
UNIVERSITY OF TARTUFaulty of Mathematis and Computer SieneInstitute of Computer SieneSpeialty of Information Tehnology
Dmitri BorissenkoIntegrative Graph File SystemsMaster Thesis (30 ECP)

Supervisor: Ulrih Norbisrath
Author:�. � June 2011Supervisor: .�. � June 2011Allow to Defense:Professor ... �. �June 2011

TARTU 2011

2

Contents
Aknowledgments 51 Introdution 61.1 Motivation . 61.2 Sample senario . 71.3 Bidiretional linking. 82 Related work 112.1 Existing features . 112.2 Analysis of opinions . 132.3 Introdution to Tagging . 153 FUSE 163.1 Virtual �le systems . 163.2 About FUSE . 173.3 How does it work? . 183.4 Liensing issues . 204 Requirements 214.1 Requirements eliitation . 214.2 Sope . 224.3 Requirements Spei�ation . 245 Implemented File systems 295.1 Overridden methods . 295.2 System design desription . 315.3 Installation . 335.4 Usage . 335.5 Integration with Graph3d . 365.6 Advantages . 365.7 Disadvantages . 375.8 Tests and results . 385.9 Planned future works . 38Summary and outlook 39Resumee (Eesti keeles) 40Abstrat 413

Bibliography 42Appendix A 44Appendix B 45

4

Aknowledgments
There are some people I would like to thank for their help in writing this thesis.First of all, I would like to thank my supervisor Ulrih Norbisrath. He o�ered manyideas about the thesis and helped me a great deal with many things, starting withPython and Linux basis and �nishing with on�its around the oneptual ideas ofthe thesis. I had many interesting disussions with Ulrih regarding the eliitationof requirements and solving some inonsistenies with work onepts. I would alsolike to thank Dmitri Danilov for the explanations about his work (Grapth3D) and forquali�ed help with integration. Also, I would like to thank my parents, Lidia andAleksey Borissenko, who gave me the required mental support. A speial thanks toArtjom Lind, who showed me some triks in Linux.

5

Chapter 1IntrodutionThis hapter introdues the thesis and explains the motivations behind it with thehelp of a sample senario. Also, required knowledge and prerequisites are provided. Ashort de�nition of the main goals for the future will be given here as well.1.1 MotivationThe motivation of the urrent thesis is information overload. Eah person has his or herown unique olletion of �les: movies, various writings, presentations, images, photos,audio �les, blueprints, letters, et. After a given period of time the amount of datausually inreases, and a simple operation ould take muh longer than expeted. At themoment it is di�ult to sort knowledge and make sense of it without tehnology. Thehuge variety of doumentation overs many di�erent subjets, and a single person anbeome quite disoriented. Many piees of information an over the same idea, withits unique deviation from the truth and errors inside. With the Internet, the ability ofsoiety to navigate and organize through this mess has been inreased multiple times.Hypertext permits us to represent the information in a more natural way: the uni�edweb of knowledge soures.Our memory works through assoiations � and this is the primary key in organizing�semanti nets�. Modern navigation and searh systems allow for di�erent methodsof sorting information. Take the ompany Google, for example. They onstruteda searh engine[7℄ whih has assumed the lead position on the Web for a long timeof time. Grouping information by searh type riteria allowed unneessary pages tobe separated from desired ones. A ranking system for sites yields signi�antly betterresults for a spei� searh. The main priniple is pretty simple: the more attrativeand popular a web-site is, the more ranking points and better index position it has inthe global top. This is quite a simple and e�etive priniple for qualifying information.Additional features of the Google searh engine are searh options. There are additionalapaities for searhing images, artiles, mail, blogs, sites, and photos. Even a shoppingengine is available. It is a signi�ant advantage that people are able to qualify fromthe beginning the data they seek, and get bak sorted and �ltered results. The Googleexample proves the neessity and importane of the proedure of information pre-proessing. If one ompany is able to earn good money by analyzing and sorting opendata soures, perhaps it is a signal for other (not Web) domains to do something similar.For instane, publi shared servie of user spae (e.g. the university), or even simplehome data olletion (suh as photos, musi, text-douments, et.).6

In order to better understand the priority and signi�ane of the problem, lets las-sify by groups the typial strutures of user's data organization methods, starting withthe user at home. It ould be not neessarily limited to a single omputer (however,this is a major ase in this group), but may be a small home-made network with aouple of interonneted mahines ating as a single system. User data is stored on 2-3loal PCs and united into a single private home network. It is traditional to lassifyinformation in suh systems using �les and folders. So, the �nal user interats onlywith hierarhial data struture. Going to the upper level, the next group ould be thesmall business network of a small ompany or organization. Finanial limitations donot allow them to signi�antly upgrade the maintenane of inner data by developingindividual solutions. Therefore, the only solution is using existing ones (folders + �les),whih means again storing, lassifying and interating with information mostly in thehierarhial struture. The last group is omposed of large-sale organizations, om-munities and ompanies. The means of data organization ould vary here appreiably,starting from the small databases and interfaes for data aess and �nishing with thelarge omplex mash-ups[13℄. Most lassi�ations and ways of organizing informationimply some work-spei� interfaes. So, the third group an take are of its data rep-resentation e�ieny, the seond one - slightly, while the �rst one atually has no suhopportunity.Coming bak to the data organization e�ieny problem, it might be useful toanalyze the urrent state of the �rst and seond groups mentioned in the previousparagraph. So, in most ases, people organize their data with folders and �les inside.This means that the e�ieny of data organizing ould be optimized here. What are��le� and �folder� atually? From a low-level perspetive both of these types are quitesimilar, exept that the folder provides information about the �les �inside� and the �leholds ontent itself. Earlier versions of hierarhial �le systems (HFS) used �at tablestrutures[10℄. Then these strutures were replaed with the Catalog File, whih usesa B-tree struture allowing for muh faster searhing. Currently, it is normal to seesomething like �les listed in some folder, ordered by time of reation or name.1.2 Sample senarioNow let us onsider the following senario as an example:Suppose that Ted is a Senior Researher at the university. He also reeived aposition as leturer, whih adds the responsibility of four ative ourses, and eahourse assumes two letures per week plus two pratial lessons. Eah ourse ontains20-50 students (at the end of the semester the total number of ative students usuallydereases). Eah semester lasts 16 weeks and this usually means that on at least 14oasions there is a need to do speial preparations (like updating old �les, demos,and presentations). Usually, preparatory operations take a lot of time and about30% is spent searhing for similar materials from previous years. Additionally, Tedreeives at least 50 e-mails per day, and every 10th e-mail is some student's homeworksolution. Sine eah year brings more new ontent, Ted wants to improve the e�ienyof interating with his data.Problem # 1. So, what Ted usually does is ontinuously sorting and updatingontent. To do so, he splits data into separate ategories: homework � all �les fromstudents; teahing � all related ontent (suh as slides, images, demos); personal �7

private �les; researh � some test results and sample prototypes of software. There area lot of wide-spread �le olletions in a data tree, so sometimes it is very problematifor Ted to �nd a spei� �le, espeially in the ase of an old �le (Ted tends to forgetold �le names).Problem # 2. It is often not enough to physially put data into separate direto-ries. For example, some brilliantly done homework, whih Ted uses as leture material.In order to avoid �le dupliations, he reates links. However, when a partiular �lebeomes obsolete, it takes a lot of time and e�ort to delete it ompletely. When Teduses hard links, �les remain in other loations (where the hard links were reated).When using soft links, many broken links remain somewhere in a data tree. In the aseof moving a target �le to another loation, the broken links problem is atual as well.Problem # 3. After a few years of researh work, Ted opens the �researh�ategory and notes that approximately half of these �les (on di�erent levels of thedata tree) an also be logially organized into three new subategories: �prototypes�,�utilities� and �manuals�. However, it is urrently impossible to do so, beause urrentlogial ategorizations (by projet) will be broken. In ase of using links, Ted will berequired to reate hundreds of links, sine these �les are wide spread in the hierarhy.1.3 Bidiretional linking.The main problems of the senario desribed in the previous setion an be easilyovered with one of Ted Nelson's ideas [?℄ about the Internet model, whih assumesthe presene of bidiretional relationships (bidiretional linking) between two objets.The idea is simple: if one objet points to another one, then it has to reeive a kindof on�rmation or approval and only then suh a referene will be legal. The PetriNets [?℄ diagram 1.1 aptures the possible states of three operations with links (link,unlink and remove a target) between A and B loations. These loations an beinterpreted as some abstrat points in any graph struture based system (e.g. two�les in �le systems or two web-pages). Bidiretional linking assumes parallel editingon both points, whih auses many problems (suh as synhronization, hostreahability and network delays) if the destination point is loated somewhere in thenetwork. But, in general, if we deal exlusively with our own user spae , thenbidiretional linking beomes more atual, sine most of our troubles (like starting apartiular server on time, granting required aess rights to a shared �le) ould besolved personally by a user.It might be reasonable, before reating something more global and big, to make sure,that suh systems with bidiretional linking an exist. One possible solution wasfound in the fae of the FUSE platform[?℄(see hapter 3 for more details). It providesan extension platform for a variety of operating systems (OS) and allows for ustomimplementations of some basi �le system utilities, suh as rename, delete, reate�le/diretory, link, unlink and others (see o�ial doumentation for omplete list).The �rst tries showed that suh systems ould exist on a small sale. More seriousapproahes require more work-hours and more tehnologially advaned solutions.8

A -> B: target A points to B! B -> A: target B removes pointer to AA inoming: referenes to A from other targetsA outoming: all A pointers to other targetsFigure 1.1: sample bidiretional linking
9

PrerequisitesTo better understand this thesis, knowledge about the following is reommended:
• [optional℄ Python[15℄. The soure ode is implemented purely in Python. FUSEimplementation is also in Python, but the original version of it an be found inC++ language[2℄. Thus, this knowledge ould possibly provide some answers tothe tehnial questions.
• Graph strutures[8℄ onept. The main work is done in graph strutures. This isrequired for the ability to understand the work features.
• In the urrent work some �le systems utilities will be mentioned. Reader shouldhave a little hands-on experiene with di�erent types of �le systems.
• [optional℄ Python supporting IDE1 (e.g. Elipse[3℄). It is more likely for thesoure ode to be viewed through a speial interfae (not just open the ode asa text �le). This will signi�antly inrease the speed of navigating through theode, reading and ompiling ability.
• Petri Nets. Some of examples are explained through the Petri Nets diagrams.

GoalsThe main goals of this work are to prove the possibility of the existene of an integrative�le system with bidiretional linking, and to demonstrate the advantages of suh afeature. Integration means the possibility to use suh a �le system with the standard�le operation and exploration tools available in urrent operating systems.OutlineThe thesis is organized as follows. Eah hapter has a brief introdution of its ontent.The �rst hapter introdues the thesis and explains the motivations behind it. As anexample, a possible senario is provided. The key feature of the work �bidiretionallinking� is brie�y introdued. Also, a list with the requisite knowledge is providedalong with the main goals of the work. The seond and third hapters are mostlyabout related work. In these hapters, an analysis of existing tools is provided. Alsosome of the initial opinions of experiened people are disussed. Finally, the �le systemin user spae will be desribed as a part of related work. The fourth hapter overs therequirements related issues. The �fth and �nal hapter gives a detailed explanationabout the implemented �le system, its possible disadvantages and advantages, testsand future works.
1IDE - integrated development environment. 10

Chapter 2Related workIn this hapter, related works are desribed. First of all, the existing features areanalyzed using examples. This is followed by an analysis of some disussions by peopleregarding problems that will be performed. Finally, an introdution to tagging isovered.2.1 Existing featuresSo, what features/utilities are available now and do they over atual needs? It wasalready mentioned at the end of the previous paragraph that �les an be sorted byproperties. Lets take a loser look at the Unix ommand [23℄ ommand �ls�[22℄ as anexample. In listing 2.1 the fragment of �ls -l� output is provided with several propertiesof �les. These properties are:1. File type2. Permissions3. Number of hard links (we will over hard links later)4. Owner5. Group6. Size7. Date8. File name>l s − l P i tu r e s
−rw−r−−r−− 1 user user 125 2010−11−13 03 :48 a l l i a n e . g i fdrwxr−xr−x 2 user user 4096 2011−03−06 19 :35 data
−rw−r−−r−− 1 user user 871 2010−11−13 04 :36 sample2 . png
−rw−r−−r−− 1 user user 9359 2010−11−13 03 :46 sample . odg
−rw−r−−r−− 1 user user 104801 2010−11−13 04 :39 Sreen . jpg
−rw−r−−r−− 1 user user 105017 2010−11−13 04 :38 Sreen −1.png
−rw−r−−r−− 1 user user 14508 2010−09−19 16 :03 tagg ing . odgListing 2.1: Example of �les sorting11

Current sample listing is ordered alphabetially by name (by default). The user alsoan sort �le lists by any given property, whih in ertain ases allows required �les tobe found more quikly (e.g. if ~1000 �les are in one diretory or searh reursively).Also, the ability to applying multiple �lter riteria is available. Combining standardUnix tools suh as �ls�, �at�[20℄, �grep�[21℄ and others ould provide nie searh results.But here the availability raises doubts: should all users be strong in Unix utilities? Amore intuitive and natural way of sorting data is provided by visual explorers. Theuser still an sort �les using di�erent parameters, but with serious limitations (e.g. itis impossible to temporarily hide some types from the output list). This results in timedelays in the ase of long �le lists. File searhing in visual explorers is also limited andusually works muh slower than ommand line utilities.Another triky and e�ient feature is linking[12℄. The word �link� itself assumessome referene or pointer to some data . With the link feature, the user is able toreate relatively more omplex data organizations. It is an e�etive and simple way tosave some spae and synhronize the data, beause the user does not have to opy thesame �les into multiple plaes. It is enough to store one �le in a ertain loation andmake referenes from the others. Several types of links exist in HFSs, depending onthe platform. It is used to divide these types into two major ategories: hard and softlinks.A Hard Link[9℄ is a type of link whih points to a �le itself. Eah target mustexist. The traditional Unix style of reating hard links implies setting the same inode1number to all referenes. A Hard link itself an also have a di�erent name than itstarget. So, in this ase, no information is provided about the original name of thetarget. Also, it is not possible to reate a hard link for diretories (only the root user isallowed with an additional �ag for safety) in most ases due to system restritions (toprevent reursive loops). Another problem with hard links is about sharing attributesof the target, suh as size (total diretory size with a hard link is inreased, as if therewould be a normal �le inside).A Symboli Link[17℄ (also alled soft link) is a type of link whih points to a �lename. As with the hard links, this type an also have a di�erent name that the target.A soft link ontains a relative or absolute path to the target and an also be pointedtowards diretories. The OS and its utilities an determine the symboli links and notfollow into reursion. A soft link overs most of what a hard link laks, but in ase atarget objet is renamed/moved/deleted, it stops working beause the path string doesnot hange.Higher level utilities also exist, suh as Google Desktop[6℄, Windows searh (omeswith Vista or later versions of Windows), Spotlight and others (see some a list of desk-top engines on http://en.wikipedia.org/wiki/List_of_searh_engines). These desktoputilities allow impressively fast searhing to be performed through user spae, and addi-tionally provide some ustom features. For example, one of Google Desktop's featuresis a sidebar. It allows one to view e-mail and news, and talk with other users throughGoogle Talk2 and view RSS3 feeds. With the Google Desktop Quik Find feature, usersdo not have to speify the full name of target in the searh-box, it is enough to provideonly a part of the name. This searh engine is based on a ontinuous �le indexing1inode - data struture in Unix-like �le systems that holds meta information about an objet (suhas a �le, diretory)2Chat for some Google servies like email, http://www.google.om/talk/3RSS - Really Simple Syndiation, http://en.wikipedia.org/wiki/RSS12

mehanism and an �nd the six most relevant results (by default) from the user's loaldis. However, high-level utilities like Google Desktop are foused only on searhingand the results are shown within the bounds of urrent utility output. These utilitiesalso do not have a mehanism for the bidiretional relationship between objets, butinstead they provide a desription of targets (whih is only interpretable in the ontextof the urrent utility).One of the most relevant works by desription is the Tagstore[19℄ projet. Unfortu-nately, there is no download link for soure or binaries provided4. From the desriptionof Tagstore, it follows that it is an open-soure projet (however, the soure as binariesare hidden). The main feature of Tagstore is using so alled �tag trees� (hierarhi-al tags) to navigate the user more e�etively through his data tree. Due to missingbinaries or soure ode for testing, it is hard make a judgment about its disadvantages.2.2 Analysis of opinionsThis setion presents the disussions and opinions of some people regarding data orga-nization and the sorting problem[11℄:�Rih Kilmer:What do you store in the namespae to allow appliations to ross eah others'borders? An agreed-upon ontology is neessary to move beyond today's mess.�In other words, Rih Kilmer raised the problem whih is illustrated in listing 2.2.In most ases there are numerous �le olletions present in the user's spae./home/ user|−video|−− f i lm s|−−−wild wi ld west . av i|−−musi|−−−Aerosmith − I Don ' t Wanna Miss A Thing (Armageddon) . av i|−−birthday . av i|−−party . av i|−musi|−− l i p s|−−−Aerosmith − I Don ' t Wanna Miss A Thing (Armageddon) . av i|−−Aerosmith − Crazy .mp3Listing 2.2: Simple types overlappingAssume we want to add into our olletion the �le �Aerosmith - I Don't Wanna MissA Thing (Armageddon).avi�. There are two possible loations that exist: �/home-/user/video/musi� and � /home/user/musi/lips�. How to determine whih loationis atually suitable? It is possible to reorganize our struture by plaing, for instane,�/home/user/musi� into � /home/user/video/musi� sine we have two idential fold-ers. However, this solution is not very e�ient, for at least two reasons: 1). we haveto think about logial reorganization 2). in � /home/user/musi� there is another �letype (.mp3) whih is not related to the video diretly. We an also leave the urrenthome-folder's struture �as is� and put into the �rst loation (video) a link, and into4A demo version was requested from Tagstore support at the beginning of April 2011. However,no response was reeived. 13

another loation (musi) the �le itself. Corresponding to link type we have di�erenttroubles. So, what else an be done? Here is an idea from Domini Amann:�Start with an e�ient �le systems that allows small �les (suh as ReiserFS). Thenadd an OS browser/shell level extension that allows eah folder to ontain a speialobjet. This objet is a viewer/�le systems "plugin" that tells the shell/browser whihindexes are available for the folder, and the shell/browser an deide how to displaythem.This would allow e-mail to be viewed by a variety of programs, and searhable/use-able even by non-email apps beause, for example, /var/spool/mail/domini/ appearsto ontain./thread ./subjet ./date ./to ./from ./keywords�Domini Amann proposed the idea of mixing multiple spaes, whih will allow usersto work with their di�erent data types aross all programs. Eah objet (it ould beeven little �le struture) has a �xed meta-data about its loation, type and speialtype properties (regarding type). A new �le system ould signi�antly inrease thee�ieny of a user's di�erent interation ativities with information (like simple �lesearhing). For example, a person looks for �le F, whih is atually loated somewherein e-mails on server M1 (see listing 2.3).united FS|−home d i r e t o r y|−video|−douments|−mai l s|− from s e r v e r M1| | − . . .|− from s e r v e r M2|− from : mail from Ted|− to : . . .|− s ub j e t : h i pal !|−body : some ontent|−attahments : important f i l e (F)Listing 2.3: Sample �le systems viewNow there is no need to perform separate searhes through M1 and M2 e-mailservers and loal hard dis, sine all related data is indexed in the united �le systemsand is reahable by the user while an Internet onnetion is up. One an indexingoperation is performed, there is no need to keep an ative onnetion onstantly withM1 and M2 mail servers (even an o�-line searh is available now). These �le systemsould support some basi simple operation set like CRUD5. The only thing that mightbe needed is data synhronization requests from time to time (deleted or new letters).There is also no need to download �les from the email aount. Coming bak to theprevious ase in listing 2.2, it is now impossible to reate a regular link to �le in e-mailspae from the loal storage and vie versa. Instead of traditional links in �le systems,URL an be used.�Alexander G.M. Smith:...5CRUD abbreviation oming from words �reate�, �read�, �update� and �delete�14

The next step would be to make it (�le systems) non-hierarhial. As mentionedelsewhere you want to have relationships bidiretional between a phone number and theperson, so a yli graph struture of relationships would be needed. Of ourse, someommands � like "ls -R" � would need to be improved to handle yli diretories.�Alexander talks here about earlier attempts of user spae ustomization like shownin �gure 1.1. The idea Alexander follows is breaking traditional hierarhy of somestandard �le systems and replaing it with a yli graph struture instead, with bidi-retional relationships between two objets. It ould provide an e�etive bonus innavigation aross multiple loations, so the user an always go bak to the start point.Of ourse, having suh a yli graph struture assumes ertain problems for the stan-dard tools (e.g. mentioned "ls -R"). So, there is a need to make these standard utilitiesbehave more �exibly, aording to a spei� system of urrent spae.2.3 Introdution to TaggingA Tag is a form of meta-data[18℄. It ould be a single keyword (in some ases also ashort sentene), or an image, or a spei� sound whih is assigned to some part of theinformation. This feature helps to desribe an item by referring it to some speial set ofitems with similar properties. The name of a tag expresses the nature of tagged items.Tagging allows searhing performane to be inreased signi�antly, thereby reduingthe total number of viewed elements (items).Possible obstales to the use of tags in searhing engines are missing informationabout the meaning of tags. Relatively similar sets of items ould be tagged withdi�erent tags. In a listing 2.2 we desribed a similar problem regarding the relevaneof an item. Now, onsider the ase where instead of one diretory �video� there are twosimilar names: �movies� and ��lms�. Or the ase when the user makes a grammatialmistake (or uses singular and plural forms) whih leads to the reation of a dupliatetag. Both situations have the same problem: the semantis of all tags are equal and theuser an apply both tags. Mentioned obstales also ould lead to possible overloadingof tags and the e�et of searh speedup will disappear, beause users have to searhthrough long list of tags beforehand.Another similar problem with tagging is related to the individuality of the �tagvendor�. Of ourse, the �exibility of tagging allows users to ategorize their itemsin any useful way they an �nd, but personalized terms an lead to inappropriaterelationships between items. This issue an be the reason behind ine�ient searhesfor information about a subjet. For example, the tag IT an refer to informationtehnology, or inome tax, or Internet television, or the time zone of Iran.

15

Chapter 3FUSEThis hapter will ontinue with related work. It will introdue brie�y the de�nition ofvirtual �le systems along with some examples. Then �le systems in user spae will beintrodued. The introdution part implies:
• platform integrability
• already known virtual �le systems that are based on FUSE
• work proess desription of FUSE
• integration points
• liense issues3.1 Virtual �le systemsBy de�nition, a Virtual File System[24℄ (VFS) is a kind of abstration layer on top of amore onrete �le system. The main purpose of a VFS is to allow lient appliations toaess di�erent types of spei� �le systems in a uniform way. That means that VFS,for example, an be used to aess loal and network storage devies transparently,without any di�erene to the lient appliation. So it does not matter if we keep datain Windows, Ma OS or Unix �le systems � the lient appliation an aess the datauniformly.A VFS spei�es an interfae between the kernel and a spei� �le system. Therefore,it is easy to add support for new �le system types to the kernel simply byimplementing the interfae. It is possible that VFS an eliminate an inompatibilityfrom release to release. For example, a ase where the lient appliation requires aertain version of a spei� �le system. VFS an even guarantee further stable workwith future releases. This means that there are a lot of bene�ts to using VFS.Also, VFS sometimes refers to a ertain �le or even bunh of �les that at as amanageable ontainer with the funtionality of spei� �le systems. For example,suh ontainers are SolFS[?℄ or a single-�le virtual �le systems in an emulator likeWinUAE[28℄, Sun's VirtualBox[25℄, Mirosoft's Virtual PC[27℄, VMWare[26℄, et.The main bene�t of this type of VFS is that it is well entralized and easy to removeif need. A single-�le VFS an inlude all the basi features of any spei� �le16

systems, but aess to internal struture is often limited. Another drawbak of suhVFS is low performane beause of the high ost of shu�ing virtual �les when data iswritten or deleted from virtual �le systems.3.2 About FUSEThe aronym FUSE omes from the words �File systems in User Spae�. It is a sep-arate exeutable VFS whih was originally developed as AVFS[1℄, but later beame aseparate projet. It represents itself as a loadable kernel module, basially for Unix-likeoperating systems. There is also the possibility to apply FUSE in Mirosoft Windows,but FUSE does not support the lowest-level �le system aess appliation programminginterfaes in Windows. Therefore, not all lient appliations will be able to aess �lesystems that are implemented through FUSE extensions.Basially, FUSE allows users to reate (as an extension) their own ustomized �lesystems without kernel ode modi�ation. So, atually, FUSE is a �bridge� betweenuser-side reated system ustomization and atual kernel interfae.FUSE main features are:
• Simple library API
• Simple installation (no need to path or reompile the kernel)
• Seure implementation
• User spae - kernel interfae is very e�ient
• Usable by non-privileged users
• Runs on Linux kernels 2.4.X and 2.6.X
• Has proven very stable over timeOriginally FUSE was written in C language, but nowadays quite an impressive varietyof other language implementations exist (Java, Python, C#, PHP, Sh, Perl et). Thereare many FUSE-based �le systems[16℄ in di�erent ategories:
• ArhiveFile systems - aessing �les inside arhives (tar, pio, zip, et.)
• CompressedFile systems - aessing �les in a ompressed image (gz, zlib, LiveCDs,et.)
• DatabaseFile systems - storing �les in a relational database (MySQL, Berke-leyDB, et.) or ones allowing searhing using tags or SQL queries
• EnryptedFile systems - storing �les in a more seure way by using a seret key
• MediaFile systems - storing �les on media devies suh as ameras and musiplayers or aessing and ategorizing media �les
• HardwareFile systems - provide aess to weird hardware17

• MonitoringFile systems - provide noti�ation when a �le hanges
• NetworkFile systems - storing �les on remote omputers, inluding �le serversand web sites
• NonNativeFile systems - traditional disk-based �le systems that aren't standardon Linux (NTFS, ZFS, et.)
• UnionFile systems - merging multiple �le systems into a single tree
• VersioningFile systems - �le systems that remember old versions of �les and oneswhih provide aess to version ontrol systemsThese are the only know ategories (extra FUSE-based projets ould be found inaddition).3.3 How does it work?As it was mentioned in the previous setion, FUSE is only a �bridge�. The Figure3.1 illustrates the basi priniples of the operation of FUSE. Initially the user writeshis ustom FUSE extension and runs it with parameters. In the given ase we run�example/hello� �le within a user spei�ed mounted folder �/tmp/fuse�. This meansthat FUSE will work only inside mounted folder and has no e�et on other �les outside.There is also the possibility to speify a data folder (by default it takes the samediretory where �example/hello� runs). So, basially, the user an ontrol his spaewith the kernel API through FUSE. The main di�ulty is to pik up the requiredombination of atomi system operations in order to apture more omplex ations(some operations, suh as opying a �le or deleting a folder with ontent, onsist ofsequenes of other operations).Sample user �le systems in �hello world� style:1 #inlude <fu s e . h>2 #inlude . . .3 stat i onst har ∗ he l l o_s t r = "Hel lo World ! \ n" ;4 stat i onst har ∗hel lo_path = "/ h e l l o " ;5 stat i int he l l o_ge t a t t r (onst har ∗path , strut s t a t ∗ s tbu f){6 . . . i f (strmp (path , hel lo_path) == 0) {7 stbuf−>st_mode = S_IFREG | 0444 ;8 stbuf−>st_nl ink = 1 ;9 stbuf−>st_s i z e = s t r l e n (h e l l o_s t r) ;10 }11 . . .12 }13 stat i int he l l o_readd i r (onst har ∗path , void ∗buf ,f u s e_ f i l l_d i r_t f i l l e r , o f f_t o f f s e t , strut f u s e_ f i l e_ in f o
∗ f i) { 18

Figure 3.1: FUSE struture (image soure [?℄)14 . . .15 f i l l e r (buf , hel lo_path + 1 , NULL, 0) ;16 . . .17 }18 stat i int hel lo_open (onst har ∗path , strut f u s e_ f i l e_ in f o
∗ f i) { . . . }19 stat i int hel lo_read (onst har ∗path , har ∗buf , s i ze_t s i z e, o f f_t o f f s e t , strut f u s e_ f i l e_ in f o ∗ f i) {20 . . .21 i f (strmp (path , hel lo_path) != 0) return −ENOENT;22 l en = s t r l e n (h e l l o_s t r) ;23 i f (o f f s e t < l en) {24 i f (o f f s e t + s i z e > l en) s i z e = l en − o f f s e t ;25 mempy(buf , h e l l o_s t r + o f f s e t , s i z e) ;26 } else s i z e = 0 ;27 return s i z e ;28 }29 . . . Listing 3.1: sample FUSE extensionIt is quite easy to speify your own ustomized ations instead of standard �le systemoperations (see FUSE API for full list of operations). In listing 3.1 suh �atomi1� �le1Atomi operations in the FUSE ontext are those whih do not all another operations (e.g. �opy�19

1 ~/ fu s e /example$ mkdir /tmp/ fu s e2 ~/ fu s e /example$. / h e l l o /tmp/ fu s e3 ~/ fu s e /example$ l s − l /tmp/ fu s e4 t o t a l 05 −r−−r−−r−− 1 root root 13 Jan 1 1970 h e l l o6 ~/ fu s e /example$ at /tmp/ fu s e / h e l l o He l lo World !7 ~/ fu s e /example$ fusermount −u /tmp/ fu s e8 ~/ fu s e /example$ Listing 3.2: Example user sessionsystems operations, suh as getting attributes from a spei� objet (hello_getattr),reading diretory ontent (hello_readdir), opening (hello_open) and reading(hello_read) �le2 were overridden. The ustom pre�x ould be also spei�ed formethods names. In the urrent example, the user session3 will look like Listing 3.2.After the sript �hello� is launhed with the starting folder �/tmp/fuse/� as aparameter, the user an aess the ustomized user spae in the mentioned diretory.How to understand how this stu� works? In the ustom user spae folder, the usual�at� ommand atually does not work with a real �le, but for input is an outputstream from FUSE instead. In a listing 3.1 hello_read ustom operation assumes,that if work path = hello_path = "/hello", then hello_str is printed ("HelloWorld!\n"). This is exatly what we have in listing 3.2for output. So basially, it isalways possible to assign any ustom ontent for any path in the user spae.3.4 Liensing issuesThe kernel part is released under the GNU GPL[4℄. Libfuse is released under theGNU LGPL[5℄. All other parts (examples, fusermount, et) are released under theGNU GPL. This means, that modi�ed versions of ode an be sold for money (seehttp://www.gnu.org/lienses/gpl-faq.html#DoesTheGPLAllowMoney), but the soureode should be also provided with binaries (or with �rst ustomer request). AlsoGPL assumes that further modi�ations of ode should be also open-ode produtsand an not be distributed only as binary �les. (http://www.gnu.org/lienses/gpl-faq.html#Modi�edJustBinary). Current work uses only Libfuse soure. Sine Libfuseis under LGPL liense, the soure ode an be hidden from ustomers and may also bedistributed under payment obligation term.
is a omplex operation). Generally, FUSE allows only extension of atomi operations.2Note that �le operations an be also de�ned as a separate lass.3see sample user session at http://fuse.soureforge.net/20

Chapter 4RequirementsThis hapter introdues the funtional and non-funtional requirements, gives a briefdesription of projet sope and �nal produt perspetive, and provides requirementspei�ation. The last one will be desribed through use ases.4.1 Requirements eliitationThe �rst step to meet the desired outome for any projet or work is to eliit the goalsand requirements. First of all, possible stakeholders should be introdued:
• university personal (leturers, researhers, seretaries, assistants, programmersand others who aumulate data)
• students
• business organizations, ompanies
• other people (anyone who ares about their data organization e�ieny)There are di�erent tehniques existing for requirements eliitation. The stakeholderinterview is a ommonly used tehnique, but in the ase of urrent work a speialist'sopinion (a person already familiar with the problem) is more likely suitable.The key ideas of the setion 2.2 are aptured as the following requirements:funtional requirements1. File ategorization feature (tagging as maintaining speedup)(a) bidiretional relationships (for �le tagging/ategorization)(b) Hierarhial ategorization of �les (ategory in ategory)() Basi �le operations support1 (no regression)2. Uniform �le meta-data representation (for ross-platforms)1FUSE platform assumes the usage of atomi �le operations. Any suh operation an be ustomizedin a di�erent way. The requirement position tells about not losing funtionality for the end-user. Forexample, the opy operation onsists of 1) reading of target loation 2) reading of destination diretory3) reation inode struture in destination point 4) �lling with relevant ontent. The requirementassumes that the end-user an opy target �les after ustomization.21

(a) index storage of all meta-information(b) ommon meta-data struture skeleton per objet() Virtual property �les support (will be needed for reation of more omplexsolutions and more �le strutures will be supported)nonfuntional requirements1. Integration: the outome of urrent work should be suitable for future ross-platform developments2. Python implementation3. FUSE platform based4. File management should be improved5. Final produt should not slow down an operation's performane below 25%6. The soure ode should have explanations or desriptions of funtions7. System should be able to be started/�nished within 5 seonds after orrespondingommand8. All end-user's operation an be performed at least in the ommand prompt win-dow.4.2 SopeIn this work the usability of Unix-like �le systems will be improved by FUSE extension.External deliverables:1. Generated meta-data for eah �le (exept links)2. Usability improvement feature: hierarhial taggingInternal deliverables:1. Current spei�ation.2. FUSE extension sript in Python programming language3. Funtions desriptions in a soure ode4. Additional utilities (like leaning data from meta-information)
22

Funtionality:
• extension mount/unmount
• meta-data generation
• meta-data aess (even unmounted system)
• hierarhial tagging
• traveling opportunity over the tags
• CRUD2 support as other �le systemsStruture: See 3.1 for tehnial struture.Assumptions:1. FUSE will work under Windows platform also (for future modi�ations)2. Projet will ontinue3. Additional generated �les will not reate a serious trouble for users4. FUSE is stable5. Work output is not a �nal produt6. Most future related work ould be reloated to other platform7. Current projet may beome a ommerial one.produt perspetive Current work output is planned as a future base platform fordevelopment and researh. Also there is a possibility of future ommerial outome (inthe long-term perspetive, in ase of suess). Figure 4.1 illustrates the �nal produtperspetive. By ustom operations and �le view assumed Inferato FS integration withuser standard �le systems operations.End-user operates withing his ustomized piee of spae, where it is possible hav-ing some ustom �le views, bidiretional �les relationships, perform a ustomized �leoperations (whih nothing more than normal operations adopted to a new ontainerontext). A traditional hierarhy ould be broken by �le ategories: �le an be loatedin multiple plaes in parallel. From the other side, some piee of user spae ould beout of extension (user may want not to use ustomization to whole data).2The minimal set of ations with �le: reate, read, update, delete.

23

Figure 4.1: Produt perspetive4.3 Requirements Spei�ationThe name of delivered �le systems is �Inferato FS�. It should extend FUSE platform.The list of requirements in setion 4.1 implies following use ases:Id 1Use ase Objet3 tagging (ategorization)Desription User plaes tag-folder into meta-folder �tags� of hosenobjet. Inferato FS tags the �le.Ators User, extended �le systems (Inferato FS)Dependeny NonePreonditions In one window user pik the �le and opens itsmeta-folder �tags�. In another window user piks thetag-folder. Inferato FS is running.Postonditions File is tagged: tag-folder ontains a link to tagged �le,meta-data of tagged �le ontains link to tag.Alternativesof the mainsenario Tagging funtionality all ould be performed withthird party plug-in whih is ompatible with urrentInferato FS.

24

Figure 4.2: TaggingId 2Use ase Objet deletingDesription User deletes the hosen objet. Inferato FS validatesand delete objet with related meta-informationAtors User, Inferato FSDependeny NonePreonditions User piks an objet to delete. Inferato FS is running.Postonditions The hosen objet is deleted with all meta-information.Alternativesof the mainsenario There ould be any other ator dealing with �le deletinginstead of user (like lient program or some systemproess).

Figure 4.3: Deleting
25

Id 3Use ase Objet opyingDesription Objet dupliate reating.Ators User, Inferato FSDependeny 5Preonditions Target objet and loation for dupliate are hosen.Inferato FS is running.Postonditions An objet is opied and the orrespondingmeta-information is reated.Alternativesof the mainsenario There ould be any other ator dealing with �le opyinginstead of user (like lient program or some systemproess). User also may do �le opy operation whileInferato FS is not running4.

Figure 4.4: CopyingId 4Use ase Objet movingDesription User moves objet inside his spae from one loation toanother.Ators User, Inferato FSDependeny 2,5Preonditions Target objet and its new destination diretory arehosen. Inferato FS is running.Postonditions The path is hanged. No �le dupliations are reated.Meta-link stays not a�eted.Alternativesof the mainsenario There ould be any other ator dealing with �le movinginstead of user (like lient program or some systemproess). Inferato FS ould be not running.
26

Figure 4.5: MovingId 5Use ase A new objet reatingDesription Inferato FS reates orresponding meta-information fornewly added/reated objet.Ators User, Inferato FSDependeny NonePreonditions User provides a new objet. Inferato FS is running.Postonditions The meta-data is reated.Alternativesof the mainsenario There ould be any other ator dealing with the objetreation instead of user (like lient program or somesystem proess). Inferato FS ould be not running.

Figure 4.6: Creating
27

Figure 4.7: Hierarhial taggingId 6Use ase Hierarhial taggingDesription Eah tag an inlude or be inluded into another tag.Ators User, Inferato FSDependeny 1Preonditions Inferato FS is running. Existing two tags are hosen byuser.Postonditions Chosen tag appears inside another tag as a new entry.Alternativesof the mainsenario User an also reate a new tag inside the target (whihis also a tag).

28

Chapter 5Implemented File systemsThis hapter desribes the implementation of Inferato FS. First of all, integrationpoints with FUSE will be introdued. This is followed by a general desription of theimplementation of ideas with problemati ases of requirements and proposed solutions.This hapter will also provide a detailed explanation of installation, integration withother tools, and usage proess. Followed by a short summary of the advantages andshortomings of Inferato FS. At the end of the hapter, some tests and future workswill be disussed as well.5.1 Overridden methodsInferato FS was implemented as an extension to FUSE Python implementation. Thename of the base sript is �inferatoFS.py�. The following methods of FUSE originalsripts were overridden:getattr Getter for attributes of objet on provided path (method parameter).Generally, this is the most used method, beause other operations are working throughit. Current method performs three things:
• ignores some �les and folders1, whih FUSE sripts expet to see in the rootof mounted system. These expetations are: "autorun.inf", ".Trash", ".Trash-1000", "BDMV", ".xdg-volume-info", ".diretory", ".krdirs", ".kateon�g".
• provides the attributes for regular objets2.
• in ase of Inferato objet, method provides ustomized properties. The objetsare: virtual �les, meta-links and meta-storage with orresponding ontent.readdir This method retrieves the objet list from the given path (method pa-rameter) and reates a virtual mirror of entries. Besides regular objets, ustomizationalso adds to the mirror image Inferato speial �les where needed. This method is1On the FUSE homepage some manuals and doumentation are provided. However, there is stillnot enough information provided. The �les expeted by FS sript are not mentioned in doumentationpages. Only �autorun.inf� desription is provided (last hek in April 2011).2Term �regular objets� implies any objet in �le systems, whih is not de�ned as a part of InferatoFS. 29

also a key method for future extension based on virtual �les3, sine here is de�ned aninitialization of �fakes�.unlink Unlink method serves as a delete operation for objets that are other thanthe diretory. In addition to unlink operations from a standard Python �OS� pakage,this method also handles an unlinking of the speial Inferato meta-strutures.rmdir Originally alls �os.rmdir�. As the unlink method, this one is For thedeleting operation and alled only in ase of a diretory parameter. The user is notallowed to delete speial strutures while Inferato FS is running.symlink A symboli link reation is handled here. All user links are aeptedexept those, whih an possibly break the normal work of Inferato FS.rename The tagging funtionality is based on this method. Movement of sensi-tive objets is restrited. Basially, rename operation means not only a target namehange, but a path hange as well. It is used to refer to path hanging as objet �mov-ing� and name hanging as �renaming�, but, in general, these ations are the same.For example, assume that the user has �sample.�le� in loation � /home/user/�. Usageof Unix standard utility �rename� will a�et only the end of the path string �/home-/user/sample.�le� after last �/�, while �mv� an hange any part of path (should haveorresponding permissions).hmod For this method, only the sensitive permission hanges are restrited.Basially repeats �hmod� utility in �le systems.mkdir Method alls OS system �mkdir�utility. As extension, restrits folder re-ation in meta-spae4.aess A seure poliy an be spei�ed in this method. Currently, extension usesthis method alling for the handling of meta-information generation. If an objet isnot aessed by a user after Inferato FS was started, then no meta-information will bereated. The �rst aess is usually performed when reading diretory entries (for eahentry).fsinit This method is alled only when the system is started. Extension modi�-ations here are related to the initialization of meta-information strutures.Besides ustomized normal FS operations, abstrat �le behaviours were also us-tomized. Class InferatoFile implements neessary modi�ations of FUSE original ex-ample. The following method was also overridden:__init__ The initialization of virtual �les are added here.3Virtual �les probably will be needed for holding the parameters about the target.4Meta-spae - any loation or objet in Inferato FS, whih is used for meta-information
30

5.2 System design desriptionFollowing those requirements desribed in hapter 4, there is a need to reate a type ofstruture that ould maintain the meta-information. On the other hand, it should beavailable from any loation in the mounted system (FUSE mounts a partiular folderand ats therein as a separate �le system). So Inferato FS uses for a meta-data registerits own meta-struture in one single folder named �#[meta-storage℄#�. Generally, itontains the data strutures that desribe orresponding �les in the user spae. Inlisting 5.1, the example of meta-storage view on a mounted system is provided. Afterthe �rst mounting, meta-storage will be saved in user data. In the example listing�/home/user/data� path is spei�ed as a root5 for data and �/home/user/mnt� as amounting spae./home/ user /mnt/#[meta−s to rage ℄#|−ustom tag−f 0 0 f f 8 4 −76ad−11e0−b22−00215d34df04| |− tags| |− l ength|− f o lde r1 −015b0d62−76ae−11e0−b22−00215d34df04| |− tags| |−ustom tag| |− l ength. . . Listing 5.1: Example of meta-strutureGenerally, the struture on example listing ontains one unique reord per eah known�le in Inferato FS spae. The �le is known when and only when the system somehowaesses it. These �lazy� initializations should prevent a long pause in the ase offething large data. Eah reord is named by following onvention: original objetname + unique identi�er. The last one is generated with Python �uuid� pakage bymethod �uuid1�. It basially uses for generation a host ID, sequene number (also seed)and urrent time. This should be enough to avoid dupliates if Inferato FS migratesto shared systems.Eah reord also ould ontain some properties of the objet in the fae of virtual�les. The example of suh property is �length� �le. It inludes the name length ofthe target. For example, for �folder1� with 7 haraters in name the �le �length� willprodue �7� for output. Virtual �les are only visible in mounted spae (�mnt� diretory)and their behaviour and output is generated by Inferato FS �on �y�. Another entry ofmeta-reord is �tags� folder. Generally, if the target objet was somehow tagged, thisfolder will ontain a referene to the tag.All used names in meta-strutures (inluding virtual �les) ould be on�guredthrough �templates.py� �le that omes with Inferato FS distribution.After the �rst Inferato FS start, per eah objet in the same diretory there will begenerated also a link, whih points to the target meta-reord loation in meta-storage.The name onversion for links is: target name + su�x, where su�x some uniqueharater set for system (initially it is �[#℄�).The tagging mehanism implies following key points:
• eah folder is a tag5The root of data ontains physial meta-data without virtual �les, while mount loation inludesonly a fake mirror of data. 31

• all ontent inside a diretory is automatially tagged by it
• usage of tagging is only for ases when there is a need to break a traditionalhierarhy (tree struture)There is also one speial ase when the system tries to tag two targets with the samename. This ould potentially make the ollisions in Inferato FS work. In listing 5.2is shown a situation, when the user may want to perform tagging of two (or more)idential names./home/ user /mnt/|−Downloads| |−Hans Zimmer f e a t . L i sa Gerrard − Now We Are Free .mp3|−musi| |−Hans Zimmer f e a t . L i sa Gerrard − Now We Are Free .mp3|− soundtraks. . . Listing 5.2: Names on�itAssume that the user tagged a �le �.../musi/Hans Zimmer feat. Lisa Gerrard �Now We Are Free.mp3� as �soundtraks�. In the �soundtraks� Folder, a new refereneto the target has now appeared. Now, if the user wants to tag another �le in the�Downloads� folder, then there will be a name lash, beause possible andidate namesfor the seond target �le will be the same as the existing one in �soundtraks�. Thesetwo �les may have di�erent ontent (e.g. total size, sound quality, length). Thus,this name ollision should be resolved onsidering both targets. In order to preventsuh on�its, a referene in the �soundtraks� folder points to a struture, whihbasially has two referenes per eah dupliate. One referene points to the sourediretory of the target and another one to the target itself. Name onvention: x,x_souredir (where x is a non-negative number starting from 0, whih de�nes theorder of tagging registration6). In a visa-versa situation, when there are two or moredupliate andidates for a target as a tag, Inferato FS does not allow for the reationof two dupliate tags for one target.Design assumptions
• User does not use a speial Inferato FS su�x for meta-links. This may lead tounstable system work while dealing with tag information 7.
• User does not hange the meta-reords ontent diretly.
• The key generating mehanism for meta-reord never generates the dupliates.
• User ats as a �single thread�.
• Inferato FS will be used as a shared servie for Windows-like systems in order toavoid FUSE laks.6Numbers are taken sequentially, but, in the ase of objet deletion, some numbers may be freeand will be assigned to new dupliate andidates starting from the lowest one.7However, a speial meta-su�x ould be used by the user di�erently from the su�x name position.32

5.3 InstallationSine Inferato FS was written and tested under a Linux-like OS, it is highly reom-mended to use the same OS type. Inferato FS is a Python sript and does not requireany additional on�guration, exept the environment. The following pakages shouldbe installed:
• Python 2.6 or later (if not installed)user�ubuntu :~ $ sudo apt−get i n s t a l l python2 . 6
• python-devuser�ubuntu :~ $ sudo apt−get i n s t a l l python2.6−dev
• FUSE librariesThis step implies that one of stable version was downloaded from:�http://soureforge.net/projets/fuse/�les/fuse-2.X/�user�ubuntu :~ $ d Downloads/user�ubuntu :~/Downloads$ ta r −xf fuse −2 .8 . 5 . t a r . gzuser�ubuntu :~/Downloads$ d fuse −2.8.5/user�ubuntu :~/Downloads/ fuse −2.8.5 $. / on f i gu r euser�ubuntu :~/Downloads/ fuse −2.8.5 $ make
• Fuse Pythonuser�ubuntu :~ $ sudo apt−get i n s t a l l python−f u s eAfter this step, the srip �inferatoFS.py� will be able to run. Environment installa-tion is now omplete. Note that distribution pakages for your loation may be di�erentfrom examples.5.4 UsageInferato FS startup. First of all, the user should deide whih data system shouldbe used and whih folder should be used for a mounted system (should be empty).Assume that Inferato FS installation path is $inf_home = �/home/user/inferato�, datafolder $data = �/home/user/data� and mounting point $mnt = �/home/user/mnt�.Then sample startup session with few debug messages8 in terminal window will lookas follows:user�ubuntu :~ $ python $inf_home/ in f e ra toFS . py −f −o root=$data$mnt r e a t i ng meta−s to rage '/home/ user /data ' done8Speifying the �ag -f is a kind of trik to redue the amount of debug information from FUSE.33

If you do not want to reeive any messages:user�ubuntu :~ $ python $inferato_home / in f e ra toFS . py −o root=$data $mntStarting �inferatoFS.py� with -d �ag will allow the omplete debug information to beprinted. After the system is started, eah objet in user data will have a generateddupliate with su�x �[#℄�. This is a link to meta-information of target. As long as thissript stays running, in $mnt path will be re�eted exat virtual opy of $data pathontent. A new folder �#[meta-storage℄#� ontains all related meta-information. Nowopen another terminal window and go to $mnt path. If everything is done orretly,the session will look as follows:user�ubuntu :~ $ l s $dataf1 f 1 [#℄ f 2 f 2 [#℄ #[meta−s to rage ℄# tag tag [#℄ t a r g e tt a r g e t [#℄user�ubuntu :~ $ l s $mnt/f1 f 1 [#℄ f 2 f 2 [#℄ #[meta−s to rage ℄# tag tag [#℄ t a r g e tt a r g e t [#℄user�ubuntu :~ $ d $mnt/Target meta-data request. Assume now that the user wants to get more informa-tion about �$mnt/f1� folder. It is possible to see the tags and one property �le �length�,whih tells the atual number of haraters in the name of the target. This is doneas an example of a virtual �le for programmers who will develop Inferato FS in thefuture. The sample session will look as follows:user�ubuntu :~/mnt$ l s f 1 \[#\℄/ l ength tagsuser�ubuntu :~/mnt$ l s f 1 \[#\℄/ tags /user�ubuntu :~/mnt$ at f 1 \[#\℄/ l ength tags /user�ubuntu :~/mnt$ at f 1 \[#\℄/ l ength2or1 user�ubuntu :~/mnt$ l s \#\[meta−s to rage \℄#/ − l2 t o t a l 163 drwxr−xr−x 3 user user 4096 2011−05−15 19 :15 f1−82771e00−7f0e−11e0−b690−00215d34df044 drwxr−xr−x 3 user user 4096 2011−05−15 19 :15 f2−82784a8−7f0e−11e0−b690−00215d34df045 drwxr−xr−x 3 user user 4096 2011−05−15 19 :15 tag−8277e6b4−7f0e−11e0−b690−00215d34df046 drwxr−xr−x 3 user user 4096 2011−05−15 19 :15 target −827782b4
−7f0e−11e0−b690−00215d34df047 user�ubuntu :~/mnt$ l s \#\[meta−s to rage \℄#/ f1−82771e00−7f0e
−11e0−b690−00215d34df04/8 length tags9 user�ubuntu :~/mnt$ at \#\[meta−s to rage \℄#/ f1−82771e00−7f0e
−11e0−b690−00215d34df04/ length 234

Tagging. There are two possible ways of tagging Inferato FS supports. The �rstway provides the opportunity to tag one target with one or multiple tags, the seondone � visa-versa. Assume that the user wants to mark �target� folder as �f1� and �f2�.Sample session9:1 user�ubuntu :~/mnt$ mv −t tag \[#\℄/ tags f 1 f 22 user�ubuntu :~/mnt$ l s tag \[#\℄/ tags / f1 f 23 user�ubuntu :~/mnt$ l s tag \[#\℄/ tags / − l4 t o t a l 05 lrwxrwxrwx 1 user user 30 2011−05−15 23 :39 f1 −> /home/ user /data/ f16 lrwxrwxrwx 1 user user 30 2011−05−15 23 :39 f2 −> /home/ user /data/ f27 user�ubuntu :~/mnt$ l s f 1 − l8 t o t a l 49 drwxr−xr−x 2 user user 4096 2011−05−09 00 :15 tag10 drwxrwxrwx 5 root root 0 1970−01−01 03 :00 tag [#℄11 drwxrwxrwx 5 root root 0 1970−01−01 03 :00 t a r g e t [#℄12 user�ubuntu :~/mnt$ l s f 2 − l13 t o t a l 414 drwxr−xr−x 2 user user 4096 2011−05−08 22 :17 tag15 drwxrwxrwx 5 root root 0 1970−01−01 03 :00 tag [#℄16 drwxrwxrwx 5 root root 0 1970−01−01 03 :00 t a r g e t [#℄Assume that user did not performed previous step and now wants to tag objets �f1�and �f2� as �target�. The seond way of tagging will look as follows:user�ubuntu :~/mnt$ mv −t t a r g e t \[#\℄/ f 1 f 2user�ubuntu :~/mnt$ l s t a r g e tf 1 [#℄ f 2 [#℄user�ubuntu :~/mnt$ l s f 1 \[#\℄/ tags /t a r g e tuser�ubuntu :~/mnt$ l s f 2 \[#\℄/ tags /t a r g e tUntagging. As is the ase with tagging, an untag ation an be done in two ways.For the untag operation a user needs to delete the meta-link. The following samplesession overs both ases:user�ubuntu :~/mnt$ rm f1 \[#\℄/ tags / t a r g e tuser�ubuntu :~/mnt$ l s f 1 \[#\℄/ tagsuser�ubuntu :~/mnt$ l s t a r g e t f 2 [#℄user�ubuntu :~/mnt$ rm ta r g e t / f 2 \[#\℄/rm : annot remove ' t a r g e t / f 2 [# ℄ / ' : I s a d i r e t o r yuser�ubuntu :~/mnt$ rmdir f 2 f 2 / f2 [#℄/user�ubuntu :~/mnt$ rmdir t a r g e t / f 2 \[#\℄/user�ubuntu :~/mnt$ l s t a r g e tuser�ubuntu :~/mnt$ l s f 2 \[#\℄/ tags /9In this example both �f1� and �f2� diretories have an entry �tag� whih is nothing more than aregular folder. 35

TThe reason why meta-links are shown as diretories is as follows: in ase two ormore targets with the same name were tagged by one tag, then meta-links points tostruture, where all dupliates are desribed. So, basially, it ould be ompared witha folder, whih stores all �inoming� referenes (see �gure 1.1).Other �le operations are available as in a normal �le system, exept in ases dealingwith speial data.Unmount. If a user wants to unmount Inferato FS, then all opened �les/diretoriesshould be losed. Otherwise the system will print a orresponding message:user�ubuntu :~ $ fusermount −u mntumount : /home/ user /mnt : dev i e i s busy .(In some a s e s u s e f u l i n f o about p r o e s s e s that usethe dev i e i s found by l s o f (8) or f u s e r (1))// l o s i n g a l l work and t ry ing againuser�ubuntu :~ $ fusermount −u mntuser�ubuntu :~ $Data leaning. Distribution arhive of Inferato FS inludes sript �fslean.py�. Thisallows a user to lean his data:user�ubuntu :~ $ python $inf_home/ f s l e a n . py $dataCleaning i s doneuser�ubuntu :~ $ l s $dataf1 f 2 tag t a r g e t5.5 Integration with Graph3dFor simple test purposes, Inferato FS was integrated with Graph3d10. This is a simple3d browser, whih ould shows di�erent strutures through graph struture. For exam-ple, di�erent data trees in a �le system, or soial network onnetions between people,or web-pages and links between them. Originally written on Panda 3d[14℄ engine byDmitri Danilov as a part of his master thesis.In the ontext of Inferato FS, the integration with Graph 3d means an opportunityto demonstrate how �exible this �le system ould be for other utilities. Graph3d itselfdoes not support any �le operations. It only an navigate through a user's data tree.5.6 Advantages
• User does not have to go deeply into data hierarhy, but instead, he an reateustom views in a root of the �le system. Eah view an ontain referenes todata from a di�erent hierarhial level.10Grapth3d repository link: svn://www.dougdevel.org/mis/publiations/theses/Master/DmitriDanilov

36

• All tags are always up-to-date. There are no broken links. If a user deletes ormoves a target to another loation, all meta-data automatially hanges.
• Intuitive and natural way while working. Inferato FS mixes an existing hierarhyof data. For example, users do not have to speify that all �les inside the diretory�/home/user/Video� should be tagged as �Video�.
• Data safety. Inferato FS do not interat diretly with user data. It only a�etsmeta-data in addition to user ations.
• User always knows whih �les are tagged by target and visa-versa.
• Meta-ontent is available as regular data. User an browse through his �les vianon-integrated �le browsers and use the features of Inferato FS.5.7 DisadvantagesThe purpose of the urrent list of disadvantages is not only to show the possible laksof onepts. Some disadvantages are atually �to be done� features that this worksassumes.Projet sope
• FUSE related risks: urrent work is based on FUSE platform and this brings somerestritions (see setion 3.4 for more details). It may be neessary to overwritesome FUSE part, for example �fusermount�. In this ase, GNU liense restritionsfor open soure software will apply.
• FUSE is not fully funtional in Windows family operating systems (see setion3.2 for more details).
• The omplete list of meta-properties for system is unknown yet.Implementation
• Implementation in Python. From the optimal performane it is more likely touse C++ programming language. In ase of big user data strutures the �nalperformane ould have a sensitive di�erene.
• Only a prototype. There is a need to do a lot of tests and pathes for providingmore stable system work before real users start trying it.
• Operation bak up mehanism for Inferato FS spei� operation is missing, asmissing user ation traking utility.
• No suitable user interfae yet. All tagging ations are performed manually.
• The maximum length of meta-struture names is atually shorter (for 37 symbols)than usual �le name apaity assumes.

37

5.8 Tests and resultsInferato FS work was tested with di�erent amounts of data. Basi funtionality wastested with the small data tree and did not not show serious troubles in work. Also, areal data olletion was given as input. Usability test was done with a real olletionof �les (my university materials, olleted from 2003 to 2010). A total input of 35188 �les and 9 557 Diretories, with a total size approximately 2.2 Gb. It was a goodexperiene to tag the real �les. The major problem in usage was that an e�etive userinterfae is not available yet. Despite this shortoming, the system demonstrated itselfas an e�etive method of organizing data. My experiene showed, that oneption�eah folder is a tag� was working perfetly for me. For test purposes, I reated someustom views from di�erent programming language materials and this view has overedmany of my university ourses.5.9 Planned future worksUser interfae. Inferato FS needs a suitable user interfae (UI), whih will providea more �exible and faster way to tag/untag �les. At the moment, eah �le has a meta-link whih points to meta-data. It would be perfet if these links were hidden fromthe user. The generation of these links is possible on-the-�y and should not be a bigproblem for UI implementation.BACKUP mehanism. Currently, Inferato FS supports a basi ations trakingutility. No restoring feature is implemented yet.New arhiteture. With suitable UI there will be a great possibility to physiallyeliminate the meta-links. Meta-storage ould also be plaed into eah diretory. Forexample, it ould be more �exible to store in eah diretory meta-storage as hidden�.meta-storage�. There are three major advantages of suh arhiteture:1. Suh meta-storage splitting will prevent possible problems with performanewhen a user is trying to aess it. For example, this is very atual in ase ofhaving 100 000 �les.2. There will be no need to generate meta-links, beause eah meta-storage will holdonly meta-data for a partiular folder. Thus, it will be easy for UI to generate apointer to meta-information of target.3. The need for a unique name in meta-storage will be obsolete. Usually, hierarhial�le systems assume that no dupliate names an exist in the same path. Thus,there will be no dupliates in meta-storage either.
38

Summary and outlookThe main goal of this work is to prove the possibility of the existene of integrative �lesystems with bidiretional linking and to show the advantages of suh a feature.The work analysed and evaluated researh of similar existing approahes and pre-sented an own solution based on the FUSE (File system in User Spae) extensionplatform. The design of the solution is �exible and supports other add-on modi�-ations to the urrent system. This will allow, in the future, for the extension of theprojet to handle more e�etively omplex data strutures in a graph based �le system.The �rst hapter of this work introdued the thesis and explained motivationsbehind it with the help of a sample senario. The seond and third hapters weredediated to related work. The ore platform was introdued here. The fourth hapterovered the requirements related issues. The �fth hapter gave detailed explanationsabout the implemented �le system, its advantages and shortomings, tests and futureworks.The main goal of this work was met. It was proved that suh �le systems withbidiretional linking an exist. The advantages of suh feature were presented. The re-sults and output of the urrent work will be used as a development base for ommerialprojets.

39

Integreeritavad failisüsteemidMagistritöö (30 EAP)Dmitri BorissenkoResumeeKäesoleva töö peaeesmärk on tõestada kahesuunalise linkimisega integreeritavate fail-isüsteemide võimalikkust ning tuua esile sellise funktsiooni eelised.Töö käigus analüüsiti ning hinnati uuringuid sarnaste olemasolevate lähenemistekohta ning esitati omapoolne lahendus, mis põhineb FUSE (File System in User Spae� kasutajakeskkonnas olev failisüsteem) lisaplatvormil. Lahenduse disain on paindlikning toetab teisi praeguse süsteemi lisand- modi�katsioone. See võimaldab tulevikusprojekti laiendada, et tegeleda tõhusemalt keeruliste andmestruktuuridega graa�kalbaseeruvas failisüsteemis.Käesoleva töö esimeses osas selgitatakse töö eesmärki ning selle valiku põhjuseidpõhinedes näidisstsenaariumile. Teine ja kolmas osa on pühendatud seotud töödeläbi viimise kirjeldamisele. Siin tutvustatakse ka põhiplatvormi. Nõudmistega seotudküsimuste osas antakse ülevaade neljandas osas. Viiendas osas selgitatakse põhjaliku-malt failisüsteemi rakendamist, selle eeliseid ja puuduseid, testimist ja sellega seotudedasist tööd.Käesoleva töö peaeesmärk saavutati. Tõestati, et selline kahesuunalise linkimisegafailisüsteem saab olemas olla. Välja toodi selle funktsiooni eelised. Töö tulemusi ningväljundit kasutatakse tulevikus alusena kommertsprojektide arendamisel.

40

AbstratThe main onept of the proposed Integrative Graph File Systems is based on bidire-tional relationship between two objets (bidiretional linking). The main features areup-to-date links, no broken referenes, and improved organization of existing �le hier-arhy. Nowadays, it is hard to maintain the variety of a onstantly inreasing numberof �les. Over time, even a simple �le an be lost in the deep hierarhy of user �les.With the work proposed here, it is possible to prevent suh a loss by o�ering di�erentways to traverse the hierarhies while still ending up at the same �le. This methodis similar to tagging. The work allows the user to easily plae a single �le in multipleloations on meta-info level and quikly �nd the inoming links. Thus, the user alwaysknows all objets whih are pointing to the target and vie-versa. All basi �le oper-ations are supported (like delete, move or rename). The main goals of this work areto prove the possibility of the existene of integrative �le systems with bidiretionallinking and to show the advantages of suh a feature. Integration means the possibilityto use suh a �le system with the standard �le operation and exploration tools availablein urrent operating systems. The work analyzes and evaluates researh of similar ap-proahes and presents an own solution, based on the FUSE (File system in User Spae)extension platform. This solution is applied to several example senarios. The designsupports other add-on modi�ations to the urrent system, allowing the extension ofthe projet to unify and sort di�erent data in a graph based �le system. As this is anintegrative approah, no expliit user interfae will be provided. The future work willhint at possible extensions to a ollaborative multi-user �le system, whih assumes theombination of loal spae and di�erent network or loud based data providers.

41

Bibliography[1℄ AVFS - a virtual �le system. http://avf.soureforge.net/[Last aessed on May20, 2011℄.[2℄ C++ language tutorial - ++ doumentation.http://www.plusplus.om/do/tutorial/[Last aessed on May 20, 2011℄.[3℄ Elipse - the elipse foundation open soure ommunity website.http://www.elipse.org/[Last aessed on May 20, 2011℄.[4℄ The GNU general publi liense v3.0 - GNU projet - free software foundation(FSF). http://www.gnu.org/lienses/gpl.html[Last aessed on May 20, 2011℄.[5℄ GNU lesser general publi liense v3.0 - GNU projet - free software foundation(FSF). http://www.gnu.org/lienses/lgpl.html[Last aessed on May 20, 2011℄.[6℄ Google. http://www.google.om/[Last aessed on May 20, 2011℄.[7℄ Google desktop - wikipedia, the free enylopedia.http://en.wikipedia.org/wiki/Google_Desktop[Last aessed on May 20, 2011℄.[8℄ Graph theory - wikipedia, the free enylopedia.http://en.wikipedia.org/wiki/Graph_theory[Last aessed on May 20, 2011℄.[9℄ Hard link - wikipedia, the free enylopedia.http://en.wikipedia.org/wiki/Hard_link[Last aessed on May 20, 2011℄.[10℄ Hierarhial �le system - wikipedia, the free enylopedia.http://en.wikipedia.org/wiki/Hierarhial_File_System[Last aessed on May20, 2011℄.[11℄ Jon udell: The future of the �le system. http://jonudell.net/byteols/2001-05-30.html[Last aessed on May 20, 2011℄.[12℄ Link - wikipedia, the free enylopedia. http://en.wikipedia.org/wiki/Link[Lastaessed on May 20, 2011℄.[13℄ Mashup (web appliation hybrid) - wikipedia, the free enylopedia.http://en.wikipedia.org/wiki/Mashup_%28web_appliation_hybrid%29[Lastaessed on May 20, 2011℄.[14℄ Panda3D - free 3D game engine. http://www.panda3d.org/[Last aessed on May20, 2011℄. 42

[15℄ Python programming language - o�ial website. http://www.python.org/[Lastaessed on May 20, 2011℄.[16℄ SoureForge.net: FileSystems - �le systems using fuse.http://soureforge.net/apps/mediawiki/fuse/index.php?title=FileSystems[Lastaessed on May 20, 2011℄.[17℄ Symboli link - wikipedia, the free enylopedia.http://en.wikipedia.org/wiki/Symboli_link[Last aessed on May 20, 2011℄.[18℄ Tag (metadata) - wikipedia, the free enylopedia.http://en.wikipedia.org/wiki/Tag_%28metadata%29[Last aessed on May20, 2011℄.[19℄ tagstore - a new way of storing and aessing �les.http://tagstore.ist.tugraz.at/[Last aessed on May 20, 2011℄.[20℄ UNIX man pages : at (). http://unixhelp.ed.a.uk/CGI/man-gi?at[Last a-essed on May 20, 2011℄.[21℄ UNIX man pages : grep (). http://unixhelp.ed.a.uk/CGI/man-gi?grep[Last a-essed on May 20, 2011℄.[22℄ UNIX man pages : ls (). http://unixhelp.ed.a.uk/CGI/man-gi?ls[Last aessedon May 20, 2011℄.[23℄ The UNIX system, UNIX system. http://www.unix.org/[Last aessed on May20, 2011℄.[24℄ Virtual �le system - wikipedia, the free enylopedia.http://en.wikipedia.org/wiki/Virtual_�le_system[Last aessed on May 20,2011℄.[25℄ VirtualBox. http://www.virtualbox.org/[Last aessed on May 20, 2011℄.[26℄ VMware virtualization software for desktops, servers & virtual mahines for publiand private loud solutions. http://www.vmware.om/[Last aessed on May 20,2011℄.[27℄ Windows virtual PC: home page. http://www.mirosoft.om/windows/virtual-p/[Last aessed on May 20, 2011℄.[28℄ WINUAE. http://www.winuae.net/[Last aessed on May 20, 2011℄.

43

Appendix AAll related materials (suh as soure ode, example pitures, urrent writing) ould befound in publi SVN repository:�svn://www.dougdevel.org/mis/publiations/theses/Master/DmitriBorissenko�

44

Appendix BA Gpraph3d integration ode:1 from Conf igParser import Conf igParser2 from par s e r import Parser3 from templates import FSTemplates4 from metaut i l s import PathUt i l s5 import networkx as nx6 import os78 l a s s simpleGraph :910 graph = {}11 root = None12 data = None1314 de f __init__(s e l f) :15 #load p r op e r t i e s s t a r t16 f g f i l e = os . path . s p l i t (__file__) [0 ℄ + os . sep + " sys .p r o p e r t i e s "17 par s e r = Conf igParser ()18 par s e r . read (f g f i l e)19 s e l f . root = par s e r . get (" i n i t " , " root ")20 s e l f . data = par s e r . get (" i n i t " , "dat ")21 #load p r op e r t i e s end22 s e l f .myLoad()2324 de f getRoot (s e l f) :25 return s e l f . root2627 de f getNameLengthString (s e l f , path) :28 r e t = 029 #make sure that t h i s i s not a s p e i a l f i l e and thes p e i a l l i n k e x i s t s30 i f not Parser (path) . isMeta () :31 l ength = path + FSTemplates . _su f f i x + os . sep +FSTemplates . f i l e_ l e n32 f i l e = open (length , " r ")33 #we need to read only the f i r s t l i n e34 i f f i l e :35 r e t = f i l e . r e a d l i n e ()45

36 return r e t3738 de f exp lo r e (s e l f , arg , d ir , f i l e s) :39 i f not Parser (d i r) . isMeta () :40 f o r f in f i l e s :41 i f not Parser (d i r + f) . isMeta () :42 i f not s e l f . graph . has_node (d i r) :43 s e l f . addNode (dir , " root o f FS")44 meta = f + " i s entry o f " + d i r + "\n"45 meta += " length o f name : "46 meta += s e l f . getNameLengthString (d i r + os .sep + f)47 s e l f . addNode (d i r + os . sep + f , meta)48 s e l f . addEdge ((dir , d i r + os . sep + f + "") ,"")4950 de f l oadRe la t i on s (s e l f , arg , d ir , f i l e s) :51 i f not Parser (d i r) . isMeta () :52 f o r f in f i l e s :53 i f not Parser (d i r + os . sep + f) . isMeta () :54 fmeta_tags = d i r + os . sep + f +FSTemplates . _su f f i x + os . sep +FSTemplates . f o lde r_tags55 f o r en in os . l i s t d i r (fmeta_tags) :56 tag = PathUt i l s (fmeta_tags + os . sep +en) . getRealPath (s e l f . data , s e l f .root)57 s e l f . addEdge ((tag , d i r + os . sep + f) ," tag ")5859 de f myLoad(s e l f) :60 s e l f . graph = nx . MultiDiGraph (name=' F i l e System ')61 os . path . walk (s e l f . root , s e l f . explore , "")62 os . path . walk (s e l f . root , s e l f . l oadRe lat ions , "")6364 de f getNXGraph (s e l f) :65 return s e l f . graph6667 #add node to the graph68 # index : key69 # xdata : data in t ex t format70 # po in t e r s : p o i n t e r s in t ex t format "1 ,2 , 3 , 4 , 5 , rr , d s f "71 #point72 de f addNode (s e l f , index , xdata) :73 s e l f . graph . add_node (index , data=xdata)74 #l i n k s7576 de f addEdge (s e l f , index , type) :46

77 s e l f . graph . add_edge (index [0 ℄ , index [1 ℄ , data=type)7879 de f getNodeData (s e l f , index) :80 return s e l f . graph . node [index ℄ [' data ' ℄8182 de f getNodeLink (s e l f , index) :83 #return s e l f . graph . node [index ℄ [' ur l ' ℄84 re turn index8586 de f getEdgeType (s e l f , index) :87 retArray = [℄88 t ry :89 l i s t = s e l f . graph [index [0 ℄ ℄ [index [1 ℄ ℄ . va lue s ()90 f o r inne rD i t in l i s t :91 retArray . append (inne rD i t . get (' data '))92 exept KeyError :93 p r i n t "ERROR: miss ing edge index : " , index94 return [℄95 return retArray

47

	Acknowledgments
	Introduction
	Motivation
	Sample scenario
	Bidirectional linking.

	Related work
	Existing features
	Analysis of opinions
	Introduction to Tagging

	FUSE
	Virtual file systems
	About FUSE
	How does it work?
	Licensing issues

	Requirements
	Requirements elicitation
	Scope
	Requirements Specification

	Implemented File systems
	Overridden methods
	System design description
	Installation
	Usage
	Integration with Graph3d
	Advantages
	Disadvantages
	Tests and results
	Planned future works

	Summary and outlook
	Resumee (Eesti keeles)
	Abstract
	Bibliography
	Appendix A
	Appendix B

