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INTRODUCTION

The theory of orthogonal series is a classical area of mathematical analy-
sis dealing with functional series

i Erpr(t), (1)
k=0

where ¢ = {r} is an orthogonal system, and with functions representable
by these series. Due to applications in physics, the most well-known and best
studied part of this theory is the trigonometric Fourier’ series theory, which
investigates series (1), where system ¢ = {1,cost,sint, cos2t,sin2t,...}.
Besides the trigonometric system, the modern theory of orthogonal series
considers also other certain systems, e.g. the systems of Rademacher, Walsh,
Haar, etc.

One of the basic problems of the aforenamed theory is convergence and
summability of series (1). Let A be a summability method. In order to
investigate the summability of series (1) by the method A, instead of partial
sums > p_o&rpr(t) (n = 0,1,...) we consider so-called A-means sequence
(on(t)). Tt is said that series (1) is A-summable if (o,,) is convergent. The
interest in summability methods is that they provide a way to understand
series, which are not convergent. An A-means sequence may have better
convergence properties than the sequence of partial sums. For example,
by well-known Fejer’s theorem, the arithmetic means of the Fourier’ series
of every continuous 2m-periodic function converge uniformly; but, on the
other hand, there exist continuous 27-periodic functions whose Fourier series
diverge at infinitely many points.

Often it is important to estimate the speed of a convergence process.
In 1969, Kangro laid down foundations of the theory of A-convergence (i.e.,
convergence with speed) of sequences in a context of topological sequence
spaces. This theory allows to apply methods of functional analysis in in-
vestigation of convergence speed. Let A be a speed, i.e. a monotonically
increasing sequence of positive numbers. It is said that series (1) is A-
convergent if the sequence (A, Y32, 11 &k (t))n converges. If the A-means
of series converge with a speed \, then it is said that series is A*-summable.

In the thesis, maximal A-convergence and P*-summability almost every-
where (a.e.) of series (1) are investigated, where P is a Riesz method of
weighted means. For p > 1, series (1) is said to be p-maximal convergent



a.e. on [a,b] if it is convergent a.e. and

b
/ sup
a n

In this case, in addition to convergence a.e. of series (1), we get convergence
in L’[’avb] spaces. The notion of maximal convergence can be extended in
natural way to convergence and summability with speed. This makes it
possible to investigate A*-summability of series (1) in Ll[)mb] spaces.

There are several reasons to study Riesz methods in the current context.
Firstly, in the case of orthogonal series, this method is universal in the sense
that for every (&) € ¢? there exists a Riesz method of weighted means
P = P ((&)) such that series (1) is P-summable a.e. The second important
reason for using Riesz methods is that P is technically simpler to use.

Moreover, for any regular Riesz method P, we have at our disposal a
useful characterization (due to Kangro) of the speeds A such that every
A-convergent sequence is P*-summable.

In the thesis, the special attention is paid to series (1), where system
{¢k} is a product system generated by arbitrary system {fx}, i.e. po(t) =1
and ¢ = fro+1fk+1 - fr,+1, Where k = oko 4ok 4 9kn (ko < k1 <
... < ky) is the dyadic representation of k. The most known product system
is the Walsh system {wy} generated by the Rademacher system. The Walsh
system is similar to the trigonometric system but simpler. By means of
product systems one convergence problem can be reduced to another with
better properties. In particular, some of the more difficult aspects of the
trigonometric theory are easier to understand in the simpler Walsh case
first.

The main aim of this thesis is to show that many results from the or-
thogonal series theory may be extended to the case of convergence and
summability with speed. The starting points of this study are some clas-
sical works of Alexits [1], Kaczmarz [9-11], Kangro [6-8], and Tandori [13]
and recent past papers of Moricz [12], Schipp [19-21], and Tirnpu [22-25].
Research methods of classical and functional analysis are used.

The main contributions of the present thesis to the theory of functional
series are as follows.

1) Some classes of summability methods for which the boundedness of
the corresponding Lebesgue function implies the A-summability of series (1)
for all (&) € 03 = {(&) : 1020 A\7&2 < oo} are described.

2) If {¢x} is the product system generated by a system {f;}, connec-
tions between properties of {fx} (p-weak multiplicativity) and convergence
properties of the series (1) (p-maximal \-convergence) are fixed.

P
dt < oo.

Zn: Eeepn(t)
k=0
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3) Let {¢x} be a product system and {wy} the Walsh system. For
functions u from the classes Cg ;) and LJ[DOJ] it is showed that some problems
concerning the A-convergence or A-summability of the series > 72, < u, wy >
pr can be reduced to the corresponding problems for the Walsh-Fourier
series D o < U, Wg > Wg.

In Chapter I we consider a specific problem. Applying a general com-
plicated theorem due to Tiirnpu in the case of Riesz method, we find when
the boundedness of according Lebesgue functions implies the maximal P*-
summability a.e. of series (1) for all sequences (&) from the Banach space £3.
In Chapter II, the same problem in the case of any regular A>-conservative
summability method A is investigated. For this purpose, we compare A
with a (suitably constructed) Riesz method P(A) using our results about
A-inclusion of summability methods in the class of series (1).

In Chapters III and IV we consider series (1), where {p} is any pro-
duct system (not necessarily orthogonal). Chapter III examines p-maximal
A-convergence and p-maximal A\-boundedness of series (1), where a system
{¢k} satisfies some additional conditions. For example, it is proved that if

Yoreo ’f; gok(t)dt’ < 0o (i.e. the system {fi} is weakly multiplicative), then

series (1) is 2-maximally A-convergent a.e. on [a, b] for every (&) € £3. Our
main attention is concentrated to the series

i < u,wg > (pk(t), (2)
k=0

where < u,wy >:= fol u(t)wg(t)dt are the Walsh-Fourier coefficients of any
integrable function u. In the case of u € Lp0 1] (1 < p < 00), the problem of 1-
maximal A-boundedness of this series mig&lf be reduced to examination of p-
maximal A\-boundedness of the Walsh-Fourier series Y 7o < u, wy > wg(t).

Chapter IV investigates uniform convergence of series (2), uniform A-
summability, uniform A*-boundedness and uniform regular A*-summability,
where u is a continuous function on [0, 1]. It is shown that each of the above
mentioned properties is equivalent to the same property of the corresponding
Walsh-Fourier series.
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SUMMARY

1 Preliminaries: summability methods
and convergence with speed

1.1 Summability methods

We consider series-to-sequence summability methods A = (o) given by
the matrix transformation !

n
N i= Z apgur  (n € N),
k=0

where (k) is a triangular matrix (i.e. oy, = 0 for £ > n). The correspond-
ing sequence-to-sequence method A = (any) is defined by the transformation

n
M= ankle  (n € N)
k=0

with
n

Ank = Qpk — O k41, OF, equivalently, au,), = Z any, (n,k € N).
v=~k

A series Y 72 ur (a sequence ((x)) is called A-summable if the limit lim,, 7,

(lim,, 7},) exists.
A series-to-sequence method A is said to be regular if

[o.¢]
hTILn Nn = Z U
k=0

for every convergent series > 72 ug. It is well known (see, for example, [3,
Theorem 1.3]) that A is regular if and only if

o0
1i7rlnoenk =1(keN) and Z |k — ap gt1] = O(1).
k=0

In the thesis, the main attention has been paid to two certain summa-
bility methods: the Cesaro method and the Riesz method.

We will denote the set of non-negative integers by N.
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1) The sequence-to-sequence Cesdro method (or the method of arithmetic
means) (C,1) = (ank) is given by the matrix A with

1
if k<n,
ank =4 n+1
0 if k>n,

and the series-to-sequence method (C, 1) = (ay) is then given by

1—L if k<n,
Apk = n+1
0 if k>n.

2) The sequence-to-sequence Riesz method (or the method of weighted
means) P = (R, pn) = (k) is defined by the matrix A with

Pr .
— if k<
ank:{Pn 1 ="

0 if k>n,
where

Pn::Zpk/Oo

k=0

and (pg) is a sequence of positive numbers. The series-to-sequence Riesz
method is given by

P
1-— if k<n,

0 if k>n,
where P_1 := 0.

Note that P is a regular method (cf. [3, Theorem 17.1]) and (C,1) is a
special case of it.

1.2. Convergence and summability with speed

Let A = (A\x) be a scalar sequence such that 0 < \; /" oco. By Kangro
[7],[8], a sequence z = ({}) is said to be

(a) A\-convergent (or convergent with the speed \) if the limit limy, ( =: ¢
exists and the sequence (Ag((x — ¢)) is convergent;

(b) regularly \-convergent if limy A\ ((x — ¢) = 0;

(c) A-bounded if the sequence (Ag(Cx — ¢)) is bounded
The set of all A-convergent sequences is denoted by ¢*.

13



If a sequence z is summable by a sequence-to-sequence summability
method A, then it is called A*-summable, provided that the limit

n

exists. Regular A*-summability and A*-boundedness are defined analogously.

A summability method A is said to be A-conservative (or A-convergence
preserving) if the sequence (17),) is A-convergent for any z € ¢*. Note (see
[6]) that a regular method A is A-conservative if and only if

For example, a Riesz method P is A-conservative if and only if

)\nnpk
— — =0(1).
B3 o

2 Summability with speed of orthogonal series
by Riesz methods

2.1 Lebesgue functions

We will consider convergence and summability almost everywhere (short-
ly, a.e.) on [a,b] of the series

> (), (1)
k=0

where z = (&) € £2 and ¢ = {p;} is an orthogonal system of functions
defined on [a,b]. Basic facts from the theory of orthogonal series can be
found e.g. in [1] or [11]. The most familiar examples of orthogonal systems
are following.

(a) The trigonometric system

{1, cost,sint, cos 2t, sin 2t, cos 3t,sin 3¢, . . .}

is orthogonal on [0, 27].

14



(b) Let ro be the function defined on [0,1) by
1 if tel0,3),
ro(t) = { Horelta)
2

and extended to the set of real numbers by periodicity of period 1. The
Rademacher system r := {r,(t)} is defined by

ra(t) := 19(2"t) (t €10,1],n € N). (2)
(c) The Walsh(-Paley) system w = {wy,(t)} is defined by:

wo(t) := 1 and wy(t) := rpg41(E)rn+1(8) . .41 () (£ €10,1]),  (3)

where n = 270 4+ 2™ 4 . 4+ 2™ (ng < n; < ... < nyg) is the dyadic
representation of n.

(d) The Haar system h = {hy(t)} is defined as follows. Set hg := 1. For
n,k € N with 0 < k < 2" define h,, on [0,1] by

M2 if e [27 (D) 2~ (D (2K 4 1)),
honyk(t) =3 —22 if ¢ e 27D (2% + 1); 2~ (D (2% 4 2)),
0 otherwise.

In problems dealing with the convergence of series with respect to or-
thogonal system ¢ a major role is played by the Lebesgue functions

Intet)= [

A classical result of Kaczmarz [9] states that series (1) converges a.e. on
[a,b] for each (&) € £2if L, (p,t) = O(1) on [a,b]. Tiirnpu [23] showed that
the last condition can be replaced by

dr (neN).

Zn: o) er(T)
k=0

La(p,t) = O1) (¢ € [a,b).
For a summability method A = () with limapy = 1 (k € N) the

Lebesgue functions are defined by

> cnkr(t)on(T)

k=0

Lo(A, 1) = /ab dr (neN).

By Kaczmarz [9], [10], series (1) is (C,1)-summable a.e. on [a,b] for each
(&) € (% if L, (A, p,t) = O(1) on [a,b]. On the other hand, Méricz and Tan-
dori [13] showed that there exist a regular triangular summability method A

15



and an orthogonal system ¢ such that series (1) is not A-summable a.e. on
[a,b] for some (£;) € £2. Méricz [12] and Tiirnpu [23] found certain classes
of regular methods A for which the conditions L, (A, ¢,t) = O(1) on [a, b]
and L, (A, p,t) = Ot(1) (t € [a,b]), respectively, imply the A-summability
a.e. on [a,b] of series (1) for each (&) € £2.

2.2 Summability with speed of orthogonal series

Let A = (k) be a triangular series-to-sequence summability method.
Series (1) is said to be A*-summable a.e. on [a,b] if the limits

lim Y anréipr(t) = fA(t) and lim A, (Z nkrpr(t) — f;:‘(t))
k=0 k=0

exist a.e. on [a, b]. If, in addition,

b
/ sup A\,
a n

then series (1) is called mazimally A*-summable a.e.

A-convergence and A-summability of orthogonal series was investigated
by Kangro and Tiirnpu (see, for example, [6-8], [22-25]). In [25] Tirnpu
considered the A*-summability a.e. of series (1) with

dt < oo,

En: ank&eor(t) — FH(t)

k=0

(&) € & = {<§k>| SN < oo}
k=0

and proved the following theorem.

Theorem 1 (cf. [25]). Let A be A\2-conservative and let

lim apy =1 (k€ N).

Series (1) is A-summable a.e. on [a,b] for all x € €3 if and only if the
following conditions hold:

1° series (1) is A-summable a.e. on [a,b] for every x € (3;

2° for each € > 0 there exist a measurable subset T, C |a,b] satisfying
mes T, > b—a— e and a constant M. > 0 such that, for all measurable
decompositions

Nm::{Nmn:nzoyl)"'7m; mkmNmn:Q)ka?én’

U Nown C a8}, (4)

n=0

16



one has

Ap(e) =

m—2 m—1 m
/ /T Z Xmn(t) Z Xmp(T) Z @y(t)tpy(T)DZ;l,dth < M.,
N v=0

€ n=0 p=n-+1
where Xmn 15 the characteristic function of Ny, and

(my — ) (Qmy — apy))\n)\p/)\lz,, if 0<v<n<p<m,
Dy =3 Qmw(Qmp — Q) A /A2, if n<v<p<m,
Q2 A Ap/ A2, if n<p<v<m.

This theorem is our starting point for investigation of maximally P?-
summability a.e. of orthogonal series (1).

In Chapter I ([15]), by means of Theorem 1 we find the relation-
ship between sequences (pi) and (\;), which guarantees the maximal P*-
summability a.e. on [a, b] of series (1) for each (&) € £2, provided that the
Lebesgue functions L (P, p,t) of P satisfy the condition

b
/ sup L (P, ¢, t)dt < oco.
a k

The main result of Chapter I is the following theorem.

Theorem 2 (cf. [15]). Let the method P be \%-conservative, i.e.

A2 N i
D o =0 (5)
2
If
Pn = O(Pnfl)v (6)
A2 1 (1 1
Pn—l l 07 ]?n <)\% - )\%+1> l 07 (7)
and

b
/ sup L (P, ¢, t)dt < oo,
a k

then series (1) is mazimally P*-summable a.e. on [a,b] for each (&) € (3.

Example. Let \y = (k+ 1)% « > 0. Then, as an example of a
Riesz method satisfying (5) — (7), we may consider the method P with
pe = (k4 1)7, where 8 > 2o — 1.

For example, if 0 < a < 1/2, we can put 8 =0, i.e. P =(R,1)=(C,1).

17



Remark. In [6], Kangro proved that if the sequence (i) is a sequence

of summability factors of type (A, A*) (i.e. the series Y72, )\—lkuk is AN
summable for each A-summable series > 72 ux), then the A-summability
a.e. on [a, b] of series (1), where (£;) € 2, implies the A*-summability of the
series Y 7o f\—’;gok(t) a.e. on [a,b]. From [3, Theorem 29.3], it follows, that
(i) is a sequence of summability factors (P, P*), provided that conditions
(5), (6), and (7) hold. Therefore the P-summability a.e. of series (1) for
each (&) € ¢% implies the P*-summability a.e. of the series 322 Ceor(t)
for each ((;) € £3.

Note that the above argument does not imply the maximal P*-summa-
bility a.e. of the series 372 Ckpr(t) for each (¢x) € £3.

2.3 M-inclusion of summability methods
in the class of orthogonal series

Let A and B be two summability methods. If for series (1) from the B-
summability a.e. follows the A-summability a.e. for every (&) € £2, then we
say that A includes B in the class of series (1) (shortly B C A). Inclusion of
summability methods (in the class of orthogonal series) is well investigated.
A review of inclusion results may be found in [27].

The following result by Tirnpu is the starting point in Chapter II
([17]), where we discuss the A-inclusion A* D B* in the class of series (1).

Theorem 3 (cf. [24]). Let A = (apnk) and B = (Buk) be reqular trian-
gular summability methods. If

Z sup |ank| (ﬁkv - 1)2 = 0(1)7
=y N2k

then A D B in the class of series (1) .

Theorem 4 (cf. [24]). Let A = (ank) and B = (Bn) be regular triangu-
lar summability methods and o = (oy) be a sequence such that 0 < oy, | 0.
If sup |ank| = O(ok), then A D P(o) in the class of series (1), where P(o)

n>k

is the Riesz method defined by the sequence (Pg) with

k
P, =exp (Z U,,) .
v=0

18



Our interest is focused to the inclusion with respect to maximal A-
summability of summability methods. The main result of Chapter II is
the following

Theorem 5 (cf. [17]). Let A = (ani) and B = (Bnr) be regular M\2-
conservative methods and let

A2 (Ben — 1) sup Ala| = O(1) and > (Brn — 1)%sup |ag| = O(1).
k=n 12k k=n =k

If the orthogonal series (1) is B*-summable (mazimally B*-summable) a.e.
on [a,b] for every x € £3, then the orthogonal series (1) is also A*-summable
(mazimally A*-summable) a.e. on [a,b] for every x € £3.

The proof of this Theorem is based on Banach-Steinhaus theorem and
two lemmas on measurable functions due to Tirnpu [22].

For some summability methods A, Theorem 5 enables us to reduce the
problem of the maximal A-summability of orthogonal series to the well-
studied Riesz methods P = P(A). We have proved the following theorem.

Theorem 6 (cf. [17]). Let A be a regular \*-conservative method, where

ap = sup |ank| \, O and A|ane| \, O (n— oo, k€ N).
n>k

Let P(A) be the Riesz method with

Py = exp (i ) |

v=0

If conditions (5), (7), and

hold, then the orthogonal series (1) is mazimally A*-summable a.e. on [a,b]
for every z € 3.

Consider some examples of Riesz method P defined by regular summa-
bility methods A.

Example 1. Let A = (C,2) be the Cesaro method of order 2, where

2n —
M if k<n,
ank =9 (m+1)(n+2)

0 if k>n.

19



Then

= 2/<:+1

and for the Riesz method P((C,2)) we have

k

P = exp (Z

v=0

) > vares

2v+1

and

1
=P, — P, =P -1
Pk [ kl(eXP(2k+1> ><€
Let A\, = (n+1)* (0 < @ < 1/4). In this case, by asymptotic formula

n

Z (kil)” ~ 1ify(n+1)1_7 (0<vy <1,

the methods (C,2) and P((C,2)) are A%-conservative. Conditions (7) are
also fulfilled:

22 A2

1 1 1
0 and — — 2 1 — 0.
Py~ Vg1t 0™ (v Ag+l> nt (v AgH)l

Example 2. Consider the regular discontinuous Riesz method (R*,1,2)

with
k 2
{ <1 ) if k<n,
Qnpk = n+1

0 if k>n.

For this method we have
n — 2k 1
Apk = Qnk — Qpk41 = m and ap = m

As in the previous example, we get that the method P((R*,1,2)) is A\*-con-
servative. Conditions (7) are fulfilled if A\, = (n +1)%, (0 < o < 1/16), for
instance.

20



3 Convergence and summability with speed
of series with respect to product systems

3.1 Product systems

Let {fx} be a system of integrable functions on [a,b] (orthogonality is
not essential) such that |fx(¢)] < 1 a.e. on [a,b] (k € N). The system {g,}
defined by

gU(t) =1 and gn(t) = fn0+1(t)fn1+1(t) s fnk+1(t) (t € [aab])a

where n = 2™ 4+ 2™ 4 | 4+ 2™ (ng < ng < ... < ng) is the dyadic
representation of n, is called the product system of {fr}. For example, the
Walsh system (3) is the product system of Rademacher system (2).

The system { fx} is said to be weakly multiplicative if the product system
g satisfies the condition

o | b
Z / gn(t)dt| < 0o
n=0 ("%

(cf. [21, p.292]). If
om_1

' Z bgn(T)dT wp(t)
FIE ([or)

then {fx} is called p-weakly multiplicative (p > 1) (cf. [21, p. 330]). In
particular, the system {fi} with

p
dt = O(1),

o0

2
Z (/abgn(t)dt> < 00

n=0

is 2-weakly multiplicative. If { fi} is weakly multiplicative then it is p-weakly
multiplicative for every p.

Note that
(a) the Rademacher system (2), systems {sin 2¥¢} and {cos 2¥t} are weakly
multiplicative;
(b) the system {%} is not weakly multiplicative, but p-weakly multiplicative
(p > 1);
(c) the systems {1}, {coskz}, and {sinkz} are not p-weakly multiplicative
for every p > 1.
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In [20] it is proved that the series
o0
> & fu(t)
k=0

converges a.e. on |a, b] for all rearrangements of {& fi } if (&) € €2 and {fx}
is p-weakly multiplicative for a number p with 1 < p < cc.
The series

o0

> &rgr(t) (8)

k=0
is called p-maximally convergent a.e. on [a,b] if it is convergent a.e. on [a, b]
and

b
/ sup
a n

The following two theorems are starting points for investigations in Chapter
ITIT ([16)).

P
dt < oo.

n

> &rgn(t)

k=0

Theorem 7 (cf. [20]). Series (8) is 1-maximally convergent a.e. on
[a,b] if (&) € €% and {gi} is the product system of a p-weakly multiplicative
system for 2 < p < oo.

Theorem 8 (cf. [19], [21, p. 292]). Series (8) is 2-mazimally conver-
gent a.e. on [a,b] if (&) € £ and {gi} is the product system of a weakly
multiplicative system.

3.2 Convergence and A\-boundedness of series
with respect to multiplicative systems

In Chapter IIT we study p-maximal convergence (p-maximal bounded-
ness) a.e. of series (8) in the sense of convergence with speed. If series (8)
is A-convergent (A-bounded) a.e. on [a, b] and

b
/ sup AP
a n

then it is said to be p-mazimally \-convergent (p-mazimally A-bounded) a.e.
on [a,bl.

The proof of the following statements is based on classical inequalities
and Banach-Steinhaus theorem.

p

i Eegr(t)

k=n+1

dt < oo,
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Theorem 9 (cf. [16]).

(a) If (&) € €3 and {gi} is the product system of a weakly multiplicative
system, then series (8) is 2-mazimally A-convergent a.e. on [a,b].

(b) If (&) € €3 and {gx} is the product system of a 2-weakly multiplicative
system, then series (8) is 1-mazimally A-convergent a.e. on [a,b].

Beside the trigonometric and Haar systems, the Walsh system is one
of the most widely used complete orthonormal systems of functions in the
theory of functions of a real variable. It is very similar to the trigonometric
system, differing from the latter by its greater simplicity.

The Walsh-Fourier coefficients of an integrable function u are the num-
bers

< Uy Wy, >i= /01 u(t)wy(t)dt (n € N),

and the Walsh-Fourier series of u is the series

oo
Z < u, wy, > wy(t). (9)
n=0
Properties of this series are well studied. Mention some of them. For ex-
ample, it was shown in [26], in which Walsh introduced the system bearing
his name, that for every point 7y € [0, 1] there exists a continuous function
u, whose Walsh-Fourier series diverges at that point. On the other hand,
Walsh remarked, that
2n—1
lim Z < u,wy > wy(7) = u(7) uniformly on [0, 1]
v=0
for every u € Cjg ;). The Walsh-Fourier series is uniformly (C, 1)-summable
for every u € Co 1) (cf. [4]).
The first treatise on the convergence of Walsh-Fourier series in space
}(1 < p < o0) was Paley’s paper [14]. In it he proved that for every

Lio

function u € Lﬁ) 1}(1 < p < o00) the Walsh-Fourier series converges in the

metric of Lﬁ)’”.

where, but it is (C, 1)-summable in the metric of L[l0 ) (cf. [2]). For more

The Walsh-Fourier series of u € L[lo,l] may diverge every-

details about Walsh-Fourier series see e.g. [5], [21].
In Chapter III we study convergence and summability a.e. of series

> <u,wi > gi(t), (10)
k=0

P
[a,b]
grable functions. By means of the Banach-Steinhaus theorem (in context of

sublinear operators), the following theorems are proved.

where u € L and {g} is the product system of a system {fx} of inte-
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Theorem 10 (cf. [16]). Let 1 < p,q < oo be conjugate exponents
(% + % = 1) and let u be a function in LZ[)0 - If g is the product system of
a q-weakly multiplicative system, then series (10) is I-mazimally convergent

a.e. on [a,b].

Theorem 11 (cf. [16]). If {gr} is the product system of a weakly multi-

plicative system, then series (10) with u € LI[% 1 (1 < p < o0) is p-mazimally

convergent a.e. on |a,b].

Let u € L’[)a b With help of Cesaro means

n

k
hn(t) = 1— u, wi(t) (n €N),
0= (1= ) <wo w0 meN

of the series Y 7oy < u, gr > wi(t), by use of an estimate due to Balashov
and Rubinstein [2] we obtain that in context of Theorem 11

b
< ugp >i= / w()ge(t)dt =< hywy > (k€ N),

P

01" Then we have

where h :=limh,, in L
n

Theorem 12 (cf. [16]). If {gx} is a product system of a weakly multi-
plicative system, then the series

[o.¢]
> <u, gk > gi(t),
k=0

is p-maximally convergent a.e. on [a,b] for every u € L][Da’b].

Let {gr} be the product system of a weakly multiplicative system. From
Theorem 10 it follows that for every u € LI[’0 1 (1 < p < o0) series (10) is p-
maximally convergent a.e. on [a, b] (and in Ll[’a b]) to some function v € LI[J0 1
We prove that the problem of the p-maximally A-boundedness of series (10)
may be reduced to the same problem for Walsh-Fourier series.

Theorem 13 (cf. [16]). Let {gr} be the product system of a weakly
multiplicative system and let u € L}[DOJ]. If series (9) is p-maximally \-
bounded a.e. on [0,1], then series (10) is p-mazximally A-bounded a.e. on
[a,b] for the same u.

Theorem 14 (cf. [16]). Let {gx} be the product system of a q-weakly
multiplicative system and let v € L:E)O,l} where % + % = 1. If series (9) is
p-mazimally A\-bounded a.e. on [0,1] for u, then series (10) is I-maximally
A-bounded a.e. on [a,b] for the same u.
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Proofs of these results are essentially based on orhogonality of the Walsh
system and classical inequalities.

3.3 Uniform convergence and A-boundedness
of series with respect to product systems

Let g be the product system of a system of measurable functions fi (k €
N) satisfying
fo(t) =1 and |fr(t)| <1 on [a,b].

For a function u € Cj y), relationships between uniform convergence prop-
erties of series (10) and of the Walsh-Fourier series (9) are investigated in
Chapter IV ([18)).

Theorem 15 (cf. [18]). Let u € Cp ) and let A be a regular triangular
summability method.

(a) Series (10) is convergent (A-summable, A*-bounded, regularly A*-
summable) uniformly on [a,b], if series (9) is convergent (A-summable, A*-
bounded, regularly A*-summable) uniformly on [0,1].

(b) If {gr} is an orthogonal system, then series (10) is convergent (A-
summable, A*-bounded, reqularly A*-summable) uniformly on [a,b], if and
only if series (9) is convergent (A-summable, A*-bounded, regularly A™-
summable) uniformly on [0, 1].

The proof is based on good convergence properties for 2"th partial sums
of series with respect to product systems, which essentially follows from
Banach-Steinhaus theorem.

As a consequence of this theorem we have, that uniform convergence of
Walsh-Fourier series of a continuous function u implies convergence of series
of Walsh-Fourier coefficients of the same wu.

An additional consequence of Theorem 15 is the following

Corollary 16 (cf. [18]). Series (10) is uniformly (C,1)-summable on
[a, 0] for every u € Cyg -
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FUNKTSIONAALRIDADE KITRUSEGA
KOONDUVUS JA SUMMEERUVUS

KOKKUVOTE

Vaatleme funktsionaalridu kujul
o0
> &upr(t). (1)
k=0

Kui A on mingi kiirus, s.o. monotoonselt kasvav positiivsete reaalarvude
jada, siis koonduva rea (1) A-koonduvus (ehk koonduvus kiirusega \) tdhen-
dab jada (A, >02,,1 1 &k (t)),, koonduvust. Olgu A = (o) rida-jada sum-
meerimismenetlus. Oeldakse, et rida (1) on A*-summeeruv (ehk A-summee-
ruv kiirusega \), kui see on A-summeeruv ja jada (And 52,41 @nklrer(t))
koondub.

Doktorit66 pohieesmérgiks on ndidata, et funktsionaalridade teooria pal-
jud tuntud tulemused on laiendatavad kiirusega koonduvuse ja kiirusega
summeeruvuse juhule. T66 lahtepunktideks on mitmed Alexitsi [1], Kacz-
marzi [9-11], Kangro [6-8] ja Tandori [13] klassikalised t66d ning Moriczi [12],
Schippi [19-21] ja Tirnpu [22-25] artiklid l&hemast minevikust. Véidete
toestamisel on t66s kasutatud nii klassikalise analiiiisi kui ka funktsion-
aalanaliiiisi uurimismeetodeid.

Kaesoleva doktoritoo olulisemad tulemused on jargmised.

1) On kirjeldatud selliste summeerimismenetluste klasse, mille puhul vas-
tava Lebesgue’i funktsiooni tokestatus garanteerib rea (1) maksimaalse A-
summeeruvuse koigi (&) € €3 = {(&) : 52 A\2€7 < oo} korral

2) Eeldusel, et {pr} on mingi siisteemi { fi} korrutissiisteem, on leitud
seosed stisteemi {f;} omaduste (p-nork multiplikatiivsus) ja rea (1) koon-
duvusomaduste (p-maksimaalne A\-koonduvus) vahel.

3) Kui {¢x} on mingi siisteemi korrutisstisteem ja {wy} on Walshi siis-
teem, siis funktsioonide u puhul klassidest Cj;; ning L}[OOJ] on naidatud,
et rea Y pog < u,wy > @, mitmed kiirusega koonduvuse probleemid saab
taandada Walsh-Fourier’ rea Y 72, < u, wy > wy vastavatele probleemidele.

To6 koosneb viiest osast: kokkuvote ja peatiikid I, II, TIT ja IV, mis
kujutavad endast teaduslikke artikleid (artiklite loetelu vt. lk. 7).
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Too I peatiikis lahendatakse konkreetne iilesanne: lahtudes Tiirnpu
poolt toestatud iildisest ja keerulisest teoreemist (vt. [25]), leitakse need
seosed Rieszi kaalutud keskmiste menetluse P ja kiiruse A vahel, mille puhul
vastavate Lebesgue’i funktsioonide tokestatusest jareldub rea (1) maksi-
maalne PA-summeeruvus peaaegu koikjal (p.k.) iga jada (£;) korral Banachi
ruumist £3.

T66 I peatiikis lahendatakse sama iilesanne teatavate regulaarsete \-
konservatiivsete menetluste A = (a,y) jaoks, vorreldes neid Rieszi menetlu-
sega P(A), mis on konstrueeritud jargmiselt:

k

P, = exp (Z Sup|any|> (k=0,1,2,...).

y=0n=V

See arutelu baseerub eelnevas peatiikis saadud tulemustel ja summeerimis-
menetluste sisalduvusest kiirusega summeeruvuse mottes ortogonaalridade
klassis.

On mitu pohjust, miks uurimiseks on valitud just Rieszi menetlused.
Uhelt poolt on nende menetluste klass ortogonaalridade puhul universaalne
selles mottes, et iga jada (£;) € £2 jaoks leidub selline kaalutud keskmiste
menetlus P = P ((&)), mis summeerib vastava rea (1). Teine oluline pohjus
on, et P on tehniliselt lihtsalt késitletav ja tema puhul on Kangro poolt efek-
tiivselt lahendatud kiiruste siilitamise probleem (vt. [6]-[8]), s.o. kiisimus
sellest, milliste kiiruste A puhul teisendab menetlus koéik A-koonduvad jadad
A-koonduvateks jadadeks.

T66 1T ja IV peatiikis vaadeldakse rida (1), kus {¢x} on mingi teise
siisteemi { fx} korrutissiisteem, s.t.

wot) =1 ja  @k(t) = fror1(t) frrr1(t) - o« frns1(2),

kus k = 2k0 4 2k - 2Fn (kg < ky... < k). III peatiikk uurib ridade
(1) p-maksimaalset A-koonduvust ja p-maksimaalset A-tokestatust korru-
tissiisteemi {py} korral. Seejuures nimetatakse rida (1) p-maksimaalselt
A-koonduvaks (p-maksimaalselt A-tokestatuks), kui ta on A-koonduv (A-to-
kestatud) p.k. 16igus [a, b] ja

b
/ sup AP
a n

kus 1 < p < co. Muuhulgas selles peatiikis toestatakse, et kui

00
>
k=0

p

i Eron(t)

k=n+1

dt < oo,

/ab pr(t)dt

< 00
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(sel juhul Geldakse, et lahtestisteem {f;} on norgalt multiplikatiivne), siis
rida (1) on 2-maksimaalselt A-koonduv p.k. 16igus [a, b] iga (£;) € £3 korral.
Frilise tahelepanu all on read

io: < u,wg > (pk(t), (2)
k=0

kus < u, wy >:= fol u(t)wy(t)dt on mingi integreeruva funktsiooni v Fourier’
kordajad Walshi siisteemi {wy} suhtes. Osutub, et selle rea 1-maksimaalse
A-tokestatuse probleemi saab u € L:ﬁ)’l] puhul (1 < p < o0) (sobivatel
eeldustel siisteemi {¢y} suhtes) taandada funktsiooni u Walsh-Fourier rea
Yoo < u,wg > wg(t) p-maksimaalsele A-tokestatusele.

IV peatiikk uurib ridade (2) iihtlast koonduvust, tihtlast A-summeeru-
vust, ithtlast A*-tokestatust ja iihtlast regulaarset A*-summeeruvust, kus u
on 16igus [0, 1] pidev funktsioon. Néidatakse, et ortogonaalse siisteemi {¢y }
puhul on iga nimetud omadus samavaérne funktsiooni u Walsh-Fourier’ rea

sama omadusega.
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Riesz summability with speed
of orthogonal series

Natalia Saealle and Heino Tiirnpu

Abstract. Sufficient conditions for summability with speed of orthog-
onal series are found.

1. Main result

Let ¢ = {¢x} be a system of orthogonal functions on [a,b], and let
A = (Ag) be a sequence with 0 < A\, /" co. We will consider the series of the

form
> Grpn(t),

where z = (&) € £3, i.e. 3 E2X2 < 0.

We will use the following definitions from [1].

Let A = (ank) be a triangular summability method and let z = ((x) € ¢
with lim ¢, = C.

The sequence z is said to be convergent with speed A or \-convergent, if
the limit

exists. The set of all A-convergent sequences is denoted by .
The sequence z is said to be A-summable with speed A or A*-summable,
if y = (,) € ¢*, where

n
TIn = Z Ak Ch-
k=0

The summability method A is said to be A-convergence preserving if
every element of the set ¢* is A*-summable.

2000 Mathematics Subject Classification. 40C05, 42C15.

Key words and phrases. Orthogonal series, summability with speed, Riesz summabil-
ity, maximal summability, Lebesgue functions.

Supported in part by Estonian Science Foundation Grant 3991.

35



The series 3 &por(t) is said to be A*-summable almost everywhere (a.e.)

on [a,b] if it is A-summable a.e. on [a, ], i.e. the limit
h}ln Z ankfk()pk(t) - fm(t)
k=0
exists a.e. on [a,b], and the limit
li7rln Bn(A, x,t)

exists a.e. on [a, b], where
Bn(A,z,t) = A\n (Z ank€epr(t) — f:}c(t)>
k=0

and

n
Unk = Z any-
v=~k

(1)

The series 3 &rop(t) is said to be mazimally A*-summable if the limits

(1) and (2) exist and

b
/ sup |Bn (A, z,t)|dt < oo.

The starting point of this paper is the following theorem.

Theorem 1 (see [7]). Let A be A\2-convergence preserving and let

ligbn ant =1 forall ke N.

The series . Expr(t) is AN-summable a.e. on [a,b] for all x € 63 if and only

if the following conditions hold:

1° Y &pr(t) is A-summable a.e. on [a,b] for every x € £3;

2° For each € > 0 there exist a measurable subset T, C [a,b] satisfying
mesl, > b—a — e and a constant M. > 0 such that, for all measurable

decompositions

U Nown C a1}, (3)

n=0
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one has

m—1
/T Z an Z me Z 901/ (,OV D%thd’r < M

€ n=0 p=n+1

where Xmn = XN, ond

AnA .
(Oému—anu)(amu—apu)%, fo<v<n<p<m,
v
And _
DZ;)V = aml/(amll - apy)%, ifn<v < p<m,
AnA
%w%, ifn<p<v<m.
v

In the present paper we will mainly consider the case, when A is the
Riesz summability method P, i.e.

Pk
S kSn,
ank:{ P,

0, k> n,

where py, > 0 and P, = Y ) _gpr /" 0.
Note that the Riesz summability method P is A-convergence preserving
if and only if (see [2])
n k= 0

If P is A-convergence preserving, then clearly

An A
= — < .
23 O(l)Pk fork<n, k,neN (4)

Hence, if the method P is A\*-convergence preserving, i.e.

2
then
—A% Ol—)\% for k < k N 6
P = ()Pk ork<n, kmneN. (6)

Since by the Cauchy inequality

P 1/2 2 D 1/2
cin- (EAEY - (558)”

kO n k=0 kkO k=0
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we have that if P is A\2-convergence preserving, then P is also A-convergence
preserving.

The main objective of this paper is to prove the following theorem.

Theorem 2. Let condition (5) hold, and let

)\2
Pn 10, pn:O(Pn—1)7 (7)
n—1
1 1
A
g Lo, )
where
11 1
A2 N2 /\121+1'
If
b
/ sup L (P, t)dt < oo, 9)
a k
where

b

dr,

> (1- P etente)

v=0

La(P,t) = /

a

with P_1 = 0, are the Lebesque functions of the method P, then the series
S & (t) is mazimally P*-summable a.e. on [a,b] for every x € £3.

Let us remark that, in 1969, G. Kangro proved the following result.

Theorem 3 (cf. [2]). If (1/Ag) is a sequence of summability factors of
type (A, AN, i.e. the series
RS
At

is AM-summable for every A-summable series S, then the A-summability
a.e. on [a,b] of the series 3 EQpr(t), where xg € (%, implies the A*-

summability of the series i—%(pk(t) a.e. on |a,b|.
If conditions (5), (7) and (8) are fulfilled, then from Theorem 29.3 of [1],

it follows that ()\—lk) is a sequence of summability factors of type (P, P).

Therefore we have that if conditions (5), (7) and (8) hold, then the P-
summability a.e. of the series Y &ux(t) for every € ¢2 implies the P
summability of the series " & (t) for every z € £3. Note that the above ar-
gument does not imply the maximal P*-summability of the series 3 &g (t)
for every z € (?\.
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2. Main Lemma

The proof of Theorem 2 is based on the following lemma.

Lemma 4. If conditions (5), (7) and (8) hold, then for each ¢ > 0
there exists a measurable subset T, C |a,b] satisfying mesT, > b—a—e such
that for all decompositions (3) one has

Anm(e) = 0(1) /T sup Ly(P, t)dt. (10)

k<m
Proof. Denote
J
Rj (t’ T) = Z ajVQOV(t)(PV(T)v
v=0

where
P, v—1

P; -

aj,jzl—

Then

(D7) = 3 o Ba(t ),
k=0

where (n,x) = P~! is the inquotation matrix of P.
From [1] (see p. 193) it follows that

> Dy, = P A—PE
—k Pk

and therefore

m—2 m—1 m v
Am(e) = / /T S @ S Xomp(1) S S mRi(t, 7) DI dtdr

€ n=0 p=n-+1 v=0 k=0
m—2 m—1 m ADT%V

m—2 m—1 m
SRR xmpwnxplzRk<t,7>(Ai<n,p,m>
T /T k=0

€ n=0 p=n-+1

+A7 (p,m) + A (p,m) ) | dtdr

I
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where

A [(amk - ank)(amk - apk)

;}
2
Ak

Al B Pk
k(n,p,m) = Protpn (Qtmn — Opn ifk=n
A2p, ’
Al — i) 3z
Amk (amk Oépk) 22 }
P.A k ifn<k<mp,
9 Pk
Ak(p, m) = Ppampapp if kb =
e 1 =p,
pPp
0 ifk<n,k>p,
and
2 1
PAA{O‘W“%} it p<k
3 if p<k<m-—1,
3 P ( ngé;,m—l O‘%nm agﬂm ) ifk=m-—1
Ak(p,m) = m712 )‘%n 1Pm—1 /\gnpm—l A%npm 7
«
m)\?npm
0 if £ <p.
Observe, that
AP
Py A2
Al n,p,m)| < A k for0 < k < n,
‘ k(P )‘ P,P, Dk
AI = 1 = O 1 ’
and 1
A(p.m) = O(1) .
P
Denote P 1
M, = XA,
" Pn " )‘%
From (7) it follows that M,, <1 for all n € N. Therefore
P, 1, ¢ -1 Pm 1
A3 (pym) = "= AR =0(1)Mp-17m—+0(1)
m 1(]7 ) D1 )\%1_1 )\gnp% ( ) m )‘%n—l ( ))\gn
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A3 (p,m) = O(1) .

A
Thus
Ap(e) < // ZX An nz_:lPkAA f\21 | Ry (t, 7)| dtdr
" - eTEnOmn PPnlk:O Pk ’

_l’_

m— p—1
// 2_:1 Xmp(T)A [Z \A%(p, m)\ |Ri(t,7)]

- Z A% (p,m)| | Ri(t T)y]dth

+mMLZm ZW[WMMMﬂ

€ n=0 p=n+1
+ |Rm—(t, 7)| + |Rm(t, 7')|‘| dtdr.

Now we have

2
2 n—1 Apf\’l
An(e) < / sup Ly (P, t)dt sup Z PrA
Te k<m n<m Inln—1 = Dk

+ sup Ly (P, 7)dr sup A2 Z ‘AQ p, M ‘

Te k<m p<m
m—2
+ [ sup Li(P, T)deup)\ Z |A3 (p,m)|
T: k<m p k=p

+O(1)/ sup Ly(P, t)dt.
T:

k<m

Therefore, in order to prove (10), it is sufficient to show that

Vépm = O(l)a 1=1,2,3,

where
APE 1
1 _
Vnpm - P Pn 1 Pt
m—2
V,?pm = )\2 ’AQ (p,m)|, V,f’pm = )\?, ‘A%(p,m)’




By [4] (see p. 220) we have that, for any sequence (a,) C R,

A%
2 1 1 Aa
P A—"E = (AAQ +A> e (11)

1 Aay 1 1
+——PA— 4+ Prap 1A | —A—= .
)‘%+2 Pk i Pe AR

Consider the case when ¢ = 1; then, by (11), we have

A z‘: 1\ APZ |
Vom < B i )‘erl Pr
1 AP 1
By — S R A( A 2)’
Ao Pk A

Since by (7)

n—1

>

k=0

1
2
M( AA2)|
1 1 P2 1

— AP o ”_lAi’
Z kpk+1 /\k+1 Pn A2

we have
1
Vnpm
A2l 1 1
<E 2 Az +Am— ) Beat Po) + 53—k + prsa)
" k=0 k k+1 k+2
>\2 a2 il 1 1 A2 p
o)+ 2y | APR—A P Al

Pn ( P, kz% pk+1 )\i-i-l P2 Pn )\2

Now, by (5) and (6), we have

! A2 Pr+1 1
Vnpm < 2Pn Z <>\2M + )\2 MkJrl +pk+1A>\2 >
" k=0 k+1 k+1

p g Pk Pk+1

n O(1
+P Z</\2+>‘z+1 + ()
Dk+1 A\ P,

A
+2-0 M1+
B, kzzo ., P22

= 0(1) 3 i’; +oM)2 Y PEL o)
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Analogously we have

\2 -l Aamkpk 1
p
A2 ] 1 1 A(mp P 1 A(mpPe—
§p§:<A2+A2 }%OMkkﬂ+2 ﬁA(%Mkﬂ
Py = Al Akt Pk A2 Dk
A2 P— 1
1 1
p Z amkpk ( A)\2> ‘
P k=0
A2l 1 1 P, P Pi_q
=0(1)-2 KAJFA Py + A(—(l— — ))‘
1 Jrr) i At )‘zw P, P,
22 A2l 1 1 AP
+20(1) + 2 Alak P ——A—— + amp1-L LM, = O(1).
Pp P k=0 F Pk+1 )\%+1 P Pp )\12)

3
Vnpm
m—2 2
1 1 A
<22 (A S+ A )Pk Sk
k=p Ak Akt Dk
1 Aa? 1,1
)‘i+2 k o Ak
2m—2 1 1 )\227 m—2 3
=0 Y (A + A5 |+ 5 2 |57 Aok + amp)
k=p k k+1 M f=p | "k+2
m—2
1
+Cmp1As pA)\Q +OMA D> Ag—= O(1).
k=p k+1

The proof is complete.

3. Proof of Theorem 2

In the proof of Theorem 2, we will make use of the following

Lemma 5 (see [5], pp. 142-144). Let (f,) be a sequence of integrable
functions on [a,b]. Then for each measurable subset T' C [a,b] and for each
m € N one has

/ sup | fn(t)[dt < 2sup
T n<m

m

[ 3 xm)fat1at]
T n=0
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where Ny, ranges over all decompositions defined by (3).

Proof of Theorem 2. By [6] (see p. 201) the condition
L, (P,t) = Ot(1) a.e. on [a,b

implies that the series Y &rpp(t) is P-summable a.e. on [a,b] for every
r €12

From Theorem 1 and Lemma 4 it follows that the series Y &ppp(t) is
P>-summable a.e. on [a,b] for every = € £3.

To show the maximal P*-summability we prove that

|, sup 1Bu(A.z)lat = Olllg) + sup{An(@} 2 (12)
T: Nim

n<m

where T. C [a,b] is a measurable subset with mesT. > b —a — ¢ and N,,
ranges over all decompositions defined by (3).

If condition (12) holds, then from (9) and (10) it follows that the series
S &k (t) is maximally PA-summable a.e. on [a,b] for every x € £2. We
now prove (12). By Lemma 5

/. S o (1) (A, . 1)

5710

/ sup |Gn(A, x, t)|dt = sup
Te n<m

Denote

Qpk = Qpg — Qp—1 k,

then
0 p
ﬂn(Aa$at) = )‘TL Z Z dpk&k‘pk(t) = an(.’E,t) + Cmn('fat)?
p=n+1k=0
where
an x t = A Z Z apkfk()@k
p=n+1 k=0
Cmn J} t =M Z Z Oépkgk()ok
p=m+1 k=0
Therefore
mn (A, t / mn Bn .’L' t)dt
/. nzo Xonn(£) B A nzo x )
/ Z Xmn (8) Crnn (2, ) dt.
Iz n=0
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By orthogonality of ¢ we have

/T Z an mn $ t)dt

€ n=0

< / go Xomn (E)A

(t) = fo(t)| di

- 1/2 - 1/2
<Vb—a supM (ka)\2> +( Z Eihi) -

k<m k=m-+1
If A is A-convergence preserving, then by [3] (see Lemma 3)
Amlame — 1 = O(A\k) (k< m) (13)

and therefore

[ 3 (om0t = Ol

€ n=0
Denoting
p—1
t) = Z Xmn (E)A

n=0

we have

/. S o () B (2, £)dt = > / > apeon() A7 (O
€ n=0 = ¢ p=
+/ Z an amO - OénO)gO(PO( )dt
Te =0
Now by (13)

/T Zan B, l‘ t)dt

€ n=0
—ka /. Z%Wk (0t + O]l

Using the principle of uniform boundedness we get

kz:;) & /TE ; aprpr(t) Ay’ (t)dt

m

1/2
1)(/ TZ*”’“ Dy, ZaukA’" dtdr) [P

€ k=0 p=k
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Finally

/ / Z i Z api Ay’ (1 Z ay AV (T)dtdT = Apy(g) + Enm,
L JT.

< k=0
where
)\ 2
By, = / / Z an an Z Spk @k |:)\ (amk Oénk):| dtdr.
Te =0
By (13) and Bessel’s inequality we get
m—1 m 2 2
Em = Z Z [ amk ank)] (/ Sok(t)an(t)dt)
n=0 k=0
=033 ([ eutremiar)
n=0v=0
DY [ Xt
/ > Xmn(t)d
Te n=o

Therefore condition (12) holds.
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Summability of orthogonal series
with speed

Natalia Saealle and Heino Tiirnpu

Abstract. Some sufficient conditions are found for summability of
orthogonal series with speed.

1. Introduction

Let ¢ = {pr} be a system of integrable (in special case: orthonormal)
functions on an interval

[a,b], and let A = (\;) be a sequence of real numbers such that 0 < A,
co. We will consider the series of the form

i Eren(t), (1)
k=0

where x = (§;) € €2, or x = (&) € (3, that is, 302 202 < oo.
In this paper, we use the following basic definitions and facts.
The sequence ((;) € c is said to be \-convergent (see [2, p. 251]) if the
limit
liTILn An(Cn — C)  exists, where 1171111 Cn =: C.
The set of all A-convergent sequences is denoted by ¢*. The series (1) is said

to be convergent with speed A\ or A-convergent almost everywhere (a.e.) on
[a, b] if the limits

lim D Eppr(t) = fult)
k=0

and
lim A, (Z Erepr(t) — fa:(t)>
k=0

exist a.e. on [a, b].
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Throughout this paper, we assume that A = (ay,) is a triangular sum-
mability method and denote

Qnpk = Qn kg — Qp k41-
In particular, we will study the Riesz summability method P with

P._
]kjnl, or nl = %’:L (k<n n,keN),

opr =1 —

where .
P_1 :0, P, = Zpk
k=0
and (pg) is a sequence of real numbers. We assume, that p;, > 0 and P, /" cc.
In this case the Riesz method is regular.
The sequence ((3) € c is said to be A-summable with speed \ or A*-
summable if (n,) € ¢*, where

n
T = Z anka-
k=0

The method A is said to be A-convergence preserving if every element of the
set ¢ is AM-summable.

If A is a regular summability method, then (see [6]) A is A-convergence
preserving if and only if

In the present paper, we assume that the regular method A is A%-con-
vergence preserving, where A2 = (A2). Since by the Cauchy-Bunyakovsky
inequality, we have

An < (D >y =0(1) (A2 Y =% :
h =0 Ak Ak

—0 Ak k=0 k=0

this means that if A is A\?-convergence preserving, then A is also A-conver-
gence preserving.

Series (1) is said to be A*-summable a.e. on [a,b] (see [2, p. 252]) if it
is A-summable a.e. on [a,b] (that is, if the limit

lim ) anbrpr(t) =: [ (1)
k=0
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exists a.e. on [a,b]), and the limit
lim 3, (A, z,t),
n

also exists a.e. on [a, b], where
ﬁn(A,iU,t) = An (Z Oénkfk(ﬂk(t) - f?(ﬂ) .
k=0

Series (1) is said to be mazimally A*-summable if it is AM-summable and

b
/ sup A\,
a n

If ¢ is an orthonormal system and A is regular then by the Fisher-Riesz
theorem, we have f2(t) = f.(t), where f,(t) is the sum of the orthogonal
series (1) in L[Qa p- The functions

dt < oo.

S anéron(t) — £A0)

k=0

> oo (t)or(T)| dr

k=0

LE(A, 1) = /ab

are called the Lebesgue functions of the method A associated with .

First, let ¢ be an orthonormal system on [a,b] and let A = C! be the
Cesaro method, that is,
k-1
—

ape =1 —

In this case, Kaczmarz proved (see [4], [5]) that if the Lebesgue functions

of C! are bounded on [a, b], then series (1) is C'-summable a.e. on [a, b]
for every = € £2. On the other hand, if a,,;, = 1 for k < n, then it is proved
in [4], [5] that from the boundedness of Lebesgue functions on [a, b] it follows
that series (1) converges a.e. on [a, b] for every x € /2.

It has been proved by Alexits and Sharma in [1] that the result of Kacz-
marz is true if the ¢y are integrable (not necessarily orthogonal) functions
on [a,b].

Now, Moricz and Tandori (see [7]) proved that there exist a triangular
regular summability method A = (a2,), a sequence zy = (£9) € ¢* and a
system ¢g = (¢9) orthonormal on [a,b] such that the Lebesgue functions
L#"(A° 1) are bounded on [a,b], but the series 332, EpR(t) is not A°-
summable a.e. on [a, b].

Méricz [8] and Tiirnpu [11] found certain classes of regular summability
methods A for which the condition

LE(A, ) =0(1)  (or (see [11]) LE(A,1) = O4(1))
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implies that series (1) is A-summable a.e. on [a, b] for every = € (2.

For example, for the case of the Riesz method P from the boundedness of
Lebesgue functions a.e. on [a, b] it follows that the series (1) is P-summable
a.e. on [a, b] for every = € (2.

On the other hand, necessary and sufficient conditions for A-summability
of series (1) a.e. on [a,b] for all x € ¢? are founded in [12] as follows. It is
proved that from the conditions

lima,, =1
n

and

b n
/ sup | Y anpoprer(t) (1) dr = O4(1)
@ P27 |p—q

a.e. on [a, b] it follows that the series (1) is A-summable a.e. on [a, b] for all
z € (2

Necessary and sufficient conditions for A*-summability of series (1) a.e.
on [a,b] for all = € (3

are found in [14]. We proved there that if A is A?-convergence preserving,

lim apy, = 1 and the series (1) is A-summable a.e. on [a, b] for every x € (3,

then the condition

b
/ sup
a p>n

a.e. on [a,b], where

m—1

> eu()eu(T) Dy, | dT = O(1)

v=0

(my — ) (Qmy — ozp,,))\n)\p/)\?, ifo<v<n<p<m,
D, =1 (i — Q) AnAp /AL ifn<v<p<m,
a2, A/ N2 ifn<p<v<m,

implies that series (1) is A*-summable a.e. on [a, b] for every = € £3.
Since the form of the above condition is very complicated, in [9] we
considered the case A = P, the Riesz summability method.

Theorem A (see [9]). Let

D 2
)\2
Pril \0 s pn:O(Pnfl)a (3)
and
1 1 1
— | -] \\0 4
Pn (A% /\%+1> @



If
b
/ sup LY (P, t)dt < oo, (5)
a k

then the orthogonal series (1) is mazximally P*-summable a.e. on [a,b] for
every x € E%\.

2. Two new theorems

The main aim of this paper is to prove the following theorems.

Theorem B. Let A be a regular N\%-convergence preserving method,
where

ag :=sup |apk| \, 0 and )\721|ank:| N0 (n— o0, k€N). (6)
n>k

and let P = P(A) be the Riesz summability method with

P = exp (Z ) |

v=0
If (2), (3), (4) and the condition
Ln(P(A),t) = O(1)
hold, then the orthogonal series (1) is mazimally A*-summable a.e. on [a,b]
for every x € K%\.
In the proof of Theorem B, we will use the following

Theorem C. Let A = (ay;) and B = (Bnr) be reqular \2-convergence
preserving methods, and let

m

A2 Z(ﬂkn—1)2?gg Alaw| = O(1) and Z(ﬁkn—1)2§g£ |a| = O(1). (7)

k=n k=n

If the orthogonal series (1) is B»-summable (mazimally B*-summable) a.e.
on [a,b] for every x € €2, then the orthogonal series (1) is also A*-summable
(mazimally A*-summable) a.e. on [a,b] for every x € 3.
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3. Proofs of Theorems B and C
We need the following lemmas.
Lemma 1 (see [10]). Let f be a measurable function on [a,b]. Then
|f(t)] <oo a.e. on Ja,b

if and only if for each € > 0 there exists a measurable subset T, C |a,b] such
that mes T, > b—a — ¢ and

/T £ (6)]dt < oo.

Lemma 2 (see [10]). Let (f,) be a sequence of integrable functions on
[a,b]. Then
sup | fn(t)| < o0 a.e. on [a,b]

if and only if for each € > 0, there exist a measurable subset T C [a,b] with
mes T, > b—a — ¢ and a constant M, > 0 such that for all measurable
decompositions

U Nown C 0,81}, (8)
n=0
one has

S o () (1)t

I: n=0

B: = < Mc, where Xmn := XN - 9)

Remark. In [10] we have actually proved that under the conditions of
Lemma 2, for each measurable subset T' C [a, b] and for each m € N one has

/ max | f, (t)|dt < 2sup
T n<m Nom

[ 3 X001
T n=0

Since the space E?\ endowed with the norm
o0 1/2
2= (z sm)
k=0
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is a Banach space and the set {e; = (0ki)5>, : @ € N}, where d; is the
Kronecker symbol , forms a total set in E%\ (that is, the linear combinations
of e; are everywhere dense in ¢3), we can use the Banach theorem.

Lemma 3 (see [3], p. 361). Let (D,, : n € N) be continuous linear oper-
ators from f% to the Frechet space My of all functions totally measurable
on la,b]. Suppose that the following conditions hold:

1° sup,, | Dy (z,t)| < 00 a.e. on [a,b] for every x € £3;

2° the limit lim,, Dy, (e;,t) exists a.e. on [a,b] for every i € N.

Then the limit lim,, Dy,(z,t) exists a.e. on [a,b] for all x € (3.

Proof of Theorem C. Let the second equality in (7) hold. By [13, Corol-
lary], if the orthogonal series (1) is B-summable a.e. on [a,b] for 20 € £2,
then it is A-summable a.e. on [a,b] for the same xg. In Theorem C we
assume that series (1) is B*-summable a.e. on [a,b] for every = € (3 C (2,
therefore it is B-summable a.e. on [a, b] for every = € 3. So, by [13, Corol-
lary 1], series (1) is A-summable a.e. on [a, b] to some function f, for every
z € 3. Furthermore, the operator p = f,(t) defined by

pzéiﬁM[a,b]a T fy

is continuous and linear.
Let

Dp(x,t) = Ay (zn: ke (t) — f:v(t)> :
k=0

The operator D, (x,t) from £3 into M, [a,] i continuous and linear. We will
use Lemma 3 and show that conditions 1° and 2° are fulfilled.

By Lemma 2, for condition 1° it is sufficient to show that inequality (9)
with f, = D,, holds for every decompositions (8), that is, for every € > 0
and fixed z € (3 there exists a measurable subset 7. = T.(z) C [a,b] with
mes T.(z) > b—a — ¢ and a constant M, = M.(x) > 0 such that for all
decomposition (8) one has

B, =

/T (x)ngn(t)Dn(m,t)dt < M.(z).

By Abel’s transformation, we obtain

n n k
Z ankﬁkgpk(t) = Z ank Z gu()ou(t)7
k=0 k=0 v=0
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and by using the Cauchy-Bunyakovsky inequality, we have

= / Z an <Z Ank Z 51/301/ - )) dt
T:(x) n=0 v=

< mn(t)A

</ oy 2 Xm0

‘Pu(t) - f:c(t) dt

mn (DA 1), (1) dt
+/s(m)n2)x ®) Vv (t)
Ui k
< /Ts(m) T;)an(t))\ (Z /Bku&/(ﬂy(t) — fx(t>> dt
+/T€(z)nz%><m" Zankz (t)|dt

m n 3
+/ Z an(t))‘n {Z ’ank|} x
Te(z) = k=0

D=

n k 2
X {Z ’ank| (Z(ﬁku - 1)51/@1/@)) } dt.

k=0 v=0

Therefore, we have

/( ZXW t)An Z’am
T=(2) =0
1/2
ang — 1 fa(t 2dt>
,;) k (/( ®)

2\ 2
(/ Z an >‘ Z |ank‘ (Z ﬂku - 1)51/301/(0) Clt) .
v=0

Since (1,1,1,...) € ¢* and A is A-convergence preserving, we have

Zank_l

k=0

Zﬁkugugpv ) fz(t) dt

+0(1) sup An

sup)\ o(1).

So, we find that

k
Z /Bkyfucpl/(t) - f:c(t) dt + O(l)Hfat(t)HLQ

v=0

B = 0(1)/ sup Mg
Te(x) k

1/2
(Z Ne2)\ 2 Z B — 1)? sup )\l |au<;|> :

k=v
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k
Z ﬂkufugpu(t) - fx(t) dt

v=0

By, = O(l)/ sup A
T. k

+O(1) || fz||r2 + O(l)||x\|gi.

Since series (1) is B*-summable a.e. on [a, b] for every x € £3, by Lemma 1,
we have that for every € > 0 a nd every fixed x € E?\ there exist a measurable
set FE.(x) C [a,b] with mesE.(z) > b—a — ¢ and a constant N(x) > 0 such
that one has

/ sup Ag
Ee (Z‘) k

Thus there exist a measurable subset T.(x) = E.(z) and the constant M. (z)
such that

k
Z /Bkzzgu()pu(t) - fa:(t) dt = Ne(x)
v=0

Me(z) = O(1)Ne(2) + O)|| fall L2 + OW)||llz -

Therefore, we have
By, < M(x),

which means that condition 1° of Lemma 3 holds.
Let d0y; be the Kronecker symbol. Since the series > ;2 0 is A-conver-
gent, A is regular and A-convergence preserving, the limit

lim A, (Z nkOkipr(t) — %‘(t)) = lim An(ami — 1)ipi(t)
k=0

exists a.e. on [a,b], that is, the limit
liyrln Dn(ei, t)

exists a.e. on [a, b] for every i € N, which means that condition 2° of Lemma
3 also holds. From Lemma 3 it follows that if the series (1) is B*-summable
a.e. on [a,b] for every x € 3, then series (1) is also A*-summable a.e. on
[a,b] for every = € (3.

Assume that the series (1) be maximally B*-summable a.e. on [a, b] for
all z € Ei, then

b
/ sup A\,
a n

Xn: ﬁnk’gk@k(t) - fac(t) dt = Ox(l)
k=0
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Now, by the above Remark we have
b
A

o
/ 3 X

dt

zn: ankﬁk@k(ﬂ - fx(t)
k=0

dt

< 2sup
N,

m

i ankﬁk@k(t) - fw(t)
k=0

b
= o) [ sup, dt + O(V)|| £l 2 + O(1)

= Ms(x)v

k
Z ﬁkzufv%pu(t) - fm(t)
v=0

that is, the series (1) is maximally A*-summable a.e. on [a,b] for every
x € (3. The proof of the theorem is now complete.

Proof of Theorem B. From (6) it follows that

sgg )\i|ank| < )\%|akk| < Aiak. (10)
nz

If P = P(A), then
pr = Pp1(e™ — 1),
that is,

Dk
> ag. 11
P (11)

We will show that condition (7) in Theorem C is satisfied with P = P(A)
in place of B. Using (3), (10) and (11) gives

m m 2
_ _ — Pk
)\22 1— 32 ) sup A2 |lame| < )\25 n—1,2
n k:n( kn) m>k m| m | n = P]? kPkfl

)\%P 3—1 O Pk
Ao Po1 (= PpPy

1 1
= Pa(gnog) o0

IN

From Theorem C it follows that series (1) is maximally A*-summable a.e. on
[a, b] if series (1) is maximally P(A)*-summable a.e. on [a,b]. By inequality
(5), the boundedness of the Lebesgue functions, and conditions (2), (3) and
(4), Theorem A gives that series (1) is maximally P(A)*-summable a.e. on
[a,b] for every = € £3.

Consequently, series (1) is maximally A*-summable a.e. on [a,b] for
every x € fi. The proof is complete.
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Convergence and A-boundedness of functional series
with respect to multiplicative systems

N. Saealle and H. Tiirnpu

Abstract. The series > cxgr(t), where {gx} is a product system de-
fined by a multiplicative system, is studied. Some sufficient conditions
for p-maximal convergence with speed of this series are found. Also

the series Y < f,wy > gi(t) with f € Ll[jo 1) and {wg} being a Walsh

system is considered. It is proved that this series converges almost
everywhere for various product systems. In the last section the A-
boundedness of this series is discussed.

1. INTRODUCTION

Let f = {fi}32, be a system of integrable functions on [a, b] satisfying
|fx(t)| <1 a.e. on [a,b].
The product system {gn} of {fx} is then given by

go(t) =1 and  gn(t) = fag+1() frrt1(t) - fupa(t) (¢ € a,0]),

where n = 270 4 2™ 4 . 4+ 2™ (ng < n; < ... < nyg) is the dyadic
representation of n. If {g,} is orthogonal, then {fx} is called orthogonal
multiplicative. If

b
/gn(t)dt:() forn=1,2...,

then it is said that {fx} is strongly multiplicative system (see [1]). For
example, the Rademacher system is orthogonal multiplicative and the Walsh

Key words and phrases. Multiplicative systems, Walsh functions, convergence with
speed, convergence almost everywhere, A-boundedness.
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system {wy, }52 is their product system. If

< | b

> / gn(t)dt

n=0 "%

then the system {fx} is called weakly multiplicative (see [5], p.292). If
1

)

then {fx} is called p-weakly multiplicative (1 < p < o0) (see [5], p.330).
Particularly, the system {f;} with

< 00,

p
dt = O(1),

2m—1

> ( A gnde) wa 1)

n=0

o0

2
Z (/abgn(t)dt> < 00

n=0

is 2-weakly multiplicative (see [8]).
Clearly, every orthogonal multiplicative system, strongly multiplicative
system and weakly multiplicative system is p-weakly multiplicative system.

We first consider series
(o)

> cnfi(t) (1)

k=0

and

S crgul). 2)
k=0

Notice that if the series (2) converges a.e. on [a, b] for all (c;) € £2, then the
same statement is true for the series (1).

In [7] it is proved that the series (1) converges a.e. on [ab] for all
rearrangements of {cjfi} if (cx) € £? and {f;} is p-weakly multiplicative
system for a number p with 1 < p < co.

The series (2) is called p-mazimally convergent a.e. on [a,b] if it is
convergent a.e. on [a,b] and

b
/ sup
a n

Theorem A ([7]). A series (2) is 1-mazimally convergent a.e. on [a,b] if
(ck) € 12 and {gi} is the product system of a p-weakly multiplicative system
for2 <p< 0.

P
dt < oo.

Zn: crgr(t)
k=0
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On the other hand Schipp in [6] proved

Theorem B ([6]). A series (2) is 2-mazximally convergent a.e. on [a,b]
if (cx) € €2 and {gi} is the product system of a weakly multiplicative system.

In this paper we study p-maximally convergence a.e. of the series

i crgr(t)
k=0

in the sense of the convergence with speed. Let A = (A;) be a sequence such
that 0 < A " co. The series (2), which is convergent a.e. on [a, b], is called
1)A-convergent (or convergent with speed \) a.e. on |a,b] if the limit

lim A, Z Ckgk(t)
" k=n-+1

exists a.e. on [a, bl;

2) A-bounded a.e. on [a,b] if

o0

> crgr(t)

k=n+1

sup A, < oo a.e. onla,b.
n

Clearly, that the A-convergence implies the A-boundedness.

Definition 1. If a series (2) is A -convergent a.e. on [a,b] and

b
/ sup \P
a n

then it is said that the series (2) is p-mazimally \-convergent a.e. on [a,b).

0o p

> crgr(t)

k=n+1

dt < oo, (3)

Definition 2. If the series (2) is A-bounded and (3) is valid, then it is
said that the series (2) is p-mazximally A-bounded.

In Section 2 we will characterize p-maximally A-convergence a.e. of the
series (2) for p =1 and p = 2. For this, we consider the sequence space

5= {c= ()| Z Mci < oo}
k=0
Obviously, E% endowed with the norm
oo 1/2
el ()
k=0
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is a Banach space and the sequences e; := (0x;)5>, (1 =0, 1,...) form a total
set in (43, ||) (cf. [4], p. 138).
In Section 3 we will consider the series (2) where

1
o =< fowe>i= [ f@utir (F e )

or
b
=< fige>= [ fOu®d  (f <L)

and we have found some sufficient conditions for p-maximal convergence a.e.
(1 <p < o0) of these series.
In Section 4 we will characterize p-maximal A-boundedness a.e. of the

(oo}
series Z < f,gr > gi(t), where f € L][Da,b]'
k=0

2. p-MAXIMAL MCONVERGENCE

We will prove the following theorem.

Theorem 1. If (c;) € 63 and {gi} is the product system of a weakly
multiplicative system, then the series (2) is 2-mazximally \-convergent a.e.
on la,bl.

To prove Theorem 1 we need the following corollary of the Banach-Stein-

haus theorem.

Lemma ([3], p. 361). Let D, (n = 0,1,...) be continuous sublinear
operators from a Banach space X to the Frechet space M, of all functions
totally measurable on [a,b]. Suppose that the following conditions hold:

1° sup | Dy (z,t)| < 0o a.e. on [a,b] for every x € X,

n

2° the limit liTILn D, (z,t) exists a.e. on [a,b] for every T from a total set
n X.

Then the limit li}fbn D, (x,t) exists a.e. on [a,b] for all x € X.

Proof of Theorem 1. Let {gx} be the product system of a weakly multi-
plicative system. Because

2m_1
Kp(t,u) :== Z gj(t)w;(u) >0 (t € la,b], uwe0,1], m=0,1,...)
=0
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(see [5], p. 293) and the Walsh system is orthogonal, by the Cauchy-Schwartz
inequality we get

b/ m 2 1/2 ) Cm , e
{/a <kz:%ck9k(t)> dt} :{/a </0 chwk(r)Km(t,T)d7-> dt}

k=0

{/ (/ <chwk ) (7 T) (/Ole(t,u)du)dt}l/z
_ {/01 <I§ckwk(7)>2 (/b Km(tn-)dt) dT}

m 1/2 com_1| 4 1/2 m 1/2
{Zi} {Z(/%@ﬁ} :0@{24} .
k=0 @ k=0

v=0
Thus the sequence (A,,) of the continuous linear operators

IN

Ap i 05— LE g, () = > crgr(t)

is pointwise bounded. Since

1/2 , 1/2
lim || Ap(e >—hm{/ (zakzgkt> dt} :{/ ﬁ(t)dt}

for each £k =0,1,... , then by the Banach-Steinhaus theorem we have that
(A,,) is pointwise convergent to a linear operator

A5 =Ly (o) = Y crgr(t)

which is continuous. Consequently,

9y 1/2
b 00
lim / Z ckgk(t) =0 for each (c;) € £3.
m a k=m-+1
Therefore
. 2y 1/2 - 1/2
/ S cran(t) —om{ Y ((er) € )

a k=m+1 k=m-+1
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and using the Minkowski inequality we have

1/2

<
a =M k=n+1

2

b oo

max \2 ( Z ckgk(t)) dt
1/2

2
b m
< max \2 ( Z ckgk(t)) dt

a n<m
k=n+1
b 0 2
+ /Afn( Z ckgk(t)) dt

k=m-+1

1/2

1/2

2
b m
< max A2 ( Z ckgk(t)) dt

<
a n=m k=n+1

. 1/2
—l—O(l){ Z cﬁ)\%} .

k=m+1

By Abel’s transformation in view of

m m—1 k n m
Z agug = Z (ar — ag41) Z Uy — Apy1 Z Ug + am Z up  (4)
k=n+1 k=n+1 v=0 k=0 k=0

we obtain

1/2

<
a n=m k=n-+1

2 1/2
1
<0(1) {/ max (Zcu Vg,,t) dt} max A, kznjﬂ( 5 Ak+1)
, 9 1/2 )/ m 9 1/2
—|—{/a I&a% (Z Mgy (t )) dt} + {/a (;Z:(]c,,)\,,g,,(t)> dt}

b i 2 1/2
=0(1) {/ max (Z c,,)\ygy(t)> dt} .
a r= v=0

Then by Theorem B

2
b m
max \2 ( Z ckgk(t)) dt

1/2

bmax)\Q ( f: ckgk(t)) dtr =0(1)  ((ed) )

<
a n=m k=n-+1
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which gives

oo

> crgr(t)

k=n+1

sup A, < oo a.e. on [a,b] for each (c) € £3. (6)

n

Therefore the linear operators
o0
Dy i 05 — Mgy, (k)= An Y, crge(t) (n=0,1,...)
k=n+1

are continuous and the statements 1° (cf. (6)) and 2° from Lemma are
fulfilled. By Lemma, the limit

lim A, Z crgx(t)
" k=n-+1

exists a.e. on [a,b] for every (cx) € £3. Hence the series (2) is A-convergent
a.e. on [a,b] and by (5) it is 2-maximally A-convergent. The proof of the
theorem is now complete.

Analogously, if {gx} is product system of a 2-weakly multiplicative
system, then by orthogonality of the Walsh system we have

/a chgk dt</ (/K t7)dt>d7
{E e (0]
_{écz} { > ([ dt)} 1){l§cz}/.

. . 2
Applying the Banach-Steinhaus theorem we get that for every c € £5

m
Z crwy(T
=0

1/2
b o (%)
13 anwla=om > @b .
@ Nk=n+1 k=n+1
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By Abel’s transformation (4) and Theorem A we obtain
o0

> crgr(t)

k=n+1

= / max ch)\kgk

=0(1) /: max

n<m

b

max A,
a n<m

dt

> cugr(t)|dt

k=m+1

dt—i—/

dt +O0(1) [ ¢ [lz=0(1) [ ¢llzz -

Z CckAkGk (1)
=0

Using Lemma we get the following result.

Theorem 2. If (cx) € 3 and {gx} is the product system of a 2-weakly
multiplicative system, then the series (2) is 1-mazimally \-convergent a.e.
on [a,b).

3. p-MAXIMAL CONVERGENCE OF THE
SERIES - < f,wg > gr(t)AND }° < f, gr > gx(t)

We will prove the following theorem.

Theorem 3. Let 1 < p,q < oo be conjugate exponents (% + % = 1) and

let f be a function in L[o 1 If {gx} is the product system of a q-weakly
multiplicative system, then the series

i < frwy > gr(t) (7)

k=0
is 1-maximally convergent a.e. on [a,b].
Proof. On the one hand,

b
/ max
a n<m

n

Z < f, wy > gk(t)

k=0

dt

_/ m<ax/ Z < fywk > wi(7) Ky (t, 7)dT| dt
<
_/gl<a7§2<f,wk>wk /K (t,7)dt|dr.
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On the other hand from [5], p.103 it follows that

erLb .. (8)

sup [071}
q 1/q
dT}

n

Z < f’wk >wk(T)

k=0

Therefore by the Holder inequality
b
/ max
o n<m

The assertion now follows from Lemma.

Z < fwg > gk(t)

k=0

m(t, T)dt

dt = 0(1){ 01
= 0(1).

Since by the Holder inequality

b p 1/p
{/ max dt}
a n<m
{/a max /0 Z < fywg > wi(7) K (¢, 7)dT

S{//%’i

Z <fawk>gk(t)

P 1/p
dt}
p

< fywg > wp(7)| Kp(t, 7)dr X

X [/01 K (t, T)d’]’:| e dt}l/p
(/ K (t T)dt) dT}l/p

g

P 1/p
dt} =0(1).

n

Z<fawk>wk

Z < fwy > wi(7) (t)dt

}1/17

then by (8) we get

b
/ max
a n<m

Now Lemma leads to the following theorem.

n

Z < f?wk >gk(t)

k=0

Theorem 4. If {gx} is the product system of a weakly multiplicative
system, then the series (7) with f € L[o 1 (1 < p < o0) is p-maximally
convergent a.e. on [a,b].
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Set

ha(t) =Y <1 - k) < f. gk > wi(t),

b n—+1

where f € L[ 2 and {gx} is the product system of a weakly multiplicative
system. We will prove that h,, € Lﬁ) - Indeed, since (see [2])

1| » k
' 1= t)| dr = 0(1),
voaisop | kZZO( ) w(r)un (o) dr = O()
using the Holder inequality we get
1 1/p
{[ orat}
0
1
1 1 n k on_1 P -
B /0 /0 ,;) (1 - n—|—1> wr(t)wi(T) Vgo wy (1) < f,9 > dr| dt
1 1 n k on_1 P
= 1= v y Yv
_{/0/0 ,;)( n—i—l)wk(t)wk(T) ;)W(kag >| dr
L k p/q 1/p
)
. l/ﬂ ];)( +1> k() wi(T)| dr dt}
1 " on—1 P 1/p
{//0 _?)wk )| dt Zwy Y<f, gy > dr}

/a " F ) Ko (, 7

P 1/p
=0(1) {/01 dT}

and using the Holder inequality once again, we have

A |hn(t>|pdt}l/p
1) {/01 /ab\f(u)p Ko (u, 7)du Ub Kn(u,T)dur/q dT}

2" -1 b
/ gy (u)du

b 1 1/p
1){/& f(w)] /0 Kn(u,T)deu} {;0
) { A If(U)Ide}

1/p

}1/q

1/p
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Therefore h(t) := limh,(t) € Lfo j) and < f, g, > are the Walsh-Fourier
n )

coefficients of h for every k =0,1,2,...:

< h,w, > = / wy(t hmz (1—) < f, gk > wi(t)dt
~ lim kf% (1 - ) < frge> /Olwk(t)w,,(t)dt

. v
= hﬁn(l_m> <fg>=</f, 90>

This yields the following result.

Theorem 5. If {gr} is a product system of a weakly multiplicative
system, then the series

o
> < foge > gi(t),
k=0

where f € Lz[’a o) is p-mazimally convergent a.e. on [a,b].

4. p-MAXIMAL A-BOUNDEDNESS

Let {gx} be the product system of a weakly multiplicative system. From
Theorem 4 it follows that the series (7) is for every f € LI[’ B (I1<p<oo)p
maximally convergent a.e. on [a, b] (and in Lz[ja’b}) to some function g € L[a o

We will prove the following theorem.

Theorem 6. Let {gi} be the product system of a weakly multiplicative
system and let f € L[0 1 If the series

oo

3 < fow > wi(t) 9)

k=0

is p-mazimally \-bounded a.e. on [0,1], then the series (7) for the same f
is p-mazimally A-bounded a.e. on [a,].

Proof. Let (sp,) be a sequence of natural numbers. Because the Walsh
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system is orthogonal, by the Minkowski inequality we obtain

b n p 1/p
Cp = {/a I%a%i)\ﬁ 1;) < fowg > gi(t) — g(t) dt}
b 1 P \1/p
< { m<ax)\p [ wg > w(7) — f(1) Ksm(t,T)dT] dt}
a N=mM 0
p 1/p
{ max)\p / fr ,7)dT — g(t) dt} .

By the Holder inequality it follows that

p
K, (t,7)dT X

b 1
C,, < { max AP
a 0

n<m

S < fown > wil(r) — £(7)
k=0

X {/01 K, (t, T)dT} f;alt}p

b 2sm 1 p 1/p
+{/ A Z < fywy > gu(t) — g(2) dt} :
a v=0
Thus
Cm

S < fown > welr) — £(7)

1 p b 1/p
< {/ max AP </ Ksm(t,T)dt> dT}
0 n<m a
k=0
b 25m —1
w4 [

Z < f,wy, > gu(t) _g(t)
1

v=0
_ 0(1){ a3 < F > wnlr) - 5(7)

k=0
b p 1/p
+ { / P dt} .

From Theorem 4 it follows that there exists a subsequence (s,,) of natural

numbers such that

hm / AP

n

25m —1

Z < f,wy, > gu(t) _g(t)

v=0

257” 1

< fywy, > g, (t) —g(t)| dt =0.
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Therefore we have

S < foun > wnlr) — £(7)

0 nsm [T

1 p 1/p
Cn =0() { max \P dr} +0(1).

The proof is complete.

Using Theorem 3 we can prove the following theorem.

Theorem 7. Let {gi} be the product system of a q-weakly multiplicative
system and let f € Lfo 1 where % + % = 1. If the series (9) is p-mazimally
A-bounded a.e. on [0,1] for f, then the series (7) is 1-maximally A-bounded

a.e. on [a,b] for the same f.

Proof. Let (s;,) be a sequence of natural numbers. As in proof of
Theorem 6, we obtain

b n
D,, = m<ax)\n Z < fyw > gi(t) — g(t)| dt
a "= k=0
b 1 n
< [ maxi, / S < frwg > wi(r) — £(r) ) Ka, (. 7)d7| dt
a nsm 0 \x=0
1 n b
< max A, Z < fywg > wi(T) — f(71) / K, (t,7)dt|dr
o n<m | o

2sm 1

Z < fv wy > gz/(t) — g(t) dt.
v=0

b
+/Am

By Theorem 3, the series (7) is l-maximally A-convergent a.e. on la,b].

Therefore the series (7) converges in L[la b 88 well. So, there exists a sequence

of natural numbers s,, such that

b
lim/ A,
m Ja

Therefore by the Holder inequality we have

25m —1

> < fowy > gu(t) — g(t)| dt = 0.
v=0

Nt
dT}

S < fown > wnl(r) — £(7)

1
D, < max AP
0 nsm LT

A1

and the proof is complete by the hypotheses of theorem.

1
b 4 q
/Ksm(t,T)dt dT} +o(1)
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Multiplikatiivsete siisteemidega méaaratud funktsionaalridade
koonduvus ja \-tokestatus

N.Saealle ja H. Tiirnpu

Artiklis on késitletud rida Y cxgi(t), kus slisteem {gx} on mingi mul-
tiplikatiivse slisteemi korrutissiisteem, ja leitud piisavaid tingimusi selle rea
p-maksimaalse kiirusega koonduvuse jaoks. On vaadeldud ka rida
> < fowg > gi(t), kus f € Lfo,l] ja {wg} on Walshi siisteem, ning toesta-
tud, et see rida koondub peaaegu koikjal erinevate korrutissiisteemide korral.
To6 viimases osas on uuritud selle rea A\-tokestatust peaaegu koikjal.
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Uniform convergence and A*-boundedness
of series with respect to product systems

Natalia Saealle

Abstract. Let {g;} be an orthogonal product system. For a continu-
ous function u it is proved that the series ), < u,wi > gi(t) with the
Walsh-Fourier coefficients < u,wy, > is convergent (A-summable, A*-
bounded, regularly A*-summable) uniformly if and only if the Walsh-
Fourier series ), < u,wy > wy(t) has the same property.

1. Introduction and statement of the results

Let {fx}72, be a system of measurable functions such that
fo(t) =1 and |fr(t)] <1 on [a,b].
The product system {gn}>>, of {fx} is given by

go(t) =1 and  gn(t) = faot1(t) frrt1(t) - frpa(t) (¢ € a,0]),

where n = 270 42" 4 | 4 2™ (ng < ny < ... < ng) is the dyadic represen-
tation of n. For example, the product system of Rademacher system is the
Walsh system {w, }52, (in the Paley enumeration), which is complete and
orthonormal (see e.g. [1], pp. 12, 60).

In this paper we consider the series

S <> gul), 1)

k=0

2000 Mathematics Subject Classification. Primary 42C10, 40A30; secondary 40C05,
40GO05.
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where

< uywp >i= /01 w(Pwp(r)dr  (k=0,1,..))

are the Walsh-Fourier coefficients of w. In our previous work [4], we con-
sidered p-maximal A\-boundedness of series (1) in the case of functions u €
Lpo’1 (1 < p < 00). Now, we suppose, that u is continuous on [0,1] and
study the uniform convergence, the uniform A-summability, the uniform
A*-boundedness, and the uniform regular A*-summability of series (1).

Let A = (\x) be a sequence of real numbers such that 0 < A\ " oo and
let A = (apk) be a triangular regular summability method. For a function
u € Cjp,1] we put

bn(A,t) ==\, (Z ank < u,wy, > gr(t) — I%HZ Qe < U, W > gk(t)> )
k=0 k=0

A series (1) uniformly A-summable on [a, b] is called
1) uniformly A*-bounded on [a,b], if

sup |bn(A,t)] = O(1) uniformly in ¢ € [a, b];

2) uniformly regularly A-summable on [a,b], if

lim bn(A,t) = 0 uniformly in ¢ € [a, D]

(ct. [2, [3).

If series (1) is uniformly ¥*-bounded (uniformly regularly ¥*-summa-
ble), where ¥ = (o,,%) is the triangular matrix with o, =1 (K =0,1,...;
n = 0,1,...), then it is called uniformly A-bounded (uniformly regularly
A-convergent).

We will consider the relationship between the convergence properties of
series (1) and of the Walsh-Fourier series

i < u, wy, > wi(T). (2)

k=0

The series (2) are well studied. For example, it was shown in [6] that for
every point 7y € [0, 1] there is a continuous function u, whose Walsh-Fourier
series diverges at that point. On the other hand, Walsh remarked, that

2n—1
lim Y <u,w, > w,(r) = u(r) uniformly in 7 € [0, 1] (3)
n
v=0
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for every u € Clgq)-
We prove the following

Theorem 1. Let u € C 1) and let A be a regular triangular summability
method.

(a) Series (1) is convergent (A-summable, A*-bounded, regularly A*-
summable) uniformly on [a,b], if series (2) is convergent (A-summable, A*-
bounded, regularly A*-summable) uniformly on [0,1].

(b) If {gr} is an orthogonal system, then series (1) is convergent (A-
summable, A*-bounded, reqularly A*-summable) uniformly on [a,b], if and
only if series (2) is convergent (A-summable, A*-bounded, regularly A™-
summable) uniformly on [0, 1].

Let A be the summability method of arithmetic means, i.e. A = C! =
(Ynk), where

R . if k<n,
Tk 1= n+1
0, if k>n.

This method is regular. It is well known, that the Walsh-Fourier series is
uniformly C'-summable for every u € Clo, (see [5], p. 265, or [1], p.103).
An immediate consequence of Theorem 1 is the following

Corollary 2. Series (1) is uniformly C'-summable on [a,b] for every
u e C[O’H .

2. Proof of Theorem 1

We need the following

Lemma 3. Let (my,) be an increasing sequence of natural numbers.
Then the subsequence of partial sums

9mn— 1

Z <u,wg > gk(t)
k=0

converges uniformly on [a,b] for every u € Clo,1)-

Remark 4. Let

2mn ]

vy () == li7rln Z < u,wy > gr(t).
k=0
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From Lemma 3 it follows that for every speed () there exists a subsequence
(sp) of (my) such that

25 —1

Z < u,wy > gr(t) — vy(t)
k=0

= 0 uniformly on [a, b]. (4)

I
1[I)n Ap

Indeed, by Lemma 3, for every ¢ = 1/p)‘?’ (p = 1,2,...) there exists N =
N(p) such that

2%p—1

Z < u,wy > gr(t) — vyu(t)
v=0

< )\TI; (t € [a,b])

A
b p

for all p > N. The right side of this inequality converges to zero, hence (4)
holds.

Proof of Lemma 3. First, note that the kernel

2n—1
Kn(t,7) ==Y gr(t)wy(r)
k=0
is non-negative for every t € [a,b] and 7 € [0, 1], therefore

1
| Kl dr =1
0
(cf. [3], p- 233). We consider the sequence of continuous linear operators

By, : C0,1] — L7y (n=0,1,...)

defined by
2mn71
B, (u,t) = Z < u,wy > gk(t).
k=0
On the one hand, we have
1 2mn71
Ba(wt)] = | [ u(r) Y wnat)dr
k=0

A

1
< H“HC[O,l]/O | Km, (¢, 7)[ dT = ||ullc,, (¢ € la,b], n=0,1,...),
thus the sequence (B,,) is uniformly bounded.
On the other hand, we have

277Ln _1

By (w;, t) = Z < wi,wg > gx(t) = gi(t) (¢t € [a,b], n=10,1,2,...)
k=0
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for 2m» > 4 4+ 1. Therefore (B, (P,t)) is uniformly convergent on [0, 1] for
every P € P, where P is the collection of finite linear combinations of Walsh
functions. It is known that P is dense in Cjgy) (cf. [1], p. 63).

The assertion of Lemma follows from the Banach-Steinhaus theorem.

Proof of Theorem 1. (a) Let {g,} be a product system. By the orthog-
onality of the Walsh system, we have

2mn ]

1
gu(t) = /0 w(r) S w,(r)gy (t)dr.
v=0
Consequently,

n
Z g < u, Wy, > gr(t) — vy (t)
k=0

An

2mn —1

1 n
/0 Z Qply < U, Wi > Wi (T) Z w, (7) gy, ()dT — v, ()

k=0 v=0

1 n
/0 (Z ke < u,w > wi(T) —u(r) + u(T)) X

k=0

=\,

=\,

omn _|

X Z wu(T)gu(t)dT*Uu(t)
v=0

[ a3 w0 — e

1 n 2mn —1
+/0 (Z ank < u,wi > w(T) — u(T)) Z wy (1) gy (t)dT

k=0

Since
9mn _q

1
> ot /0 w, (r)dr = go(t) = 1,

then the inequality

n
Z i < U, Wi > gr(t) — vy (t)
k=0

An

gmn_]
Z < u,wy > gy(t) — vy(t)

v=0

<A

n

Z i < u, wi > wi(T) — u(r)
k=0

+\, max
0<7r<1
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holds for every regular triangular matrix A = (k) and speed (A,). If
series (2) is uniformly A*bounded or uniformly regularly A*-summable,
then, by (4) and (5), series (1) enjoys the same property. To prove that the
uniform convergence of series (2) on [0, 1] implies the uniform convergence
of series (1) on [a,b], we use (4) and (5), where A, =1 (n =0,1,...) and
A = ¥. Similarly, using Lemma 3 and (5) we can prove the same statement
concerning the A-summability.

(b) Suppose that the product system {g,} is orthogonal. Then

n

An Z ke < U, w > wi(7T) — u(7)

k=0
b n
=\ / (Z g < u, wg > gi(t) — vy (t) + vu(t)> X
@ \k=0
2mn 1
X Z gu(t)wy, (T)dt — u(T)

2mn 1
Z < Uy, Gv > wV(T) - U(T)
v=0

2mn —1

+/ (Zank<uwk>gk — vy(t > Zgy wy (T
@ \k=0

By the non-negativity of K, , we have

b
[ 1 (6. dt = (b = aun(r) = b—a.

On the other hand, by the orthogonality of {gx},

gmn _1
< Uy, Gy > /g,, hm Z < u,wg > gr(t)dt =< u,w, > .
k=0

Therefore, the inequality

>\n Z Qnk < U, Wg > wk(T) - U(T)

k=0
omn _1
<A\ Z < u,wy, > wy (1) — u(r) (6)
v=0
+(0b—a)\, am?X Zank < u,wg > gr(t) — vy (t)
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holds. Moreover, by Lemma 3, from the A-summability of (1) it follows that

ligLn Z ang < U, W > gi(t) = vy (t) uniformly on [a, b]. (7)
k=0

Now, to prove that series (2) converges uniformly on [a,b], if series (1)
converges uniformly on [0,1], we use (3), (7), and inequality (6), where
A =1 (n =0,1,...), A = 3. The converse assertion follows from part
(a) of this theorem. Similarly we can prove the statements concerning the
A-summability. The assertion concerning the A*-boundedness and regular
A*-summability follows from (3), (6), (7), and part (a) of this theorem. The
proof is complete.
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