer numbers in their
binary representation. The following Protocol 8 requires only 2n bits of commu-
nication.

Protocol 8 Computing the maximum element over two sets

Label
Π8

Network topology
Nodes V = {A,B}, edges E = {(A,B),(B,A)}.
Randomness model
Deterministic
Input
Nodes A and B have sets SA and SB.
Goal
Nodes obtain max(SA∪SB).
Online phase

r = 1
Computation phase

1. Node A computes wA = max(SA).
2. Node B computes wB = max(SB).

Transmission phase
3. Node A transmits wA to node B.
4. Node B transmits wB to node A.

Recovery phase
5. Nodes A and B recover w = max({wA,wB}).

We see that the total number of bits in Protocol 8 is 2n bits, as only a single

84

element from Fn is sent in step 3 and a single element in step 4. This dominates
over all protocols which reduce to data synchronization. �

It is possible to build analogous protocols for a number of other idempotent
functions Φ, such as minimum, bit-wise logical or and bit-wise logical and.

5.2. Lower bounds on function computation on synchronized
data using F-monochromatic rectangles

In this section, we consider a few arithmetic functions and establish lower bounds
on the communication complexity in different randomness models using F-mono-
chromatic rectangles as defined in [37].
Definition 12 ([37, Definition 1]). Let ω ∈N and F : Fω×Fω →Y be a function
with range Y . A rectangle is a subset of Fω ×Fω of the form S1×S2, where
S1,S2 ⊆ Fω . A rectangle S1×S2 is called F-monochromatic if for every x1 ∈ S1
and x2 ∈ S2, the value of F(x1,x2) is constant.

The following lemma indicates that rectangle from Definition 12 is similar to a
geometric rectangle. Namely, if corners on one diagonal belong to the rectangle,
then also the corners of another diagonal belong to the same rectangle.
Lemma 26 ([38, Proposition 1.13]). Let R ⊆ Fω ×Fω . Then R is a rectangle if
and only if

(x1,y1) ∈ R and (x2,y2) ∈ R⇒ (x1,y2) ∈ R.

It was shown in [38], that the communication complexity of deterministic
protocols can be given through the number of F-monochromatic rectangles. In
essence, this allows to reformulate finding the lower bound on the communication
complexity as a problem in combinatorics. In order to present Lemma 27, we first
need the following Definition 13.
Definition 13. Let F : Fω×Fω →Y be a function. Denote by ϒ(F) the minimum
number of F-monochromatic rectangles that partition the whole space of Fω×Fω .
Lemma 27 ([38, Corollary 1.17]). Let F : Fω ×Fω →Y be a function, which is
computed using protocol Π. Then

COMM(Π)≥ log2(ϒ(F)). (5.1)

The proof idea of Lemma 27 is that it is possible to construct a binary search
tree for all F-monochromatic rectangles and the communicated bits in the protocol
indicate the choices at every node to reach the destination leaf. As the height of
the binary search tree is log2(ϒ(F)), we get the inequality (5.1).

In order to use Lemma 27, we need to represent the sets SA and SB as binary
vectors. The natural way is to do this by using characteristic vectors of the sets.
A characteristic vector of a set S ∈ X is a binary vector of length |X | where the
i-th bit is 1 if xi ∈ S. As the sets are from Fn, then the length of canonical vectors
is thus ω = 2n.

85

5.2.1. Sum over integers

In this section, we consider the function

F(SA,SB), ∑
x∈SA∪SB

x. (5.2)

The lower bound on any deterministic protocol computing the value of the
function is given by the following Theorem 28.
Theorem 28. The number of bits communicated between the nodes A and B in
any deterministic protocol Π that computes the function F in (5.2) is at least

COMM(Π)≥ 2n +n−1.

Proof. We obtain the bound by counting the number of F-monochromatic rectan-
gles.

We denote by
J , Fn \{0}, (5.3)

where the elements of J can be viewed as integers in [2n−1]. We use the follow-
ing set of pairs of subsets

B0 , {(S,J \S) : S ⊆ J } (5.4)

, {(Si,S ′i) : i ∈ [22n−1]},

i.e. partitions of the domain Fn without the element 0. We omit 0 as this does not
change the value of the summation.

Then, for every (Si,S ′i) ∈ B0 we have

F(Si,S ′i) =
2n−1

∑
j=1

j = 2n−1(2n−1).

On the other hand, if we take i, j ∈ [22n−2], such that i 6= j, then we have two
cases:

• If Si∪S ′j 6= J , then there exists x ∈ J , such that x 6∈ Si∪S ′j. In that case,
clearly

F(Si,S ′j)< 2n−1(2n−1).

• If Si ∪S ′j = J , since Si 6= S j, there exists x ∈ Si ∩S ′j. Thus, x 6∈ S ′i ∪S j,
and therefore

F(S j,S ′i)< 2n−1(2n−1).

Therefore, due to Lemma 26, there are at least 22n−1 different F-monochromatic
rectangles consisting of elements of B0.

Additionally, for any ` ∈ [2n−1], denote

J` , Fn \{0, `}.

86

We use the following pairs

B` , {(S,J` \S) : S ⊆ J`} (5.5)

= {(Si,S ′i) : i ∈ [22n−2]},

i.e. partitions of the domain Fn without elements 0 and `.
Then, for every (Si,S ′i) ∈ B` we have

F(Si,S ′i) =
2n−1

∑
j=1

j− `= 2n−1(2n−1)− `.

On the other hand, by taking i, j ∈ [22n−1], such that i 6= j, then similarly for
the pairs B0 it can be shown that either

F(Si,S ′j)< 2n−1(2n−1)− `

or
F(S j,S ′i)< 2n−1(2n−1)− `.

Therefore, due to Lemma 26, there are at least 22n−2 different F-monochromatic
rectangles consisting of the elements of B`. Since ` can be chosen 2n− 1 ways,
we conclude that the number of different F-monochromatic rectangles is at least

ϒ(F)≥ |B0|+(2n−1) |B`|
= 22n−1 +(2n−1) · (22n−2)

= (22n−2) · (2n +1)

> 22n+n−2.

Finally, by applying Lemma 27, and by rounding the result up to the next
bit, we obtain that the communication complexity of any protocol Π computing
function (5.2) is at least

COMM(Π)≥ 2n +n−1.

The following Example 17 illustrates the F-monochromatic rectangles in the
proof of Theorem 28.
Example 17. In Figure 13, we show the different F-monochromatic rectangles
whose existence is proved in Theorem 28 for n = 2. In this case, we have that
X = {0,1,2,3}. On the axes, we have the characteristic vectors of all sets which
exclude element 0 (due to definition ofJ in (5.3)). The pairs B0 as defined in (5.4)
are filled with gray, pairs B1 as defined in (5.5) have solid edge, pairs B2 are
inverted and pairs B3 have dotted edge.

87

0000 0100 0010 0001 0110 0101 0011 0111

0111 6 6 6 6 6 6 6 6
0011 5 6 5 5 6 6 5 6
0101 4 4 6 4 6 4 6 6
0110 3 3 3 6 3 6 6 6
0001 3 4 5 3 6 4 5 6
0010 2 3 2 5 3 6 5 6
0100 1 1 3 4 3 4 6 6
0000 0 1 2 3 3 4 5 6

Figure 13. Example of f -monochromatic rectangles in the proof of Theorem 28 for n = 2

As described in the proof, every painted cell in the Figure represents a single
F-monochromatic rectangle. We see that the total number of F-monochromatic
rectangles is at least

ϒ(F)≥ |B0|+ |B1|+ |B2|+ |B3|
= 8+4+4+4

= 20

Due to Lemma 27, the communication complexity is at least

log2(ϒ(F)) = log2(20)

bits. By rounding up to the next integer, we obtain that

COMM(Π)≥ 5.

We remark that the result can be slightly improved by using the fact that there
are additional rectangles corresponding to the sums 0, 1 and 2. However, that
improvement is relatively small, and can be omitted for the sake of simplicity. �

Additionally, there exists a trivial protocol for computing F , which we give as
Protocol 9.

The total number of sent bits in Protocol 9 is obtained from the Steps 1 and 4.
The length of characteristic vector in Step 1 is 2n− 1 as we can omit the bit for
element 0 as it does not change the sum. The sum w in Step 4 can be represented
with 2n−1 bits. Thus, the total number of transmitted bits is 2n +2n−2.

We obtain that for any deterministic protocol Π for computing (5.2), the com-
munication complexity is bounded by

2n +n−1≤ COMM(Π)≤ 2n +2n−2.

Compared to Example 16, we see that for this function the possible achieved
gain over a trivial protocol which first synchronizes data is not significant. This
suggests that asymptotic reduction in the number of transmitted bits cannot be
achieved for some functions.

88

Protocol 9 Computing the sum of union of sets

Label
Π9

Network topology
Nodes V = {A,B}, edges E = {(A,B),(B,A)}.
Randomness model
Deterministic
Input
Nodes A and B have sets SA and SB.
Goal
Both nodes learn F(SA,SB) for F defined in (5.2).
Online phase

r = 1
Transmission phase

1. Node A sends characteristic vector of SA to node B.
r = 2
Computation phase

3. Node B computes w = F(SA,SB).
Transmission phase

4. Node B sends w to node A.

5.2.2. Multiplication over integers

We now consider another function, a product of elements over the union of sets,
namely the function

F(SA,SB), ∏
x∈SA∪SB

x. (5.6)

We present an analogous result for the function defined above. The lower
bound on the communication complexity for computing F as in (5.6) is given as
Theorem 29.
Theorem 29. The number of bits communicated between the nodes A and B in
any deterministic protocol Π that computes the function F in (5.6) is at least

COMM(Π)≥ 2n +n−2.

The proof of this theorem is similar to the proof of Theorem 28, but has sig-
nificant nuances and thus we present it completely.

Proof. We obtain the bound by estimating the number of different F-monochromatic
rectangles and then applying Lemma 27.

We denote by
J , Fn \{0,1}.

In order to count the number of elements on the main diagonal, we define

B0 , {(S,J \S) : S ⊆ J }

89

= {(Si,S ′i) : i ∈ [22n−2]}.

Then, for every (Si,S ′i) ∈ B0 we have:

F(Si,S ′i) =
2n−1

∏
j=2

j = (2n−1)!.

If we take i, j ∈ [2n−2] such that i 6= j, then we can consider two cases:
• If Si∪S ′j 6= J , then there exists x ∈ J , such that x 6∈ Si∪S ′j and

F(Si,S ′j)< (2n−1)!.

• If Si∪S ′j = J , since Si 6= S j, there exists x ∈ Si∩S ′j, thus x 6∈ S ′i ∪S j and

F(S j,S ′i)< (2n−1)!.

Thus, due to Lemma 26, there exists at least 22n−2 different F-monochromatic
rectangles in B0.

For constructing additional F-monochromatic rectangles, we define

J` , Fn \{0,1, `}

for every ` ∈ [2,2n−1] and

B` , {(S,J` \S) : S ⊆ J`}
= {(Si,S ′i) : i ∈ [22n−3]}.

Then, for every pair (Si,S ′i) ∈ B` we have that

F(Si,S ′i) =
2n−1

∏
j=2
j 6=`

j =
(2n−1)!

`
.

By taking i, j ∈ [22n−3] such that i 6= j, similarly to the above cases we have
either

F(Si,S ′j)<
(2n−1)!

`
or

F(S j,S ′i)<
(2n−1)!

`
.

Due to Lemma 26, the set B` contains 22n−3 F-monochromatic rectangles. As
` can be chosen in 2n−2 ways, the total number of F-monochromatic rectangles
in B` over all ` 6∈ {0,1} is

(2n−2) · (22n−3).

90

Additionally, we can count a single F-monochromatic rectangle correspond-
ing to the value 0 of the function F . By adding all different F-monochromatic
rectangles, we get that the total number of F-monochromatic rectangles is at least

ϒ(F)≥ 22n−2 +(2n−2) · (22n−3)+1

= 22n+n−3 +1.

Due to Lemma 27, by rounding up to the next integer, the communication
complexity of any deterministic protocol computing F defined in (5.6) is at least

COMM(Π)≥ 2n +n−2.

5.3. Reduction to known problems using Monte-Carlo style
protocols

In this section, we consider randomized protocols for computing the sum function
defined in (5.2). In order to obtain bounds on the communication complexity, we
use a technique of reducing the problem of computing F to computing another
function and measure the overhead.

5.3.1. Lower bounds using reduction to set disjointness problem

Given two sets SA,SB ⊆ Fn, the binary set disjointness function DISJ is defined
as:

DISJ(SA,SB),

{
1 if SA∩SB =∅
0 otherwise

.

In set disjointness problem, there are two nodes A and B possessing the sets
SA ⊆ Fn and SB ⊆ Fn, respectively. They want to cooperatively compute the value
of the function DISJ(SA,SB). The communication complexity of set disjointness
problem has been well studied and variety of bounds has been established. For ex-
ample, in [38] a lower bound of 2n+1 was established using fooling set technique
for any deterministic protocol. For randomized protocols, an asymptotically tight
bound of Θ(2n) has been proposed in [3], [29], [33] and [56].

Assuming that there exists a protocol ΠF for computing F , the following Pro-
tocol 10 allows to solve the set disjointness problem.
Lemma 30. Protocol 10 computes the set disjointness function DISJ(SA,SB) and
the communication complexity of the protocol is upper bounded by

COMM(ΠF)+2n

bits, where protocol ΠF computes the sum function F as given in (5.2).

91

Protocol 10 Computing set disjointness using ΠF as sub-protocol

Label
Π10

Network topology
Nodes V = {A,B}, edges E = {(A,B),(B,A)}.
Randomness model
Randomness model of ΠF .
Input
Nodes A and B have sets SA and SB.
Goal
Nodes obtain DISJ(SA,SB).
Online phase

r = 1
Transmission phase

1. Node A sends bit 1 if 0 ∈ SA and 0 otherwise.
Recovery phase

2. If node B receives 1 and 0 ∈ SB, DISJ(SA,SB) = 0 and halts.

r = 2
Computation phase

3. Node A computes
wA = ∑

x∈SA

x

and node B computes
wB = ∑

x∈SB

x.

Transmission phase
4. Node A sends wA to node B.
5. Node A and node B run protocol ΠF to obtain w = F(SA,SB).

Recovery phase
6. Node B checks if wA +wB = w. If true then DISJ(SA,SB) = 1. Other-

wise DISJ(SA,SB) = 0.

Proof. We will first establish the correctness of the protocol. The protocol is
correct, if the decisions taken in Steps 2 or 6 are correct.

Firstly, the decision taken in Step 2 is trivially correct as node B concludes that
DISJ(SA,SB) = 0 only if 0 ∈ SA∩SB and thus the sets SA and SB are not disjoint.

Secondly, as the elements in the sets SA and SB are non-negative integers, then
the the sums of the elements is always monotonically increasing. Thus, we have
that

wA +wB ≥ w,

92

and the equality only holding if

SA∩SB =∅.

In this case, node B concludes that the sets are disjoint and outputs the correct
decision.

In order to establish the communication complexity, we see that the total com-
munication consists of sending a single bit in Step 1, running Π in Step 4 and
sending wA in Step 5. The length of the value wA is up to 2n− 1 bits. Thus the
total communication is

COMM(Π10)≤ 1+COMM(ΠF)+2n−1

= COMM(ΠF)+2n. (5.7)

By rewriting (5.7), we get the bound on protocol for computing the sum

COMM(ΠF)≥ COMM(Π10)−2n.

Due to previous discussion, we get a bound of

COMM(ΠF)≥ 2n−2n+1

for any deterministic protocol and

COMM(ΠF) = Ω(2n)

for any randomized protocol.
In Section 5.2.1 we presented an upper bound of O(2n) for any deterministic

protocol computing the sum function. As any deterministic protocol can also be
considered as a randomized protocol, then we get an asymptotically tight bound
of Θ(2n) for any randomized protocol computing the sum function.

5.3.2. Upper bound using reduction to finding the set intersection
problem

We use another problem in computer science called finding the set intersection [9].
In finding set intersection problem, the nodes A and B possess the sets SA and SB,
respectively, and wish to find the intersection SA∩SB. If

max(|SA| , |SB|) = k,

then the following Theorem 31 gives an upper bound on the protocol for finding
the set intersection.

93

Theorem 31 ([9, Theorem 3.1]). There exists an O(
√

k) round constructive ran-
domized protocol for finding the set intersection problem with success probability
1−1/POLY(k). In the model of shared randomness the total communication com-
plexity is O(k) and in the model of private randomness it is O(k+ log(n)).

We denote the protocol for finding the set intersection as ΠINT. Then, the
following Protocol 11 describes a protocol for computing the sum function F
using ΠINT as a sub-protocol.

Protocol 11 Computing F using ΠINT as sub-protocol

Label
Π11

Network topology
Nodes V = {A,B}, edges E = {(A,B),(B,A)}.
Randomness model
Randomness model of ΠINT

Input
Nodes A and B have sets SA and SB.
Goal
Nodes obtain F(SA,SB).

Online phase
For r ∈ [ρ]
Computation phase

1. Node A computes
wA = ∑

x∈SA

x

and node B computes
wB = ∑

x∈SB

x.

Transmission phase
2. Node A sends wA to node B.
3. Node B sends wB to node A.
4. Nodes A and B run ΠINT to find SA∩SB.

Recovery phase
5. Nodes A and B recover

w, wA +wB− ∑
x∈SA∩SB

x. (5.8)

Lemma 32. Protocol 11 computes the sum function (5.2) with up to COMM(ΠINT)+
4n−2 bits.

Proof. The communication of Protocol 11 consists of transmissions in Steps 2, 3
and 4. We require up to 2n− 1 to represent values wA and wB. The communi-

94

cation complexity in Step 4 is COMM(ΠINT) and thus the total communication
complexity is

COMM(Π11)≤ COMM(ΠINT)+4n−2.

Now, we need to ensure that w = F(SA,SB). It is trivial to establish from (5.8)
that:

w = wA +wB− ∑
x∈SA∩SB

x

= ∑
x∈SA

x+ ∑
x∈SB

x− ∑
x∈SA∩SB

x

= ∑
x∈SA\SB

x+ ∑
x∈SA∩SB

x+ ∑
x∈SB\SA

x+ ∑
x∈SA∩SB

x− ∑
x∈SA∩SB

x

= ∑
x∈SA\SB

x+ ∑
x∈SA∩SB

x+ ∑
x∈SB\SA

x

= ∑
x∈SA∪SB

x

= F(SA,SB)

By applying the results of Theorem 31 and Lemma 32, we obtain that the
communication complexity of the protocol for computing the sum isO(k)+4n in
the shared randomness model and O(k)+ 4n+O(log(n)) in private randomness
model.

5.4. Las-Vegas style randomized protocol for computing sum
function

In this section, we construct an error-free randomized protocol for computing the
sum function as defined in (5.2).

For that, we require that there exists a set of hash functions H, where every
H ∈H is a uniform hash function H : Fn→ Fm, i.e.

∀H ∈H,∀ j ∈ Fm : Pr
x∈Fn

(H(x) = j) = 2−m. (5.9)

We also assume that the hash functions can be indexed, i.e. we can choose Hi ∈H
for any i ∈ N.

We present the protocol for computing the error-free function as Protocol 12
and analyze its communication complexity in the subsequent Theorem 33.

95

Protocol 12 Error-free protocol for computing F

Label
Π12

Network topology
Nodes V = {A,B}, edges E = {(A,B),(B,A)}.
Randomness model
Shared randomness
Input
Nodes A and B with sets SA and SB.
Goal
Nodes obtain F(SA,SB).
Online phase

For r ∈ N
Computation phase

1. Node B computes the set

Kr , {Hr(x) : x ∈ SB}.

Transmission phase
2. Node B sends Kr to node A.

Recovery phase
3. Node A creates Lr =∅.
4. For every x ∈ SA, node A adds x to Lr if Hr(x) 6∈ Kr.
5. If |Lr| 6= dA then go to Step 1.

r+1
Computation phase

6. Node A computes
wA , ∑

x∈Lρ

x.

Transmission phase
7. Node A sends wA to node B.

Recovery phase
8. Node B computes

w, wA + ∑
x∈SB

x.

r+2
Transmission phase

9. Node B sends w to node A.

Theorem 33. Let the nodes A and B sample uniformly at random the sets SA

and SB, respectively. If dA ≤ |Fm|, then Protocol 12 computes the sum function

96

F(SA,SB) as defined in (5.2) without errors. Averaging over all sequences of
hash functions (Hi)i∈N, where every Hi is chosen uniformly from the set of all
hash functionsH such that (5.9) holds, the protocol transmits on average

mkB

(
1− 2n−m−1

2n−1

)−dA

+4n−2

bits.
As mentioned in Section 5.1, we implicitly assume that the node A knows value

dA. If the value is not available to the node A, then the nodes have to run a protocol
to estimate the value. This could be done by using the methods for estimating the
size of symmetric set difference as described in Section 3.2.1.

Proof. We first show that if the protocol completes, both parties know the value
F(SA,SB). For that, we follow the accepting path in the protocol description.

Let ρ be the number of rounds when the loop in the Steps 1–5 of the protocol
terminates. Then, as in Step 5, we have that

∣∣Lρ

∣∣= dA, then it implies that

Lρ = SA \SB

as otherwise it would mean that there exists x ∈ Lρ such that x ∈ SB. However,
this is a contradiction as in Step 4 we check that Hρ(x) 6∈ Kρ and thus also x 6∈ SB.
The value wA computed in Step 6 thus corresponds to

wA = ∑
x∈Lρ

x = ∑
x∈SA\SB

x

and the value w computed by node B in Step 8 is

w = wA + ∑
x∈SB

x

= wx∈SA\SBx+ ∑
x∈SB

x

= ∑
x∈SA∪SB

x

= F(SA,SB).

Thus, if the protocol terminates, both nodes learn the actual value of F(SA,SB).
Secondly, we need to estimate the average number of transmitted bits over all

possible numbers of rounds. For that, we see that the number of bits transmitted
in Steps 2, 7 and 9 is, respectively

t0 , mkB, (5.10)

t1 , 2n−1,

t2 , 2n−1. (5.11)

97

In every protocol run, Steps 7 and 9 are invoked only once. However, Step 2 is
run in total of ρ times. The jump from Step 5 to Step 1 is omitted when

∣∣Lρ

∣∣= dA.
This happens only if there is no collision between elements in SA \ SB for the
chosen hash function Hρ in the last round.

If (5.9) holds, then the probability of a collision for any H ∈H and y ∈ Fn is

Pr(collision) = Pr
x∈Fn

(H(x) = H(y) | x 6= y)

=
2n−m−1

2n−1
.

Thus, if x ∈ S0, then Hρ(x) ∈ Kρ . Otherwise, if x 6∈ SA \ S0, then Hρ(x) 6∈
Kρ only if there is no collision with an element in Kρ . The probability of this
happening is

Pr(
∣∣Lρ

∣∣= dA) = Pr(no collision for every x ∈ SA \S0)

=

(
1− 2n−m−1

2n−1

)dA

. (5.12)

Next, we compute the number of communicated bits Tρ during ρ ∈ N rounds.
We denote

qa , Pr(accept) = Pr(
∣∣Lρ

∣∣= dA)

qn , Pr(not accept) = 1−qa.

Here, qa is a probability that the protocol succeeds in computing the sum of all
elements.

At first, we look at the cases where we limit the number of rounds to ρ ∈
{1,2,3}. To express the expected number of communicated bits in an instance of
the protocol, which succeeds after at most ρ rounds, we use the random variable
Tρ . We have:

E(T1) = t0 + t1 + t2,

E(T2) = qa(t0 + t1 + t2)+qn(2t0 + t1 + t2),

E(T3) = qa(t0 + t1 + t2)+qnqa(2t0 + t1 + t2)+qnqn(3t0 + t1 + t2).

In general when bounding the number of rounds by ρ , the total number of ex-
pected number of communicated bits is:

E(Tρ) =
ρ−1

∑
i=0

qn
it0 + t1 + t2.

By allowing unbounded number of rounds, we obtain

E(T∞) =
∞

∑
i=0

qn
it0 + t1 + t2

98

= t0
∞

∑
i=0

qn
i + t1 + t2

= t0
1

1−qn
+ t1 + t2

= t0qa
−1 + t1 + t2.

By replacing with (5.10)-(5.11) and (5.12), we get

E(T∞) = mkB

(
1− 2n−m−1

2n−1

)−dA

+4n−2,

as claimed.

In the protocol run, the sizes of vectors n, the size kB of set SB and difference
size dA are given. In order to minimize the number of communicated bits, we can
choose the length of the hash function output m which minimizes the number of
transmitted bits, i.e.

argmin
m

(
mkB

(
1− 2n−m−1

2n−1

)−dA

+4n−2

)
.

In order for the protocol to be efficient, we assume that m� n. Under this
assumption,

COMM(Π) = argmin
m

(
mkB(1−2m)−dA +4n−2

)
. (5.13)

There is no closed-form solution for (5.13). For giving an upper bound on the
communication complexity, we can take

m = log2

(
dA

c

)
,

for some constant c. Then

mkB(1−2−m)−dA +4n−2≈ log2

(
dA

c

)
kB

(
1− c

dA

)−dA

+4n−2. (5.14)

By grouping the values in the right-hand side of (5.14), we get an upper bound on
COMM(Π) as

O(kB · log(dA)+n).

5.5. Summary of results

We summarize the results from Chapter 5 in Table 12.

99

Table 12. Overview of protocols for computing sum over synchronized data.

Communication
complexity

Randomness
model

Method
Reference

Θ(d ·n) Deterministic
Reduction to data synchroniza-
tion
Section 5.1.1

≥ 2n +n−1 Deterministic
Using F-monochromatic rect-
angles
Section 5.2.1

≤ 2n +2n−2 Deterministic
Exchange of characteristic
vector
Section 5.2.1

≥ 2n−2n+1 Deterministic
Reduction to set disjointness
using [38].
Section 5.3.1

Θ(2n) Randomized
Reduction to set disjointness
using [3, 29, 33, 56].
Section 5.3.1

O(k)+4n
Shared
randomness

Reduction to set intersection
problem using [9]
Section 5.3.2

O(k)+4n+O(log(n))
Private
randomness

Reduction to finding the inter-
section using [9]
Section 5.3.2

O(kB · log(dA)+n)
Shared randomness
without errors

Exchanging hashed elements
Section 5.4

100

6. CONCLUSION AND FUTURE WORK

6.1. Summary of contributions

In this thesis, we gave a high-level description of data distribution, data synchro-
nization, and function computation problems. We formulated a generic frame-
work, which allows us to describe the underlying network topology as a graph
and the protocols for all problems using unified notation. We have identified cri-
teria for data exchange scenarios and compiled a list of 14 relevant scenarios
in Table 1.

For data synchronization protocols, we used IBFs which allow us to achieve
theoretically optimal communication complexity. However, the theoretical result
relies on the knowledge of the number of elements in the symmetric set difference
as otherwise, the behavior of IBF is unknown. Even though a protocol using Strata
Estimator exists for estimating the size of the symmetric difference, it incurs addi-
tional overhead on top of synchronization. We looked at the method for analyzing
IBFs to understand if it is possible to study the behavior of IBF in case the num-
ber of elements exceeds a threshold and concluded that the current method is
insufficient.

We described an alternative representation for an IBF as a state matrix. Using
this representation, we precisely characterized when an IBF allows to extract
only a subset of inserted elements. We presented the result as Lemma 10. Using
this Lemma, we formulated Theorem 11 which complements existing results
on IBFs, which we have formulated as Theorems 2 and 12.

The new result allowed us to describe an iterative data synchronization pro-
tocol, which we gave as Protocol 5. As the new protocol enables partial or com-
plete failures in every round, the nodes succeed in synchronizing their sets even
if their estimate on the size of the symmetric difference is inexact or unknown.
We estimated theoretically the number of rounds required for complete data
synchronization and compared the theoretical results to experimental simu-
lations. We observed that the simulations follow the theoretical estimates closely.

For data distribution protocols, we relied on existing results from index cod-
ing and data exchange problems. As those problems are defined only on a star
and complete graphs, we required additional notation for extending the results to
arbitrary networks. We identified a sufficient condition of a network topology
which ensures that for any assignment of has- and request-sets there exists a
protocol satisfying every nodes’ request. We defined the network topology to
be ρ-solvable if the protocol requires not more than ρ rounds. Additionally, we
observed that the condition is related to the diameter of the underlying graph of
the network topology.

For 1-solvable networks, we gave a complete description of a protocol which
satisfies the requests’ of all nodes. Additionally, we proved that the described
protocol is optimal, i.e. every other protocol satisfying all requests transmits at

101

least the same number of bits as the given protocol. The protocol description is
given as Protocol 6 and the optimality result is given as Theorem 18.

For arbitrary ρ-solvable networks, with ρ 6= 1, we proposed a lower bound
on the communication complexity for any protocol satisfying the requests in
Lemma 21. For protocol analysis, we introduced new algebra which allows
to study data dissemination in the network using matrix operations. The
relation between matrix operations and data dissemination was stated and proved
in Lemma 22 and Corollary 23. We described a protocol for data distribution
in arbitrary network as Protocol 7 and proved its correctness in Theorem 24.

We defined a new problem called function computation on synchronized
data. Even as the problem generalizes data synchronization, we showed through
a counter-example that tools for data synchronization do not allow to achieve
optimal communication complexity. The counter-example was given as Exam-
ple 16.

We used F-monochromatic rectangles to obtain bounds on the commu-
nication complexity for sum and product functions in deterministic random-
ness model. The results are given as Theorems 28 and 29. We also considered
protocols where the nodes have access to randomness. Using reduction from
set disjointness function, we established a lower bound on the communica-
tion complexity for computing sum function as Lemma 30. Using reduction to
set intersection function, we obtained an upper bound on the communication
complexity for computing the sum function as Lemma 32.

The previous reductions have constant complexity, but may occasionally out-
put incorrect value. We described a randomized error-free protocol for com-
puting the sum function. We proved the correctness of the protocol and analyzed
the estimated communication complexity. The protocol description is given as
Protocol 12 and the communication complexity as Theorem 33.

6.1.1. Proposed data exchange scenarios

In Section 2.6.2, we compiled a list of scenarios for data exchange. To indicate
the contribution of this thesis, we can consider which scenarios we have a positive
result. We give the overview in the following Table 13. Novel protocols proposed
in this thesis are indicated in bold.

Not covered in this dissertation, but we have discussed in [36] that Protocol 5
can be used in scenarios 3 and 5. For these scenarios, we have denoted the protocol
in cursive.

6.2. Future directions

In addition to the results obtained in this dissertation, we anticipate novel related
research questions.

102

Table 13. Overview of positive results in this thesis

scenario graph type trans. model data exchange protocol
1 pair unicast synchronization Protocols 4, 5
2 complete broadcast distribution Protocol 3
3 complete broadcast synchronization Protocol 5
4 star broadcast distribution Protocols 2, 6
5 star broadcast synchronization Protocol 5
6 strongly connected unicast distribution -
7 strongly connected unicast synchronization -
8 strongly connected broadcast distribution Protocol 7
9 strongly connected broadcast synchronization -
10 pair unicast function comp. Protocols 11, 12
11 complete broadcast function comp. -
12 star broadcast function comp. -
13 strongly connected unicast function comp. -
14 strongly connected broadcast function comp. -

6.2.1. Data synchronization in arbitrary network topologies

Both existing and our proposed protocols for data synchronization are defined
only for networks of two nodes. Mitzenmacher and Pagh proposed in [50] an
extension to Protcol 4 for network topologies where the underlying graph is a
weakly connected graph utilizing methods from network coding.

Their proposal consists of two observations. First, for complete graphs, by
encoding IBFs over extension field of Fp, with p ≥ u, where u is the number of
nodes, relevant IBF procedures work exactly as for binary fields. When adding
IBFs from all nodes using Add() procedure, the procedure Extract() extracts the
set

∪v∈VSv \∩v∈VSv.

Thus, every node can recover the missing elements from their sets.
Their second observation is that in weakly connected graphs it is possible to

construct a linear combination of several IBFs. Thus, it is possible to apply net-
work coding methods to encode packets transmitted in the network.

Their approach however requires that the IBF has enough cells so that the
extraction succeeds with high probability. However, as estimating the size of the
symmetric difference of two sets is a difficult problem, then estimating

|∪v∈VSv \∩v∈VSv|

in non-complete graphs is orders of magnitude more difficult. We believe that our
proposed iterative protocol combined with network coding would yield a practical
data synchronization protocol for arbitrary networks. A positive result allows us
to give a protocol for data exchange scenario 9.

103

Using results for network coding in unicast networks [41,45,61] may allow us
to describe data synchronization in scenario 7.

6.2.2. Function computation in arbitrary network topologies

One of the techniques used in Chapter 5 used F-monochromatic rectangles to
upper bound the communication complexity of computing a function. It is shown
in [38] that it is possible to generalize the concept into u-dimensional space and
use F-monochromatic cylinders. Even though the method itself generalizes, we
have not yet considered the specific extension to larger dimensions. A positive
result would allow us to provide a protocol for scenario 11.

104

BIBLIOGRAPHY

[1] Rudolf Ahlswede, Ning Cai, Shuo-Yen R. Li, and Raymond W. Yeung.
Network information flow. IEEE Transactions on Information Theory,
46(4):1204–1216, 2000.

[2] Ziv Bar-Yossef, Yitzhak Birk, Thathachar S. Jayram, and Tomer Kol. Index
coding with side information. IEEE Transactions on Information Theory,
57(3):1479–1494, March 2011.

[3] Ziv Bar-Yossef, Thathachar S. Jayram, Ravi Kumar, and D. Sivakumar. An
information statistics approach to data stream and communication complex-
ity. Journal of Computer and System Sciences, 68(4):702–732, 2004.

[4] Steven J. Benson, Yinyu Ye, and Xiong Zhang. Solving large-scale sparse
semidefinite programs for combinatorial optimization. SIAM Journal on Op-
timization, 10(2):443–461, 2000.

[5] Yitzhak Birk and Tomer Kol. Coding on demand by an informed source
(ISCOD) for efficient broadcast of different supplemental data to caching
clients. IEEE Transactions on Information Theory, 52(6):2825–2830, 2006.

[6] Anudhyan Boral and Michael Mitzenmacher. Multi-party set reconcilia-
tion using characteristic polynomials. In 52nd Annual Allerton Conference
on Communication, Control, and Computing (Allerton 2014), pages 1182–
1187, 2014.

[7] Andrei Z. Broder. On the resemblance and containment of documents. In
Compression and Complexity of Sequences (SEQUENCES’97), pages 21–
29. IEEE Computer Society, 1997.

[8] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzen-
macher. Min-wise independent permutations. Journal of Computer and
System Sciences, 60(3):630–659, 2000.

[9] Joshua Brody, Amit Chakrabarti, Ranganath Kondapally, David P. Woodruff,
and Grigory Yaroslavtsev. Beyond set disjointness: the communication com-
plexity of finding the intersection. In ACM Symposium on Principles of Dis-
tributed Computing (PODC 14), pages 106–113, 2014.

[10] Mohammad Asad R. Chaudhry and Alex Sprintson. Efficient algorithms for
index coding. In IEEE INFOCOM Workshops 2008, pages 1–4, 2008.

[11] Graham Cormode and Shan Muthukrishnan. What’s new: finding significant
differences in network data streams. IEEE/ACM Transactions on Network-
ing, 13(6):1219–1232, 2005.

[12] Thomas A. Courtade and Richard D. Wesel. Coded cooperative data ex-
change in multihop networks. IEEE Transactions on Information Theory,
60(2):1136–1158, 2014.

105

[13] Mayur Datar and Shan Muthukrishnan. Estimating rarity and similarity over
data stream windows. In European Symposium on Algorithms 2002 (ESA
2002), pages 323–335, 2002.

[14] Son Hoang Dau, Vitaly Skachek, and Yeow Meng Chee. On the security
of index coding with side information. IEEE Transactions on Information
Theory, 58(6):3975–3988, 2012.

[15] Son Hoang Dau, Vitaly Skachek, and Yeow Meng Chee. Error correction
for index coding with side information. IEEE Transactions on Information
Theory, 59(3):1517–1531, 2013.

[16] Martin Dietzfelbinger, Andreas Goerdt, Michael Mitzenmacher, Andrea
Montanari, Rasmus Pagh, and Michael Rink. Tight thresholds for Cuckoo
Hashing via XORSAT. In International Colloquium on Automata, Lan-
guages, and Programming, pages 213–225. Springer, 2010.

[17] Martin Dietzfelbinger and Stefan Walzer. Dense peelable random uniform
hypergraphs. In 27th Annual European Symposium on Algorithms (ESA
2019), 2019.

[18] Andrew Duncan. Powers of the adjacency matrix and the walk matrix. 2004.
[19] Michelle Effros, Salim El Rouayheb, and Michael Langberg. An equiv-

alence between network coding and index coding. IEEE Transactions on
Information Theory, 61(5):2478–2487, 2015.

[20] Salim El Rouayheb, Alex Sprintson, and Costas Georghiades. On the index
coding problem and its relation to network coding and matroid theory. IEEE
Transactions on Information Theory, 56(7):3187–3195, 2010.

[21] Salim El Rouayheb, Alex Sprintson, and Parastoo Sadeghi. On coding for
cooperative data exchange. In 2010 IEEE Information Theory Workshop on
Information Theory (ITW 2010, Cairo), pages 1–5. IEEE, 2010.

[22] David Eppstein, Michael T. Goodrich, Frank Uyeda, and George Varghese.
What’s the difference?: Efficient set reconciliation without prior context.
ACM SIGCOMM Computer Communication Review, 41(4):218–229, Au-
gust 2011.

[23] Maryam Fazel. Matrix rank minimization with applications. PhD thesis,
PhD thesis, Stanford University, 2002.

[24] Robert G. Gallager. Low-density parity-check codes. PhD thesis, MIT, 1963.
[25] James F. Geelen. Maximum rank matrix completion. Linear Algebra and its

Applications, 288:211–217, 1999.
[26] Marco Gentili. Set reconciliation and file synchronization using invertible

bloom lookup tables. Master’s thesis, Harvard College, 2015.
[27] Mira Gonen and Michael Langberg. Coded cooperative data exchange prob-

lem for general topologies. IEEE Transactions on Information Theory,
61(10):5656–5669, 2015.

106

[28] Michael T. Goodrich and Michael Mitzenmacher. Invertible Bloom lookup
tables. In 49th Annual Allerton Conference on Communication, Control, and
Computing (Allerton 2011), pages 792–799. IEEE, 2011.

[29] Johan Håstad and Avi Wigderson. The randomized communication com-
plexity of set disjointness. Theory of Computing, 3(1):211–219, 2007.

[30] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards
removing the curse of dimensionality. In 30th Annual ACM Symposium on
Theory of Computing (STOC’98), pages 604–613. Association for Comput-
ing Machinery, 1998.

[31] Syed Ali Jafar. Topological interference management through index coding.
IEEE Transactions on Information Theory, 60(1):529–568, 2014.

[32] Mingyue Ji, Antonia M. Tulino, Jaime Llorca, and Giuseppe Caire. Caching
and coded multicasting: Multiple groupcast index coding. In 2014 IEEE
Global Conference on Signal and Information Processing (GlobalSIP),
pages 881–885, 2014.

[33] Bala Kalyanasundaram and Georg Schintger. The probabilistic communica-
tion complexity of set intersection. SIAM Journal on Discrete Mathematics,
5(4):545–557, 1992.

[34] Jae-Won Kim and Jong-Seon No. Index coding with erroneous side informa-
tion. IEEE Transactions on Information Theory, 63(12):7687–7697, 2017.

[35] Ivo Kubjas and Vitaly Skachek. Data dissemination problem in wireless
networks. In 53rd Annual Allerton Conference on Communication, Control,
and Computing (Allerton 2015), pages 1197–1204, 2015.

[36] Ivo Kubjas and Vitaly Skachek. Failure probability analysis for partial ex-
traction from Invertible Bloom Filters, 2020.

[37] Eyal Kushilevitz. Communication complexity. Advances in Computers,
44:331–360, 1997.

[38] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge
University Press, 1997.

[39] Leslie Lamport. The Part-Time Parliament, page 277–317. Association for
Computing Machinery, New York, NY, USA, 2019.

[40] Michael Langberg and Alex Sprintson. On the hardness of approximating
the network coding capacity. In 2008 IEEE International Symposium on
Information Theory, pages 315–319, 2008.

[41] Zongpeng Li and Baochun Li. Network coding: The case of multiple unicast
sessions. In 52nd Annual Allerton Conference on Communication, Control,
and Computing (Allerton 2004), volume 16, 2004.

[42] Yucheng Liu, Parastoo Sadeghi, Fatemeh Arbabjolfaei, and Young-Han
Kim. On the capacity for distributed index coding. In 2017 IEEE Inter-
national Symposium on Information Theory (ISIT), pages 3055–3059, 2017.

107

[43] Yuxin Liu, Badri N. Vellambi, Young-Han Kim, and Parastoo Sadeghi. On
the capacity region for secure index coding. In 2018 IEEE Information The-
ory Workshop (ITW), pages 1–5, 2018.

[44] Michael G. Luby, Michael Mitzenmacher, Mohammad Amin Shokrollahi,
and Daniel A. Spielman. Efficient erasure correcting codes. IEEE Transac-
tions on Information Theory, 47(2):569–584, 2001.

[45] Desmond S. Lun, Muriel Médard, and Ralf Koetter. Network coding for
efficient wireless unicast. In 2006 International Zurich Seminar on Commu-
nications, pages 74–77. IEEE, 2006.

[46] Shiqian Ma, Donald Goldfarb, and Lifeng Chen. Fixed point and Bregman
iterative methods for matrix rank minimization. Mathematical Program-
ming, 128(1-2):321–353, 2011.

[47] Hamed Maleki, Viveck R. Cadambe, and Syed A. Jafar. Index coding -
an interference alignment perspective. IEEE Transactions on Information
Theory, 60(9):5402–5432, 2014.

[48] Yaron Minsky and Ari Trachtenberg. Practical set reconciliation. In 40th
Annual Allerton Conference on Communication, Control, and Computing,
volume 248. Citeseer, 2002.

[49] Yaron Minsky, Ari Trachtenberg, and Richard Zippel. Set reconciliation
with nearly optimal communication complexity. IEEE Transactions on In-
formation Theory, 49(9):2213–2218, 2003.

[50] Michael Mitzenmacher and Rasmus Pagh. Simple multi-party set reconcili-
ation. Distributed Computing, 31(6):441–453, 2018.

[51] Michael Molloy. The pure literal rule threshold and cores in random hy-
pergraphs. In 15th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA04), pages 672–681, 2004.

[52] Shanmugavelayutham Muthukrishnan. Data streams: Algorithms and ap-
plications. Now Publishers Inc, 2005.

[53] National Institute of Standards and Technology. Federal Information Pro-
cessing Standards Publication 180-4: Secure Hash Standard (SHS)., 2015.

[54] Lawrence Ong, Chin Keong Ho, and Fabian Lim. The single-uniprior index-
coding problem: The single-sender case and the multi-sender extension.
IEEE Transactions on Information Theory, 62(6):3165–3182, 2016.

[55] Diego Ongaro and John Ousterhout. In search of an understandable con-
sensus algorithm. In 2014 USENIX Annual Technical Conference (USENIX
ATC 14), pages 305–319, Philadelphia, PA, June 2014. USENIX Associa-
tion.

[56] Alexander A. Razborov. On the distributional complexity of disjointness. In
Michael S. Paterson, editor, Automata, Languages and Programming, pages
249–253, Berlin, Heidelberg, 1990. Springer Berlin Heidelberg.

108

[57] Thomas J. Richardson and Rüdiger L. Urbanke. Efficient encoding of low-
density parity-check codes. IEEE Transactions on Information Theory,
47(2):638–656, 2001.

[58] Michael Rink. Mixed hypergraphs for linear-time construction of denser
hashing-based data structures. In Peter van Emde Boas, Frans C. A. Groen,
Giuseppe F. Italiano, Jerzy Nawrocki, and Harald Sack, editors, SOFSEM
2013: Theory and Practice of Computer Science, pages 356–368, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

[59] Parastoo Sadeghi, Fatemeh Arbabjolfaei, and Young-Han Kim. Distributed
index coding. In 2016 IEEE Information Theory Workshop (ITW), pages
330–334, 2016.

[60] Robert Schweller, Zhichun Li, Yan Chen, Yan Gao, Ashish Gupta, Yin
Zhang, Peter A. Dinda, Ming-Yang Kao, and Gokhan Memik. Reversible
sketches: Enabling monitoring and analysis over high-speed data streams.
IEEE/ACM Transactions on Networking, 15(5):1059–1072, 2007.

[61] Sudipta Sengupta, Shravan Rayanchu, and Suman Banerjee. An analysis
of wireless network coding for unicast sessions: The case for coding-aware
routing. In 26th IEEE International Conference on Computer Communica-
tions (IEEE INFOCOM 2007), pages 1028–1036. IEEE, 2007.

[62] Vitaly Skachek and Michael G. Rabbat. Subspace synchronization: A
network-coding approach to object reconciliation. In 2014 IEEE Interna-
tional Symposium on Information Theory, pages 2301–2305, 2014.

[63] Andrew Chi-Chih Yao. Some complexity questions related to distributive
computing (preliminary report). In 11h Annual ACM Symposium on Theory
of Computing (STOC ’79), STOC ’79, pages 209–213, 1979.

[64] Daichi Yugawa and Tadashi Wadayama. Finite length analysis on listing
failure probability of invertible bloom lookup tables. IEICE Transactions
on Fundamentals of Electronics Communications and Computer Sciences,
97(12):2309–2316, January 2014.

109

ACKNOWLEDGEMENT

After a semester in the Cyber Security Master’s curriculum, I realized that I want
to return to Tartu for a more theoretical perspective. Unofficially, it was February
25th in 2013 when I started my PhD by writing the following letter to Vitaly:

“I am taking the research seminar in cryptology. The set reconcilia-
tion with interpolation seems interesting and I have read the referred
paper. If I would choose that subject then what would be the expected
outcome? Just a report or could there be any improvements and some
proof-of-concept implementation?”

After the report, Vitaly suggested working further on the topic, leading me
to write a Master’s thesis and my first publication. He invited me to continue
the research as a PhD student, which eventually led to completing the current
dissertation. Without his suggestions, I would never have started doing my PhD,
and for that, I am genuinely grateful.

But the studies is not only about doing research. Students are expected to
present the results at conferences and be abroad for research cooperation, teach
and take courses, and do administrative tasks. Without the help of Natali Belinska,
Ülle Holm, Martin Kaljula, Heili Kase, Heisi Kurig, Reili Liiver, Liivi Luik, Eva
Pruusapuu and Anneli Vainumäe, I wouldn’t have managed through all the bu-
reaucracy. Thank you for all the help. I also want to thank the rest of the institute
for creating a productive and cooperative environment.

This dissertation was reviewed by Professor Parastoo Sadeghi, Professor Tadashi
Wadayama and Associate Professor Dirk Oliver Theis. I humbly thank you for
your suggestions to improve the content. These comments have allowed me to
clarify the thesis and make it more readable.

I want to thank my fellow students and co-authors for all the exciting discus-
sions on research and life. Healthy debate indeed allows us to see different aspects
of the problems and be critical about the ideas.

My parents and my sister have been motivating examples of working hard
towards the goal. They have always encouraged me to move forwards with my
studies and occasionally taking time off. Thank you.

My most tremendous gratitude goes to my lovely wife Leili and my sweetest
daughter Ella Mei. You kept me on track and pushed me through my hesitations
during the isolation in the pandemic. I wouldn’t have finished without your sup-
port.

My research was supported by the grants PRG49, PUT405, IUT2-1 from the
Estonian Research Council, the European Regional Development Fund via CoE
project EXCITE, and the grant EMP133 from the Norwegian-Estonian Research
Cooperation Programme. My research visit to Aalto University was funded by
Dora Plus Doctoral Student mobility grant from European Regional Development
Fund.

110

SISUKOKKUVÕTE

Algebralised lahendused detsentraliseeritud süsteemides
tekkivatele probleemidele

Seoses järjest suureneva pilvetehnoloogia platformide ja uute juhtmeta tehnoloo-
giate kasutamisega on terminalide vahelise suhtluse põhimõtted muutunud server-
klient mudelist keerulisteks detsentraliseeritud mudeliteks. Teenusepakkujatel on
tarvis hajutada oma teenuseid erinevate andmekeskuste vahel, et olla võimeline
töötlema suurt päringute mahtu ja olla madala latentsuse jaoks klientidele füüsi-
liselt lähedal. Kuid andmete täielik dubleerimine mitmete serverite vahel on res-
sursse raiskav ja rahaliselt kulukas.

Käesolevas doktoritöös uurime me kolme suunda, mis võimaldavad vähendada
serverite ja kasutajate vahel edastatud andmete mahtu. Kõigis kolmes suunas esi-
tame me vastava probleemi matemaatilise struktuurina ja rakendame meetodeid
algebrast lahendamaks antud probleemi.

Esimese probleemina uurime me andmete sünkroniseerimist. Andmete sünk-
roniseerimise probleemis on terminalid sõltumatute andmehulkadega ja nende
eesmärgiks on leida oma andmehulkade ühend. Lihtne lahendus, mis seisneb hul-
kade (või isegi ainult vastavate elementide indeksite) täielikus vahetamises, muu-
tub kiiresti ebaefektiivseks kui hulkade kardinaalsused muutuvad suureks. Vara-
semalt on välja pakutud meetod kasutades pööratavaid Bloomi filtreid (invertible
Bloom filter - IBF), mida kasutades on vahetatavate andmete hulk asümptootili-
selt samaväärne elementide arvuga hulkade sümmeetrilises vahes. Antud proto-
kolli kasutamiseks on tarvilik teada, mitu elementi on iga terminali andmehulgas
puudu, kuid selle suuruse teadasaamine on andmevahetuse mõttes kulukas ja lisab
olulise ülekulu andmete sünkroniseerimise protokollile. Osas 3 esitame me IBFi
esituse maatrikskujul ja kombinatoorse argumendi hindamaks osalise lahti pak-
kimise tõrke tõenäosust. Me nimetame uut esitust osaliselt lahti pakitavaks IB-
Fiks. Lisaks kirjeldame me iteratiivset andmete sünkroniseerimise protokolli, mis
lubab leida andmehulkade ühendit juhul kui hulkade sümmeetrilise vahe suurus
on teadmata või ebatäpne. Täiendavalt võrdleme me teoreetilisi tulemusi eksperi-
mentaalsete simulatsioonidega.

Teise suunana uurime me andmete jaotamist. Andmete jaotamise probleemis
võib võrgutopoloogiat kirjeldav suunatud graaf olla suvaline tugevalt sidus graaf.
Terminalide eesmärgiks on teada saada teistelt terminalidelt päritud elemendid.
Osas 4 formuleerime me uue tingimuse, mis kirjeldab minimaalset seeriate hul-
ka igas lahenduvas protokollis. Me nimetame seda tingimust r-lahenduvuseks.
Me kasutame tehnikaid indeks-koodidest ja andmete edastamise probleemidest
konstrueerimaks protokolle iga r-lahenduva võrgu jaoks. Vaadates 1-lahenduvaid
võrke erijuhtumina, pakume me välja optimaalse protokolli, mis edastab mini-
maalse hulga bitte üle kõikvõimalike protokollide. Suvalise r-lahenduva võrgu
korral on välja pakutud protokollid minimaalsete seeriate arvuga.

111

Viimasena uurime me osas 5 funktsioonide arvutamist sünkroniseeritud and-
metel. See probleem erineb andmete sünkroniseerimise probleemist, kuna termi-
nalide eesmärgiks on teada saada ainult funktsioon terminalide andmehulkade
ühendist. Me näeme, et probleemi definitsiooni muutus lubab meil oluliselt vähen-
dada edastatud andmete mahtu. Me pakume välja ülemise tõkke andmeedastuse
keerukusele teatavatel funktsioonide perekonnal kasutades F-monokromaatilisi
ristkülikuid. Lisaks kasutame me taandamist hulkade ühisosa ja lõikumatute hul-
kade probleemidele, et arvutada asümptootilist andmevahetuse keerukust. Me kir-
jeldame ja uurime veavabat protokolli funktsiooni väärtuse arvutamiseks sünkro-
niseeritud andmetel kasutades räsifunktsioonide perekondi.

112

CURRICULUM VITAE

Personal data

Name: Ivo Kubjas
Date of birth: September 20th, 1989
Place of birth: Tartu, Estonia
Citizenship: Estonia
Languages: Estonian and English
Contact: ivo.kubjas@eesti.ee

Education

2014 - University of Tartu
PhD candidate in Computer Science

2012 - 2014 University of Tartu and Tallinn University of Technology
MSc in Cyber Security

2008 - 2012 University of Tartu
BSc in Mathematics

Employment

2017 Aalto ülikool, Visiting Doctoral Student
2014 - Smartmatic-Cybernetica Centre of Excellence for Internet

Voting OÜ, Software Engineer
2014 University of Tartu, Specialist
2013 - Teokon OÜ, Founder
2012-2013 OÜ Ideelabor, Software Developer

Scientific work

Main fields of interest:
• Decentralized systems
• Online voting

113

mailto:ivo.kubjas@eesti.ee

ELULOOKIRJELDUS

Isikuandmed

Nimi: Ivo Kubjas
Sünniaeg: September 20, 1989
Sünnikoht: Tartu, Eesti
Kodakondsus: Eesti
Keeleoskus: eesti ja inglise
Kontakt: ivo.kubjas@eesti.ee

Haridus

2014 - Tartu Ülikool
arvutiteaduste doktorant

2012 - 2014 Tartu Ülikool ja Tallinna Tehnikaülikool
küberkaitse magister

2008 - 2012 Tartu Ülikool
matemaatika bakalaureus

Teenistuskäik

2017 Aalto ülikool, külalisdoktorant
2014 - Smartmatic-Cybernetica Centre of Excellence for Internet

Voting OÜ, tarkvara inserner
2014 Tartu Ülikool, spetsialist
2013 - Teokon OÜ, asutaja
2012-2013 OÜ Ideelabor, tarkvara arendaja

Teadustegevus

Peamised uurimisvaldkonnad:
• detsentraliseeritud süsteemid
• internetihääletamine

114

mailto:ivo.kubjas@eesti.ee

LIST OF ORIGINAL PUBLICATIONS

The following publications by the author serve the basis of this dissertation:
1. Ivo Kubjas and Vitaly Skachek. Data dissemination problem in wireless

networks. In Proc. 53rd Annual Allerton Conference on Communication,
Control, and Computing (Allerton), pages 1197-1204, Oct. 2015.

2. Ivo Kubjas and Vitaly Skachek. Two-party function computation on the
reconciled data. In Proc. 55th Annual Allerton Conference on Communica-
tion, Control, and Computing (Allerton), pages 390-396, Oct. 2017.

3. Ivo Kubjas and Vitaly Skachek. Failure Probability Analysis for Partial Ex-
traction from Invertible Bloom Filters. arXiv preprint arXiv:2008.00879,
2020. (Submitted for publication in IEEE Transactions on Information The-
ory)

Additionally, the author has co-authored the following articles during PhD
studies which are not included in this dissertation:

4. Ragnar Freij-Hollanti, Oliver Gnilke, Camilla Hollanti, Anna-Lena Horle-
mann-Trautmann, David Karpuk, and Ivo Kubjas. Reed-Muller Codes for
Private Information Retrieval. International Workshop on Coding and Cryp-
tography (WCC 2017), Sept. 2017.

5. Ivo Kubjas, Tiit Pikma, and Jan Willemson. Estonian Voting Verifica-
tion Mechanism Revisited Again. In Springer Proceedings of the Sec-
ond Joint International Conference on Electronic Voting (E-Vote-ID 2017),
pages 306-317, Oct. 2017.

6. Kristjan Krips, Ivo Kubjas, and Jan Willemson. An Internet Voting Pro-
tocol with Distributed Verification Receipt Generation. In TUT Press Pro-
ceedings of the Third Joint International Conference on Electronic Voting
(E-Vote-ID 2018), pages 128-146, Oct. 2018.

7. Sven Heiberg, Ivo Kubjas, Janno Siim, and Jan Willemson. On Trade-offs
of Applying Block Chains for Electronic Voting Bulletin Boards. In TUT
Press Proceedings of the Third Joint International Conference on Elec-
tronic Voting (E-Vote-ID 2018), pages 259-276, Oct. 2018.

8. Ragnar Freij-Hollanti, Oliver Gnilke, Camilla Hollanti, Anna-Lena Horle-
mann-Trautmann, David Karpuk, and Ivo Kubjas. t-Private Information
Retrieval Schemes Using Transitive Codes. IEEE Transactions on Infor-
mation Theory, volume 65, issue 4, pages 2107-2118, April 2019.

115

116

DISSERTATIONES INFORMATICAE
PREVIOUSLY PUBLISHED IN

DISSERTATIONES MATHEMATICAE
UNIVERSITATIS TARTUENSIS

19. Helger Lipmaa. Secure and efficient time-stamping systems. Tartu, 1999,
56 p.

22. Kaili Müürisep. Eesti keele arvutigrammatika: süntaks. Tartu, 2000, 107 lk.
23. Varmo Vene. Categorical programming with inductive and coinductive

types. Tartu, 2000, 116 p.
24. Olga Sokratova. Ω-rings, their flat and projective acts with some appli-

cations. Tartu, 2000, 120 p.
27. Tiina Puolakainen. Eesti keele arvutigrammatika: morfoloogiline ühesta-

mine. Tartu, 2001, 138 lk.
29. Jan Villemson. Size-efficient interval time stamps. Tartu, 2002, 82 p.
45. Kristo Heero. Path planning and learning strategies for mobile robots in

dynamic partially unknown environments. Tartu 2006, 123 p.
49. Härmel Nestra. Iteratively defined transfinite trace semantics and program

slicing with respect to them. Tartu 2006, 116 p.
53. Marina Issakova. Solving of linear equations, linear inequalities and

systems of linear equations in interactive learning environment. Tartu
2007, 170 p.

55. Kaarel Kaljurand. Attempto controlled English as a Semantic Web language.
Tartu 2007, 162 p.

56. Mart Anton. Mechanical modeling of IPMC actuators at large deforma-
tions. Tartu 2008, 123 p.

59. Reimo Palm. Numerical Comparison of Regularization Algorithms for
Solving Ill-Posed Problems. Tartu 2010, 105 p.

61. Jüri Reimand. Functional analysis of gene lists, networks and regulatory
systems. Tartu 2010, 153 p.

62. Ahti Peder. Superpositional Graphs and Finding the Description of Struc-
ture by Counting Method. Tartu 2010, 87 p.

64. Vesal Vojdani. Static Data Race Analysis of Heap-Manipulating C Programs.
Tartu 2010, 137 p.

66. Mark Fišel. Optimizing Statistical Machine Translation via Input Modifi-
cation. Tartu 2011, 104 p.

67. Margus Niitsoo. Black-box Oracle Separation Techniques with Appli-
cations in Time-stamping. Tartu 2011, 174 p.

71. Siim Karus. Maintainability of XML Transformations. Tartu 2011, 142 p.
72. Margus Treumuth. A Framework for Asynchronous Dialogue Systems:

Concepts, Issues and Design Aspects. Tartu 2011, 95 p.
73. Dmitri Lepp. Solving simplification problems in the domain of exponents,

monomials and polynomials in interactive learning environment T-algebra.
Tartu 2011, 202 p.

117

74. Meelis Kull. Statistical enrichment analysis in algorithms for studying
gene regulation. Tartu 2011, 151 p.

77. Bingsheng Zhang. Efficient cryptographic protocols for secure and
private remote databases. Tartu 2011, 206 p.

78. Reina Uba. Merging business process models. Tartu 2011, 166 p.
79. Uuno Puus. Structural performance as a success factor in software deve-

lopment projects – Estonian experience. Tartu 2012, 106 p.
81. Georg Singer. Web search engines and complex information needs. Tartu

2012, 218 p.
83. Dan Bogdanov. Sharemind: programmable secure computations with

practical applications. Tartu 2013, 191 p.
84. Jevgeni Kabanov. Towards a more productive Java EE ecosystem. Tartu

2013, 151 p.
87. Margus Freudenthal. Simpl: A toolkit for Domain-Specific Language

development in enterprise information systems. Tartu, 2013, 151 p.
90. Raivo Kolde. Methods for re-using public gene expression data. Tartu,

2014, 121 p.
91. Vladimir Šor. Statistical Approach for Memory Leak Detection in Java

Applications. Tartu, 2014, 155 p.
92. Naved Ahmed. Deriving Security Requirements from Business Process

Models. Tartu, 2014, 171 p.
94. Liina Kamm. Privacy-preserving statistical analysis using secure multi-

party computation. Tartu, 2015, 201 p.
100. Abel Armas Cervantes. Diagnosing Behavioral Differences between

Business Process Models. Tartu, 2015, 193 p.
101. Fredrik Milani. On Sub-Processes, Process Variation and their Interplay:

An Integrated Divide-and-Conquer Method for Modeling Business Pro-
cesses with Variation. Tartu, 2015, 164 p.

102. Huber Raul Flores Macario. Service-Oriented and Evidence-aware
Mobile Cloud Computing. Tartu, 2015, 163 p.

103. Tauno Metsalu. Statistical analysis of multivariate data in bioinformatics.
Tartu, 2016, 197 p.

104. Riivo Talviste. Applying Secure Multi-party Computation in Practice.
Tartu, 2016, 144 p.

108. Siim Orasmaa. Explorations of the Problem of Broad-coverage and
General Domain Event Analysis: The Estonian Experience. Tartu, 2016,
186 p.

109. Prastudy Mungkas Fauzi. Efficient Non-interactive Zero-knowledge
Protocols in the CRS Model. Tartu, 2017, 193 p.

110. Pelle Jakovits. Adapting Scientific Computing Algorithms to Distributed
Computing Frameworks. Tartu, 2017, 168 p.

111. Anna Leontjeva. Using Generative Models to Combine Static and Se-
quential Features for Classification. Tartu, 2017, 167 p.

112. Mozhgan Pourmoradnasseri. Some Problems Related to Extensions of
Polytopes. Tartu, 2017, 168 p.

118

113. Jaak Randmets. Programming Languages for Secure Multi-party Com-
putation Application Development. Tartu, 2017, 172 p.

114. Alisa Pankova. Efficient Multiparty Computation Secure against Covert
and Active Adversaries. Tartu, 2017, 316 p.

116. Toomas Saarsen. On the Structure and Use of Process Models and Their
Interplay. Tartu, 2017, 123 p.

121. Kristjan Korjus. Analyzing EEG Data and Improving Data Partitioning
for Machine Learning Algorithms. Tartu, 2017, 106 p.

122. Eno Tõnisson. Differences between Expected Answers and the Answers
Offered by Computer Algebra Systems to School Mathematics Equations.
Tartu, 2017, 195 p.

119

DISSERTATIONES INFORMATICAE
UNIVERSITATIS TARTUENSIS

1. Abdullah Makkeh. Applications of Optimization in Some Complex Sys-
tems. Tartu 2018, 179 p.

2. Riivo Kikas. Analysis of Issue and Dependency Management in Open-
Source Software Projects. Tartu 2018, 115 p.

3. Ehsan Ebrahimi. Post-Quantum Security in the Presence of Superposition
Queries. Tartu 2018, 200 p.

4. Ilya Verenich. Explainable Predictive Monitoring of Temporal Measures
of Business Processes. Tartu 2019, 151 p.

5. Yauhen Yakimenka. Failure Structures of Message-Passing Algorithms in
Erasure Decoding and Compressed Sensing. Tartu 2019, 134 p.

6. Irene Teinemaa. Predictive and Prescriptive Monitoring of Business
Process Outcomes. Tartu 2019, 196 p.

7. Mohan Liyanage. A Framework for Mobile Web of Things. Tartu 2019,
131 p.

8. Toomas Krips. Improving performance of secure real-number operations.
Tartu 2019, 146 p.

9. Vijayachitra Modhukur. Profiling of DNA methylation patterns as bio-
markers of human disease. Tartu 2019, 134 p.

10. Elena Sügis. Integration Methods for Heterogeneous Biological Data.
Tartu 2019, 250 p.

11. Tõnis Tasa. Bioinformatics Approaches in Personalised Pharmacotherapy.
Tartu 2019, 150 p.

12. Sulev Reisberg. Developing Computational Solutions for Personalized
Medicine. Tartu 2019, 126 p.

13. Huishi Yin. Using a Kano-like Model to Facilitate Open Innovation in
Requirements Engineering. Tartu 2019, 129 p.

14. Faiz Ali Shah. Extracting Information from App Reviews to Facilitate
Software Development Activities. Tartu 2020, 149 p.

15. Adriano Augusto. Accurate and Efficient Discovery of Process Models
from Event Logs. Tartu 2020, 194 p.

16. Karim Baghery. Reducing Trust and Improving Security in zk-SNARKs
and Commitments. Tartu 2020, 245 p.

17. Behzad Abdolmaleki. On Succinct Non-Interactive Zero-Knowledge Pro-
tocols Under Weaker Trust Assumptions. Tartu 2020, 209 p.

18. Janno Siim. Non-Interactive Shuffle Arguments. Tartu 2020, 154 p.
19. Ilya Kuzovkin. Understanding Information Processing in Human Brain by

Interpreting Machine Learning Models. Tartu 2020, 149 p.
20. Orlenys López Pintado. Collaborative Business Process Execution on the

Blockchain: The Caterpillar System. Tartu 2020, 170 p.
21. Ardi Tampuu. Neural Networks for Analyzing Biological Data. Tartu

2020, 152 p.

22. Madis Vasser. Testing a Computational Theory of Brain Functioning with
Virtual Reality. Tartu 2020, 106 p.

23. Ljubov Jaanuska. Haar Wavelet Method for Vibration Analysis of Beams
and Parameter Quantification. Tartu 2021, 192 p.

24. Arnis Parsovs. Estonian Electronic Identity Card and its Security Challen-
ges. Tartu 2021, 214 p.

25. Kaido Lepik. Inferring causality between transcriptome and complex
traits. Tartu 2021, 224 p.

26. Tauno Palts. A Model for Assessing Computational Thinking Skills. Tartu
2021, 134 p.

27. Liis Kolberg. Developing and applying bioinformatics tools for gene
expression data interpretation. Tartu 2021, 195 p.

28. Dmytro Fishman. Developing a data analysis pipeline for automated pro-
tein profiling in immunology. Tartu 2021, 155 p.

	Introduction
	Set reconciliation
	Index coding and data exchange problem

	Notation and system model
	Basic definitions
	Network model
	Data exchange models
	Data distribution problem
	Data synchronization problem
	Function computation

	Randomness models in protocols
	Notation for describing a protocol
	List of problems in decentralized systems for exchanging data
	Criteria for data exchange scenarios
	Overview of different data exchange scenarios

	Invertible Bloom filters
	IBF construction
	Listing elements in IBF
	Minimizing IBF overhead
	Examples of IBF procedures

	Data distribution problem in star and complete networks
	Index coding problem
	Data exchange problem

	Data synchronization using Partially Extractable Invertible Bloom Filters
	Partially extractable invertible Bloom filters
	IBF state matrix representation
	Counting argument for estimating success probability of partial IBF extraction
	Experimental results on partial IBF extraction

	Iterative data synchronization
	Data synchronization using IBFs
	Iterative data synchronization
	Experimental results

	Data dissemination problem
	Data distribution problem in an arbitrary network
	1-solvable networks
	Arbitrary networks

	Experimental results

	Function computation on synchronized data
	Problem definition
	Connection to data synchronization

	Lower bounds on function computation on synchronized data using F-monochromatic rectangles
	Sum over integers
	Multiplication over integers

	Reduction to known problems using Monte-Carlo style protocols
	Lower bounds using reduction to set disjointness problem
	Upper bound using reduction to finding the set intersection problem

	Las-Vegas style randomized protocol for computing sum function
	Summary of results

	Conclusion and future work
	Summary of contributions
	Proposed data exchange scenarios

	Future directions
	Data synchronization in arbitrary network topologies
	Function computation in arbitrary network topologies

	Bibliography
	Acknowledgement
	Sisukokkuvõte (Summary in Estonian)
	Curriculum Vitae
	Elulookirjeldus (Curriculum Vitae in Estonian)
	List of original publications

