
UNIVERSITY OF TARTU

Institute of Computer Science

Computer Science Curriculum

Herman Meier

Simulating energy efficient fog computing

Bachelor’s Thesis (9 ECTS)

Supervisor: Satish Narayana Srirama

Tartu 2019

2

Simulating energy efficient fog computing

Abstract:

With increasing demand on computing resources, there is a need to reduce energy consump-

tion in order to keep computer systems sustainable. Current cloud and fog computing archi-

tectures need to be improved by designing energy efficient scheduling and placement algo-

rithms. This thesis describes power efficiency in fog computing and cloud computing. It

shows a way to minimize power usage by designing scheduling and placement algorithms

that maximize the number of idle hosts. Algorithms are designed to archive that goal in

cloud and fog systems. The algorithms are tested in different simulation scenarios. The re-

sults are compared and analysed. The thesis also contains a brief overview of similar re-

search that has been done on this topic.

Keywords:

Cloud computing, algorithms, distributed systems

CERCS: P175 Informatics, systems theory

Energiasäästliku uduandmetöötluse simuleerimine

Lühikokkuvõte:

Nõudlus arvuti ressursside järele üha suureneb ning seega on vajadus vähendada energia

kulu, et tagada arvutisüsteemide jätkusuutlikus. Praegused pilve- ja uduandmetöötlus arhi-

tektuuride edasiarendamiseks on vaja ajajaotus- ja asetusalgoritme, mis arvestavad energia

kuluga. Selles töös kirjeldatakse energiasäästlikust pilve- ja uduandmetöötluses. Töös

luuakse ajajaotus- ja asetusalgoritmid, mis maksimeerivad vabade seadmete arvu ning vä-

hendavad seeläbi süsteemi energiakulu. Algoritme katsetatakse erinevates simulatsioonides.

Simulatsioonide tulemusi analüüsitakse ja võrreldakse ning tehakse järeldused algoritmide

kasulikkusest. Töö sisaldab ka lühikest ülevaadet sarnastest uurimustest.

Võtmesõnad:

Pilveandmetöötlus, algoritmid, hajustöötlus

CERCS: P175 Informaatika, süsteemiteooria

3

Table of Contents

1. Introduction ... 4

1.1 Purpose ... 5

1.2 Outline .. 5

2. State of the Art .. 6

2.1 Background ... 6

2.2 Related works ... 9

3. Modelling .. 12

3.1 Energy consumption ... 12

3.2 Fog network .. 13

3.3 Application ... 14

3.4 Idle time .. 15

4. Algorithms and simulations .. 16

4.1 Scheduling and migration algorithms in the cloud ... 16

4.2 Scheduling in fog computing .. 17

4.3 Simulations ... 19

5. Results and analysis .. 22

5.1 Results of the simulations ... 22

5.2 Analysis of the results .. 24

6. Conclusions and future research directions ... 27

7. References ... 28

Appendix ... 30

I. License ... 30

4

1. Introduction

Cloud computing has proven to be a widely useful approach to utilize large data centres over

the internet. It is scalable and can be beneficial in different applications. Cloud computing

utilization is expected to grow as organizations move even more of their services to the

cloud, as was concluded in a survey [1] by IDG. One of the downsides of using the cloud is

latency. Since the cloud is accessible using the internet, there is a delay between generating

the data and processing it. This is especially critical in real time applications. The latency

problem is even worse when the network is congested due to a large amount data being

transferred.

Fog computing is an emerging companion to cloud computing which promises to eliminate

some of the shortcomings of the cloud. It is an architecture, designed by CISCO, which

connects the cloud with edge devices [2]. Edge devices are the computing devices that are

closest to the source or consumer of data. Fog computing thus reduces network latency and

makes real time solutions more viable. The main use cases and the reason fog computing

was proposed is the rise of Internet of Thing (IoT). IoT applications can have many devices

constantly producing data, which is not what cloud computing was designed for [3]. Fog

computing has been shown to be better at handling a large number of connected devices that

require real time services [4].

However, there are problems with fog computing that have to be researched more. One of

the most critical of these is sustainability. Information and communications technologies

(ICT) are currently consuming close to 10% of global electricity and growing number of

internet-connected devices might increase it further according to an article [5] on energy

consumption in ICT. Current cloud data centres are consuming a major amount of energy

due to a large demand for high performance cloud networks. According to a 2008 report [6]

an average cloud data centres consumes as much power as 25000 households. The high

power cost of data centres is caused by many factors and one of them is idle power usage.

The idle power consumption of modern server hardware is a significant percentage of the

maximum power consumption under load [7, 8]. So one way to make data centres more

energy efficient is to turn off idle hosts or put them to sleep mode. This can be archived by

offloading some of the computation from the cloud, which is what fog computing is de-

signed to do.

5

A survey [9] published by cloud computing researchers calls sustainability “the greatest

challenge of our century”. Therefore, with the emergence of fog computing there is a need

for more research into energy efficient algorithms to make fog computing networks more

sustainable.

1.1 Purpose

The purpose of this thesis is to create an algorithm that helps reduce energy consumption in

fog computing, while maintaining its advantages over the cloud. The algorithms proposed

in this thesis aim to free up more hosts in order to save energy. These scheduling algorithms

try to maximise the number of idle hosts, so that the energy savings from turning off idle

hosts is maximised. The proposed algorithms will be tested with simulations and compared

to cloud-only solutions.

1.2 Outline

The thesis begins with a brief background on cloud and fog computing as well as IoT. The

second chapter also discusses related works. A mathematical model of energy consumption

and fog computing is presented in the third chapter. The fourth chapter describes the pro-

posed algorithms and simulations. The final chapter contains an analysis of the results.

6

2. State of the Art

2.1 Background

There has been an increase in the number of internet connected devices and CISCO esti-

mates that this number will reach 50 billion by 2020 [10]. These smart devices also known

as edge devices are collectively called IoT. IoT is an idea that different devices have em-

bedded computers in them and they communicate over the internet. This can enable more

automation and improve quality of life. The devices can be sensors or actuator and so can

both produce and consume data. In order to create applications that utilise many devices

over the internet there was a need for a central platform that facilitates processing, storage

and communication for these applications. The most common solution is to use the cloud.

Cloud computing is a technology that helps to provide computing services over the internet.

National Institute of Standards and Technology defines the cloud as “a pool of configurable

computing resources” [11]. Cloud computing is currently widely used and is critically im-

portant for many businesses. A report [1] released in 2016 by IDG found that 70% of organ-

isations have at least one application deployed in the cloud and 56% are looking for more

ways to use cloud hosting. The cloud has several characteristics that make it so usable. For

example, it offers on demand services, scalability, lower infrastructure costs and different

service models. Although cloud computing has proven to be useful for many applications,

it is not a solution to every problem. One issue related to cloud computing is data manage-

ment. The global data creation rate is growing, IDG reported [12] in 2011 that there was

over 1ZB of data generated mostly by devices at the edge of the network and this number is

growing as more devices are connected to the internet.

The amount of data created by IoT puts more demand on data processing and communica-

tion. Cloud computing can offer the processing power needed, but it can cause network

related issues, especially when real time solutions are needed. A survey [13] on IoT states

that cloud computing is not the best choice for IoT applications and claims that fog compu-

ting can be the optimal choice for IoT. The survey brings out that fog computing could

reduce network latency and traffic, provide better scalability and mobility as well as im-

proving the performance of real time applications.

Fog computing is a computer network architecture created by CISCO in 2012 [2]. It unites

the edge devices and the network with the cloud and creates a broad network of devices.

The main idea behind fog computing is to address the shortcomings of the cloud namely

7

latency and response time. These issues are caused by the long distance between the data

source or consumer and the cloud, which leads to more time spent on communicating the

data. The fog architecture solves this by utilizing devices near the data source or consumer

called edge devices. In addition to using edge devices, the fog can also take advantage of

devices between the edge and the cloud. These can be gateways, switches, access points and

base stations. In the fog architecture devices like these are referred to as fog nodes. An

example of a three layer fog network can be seen on figure 1. Some of the computation can

be done on fog nodes so that there is less need to send data to the cloud. Using all of the

devices in the network makes fog architecture more flexible and dense, which in turn in-

creases the quality of service (QoS) and accessibility of the system.

Figure 1. Fog computing network example

Fog computing architecture is advocated and standardised by OpenFog Consortium [14]

founded in 2015. They state that their goal is “to create an open reference architecture for

fog computing, build operational models and testbeds, define and advance technology, ed-

ucate the market and promote business development through a thriving OpenFog ecosys-

tem”. The consortium currently has 57 members including industry leaders such as Intel,

ARM, CISCO, Microsoft and Dell.

The use cases of fog computing are applications where real time responses are important.

Specific scenarios where fog computing will improve the performance of the system have

been suggested by different researches [15, 16, 17, 18]. These include big data analytics,

smart grids, content delivery networks, emergency response and autonomous vehicles. Most

of the use cases for fog computing are IoT applications. In fact fog computing was originally

8

proposed as a solution to new set of problems arising from IoT applications [17]. The

amount of data created by sensors connected to the internet is overwhelming for cloud plat-

forms when real time response is needed. Network congestion would increase latency and

response time too much. Utilizing devices near the sensors producing the data is the solution

that fog computing provides for IoT applications. Offloading some of the computation to

edge or fog devices reduces the need to send data to the cloud for processing and thus re-

ducing the network latency and response time. However, there is a limit on how much can

be done in the network edge since the devices there are much less powerful than servers in

the cloud are. Having too much load on these devices could lead to processing latency and

resource shortage. Therefore, there is a need for new scheduling, placement and migration

algorithms in order to effectively utilise all the different layers of fog computing architecture

A survey [15] published in 2018 looks into the architecture and algorithms that make up the

current fog systems. They look at both application agnostic and application specific archi-

tectures and evaluate them based on heterogeneity, QoS management, scalability, mobility,

federation and interoperability. They also analyse different algorithms used in fog systems

for scheduling resources. They conclude that fog systems will reduce latency compared to

cloud systems if the application is deployed correctly and appropriate scheduling algorithms

are used. The survey shows that energy consumption is generally better in fog systems,

unless the network energy consumption is very large. These results show the importance of

scheduling and placement algorithms in the fog. New scheduling algorithms are needed in

order to reduce energy consumption while also maintaining the advantage of low latency in

the fog.

In both cloud and fog computing architecture the division of resources is done by a sched-

uler. Resources can be CPU time, memory, storage or network bandwidth. The algorithm

that decides how the resources will be divided is called a scheduling algorithm. Different

scheduling algorithms are good for different goals. The choice of an algorithm thus depends

on the requirements imposed on the system and they can change in time.

The performance of cloud and fog computing networks depend heavily on the scheduling

algorithm used. The parameters of the network can be optimised by using different sched-

uling algorithms. A 2016 survey [19] of papers about scheduling algorithms in the cloud

mapped out 13 different types of resource scheduling algorithms that have been researched

9

in the analysed 110 papers. The paper found that the most researched algorithms are based

on energy consumption and QoS.

There are many different software tools for simulating cloud computing. A survey [20] com-

pares them and concludes that there are differences and a choice should be made based on

the user requirements. There are fewer options for fog computing simulations. One of the

tools is iFogSim [21] wich is an extensions of cloud computing simulation tool CloudSim

[22]. Since it is an extension to CloudSim it is also written in java. It allows the creation of

custom applications, topologies and algorithms. There are also examples provided for all of

these.

2.2 Related works

The authors of article [23] created an algorithm to efficiently schedule and migrate virtual

machines (VMs) in a cloud data centre. The solution they proposed uses a model that has

homogenous hosts and three tiers of VMs: small, medium and large. Their algorithm con-

sists of two modules. The first one is a scheduler that divides the requested VMs between

hosts in a way that maximizes the number of idle hosts. The other module is responsible for

migrating VMs if some host can be made idle by the migration. They also allow to choose

the maximum power draw of the hosts and guarantee that all of the VMs that the client

request will be hosted.

The authors of [24] show that the dynamic migration of VM can lead to energy savings in a

cloud data centre. They created an algorithm that selects VMs to migrate and then finds the

hosts that can receive the migrating VMs. The selection of VMs is based on the resource

utilization of the host. The other part of the algorithm is a heuristic solution to the bin-

packing problem. They compare their algorithm with other migration policies and found

that the algorithm they used was more energy efficient than the others.

The article [25] describes an energy-aware heuristic algorithm that dynamically migrates

VMs between hosts. The algorithm tries to maximize hosts utilization so that more hosts

can be turned off to save energy. The proposed solution is event based and reallocates VMs

each time a new workload arrives or ends. Both this and the work by Anton Beloglazov and

Rajkumar Buyya [24] show that migration of VMs is an effective measure to reduce energy

consumption by a significant percentage.

In the work [26] Mahmud et al create a quality of experience aware placement algorithm for

fog computing applications. They create a fog network that has four layers. The first layer

10

are IoT devices that only generate data. The second layer are gateway devices that connect

the IoT devices. The next layer devices are fog nodes that perform computation and the last

layer is the cloud. This is similar to the model created in this thesis with the exception of the

middle two layer being treated as one in this model.

In article [27] an energy efficient scheduling algorithm for fog architecture is proposed that

tries to approximate an optimal solution based on their model. The model they use consists

of two types of hosts, one with faster hardware as in a cloud host and one with less compu-

tational power as in an edge host. They do not allow migration between hosts. The algorithm

optimizes the total execution time and the number of working fast hosts. It then chooses

which ever gave the most efficient result. Their model of energy consumption was an inspi-

ration for the models described in this thesis.

In their paper [28], Deng et al discuss power consumption and delay trade off in fog com-

puting. They create a model with a fog and a cloud layer, which are connected over a WAN.

It is different from the fog computing model that is used in this thesis, where the model

contains three layers instead of two. The article models the flow of requests from the users

through the system and defines the power consumption and delay of the whole system. It

then describes how to optimize the energy consumption and delay under the constraints

proposed in the model. The optimization is done in three steps. First they optimize power

consumption and delay in fog computing then the energy consumption in cloud computing

and finally the WAN delay. After finding optimal parameters for these sub-problems, they

analyse the effect of them on the overall system. The results they get show that fog compu-

ting helps to reduce latency which is the same conclusion that this thesis arrives to. However

opposite to the results in this thesis, their scenarios show an increase in power consumption

when offloading work to the fog layer.

Fog computing architecture is modelled in article [29]. The work describes the layers of fog

computing architecture and how they interact with each other. The layered model of the fog

computing architecture is very similar to the one used in this thesis as it was used as an

example. Both models have three tiers of devices: cloud, gateway and edge. The energy

consumption of a traditional cloud is compared with the proposed fog architecture. The pa-

pers show that using a fog architecture will decrease energy used in transmitting data over

the network when the number of edge devices is sufficiently large. They also show that the

energy used for processing in the fog architecture is significantly smaller than in the cloud

11

due to the fact that most of the processing is done at below the cloud layer. These results

align with the results gathered from the simulations done in this thesis.

In conclusion, cloud computing has its weaknesses that are a problem when hosting IoT

applications. Fog computing was proposed to ensure better performance when dealing with

those applications. Energy efficiency in fog computing has been identified as an issue and

there is an interest for research aimed at it. Scheduling and placement algorithms that prior-

itise energy consumption are therefore needed in order to make fog computing more sus-

tainable.

There have been some studies on energy efficient scheduling and placement in fog compu-

ting. These works focus on modelling the fog architecture which is done differently by dif-

ferent authors. The results show that energy and latency savings can be archived by using

fog computing with appropriate scheduling and placement algorithms.

12

3. Modelling

First, a mathematical model is created to describe energy consumption. It will be expressed

as a function that depends on time and power usage. Secondly the network of the fog com-

puting architecture will be described and modelled.

3.1 Energy consumption

The total energy consumption of a data centre can be expressed as a sum of the energy

consumption of all of the hosts in the data centre.

𝐸 = ∑ 𝐸ℎ

∀ℎ∈𝐻

Where E is the total energy consumption, H is a set of all hosts, and 𝐸ℎ the energy consump-

tion of host h.

The energy consumption of a single host is the power usage of the host times time and can

be represented as

𝐸ℎ = 𝐸𝑖 + 𝐸𝑢 = 𝑃𝑖 ∗ 𝑇𝑖 + 𝑃𝑢 ∗ 𝑇𝑢

Where 𝐸𝑖is the energy consumption while idle, 𝐸𝑢is the energy consumption while utilized,

𝑃𝑖 the power consumption while idle, 𝑇𝑖 is the total idle time, 𝑃𝑢 is the power consumption

while utilized and 𝑇𝑢 is the total time utilized. The whole period that the host is active is

𝑇 = 𝑇𝑢 + 𝑇𝑖

The power usage of a host is dependent on the utilization of its resources. The power con-

sumption is thus a function of utilization and can be expressed as

𝑃(𝑢)

Where P(u) is the power consumption at utilization u. The power consumption function can

be different for hosts. A higher resource utilization will result in a higher power consump-

tion. The power consumption is lowest when the host is idle and this value is constant for a

host. This means that

∀𝑢1, 𝑢2(𝑢1 > 𝑢2 → 𝑃(𝑢1) > 𝑃(𝑢2))

𝑃(𝑢) > 𝑃𝑖 ∀𝑢: 𝑢 > 휀

where 휀 is the utilization while idle.

13

Utilization is a percent value that is always greater than 0, because even when the host is

idle there is still some resource utilization . The utilization of a host changes over the course

of a timeframe so the utilization is a function of time and can be expressed as

𝑈(𝑡)

휀 < 𝑢 < 1 ∀𝑢

Where U(t) is the utilization at time t. An additional constraint to utilization is added as an

upper bound to utilization. This value can be set by the data centre administrator and is

expressed here as α It can be useful to better ensure SLA requirements and to avoid very

high utilization of hosts. So now the above statement becomes

휀 < 𝑢 < 𝛼 ∀𝑢, 𝛼 ∈ (0, 1)

The energy consumption of a host over its lifetime can then be modelled as

𝐸ℎ = ∫ 𝑃(𝑈(𝑡))𝑑𝑡

𝑇

The power consumption while idle is a constant and can be viewed separately. Since the

power consumption while utilized is always greater that the power consumption while idle,

the above equation becomes

𝐸ℎ = ∫ 𝑃(𝑈(𝑡))𝑑𝑡

𝑇𝑢

+ 𝑃𝑖 ∗ 𝑇𝑖

In order to minimize the energy consumption of a network the idle time 𝑇𝑖 can be maxim-

ized. This will mean that the host will stay in its lowest power consumption state for the

longest time possible.

3.2 Fog network

The fog network described in this thesis will consist of three layers: edge layer, fog layer

and cloud layer. The edge devices are grouped into sub networks that are connected with a

single fog layer device. All of the fog layer devices will be connected to the cloud layer.

Edge layer devices represent devices that are the least powerful and energy consuming of

all the devices in the network. These are the devices that are connected to or contain the

sensors that are the source of the data that the network will have to process. The actuators

that consume data are also connected or a part of the edge devices. The fog layer represents

14

intermediary network devices that route data between edge devices and the cloud layer. In

this fog architecture, the fog devices can also do some processing. The cloud layer is a ho-

mogenous network of powerful hosts. It has considerably more computation and storage

capabilities than the other layers, but also consumes the most energy.

The network has latency between different hosts. An assumption that the network latency

between edge devices, the fog and the cloud are constant in time. Each fog device can have

a different latency to the cloud and each edge device can have a different latency to its fog

device.

The set of fog layer devices is denoted by 𝐹. Each device from that set has a set of edge

layer devices connected to it. For a device 𝑓 from the set 𝐹 the connected edge devices are

represented by 𝐷𝑓.

The latency from a fog device 𝑓 to the cloud is denoted as 𝛾𝑓. The latency from an edge

device 𝑑 to its fog device 𝑓 is denoted as 𝛿𝑑
𝑓
. So, the latency from an edge device to the

cloud is the sum of these two values and can be expressed as

𝜃𝑑 = 𝛿𝑑
𝑓

+ 𝛾𝑓

The whole network is a undirected tree where the devices are the nodes and the edges are

the connections between them. Each edge has a weight that is the latency between the con-

nected nodes. The graph is denoted as 𝐺.

3.3 Application

An application is a set of modules that send data to each other. Modules that only create

data are sensors and modules that only consume data are actuators. Other modules are called

intermediary modules. The data that modules exchange can be thought of as a job, there is

some computation that has to be performed with the data to get a result. Not all modules

change data and the direction of the data flow can be unidirectional or bidirectional.

Based on this the application can be modelled as a directed weighted graph. The nodes of

the graph are the modules. The edge direction shows the data flow and the weight shows the

amount of data sent. The applications described here will have one sensor module and one

actuator module. Let 𝑅 represent the application graph, 𝑆 the sensor module and 𝐴 the ac-

tuator module. Intermediary nodes form a subgraph 𝑅′ that is the graph 𝑅 without nodes 𝑆

and 𝐴.

15

3.4 Idle time

The number of idle hosts and the idle time of utilized host must be maximised to decrease

energy consumption. The utilized time 𝑇𝑢 can be expressed as

𝑇𝑢 = 𝑇𝑛 − 𝑇𝑝

where 𝑇𝑛 is the time spent on network communication and 𝑇𝑝 is the processing time. The

processing time depends on the computational capabilities of a host and it thus decreases

from leaves to root in the tree 𝐺. The network time depends on the location of hosts and the

amount of hops the data does in the application graph.

The idle time can be written as

𝑇𝑖 = 𝑇 − 𝑇𝑢

and 𝑇𝑢 can be replaced to get

𝑇𝑖 = 𝑇 − 𝑇𝑛 − 𝑇𝑝

In order to maximise the value of 𝑇𝑖, the values of 𝑇𝑛 and 𝑇𝑝 can be minimised. This means

that minimising latency and processing time will increase the idle time and thus decrease

the energy consumption.

This chapter showed how energy consumption can be modelled in cloud or fog computing.

The energy consumption is based on the utilisation over time. In order to maximise idle

time, processing and network delay have to be minimised, as is shown in the model. The

application and fog architecture models described are used to create the algorithms for en-

ergy efficient placement.

16

4. Algorithms and simulations

In this chapter, the algorithms used in this thesis are described. The algorithms for cloud

computing include the scheduling and migration. The algorithm for fog computing deal with

only placement.

4.1 Scheduling and migration algorithms in the cloud

One way to reduce the energy consumption of a data centre is to maximize the number of

idle hosts so that they can be but into sleep mode. This will reduce the hosts power usage

and thus the total energy consumption of the data centre. A scheduling algorithm is needed

to archive a maximum number of idle hosts. This algorithm prioritizes already utilized hosts

over idle hosts when a new job arrives.

To further reduce power consumption a dynamic migration algorithm is used. It migrates

existing VM to other host if that makes the original host idle. This will be done each time

an existing VM is not needed anymore. If a VM is removed then there will be a chance that

one host can be made idle. This can occur when the VM was the only one running on a host

or when there exists a host that can be freed if all of its VMs are migrated to the freed up

host. In the first case, there is no migration necessary since the host will become idle by

itself. The second case means that all of the working hosts will be checked to find a host

that can fit its VMs in the new free space. If such a host is found then the migration will be

done.

Both the scheduling and migration algorithms will have to compare hosts to make an optimal

choice. Choosing between hosts is based on the current utilization of the hosts. If the addi-

tion of a new VM would mean that the utilization of the hosts exceeds a set upper bound

then the host is not suitable. Already idle hosts should be used only when the requested VM

cannot fit any of the already utilized hosts.

This scheduling will have an effect on quality of service. If a host is already utilized then

adding another job will mean that the resources of the host will have to be shared between

all of the running jobs. This can lead to a quality of service drop when the combined re-

sources needed for the jobs are greater than the ones available to the host. So when designing

a scheduler this has to be taken into account. The algorithm should be able to evaluate if the

extra utilization from a new VM on a host would risk breaking SLAs.

17

The scheduler will deal with the initial request from the client. It will divide the requested

VMs between the hosts while leaving as many hosts idle as possible. The algorithm will

take a list of all host and for each of them find the current utilization. Then the list is sorted

in decreasing utilization order. When a new job is scheduled for execution, the list of hosts

will be iterated from the beginning. The first host that has utilization less than a set upper

bound will be chosen.

1) Sort hosts in decreasing utilization order

2) For each host

a) If utilization < ɑ

i) Add VM to host and finish

The algorithm for power efficient migration will be triggered when a VM can be deleted. If

a VM is not needed anymore and the host will not be idle then a list of all hosts except the

freed host is created and sorted based on utilization. The sorting will be in ascending order.

The list will be iterated from the start. If the VMs in the current host could fit the freed host

then the migration is done and the iteration is stopped. If no migration can be done then the

algorithm just finishes.

1) Sort hosts in ascending utilization order

2) For each host

a) For VM in host

i) If VM -> host => utilization < ɑ

(1) Migrate VM to host and finish

The proposed scheduler relies on keeping a sorted set of hosts in memory. When a new VM

is requested the most utilized host that has enough resources left will be chosen. This ensures

that the number of idle hosts is maximised. The migration algorithm provides additional

benefits to energy consumption. It checks if a host can be freed up when an existing VM is

no longer needed. A host can be freed up is all of its VMs can be migrated to the host that

the VM was removed from. This is done starting from the least utilised host.

4.2 Scheduling in fog computing

To create the scheduler for a fog network an additional constraint will have to be introduced.

The scheduler has to keep the processing as low on the network as possible in order to reduce

latency. Therefore, the choice of a host will consist of the utilization of the host and the

hosts location in the network.

18

The utilization time 𝑇𝑢 of a host consists of network latency 𝑇𝑛 and processing time 𝑇𝑝. In

order to maximize the idle time 𝑇𝑖 the utilization time should be minimal. This means that

when choosing a host both the network latency and the processing time will have to be taken

into account. The best choice of a host will have the lowest utilization time.

The application subgraph 𝑅′ can be separated into tiers based on the distance from the sensor

or the actuator. Let the set of tiers be 𝐾. The set 𝐾 contains tiers that are based on the distance

from the data source or consumer. All modules that are two connection away from the sensor

or actuator belong in the second tier and so on. The tiers in 𝐾𝑠 will be denoted with an index,

for example, 𝐾2
𝑠 is the second tier containing all modules that are two connections away

from the sensor. The modules that are one connection away from the sensor or actuator will

belong in 𝐾1
𝑠 and 𝐾1

𝑎.

All of the hosts in the fog network will be added to set 𝐻. The set will be sorted by layers

so that the edge devices will be first and the cloud hosts last.

First all modules in 𝐾1
𝑠 and 𝐾1

𝑎 are placed on the edge devices. If all of the edge devices are

full then the next layer devices will be used. This is a bin packing problem with a constraint

that the buckets have to be filled in order. This ensures that the modules, which communi-

cate with sensors or actuators, are placed on a device that is directly connected to them.

After all first tier modules are placed as low as possible the next tier modules will be placed

in the network starting from the lowest until all of the modules are placed. For each list of

modules in current tier 𝐾𝑖 a combination of all possible ways to place them in the network

is collected. A module can be placed on a host if it has enough resources available. This will

result in a set of module to host mappings. It would be better to find all possible combina-

tions to place all modules in 𝐾𝑖but it would take too long as the number of modules to place

grows. The set of combinations will be sorted by ascending unique hosts count. This will

reduce the amount of steps necessary later in the algorithm.

The best of these combinations will be the actual placement used. The combinations will be

compared based on how tightly they packs the modules and how much will they increase

the total latency. A combination 𝐾𝑗 is more tightly packed if 𝐾𝑗 has less elements than 𝐾𝑖.

That means it has fewer unique hosts. This results in more hosts that can be turned off if this

placement is used. Since the set of combinations is sorted the algorithms can stop if it has

found a valid placement and the next one is more tightly packed. By definition of 𝐾𝑖, every

19

module in that set has to be connected to at least one module from 𝐾𝑖−1. For each module

in 𝐾𝑖−1 minimum latency to a connected module in 𝐾𝑖 is calculated. The current combination

is discarded if the minimum latency is over a set limit for any module in 𝐾𝑖−1. The total

latency for the current placement is the sum of all these minimum latencies. This leads to

lower average 𝑇𝑛. The best placement will be the one that packs the modules tightly while

keeping the network latency low. This will free up hosts to put into sleep mode and increase

the idle time of utilized hosts by reducing the network latency.

The proposed placement algorithm for fog computing will reduce energy consumption by

utilising the edge and gateway nodes. Offloading work to these devices will free up hosts in

the cloud while also reducing latency. The algorithms places modules based on the utilisa-

tion and location of the hosts. The lower tier modules are placed closer to the edge and other

modules are placed in order of distance from the edge.

4.3 Simulations

For fog computing simulations iFogSim [21] was used. It is an extension of CloudSim [22]

written in Java by other researchers to enable easier fog modelling. The software supports

creation of a network of different computing devices. These can be edge devices, gateways

or the cloud. It also enables to simulate workloads that have discrete modules with data

dependencies between them. In order to implement the proposed scheduling algorithm for

energy efficient fog computing a new module placement class was written that controls the

placement of the modules of the simulated application. The physical topology used in these

simulations is similar to the theoretical model described in chapter 3. It is made up of three

homogenous layers.

Two applications were simulated to test the algorithm. The first scenario is a smart camera

system. The model of the application is shown in figure 2, it consists of motion detection,

object detection and motion tracking modules. The input to the system is a camera and the

output are actuators that move it to enable object tracking. The system also has a UI module.

The camera system is connected so that there is no cycles in the application graph. This

simulation scenario is one of the examples provided in iFogSim.

20

Figure 2. Camera system application model

The second application is a health monitoring system. The application is described in a book

about fog computing [30]. The application has four modules: client module, data filtering

module, data processing module and event handler module. The model is shown in figure

3. The application graph forms a cycle which makes it different from the camera system

scenario. This scenario was implemented in iFogSim since it is not provided in the source

code. The simulation was written based on the guidelines in the book where it was taken

from.

Figure 3. Health monitoring system model

Both of the simulations were run using the proposed algorithm and a scheduling that places

every module in the cloud. The simulations were tested with different number of application

modules and different number of devices in the fog network. The total energy consumption

21

as well as the individual energy consumption of each device was gathered. The results of

the simulations are described in chapter 5.

The algorithms for cloud and fog computing proposed here aim to lower the energy con-

sumption by maximising idle time. The scheduling algorithm for the cloud tries to keep a

maximum number of hosts idle. The proposed fog placement algorithm tries to place mod-

ules so that the number of utilised devices is low while also keeping the latency between the

modules at minimum. The algorithm is tested in two scenarios using iFogSim.

22

5. Results and analysis

This chapter describes each scenario that was tested and displays its results. Scenarios of

the same application are compared and analysed. Conclusions about the proposed algo-

rithms are presented at the end based on all the scenarios.

5.1 Results of the simulations

Both the camera system and the health monitoring system simulations were done with two

scenarios. The differences were in the number of devices and number of modules. The de-

tails of all scenarios can be seen in table1.

Table 1. Application and topology details

Applica-

tion

Sce-

nario

Gateway

devices

Edge

devices

Motion de-

tector mod-

ules

Object de-

tector mod-

ules

Object

tracker mod-

ules

UI modules

C
am

er
a

sy
st

em

1 2 8 8 2 1 1

2 4 12 12 3 3 1

Applica-

tion

Sce-

nario

Gateway

devices

Edge

devices

Client mod-

ules

Filtering

modules

Processing

modules

Event han-

dler mod-

ules

H
ea

lt
h

 m
o

n
it

o
ri

n
g

sy
st

em

3 4 4 4 4 4 4

4 4 11 11 3 3 3

The resulted energy consumption for each layer and for the whole system are shown in

figure 4 and figure 5. All scenarios show that the total energy consumption is lower with the

proposed algorithm. The edge layer energy consumption is higher in scenarios 2 and 4 be-

cause there were more edge devices in use. The number of gateway devices was equal in

both health monitoring system simulations, but different in the camera system simulations.

This is also visible on the chart.

23

Both the edge and gateway layer had higher energy consumption in all scenarios when using

the proposed algorithm. This is expected since when all the modules are deployed in the

cloud, the other devices will not be utilized. The cloud layer however shows a decrease in

energy consumption when using the proposed algorithm.

The average latency between different modules is shown in table 2. The latency was meas-

ured for three connections: sensor to module, module to module, module to actuator. The

measurements show that the proposed algorithm reduces latency for the devices that connect

to sensors and actuators. At the same time the latency between modules is higher than it is

for cloud only placement. The scenarios with the same application and algorithm have sim-

ilar latencies. The latency between devices is defined in iFogSim.

Table 2. Latency in simulation scenarios

Application Scenario Algorithm
sensor to mod-

ule (ms)

module to

module (ms)

module to ac-

tuator (ms)

C
am

er
a

sy
st

em
 1

cloud only 5.24 0.31 5.12

proposed 1.00 2.78 3.11

2

cloud only 5.29 0.34 5.16

proposed 1.00 2.77 3.11

H
ea

lt
h

 m
o

n
it

o
ri

n
g

 s
y

st
em

3

cloud only 10.04 0.84 5.14

proposed 6.00 5.00 1.10

4

cloud only 10.06 0.99 5.20

proposed 6.00 5.37 1.09

24

Figure 4. Energy consumption of camera system simulations

Figure 5. Energy consumption of health monitoring system simulations

5.2 Analysis of the results

The proposed algorithm tries to place modules as low as possible and group the up, so it

leaves more free hosts in the cloud. While the power consumption in the cloud went down,

the power consumption of gateway and edge devices went up. The power profile of these

devices were taken from the example simulations in iFogSim. The profiles of cloud and

6
5

9
5

2
0

0

6
6

2
3

8
9

5

9
8

9
2

8
0

0

9
9

3
5

8
4

3

1
6

6
8

6
6

5

1
7

2
9

9
1

0

3
3

3
7

3
3

1

3
4

2
2

9
4

2

1
3

8
8

6
7

5
7

1
3

3
2

0
0

0
0

1
4

1
4

3
4

8
7

1
3

4
8

8
2

3
1

2
2

1
5

0
6

2
3

2
1

6
7

3
8

0
5 2
7

3
7

3
6

1
9

2
6

8
4

7
0

1
6

0

5 000 000

10 000 000

15 000 000

20 000 000

25 000 000

30 000 000

Scenario 1 cloud Scenario 1 proposed Scenario 2 cloud Scenario 2 proposed

Energy consumption of
camera system scenarios

Edge layer Gateway layer Cloud layer Total

3
2

9
7

6
0

0

3
5

0
1

1
0

5 9
0

6
8

4
0

0

9
1

5
4

3
9

7

3
3

3
7

3
3

1

3
4

2
6

9
1

4

3
3

3
7

3
3

1

3
4

5
9

4
3

5

1
3

7
7

3
8

9
2

1
3

3
2

0
0

0
0

1
4

2
1

6
9

4
3

1
3

3
2

0
0

0
02

0
4

0
8

8
2

4

2
0

2
4

8
0

2
0 2

6
6

2
2

6
7

5

2
5

9
3

3
8

3
3

0

5 000 000

10 000 000

15 000 000

20 000 000

25 000 000

30 000 000

Scenario 3 cloud Scenario 3 proposed Scenario 4 cloud Scenario 4 proposed

Energy consumption of health
monitoring system scenarios

Edge layer Gateway layer Cloud layer Total

25

gateway devices are similar, idle power usage is about 20W lower than power consumption

under load. In the edge devices however, the difference between idle and busy power usage

is much smaller, only 5W. This means that offloading computation from the cloud to the

edge devices in this case is energy efficient, since the power consumption increase is quite

low. This together with the fact, that the maximum energy consumption of the edge devices

is lower than the one of the cloud devices, explains why the total energy consumption is

lower using the proposed algorithm. It should be noted that placing modules in gateway

devices rather than the cloud results in little to no gain in power efficiency, because of the

similar power profiles.

The difference in total energy usage between cloud only placement and proposed placement

is different in the scenarios. The second and third scenarios show a difference of 526 603W

and 688 842W while the first and second scenarios show 476 818W and 160 804W. The

difference is larger in the scenarios which had more devices and more modules. The in-

creased difference in energy efficiency gain is again caused by the fact that moving modules

to edge devices causes energy efficiency to rise. The second scenario has more edge devices,

which means that there is more potential energy savings to gain. Based on these results there

is reason to believe that this algorithm will save more energy if the power consumption

while utilized is more similar to the power consumption while idle in lower level devices.

In addition, if the cloud hosts could be shut down or put into low energy sleep mode, then

there should be a bigger reduction in energy consumption. These simulations were not able

to simulate such behaviour.

The cloud only placement results in practically no latency between the modules. It does

however take a long time for the data to travel between modules and sensors or actuators.

The proposed algorithm reduces this latency by placing modules closer to the data source

or consumer. This also means that the ideal latency between modules suffers because some

of the modules are no longer in the cloud. The total latency in average is still better for the

proposed algorithm. This result supports the claim that fog computing will reduce latency

compared to cloud computing.

To test the proposed algorithm two applications were created. The applications simulated

on two different topologies. The energy consumption of different layers and the delay be-

tween modules were recorded and presented. The results show a decrease in total energy

26

consumption when using the proposed algorithm. The total latency was also improved by

using the fog architecture instead of the cloud. This is consistent with existing research.

27

6. Conclusions and future research directions

This thesis described energy efficient fog computing. It gave a brief overview of the state-

of-the-art in fog computing. A short summary of different scheduling algorithms used in

cloud and fog computing was written. An algorithm was proposed and tested with simula-

tions. Finally the results were analysed and conclusions drawn.

Firstly a model of fog computing network was created. It consisted of three layers of de-

vices: edge, gateway and cloud. In addition to that, the modelling also described how energy

savings can be archived by maximising the idle time of the devices in the network. The

thesis also shows a way to model applications as modules that communicate with each other.

The thesis proposed an algorithm that tries to maximize the number of idle hosts by grouping

the modules on as few devices as possible. The algorithm was implemented in iFogSim

software. Two applications were simulated with different number of devices and modules.

The simulations were also done using iFogSim. Both the proposed algorithm and cloud only

algorithm were tested on each scenario. The results were compared and analysed.

The results of the thesis show that the use of fog computing architecture can benefit some

applications in terms of energy efficiency. The comparison with cloud only placement

shows that, while the energy consumption of edge and fog devices went up, the total energy

consumption of the system went down because of more idle hosts in the cloud. In addition

to that, the thesis found that using the proposed algorithm resulted in lower latency. That is

in line with other works on fog computing.

To improve on these results the algorithm should be optimized to have better time complex-

ity. Then it could be tested out on larger systems. It should also be compared to other algo-

rithms proposed for fog computing. The algorithm should be tested on more simulation sce-

narios, where the devices have different energy consumption rates when idle and under load.

28

7. References

[1] IDG Enterprise “2016 IDG Cloud Computing Survey”, 2016

https://www.idg.com/tools-for-marketers/2016-idg-enterprise-cloud-computing-

survey/ (05.05.2019)

[2] CISCO. “Fog Computing and the Internet of Things: Extend the Cloud to Where

the Things Are.” White paper, CISCO, 2015.

[3] Dastjerdi, Amir Vahid, and Rajkumar Buyya. "Fog computing: Helping the Inter-

net of Things realize its potential." Computer49.8 (2016): 112-116.

[4] Sarkar, Subhadeep, Subarna Chatterjee, and Sudip Misra. "Assessment of the

Suitability of Fog Computing in the Context of Internet of Things." IEEE Trans-

actions on Cloud Computing 6.1 (2018): 46-59.

[5] Gelenbe, Erol, and Yves Caseau. "The impact of information technology on en-

ergy consumption and carbon emissions." Ubiquity 2015.June (2015): 1.

[6] Kaplan, James M., William Forrest, and Noah Kindler. Revolutionizing data cen-

ter energy efficiency. Technical report, McKinsey & Company, 2008.

[7] Barroso, Luiz André, and Urs Hölzle. "The case for energy-proportional compu-

ting." (2007).

[8] Fan, Xiaobo, Wolf-Dietrich Weber, and Luiz Andre Barroso. "Power provision-

ing for a warehouse-sized computer." ACM SIGARCH computer architecture

news. Vol. 35. No. 2. ACM, 2007.

[9] Buyya, Rajkumar, et al. "A manifesto for future generation cloud computing: re-

search directions for the next decade." ACM computing surveys (CSUR) 51.5

(2018): 105.

[10] CISCO “Cisco Delivers Vision of Fog Computing to Accelerate Value from Bil-

lions of Connected Devices”, 2014 https://newsroom.cisco.com/press-release-

content?type=webcontent&articleId=1334100 (09.05.2019)

[11] Mell, Peter, and Tim Grance. "The NIST definition of cloud computing." (2011).

[12] Villars, Richard L., Carl W. Olofson, and Matthew Eastwood. "Big data: What it

is and why you should care." White Paper, IDC 14 (2011): 1-14.

[13] Atzori, Luigi, Antonio Iera, and Giacomo Morabito. "The internet of things: A

survey." Computer networks 54.15 (2010): 2787-2805.

[14] https://www.openfogconsortium.org/

[15] Mouradian, Carla, et al. "A comprehensive survey on fog computing: State-of-

the-art and research challenges." IEEE Communications Surveys & Tutorials 20.1

(2017): 416-464.

[16] Yi, Shanhe, Cheng Li, and Qun Li. "A survey of fog computing: concepts, appli-

cations and issues." Proceedings of the 2015 workshop on mobile big data. ACM,

2015.

[17] Bonomi, Flavio, et al. "Fog computing and its role in the internet of things." Pro-

ceedings of the first edition of the MCC workshop on Mobile cloud computing.

ACM, 2012.

[18] Stojmenovic, Ivan, and Sheng Wen. "The fog computing paradigm: Scenarios and

security issues." 2014 Federated Conference on Computer Science and Infor-

mation Systems. IEEE, 2014.

[19] Singh, Sukhpal, and Inderveer Chana. "A survey on resource scheduling in cloud

computing: Issues and challenges." Journal of grid computing 14.2 (2016): 217-

264.

29

[20] Sinha, Utkal, and Mayank Shekhar. "Comparison of various cloud simulation

tools available in cloud computing." International Journal of Advanced Research

in Computer and Communication Engineering 4.3 (2015): 171-176.

[21] Gupta, Harshit, et al. "iFogSim: A toolkit for modeling and simulation of resource

management techniques in the Internet of Things, Edge and Fog computing envi-

ronments." Software: Practice and Experience 47.9 (2017): 1275-1296.

[22] Buyya, Rajkumar, Rajiv Ranjan, and Rodrigo N. Calheiros. "Modeling and simu-

lation of scalable Cloud computing environments and the CloudSim toolkit: Chal-

lenges and opportunities." 2009 international conference on high performance

computing & simulation. IEEE, 2009.

[23] Ghribi, Chaima, Makhlouf Hadji, and Djamal Zeghlache. "Energy efficient vm

scheduling for cloud data centers: Exact allocation and migration algo-

rithms." 2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and

Grid Computing. IEEE, 2013.

[24] Beloglazov, Anton, and Rajkumar Buyya. "Energy efficient resource management

in virtualized cloud data centers." Proceedings of the 2010 10th IEEE/ACM inter-

national conference on cluster, cloud and grid computing. IEEE Computer Soci-

ety, 2010.

[25] Li, Bo, et al. "Enacloud: An energy-saving application live placement approach

for cloud computing environments." 2009 IEEE International Conference on

Cloud Computing. IEEE, 2009.

[26] Mahmud, Redowan, et al. "Quality of Experience (QoE)-aware placement of ap-

plications in Fog computing environments." Journal of Parallel and Distributed

Computing (2018).

[27] Wu, Hsiang-Yi, and Che-Rung Lee. "Energy efficient scheduling for heterogene-

ous fog computing architectures." 2018 IEEE 42nd Annual Computer Software

and Applications Conference (COMPSAC). Vol. 1. IEEE, 2018.

[28] Deng, Ruilong, et al. "Towards power consumption-delay tradeoff by workload

allocation in cloud-fog computing." 2015 IEEE International Conference on

Communications (ICC). IEEE, 2015.

[29] Sarkar, Subhadeep, and Sudip Misra. "Theoretical modelling of fog computing: A

green computing paradigm to support IoT applications." Iet Networks 5.2 (2016):

23-29.

[30] Buyya, Rajkumar, and Satish Narayana Srirama, eds. Fog and edge computing:

principles and paradigms. Wiley, 2019.

30

Appendix

I. License

Non-exclusive licence to reproduce thesis and make thesis public

I, Herman Meier,

(author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

reproduce, for the purpose of preservation, including for adding to the DSpace digital

archives until the expiry of the term of copyright,

Simulating energy efficient fog computing,

(title of thesis)

supervised by Satish Narayana Srirama,

(supervisor’s name)

2. I grant the University of Tartu a permit to make the work specified in p. 1 available to

the public via the web environment of the University of Tartu, including via the DSpace

digital archives, under the Creative Commons licence CC BY NC ND 3.0, which allows,

by giving appropriate credit to the author, to reproduce, distribute the work and

communicate it to the public, and prohibits the creation of derivative works and any

commercial use of the work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’

intellectual property rights or rights arising from the personal data protection legislation.

Herman Meier

09.05.2019

