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2. INTRODUCTION 

Ecological and biogeographical processes drive the structure and diversity of 
natural communities. A range of factors, including both abiotic and biotic 
variables, shape the distribution of organisms through their inherent ecological 
tolerances and differential competitive abilities. Micro- and macroorganisms are 
often involved in symbiotic associations that may constrain the distribution of 
one or both of the partners. Due to methodological restrictions, microbial bio-
geography has long relied on theoretical arguments over empirical data. Rapid 
developments of molecular tools in the recent decades have, however, enabled 
us to shed light in microbial biogeography and diversity at the global scale. 
Accumulating evidence suggests that microbes do exhibit biogeographic pat-
terns, but these do not necessary coincide with the patterns observed in macro-
organisms (patterns such as latitudinal or altitudinal gradient in diversity; 
Bryant et al., 2008; Fierer et al., 2011, Queloz et al., 2011; Bahram et al., 
2012). Furthermore, microbial divisions and kingdoms strongly differ in their 
ecology and dispersal and could be subject to different ecological factors. 

Mycorrhizal fungi are widespread soil-inhabiting microorganisms that dis-
play a number of mutualistic benefits from associations with most terrestrial 
plants (Smith & Read, 2008). Among mycorrhizal types, ectomycorrhizal 
(EcM) symbiosis, which appears in many ecologically and economically 
important trees, represents potentially one of the most prominent and eco-
logically crucial mutualistic associations in terrestrial habitats. It has been 
estimated that total EcM fungal richness could be at least 20 000 species 
(Rinaldi et al., 2008). Current evidence suggests that species richness of EcM 
fungi appears to have a unimodal relationship with latitudinal gradient 
(Tedersoo & Nara, 2009; Tedersoo et al., 2012) and it declines along the 
altitudinal gradient (Bahram et al., 2012). The first of these patterns is different 
from the widely observed pattern of greater species richness in tropical rather 
than temperate zones (Hillebrand, 2004). Similarly to macroorganisms, both of 
these diversity gradients were largely ascribed to climatic variables, particularly 
the mean annual temperature and precipitation. The unimodal relationship bet-
ween EcM fungal richness and latitudinal gradient could be partly ascribed to 
temperate origin of EcM─ the distribution of many EcM fungal lineages is 
restricted to the temperate ecosystems, which is consistent with the evolutionary 
history of host plants (Tedersoo & Nara, 2009; Tedersoo et al., 2010; Tedersoo 
et al., 2012). For example, the origin of the oldest known ectomycorrhizal plant 
family, Pinaceae, is temperate (Hibbett & Matheny, 2009). In addition to evolu-
tionary history, high biological activity in tropical soil reduces the amount of 
organic matter that may result the impoverishment of niches for soil micro-
organisms, potentially reducing EcM fungal diversity (Wardle, 2002).  

The EcM community structure is affected by a number of biotic and abiotic 
factors such as climate (O`Dell et al., 1999), successional stage (Nara et al., 
2003), interspecific interactions of EcM (Koide et al., 2005), edaphic factors 
(Aponte et al., 2010) and dispersal limitation at various scales (Peay et al., 
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2007; Peay et al., 2010). Studies examining autocorrelation at local scales have 
demonstrated that most of the EcM taxa show patchiness up to 3 meters 
(Lilleskov et al., 2006; Bahram et al., 2010). Host species identity has also been 
increasingly shown to influence the structure and richness of EcM fungal 
assemblages at a range of taxonomic levels, as large proportion of EcM fungi 
exhibit host preference (Ishida et al., 2007; Morris et al., 2008; Tedersoo et al., 
2008; Bahram et al., 2012). However, it often remains unknown whether the 
host effect is related to phylogenetic distance among them or driven by random 
processes independent of evolutionary links, i.e. the effect of a species per se. 
For example effects of host tree on EcM communities may be mediated by 
indirect factors such as differences in leaf litter, carbon production or 
modification of soil properties (Conn & Dighton, 2000; Dickie et al., 2006; 
Aponte et al., 2010). Such taxonomic sampling effect is ubiquitous in ecology 
and largely accounts for increase in biodiversity and function of soil animals 
and fungi with raising richness of host or substrate (Cardinale et al., 2006). 
Alnus and its mycobionts could serve as a suitable model system to address host 
effect. 

Much of the early work about host effects on EcM assemblages focused on 
the genus Alnus (Molina, 1979; Molina, 1981). EcM fungal communities of 
other boreal and temperate ecosystems are more diverse compared to Alnus, 
which associates with greater proportion of host specific fungi (Kennedy & 
Hill, 2010). Around 50–60 species of EcM fungi are documented as ecto-
mycorrhizal symbionts of Alnus world-wide (Pritsch et al., 1997; Kennedy & 
Hill, 2010; Rochet et al., 2011) and at least the basidiomycetes are strongly 
specific to their host tree genus (Molina et al., 1992; but see Kennedy et al., 
2011). Based on a representative collection of fruit-body specimens, Rochet et 
al. (2011) argued that a few EcM fungal MOTUs (molecular operational taxo-
nomic unit) partition hosts at the subgenus level in France. Hereafter the EcM 
fungal MOTUs are treated as species level taxa. While most of the Alnus-
associated fungal MOTUs have been recorded only once, a few of the most 
common species are distributed both in Europe and North and South America 
(Becerra et al., 2005; Kennedy & Hill, 2010; Kennedy et al., 2011). Together 
with EcM fungi, Alnus forms tetrapartite association involving arbuscular 
mycorrhizal fungi (AM) and actinorrhizal bacteria. However, infection of AM is 
usually scant in mature trees (S. Põlme et al., unpublished) and EcM fungi are 
thought to play a major role in scavenging soil nutrients (Chatarpaul et al., 
1989; Yamanaka et al., 2003). For Alnus, both fungal and actinobacterial root 
symbionts are obligatory and beneficial for obtaining atmospheric nitrogen and 
soil mineral nutrients, respectively (Yamanaka et al., 2003; Benson & Dawson, 
2007). Although Frankia actinobacteria are always present in healthy Alnus 
stands, actinorrhizal symbiosis is facultative for the actinobacteria that are 
ubiquitous free-living soil organisms (Benson & Dawson, 2007; Chaia et al., 
2010).  

First known fossil records of Alnus dates back to late Tertiary (Chen & Li, 
2004) and origin of genus is considered to be East Asia where the highest level 
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of endemism occurs (Navarro et al., 2003). Donoghue and Smith (2004) com-
pared continental disjunction patterns of major plant clades and concluded that 
Beringia has been primary path between Old and New world. Fossil records 
support the hypothesis that Alnus has spread from Eurasia multiple times using 
both the Beringian and North Atlantic land bridges (Furlow, 1979). Today, 
Alnus comprises approximately 28–44 species that are widely distributed in the 
boreal and temperate zone of the Northern hemisphere and extends rapidly 
further south along with the Andes in South America (Chen & Li, 2004). Such 
wide geographical range of host-symbiont association could potentially provide 
a good model system for addressing biogeography, co-evolution and host spe-
cificity of microbial taxa (Yamanaka et al., 2003; Anderson et al., 2009; 
Pokharel et al., 2011; Rochet et al., 2011).  

 
 

2.1. Aims and hypothesis 

In this thesis, I focus on Alnus-associated ectomycorrhizal fungi because of their 
manageable richness, wide geographical distribution and similar habitat in wet 
soils. This thesis aims to disentangle the relative effects of ecological and cli-
matic factors on the community structure and species richness of Alnus-associa-
ted EcM fungi at the regional and global scale. The following hypotheses were 
postulated:  
1) since Alnus mycota seems to be distinct in broad geographical area despite 

environmental and spatial variation, we hypothesized that Alnus species and 
their phylogenetic relationships account for the strongest predictor of EcM 
fungal community composition at the intrageneric level at the global scale 
(III);  

2) based on results of global metastudy (Tedersoo et al., 2012), we hypothe-
sized that Alnus EcM fungal species richness is largely determined by mean 
annual temperature and precipitation at the global scale (III); 

3) since edaphic variables have crucial importance in microbial ecology we 
hypothesized that at regional scale, soil conditions, particularly pH and 
limiting phosphorus, drive the EcM community structure and species rich-
ness rather than geographical and genetic variables (I);  

4) global biogeography of Alnus EcM communities reflects ancient migration 
routes of host (III). 

 
In addition, our aims were to 
6) describe the morphological and anatomical features of EcM types in poorly 

investigated Argentinean Alnus forests (II); 
7) investigate EcM mycota of Estonian Alnus communities (I). 
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3. MATERIAL AND METHODS 

3.1. Sampling design 

Study sites in Alnus habitats were arbitrary selected to meet certain criteria of 
each study. Each study site harbored at least six host trees situated at minimum 
10 meters apart to secure statistical independence between individual samples 
(Lilleskov et al., 2006). From around each individual tree, one soil core (15*15 
cm to 10 cm depth) including Alnus roots were collected with a spade or a sharp 
knife. In studies I and II, study sites were larger and more than six soil cores 
per plot were sampled (see details from particular articles). In total we sampled 
97 study sites of Alnus habitats (Fig. 1) from all continents where Alnus is dis-
tributed, except Africa where a single species (A. glutinosa) inhabits a narrow 
area in Northwest part of continent. Out of ca. 28─44 valid species our 
sampling covered 22 Alnus species from all three subgenera ─ Alnobetula, 
Clethropsis and Alnus (Navarro et al., 2003).  
 

 

Figure 1. 1A) map of study sites indicating number of host species/number of sites 
studied in the region; 1B) approximate Alnus distribution in the present day;  
a) hypothitical origin of the genus; b) possible migration route via Bering land bridge; 
c) possible migration route via North Atlantic land bridge. 
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Soil samples including Alnus roots were stored in the plastic bags until pro-
cessed within 48 hours after collection. Tree roots were separated from soil and 
carefully cleaned under tap water. Ectomycorrhizal morphotypes were dis-
tinguished under stereomicroscope based on colour and roughness of mantle, 
presence of emanating hyphae and rhizomorphs (Fig. 2), except for study II 
where the more specific comparative anatomical protocol of Agerer (1991) was 
followed. All different morphotypes from each study site were stored in CTAB 
buffer (1% cetyltrimethylammonium bromide, 100 mM Tris-HCL (pH 8.0), 1.4 
M NaCl, 20 mM ethylenediaminetetraacetic acid) and subjected to further 
molecular analyses. In order to analyse soil properties at each site, ca 50 g of 
rhizosphere soil was pooled from the six soil core samples (I, III). Con-
centrations of total soil nitrogen (N), exchangeable phosphorus (P), potassium 
(K), calcium (Ca), magnesium (Mg) and soil pH were measured. In addition to 
soil properties we evaluated host age at each site, using available data of 
habitats or advice of local experts. Geographical coordinates and altitude were 
recorded using a GPS Garmin 60CSx (Garmin International Inc., Olathe, KS, 
USA).  
 

  

  
Figure 2. Selection of ectomycorrhizal root tips associated with Alnus glutinosa:  
a) Cortinarius alnetorum; b) Inocybe sp. (white); c) Tomentella aff. ellisii; d) Lactarius sp. 

 

a) b)

c) d) 
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3.2. Molecular analysis 

At least one mycorrhizal root tip from each morphotype per soil core was 
subjected to DNA extraction. Fungal genomic DNA was extracted using 
QIAGEN DNeasy 96 Plant Kit for study I and III, or QIAGEN DNeasy Plant 
Mini kit for study II following the manufacturer’s instructions in both cases. 
Fungal rDNA Internal Transcribed Spacer (ITS) region was amplified  
with a forward primer ITSOF-T (5`- acttggtcatttagaggaagt -3`) in combi- 
nation with reverse primers LB-W (5´- cttttcatctttccctcacgg -3´) or TW13  
(5`- ggtccgtgtttcaagacg -3`) or primers ITS1F (5´- cttggtcatttagaggaagta-3´) and 
ITS4B (5´- caggagacttgtacacggtccag-3´) (Gardes & Burns, 1993) in study II. 
Detailed PCR protocols are described in particular articles. Primers TrnC (5`- 
cgaaatcggtagacgctacg -3’) and TrnD (5`- ggggatagagggacttgaac -3’) were used 
to amplify plant plastid trnL region from mycorrhizas in study I and III, in 
order to confirm host identity of rare fungal species (occurring once or twice). 
PCR products were separated by electrophoresis through a 1.5% agarose gel in 
0.5 × TBE buffer (45 mM Tris Base, 45 mM Boric Acid, 1 mM EDTA  
(pH 8.0)), visualized under UV light and purified using Exo-Sap enzymes 
(Sigma, St. Louis, MO, USA) in I and III, or a QIAquick PCR purification kit 
(QIAGEN, Hilden, Germany) in study II. 

Sequencing of fungal DNA was performed with primers ITS5  
(5`-ggaagtaaaagtcgtaacaagg -3’) and ITS4 (5`- tcctccgcttattgatatgc -3’) in I and 
III or ITS1F and ITS4B (II). In studies I and III, sequences were assembled, 
checked, trimmed and manually corrected using Sequencher 4.10.1 software 
(GeneCodes Corp., Ann Arbor, MI, USA). Sequences were confirmed to belong 
to EcM lineages (cf. Tedersoo et al., 2010) or Alnus host trees by the use of 
blastN searches against the International Sequence Databases (INSD) or UNITE 
(Abarenkov et al., 2010). In study III, for each fungal lineage the ITS sequence 
of suitable outgroup taxa was downloaded from INSD and aligned auto-
matically using MAFFT 6 (Katoh & Toh, 2008). In study II, the alignments 
were performed with ClustalW (http://www.ebi.ac.uk/clustalw/). In study I, 
97% ITS region identity was used as a barcoding threshold except in the genus 
Alnicola, where molecular species were identified based on a neighbour-joining 
tree comprising both the generated root tip and previously deposited vouchered 
fruit-body sequences downloaded from the INSD. In study III, Maximum 
Likelihood (ML) and fast bootstrap analyses were performed applying default 
settings in RAxML (Stamatakis et al., 2008) as implemented in the Cipres web 
portal in order to create phylograms of all Alnus-associated fungal genera. 
These phylograms were used to distinguish fungal MOTUs based on com-
bination of branch length and bootstrap support values (Fig. 3). In study II, a 
Neighbour joining analysis was performed in 4.0d81 PAUP (Swofford, 2002), 
to demonstrate the phylogenetic affinities of Alnus-associating Tomentella spp.  
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Figure 3. Delimination of Inocybe species based on ITS phylogram. 
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3.3. Data analyses 

MOTU occurrence data of soil core samples in each study site were pooled and 
each site was treated as a single sampling unit. Bray-Curtis dissimilarity metric 
was used to calculate community distance matrices (III). All soil nutrient con-
centrations were logarithm-transformed prior to analyses (I, III). In addition, 
EcM colonization and soil nutrient proportions were arcsine-square-root trans-
formed and species richness was square-root-transformed (I). 

Estimates of the mean annual temperature and precipitation were retrieved 
from a high-resolution database of Earth’s surface climate (Hijmans et al., 
2005) using the software ArcGIS 9.3 (ESRI, Redlands, CA, USA). The effect of 
geographical and phylogenetic distances derived from geographical distance 
matrix and host phylogeny respectively, were taken into account using Principal 
Coordinates of Neighbour Matrices (PCNM) ─ eigenvectors that are used to 
transform distances to rectangular data that suitable for constrained ordination 
or regression (Borcard & Legendre, 2002). Significant PCNM vectors (α=0.05) 
were forward-selected in the Packfor package of R (Dray et al., 2007) and used 
in the multivariate analyses (III).  

 
 

3.3.1. Community structure 

To address the relative importance of climatic, edaphic, spatial and biological 
factors on community structure of EcM fungi as based on the frequency of 
MOTUs in study III, we used a permutational multivariate analysis of variance 
as implemented in the Adonis routine of the Vegan package of R (Oksanen et 
al., 2007). Adonis is a nonparametric modification of multivariate ANOVA. 
Adonis enables to include multiple factors, covariates and their interactions in 
the model. Statistical significance was tested against 999 null permutations 
(III). In study I, the main variables accounting for changes in the EcM fungal 
community structure were tested for significance implementing the computer 
program DISTLM forward 1.3 (McArdle & Anderson, 2001) using 9999 per-
mutations. DISTLM forward does a multivariate multiple regression based on 
forward selection of predictor variables, either individually or in sets, with tests 
by permutation. All individual variables were tested (i) separately or (ii) grou-
ped by site, soil, host and micro-biotope before the analysis.  

 
 

3.3.2. Species richness 

In study III, the effects of edaphic factors and climate on species richness of 
EcM fungi were addressed by use of the Generalized Least Squares analysis 
(GLS) as implemented in the nlme package of R 2.12.1 (Pinheiro et al., 2008). 
In study I, the effects of site, host species, micro-biotope and soil nutrient 
variables on species richness per sample (i.e. species density) and EcM 
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colonization were studied using a mixed ANOVA with plot as a random factor 
nested within site and site nested within host species. 

 
 

3.3.3. Biogeography 

In order to evaluate similarity of fungal communities between biogeographic 
regions (III), statistical support of similarity in the area cladograms was tested 
in the Pvclust package of R (Suzuki & Shimodaira, 2006). Pvclust calculates 
probability values (p-values) for each cluster using bootstrap resampling 
techniques with 1000 repetitions. 
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4. RESULTS AND DISCUSSION 

Phylogenetic relations among hosts accounted for strongest predictor of EcM 
community structure at global scale (III), while at regional scale edaphic 
variables, particularly soil organic matter and pH were the main determinants of 
community structure among two sister species (I). Ecological processes are 
often scale dependent (Schneider, 2001), which is also relevant in case of Alnus 
mycobiont communities. Alnus is considered to possess strongest host-genus 
specificity among EcM trees (Molina, 1981). It is suggested that host specificity 
is most pronounced at the level of Alnus subgenus, but not between sister spe-
cies (Rochet et al., 2011). This is supported by results of study I where re-
dundancy analysis revealed marginal difference between A. glutinosa and A. 
incana EcM communities. However, when accounting for host evolutionary 
history as measured by multi-level phylogenetic relationships among 22 Alnus 
species at the global scale, host explains 43% of EcM community structure, 
being the most influential factor (III). Based on Estonian material, Alnus 
exhibits strong reciprocal specificity with the associated mycobionts especially 
with basidomycetes (I), which was generally supported at the global scale (III). 

Highly similar EcM morphotypes resulted in different sequences referring to 
cryptic radiation of closely related species (I, II, III). Host promiscuity and 
speciation via shifts to phylogenetically distant hosts rather than co-speciation 
seems to be more frequent in other groups of EcM fungi (e.g. den Bakker et al., 
2004; Suvi et al., 2010; but see Wu et al., 2000). However, different Alnus-
associated lineages are not closely related indicating frequent host shifts after 
the divergence of Alnus and Betula (I).The important role of host structuring 
mycobiont community has been increasingly shown in numerous studies (Ishida 
et al., 2007), but according to the best of our knowledge this is the first time 
when intrageneric host effect, measured by multi-level phylogenetic relation-
ships, is tested at global scale.  

Spatial structure explained roughly 10% of EcM community composi-
tion at global and regional scales (I, III). Biological similarity typically de-
creases with geographical distance, known as distance decay. Distance decay 
has important role in ecology (Nekola & White, 2004) and is often regarded as 
self-evident. However, studies of ectomycorrhizal communities have contro-
versial results ─ for example Queloz and colleagues (2010) demonstrated that 
the similarity of species assemblages of the Phialocephala fortinii s.l.–Acephala 
applanata species complex did not decrease with increasing geographical dis-
tance. Members of this complex are, however asexual root endophytes and their 
species context obscure, which may have blurred particular results. We 
demonstrated that in case of Alnus mycobionts, distance decay is evident, but by 
far less influential than host phylogeny (III).  

Soil calcium accounted for the strongest predictor of richness of Alnus-
associated EcM species at global scale (III) exhibiting positive effect, while soil 
humidity was most important at local scale (I). To best to our knowledge, study 
III is the first study, simultaneously accounting for edaphic variables with 
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unified methodology and addressing ectomycorrhizal ecology at global scale. 
Therefore, this unexpected outcome contrasts with the conclusions of metastudy 
conducted by Tedersoo and colleagues (2012), who demonstrated that global 
patterns of EcM species richness can be largely ascribed to mean annual 
temperature and precipitation. Biotic calcium availability is often a limiting 
factor shaping ecosystem structure and function (Beier et al., 2012) as calcium 
deficits may have pervasive impacts at multiple scales from organisms to 
ecosystems (Likens et al., 1998; DeHayes et al., 1999; Hamburg et al., 2003). 
The effect of liming in manipulative field studies supports our finding ─ 
calcium affected the overall fungal richness in forests of Picea and Fagus 
(Rineau & Garbaye, 2009). Aponte and colleagues (2010) accounted for natural 
calcium gradient and demonstrated that greater soil calcium concentration 
favours generalist EcM species over specialists. However, direct causal relation-
ship between Alnus-associated EcM diversity and calcium concentration re-
mains conjectural. Possibly, elevated levels of available soil calcium could 
enhance the role of EcM symbiosis in mineral nutrition of plants, which in turn 
broadens the niche for co-existence of more species. Arnott (1995) suggested 
that ubiquity of Ca-oxalate crystals in fungal hyphae may provide selective 
advantage to the organism. It has been shown that calcium uptake is limiting for 
many key functions of plants (McLaughlin & Wimmer, 1999) and improved 
physical condition of host plants may thereby enhance richness of EcM fungi 
(Swaty et al., 2004). In addition, Alnus and its EcM fungi might have elevated 
requirements of soil calcium since the presumed origin of host genus is South-
east Asia (Navarro et al., 2003), where limestone rich habitats are abundant. 
Moreover, unexpected results of study III might be influenced by specific 
ecological traits of Alnus genus. For example, Alnus species are absent from 
tropical lowland forests, which shortens the temperature gradient by ca 25%, 
just from the critical point above 20 °C, where EcM fungal richness has been 
suggested to decline (Tedersoo et al., 2012). Association with actinobacteria, 
pioneer or riparian habitats and extreme reciprocal specificity makes Alnus 
distinct host genera, which might strongly contribute to symbiont diversity. In 
particular, low within site species richness may cause low resolution blurring 
global patterns.  

While the effect of temperature was negligible, study III did confirm the 
negative relationship between mean annual precipitation and species richness at 
global scale (Tedersoo et al., 2012), whereas plot humidity was most important 
determinant of richness at regional scale (I). For example, dry sites harboured 
three times more singletons than waterlogged sites at regional scale (I). It is 
suggested that anaerobic conditions in water saturated soils may cause low oxy-
gen stress and/or competition among functional guilds of soil microbes (Teder-
soo et al., 2012). Since enhanced water uptake is regarded as one of the main 
benefits for host plant from EcM (Marschner & Dell, 1994) with increased 
drought tolerance (Parke et al., 1983), water saturated soils may also reduce 
mycorrhizal dependence of host plants, potentially reducing EcM diversity and 
biomass.  



18 
 

The total richness of 146 species found worldwide (I, II, III) is substantially 
higher than previous records from Alnus EcM studies and can be ascribed to 
greater sampling effort in terms of both geographical area and number of host 
species. In addition to dominant fungal species that were relatively widespread 
and abundant across most of study sites and host species, our data indicates 
numerous rare species found only once or twice that had restricted geographical 
range and host associations. This could be partly matter of sampling intensity as 
for many taxa, especially microbes, asymptote may never be reached (Gotelli et 
al., 2001). However there are studies that demonstrate that even severely under-
sampled communities are able to detect valid diversity patterns and gradients 
(Kuczynski et al., 2010). According to extrapolation of rarefaction curve, the 
number of Alnus-associated EcM fungal species is substantially greater and 
certain isolated locations or rare host species may harbour several potentially 
endemic taxa (Rochet et al., 2011).  

All studied species of Alnus seem to exhibit narrow specificity towards 
highly specific fungal taxa. Thus, high specificity seems to be a common phe-
nomenon of all Alnus species, which distinguishes this genus from other 
members of the Betulaceae family. Such great, uniform specificity seems to be 
unique to Alnus among EcM plant genera. There is some evidence that the level 
of specificity may be quite variable among the tropical genera Pisonia 
(Nyctaginaceae; Suvi et al., 2010) and Gnetum (Gnetaceae; Tedersoo & Põlme, 
2012). 

In accordance with earlier studies, Alnus-associated EcM fungal commu-
nities were relatively uniform at the global scale (I, II, III). Most abundant and 
species-rich phylogenetic lineages of EcM fungi included /tomentella-thele-
phora (comprising 32 MOTUs in 95% of sites), /hebeloma-alnicola (22 MOTUs 
in 67% of sites), /cortinarius (24 MOTUs in 52% of sites), /russula-lactarius (15 
MOTUs in 43% of sites), /inocybe (13 MOTUs in 21% of sites) and /genea-
humaria (6 MOTUs in 21% of sites). Despite resemblance of Alnus-associated 
EcM communities at global scale, relative abundance of fungal lineages were 
strongly shifted in certain regions. For example /genea-humaria was dominant 
lineage in Iran, but only occasionally present in other regions. In addition, the 
/inocybe lineage was also relatively common in Iran compared with the other 
regions. Similarly, sampling Alnus communities in Mexico mountain forests 
ascertained high abundance of /clavulina and /sebacina species (Kennedy et al., 
2011), which were rarely present Alnus symbionts in the rest of the study areas. 
Causes of these discrepancies remain unknown as community composition of 
other hosts in Iran and Mexico provides no evidence to the hypothesis that cer-
tain regional environmental conditions favour the abundance of particular EcM 
fungal lineages (Morris et al., 2009; Bahram et al., 2012). Moreover, it is not 
the case of unique host association as South America fungal communities of the 
same host do not resemble to Central American communities in terms of abun-
dance of particular fungal lineages.  

Remarkably, several Alnus-associated mycobionts that shared 100% ITS 
similarity occured both in Europe, Asia and America (I, II, III), which is the 
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greatest natural range of EcM fungal species besides the asexual Cenococcum 
geophilum complex. Symbiont migration follows migration routes of host 
(Murat et al., 2004) or may occur via long distance dispersal events (Moyersoen 
et al., 2003). Considering strong reciprocal specificity characteristic to Alnus 
mycobionts, presence of the same EcM species in such large geographical dis-
tance is probably a result of host-symbiont co-migration. In specific biological 
interactions such as Alnus and its EcM fungi, competition among species and 
environmental filtering may be less strong than in communities that are satu-
rated with species.  

Comparison between fungal community similarities of different regions sug-
gested that the host and mycobiont have co-migrated at different spatial and 
temporal scales (III). For example, the relative similarity of EcM community in 
Eastern Asia compared with Northwest America is consistent with the hypo-
thesis that many temperate forest plant groups moved out of Asia to the new 
World mostly via Beringian land bridge during the last 30 Myr (Donoghue & 
Smith, 2004). Last glacial maximum depleted dramatically biota of Northern 
and Central Europe and most of the species survived in Southern refugia. After 
retraction of ice shield Northern Europe was re-colonized by the descendants of 
Southern refugia (Hewitt, 1999) resulting in high similarity between these 
regions.  

Both, the wide distribution of symbiont species and biogeographic similarity 
between South and North Europe, and Asian regions with Northwest America 
provides evidence for strong co-migration between the mycobiont and host. 
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5. CONCLUSIONS 

The following main conclusions and working hypotheses can be inferred from 
my thesis: 
 Intrageneric phylogenetic relationship among Alnus species is the main 

driver of EcM community structure at the global scale, while sister species 
support similar fungal communities at regional scale. Cryptic radiation of 
EcM fungal species within the host genus seems to be more prominent 
compared to other host genera (I–III). 

 Geographical and edaphic variables have a minor effect on Alnus-associated 
EcM fungal community compared to host identity at the global scale (III), 
while the complex of soil variables and geographical (site) effect drives the 
community composition at the local and regional scales (I).  

 The positive effect of soil calcium on Alnus-associated EcM fungal species 
richness contrasts with the general unimodal relationship between EcM fun-
gal species richness and mean annual temperature (latitude). This finding 
also refers to the potential importance of local predictors including edaphic 
variables at the global scale. However, I anticipate that this contrasting 
pattern may result from the peculiar ecology (wet and pioneer habitats, 
association with actinobacteria and narrow range of EcM fungi) of the genus 
Alnus (III). 

 The mean annual precipitation has a negative effect on Alnus-associated 
EcM fungal species richness at the global scale (III). Similarly, soil hu-
midity accounts for the strongest predictor of species richness at the local 
scale (I).  

 Although Alnus mycobiont communities are relatively uniform at global 
scale, there are certain discrepancies in particular biogeographic regions 
(III). 

 Comparison of fungal community similarity supports the hypothesis of 
Beringia being the primary migration route of Alnus between Eurasia and 
America. The mycota of Northern Europe is highly similar to that of South-
ern Europe due to the recent origin of northern biota from southern refugia 
(III).  
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6. SUMMARY 

Discipline of biogeography addresses distribution and abundance of organisms 
at various geographical scales. Traditionally, biogeographic research has fo-
cused on macroorganisms due to their size and straightforward species delimita-
tion. Therefore, ecological patterns of macroorganisms are well documented, 
while relevant microbial data is controversial and give rise to wide debates. 
Microbial biogeography patterns do not necessary coincide with patterns 
observed in macroorganisms. Moreover, microbial taxa and ecological guilds 
could be subject to different ecological factors. 

Ectomycorrhizal (EcM) fungi that form mutualistic relationships with many 
ecologically and economically important host trees are typically regarded as 
microorganisms. Current metadata suggests that host identity has a key role in 
fungal community structure. In contrast to most macroorganisms, EcM fungal 
species richness exhibits unimodal relationship with latitude, which is largely 
ascribed to favourable climate in temperate regions as well as the evolutionary 
origin of major host taxa. However, to date there are no studies with unified 
methodology addressing EcM fungal ecology within a particular host genus at 
global scale. In this thesis, I aimed to disentangle ecology and biogeography of 
Alnus-associated EcM fungi in different spatial scales. Alnus has a wide geo-
graphical distribution range and manageable richness of fungal symbionts, 
which we considered favourable for addressing differences in richness and in-
ferring biogeographic patterns. I postulated the following alternative hypothesis: 
1) host species and their phylogenetic relationships account for the strongest 
predictor of EcM fungal community composition at the intrageneric level at the 
global scale; 2) at regional scale, soil conditions such as pH and phosphorus 
concentration drive the EcM community structure rather than geographical and 
host genetic distance; 3) at global scale, Alnus-associated EcM fungal species 
richness is largely determined by the mean annual temperature and precipi-
tation; 4) global biogeography of Alnus EcM communities reflects ancient mi-
gration routes of the host.  

The main results and conclusions are the following: 1) phylogenetic relations 
among hosts account for strongest predictor of EcM community structure, while 
geographical and edaphic variables have a relatively low impact at the global 
scale; 2) at the regional scale edaphic variables were the dominant determinants 
of EcM fungal community structure; 3) soil calcium accounted for the key 
determinant of Alnus-associated EcM fungal species richness at the global scale, 
while soil humidity was the most influential at the local and regional scales;  
4) Beringia is likely to be primary migration route of Alnus from Eurasia to 
America rather than North Atlantic land bridge; 5) high similarity between 
North and South Europe probably results from recent post-glacial 
recolonisation. 
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7. SUMMARY IN ESTONIAN 

Lepa juurtel ektomükoriisat moodustavate  
seente biogeograafia ja ökoloogia. 

Ökoloogia uurib organismide vahelisi interaktsioone, levikumustreid ja nende 
sõltuvust keskkonnast. Biogeograafia uurib taksonite ja ökosüteemide levikut ja 
sellest tulenevaid protsesse nii ajas kui ruumis. Traditsiooniliselt on ökoloogia 
ja biogeograafia peamisteks uurimisobjektideks olnud makroorganismid. Osali-
selt kindlasti nende näiliselt lihtsama määramise ja leitavuse tõttu. Mikroorga-
nismide makroökoloogia uurimine on hoogustunud alles viimase paarikümne 
aasta jooksul tänu molekulaarsete meetodite kiirele arengule. Alates 1990-test 
aastatest kasutatakse bioloogilistes proovides (muld, vesi, õhk, organismide 
koed jm.) esinevate bakterite ja seente määramiseks DNA nukleotiidseid järjes-
tusi. Bakterite puhul kasutatakse liikide määramiseks peamiselt rDNA SSU 
nukleotiidseid järjestusi ja seente puhul rDNA ITS lõikude järjestusi. Viimane 
on oluliselt varieeruvam ja võimaldab seeni määrata liigi tasemel. Enne mole-
kulaarsete meetodite kasutusele võtmist sai mikroorganisme määrata kas 
kaudselt või ainult neid liike, mida oli võimalik puhaskultuuri eraldada. Uute 
meetodite abil selgus, et paljud makroorganismidele omased ökoloogilised 
mustrid mikroorganismide puhul ei kehti. Lisaks on tulemused tihti vastu-
rääkivad ja hästi toetatud konsensus mikroorganismide makroökoloogia ja 
biogeograafia osas puudub. Veelgi enam, erinevatele mikroorganismide takso-
nitele ei pruugi kehtida ühtsed ja universaalsed ”reeglid” kuna bakterite, seente 
ja protistide nõuded kasvukeskkonnale on väga varieeruvad. Tõenäoliselt ei ole 
mõistlik mikroorganisme biogeograafias ja ökoloogias vaadelda ühtse rühmana. 

Ektomükoriisa on seenjuure vorm, kus peremeestaim saab seene vahendusel 
kasvuks vajalikke mineraalaineid ja vett. Seen omakorda saab taimelt foto-
sünteesi käigus fikseeritud süsivesikuid. Senised uurimisandmed näitavad, et 
ektomükoriisat moodustavate seente liigirikkus on kõrgeim parasvöötmes, vas-
tupidiselt makroorganismide üldlevinud mustrile. Viimase kohaselt on suurim 
liigirikkus ekvatoriaalses vöötmes ja pooluste suunas liikudes see langeb. Ometi 
puudub siiani ühtse metoodikaga läbi viidud globaalne uuring, mis käsitleb 
ektomükoriisat moodustavate seente makroökoloogiat. Oma doktoritöös uurisin 
ma ühtse metoodikaga perekond Alnus (lepp) juurtel ektomükoriisat moodus-
tavaid seeni globaalses ja regionaalses skaalas. Lepp on levinud eelkõige põhja-
poolkeral ja selle liigitekke tsenter asub tõenäoliselt Kagu-Aasias. Sealt on lepp 
levinud edasi Euroopasse ja kunagi Beringi väina kohal olnud maismaasilla 
kaudu Põhja-Ameerikasse. Alternatiivina on välja pakutud ka võimalikku levi-
kut Põhja Atlandi kaudu soojemate kliimaperioodide jooksul. Sõltuvalt klassi-
fikatsioonist eristatakse selles perekonnas tänapäeval 28–44 liiki. Lepa liigid 
omavad vastastikku kasulikku kooselu väga erinevate mikroorganismidega. 
Nende juurtel esinevad nii õhulämmastikku fikseerivad bakterid, ektomükoriisat 
moodustavad seened ja vähemal määral ka arbuskulaarset mükoriisat moodus-
tavad seened. Ektomükoriisat moodustavad seened esinevad kõigil lepa liikidel 
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ja teadaolevalt esinevad mitmed seenetaksonid ainult lepa juurtel. See on erinev 
enamikest teistest ektomükoriisat moodustavatest puu perekondadest, kus sellist 
spetsialiseerumist esineb harva. Ligikaudu viimase kolme miljoni aasta jooksul 
on lepp kiiresti laiendanud oma levilat Lõuna-Ameerikas, kasutades Kesk-
Ameerika ja Andide mäestikke levikukoridorina läbi troopiliste laiuskraadide. 
Selline kirjeldatud laialt levinud peremees-sümbiondi kooslus on sobiv mudel 
globaalseks biogeograafia ja ökoloogia uurimiseks. Minu doktoritöö peamised 
testitavad hüpoteesid olid alljärgnevad: 1) globaalses skaalas mõjutab lepa 
seenekoosluse struktuuri enim peremeesliikide fülogeneetiline distants;  
2) regionaalses skaalas mõjutab lepa juurtel ektomükoriisat moodustavate 
seente koosluse struktuuri mulla koostis, eriti pH ja fosfor; 3) globaalses skaalas 
on lepaga seotud ektomükoriisa seente liigiline mitmekesisus määratud aasta 
keskmise temperatuuri ja sademete hulga poolt; 4) lepaga seotud ektomükoriisa 
seente biogeograafia peegeldab peremehe globaalseid levikuteid.  

Käesolev doktoritöö võimaldab teha mimeid uudseid järeldusi ja kinnitada 
olemasolevaid hüpoteese. Globaalses skaalas mõjutavad peremeesliikide fülo-
geneetilised distantsid 43% ulatuses lepaga seotud ektomükoriissete seente 
koosluse struktuuri. Ruumiline paiknevus mõjutab seenekoosluse struktuuri 
10% ulatuses ning mulla pH–l ja aasta keskmisel temperatuuril on marginaalne 
mõju. Seevastu regionaalses skaalas, määravad mulla pH ja orgaanilise aine 
sisaldus, enim seenekoosluse struktuuri. Varasemad uuringud on leidnud, et 
peamised mõjutegurid, mis määravad ektomükoriissete seente liigirikkust glo-
baalses skaalas, on aasta keskmine temperatuur ja sademete hulk. Täpsemalt on 
tuvastatud ektomükoriisa liigirikkuse unimodaalne seos temperatuuriga ja nega-
tiivne seos sademete hulgaga. Meie uuringust selgus üllatuslikult, et lepaga 
seotud ektomükoriissete seente liigirikkus on enim mõjutatud ja positiivses 
seoses mulla kaltsiumisisaldusega. Samas leidis kinnitust negatiivne seos ekto-
mükoriisa liigirikkuse ja sademete hulga vahel. Meile teadaolevalt oli see 
esimene uuring, mis ühtse metoodikaga adresseeris ektomükoriisa biogeo-
graafiat globaalses skaalas ja võttis ühtlasi arvesse ka mulla omadusi. Sarnaselt 
globaalsele mustrile, oli ka regionaalses skaalas liigirikkus negatiivses seoses 
mulla veesisaldusega. Mõned lepaga soetud mükobiondid, kes esinevad 
Ameerikas, Euroopas ja Aasias, jagavad omavahel 100% sarnasust ITS järjes-
tustes. Võrreldes lepaga seotud seenekoosluste liigist ja arvulist koosseisu erine-
vate mandrite ja piirkondade vahel selgus, et tõenäoliselt on Beringia mais-
maasild olnud põhiline lepa levikutee Euraasia ja Ameerika vahel. Põhja ja 
Lõuna Euroopa seenekooslused osutusid väga sarnaseks, mis tõenäoliselt tule-
neb jääaja järgsest lepa ja tema juursümbiontide levikust põhja suunas lõuna-
poolsetest refuugiumidest. 
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