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Simulating energy efficient fog computing 

Abstract: 

With increasing demand on computing resources, there is a need to reduce energy consump-

tion in order to keep computer systems sustainable. Current cloud and fog computing archi-

tectures need to be improved by designing energy efficient scheduling and placement algo-

rithms. This thesis describes power efficiency in fog computing and cloud computing. It 

shows a way to minimize power usage by designing scheduling and placement algorithms 

that maximize the number of idle hosts. Algorithms are designed to archive that goal in 

cloud and fog systems. The algorithms are tested in different simulation scenarios. The re-

sults are compared and analysed. The thesis also contains a brief overview of similar re-

search that has been done on this topic. 
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Energiasäästliku uduandmetöötluse simuleerimine 

Lühikokkuvõte: 

Nõudlus arvuti ressursside järele üha suureneb ning seega on vajadus vähendada energia 

kulu, et tagada arvutisüsteemide jätkusuutlikus. Praegused pilve- ja uduandmetöötlus arhi-

tektuuride edasiarendamiseks on vaja ajajaotus- ja asetusalgoritme, mis arvestavad energia 

kuluga. Selles töös kirjeldatakse energiasäästlikust pilve- ja uduandmetöötluses. Töös 

luuakse ajajaotus- ja asetusalgoritmid, mis maksimeerivad vabade seadmete arvu ning vä-

hendavad seeläbi süsteemi energiakulu. Algoritme katsetatakse erinevates simulatsioonides. 

Simulatsioonide tulemusi analüüsitakse ja võrreldakse ning tehakse järeldused algoritmide 

kasulikkusest. Töö sisaldab ka lühikest ülevaadet sarnastest uurimustest. 

Võtmesõnad: 

Pilveandmetöötlus, algoritmid, hajustöötlus 

CERCS: P175 Informaatika, süsteemiteooria  
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1. Introduction 

Cloud computing has proven to be a widely useful approach to utilize large data centres over 

the internet. It is scalable and can be beneficial in different applications. Cloud computing 

utilization is expected to grow as organizations move even more of their services to the 

cloud, as was concluded in a survey [1] by IDG. One of the downsides of using the cloud is 

latency. Since the cloud is accessible using the internet, there is a delay between generating 

the data and processing it. This is especially critical in real time applications. The latency 

problem is even worse when the network is congested due to a large amount data being 

transferred. 

Fog computing is an emerging companion to cloud computing which promises to eliminate 

some of the shortcomings of the cloud. It is an architecture, designed by CISCO, which 

connects the cloud with edge devices [2]. Edge devices are the computing devices that are 

closest to the source or consumer of data. Fog computing thus reduces network latency and 

makes real time solutions more viable. The main use cases and the reason fog computing 

was proposed is the rise of Internet of Thing (IoT). IoT applications can have many devices 

constantly producing data, which is not what cloud computing was designed for [3]. Fog 

computing has been shown to be better at handling a large number of connected devices that 

require real time services [4]. 

However, there are problems with fog computing that have to be researched more. One of 

the most critical of these is sustainability. Information and communications technologies 

(ICT) are currently consuming close to 10% of global electricity and growing number of 

internet-connected devices might increase it further according to an article [5] on energy 

consumption in ICT. Current cloud data centres are consuming a major amount of energy 

due to a large demand for high performance cloud networks. According to a 2008 report [6] 

an average cloud data centres consumes as much power as 25000 households. The high 

power cost of data centres is caused by many factors and one of them is idle power usage. 

The idle power consumption of modern server hardware is a significant percentage of the 

maximum power consumption under load [7, 8]. So one way to make data centres more 

energy efficient is to turn off idle hosts or put them to sleep mode. This can be archived by 

offloading some of the computation from the cloud, which is what fog computing is de-

signed to do. 
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A survey [9] published by cloud computing researchers calls sustainability “the greatest 

challenge of our century”. Therefore, with the emergence of fog computing there is a need 

for more research into energy efficient algorithms to make fog computing networks more 

sustainable. 

1.1 Purpose 

The purpose of this thesis is to create an algorithm that helps reduce energy consumption in 

fog computing, while maintaining its advantages over the cloud. The algorithms proposed 

in this thesis aim to free up more hosts in order to save energy. These scheduling algorithms 

try to maximise the number of idle hosts, so that the energy savings from turning off idle 

hosts is maximised. The proposed algorithms will be tested with simulations and compared 

to cloud-only solutions. 

1.2 Outline 

The thesis begins with a brief background on cloud and fog computing as well as IoT. The 

second chapter also discusses related works. A mathematical model of energy consumption 

and fog computing is presented in the third chapter. The fourth chapter describes the pro-

posed algorithms and simulations. The final chapter contains an analysis of the results. 
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2. State of the Art 

2.1 Background 

There has been an increase in the number of internet connected devices and CISCO esti-

mates that this number will reach 50 billion by 2020 [10]. These smart devices also known 

as edge devices are collectively called IoT. IoT is an idea that different devices have em-

bedded computers in them and they communicate over the internet. This can enable more 

automation and improve quality of life. The devices can be sensors or actuator and so can 

both produce and consume data. In order to create applications that utilise many devices 

over the internet there was a need for a central platform that facilitates processing, storage 

and communication for these applications. The most common solution is to use the cloud. 

Cloud computing is a technology that helps to provide computing services over the internet. 

National Institute of Standards and Technology defines the cloud as “a pool of configurable 

computing resources” [11]. Cloud computing is currently widely used and is critically im-

portant for many businesses. A report [1] released in 2016 by IDG found that 70% of organ-

isations have at least one application deployed in the cloud and 56% are looking for more 

ways to use cloud hosting. The cloud has several characteristics that make it so usable. For 

example, it offers on demand services, scalability, lower infrastructure costs and different 

service models. Although cloud computing has proven to be useful for many applications, 

it is not a solution to every problem. One issue related to cloud computing is data manage-

ment. The global data creation rate is growing, IDG reported [12] in 2011 that there was 

over 1ZB of data generated mostly by devices at the edge of the network and this number is 

growing as more devices are connected to the internet. 

The amount of data created by IoT puts more demand on data processing and communica-

tion. Cloud computing can offer the processing power needed, but it can cause network 

related issues, especially when real time solutions are needed. A survey [13] on IoT states 

that cloud computing is not the best choice for IoT applications and claims that fog compu-

ting can be the optimal choice for IoT. The survey brings out that fog computing could 

reduce network latency and traffic, provide better scalability and mobility as well as im-

proving the performance of real time applications. 

Fog computing is a computer network architecture created by CISCO in 2012 [2]. It unites 

the edge devices and the network with the cloud and creates a broad network of devices. 

The main idea behind fog computing is to address the shortcomings of the cloud namely 
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latency and response time. These issues are caused by the long distance between the data 

source or consumer and the cloud, which leads to more time spent on communicating the 

data. The fog architecture solves this by utilizing devices near the data source or consumer 

called edge devices. In addition to using edge devices, the fog can also take advantage of 

devices between the edge and the cloud. These can be gateways, switches, access points and 

base stations. In the fog architecture devices like these are referred to as fog nodes. An 

example of a three layer fog network can be seen on figure 1. Some of the computation can 

be done on fog nodes so that there is less need to send data to the cloud. Using all of the 

devices in the network makes fog architecture more flexible and dense, which in turn in-

creases the quality of service (QoS) and accessibility of the system. 

 

Figure 1. Fog computing network example 

Fog computing architecture is advocated and standardised by OpenFog Consortium [14] 

founded in 2015. They state that their goal is “to create an open reference architecture for 

fog computing, build operational models and testbeds, define and advance technology, ed-

ucate the market and promote business development through a thriving OpenFog ecosys-

tem”. The consortium currently has 57 members including industry leaders such as Intel, 

ARM, CISCO, Microsoft and Dell. 

The use cases of fog computing are applications where real time responses are important. 

Specific scenarios where fog computing will improve the performance of the system have 

been suggested by different researches [15, 16, 17, 18]. These include big data analytics, 

smart grids, content delivery networks, emergency response and autonomous vehicles. Most 

of the use cases for fog computing are IoT applications. In fact fog computing was originally 
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proposed as a solution to new set of problems arising from IoT applications [17]. The 

amount of data created by sensors connected to the internet is overwhelming for cloud plat-

forms when real time response is needed. Network congestion would increase latency and 

response time too much. Utilizing devices near the sensors producing the data is the solution 

that fog computing provides for IoT applications. Offloading some of the computation to 

edge or fog devices reduces the need to send data to the cloud for processing and thus re-

ducing the network latency and response time. However, there is a limit on how much can 

be done in the network edge since the devices there are much less powerful than servers in 

the cloud are. Having too much load on these devices could lead to processing latency and 

resource shortage. Therefore, there is a need for new scheduling, placement and migration 

algorithms in order to effectively utilise all the different layers of fog computing architecture  

A survey [15] published in 2018 looks into the architecture and algorithms that make up the 

current fog systems. They look at both application agnostic and application specific archi-

tectures and evaluate them based on heterogeneity, QoS management, scalability, mobility, 

federation and interoperability. They also analyse different algorithms used in fog systems 

for scheduling resources. They conclude that fog systems will reduce latency compared to 

cloud systems if the application is deployed correctly and appropriate scheduling algorithms 

are used. The survey shows that energy consumption is generally better in fog systems, 

unless the network energy consumption is very large. These results show the importance of 

scheduling and placement algorithms in the fog. New scheduling algorithms are needed in 

order to reduce energy consumption while also maintaining the advantage of low latency in 

the fog. 

In both cloud and fog computing architecture the division of resources is done by a sched-

uler. Resources can be CPU time, memory, storage or network bandwidth. The algorithm 

that decides how the resources will be divided is called a scheduling algorithm. Different 

scheduling algorithms are good for different goals. The choice of an algorithm thus depends 

on the requirements imposed on the system and they can change in time. 

The performance of cloud and fog computing networks depend heavily on the scheduling 

algorithm used. The parameters of the network can be optimised by using different sched-

uling algorithms. A 2016 survey [19] of papers about scheduling algorithms in the cloud 

mapped out 13 different types of resource scheduling algorithms that have been researched 
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in the analysed 110 papers. The paper found that the most researched algorithms are based 

on energy consumption and QoS. 

There are many different software tools for simulating cloud computing. A survey [20] com-

pares them and concludes that there are differences and a choice should be made based on 

the user requirements. There are fewer options for fog computing simulations. One of the 

tools is iFogSim [21] wich is an extensions of cloud computing simulation tool CloudSim 

[22]. Since it is an extension to CloudSim it is also written in java. It allows the creation of 

custom applications, topologies and algorithms. There are also examples provided for all of 

these. 

2.2 Related works 

The authors of article [23] created an algorithm to efficiently schedule and migrate virtual 

machines (VMs) in a cloud data centre. The solution they proposed uses a model that has 

homogenous hosts and three tiers of VMs: small, medium and large. Their algorithm con-

sists of two modules. The first one is a scheduler that divides the requested VMs between 

hosts in a way that maximizes the number of idle hosts. The other module is responsible for 

migrating VMs if some host can be made idle by the migration. They also allow to choose 

the maximum power draw of the hosts and guarantee that all of the VMs that the client 

request will be hosted. 

The authors of [24] show that the dynamic migration of VM can lead to energy savings in a 

cloud data centre. They created an algorithm that selects VMs to migrate and then finds the 

hosts that can receive the migrating VMs. The selection of VMs is based on the resource 

utilization of the host. The other part of the algorithm is a heuristic solution to the bin-

packing problem. They compare their algorithm with other migration policies and found 

that the algorithm they used was more energy efficient than the others. 

The article [25] describes an energy-aware heuristic algorithm that dynamically migrates 

VMs between hosts. The algorithm tries to maximize hosts utilization so that more hosts 

can be turned off to save energy. The proposed solution is event based and reallocates VMs 

each time a new workload arrives or ends. Both this and the work by Anton Beloglazov and 

Rajkumar Buyya [24] show that migration of VMs is an effective measure to reduce energy 

consumption by a significant percentage. 

In the work [26] Mahmud et al create a quality of experience aware placement algorithm for 

fog computing applications. They create a fog network that has four layers. The first layer 
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are IoT devices that only generate data. The second layer are gateway devices that connect 

the IoT devices. The next layer devices are fog nodes that perform computation and the last 

layer is the cloud. This is similar to the model created in this thesis with the exception of the 

middle two layer being treated as one in this model. 

In article [27] an energy efficient scheduling algorithm for fog architecture is proposed that 

tries to approximate an optimal solution based on their model. The model they use consists 

of two types of hosts, one with faster hardware as in a cloud host and one with less compu-

tational power as in an edge host. They do not allow migration between hosts. The algorithm 

optimizes the total execution time and the number of working fast hosts. It then chooses 

which ever gave the most efficient result. Their model of energy consumption was an inspi-

ration for the models described in this thesis. 

In their paper [28], Deng et al discuss power consumption and delay trade off in fog com-

puting. They create a model with a fog and a cloud layer, which are connected over a WAN. 

It is different from the fog computing model that is used in this thesis, where the model 

contains three layers instead of two. The article models the flow of requests from the users 

through the system and defines the power consumption and delay of the whole system. It 

then describes how to optimize the energy consumption and delay under the constraints 

proposed in the model. The optimization is done in three steps. First they optimize power 

consumption and delay in fog computing then the energy consumption in cloud computing 

and finally the WAN delay. After finding optimal parameters for these sub-problems, they 

analyse the effect of them on the overall system. The results they get show that fog compu-

ting helps to reduce latency which is the same conclusion that this thesis arrives to. However 

opposite to the results in this thesis, their scenarios show an increase in power consumption 

when offloading work to the fog layer. 

Fog computing architecture is modelled in article [29]. The work describes the layers of fog 

computing architecture and how they interact with each other. The layered model of the fog 

computing architecture is very similar to the one used in this thesis as it was used as an 

example. Both models have three tiers of devices: cloud, gateway and edge. The energy 

consumption of a traditional cloud is compared with the proposed fog architecture. The pa-

pers show that using a fog architecture will decrease energy used in transmitting data over 

the network when the number of edge devices is sufficiently large. They also show that the 

energy used for processing in the fog architecture is significantly smaller than in the cloud 



11 

 

due to the fact that most of the processing is done at below the cloud layer. These results 

align with the results gathered from the simulations done in this thesis. 

In conclusion, cloud computing has its weaknesses that are a problem when hosting IoT 

applications. Fog computing was proposed to ensure better performance when dealing with 

those applications. Energy efficiency in fog computing has been identified as an issue and 

there is an interest for research aimed at it. Scheduling and placement algorithms that prior-

itise energy consumption are therefore needed in order to make fog computing more sus-

tainable. 

There have been some studies on energy efficient scheduling and placement in fog compu-

ting. These works focus on modelling the fog architecture which is done differently by dif-

ferent authors. The results show that energy and latency savings can be archived by using 

fog computing with appropriate scheduling and placement algorithms. 
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3. Modelling 

First, a mathematical model is created to describe energy consumption. It will be expressed 

as a function that depends on time and power usage. Secondly the network of the fog com-

puting architecture will be described and modelled. 

3.1 Energy consumption 

The total energy consumption of a data centre can be expressed as a sum of the energy 

consumption of all of the hosts in the data centre. 

𝐸 = ∑ 𝐸ℎ

∀ℎ∈𝐻

 

Where E is the total energy consumption, H is a set of all hosts, and 𝐸ℎ the energy consump-

tion of host h. 

The energy consumption of a single host is the power usage of the host times time and can 

be represented as 

𝐸ℎ = 𝐸𝑖 + 𝐸𝑢 = 𝑃𝑖 ∗ 𝑇𝑖 + 𝑃𝑢 ∗ 𝑇𝑢 

Where 𝐸𝑖is the energy consumption while idle, 𝐸𝑢is the energy consumption while utilized, 

𝑃𝑖 the power consumption while idle, 𝑇𝑖 is the total idle time, 𝑃𝑢 is the power consumption 

while utilized and 𝑇𝑢 is the total time utilized. The whole period that the host is active is  

𝑇 = 𝑇𝑢 + 𝑇𝑖  

The power usage of a host is dependent on the utilization of its resources. The power con-

sumption is thus a function of utilization and can be expressed as 

𝑃(𝑢) 

Where P(u) is the power consumption at utilization u. The power consumption function can 

be different for hosts. A higher resource utilization will result in a higher power consump-

tion. The power consumption is lowest when the host is idle and this value is constant for a 

host. This means that 

∀𝑢1, 𝑢2(𝑢1 > 𝑢2 → 𝑃(𝑢1) > 𝑃(𝑢2)) 

𝑃(𝑢) > 𝑃𝑖  ∀𝑢: 𝑢 > 휀 

where 휀 is the utilization while idle. 
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Utilization is a percent value that is always greater than 0, because even when the host is 

idle there is still some resource utilization . The utilization of a host changes over the course 

of a timeframe so the utilization is a function of time and can be expressed as 

𝑈(𝑡) 

휀 < 𝑢 < 1 ∀𝑢 

Where U(t) is the utilization at time t. An additional constraint to utilization is added as an 

upper bound to utilization. This value can be set by the data centre administrator and is 

expressed here as α It can be useful to better ensure SLA requirements and to avoid very 

high utilization of hosts. So now the above statement becomes 

휀 < 𝑢 < 𝛼 ∀𝑢, 𝛼 ∈ (0, 1)  

The energy consumption of a host over its lifetime can then be modelled as 

𝐸ℎ = ∫ 𝑃(𝑈(𝑡))𝑑𝑡

𝑇

 

The power consumption while idle is a constant and can be viewed separately. Since the 

power consumption while utilized is always greater that the power consumption while idle, 

the above equation becomes 

𝐸ℎ = ∫ 𝑃(𝑈(𝑡))𝑑𝑡

𝑇𝑢

+ 𝑃𝑖 ∗ 𝑇𝑖   

In order to minimize the energy consumption of a network the idle time 𝑇𝑖 can be maxim-

ized. This will mean that the host will stay in its lowest power consumption state for the 

longest time possible. 

3.2 Fog network 

The fog network described in this thesis will consist of three layers: edge layer, fog layer 

and cloud layer. The edge devices are grouped into sub networks that are connected with a 

single fog layer device. All of the fog layer devices will be connected to the cloud layer. 

Edge layer devices represent devices that are the least powerful and energy consuming of 

all the devices in the network. These are the devices that are connected to or contain the 

sensors that are the source of the data that the network will have to process. The actuators 

that consume data are also connected or a part of the edge devices. The fog layer represents 
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intermediary network devices that route data between edge devices and the cloud layer. In 

this fog architecture, the fog devices can also do some processing. The cloud layer is a ho-

mogenous network of powerful hosts. It has considerably more computation and storage 

capabilities than the other layers, but also consumes the most energy. 

The network has latency between different hosts. An assumption that the network latency 

between edge devices, the fog and the cloud are constant in time. Each fog device can have 

a different latency to the cloud and each edge device can have a different latency to its fog 

device. 

The set of fog layer devices is denoted by 𝐹. Each device from that set has a set of edge 

layer devices connected to it. For a device 𝑓 from the set 𝐹 the connected edge devices are 

represented by 𝐷𝑓. 

The latency from a fog device 𝑓 to the cloud is denoted as 𝛾𝑓. The latency from an edge 

device 𝑑 to its fog device 𝑓 is denoted as 𝛿𝑑
𝑓
. So, the latency from an edge device to the 

cloud is the sum of these two values and can be expressed as 

𝜃𝑑 =  𝛿𝑑
𝑓

+ 𝛾𝑓 

The whole network is a undirected tree where the devices are the nodes and the edges are 

the connections between them. Each edge has a weight that is the latency between the con-

nected nodes. The graph is denoted as 𝐺. 

3.3 Application 

An application is a set of modules that send data to each other. Modules that only create 

data are sensors and modules that only consume data are actuators. Other modules are called 

intermediary modules. The data that modules exchange can be thought of as a job, there is 

some computation that has to be performed with the data to get a result. Not all modules 

change data and the direction of the data flow can be unidirectional or bidirectional. 

Based on this the application can be modelled as a directed weighted graph. The nodes of 

the graph are the modules. The edge direction shows the data flow and the weight shows the 

amount of data sent. The applications described here will have one sensor module and one 

actuator module. Let 𝑅 represent the application graph, 𝑆 the sensor module and 𝐴 the ac-

tuator module. Intermediary nodes form a subgraph 𝑅′ that is the graph 𝑅 without nodes 𝑆 

and 𝐴. 
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3.4 Idle time 

The number of idle hosts and the idle time of utilized host must be maximised to decrease 

energy consumption. The utilized time 𝑇𝑢 can be expressed as 

𝑇𝑢 = 𝑇𝑛 − 𝑇𝑝 

where 𝑇𝑛 is the time spent on network communication and 𝑇𝑝 is the processing time. The 

processing time depends on the computational capabilities of a host and it thus decreases 

from leaves to root in the tree 𝐺. The network time depends on the location of hosts and the 

amount of hops the data does in the application graph. 

The idle time can be written as  

𝑇𝑖 = 𝑇 − 𝑇𝑢 

and 𝑇𝑢 can be replaced to get 

𝑇𝑖 = 𝑇 − 𝑇𝑛 − 𝑇𝑝 

In order to maximise the value of 𝑇𝑖, the values of 𝑇𝑛 and 𝑇𝑝 can be minimised. This means 

that minimising latency and processing time will increase the idle time and thus decrease 

the energy consumption. 

This chapter showed how energy consumption can be modelled in cloud or fog computing. 

The energy consumption is based on the utilisation over time. In order to maximise idle 

time, processing and network delay have to be minimised, as is shown in the model. The 

application and fog architecture models described are used to create the algorithms for en-

ergy efficient placement. 
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4. Algorithms and simulations 

In this chapter, the algorithms used in this thesis are described. The algorithms for cloud 

computing include the scheduling and migration. The algorithm for fog computing deal with 

only placement. 

4.1 Scheduling and migration algorithms in the cloud 

One way to reduce the energy consumption of a data centre is to maximize the number of 

idle hosts so that they can be but into sleep mode. This will reduce the hosts power usage 

and thus the total energy consumption of the data centre. A scheduling algorithm is needed 

to archive a maximum number of idle hosts. This algorithm prioritizes already utilized hosts 

over idle hosts when a new job arrives.  

To further reduce power consumption a dynamic migration algorithm is used. It migrates 

existing VM to other host if that makes the original host idle. This will be done each time 

an existing VM is not needed anymore. If a VM is removed then there will be a chance that 

one host can be made idle. This can occur when the VM was the only one running on a host 

or when there exists a host that can be freed if all of its VMs are migrated to the freed up 

host. In the first case, there is no migration necessary since the host will become idle by 

itself. The second case means that all of the working hosts will be checked to find a host 

that can fit its VMs in the new free space. If such a host is found then the migration will be 

done. 

Both the scheduling and migration algorithms will have to compare hosts to make an optimal 

choice. Choosing between hosts is based on the current utilization of the hosts. If the addi-

tion of a new VM would mean that the utilization of the hosts exceeds a set upper bound 

then the host is not suitable. Already idle hosts should be used only when the requested VM 

cannot fit any of the already utilized hosts. 

This scheduling will have an effect on quality of service. If a host is already utilized then 

adding another job will mean that the resources of the host will have to be shared between 

all of the running jobs. This can lead to a quality of service drop when the combined re-

sources needed for the jobs are greater than the ones available to the host. So when designing 

a scheduler this has to be taken into account. The algorithm should be able to evaluate if the 

extra utilization from a new VM on a host would risk breaking SLAs. 
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The scheduler will deal with the initial request from the client. It will divide the requested 

VMs between the hosts while leaving as many hosts idle as possible. The algorithm will 

take a list of all host and for each of them find the current utilization. Then the list is sorted 

in decreasing utilization order. When a new job is scheduled for execution, the list of hosts 

will be iterated from the beginning. The first host that has utilization less than a set upper 

bound will be chosen. 

1) Sort hosts in decreasing utilization order 

2) For each host 

a) If utilization < ɑ 

i) Add VM to host and finish  

The algorithm for power efficient migration will be triggered when a VM can be deleted. If 

a VM is not needed anymore and the host will not be idle then a list of all hosts except the 

freed host is created and sorted based on utilization. The sorting will be in ascending order. 

The list will be iterated from the start. If the VMs in the current host could fit the freed host 

then the migration is done and the iteration is stopped. If no migration can be done then the 

algorithm just finishes. 

1) Sort hosts in ascending utilization order 

2) For each host 

a) For VM in host 

i) If VM -> host => utilization < ɑ 

(1) Migrate VM to host and finish 

The proposed scheduler relies on keeping a sorted set of hosts in memory. When a new VM 

is requested the most utilized host that has enough resources left will be chosen. This ensures 

that the number of idle hosts is maximised. The migration algorithm provides additional 

benefits to energy consumption. It checks if a host can be freed up when an existing VM is 

no longer needed. A host can be freed up is all of its VMs can be migrated to the host that 

the VM was removed from. This is done starting from the least utilised host. 

4.2 Scheduling in fog computing 

To create the scheduler for a fog network an additional constraint will have to be introduced. 

The scheduler has to keep the processing as low on the network as possible in order to reduce 

latency. Therefore, the choice of a host will consist of the utilization of the host and the 

hosts location in the network. 
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The utilization time 𝑇𝑢 of a host consists of network latency 𝑇𝑛 and processing time 𝑇𝑝. In 

order to maximize the idle time 𝑇𝑖 the utilization time should be minimal. This means that 

when choosing a host both the network latency and the processing time will have to be taken 

into account. The best choice of a host will have the lowest utilization time. 

The application subgraph 𝑅′ can be separated into tiers based on the distance from the sensor 

or the actuator. Let the set of tiers be 𝐾. The set 𝐾 contains tiers that are based on the distance 

from the data source or consumer. All modules that are two connection away from the sensor 

or actuator belong in the second tier and so on. The tiers in 𝐾𝑠 will be denoted with an index, 

for example, 𝐾2
𝑠 is the second tier containing all modules that are two connections away 

from the sensor. The modules that are one connection away from the sensor or actuator will 

belong in 𝐾1
𝑠 and 𝐾1

𝑎. 

All of the hosts in the fog network will be added to set 𝐻. The set will be sorted by layers 

so that the edge devices will be first and the cloud hosts last. 

First all modules in 𝐾1
𝑠 and 𝐾1

𝑎 are placed on the edge devices. If all of the edge devices are 

full then the next layer devices will be used. This is a bin packing problem with a constraint 

that the buckets have to be filled in order. This ensures that the modules, which communi-

cate with sensors or actuators, are placed on a device that is directly connected to them. 

After all first tier modules are placed as low as possible the next tier modules will be placed 

in the network starting from the lowest until all of the modules are placed. For each list of  

modules in current tier 𝐾𝑖 a combination of all possible ways to place them in the network 

is collected. A module can be placed on a host if it has enough resources available. This will 

result in a set of module to host mappings. It would be better to find all possible combina-

tions to place all modules in 𝐾𝑖but it would take too long as the number of modules to place 

grows. The set of combinations will be sorted by ascending unique hosts count. This will 

reduce the amount of steps necessary later in the algorithm. 

The best of these combinations will be the actual placement used. The combinations will be 

compared based on how tightly they packs the modules and how much will they increase 

the total latency. A combination 𝐾𝑗 is more tightly packed if 𝐾𝑗 has less elements than 𝐾𝑖. 

That means it has fewer unique hosts. This results in more hosts that can be turned off if this 

placement is used. Since the set of combinations is sorted the algorithms can stop if it has 

found a valid placement and the next one is more tightly packed. By definition of 𝐾𝑖, every 
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module in that set has to be connected to at least one module from 𝐾𝑖−1. For each module 

in 𝐾𝑖−1 minimum latency to a connected module in 𝐾𝑖 is calculated. The current combination 

is discarded if the minimum latency is over a set limit for any module in 𝐾𝑖−1. The total 

latency for the current placement is the sum of all these minimum latencies. This leads to 

lower average 𝑇𝑛. The best placement will be the one that packs the modules tightly while 

keeping the network latency low. This will free up hosts to put into sleep mode and increase 

the idle time of utilized hosts by reducing the network latency. 

The proposed placement algorithm for fog computing will reduce energy consumption by 

utilising the edge and gateway nodes. Offloading work to these devices will free up hosts in 

the cloud while also reducing latency. The algorithms places modules based on the utilisa-

tion and location of the hosts. The lower tier modules are placed closer to the edge and other 

modules are placed in order of distance from the edge. 

4.3 Simulations 

For fog computing simulations iFogSim [21] was used. It is an extension of CloudSim [22] 

written in Java by other researchers to enable easier fog modelling. The software supports 

creation of a network of different computing devices. These can be edge devices, gateways 

or the cloud. It also enables to simulate workloads that have discrete modules with data 

dependencies between them. In order to implement the proposed scheduling algorithm for 

energy efficient fog computing a new module placement class was written that controls the 

placement of the modules of the simulated application. The physical topology used in these 

simulations is similar to the theoretical model described in chapter 3. It is made up of three 

homogenous layers. 

Two applications were simulated to test the algorithm. The first scenario is a smart camera 

system. The model of the application is shown in figure 2, it consists of motion detection, 

object detection and motion tracking modules. The input to the system is a camera and the 

output are actuators that move it to enable object tracking. The system also has a UI module. 

The camera system is connected so that there is no cycles in the application graph. This 

simulation scenario is one of the examples provided in iFogSim. 
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Figure 2. Camera system application model 

The second application is a health monitoring system. The application is described in a book 

about fog computing [30]. The application has four modules: client module, data filtering 

module, data processing module and event handler module. The model is shown in figure 

3. The application graph forms a cycle which makes it different from the camera system 

scenario. This scenario was implemented in iFogSim since it is not provided in the source 

code. The simulation was written based on the guidelines in the book where it was taken 

from. 

 

Figure 3. Health monitoring system model 

Both of the simulations were run using the proposed algorithm and a scheduling that places 

every module in the cloud. The simulations were tested with different number of application 

modules and different number of devices in the fog network. The total energy consumption 
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as well as the individual energy consumption of each device was gathered. The results of 

the simulations are described in chapter 5. 

The algorithms for cloud and fog computing proposed here aim to lower the energy con-

sumption by maximising idle time. The scheduling algorithm for the cloud tries to keep a 

maximum number of hosts idle. The proposed fog placement algorithm tries to place mod-

ules so that the number of utilised devices is low while also keeping the latency between the 

modules at minimum. The algorithm is tested in two scenarios using iFogSim. 
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5. Results and analysis 

This chapter describes each scenario that was tested and displays its results. Scenarios of 

the same application are compared and analysed. Conclusions about the proposed algo-

rithms are presented at the end based on all the scenarios. 

5.1 Results of the simulations 

Both the camera system and the health monitoring system simulations were done with two 

scenarios. The differences were in the number of devices and number of modules. The de-

tails of all scenarios can be seen in table1. 

Table 1. Application and topology details 

Applica-

tion 

Sce-

nario 

Gateway 

devices 

Edge 

devices 

Motion de-

tector mod-

ules 

Object de-

tector mod-

ules 

Object 

tracker mod-

ules 

UI modules 

C
am

er
a 

sy
st

em
 

1 2 8 8 2 1 1 

2 4 12 12 3 3 1 

Applica-

tion 

Sce-

nario 

Gateway 

devices 

Edge 

devices 

Client mod-

ules 

Filtering 

modules 

Processing 

modules 

Event han-

dler mod-

ules 

H
ea

lt
h

 m
o

n
it

o
ri

n
g

 

sy
st

em
 

3 4 4 4 4 4 4 

4 4 11 11 3 3 3 

The resulted energy consumption for each layer and for the whole system are shown in 

figure 4 and figure 5. All scenarios show that the total energy consumption is lower with the 

proposed algorithm. The edge layer energy consumption is higher in scenarios 2 and 4 be-

cause there were more edge devices in use. The number of gateway devices was equal in 

both health monitoring system simulations, but different in the camera system simulations. 

This is also visible on the chart. 
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Both the edge and gateway layer had higher energy consumption in all scenarios when using 

the proposed algorithm. This is expected since when all the modules are deployed in the 

cloud, the other devices will not be utilized. The cloud layer however shows a decrease in 

energy consumption when using the proposed algorithm. 

The average latency between different modules is shown in table 2. The latency was meas-

ured for three connections: sensor to module, module to module, module to actuator. The 

measurements show that the proposed algorithm reduces latency for the devices that connect 

to sensors and actuators. At the same time the latency between modules is higher than it is 

for cloud only placement. The scenarios with the same application and algorithm have sim-

ilar latencies. The latency between devices is defined in iFogSim. 

Table 2. Latency in simulation scenarios 

Application Scenario Algorithm 
sensor to mod-

ule (ms) 

module to 

module (ms) 

module to ac-

tuator (ms) 

C
am

er
a 

sy
st

em
 1 

cloud only 5.24 0.31 5.12 

proposed 1.00 2.78 3.11 

2 

cloud only 5.29 0.34 5.16 

proposed 1.00 2.77 3.11 

H
ea

lt
h

 m
o

n
it

o
ri

n
g

 s
y

st
em

 

3 

cloud only 10.04 0.84 5.14 

proposed 6.00 5.00 1.10 

4 

cloud only 10.06 0.99 5.20 

proposed 6.00 5.37 1.09 
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Figure 4. Energy consumption of camera system simulations 

 

Figure 5. Energy consumption of health monitoring system simulations 

5.2 Analysis of the results 

The proposed algorithm tries to place modules as low as possible and group the up, so it 

leaves more free hosts in the cloud. While the power consumption in the cloud went down, 

the power consumption of gateway and edge devices went up. The power profile of these 

devices were taken from the example simulations in iFogSim. The profiles of cloud and 
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gateway devices are similar, idle power usage is about 20W lower than power consumption 

under load. In the edge devices however, the difference between idle and busy power usage 

is much smaller, only 5W. This means that offloading computation from the cloud to the 

edge devices in this case is energy efficient, since the power consumption increase is quite 

low. This together with the fact, that the maximum energy consumption of the edge devices 

is lower than the one of the cloud devices, explains why the total energy consumption is 

lower using the proposed algorithm. It should be noted that placing modules in gateway 

devices rather than the cloud results in little to no gain in power efficiency, because of the 

similar power profiles. 

The difference in total energy usage between cloud only placement and proposed placement 

is different in the scenarios. The second and third scenarios show a difference of 526 603W 

and 688 842W while the first and second scenarios show 476 818W and 160 804W. The 

difference is larger in the scenarios which had more devices and more modules. The in-

creased difference in energy efficiency gain is again caused by the fact that moving modules 

to edge devices causes energy efficiency to rise. The second scenario has more edge devices, 

which means that there is more potential energy savings to gain. Based on these results there 

is reason to believe that this algorithm will save more energy if the power consumption 

while utilized is more similar to the power consumption while idle in lower level devices. 

In addition, if the cloud hosts could be shut down or put into low energy sleep mode, then 

there should be a bigger reduction in energy consumption. These simulations were not able 

to simulate such behaviour. 

The cloud only placement results in practically no latency between the modules. It does 

however take a long time for the data to travel between modules and sensors or actuators. 

The proposed algorithm reduces this latency by placing modules closer to the data source 

or consumer. This also means that the ideal latency between modules suffers because some 

of the modules are no longer in the cloud. The total latency in average is still better for the 

proposed algorithm. This result supports the claim that fog computing will reduce latency 

compared to cloud computing. 

To test the proposed algorithm two applications were created. The applications simulated 

on two different topologies. The energy consumption of different layers and the delay be-

tween modules were recorded and presented. The results show a decrease in total energy 
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consumption when using the proposed algorithm. The total latency was also improved by 

using the fog architecture instead of the cloud. This is consistent with existing research. 
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6. Conclusions and future research directions 

This thesis described energy efficient fog computing. It gave a brief overview of the state-

of-the-art in fog computing. A short summary of different scheduling algorithms used in 

cloud and fog computing was written. An algorithm was proposed and tested with simula-

tions. Finally the results were analysed and conclusions drawn. 

Firstly a model of fog computing network was created. It consisted of three layers of de-

vices: edge, gateway and cloud. In addition to that, the modelling also described how energy 

savings can be archived by maximising the idle time of the devices in the network. The 

thesis also shows a way to model applications as modules that communicate with each other. 

The thesis proposed an algorithm that tries to maximize the number of idle hosts by grouping 

the modules on as few devices as possible. The algorithm was implemented in iFogSim 

software. Two applications were simulated with different number of devices and modules. 

The simulations were also done using iFogSim. Both the proposed algorithm and cloud only 

algorithm were tested on each scenario. The results were compared and analysed. 

The results of the thesis show that the use of fog computing architecture can benefit some 

applications in terms of energy efficiency. The comparison with cloud only placement 

shows that, while the energy consumption of edge and fog devices went up, the total energy 

consumption of the system went down because of more idle hosts in the cloud. In addition 

to that, the thesis found that using the proposed algorithm resulted in lower latency. That is 

in line with other works on fog computing. 

To improve on these results the algorithm should be optimized to have better time complex-

ity. Then it could be tested out on larger systems. It should also be compared to other algo-

rithms proposed for fog computing. The algorithm should be tested on more simulation sce-

narios, where the devices have different energy consumption rates when idle and under load. 
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