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1. INTRODUCTION 

Parkinson’s disease (PD) is the second most common neurodegenerative dis-
order after Alzheimer’s disease (AD) with an appreciable rate of clinical mis-
diagnosis (Poewe et al. 2017). Most notably described by its name bearer, PD 
presents itself clinically with resting tremor, rigidity and most importantly 
bradykinesia (Parkinson, 1817). PD is not a homogenous disease biologically, 
there are sporadic (also called idiopathic – iPD) and familiar, even monogenetic 
variants. The pathophysiology of PD converges into pathognomonic loss of 
dopaminergic neurons (Birkmayer and Hornykiewicz 1961) in Substantia nigra 
(SN) of the central nervous system (CNS) and the accumulation of α-synuclein 
into Lewy bodies in neurons (Lewy, 1912). PD prevalence in the general popu-
lation is 0.3%, but being a disease of older age, it increases to approximately 0.5 
to 1% percent among persons from 65 to 69 years of age and 1 to 3 % among 
persons above 80 years (Tysnes and Storstein 2017; de Lau and Breteler 2006). 
With the aging population PD will become more prevalent and already shows a 
higher prevalence growth than AD (Feigin et al. 2017). Diagnosis of PD is 
clinical as the definite pathology can only be examined post mortem and there 
are currently no reliable biomarkers for PD in vivo. As familiar and monogene-
tic PD variants make up only around 10% of all PD cases (Bandres-Ciga et al. 
2020; Klein, Hattori, and Marras 2018), most of the risk in sporadic PD was 
thought to come from a large number of common low-risk gene variants (Loh-
mueller et al. 2003). However, genome wide associations studies (GWAS) that 
use common genetic variability such as single nucleotide polymorphisms (SNPs) 
can explain only 1/5 of PD occurrence (Nalls et al. 2019). Next to genetics large 
scale omics have been thought to be the key in neurodegenerative diseases in 
filtering large amounts of data and detecting disease relevant changes from this 
data (Caudle et al. 2010). This body of work investigates transcriptomics of PD 
in search of feasible diagnostic and prognostic biomarkers. Transcriptomic 
studies in PD have been previously limited by the canonical notion that PD is 
solely a disease of the CNS. The current body of work offers a multisystem 
approach by profiling two peripheral tissues – blood and skin – in well charac-
terized PD patient cohorts. This enables to overcome some major issues related 
to post mortem brain tissue transcriptomics, such as limited application for 
large-scale biomarker discovery in vivo. Another factor that has hampered fin-
ding robust changes in PD transcriptomics is the limited comparison across 
different methods and tissues. The current work tackles also this problem, by 
offering a method of ranking the relevant transcriptomic changes and provides 
the first across-method meta-analysis of PD transcriptomics.   
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2. BACKGROUND 

2.1. Parkinson’s disease – a quick historical review 
The syndrome consisting of slowness of voluntary movement (later known as 
bradykinesia), rigidity and resting tremor, together known as the parkinsonian 
triad, was initially recognized in the early 19th century. One of the most elo-
quent descriptions of this syndrome was from James Parkinson, who named it 
the shaking palsy, which would be called paralysis agitans in latinized versions 
(Parkinson 1817). Later in the 19th century Charcot recognized Parkinson as the 
first descriptor of this syndrome giving the disease his name – maladie de 
Parkinson – Parkinson’s disease (PD) (Charcot and Vulpian 1862). During the 
20th century key pathological changes of PD were discovered. Lewy described 
the accumulation of dysfunctional protein– α-synuclein in the brain (Lewy 
1912). Deposits of oligomerized α-synuclein are now known as Lewy bodies 
and PD belongs to a group of synucleinopathies. However, the hallmark clinical 
manifestation of PD – the parkinsonian triad – is caused by the loss of dopa-
mine producing cells – nigral cells in SN of the midbrain (Birkmayer and 
Hornykiewicz 1961). Mapping this change became possible due to the dis-
covery of catecholamines (to which dopamine belongs to) as neurotransmitters 
(Carlsson, Falck, and Hillarp 1962). This discovery enabled the development of 
the first and still the most used symptomatic treatment of PD – levodopa, to be 
introduced in early 60s. A myriad of genetic causes of PD were discovered 
thereafter, most notably in the α-synuclein gene (Polymeropoulos et al. 1997). 
However, to date, monogenetic PD or even polygenetic risk factors only 
account for 20% of PD cases (Nalls et al. 2019). It seems, there exist risk 
modulators of PD for which the genome does not wholly account for. Currently 
a lot of scientific interest in PD research is towards gene expression studies – 
transcriptomics including non-coding RNA studies, epigenetics, metabolomics 
and, perhaps, even enviromics. Many key pathogenic mechanisms in PD have 
been described, yet it seems that discovering robust biomarkers usable in 
clinical practice is still a way ahead. 
 
 

2.2. Parkinson’s disease – clinical presentation 

2.2.1. Motor symptoms of Parkinson’s disease 

Since its famous description by Parkinson over 200 years ago the movement 
disorder with combined motor symptoms has remained the core element of PD. 
Currently, PD is recognized as a syndrome of bradykinesia in combination with 
tremor and/or rigidity (Postuma et al. 2015). Bradykinesia is defined in the 
diagnostic criteria as slowness of movement and additionally decreased move-
ment amplitude, which is sometimes separately referred to a as hypokinesia. 
Bradykinesia is the pathognomonic sign of PD that correlates best with the 
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degree of dopamine deficiency in SN (Vingerhoets et al. 1997). Resting tremor 
is the most easily recognizable symptom of PD. It is usually lateralized with a 
frequency between 4 and 6 Hz (Deuschl et al. 2000). Rigidity is continuously 
increased muscle tone and is usually also lateralized (Delwaide 2001). Forth 
unique symptom next to the triad is postural instability, which has been for a 
long time one of the main diagnostic criteria (Gibb and Lees 1988). The motor 
symptoms of PD appear when substantial amount of dopaminergic neurons 
have already perished (Dauer and Przedborski 2003), yet as there are currently 
no definite tests the clinical criteria of PD diagnosis have to appreciate the 
emergence of those cardinal signs. All neurodegenerative diseases have a pre-
clinical and prodromal period and PD has a notably long one (>10 years) 
meaning that the hallmark pathology is already spreading in dopaminergic 
neurons, but patients display no symptoms or symptoms that are unspecific 
enough to meet diagnostic threshold.  
 
 

2.2.2. Non-motor symptoms of Parkinson’s disease 

Next to the core syndrome of motor deficit in PD there are also several non-
motor symptoms of PD that are now recognized as supportive criteria of the 
clinical diagnosis (Postuma et al. 2015). Some of them are caused by loss of 
dopamine in other than striatonigral pathway of the brain (Braak et al. 1995), 
the cause for others is still unknown (Chaudhuri et al. 2006). Some of symp-
toms antecede the motor involvement in PD such as hyposmia, anxiety, consti-
pation, erectile dysfunction, fatigue and REM-sleep behavior disorder (Postuma 
and Berg 2019). Sleep disorders, especially rapid-eye-movement sleep behavior 
disorder is considered a key prodromal sign of PD (Gagnon et al. 2006). An 
early and wide-known symptom is hyposmia – a decreased sense of smell 
(Korten and Meulstee 1980) caused by lack of dopaminergic neurons in the 
mesolimbic pathway. Mesocortical dopaminergic loss causes cognitive and 
behavioral abnormalities like depression and dementia usually in advanced PD. 
Drawing the attention to non-motor symptoms of PD in the last 10-20 years 
(Poewe 2008; Schapira, Chaudhuri, and Jenner 2017) indicated that PD 
pathology affects a larger scale of neuronal functions than isolated nigral path-
ways of the basal ganglia. This notion paved the way to investigating other 
tissues in PD.  

When looking into non-motor symptoms of PD, most of them are, indeed, 
caused by disturbed neuronal functions (autonomic symptoms e.g., constipation, 
bladder disorders and orthostatic disorder, psychiatric symptoms such as 
depression or cognitive decline, other brain functions such as sleep disorders or 
hyposmia). The pathognomonic Lewy bodies have been ever since identified in 
other parts of the nervous system like enteric nervous system (Wakabayashi et 
al. 1988), autonomous nervous system (Rajput and Rozdilsky 1976), in the 
cutaneous nervous system (Ikemura et al. 2008) and their presence in these parts 
of the nervous system has been correlated to dysfunctions of the latter. Lately, 
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non-motor symptoms have gained attention such as gastrointestinal dysbiosis 
and peripheral neuropathy (Zis et al. 2017; Mulak 2015). It has even been pro-
posed that aberrant proteins that cause α-synuclein to misfold might migrate 
from gut to the brain via the nervous system in a prion-like manner (Hawkes, 
Del Tredici, and Braak 2007). Over the years it has, indeed, become clear that 
PD pathology does not begin in the nigral cells of the midbrain, but rather 
shows an ascending rostrocaudal pattern based on the deposits of α-synuclein 
showing affection of the lower brain stem regions in earlier stages, which has 
been clinically correlated to prodromal PD (Braak et al. 2003). However, the 
exact locus of origin for α-synuclein pathology has remained unclear and the 
question remains whether non-neuronal peripheral tissues could play a role in it. 

 
 

2.3. Linking skin pathology and Parkinson’s disease 
Interestingly, there are a few symptoms of PD in non-neuronal tissues. A non-
neuronal peripheral tissue is of particular interest is the skin. PD patients present 
with several dermatologic problems including seborrhoea, seborrheic dermatitis, 
hyperhidrosis, cutaneous neuropathy, and impaired wound healing (Beitz 2013; 
Gregory and Miller 2015). Small unmyelinated fibers are affected in PD causing 
sensory polyneuropathy and display α-synuclein deposits (Donadio et al. 2014; 
Wang et al. 2013). Recently, it has even been shown that the rate of α-synuclein 
aggregation in the skin can differentiate synucleinopathies from other neuro-
degenerative diseases and is being proposed as a clinical biomarker (Wang et al. 
2020). Developmentally skin is an ectodermal derivate like the nervous tissue. 
A particular subset – the melanocytes – even migrate much later into the skin 
and display many similar characteristics to nigral cells of the central nervous 
system (CNS), such as production of pigments from catecholamines – a process 
which is quite energy consuming and redox-reactive (Fedorow et al. 2005). 
Neurodegenerative diseases, being related to senescence, are epidemiologically 
less associated with malignant tumors (Bajaj, Driver, and Schernhammer 2010). 
However, PD has a notable exception. In a prospective study higher melanoma 
prevalence compared to the matched general population was found in patients 
with PD (Bertoni 2010). Even though effects of dopaminergic medication were 
discussed to be a risk factor for melanoma occurrence, this epidemiologic 
connection goes beyond simple co-occurrence. Other large-scale studies have 
shown that in patients who do not have PD, a diagnosis of melanoma or even a 
family history of melanoma doubles the risk of subsequently developing PD 
(Olsen, Friis, and Frederiksen 2006; Gao et al. 2009). Additionally, even other 
types of skin cancer are more common in PD than in the matched general 
population (Liu et al. 2011). A recent meta-analysis based on pooled genome-
wide association study (GWAS) data showed that PD, unlike AD and fronto-
temporal dementia show significant disease specific genetic correlation with 
malignant melanoma (Dube et al. 2020). 
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Taken together, there is evidence that PD is a multisystem disease with non-
neuronal peripheral tissues being disease-specifically affected. Skin is a parti-
cularly promising tissue for investigating PD pathology, as it shows epidemio-
logical and clinical disease-specific signs in PD and is relatively easily obtain-
able allowing for ante mortem sampling and even early biomarker discovery.  
 
 

2.4. The opportunities and challenges  
of transcriptomics in Parkinson’s disease 

PD was initially thought to be a typical non-genetic environmentally driven 
disease (Ward et al. 1983). Upon the discovery of aberrant α-synuclein gene in 
relation to PD, many genetic studies have discovered more monogenetic causes 
for PD and genetic risk factors for polygenetic PD. Just recently, a large GWAS 
discovered 90 independent risk loci associated with PD (Nalls et al. 2019) 
which accounted for 16–36% of PD heritability. It is a major shift from initial 
explanation that PD is a non-genetic disease towards genetic causative or modu-
latory etiologies. However, if PD is compared with another major neurodegene-
rative disease – Alzheimer’s (AD), the differences in how much of disease 
prevalence can be explained by genetics are still notable. AD twin studies im-
plicated heritability in the range of 60-80% even before the GWAS era (Gatz et 
al. 1997; Gatz et al. 2006). A GWAS in AD identified 44 risk loci accounting 
for approximately 75% of heritability (Australian Imaging Biomarkers and Life-
style (AIBL) Study et al. 2020), implying that AD, unlike PD, has an oligogenic 
pathology. 

It seems, that genetic heritability alone does not account for the majority of 
PD incidence. After all, gene expression is affected by enzymatic alterations of 
the DNA or its binding proteins, alternative splicing and non-coding RNAs 
among many other things. Polyetiological factors can also affect these cellular 
processes. Some of these variables can be investigated by studying transcription 
in PD. Detection of gene expression patterns may help with the identification of 
the molecular mechanisms underlying the disease. Transcription is a process 
where a part of a DNA molecule that codes a gene is transcribed to an RNA 
molecule and thus the gene is expressed. Transcriptomics uses different 
methods to capture RNA molecules and measure them both qualitatively (diffe-
rential gene expression) and quantitatively (up- or downregulation, usually 
noted as fold change). Transcriptomic studies provide an option for PD with 
potential to map pathology-driven patterns and provide dynamic biomarkers in 
PD.  
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2.4.1. Transcriptomics from brain tissue in Parkinson’s disease 

Since gene expression is tissue-dependent and PD is canonically seen as a CNS 
disease, transcriptomics of PD begun with sampling solid brain tissue. How-
ever, acquiring a sample from the brain is very invasive in vivo. The first trans-
criptomic study of PD in humans was, thus, a post mortem microarray study of 
nigral cell populations (Grünblatt et al. 2004). It was performed on 7 end-stage 
PD patients and 7 controls. The subsequent analysis was limited down to 137 
differentially expressed genes (DEGs) with the highest fold change. Then, these 
DEGs were manually assorted into functional pathways, showing altered gene 
expression in cell signaling, mitochondrial function and protein degradation 
which, indeed, correlates with previously postulated disease pathology. Other 
works from SN mirrored these pathway-level changes (Moran et al. 2006; 
Cantuti-Castelvetri et al. 2007). Many studies from other CNS tissues followed 
(Stamper et al. 2008; Dumitriu et al. 2015; Henderson-Smith et al. 2016; Botta-
Orfila et al. 2014; Bossers et al. 2009; Zhang et al. 2005). There are significant 
downsides to investigating brain tissue. First of all, RNA is an unstable mole-
cule, and the tissue is acquired post mortem. Long delay between death and 
sample processing affects the RNA integrity and the disintegration might be cell 
type specific meaning that cells with a higher energy expenditure, such as the 
nigral cells, might be especially vulnerable (Zhu et al. 2017). Several ante 
mortem factors also may interfere gene expression such as prolonged agonal 
state and hypoxia (Ferrer et al. 2008). The samples in brain banks are usually 
from advanced PD patients with significant disease-specific loss of dopami-
nergic neuron population. The gene expression profiled from these tissues might 
not reflect the disease in its prime. Although there is no straightforward con-
nection reported for dopaminergic medication and nigral cell energy metabo-
lism, drugs like levodopa might also affect the transcriptomic profile (Fahn 
1999; Schapira 2008). Furthermore, SN consists of mixed cell populations and 
separating the dopaminergic cells of interest from solid brain tissue becomes a 
non-trivial task, often yielding samples with varying degrees of dopaminergic 
cells, leading to differences in transcription. Despite its limitations, transcrip-
tome studies profiled the changes in the brain tissue replicating the hallmark 
disease pathology but can currently not be used feasibly for finding diagnostic 
or prognostic biomarkers in vivo because of their invasiveness. Taken together, 
studying the brain tissue is possible only after the death of the individual. These 
individuals have usually suffered from PD for many years and have extensively 
taken dopaminergic medications, thus their tissue samples represent late PD, 
and the samples cannot be used as biomarkers in early PD in vivo. As of now, 
there is a single study in PD from the living brain biopsy from frontal cortex 
sampled during deep brain stimulation electrodes implantation (Benoit et al. 
2020). In this RNA-Seq study 370 DEGs were identified, and they included key 
members of trophic signaling, apoptosis, inflammation, and cell metabolism 
pathways. 
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2.4.2. Transcriptomics from peripheral tissues in Parkinson’s disease 

Thus, first transcription studies from more accessible tissues emerged, blood 
being the most prevalent. Scherzer and colleagues (Scherzer et al. 2007) 
searched for transcriptional biomarkers in PD blood by sampling 50 PD patients 
predominantly at early disease stages and healthy controls but also controls with 
neurodegenerative diseases. They found 22 potential marker genes and provided 
a risk calculation for PD based on eight genes (VDR, HIP2, CLTB, FPRL2, 
CA12, CEACAM4, ACRV1, and UTX) that distinguished PD from healthy and 
disease controls with an odds ratio of 5.1 (95% C.I. 1–27). Also, dopaminergic 
treatment effects were tested, and none reported. Soon, many different 
approaches of PD blood transcriptomics emerged (Aguiar and Severino 2010; 
Shehadeh et al. 2010; Potashkin et al. 2012; Alieva et al. 2014; Infante et al. 
2015; Pinho et al. 2016). Kauczynska and colleagues performed a very similar 
microarray experiment to Scherzer et al. in a slightly bigger cohort (Kauczynska 
et al. 2013; Scherzer et al. 2007). They also created a prediction model of PD 
based on a set of 1367 gene probes and added clinical parameters showing that 
PD can be distinguished from healthy controls with an 88% agreement to clini-
cal diagnosis. However, only 3 of 1367 genes overlapped with the 22 marker 
genes suggested by Scherzer (Scherzer et al. 2007). Calligaris and colleagues 
performed thus far the biggest blood RNA microarray analysis on drug naïve 
PD patients and found 282 DEGs and validated the results with RT-qPCR 
(Calligaris et al. 2015). A descriptive summary of many of these works 
underlines the lack of reproducibility of specific gene expression changes 
(Borrageiro et al. 2017). It has to be mentioned that the datasets of original work 
are usually not big ranging from 3 to 79 (Vogt et al. 2006; Kauczynska et al. 
2013, respectively). Many factors cause the reproducibility to be extremely low: 
different methods (microarray vs. sequencing), endogenous factors (inherent 
genetic and transcriptional heterogeneity of PD), other diseases, medication 
status, and metabolic changes. A particular obstacle in transcriptomics in 
sampling whole blood is that it consists of a heterogenous mix of different cell 
linages and calls for additional steps like filtering out hemoglobin-related RNA 
(Liu et al. 2006). Some attempts have been made to limit the heterogeneity in 
sampling different lineages of nucleated white blood cells (Kedmi et al. 2011; 
Soreq et al. 2014) or serum (Botta-Orfila et al. 2014). This, however, also adds 
analytical steps prior to transcriptional analysis that might cause variations in 
results and thus may not be suitable for simple biomarker discovery. Other bio-
fluids have been considered, such as the usually low- to non-cellular cerebro-
spinal fluid (CSF). This yields mostly non-cellular RNA like micro-RNA or 
fragments of RNA. Another limitation is that lumbar puncture to access this 
fluid is an invasive and time-consuming procedure. Hossein-nezhad and collea-
gues found 3521 fragmented transcripts in CSF from coding and non-coding 
regions from which 201 were differentially expressed, however they did not 
map these DEGs into pathways (Hossein-nezhad et al. 2016).  
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Overall, transcriptomics studies from cellular and non-cellular peripheral 
samples have found changes that are mirrored in CNS suggesting that functional 
pathway level pathophysiology in PD might be systemic (Cooper-Knock et al. 
2012). There have even been single attempts to create a set of DEGs from blood 
and other moderators to calculate the risk of PD, thus first attempts in finding a 
diagnostic and prognostic set of DEGs (Scherzer et al. 2007; Kauczynska et al. 
2013). However, a general problem with gene expression studies in PD either 
from CNS or peripheral tissues is the lack of reproducibility of the findings on 
the DEG level. This is exemplified by an overlap of only 3 DEGs between 2 
works from PD blood by Scherzer et al and a subsequent study by Kauczynska 
et al. Possible cause for the lack of overlap can lie in too low number of trans-
criptomic studies for generalizing the results onto heterogenic PD cohorts. 
Other reasons can be the use of incomparable or partly comparable methods, the 
heterogeneity of signals in the tissue of interest or the heterogeneity of PD 
pathology, such that genes involved differ, but the pathways they modulate 
converge not allowing for DEG level overlap.  
 
 

2.5. Evolution of high throughput methods 
Due to the sheer volume of the human transcriptome mapping the changes 
between disease and controls calls for high throughput methods. Starting with 
the conventional Sanger method of sequencing (Sanger and Coulson 1975) 
determining of a particular DNA sequence has come a long way. With the 
advent of converting the unstable RNA molecule to complementary DNA 
(cDNA), RNA sequences could also be decoded (Temin and Mizutani 1970). 
Currently, there are two main methods to determine gene expression both 
qualitatively and quantitatively – RNA microarray and RNA-Sequencing 
(RNA-Seq). RNA microarray is a high throughput approach for mapping gene 
expression (Schena et al. 1995). It is a hybridization-based approach that 
visualizes fluorescently labelled cDNA if anneals onto a complementary DNA 
strand. These DNA strands are commercially produced and organized onto a 
chip representing up to ~30 000 known and relevant gene expressions. Most of 
the work done on PD transcriptomics relies on microarrays from different 
manufacturers. However, this method has several limitations. It relies upon 
existing knowledge about DNA sequences, that rules out the discovery of de 
novo or alternatively spliced transcripts (Wang, Gerstein, and Snyder 2009). 
Compared to whole transcriptome sequencing a specific chip is needed for 
either mRNA, micro RNA (miRNA) or other RNA species, so the whole 
transcriptome cannot be determined in one experiment and the results show a 
clear batch-specific bias making the comparison between different experiments 
limited (Kitchen et al. 2010). Further limitations include low dynamic range 
causing genes with low expression to be difficult to account for and signal from 
genes with very high expression to be underestimated (Tu, Stolovitzky, and 
Klein 2002, Mutch et al. 2002). Unlike hybridization, high throughput next-
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generation RNA sequencing is based on arranging the cDNA molecule order 
single nucleotide (or a pair, depending on the technique) at a time. In RNA-Seq 
fragments of cDNA and converted into library, amplified, and sequenced either 
from one end (single-end sequencing) or both ends (pair-end sequencing). This 
creates short reads that are 30…400 base pairs long depending on the manu-
facturer and RNA species. These reads can be interpreted either by aligning 
them to reference genome or by de novo assembly (Metzker 2010). Thus, unlike 
hybridization-based approach RNA-Seq is not limited to detection of transcripts 
that align to existing sequences. It does not create this much background noise 
allowing a large dynamic range and higher power especially in detecting signals 
with lower number of transcripts (van Iterson et al. 2009). Also, the number of 
samples can be starkly reduced and still have the same statistical power as 
microarray experiments (Guo et al. 2014). RNA-Seq is robust and has high 
intra- and inter-platform correlation (Stark, Grzelak, and Hadfield 2019). Even 
though there are some clear-cut benefits to RNA-Seq there are also some limita-
tions. A major source of variation lies in the processing of raw sequencing data. 
Different computational analysis workflows could introduce imperfections and 
biases to the subsequent analysis (Sahraeian et al. 2017).  
 
 

2.5.1. RNA-Seq in Parkinson’s disease transcriptomics 

Being one of the first and few, Riley et al. compared different brain tissues in 
PD using both microarray and RNA-Seq (Riley et al. 2014). They found many 
more significantly changed DEGs with RNA-Seq compared to microarray, how-
ever, DEGs did not completely overlap, which they interpreted as differences in 
sample cell population. The first RNA-Seq array from PD blood acknowledged 
the limitations of microarray in splice variant discovery and bypassed it by 
using total RNA-Seq from leukocytes (Soreq et al. 2014). They found novel 
splice variants and replicated some of the findings in brain tissue. However, the 
current number of RNA-Seq studies in PD tissues is very low, for example out 
of all transcriptomic studies from different tissues in PD listed in this review 
only 8/63 used RNA-Seq (Borrageiro et al. 2017). There are equally few RNA-
Seq studies that focus on non-coding RNA like miRNA in PD (Borrageiro et al. 
2017). There are even fewer studies of whole transcriptome RNA-Seq which 
captures all the transcribed RNA species (Soreq et al. 2014). 
 
 

2.5.2. Interpretation of high throughput methods 

Even though high throughput methods allow detection of many gene expres-
sions, an output list of DEGs does not provide pathophysiological insight into 
the underlying biology of the condition. A pathway analysis has more expla-
natory power because it links the DEGs with known functions into a network of 
reactions giving them meaning in the context of cellular processes. Therefore, 
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most of DEG discovery studies have also included a pathway analysis. There 
are many databases offering this ranging from open source (Fabregat et al. 
2017) to proprietary (Krämer et al. 2014), and many computational algorithms 
defining a significantly changed pathway in disease (Robinson, McCarthy, and 
Smyth 2010; Subramanian et al. 2005; Tarca et al. 2009). Most used pathway 
analysis methods are overrepresentation analysis (ORA), functional class 
scoring (FCS) and protein-protein interaction network (PIN). These range from 
mapping which DEGs in a predefined metabolic pathway are present more than 
expected (ORA) to using complex interactions analysis to determine much 
weight their differential expression has on biological functioning of the pathway 
(PIN) (Khatri, Sirota, and Butte 2012). On the one hand, using pathway analysis 
allows drawing meaningful conclusions from large volumes of transcriptional 
data, but on the other hand, it is another source of variability in interpreting the 
results.  

Another level of looking at transcriptional data is conducting a meta-analysis 
by reanalyzing the raw output data. However, the output files are too large (in 
gigabytes) and usually available upon request. Alternatively, uploaded data 
from previous experiments can be downloaded from online databases, for 
example Gene Expression Omnibus (GEO) or ArrayExpress public functional 
genomics data repositories (Barrett et al. 2009; Athar et al. 2019). Mariani and 
colleagues pooled 123 PD SN samples versus pooled 104 control SN samples 
from 9 different RNA microarray experiments and reported top 20 up- and 
downregulated DEGs with mitochondrial function and signal transduction in 
Gene Ontology (GO) enrichment analysis (Mariani et al. 2016). Similar meta-
analyses have been conducted from cortical tissue microarray data in PD (Feng 
and Wang 2017; Kelly et al. 2019). Currently a single meta-analysis from RNA-
Seq pooled data is conducted from miRNAs of brain and blood in PD 
(Chatterjee and Roy 2017). A downside of using datasets from repositories is 
currently the low number of uploaded datasets, that limits the meta-analysis 
and, perhaps, causes a bias by the reanalysis of the same samples over and over. 
There are no whole transcriptome RNA-Seq data meta-analyses nor analyses 
comparing RNA-Seq and microarray data. As aforementioned, there is a review 
summarizing the compendium of PD transcriptomics, but it does not provide a 
reanalysis of the data (Borrageiro et al. 2017). Major issues that have been 
hampering this are the use of different methods, annotations and the publication 
of incomplete lists (e.g. when only significantly changed DEGs are reported). 
Secondly, the number of transcriptomic studies could be simply too low to 
allow the mapping of biological innate, tissue- and time-specific variations in 
PD transcriptomics. A meta-analysis that could overcome the issue of com-
paring microarrays and RNA-Seq data and the publication of incomplete DEGs 
lists would provide more robust results on DEGs across different methods and 
populations in PD.  



20 

2.6. Summary of reviewed literature and  
rationale for this study 

PD is a slowly progressing neurodegenerative disease with a long prodromal 
period. The emergence of the cardinal movement disorder that allows for the 
fulfillment of the diagnostic criteria for PD happens after 80% of the 
dopaminergic neurons have perished. There are currently no robust biomarkers 
that allow for discovering the pathology earlier. It may be a lost opportunity for 
future neuroprotective therapies in PD because there may not be enough 
neurons to preserve in order to make a clinical difference. Therefore, it is of 
utmost importance that research advances into finding biomarkers that identify 
PD as early as possible. Many previous studies have investigated the CNS tissue 
to find pathomechanistic clues for PD, because the loss of dopaminergic cells in 
the midbrain correlates with movement disorder progression. However, the 
CNS is a tissue that does not allow for large scale ante mortem sampling. 
Another question is whether PD pathology emerges only in the neuronal cell 
population or could disease specific changes be found in other tissues as well. 
The blood is a peripheral tissue that has been previously sampled in PD but has 
not yet provided reproducible biomarkers. Not many other peripheral tissues 
have been sampled. The current study therefore approaches PD transcriptomics 
by sampling two peripheral tissues – skin and blood. The aim of this study is to 
address the following knowledge gaps: 1) do these peripheral tissues display PD 
specific pathology; 2) are peripheral tissues therefore usable for large scale ante 
mortem biomarker discovery. The larger rationale is to advance the 
understanding of PD pathology. 
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3. AIMS OF THE STUDY 

The primary aim of the current thesis was to analyze the skin and blood trans-
criptomic profiles in PD using RNA-Seq in the hopes of finding disease-specific 
patterns of gene expression changes in these peripheral tissues in a well-
established PD cohort. 

The specific aims were the following: 
1)  Profile the transcriptomic changes in PD patients the skin for the first time 

and categorize them into functional pathways. Investigate the transcriptomic 
implications of the known epidemiological link between PD and melanoma. 
Distinguish disease-specific patterns.  

2)  Profile the transcriptomic changes of the whole blood in PD and categorize 
these changes into functional pathways. Compare the blood results with 
findings from skin. Distinguish disease-specific patterns. 

3)  Investigate the most significant finding from PD skin RNA-Seq – serum 
amyloid alpha (SAA), and define whether the downregulation in gene 
expression level is replicated in another sample set in PD blood and skin, 
thus translated to protein level changes in blood and skin. 

4)  Compare the transcriptomic changes in our data set with previously pub-
lished studies from CNS tissues and blood, by using a novel method of 
robust rank aggregation to allow for comparison between microarrays and 
RNA-Seq, in order to find robust and overlapping changes in gene expres-
sion of PD. 
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4. MATERIAL AND METHODS 

4.1. Study design  
The study examines two peripheral tissues of patients with clinically diagnosed 
PD and healthy matched controls. The main experimental part consists of RNA-
Seq from whole blood and skin biopsy. The top DEG results of the RNA-Seq 
are validated in a larger cohort of PD patients and matched controls. Further 
ELISA-analysis from whole blood and skin immunohistochemistry is conducted 
for a specific gene expression of interest – serum amyloid alpha (SAA).  

The study was conducted in accordance with the Declaration of Helsinki and 
approval was granted by the Tartu University Ethics Committee. Informed 
consent was obtained from all patients and controls (Certificates No 196/T-10 
and 216/M-29).  

 
4.2. Clinical characteristics 

The PD patients recruited for this study stem from a larger epidemiological PD 
cohort that was conducted in the county of Tartu during the period 2010–2016 
(Kadastik-Eerme et al. 2018; Kadastik-Eerme et al. 2019). Main studies in this 
body of work consist of study I – skin RNA-Seq; study II – blood RNA-Seq; III – 
SAA gene expression study. The inclusion of all PD patients was based on: (1) 
a diagnosis of idiopathic PD according to the QSBB criteria (Lees, Hardy, and 
Revesz 2009); (2) on standard medical treatment for PD; and (3) no other severe 
diagnoses based on medical interview; (4) without major cognitive decline 
based on MMSE. Control participants were age and sex matched volunteers 
without a history of CNS diseases. Disease severity, disability and cognitive 
state in PD patients were assessed using validated instruments including the 
Movement Disorders Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) 
(Goetz et al. 2008), the Hoehn and Yahr Scale (HY) (Hoehn and Yahr 1967), 
the Schwab and England Activities of Daily Living Scale (SE-ADL) (Schwab 
et. al 1969) and the Mini Mental State Examination (MMSE) (Folstein, Fol-
stein, and McHugh 1975). The presence of familial PD and cancers were 
excluded for all patients at the time of inclusion. In addition, all concomitant 
medications were documented and none of the patients were taking any medica-
tions other than the commonly used dopaminergic medications.  

The I RNA-Seq study from skin included other set 12 patients with clinically 
diagnosed idiopathic PD with mean age of 71.9 (±7.5) years, mean disease 
duration of 6.1 (±4.3) years and mean HY stage of 3.1 (±0.9). The II RNA-Seq 
study from whole blood included 12 patients with clinically diagnosed 
idiopathic PD with mean age of 72.2 (±10.0) years, mean disease duration of 
6.9 (±6.5) years and mean HY stage of 2.7 (±1). The results of both RNA-Seqs 
were validated with qRT-PCR in a larger matched cohort (including the 12+12 
from RNA-Seq). In the III study a major finding from study I from skin – SAA 
gene expression was explored in another cohort with ELISA from blood which 
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included 36 clinically diagnosed idiopathic PD with mean age of 72.1 (± 8.4) 
years, mean disease duration of 5.7 (±6.3) years and mean HY stage of 2.7 (± 
1.0). Subsequently skin immunohistochemistry was explored in 13 PD patients 
with mean age of 72.0 (± 7.2) years, mean disease duration of 6.5 (±4.3) years 
and mean HY stage of 3.1 (± 0.8). A thorough breakdown of clinical charac-
teristics of participants is in Table 1. 
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4.3. Sampling  
For skin RNA-Seq study a 4 mm punch-biopsy was taken from non-sun-
exposed skin of each participant in study I at the time of the medical interview. 
All biopsy specimens were instantly frozen in liquid nitrogen and stored at -
80C° until RNA extraction. Biopsies for RNA-Seq and validation were homo-
genized with Precellys24 homogenizer with the Cryolys system (Bertin Techno-
logies). RNeasy Fibrous Tissue Mini Kit (Qiagen) was used for total RNA 
extraction, according to the manufacturer’s protocol. During the purification on-
column DNase I treatment was performed (Qiagen). The RNA quality was 
assessed using Agilent 2100 Bioanalyzer, the RNA 6000 Nano kit (Agilent 
Technologies) and the Qubit fluorometer (Life Technologies). The lowest RIN 
of study samples was 6.7. 

For blood RNA-Seq study venous blood of each participant in study II was 
collected into Tempus Blood RNA Tubes (Thermo Fisher Scientific Inc, CA, 
USA). The tubes were instantly frozen in liquid nitrogen and stored at -80 ºC. 
Total RNA was extracted applying Tempus Spin RNA Isolation Kit (Thermo 
Fisher Scientific Inc, CA, USA) combined with DNase treatment (RNase-Free 
DNase Set, Qiagen, Hilde, Germany), according to the manufacturers’ proto-
cols. The globin mRNA was removed from the extracted total RNA using 
GLOBINclear Kit, human (Thermo Fisher Scientific Inc, CA, USA). The 
lowest acceptable concentration of globin clear RNA was 36.5 ng/µL for PD 
patients and 39.5 ng/µL for the control group. For SAA study skin biopsies 
were fixed in neutral buffered formalin, processed with ethanol and xylene and 
then embedded in paraffin. For ELISA serum was extracted from blood samples 
and instantly frozen in liquid nitrogen and stored at -80 ºC. 

 
 

4.4. Whole transcriptome sequencing (RNA-Seq) 
50 ng of each total RNA sample was amplified with Ovation RNA-Seq System 
V2 Kit (NuGen Technologies Inc, CA, USA), specific RNA species were not 
enriched. The output double stranded DNA was used to prepare SOLiD 5500 W 
System DNA fragment libraries according to the manufacturers’ protocols 
(Thermo Fisher Scientific Inc, CA, USA). Barcoding adapters were applied, and 
the 12 libraries were pooled prior to sequencing. For blood RNA-Seq fragment 
(single-end) sequencing chemistry was applied with SOLiD 5500 W XL plat-
form resulting in reads with length of 75 bp. For skin RNA-Seq sequencing on 
the SOLiD 5500 XL platform paired-end sequencing chemistry was applied (75 
bp in forward and 35 bp in reverse directions). SOLiD uses sequencing by liga-
tion with two-base-encoded probes (Metzker 2010) which lessens sequencing 
errors. No prior filters for sequenced fragments were used. In skin RNA-Seq 
approximately 40 million reads were mapped per one sample, in blood. 21.4 ± 
3.3 million reads (mean ± SD) per sample, out of which 73.6 ± 0.8 percent 
aligned to the reference genome at least once. 
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4.5. RNA sequencing data analysis 
For initial alignment analysis of RNA-Seq reads to the hg19 reference genome 
Lifescope software (Thermo Fisher Scientific Inc, CA, USA) was used with 
recommended default parameters. Gene-level read counts were obtained from 
LifeScope alignment summary statistics. For differential gene expression statis-
tical analysis DeSeq2 package for R (Love, Huber, and Anders 2014) was used. 
DeSeq package performs samples comparison and adjusts P-value using the 
Benjamini-Hochberg procedure, which controls for false discovery rate (FDR) 
to overcome multiple testing problem. Detected differential expression of genes 
was considered statistically significant at an FDR≤0.05, no cut-off fold change 
was applied. Followingly, the obtained DEGs were subjected to a functional 
pathway analysis. For the initial study from skin the analysis was performed 
using the proprietary QIAGEN’s Ingenuity® Pathway Analysis (QIAGEN Red-
wood Citytool). A further manual classification of DEGs into broad functional 
categories followed. This was based on the major functional networks provided 
by Ingenuity Pathway Analysis and supplemented by PubMed searches initially 
for the role of the specific DEG and then searching for the association with key-
words such as “Parkinson’s disease”, “neurodegeneration”, “neuro”, “Alzhei-
mer’s disease”, “brain”. Each DEG was categorized only once, according to the 
more prominent functional role in association to PD. For the blood RNA-Seq 
data functional pathway analysis was performed using the hypergeometric test 
implemented by ClusterProfiler in R(Yu et al. 2012) and based on KEGG 
pathway annotations. Due to the heterogeneity of blood tissue low number of 
DEGs at FDR≤0.05 was found. To overcome that issue in pathway analysis, 
input DEGs for blood were p-adj. ≤0.1, cut-off for pathways was at FDR ≤0.05. 
A reanalysis of the skin data with the same method was applied with input 
DEGs with an FDR of ≤0.05, and pathway results were considered significant a 
p-adjusted≤0.05.  
 
 

4.6. Validation with RT-qPCR 
For validation of RNA sequencing data total RNA from larger cohort was 
sampled. In the case of skin 37 patients and 32 controls (including the 12 + 12 
samples from RNAseq) were included. In the case of blood 59 patients and 33 
controls (including the RNA-Seq samples) were included. Total RNA was 
converted to cDNA using random primers and High Capacity cDNA Reverse 
Transcription Kit with RNase Inhibitor (Applied Biosystems). Duplex quant-
itative real-time PCR (qRT-PCR) analysis was performed using TaqMan Gene 
Expression Assays with VIC (housekeeping gene ActinB) and FAM (gene of 
interest) probes and TaqMan® Gene Expression Master Mix (Applied Bio-
systems). For skin, the following gene expressions were validated: SAA-1, SAA-
2, HBA-2, CALML-6, DGCR-6 L, CST E/M, OR2HR, ROMO-1, ADAMDEC, 
HCRT, KLRC-3, APOC-1. For blood OGT, UBE2J1, KIR2DL3, ENOSF1, 
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FAM219B, IL8R1 and MIAT, were validated. RT-PCR was performed using 
ABI PRISM 7900HT Fast Real-Time PCR System equipment (Applied Bio-
systems) and the ABI PRISM 7900 SDS 2.2.2 Software. Each reaction was 
made in four replicates in skin and three replicates in blood to minimize tech-
nical errors. The samples were normalized to the corresponding housekeeping 
gene Actin-B and the comparative ΔΔCT method was used to calculate the fold 
change for all the samples. 
 
 

4.7. Enzyme-linked immunosorbent assay of SAA 
Serum from 36 patients and 27 controls was defrosted and centrifuged at 1500 g 
at room temperature for 10 min. ELISA kit for human SAA1/2 (Invitrogen Cor-
poration) was used. 200-fold diluted human serum SAA1/2 standard was calib-
rated to a highly purified Escherichia coli-expressed recombinant protein. The 
sample measurements were performed with Tecan GeniOS Pro luminometer in 
duplicate and repeated 3 times on separate plates. Optical density (450 nm) 
readings were used to quantitatively express serum SAA1/2 results. The Human 
SAA1/2 concentrations for samples and controls were plotted based on the 
standard curve. Values obtained for serum were multiplied by 200 to correct for 
the overall dilution. The data for mean concentration followed normal distri-
bution, was plotted on a barplot and parametrically tested by unpaired t-test. 
 
 

4.8. Skin immunohistochemistry 
Skin biopsies were deparaffinized with 2× 4 min. xylene, 4 min. isopropanol, 
2× 4 min. 96% alcohol. The samples were next blocked with 3% hydrogen 
peroxide for 7 min and processed with proteinase K for 5 min. The slides were 
incubated with primary mouse monoclonal serum amyloid A antibody (Novus 
Biologicals) in 1:100 dilution for 30 min. and processed with detection anti-
bodies (DAKO REAL EnVision+ Dual Link, Single Reagents, HRP Rabbit/ 
Mouse) for 30 min. The sections were immersed in 3.3% diaminobenzidine 
(Dako Company) chromogen dye and hydrogen peroxide buffer solution for 4 
min. This created a brownish staining in the location of detection antibody. The 
background was dyed with hematoxylin, dehydrated with 2x 96% alcohol and 
2x xylene, covered with aqueous resin. The immunohistochemistry visual 
validation procedure was carried out by an independent pathologist.  
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4.9. Meta-analysis of previously published  
gene expression datasets  

The rationale for this procedure is apparent lack of overlap in DEGs when com-
paring previous studies in PD transcriptomics across tissues and transcriptomic 
methods (predominantly RNA microarray and RNA-Seq). To compare the 
current work with previous studies and provide a reanalysis of the data a search 
was conducted on PubMed. Minimal criteria for including previous gene 
expression results in our reanalysis were: 1) the list of DEGs is openly acces-
sible 2) the list is original data, 3) list does not contain selectively presented 
gene expressions, lists with statistical significance cut-offs were allowed, 4) 
sample set includes idiopathic PD vs control comparison, 5) there are enough 
lists per tissue type for further analysis (at least 3). The search yielded 3 lists 
from cortex (Henderson-Smith et al. 2016; Dumitriu et al. 2015; Stamper et al. 
2008), 5 from SN (Bossers et al. 2009; Simunovic et al. 2009; Cantuti-Castel-
vetri et al. 2007; Dijkstra et al. 2015; Durrenberger et al. 2012) and 5 from 
blood (Santiago and Potashkin 2015; Kedmi et al. 2011; Infante et al. 2015; 
Calligaris et al. 2015; Soreq et al. 2008). Details of the input lists can be found 
in Table 2. The meta-analysis of datasets was conducted using the robust rank 
aggregation (RRA) method by Kolde et al.(Kolde et al. 2012). This method by-
passes many obstacles that have not allowed for any reanalysis previously due 
to lack of complete DEG lists or different methods of significance calculation. 
RRA aggregates lists of DEGs by assigning a significance score to DEGs that 
appear more frequently in the top of ranked lists. RRA can be applied even with 
incomplete input data for example if only DEGs with significant p-values were 
published or a fold change threshold was applied. Another issue hampering 
aggregating DEG lists has been incongruent gene labeling, therefore all gene 
identifiers were converted to Entrez IDs prior to analysis with RRA. RRA 
analysis was conducted separately in each type of tissue (three in total: cortex, 
SN and blood). In order to allow for comparison between RNA microarray 
chips that vary in the number of DEGs identified with RNA-Seq data that 
identifies many more gene expressions an N parameter was calculated as N(i) + 
N(avg. u). Here N(i) denotes the number of genes present on all the different 
microarray chips used by the studies included in our meta-analysis and N(avg. 
u) denotes the average number of genes per microarray that were not included 
in the intersected N(i). The N was calculated separately for each set of ranked 
gene lists in different tissues. DEGs in the tissue specific RRA list were con-
sidered statistically significant at FDR ≤ 0.05. A functional pathway level re-
analysis was conducted from these lists with ClusterProfiler KEGG package for 
R. Here, DEGs with a score ≤0.05 were included. Score is a parameter of RRA 
that is not corrected against bias coming from multiple hypothesis testing and 
allows for more DEGs with lower significance to be added to pathway level 
analysis. The output pathways were considered statistically significant at 
stringent cutoff of FDR ≤ 0.05.  
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5. RESULTS 

5.1. Differential expression of genes and pathways in 
Parkinson’s disease skin 

RNA-Seq from 12 PD patients versus 12 controls from skin resulted in 1074 
differentially expressed genes at FDR≤0.05. A reanalysis excluded duplicate 
genes that yielded, in total 1068 unique DEGs. A pattern emerged with 82% 
(874 genes) of the DEGs being downregulated in PD skin. A heatmap of 50 
most significant DEGs is shown in Figure 1. Following pathway analysis con-
ducted initially with Ingenuity Pathway Analysis (IPA) resulted in 10 major 
functional networks being with significantly altered gene expression in PD. 
These functional pathway networks include:  
1)  gene expression, protein synthesis, dermatological disease and conditions 

(46/28 – first number is number of genes in the network, second is the 
number of significantly altered ones in our dataset);  

2)  dermatological diseases and conditions, immunological disease and inflam-
matory disease (35/23);  

3)  cellular assembly and organization, behavior, cell signaling (34/23);  
4)  cancer, immunological disease, cellular development (33/22);  
5)  connective tissue disorder, dermatological diseases and conditions, deve-

lopmental disorder (30/21);  
6)  lipid metabolism, molecular transport, small molecule biochemistry (28/21);  
7)  molecular transport, neurological disease, psychological disorders (28/20);  
8)  cellular movement, hematological system development and function, im-

mune cell trafficking (21/18);  
9)  cellular growth and proliferation, hematological system development and 

function, tissue development (21/16);  
10)  lipid metabolism, small molecule biochemistry, vitamin and mineral meta-

bolism (19/16).  
The IPA categorized only a small proportion of DEGs discovered, therefore a 
further manual classification followed. This yielded 6 broad functional cate-
gories including:  

1) cellular metabolism/mitochondrial dysfunction (23% of genes);  
2) protein metabolism/transport (16%);  
3) regulation of nuclear processes (12%); 
4) skin homeostasis (11%);  
5) cellular signaling and tumorigenesis (7%);  
6) immunological processes (7%).  
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Figure 1. 50 top DEGs (on the right; in rows) visualized in a cluster heat map. PD 
samples (in columns) are labeled s TY_ or ME_ (below) and coded orange (on the top). 
Control samples (in columns) are labeled NK_ (below) and coded green (on the top). 
Gene expression levels are illustrated dark blue for high expression and pale green for 
low expression.  
 
 
The largest group of dysregulated genes were involved in mitochondrial func-
tioning with 252 DEGs classified in this group, most of them downregulated 
(see Table 3). Genes (36/96) involved in mitochondrial respiration were sup-
pressed across all respiratory complexes. An elevated expression of peroxisome 
proliferator-activated receptor gamma coactivator-1α (PPARGC1A or PGC-1α) 
was found. PGC-1α is considered to be the master regulator of mitochondrial 
biogenesis and oxidative metabolism in mammalian cells (Lin, Handschin, and 
Spiegelman 2005). Auxiliary genes that regulate oxidative metabolism and anti-
oxidant responses were also predominantly downregulated. Other basal cell 
metabolism alterations included DEGs associated with fatty acid metabolism, 
oxidation of aldehydes, central mitochondrial transport genes, differential ex-
pression of mitochondrial ribosomal proteins (12 members), purine/pyrimidine 
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metabolism, steroidogenesis, glucose/carbohydrate, amino acid and iron/metal 
metabolism and detoxification. The second largest group of manually catego-
rized DEGs were involved in protein metabolism with 170 DEGs predomi-
nantly downregulated (Table 4). These include DEGs that code for ribosomal 
proteins, implicating translation. Another major change was found in protein 
degradation by ubiquitin-proteasome system (UPS) with downregulation of 11 
members of the proteasome complex. Next to downregulation of proteosomal 
genes lysosomal gene expressions were also predominantly downregulated in 
the skin. Another group consisted of downregulated extracellular proteases like 
ADAM metallopeptidase family members. Third large group (115 DEGs) of 
genes linked to epidermal and dermal homeostasis were deregulated in PD 
(Table 5). Genes involved in epidermal differentiation pathways such as kera-
tins and keratinocyte differentiation factors were downregulated and some of 
their receptors upregulated. 20 DEGs belong to epidermal differentiation 
complex (EDC) – a specialized unit involved in the process of epidermal corni-
fication and desquamation with a key DEG coding loricrin being down-
regulated. These genes code for proteins that generate the cornified envelope 
(CE) – a structure inside a fully mature keratinocyte that provides the mecha-
nical resistance, elasticity, and stability of the intact epidermis. Furthermore, 
DEGs coding for intracellular junction proteins showed altered expression. 
From DEGs expressed in the dermal layers of skin multiple members of the 
collagen family showed dysregulation. DEGs regulated cytoskeletal morpho-
logy were altered. Downregulation of several defencins, mucins and rnases was 
documented. Also, a few melanocytic DEGs were profiled including d-dopa-
chrome tautomerase and macrophage migration inhibitory factor, both down-
regulated. Fourth group of DEGs (128 DEGs) in PD skin affect nuclear pro-
cesses and epigenetic regulation. 14 DEGs associated with cell cycle func-
tioning were downregulated, many more DEGs associated with basal transcrip-
tion and degradation of DNA were mostly downregulated. DEGs related to 
chromatin remodeling and DNA binding, transcriptional/post-transcriptional 
modification and RNA splicing were differentially regulated, as well as a large 
group of miRNAs, snRNPRs and snoRNAs (Table 6).  

Next to reduced cell functioning reflected by alterations in protein and 
energy metabolism, proliferation and differentiation of skin cells pathways as-
sociated with tumorigenesis were altered. Examples include suppression of Ras 
signaling pathway, Wnt and NOTCH signaling pathways. Alterations in 
multiple growth factors were found such as fibroblast growth factor, insulin-like 
growth factor, transforming growth factor-β, nuclear factor-κβ, and other central 
signaling proteins, such as carcinoembryonic antigen proteins, epidermal 
growth factor and vascular endothelial growth factor family proteins (Table 7). 
Next to tumorigenesis immune pathways were affected with the most statis-
tically significantly downregulated DEG in our study – serum amyloid A1 
(SAA1) and its isoform SAA2 (also downregulated), which are known to be 
major acute phase proteins. Their functions span from inflammatory responses 
to cholesterol metabolism and amyloid aggregation. DEGs from various 



35 

immune cascades like chemokines, cytokines, tumor-necrosis-factor (TNF) 
family signaling, complement genes, immunoglobulins, interleukins, interferon 
signaling and T-cell signaling showed alterations in PD skin. Specific DEG from 
humoral immunity the HLA-DQA2 was upregulated in PD skin being previously 
associated with an increased risk for sporadic PD (Wissemann et al. 2013). 

Followingly a functional pathway reanalysis based on KEGG pathways was 
conducted with ClusterProfiler R package yielding 9 significantly altered path-
ways at FDR ≤ 0.05 (Table 8). Three KEGG pathways were associated with 
neurodegeneration. Huntington disease (HD) pathway contains genes that are 
involved in vesicular transport, Ca2+ signaling and mitochondrial dysfunction. 
AD pathway contains genes that increase in the production of amyloidogenic A-
beta peptides or affect posttranslational processing of proteins. PD pathway 
involves the aforementioned processes like UPS and mitochondrial functioning 
and axonal transport. A significant DEG level overlap between neurodegenerative 
disease in the CNS has previously been established (Labadorf, Choi, and Myers 
2018). Further KEGG pathways associated with different metabolic functions are 
significantly altered. Oxidative phosphorylation pathway entails downregulated 
DEGs in mitochondrial respiratory complex. Non-alcoholic fatty liver disease 
(NAFLD) pathway leads to lipid accumulation through insulin resistance and 
elevated oxidative process. Another pathway related to lipid metabolism affected 
in PD skin is thermogenesis pathway in which chemical energy is converted into 
heat in brown adipose tissue that is controlled by sympathetic nervous system. 
Retrograde endocannabinoid signaling pathway affects synaptic plasticity and 
neurotransmission in the CNS. In the skin, changes in endocannabinoid system 
are linked to melanoma (Río et al. 2018), which is interesting considering the 
epidemiological bidirectional link between PD and melanoma (Liu et al. 2011).  
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5.2. Differential expression of genes and pathways in 
Parkinson’s disease blood 

RNA-Seq from 12 PD patients versus 12 controls from blood resulted in 25 
differentially expressed genes at FDR≤0.05 (Table 9). Most of DEGs in blood 
are upregulated, but notably UBE2J1 (also known as HIP2) is downregulated, 
with a foldchange of 0.63, which has previously even been proposed as a blood-
based biomarker in iPD (Su et al. 2018). OGT gene product plays a role in 
protein glycosylation and has been associated with neuroprotection and its dys-
function with neurodegenerative diseases such as AD (Wani et al. 2017) and 
intellectual disability (Pravata et al. 2020). LUC7L3 with functions also as-
sociated with protein metabolism has been associated with AD (Tang and Liu 
2019). STAT4 has been proposed a biomarker in PD from post mortem micro-
array reanalysis work (Diao et al. 2012). PTPN4 is associated with protein tyro-
sine phosphatases functioning and has shown deregulation in CSF in PD 
(Hossein-nezhad et al. 2016). A2M gene variants are associated with increased 
risk in PD in a meta-analysis (Guo et al. 2016). CD36 has been implicated in 
fatty acid metabolism in PD (Abumrad and Moore 2011). IL18R1 is a key 
receptor in neuroinflammation and has been associated with multiple sclerosis 
(Gillett et al. 2010) and its agonist IL18 has been associated with PD (Alboni et 
al. 2010). This finding is of particular interest, as it stays relevant in our meta-
analysis (see below). PYHIN1 is associated, again with neuroinflammation and 
is implicated in PD (Sarkar et al. 2020). PPT1 is the key protein implicated in 
neuronal ceroid lipofuscinosis type 1, a young onset neurodegenerative disease, 
and contributes to parkinsonian features (Dearborn et al. 2015). PCGF3 has been 
proposed as a candidate gene in PD in an eQTL analysis (Kia et al. 2019). PKM2 
has been proposed as a biomarker in PD (Wei et al. 2020). RAB32 is implicated in 
PD (Waschbüsch et al. 2019). PRPF4B is deregulated in PD (Pinho et al. 2016). 
STARD9 is implicated in AD (Saad, Brkanac, and Wijsman 2015). Most DEGs 
are associated either with protein metabolism or neuroinflammation. Functional 
pathway analysis was conducted based on KEGG pathways with a lowered 
significance cutoff at p-adj. ≤0.1 yielding one significantly altered pathway in 
PD blood – cholesterol metabolism pathway.  
  



43 

Table 9. All differentially expressed genes in PD blood. The gene names in bold text 
reflect the upregulated genes, while all others were downregulated.  

DEG Name Adjusted 
p-value 

UBE2J1 0,0025 
OGT 0,0045 
C15orf17 0,0056 
LUC7L3 0,0056 
C12orf33 0,0086 
STAT4 0,0086 
PTPN4 0,0086 
A2M 0,0097 
ENOSF1 0,0112 
MIAT 0,0121 
CD36 0,0169 
IL18R1 0,0189 
PYHIN1 0,0189 
PPT1 0,0189 
LOC253039 0,0189 
SYTL2 0,0230 
EPM2AIP1 0,0232 
PCGF3 0,0254 
PKM2 0,0254 
ZNF767 0,0325 
RAB32 0,0371 
PRPF4B 0,0375 
STARD9 0,0385 
AGPAT4 0,0487 
GMPPA 0,0487 
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5.3. Comparison of the peripheral tissue RNA-Seq results 
Using the same strict criteria for statistical significance for RNA-Seq results from 
whole venous blood and skin showed how different the results in these tissues are 
with skin yielding >1000 DEGs and blood only 25 DEGS at FDR≤0.05. There 
was no overlap of unique DEGs in PD blood and skin. There was no overlap in 
the comparable pathway analysis with KEGG pathways (Figure 2) 
 
 

 
Figure 2. Illustrative comparison of RNA-Seq data from PD blood and skin showing no 
overlap.  
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5.4. Results of the meta-analysis of transcriptomic studies 
from blood, cortex and Substantia nigra 

PubMed search of previous transcriptomic datasets yielded enough original 
studies for three different tissue types – blood, SN, and cortical brain tissue. 
Five previously published lists from PD blood (Santiago and Potashkin 2015; 
Kedmi et al. 2011; Infante et al. 2015; Calligaris et al. 2015; Soreq et al. 2008) 
using either microarray or RNA-Seq methods and the current blood RNA-Seq 
results were reanalyzed using the RRA method. This created an aggregated 
ranked DEG list, where only one gene from PD blood remained significant: 
IL18R1. It is an interleukin receptor linked with proinflammatory responses that 
belongs to the immunoglobulin superfamily. Functional pathway analysis of the 
top 163 DEGs from blood RRA list (score ≤0.05) found two altered KEGG 
pathways in PD: hematopoietic cell lineage (FDR = 0.001) and prion diseases 
(FDR = 0.037). Three previously published lists from PD post mortem cortex 
(Henderson-Smith et al. 2016; Dumitriu et al. 2015; Stamper et al. 2008) using 
either microarray or RNA-Seq methods were reanalyzed despite differences in 
the exact cortical location and cell composition of samples. The aggregated 
ranked list yielded 43 DEGs. Notable DEG is PENK, which has been implicated 
in PD mouse models (Bissonnette et al. 2014). Heat shock proteins HSPA1B, 
HSPA6 and SERPINH1 were significant and have been associated with neuro-
degeneration (Paul and Mahanta 2014). Many growth factors like VGF and 
CSF3 were elevated, especially BDNF which has been proposed as a potential 
therapeutic agent in PD (Palasz et al. 2020). Functional pathway analysis based 
on 475 DEGs revealed one altered KEGG pathway: legionellosis, which impli-
cates toll like receptor signaling, phagocytosis, heat shock proteins and apopto-
sis. Five previously published lists from PD SN (Bossers et al. 2009; Simunovic 
et al. 2009; Cantuti-Castelvetri et al. 2007; Dijkstra et al. 2015; Durrenberger et 
al. 2012) using either microarray or RNA-Seq methods were reanalyzed despite 
differences in extraction of cells of interest (laser microdissection vs. whole 
tissue). Here, two significant DEGs were found: LMO3 and RIMS3. LMO3 
affects neurogenesis and inhibits tumor suppressor p53 and has been implicated 
in SN of PD (Briggs et al. 2015). RIMS3 regulates synaptic vesicle transport and 
is relevant in neurotransmitter release and has also shown to be affected in PD, 
previously (Chandrasekaran and Bonchev 2013). Both DEGs are associated 
with aberrant microRNA regulatory network functioning. Functional pathway 
analysis from 390 input DEGs yielded four KEGG pathways in PD: calcium 
signaling pathway, synaptic vesicle cycle, proteoglycans in cancer and dopami-
nergic synapse. All these pathways have been previously associated with PD 
(Zaichick, McGrath, and Caraveo 2017; Esposito, Ana Clara, and Verstreken 
2012; Heindryckx and Li 2018). An illustration from the aggregation of 
previous CNS tissues can be seen in Figure 3. A direct comparison of the three 
RRA lists from blood, cortex and SN showed no overlap in either DEGs or 
pathways of these aggregated lists. A comparison of the RRA lists with the 
RNA-Seq results from skin showed two DEGs overlapping between cortex and 
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skin: G0S2 and C6, but no pathway level overlap (Figure 4). G0S2 regulates cell 
cycle and its differential expression has been found in PD monocytes (Groz-
danov et al. 2014). Complement component 6 (C6) is implicated in immuno-
modulatory pathways and has been associated with PD (McGeer and McGeer 
2004). 
 

 
 
Figure 3. A schematic overview of previously published RNA-Seq and microarray 
studies from central nervous tissues in PD – cortex and SN showing the number DEGs 
in each original study, the number of DEGs in RRA and the number of enriched 
functional pathways in RRA. 



47 

 
Figure 4. A schematic overview of the studies involved in RRA meta-analysis (51/39 is 
the number of Parkinson’s disease patients and healthy controls in the original study, 
respectively). List of DEGs for cortex and SN are not included. 
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5. . Results of serum amyloid alpha profiling  
in Parkinson’s disease using serum ELISA and  

skin immunohistochemistry  
The skin RNA-Seq showed a top significant downregulation of two gene ex-
pressions coding isoformic proteins that prompted a further investigation of 
their translation and accumulation in a larger PD cohort. These DEGs of parti-
cular interest were serum amyloid alpha 1 (SAA1) and SAA2 with lowered 
expression levels in PD patients (logFC -2.75 and -1.65, respectively). SAA1 
and -2 gene expression levels in skin were validated using qRT-PCR, followed 
by ELISA from blood serum measuring protein levels of SAA1/2 combined. 
Lastly SAA1/2 protein was visualized in skin using immunohistochemistry. The 
validation qRT-PCR analysis from skin demonstrated a 1.68-fold downregu-
lation of SAA2 gene (p = 0.0372) and 1.34-fold downregulation of SAA1 gene in 
PD, however the result was not statistically significant between groups using 
this method (Figure 5). ELISA analysis of serum SAA 1/2 protein showed 
statistically significantly decreased protein concentration in PD patients by 
50.9% compared to controls (Figure 6). Immunohistochemistry from skin 
biopsy samples did not detect visualizable SAA 1/2 protein in either of the two 
groups (Figure 7). 
 
 

 
 
Figure 5. qRT-PCR results from skin showing relative gene expression levels of SAA1 
(A) and SAA2 (B) genes. Barplots show mean fold changes. (A) Demonstrating not 
significantly (p = 0.25) lowered SAA1 levels in PD patients by 1.34-fold. (B) Demon-
strating significantly (p = 0.037) lowered SAA2 levels in PD patients by 1.68-fold.  

5
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Figure 6. Serum ELISA SAA1/2 concentration showing decreased concentration of 
SAA1/2 by 50.9%. Bars show mean concentration with upper percentiles, 66.8 μg/ml 
for healthy controls and 32.8 μg/ml for PD patients (p = 0.0054). 
 
 

 
 
Figure 7. Representative immunohistochemistry results for SAA 1/2. Control (A) and 
PD patient (B). Magnification: 40×. Dye: Hematoxylin and immunohistochemical 
labeling for serum amyloid alpha. Both in control and PD patient no detectable visual 
staining can be demonstrated. 
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6. DISCUSSION 

6.1. Transcriptomics from skin in Parkinson’s disease 
The current and first RNA-Seq from PD skin (Study I) reveals a state of global 
suppression with downregulation of over 80% of differentially expressed genes 
(Planken et al. 2017). These changes categorize into interdependent and disease 
relevant functional pathways that reveal impaired homeostasis of the skin tissue. 
This study in the skin supports the assumptions that molecular level changes in 
PD are systemic and mirrored in non-neuronal peripheral tissues. The skin study 
had two main focuses – establishing that changes in CNS are mirrored in skin 
and finding molecular level mechanisms that explain the elevated prevalence of 
melanoma and non-melanoma skin cancers in PD. A third objective was to 
demonstrate the applicability of skin biopsies as an accessible source in vivo for 
biomarker discovery studies.  
 
 

6.1.1. Overlapping changes in Parkinson’s disease skin and brain 

Molecular PD pathogenesis in dopaminergic cells of the CNS is driven by im-
pairment in two major biological functions: mitochondrial dysfunction (Michel, 
Hirsch, and Hunot 2016) and protein metabolism (and the accumulation of 
pathological α-synuclein) (Olanow and McNaught 2011). In our study we found 
gene expression changes supporting these pathologies in the skin tissue. For 
example, a large group of DEGs categorized into pathways associated with 
mitochondrial functions (23% of DEGs) is affected. This is exemplified by the 
suppression of 1/3 of mitochondrial electron transfer chain components in PD 
skin. When these genes are downregulated, less ATP is produced while genera-
tion of reactive oxygen species (ROS) remains or is even elevated (Drechsel and 
Patel 2008). These changes have been consistently shown in SN and blood 
platelets of PD, and less consistently shown in other non-neuronal tissues 
(Winklhofer and Haass 2010). Another set of observed downregulated genes is 
responsible for mitochondrial proliferation and transport, for example a key 
enzyme, the mitochondrial polymerase POLRMT which is known to cause 
neurological diseases (Oláhová et al. 2021). Aberrant mitochondrial prolifera-
tion has mostly been linked to key genes (like parkin, PINK1, DJ1) associated 
with familial Parkinson (Büeler 2010) but we describe converging changes in 
iPD. Probable cause here is the oxidative damage from ROS to mitochondrial 
DNA (mtDNA) leading to less functional mitochondrial proteins that creates a 
circulus vitiosus of energy failure (Winklhofer and Haass 2010). Other found 
changes that fuel this circle are alterations in beta-oxidation of fatty acids 
creating an influx of ROS. Suboptimally functioning mitochondria create a 
backlog of incompletely oxidized lipid metabolites which, in turn, has been 
associated with speeding up the accumulation of α-synuclein (Ruipérez, Darios, 
and Davletov 2010). An important concordance in the skin to previous CNS 
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tissue studies in PD is altered transcription of PGC-1α, which is the central 
inducer of mitochondrial biogenesis (Lin, Handschin, and Spiegelman 2005). 
PGC-1α has been shown be downregulated in SN and peripheral blood in PD 
(Su et al. 2015; Yang et al. 2018). It could be hypothesized that the observed 
upregulation of PGC-1α in the skin is reactive to counter failing mitochondria. 
Induced expression of PGC-1α has been considered a potential therapeutic 
approach and could ameliorate phenotype, but on the other hand could create 
elevated toxicity in model animals (Clark et al. 2012; Martin et al. 2012). 

The second most robust finding in is the involvement of DEGs associated 
with protein misfolding, aggregation and deposition – known disease mecha-
nisms in PD (Ebrahimi-Fakhari, Wahlster, and McLean 2012). The downregu-
lation begins already at the level of ribosomal proteins, as well as translation 
initiation and elongation factors. These changes could be result from oxidative 
stress and can be considered as compensatory to limit energy expenditure in the 
already compromised cell (Jenner 2003). Major processes linked to PD are 
degradation of soluble intracellular proteins by the UPS (Betarbet, Sherer, and 
Greenamyre 2005), showcased in the skin by downregulation of its components. 
Other key changes were found in the autophagy–lysosomal pathway indicating 
aberrant processing of larger subcellular components. Downregulation of genes 
in these two major cellular processes in the skin leads to dysfunctional protein 
quality control and turnover which contributes to the misfolded protein buildup 
and cytotoxicity. The differential KEGG pathways from skin point towards 
neurodegeneration-specific changes underlining the similarities between neuro-
degenerative processes. The fact that pan-neurodegenerative pathways and key 
DEGs are mapped in skin in PD show that disease-specific changes are taking 
place in a non-neuronal peripheral tissue.  

 

 
6.1.2. Perturbation of basal skin homeostasis and tumor vulnerability 

The next connection we sought out to investigate was if epidemiologically 
found predisposition to melanoma and skin cancer in PD patients is backed by 
changes in basal homeostasis of the skin. Many DEGs profiled regulate mole-
cular composition of epidermis and dermis that could lead to skin tissue fragi-
lity and lower tolerance to environmental stressors. For example, major changes 
in epidermis shows a downregulation of parallel pathways of the cornification 
and desquamation processes, highlighted by the suppression of the epidermal 
differentiation complex (EDC), which contains 57 genes crucial for the diffe-
rentiation process located within a tight cluster on chromosome 1q21 (20 genes 
of EDC suppressed) and ephrin A1, which is a central regulator of epidermal 
growth, located near the EDC on chromosome 1q arm. In addition, we observed 
the decreased expression of all genes of the stratified epithelium-secreted pepti-
de complex. These are genes that regulate the cross-linking of the cornified 
envelope (CE) proteins that form a protective structure in a mature keratinocyte. 
Furthermore, the cystatin/cathepsin/transglutaminase pathway, which showed 
downregulation, influences the desquamation of the stratum corneum and its 
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dysregulation causes disturbance of skin barrier function (Zeeuwen, Cheng, and 
Schalkwijk 2009). Next, we observed suppression of several different junction 
and desmosome proteins and deregulation of the antimicrobial defense in PD, 
indicating that the desmosomal adhesions and anchoring junctions are defective 
in PD, thereby also contributing to impairment of structural integrity and barrier 
function of the skin. In addition, the dermal genes were affected, characterized 
by altered levels of several members of the collagen family, as well as deregula-
tion of cytoskeletal remodeling and dynamics. These changes contribute to im-
pairment of tissue elasticity predisposing to premature aging of skin by im-
pacting the structural and compositional remodeling.  

From another focal point, many DEGs were affected that regulate antitumor 
mechanisms of the skin. For example, several cyclins and cyclin-dependent 
kinases and their activator were downregulated. DEGs related to DNA/mtDNA 
repair and degradation were downregulated as well. This leads to buildup of 
damaged DNA and is another tumor predisposing factor. Last group of genes 
were associated with epigenetic regulation of gene expression. For example, 
transcriptional and posttranscriptional modifications and non-coding RNA pro-
cessing. Next to general downregulation of normal nuclear processes a large set 
of predominantly downregulated tumor suppressor and oncogenes were seen. 
Major oncogenes, like Ras and other G-protein signaling, WNT, NOTCH path-
ways were affected. The WNT signaling pathway is especially relevant because 
it plays a major role in skin differentiation and proliferation, especially of the 
melanocytes, and its alterations have been associated with the development and 
progression of both melanoma and non-melanoma cancers (Lim and Nusse 
2013; Gajos-Michniewicz and Czyz 2020). WNT signaling has, notably, been 
associated with development and maintenance of midbrain dopaminergic neu-
rons and its perturbations with neurodegeneration (Berwick and Harvey 2012; 
Arenas 2014) underlining the similarities between melanocytes and dopami-
nergic neuromelanin producing neurons of the midbrain. Another signaling 
pathway affected is the retrograde endocannabinoid signaling pathway which 
has been linked to melanoma (Río et al. 2018) and is affected in PD brain 
(Giuffrida and Martinez 2017; Castillo et al. 2012). The findings from PD skin 
indicate a state of chronic inflammation.  

Taken together, these findings indicate towards elevated oncogenic stress in 
the skin. We also highlighted some pathways that have been especially linked to 
melanoma. The changes registered in epidermis and dermis show an impairment 
in homeostasis, differentiation, maturation and structural integrity of the skin, 
leading to an increase in vulnerability in PD skin to mutagenic hazards, and thus 
provide an explanation for the risk of melanoma/skin cancer in this patient pop-
ulation. A combination of these internal and external tumorigenic factor might 
lead to observed cell cycle withdrawal as a sign of stress. Oncogenes trigger 
senescence or, potentially, terminal differentiation in rapidly proliferating 
tissues such as the skin (Gandarillas 2012; Gorgoulis and Halazonetis 2010) 
which in itself could contribute to clinically observed skin ailments such as 
impaired wound healing or tumorigenesis in PD (Figure 8).  
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Figure 8. Illustration of central processes in PD skin converging into basal cellular 
stress and homeostatic imbalance that contributes to skin conditions in PD and elevated 
risk for tumorigenesis. 
 
 

6.1.3. Applicability of skin biopsies in transcriptomics 

Most previous studies have emphasized the connection of melanocytes and 
neuromelanin producing dopaminergic neurons in PD. However, similarly to 
SN, where dopaminergic cells comprise a minority of the total cell population, 
melanocytes comprise only around 10% in the skin (Yamaguchi, Brenner, and 
Hearing 2007). The current study was not set up to evaluate the gene expression 
changes occurring specifically in the small population of melanocytes. We 
made our focal point to profile the skin as a whole tissue with mixed cell popu-
lations, making sampling and sample processing steps more robust. However, 
applied setup comes with some limitations. In every mixed cell population gene 
expression levels vary between different cell types and observed changes could 
be due to differences in cell type proportions between samples (Kuhn et al. 
2012). One limitation of our study is the relatively low log2FC levels observed 
for gene expression, which might pose difficulties in distinguishing the true 
signal from noise, thus it cannot be excluded that some of the genes with milder 
expression levels in our pathway analysis might be attributable to noise. A 



54 

factor that affects the skin particularly is the gene expression change caused by 
UV radiation (Goldinger et al. 2015; Weinkauf et al. 2012). In the current work 
the biopsy was collected from non-exposed side of the underarm in hopes of 
diminishing that factor. Furthermore, creams or solutions that have a biological 
effect can affect gene expression in skin (Namkoong, Kern, and Knaggs 2018). 
This is a factor we did not account for in our discovery study but if follow ups 
are conducted it might be reasonable to limit these factors. All in all, taking a 
punch biopsy from non-lesional skin tissue is an easy procedure that does not 
require ample preparation or experience (Nischal, Nischal, and Khopkar 2008). 
Its availability and low risk for the patient together with the promising findings 
of the current paper should allow skin biopsies to be used more often in PD 
transcriptomics. 
 
 

6.2. Transcriptomics from blood in Parkinson’s disease 
RNA-seq results from blood and skin yielded very different number of signifi-
cantly changed DEGs (25 vs 1068), but no overlap (Kurvits et al. 2021). With 
only a few DEGs from blood no clear up- or downregulation pattern was found 
(Study II). Perhaps most notable DEG in the blood was UBE2J1 which has 
previously shown to have altered expression in PD venous blood – (Scherzer et 
al. 2007; Kauczynska et al. 2013; Molochnikov et al. 2012) and also shows 
links to HD (Kalchman et al. 1996). UBE2J1 is involved in UPS, which targets 
proteins for degradation (Smith et al. 2012). Another DEG to especially high-
light is PKM2 which codes pyruvate kinase M2, a rate-limiting glycolytic en-
zyme which mediates cellular antioxidant responses by diverting glucose flux 
into the pentose phosphate pathway and generating reducing potential for 
detoxification of ROS (Anastasiou et al. 2011). In model animals modifying 
PKM2 functioning has shown beneficial effects on neuron functions by re-
ducing ROS induced stress. PKM2 has been proposed as a potential target for 
PD treatment (Wei et al. 2020). Other DEGs are discussed in the results section. 
It is remarkable that even though we found only very few genes with signifi-
cantly changes expression from PD blood, many have previous specific PD 
related implications. Some of them point towards common mechanisms 
between neurodegenerative disease, especially AD. Even though the observed 
differential gene expressions are few, the fact that most of them are previously 
described in PD support the hypothesis of PD as a multisystem disorder. As 
aforementioned there is very low concordance of DEG level changes from PD 
blood, even though previous, mostly microarray studies have reported signifi-
cantly more DEGs (Borrageiro et al. 2017). This limits the potential of finding 
reproducible biomarkers. Blood has tissue specific factors which limit discer-
ning signal from noise such as heterogenous cell populations, systemic factors 
like metabolic changes and medications. If pathway level associations are con-
sidered, only one KEGG pathway from blood was significantly enriched – the 
cholesterol metabolism. Even though brain and peripheral tissue cholesterol 
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metabolism are seperated by the blood-brain barrier, epidemiological studies of 
serum cholesterol levels have shown an association between higher levels of 
cholesterol and lower risk of PD (Guo et al. 2015; Wei et al. 2013), although 
these findings are not constant and even opposite associations have been 
reported (Gudala, Bansal, and Muthyala 2013). Currently there are no human 
studies that directly investigate brain cholesterol metabolism in PD, but a brain-
derived cholesterol metabolite 24-HC is decreased in the plasma of patients 
with PD (Huang et al. 2019). In neuronal cultures cholesterol metabolism is im-
pacted by α-synuclein and leads to impaired formation of synapses and less 
neurotransmitter release (Alecu and Bennett 2019).  
 
 

6.3. Meta-analysis with RRA 
Although blood is an easily obtainable tissue, the scarcity of DEGs necessitated 
a comparison of our results with previous studies. Since in this study RNA-Seq 
was performed only from peripheral tissues in comparing these results with 
transcriptomic studies from the CNS was in order. Therefore, a meta-analysis 
aggregating the results of previous studies was conducted in hopes of finding 
robust changes, especially from blood. In order to be able to analyze both 
microarray and RNA-Seq data the RRA method was chosen (Kolde et al. 2012). 
In the analysis an aggregated list of 6 studies (including the current one) from 
blood yielded only one significant DEG in blood – IL18R1. This protein media-
tes neuroinflammatory processes, but currently has very limited links to PD 
(Kosloski et al. 2013). We propose IL18R1 as a potential robust marker, but 
functional studies revealing its central and peripheral pathomechanisms are still 
needed. Also, a pathway level reanalysis of the aggregated DEG list was con-
ducted. Two significant pathways were found: hematopoietic cell lineage and 
the prion diseases pathway. Hematopoietic cell lineage pathway is implicated in 
immune system functions and has been linked to PD blood (Schlachetzki et al. 
2018; Soreq et al. 2008). Since this work concentrated only on profiling the 
gene expression changes, future functional studies for this pathway and its rela-
tion to PD pathology are needed. The other significant pathway, the prion 
diseases pathway has a more straightforward connection to PD pathology as α-
synuclein has prion-like propagating qualities (Brundin and Melki 2017). In 
order to better link the proposed multisystem disorder, current peripheral tissue 
results as well as the aggregated list from blood were compared with combined 
findings from CNS. Two specific localizations yielded enough studies for the 
meta-analysis- the cortex and SN. Surprisingly, no overlap in DEGs or path-
ways between these tissues was seen. An aggregated list of three cortical tissues 
showed many significant DEGs, notable ones being PENK, heat shock proteins 
HSPA1B, HSPA6 and SERPINH1 and growth factors VGF, CSF3 and BDNF. A 
single KEGG pathway was significant – legionellosis. This pathway underlines 
the importance of cellular stress and proinflammatory responses in PD. It must 
be considered that a relatively higher number of DEG level findings that do not 
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converge on the pathway level might be due to lower number of input studies (3 
vs. 5 and 6 in other tissues). The meta-analysis from the canonically PD-patho-
logy affected SN tissue found only two DEGs – LMO3 and RIMS3 that warrant 
further functional studies. Considering that dopaminergic cells comprise a 
minority of SN cell populations, differences in extraction of cells of interest 
(laser microdissection vs. whole tissue) could be the limiting factor to finding 
more DEGs. On the other hand, functional pathway analysis yielded four 
KEGG pathways (calcium signaling pathway, synaptic vesicle cycle, proteo-
glycans in cancer and dopaminergic synapse) that align with previously des-
cribed PD pathogenic mechanisms. Comparison across central and peripheral 
tissues did not show the expected overlap between specific DEGs nor pathways. 
The only overlapping findings were changes in G0S2 and C6 gene expressions 
between the aggregated list of cortical tissues and the current skin study. This 
underlines the tissue-specificity of gene expression but does not invalidate the 
notion of PD as a multisystem disorder. PD pathology seems to be quite 
complex based on DEG profiles between studies and tissues. The possibility of 
different converging pathways that lead to core dysfunction in PD might be the 
reason why transcriptomic studies so far have failed to yield robust reproducible 
results. Another factor in the light of this heterogeneity is the lack of original 
studies allowing for reproducible results. We report RRA to a be a useful tool in 
aggregating the future original studies in order to find robust changes instead or 
increasing the sample size in a single study.  
 
 

6.4. Serum amyloid alpha in Parkinson’s disease  
peripheral tissues 

The top downregulated gene expressed in PD skin was SAA1, with its isoform 
SAA2 also being downregulated. This prompted a follow-up study (Study III) to 
elaborate how robust and translatable these DEG level changes are (Kurvits et 
al. 2019). Indeed, the downregulation was validated by qRT-PCR from skin. 
SAA1/2 in blood were below the detection levels using RNA-sequencing, but on 
protein levels showed lower concentrations in PD serum, implying SAA1/2 is 
secreted into blood. SAA1/2 proteins were not detectable from PD skin using 
immunohistochemistry and Western blot methods as the quantity is physiologi-
cally low in normal skin and positive staining is seen only in patients suffering 
from AA-amyloidosis in chronic inflammation, certain cancers, or genetic 
defects (James et al., 2011). Notwithstanding its low quantities in skin SAA is 
an important autocrine modulatory protein and is induced by inflammatory 
signals (de Seny et al. 2013). Elevated SAA levels have been found in patients 
of all stages of melanoma (Findeisen et al. 2009). This is an interesting link 
considering the higher prevalence of melanoma in PD patients. Another quality 
of SAA might render it being especially vulnerable to ROS mediated cellular 
stress. SAA is intrinsically disordered protein lacking fixed three-dimensional 
structures under physiological conditions, allowing the same polypeptide to 
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undertake different interactions with different consequences (Zhang et al. 2013). 
Another intrinsically disordered protein is α-synuclein, which causes PD patho-
logy (Kirik and Björklund 2003). It could be that SAA has similar vulner-
abilities as α-synuclein causing it to aggregate. Being an acute phase protein 
SAA is elevated in the CNS in AD (Liang et al. 1997; Kindy et al. 1999) The 
observed downregulation of peripheral SAA expression could be reactive to 
mitigate the neuroinflammatory responses or the aggregation potential of SAA. 
How SAA acts in the CNS in case of PD and whether its expression in the 
periphery affects its central functioning, is largely unknown.  
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7. CONCLUSIONS 

1) We profiled PD skin using RNA-Seq. The results show a pattern of global 
downregulation of differentially expressed genes that implicate:  

a) cellular processes affected in PD – mitochondrial function and protein 
metabolism;  
b) epidermal and dermal homeostasis, differentiation, immune responses, 
and tumorigenesis.  
• This observed vulnerability in PD skin to mutagenic hazards 

provides an explanation for the elevated risk of melanoma/skin 
cancer and other skin ailments, such as impaired wound healing in 
PD.  

• The mirroring of disease-specific transcriptional patterns in the skin 
compared to PD brain points towards a multisystem impairment in 
PD.  

 
2) We profiled PD whole blood using RNA-Seq. The results show only very 

few differentially expressed genes, but, on the other hand most of these are 
previously implicated in PD pathology.  

• Single significantly affected pathway is the cholesterol 
metabolism pathway.  

• Total number of differentially expressed genes could be low due 
to heterogenous and dynamic nature of blood as a tissue, but the 
concordance with previous findings in PD implies the 
multisystem impairment in PD.  

• Blood and skin did not yield a single overlapping differentially 
expressed gene or pathway upon direct comparison.  

 
3) We investigated two particularly interesting DEGs from skin: SAA1 and 

SAA2 and found that the downregulation on transcriptional level was mir-
rored in lowered quantities of SAA-protein in blood. However, due to low 
quantities we were not able to visualize SAA protein in the skin. 

 
4) We compared previous transcriptomic studies using a novel approach of 

RRA that enabled comparing microarrays and RNA-Seqs with each other 
regardless of applied statistical tests.  

• Three different tissues of mixed cell populations – cortex, SN, and 
blood – had enough original datasets to be included in the 
analysis.  

• The results showed surprisingly few robust DEGs and pathways 
underlining:  

a) the importance of tissue-specific differences in gene expression;  
b) calling for more original studies and meta-analyses to produce repro-
ducible robust findings. 
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4.1) Notable DEGs of interest from our sample set and from the RRA 
analysis are:  
PGC-1α and SAA1/2 from skin,  
UBE2J1 and IL18R1 from blood,  
LMO3 and RIMS3 from SN,  
PENK from cortex and  
G0S2 and C6 from cortex and skin.  
These DEGs showed most robust changes and warrant further 
functional studies to evaluate their biomarker potential.  

4.2) Notable KEGG pathways are:  
hematopoietic cell lineage and prion diseases pathway from blood;  
calcium signaling, synaptic vesicle cycle, proteoglycans in cancer 
and dopaminergic synapse pathway from SN;  
and legionellosis pathway from cortex. 

 
• Taken together, there is promise in sampling peripheral tissues for 

transcriptome studies in PD in hopes of finding biomarkers or 
transcripts that drive key pathological mechanisms because of  

a) accessibility of these peripheral tissues in vivo and  
b) their comparability to PD-specific changes in CNS. 
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9. SUMMARY IN ESTONIAN  

Parkinsoni tõbi kui multisüsteemne haigus:  
Parkinsoni tõve patsientide naha ja  

vere kogu transkriptoomi uuring 

Parkinsoni tõbi (PT) on Alzheimeri tõve järel sageduselt teine neurodegenera-
tiivne haigus, mida iseloomustab liigutushäire, mille kliinilisteks sümptomiteks 
on bradükineesia, treemor ja rigiidsus (Lees, Hardy, and Revesz 2009). Liigu-
tushäire on PT puhul tingitud ajukoe mustaines (Substantia nigra) paiknevate 
dopaminergiliste neuronite hukkumisest. Lisaks on haigustunnuseks patoloogi-
lise valgu – α-sünukleiini kuhjumine ajukoes. Täna pole täielikult selge, mis 
vallandab ja määrab patoloogiliste mehhanismide kulgu. Samuti pole olemas 
kindlaid biomarkereid, mis aitaksid haigust avastada varases faasis. Seetõttu 
saab haigust diagnoosida alles siis, kui PT avaldub kliiniliselt. Avaldumise 
hetkeks on aga umbkaudu 80% dopaminergilistest  neuronitest juba hukkunud. 
Liigutushäirele lisaks on PT-l teisigi spetsiifilisi sümptome, mida nimetatakse 
mittemotoorseteks sümptomiteks. Antud töö fookuses on nahaprobleemide sage 
esinemine, näiteks seborroiline dermatiit, haavaparanemise probleemid ja hüper-
hidroos (Gregory and Miller 2015). Samuti on PT-ga patsientidel oluliselt 
kõrgem risk melanoomi tekkeks võrreldes samaealise üldpopulatsiooniga (R. 
Liu et al. 2011). Ja vastupidi, nendel patsientidel, kellel endil või kelle lähisugu-
lastel on esinenud melanoom, on kõrgenenud risk PT tekkeks (Olsen, Friis, and 
Frederiksen 2006). See epidemioloogiline seos viitab selgelt, et nahk ning eriti 
melanotsüüdid on PT-spetsiifiliselt mõjutatud. Kuigi PT saab vaadelda kui 
keskaju dopaminergiliste neuronite haigust, siis käeoleva töö hüpotees väidab, 
et ka perifeersed mitteneuronaalsed koed on haigusspetsiifiliselt mõjutatud.  

Ainult ca 10%-l patsientidest on perekondlik PT (Klein and Westenberger 
2012). Enamik ehk 90% kannatab sporaadilise PT all, mille riski suurendavad 
sagedased madala patogeensusega geenide variandid (Lohmueller et al. 2003). 
Teaduskirjanduse põhjal ilmneb, et patogeensed geenivariandid kirjeldavad 
ainult 20% kogu PT riskist (Nalls et al. 2019). Siit järeldub, et PT patoloogias 
on suur roll paljudel muudel faktoritel, näiteks geeniekspressiooni muutustel või 
nende produktide, valkude funktsioneerimisel. Tuginedes eelöeldule on PT 
muutuste profileerimiseks antud töös valitud transkriptoomika ehk geenieks-
pressiooni muutuste meetod. Transkriptoomika puhul on oluline, millisest koest 
proov võtta, kuna geeniekspressioon on koespetsiifiline. Arvestades, et trans-
kriptoomikat saab keskajust teha ainult peale surma, on teiste ligipääsetavate 
kudede leidmine eluspuhuseks diagnostikaks oluline. Potentsiaalsete huvi-
pakkuvate kudede hulka võib lugeda naha, sest PT patsientidel esineb üldpopu-
latsioonist rohkem nii melanoomi kui ka teisi spetsiifilisi nahaprobleeme (R. 
Liu et al. 2011; Gregory and Miller 2015). Naha kõrval on teine huvipakkuv 
kude veri, sest see on kõige lihtsamini kogutav kude ja ringeldes kogu orga-
nismis, sisaldab ta endas palju süsteemset informatsiooni. Selgitamaks, kas PT 
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on multisüsteemne haigus, on meie eesmärgiks kaardistada PT geeniekspres-
siooni RNA sekveneerimise abil mitteneuronaalsest kudedest – nahast ja verest. 
Uurimuse eesmärgiks on selgitada, kas nimetatud koed on haigusspetsiifiliselt 
muutnud ja kas nendest kudedest leitud biomarkereid saaks kasutada PT diag-
nostikas ja prognoosi hindamisel.  

 
 

Töö eesmärk 

Peamine eesmärk oli PT patsientidel analüüsida naha ja vere transkriptoomilisi 
profiile RNA sekveneerimise meetodil selleks, et leida haigus-spetsiifilise geeni-
ekspressiooni muutusi perifeersetes mitteneuronaalsetes kudedes. 
 Alaeesmärgid olid: 
1)  Esmakordselt kaardistada geeniekspressiooni muutused PT patsientide nahas 

ning liigitada need funktsionaalsetesse ainevahetusradadesse. Uurida, kas 
nahas kui mitteneuronaalses koes toimuvad haiguse-spetsiifilised muutused. 
Uurida, kas geeniekspressiooni uuringu abil saab lahti mõtestada epidemio-
loogilist seost PT ja melanoomi vahel.  

2)  Kaardistada geeniekspressiooni muutused PT puhul teises mitteneuronaalses 
perifeerses koes – veres ning liigitada need funktsionaalsetesse ainevahetus-
radadesse. Võrrelda vere uuringu tulemusi naha omadega. Uurida, kas veres 
leidub haigus-spetsiifilisi muutusi.   

3) Süvendatult uurida naha RNA sekveneerimisel statistiliselt kõige enam muu-
tunud geeniekspressiooni – seerumi amüloid alfat (SAA). Uurida, kas see 
tulemus on korratav ning avaldub ka veres. Uurida, kas see muutus trans-
leerub valgu tasemele veres ja nahas ning on vaadeldav. 

4)  Võrrelda antud geeniekspressiooni uuringut eelnevalt publitseeritud uuringu-
tega ajukudedest ja verest kasutades robustse järgu liitmise (robust rank 
aggregation – RRA) meetodit (Kolde et al. 2012), mis võimaldab võrrelda 
omavahel mikrokiipe ja RNA sekveneerimise tulemusi. Eesmärk oli leida 
kattuvaid muutusi PT erinevate kudede vahel geeniekspressioonide ja funkt-
sionaalsete ainevahetusradade tasemel. 

 
 

Materjalid ja meetodid 

Patsiendid 
Käesolev uuring koosnes kolmest põhiosast: I – naha RNA sekveneerimine 
(artikkel I); II – vere RNA sekveneerimine (artikkel II); III –SAA geeniekspres-
siooni uuring (artikkel III). Uuringu läbiviimine kooskõlastati Tartu Ülikooli 
inimuuringute eetikakomiteega. Uuringus osalesid PT patsiendid, kes kaasati 
Tartus ja Tartu maakonnas toimunud epidemioloogilise uurimistöö raames 
aastatel 2010–2016 (L. Kadastik-Eerme et al. 2018). PT patsiendid kaasati 
uuringusse järgmiste tunnuste alusel: (1) PT diagnoos vastas QSBB (Queen 
Square Brain Bank) diagnoosikriteeriumitele (Lees, Hardy, and Revesz 2009); 



76 

(2) patsiendid võtsid tüüpilisi dopaminergilisi PT ravimeid; (3) teisi raskeid 
diagnoose ei tuvastatud meditsiinilise intervjuu käigus; (4) patsientidel ei esine-
nud dementsust. Kontrollgrupi patsiendid olid kas PT patsientide partnerid või 
patsiendid, kes viibisid Tartu Ülikooli neuroloogia osakonnas ravil muudel 
põhjustel kui haigestumine neurodegeneratiivsesse haigusesse. PT raskusastet, 
kognitiivset toimetulekut ja igapäevaste tegevustega toimetulekut hinnati kasu-
tades kontrollitud instrumente: Liigutushäirete Seltsi Ühtlustatud Parkinsoni 
Tõve Hindamise Skaala (MDS-UPDRS) (Goetz et al. 2008), Hoehn&Yahr’i 
skaala (HY) (Hoehn and Yahr 1967), Schwabi ja Englandi igapäevaste tege-
vustega toimetuleku skaala (SE-ADL) (Schwab et. al 1969) ja Vaimse Võime-
kuse Miniuuringu test (MMSE) (Folstein, Folstein, and McHugh 1975). Pere-
kondliku PT ja vähkkasvajate anamneesiga patsiendid välistati uuringust. Naha 
RNA sekveneerimise uuringusse kaasati 12 PT patsienti keskmise vanusega 
71,9 (±7.5) aastat ja 12 soo ja vanuse poolest sobitatud kontrolli. Vere RNA 
sekveneerimise uuringusse kaasati 12 PT patsienti vanuses 72.2 (±10,0) aastat ja 
12 soo ja vanuse poolest sobitatud kontrolli. Mõlema uuringu tulemused vali-
deeriti suuremas PT patsientide ja kontrollpatsientide kohordis. ELISA meeto-
diga läbi viidud SAA uuringusse kaasati 36 PT patsiendi ja 27 sobitatud 
kontrollpatsiendi vereproovid. Lisaks uuriti SAA taset immunohistokeemia 
meetoditel 13 PT patsiendi nahas. 
 
Meetodid 
Nahast võeti päikesele mitteeksponeeritud kohast (õlavarre seespoolelt) 4mm 
suurune löökbiopsia. Vere analüüsideks koguti veeniverd. Proovid säilitati  
-80C° juures. Nahast RNA eraldamiseks proovid homogeniseeriti kasutades 
Cryolys meetodit (Bertin Technologies). RNA eraldati homogenisaadist ning 
puhastati kasutades Qiageni vastavaid testi komplekte. Vere puhul kasutati 
Thermo Fischeri ja Quiageni vastavaid  testi komplekte ning mRNA eralda-
miseks lisasammu globiini (Thermo Fischer). RNA kvaliteeti hinnati spektro-
fotomeetriliselt (Nanodrop) ja elektroforeetiliselt (Agilent 2100 Bioanalyzer). 
RNA sekveneerimiseks amplifiseeriti 50ng tRNAd ning saadud kaheahelalisest 
cDNA-st loodi fragmentide raamatukogu SOLiD 5500 W (Thermo Fisher 
Scientific Inc, CA, USA) sekvenaatori jaoks. Erinevatele proovidele lisati 
identifitseerivad märgised, proovid ühendati ja sekveneeriti. Sekveneerimine oli 
edukas, andes nahast umbkaudu 40 miljonit ja verest 21.4 miljonit lugemit 
(reads). Toorandmete analüüs tehti Lifescope’i tarkvaraga, kus saadi >70% 
lugemite joondumine referentsgenoomile (Thermo Fisher Scientific Inc, CA, 
USA). Differentsiaalselt ekspresseerunud geenide analüüsiks kasutati tarkvara R 
paketti DeSeq2 (Love, Huber, and Anders 2014). Olulisuse määr oli FDR≤0.05 
(false discovery rate, mitmese testimise korrektsiooni meetod), geeniekspres-
siooni muutuse ulatust (fold change) analüüsis ei arvestatud. Enim muutnud 
tulemused valideeriti kvantitatiivse RNA ahelreaktsiooni tehnoloogia abil 
kasutades majapidamisgeeni aktiin-B ja fluorestseeruvaid märgiseid VIC ja 
FAM (Applied Biosystems). Igat reaktsiooni korrati 4 korda, et vigu mini-
meerida. Geeniekspressiooni muutuse määra arvutati ΔΔCT meetodi abil.  
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Järgnevalt tehti muutunud geeniekspressioonidele ainevahetusradade analüüs 
kasutades naha puhul QIAGEN’s Ingenuity® ainevahetusradade analüsaatorit 
(QIAGEN Redwood Citytool). Lisaks klassifitseeriti nahas geeniekspressioone 
ainevaheturadadesse otsides PubMed andmebaasist vastavaid artikleid, otsi-
sõnadega “Parkinson’s Disease” “neurodegeneration” “neuro” “Alzheimer’s 
Disease” ja “brain”. Vere ainevahetusradade analüüs tehti R tarkvara Cluster-
Profiler paketiga (Yu et al. 2012). Sama paketti kasutades analüüsiti uuesti ka 
naha andmed, et neid saaks verega paremini võrrelda. Ainevahetusradade ana-
lüüsi kaasati nahas esinenud geeniekspressioonid piirväärtuste juures FDR≤0.05 
ja veres p-adj. ≤0.1. Ainevahetusrajad loeti oluliseks, kui testi tulemus oli FDR 
≤0,05.  

Selleks, et mõõta nahas kõige enam muutunud geeniekspressioni, SAA, valgu 
tasandil, kasutati vereseerumit ja ELISA testi komplekti inimese SAA1/2 
valguga (Invitrogen Corporation). Valgu hulka mõõdeti Tecan GeniOS Pro 
luminomeetriga kolmes korduses optilise tiheduse 450 nm juures. Algse lahje-
duse korrigeerimiseks korrutati tulemus 200-ga. Muutuste olulisust mõõdeti 
paaritu t-testi abil. Naha SAA immunohistokeemia uuringuks deparafiniseeriti 
nahabiopsiad alkoholi lahustes ning töödeldi 3% vesinikperoksiidi ja proteinaas 
K-ga. Seejärel inkubeeriti lõike primaarsete hiire monoklonaalsete SAA anti-
kehadega (Novus Biologicals) 1:100 lahjenduses 30 minutit. Seejärel töödeldi 
lõike tuvastusantikehadega 30 minutit (DAKO REAL EnVision+ Dual Link, 
Single Reagents, HRP Rabbit/Mouse) ning värviti kromogeenvärviga (Dako 
Company) ja hematoksüliiniga. Tulemusi hinnati visuaalselt.  

Lisaks teostati metaanalüüs eelnevatest töödest, et hinnata kattuvusi eri 
kudede ja RNA sekvenatsiooni ning mikrokiibi tulemuste vahel. Selleks otsiti 
PubMedi andmebaasist varem avaldatud töid. Minimaalsed kriteeriumid töö 
kaasamiseks olid: 1) geeniekspressiooni nimekiri on avalikult kättesaadav, 2) 
tegemist on originaalandmetega, 3) nimekiri ei sisalda selektiivselt esitatud 
geeniekspressioone; lubatud olid nimekirjad, kus olid ainult statistiliselt oluliselt 
muutunud geeniekspressioonid, 4) proovid on võetud idiopaatilistelt PT patsien-
tidelt ja 5) erinevaid töid samast koest on metaanalüüsi jaoks piisavalt 
(vähemalt 3). Andmebaasist leiti 3 geeniekspressiooni nimekirja ajukoorest 
(Henderson-Smith et al. 2016; Dumitriu et al. 2015; Stamper et al. 2008), 5 
mustainest (Bossers et al. 2009; Simunovic et al. 2009; Cantuti-Castelvetri et al. 
2007; Dijkstra et al. 2015; Durrenberger et al. 2012) ja 5 verest (Santiago and 
Potashkin 2015; Kedmi et al. 2011; Infante et al. 2015b; Calligaris et al. 2015; 
Soreq et al. 2008). Metaanalüüs viidi läbi kasutadest RRA meetodit (Kolde et 
al. 2012). See võimaldab võrrelda ebatäielikke geeniekspressiooni nimekirju ja 
erinevate meetoditega saadud tulemusi (mikrokiip vs. RNA sekveneerimine). 
Selleks, et liita erinevate annotatsioonidega geeniekspressioone, viidi eelnevalt 
kõik tulemused üle Entrez ID-dele. Selleks, et võrrelda RNA sekveneerimise 
tulemusi mikrokiipidega, kus on erinev arv uuritavaid geeniekspressioone peal, 
kasutati iga koe kohta eraldi N parameetrit, kus N(i) + N(avg. u). N(i) märgistab 
kattuvat hulka geene kõikidelt mikrokiipidelt antud analüüsis ja N(avg. u) 
märgistab keskmist geenide arvu ühe mikrokiibi kohta, mis ei sisaldunud arvus 
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N(i). Geeniekspressiooni loeti oluliseks, kui RRA tulemus oli FDR ≤ 0.05. 
Funktsionaalsete ainevahetusradade analüüs tehti kasutades tarkvara R Cluster-
Profiler paketti. Sel juhul oli geeniekspressioonide analüüsi kaasamise piir 
score ≤0.05. Score on RRA meetodi p-väärtus, mis ei ole korrigeeritud mitme-
sele testimisele. Ainevahetusrajad loeti oluliseks FDR ≤ 0.05 juures.  
 
 

Tulemused ja diskussioon 

Naha geeniekspressiooni muutused kattuvad tsentraalse PT patoloogiaga  
Nahast leiti 1068 oluliselt muutunud ekspressiooniga geeni (artikkel I). Tekkis 
muster, kus 82% geenidest (874) olid allareguleeritud. Järgnevast analüüsist 
selgus, et suur osa neid geene jagunevad ainevahetusradadesse, mis tegelevad 
valgu ainevahetuse ja mitokondriaalse hingamise protsessidega. Need on funkt-
sioonid, mida on eelnevates uuringutes seostatud PT-ga. Lisaks kuulus suur 
hulk geene naha proliferatsiooni ja diferentseerumise radadesse, Samuti tulid 
esile mõned kasvaja tekke signaalrajad, immunoloogilised ja raku homöostaasi 
rajad. Suurim hulk muutunud geeniekspressioone, mis pärines nahast, liigitati 
mitokondri funktsioneerimise radadesse, kusjuures 36/96 geenidest, mis osale-
vad respiratoorse hingamise ahelas, olid allareguleeritud. Eriti tähelepanuväärne 
on ülesreguleeritud peroksisoomi proliferator-aktiveeritud retseptori gamma 
koaktivaator-1α (PPARGC1A või PGC-1α), mis on väga oluline mitokondrite 
biogeneesi ja oksüdatiivse ainevahetuse reguleerija ning mida on eelnevalt 
seostatud PT-ga (Lin, Handschin, and Spiegelman 2005). Kaasuvalt oli muu-
tunud ka paljude teiste biomolekulide ainevahetus, näiteks rasvhapete beeta 
oksüdatsioon, lämmastikaluste, steroidide ja süsivesikute ainevahetus. See 
kattub aju mustainest ja vereliistakutest saadud tulemustega PT puhul (Winkl-
hofer and Haass 2010). Nende muutuste põhjal järeldub, et PT puhul on 
mitokondrite jõudlus nahas allareguleeritud. See võib olla tingitud kahjustavate 
reaktiivsete hapnikuühendite kuhjumisest puudulike hingamisprotsesside käi-
gus, mis omakorda viib mitokondite kahjustumisele. Teine suur grupp naha 
geeniekspressioone on seotud valgu ainevahetusega. Näiteks 11 ubikvitiini-
proteasoomi süsteemi valku olid allareguleeritud. See on süsteem, mille häired 
on PT-ga eelnevalt seostatud (Betarbet, Sherer, and Greenamyre 2005). Lisaks 
olid mitmed ribosoomi valgud allareguleeritud. Vigane valgu ainevahetus ja 
mitokondri efektiivsuse langus ning reaktiivsete hapnikuühendite kuhjumine on 
omavahel seotud (Jenner 2003) ning viib valesti voltunud valkude kuhjumiseni, 
mis on tsütotoksiline.  
 
Naha geeniekspressiooni muutused viitavad homöostaasi häiretele ja toetavad 
PT ja melanoomi seost  
Lisaks nendele kahele olulisele raku ainevahetusprotessi muutusele leidsime 
nahast suure hulga geeniekspressioone, mis on seotud marrasnaha ja pärisnaha 
homöostaasi ning uuenemisprotessidega. Marrasnahas olid mitmeid geenid alla-
reguleeritud, mis on seotud funktsionaalses nahas toimuvate sarvestumis- ja 
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rakuliiduste protessidega. Lisaks olid mitmeid kaitsevalke (defensiinid, mutsii-
nid) tootvad geenid allareguleeritud. Pärisnahas olid mitmed kollageeniga seo-
tud geenid muutunud ekspressiooniga. Kokku tähendavad need nahaspetsiifi-
lised geeniekspressiooni muutused, et nahk on vähem stressi taluv ning vastu-
võtlikum endo- ja eksogeensete kantserogeenide suhtes. Samuti oli suur hulk 
rakutsüklit mõjutavatest geenidest muutunud ekspressiooniga, mis mõjutavad 
naha puhul eriti olulisi rakkude paljunemis- ja differentseerumisprotesse. Olles 
eeskätt allareguleeritud, võivad need muutused viidata kiirendatud vananemis-
protsessile ja osaliselt põhjendada epidemioloogiliselt leitud kõrgenenud mela-
noomi ja nahavähi riski. Kõrgenenud pahaloomulise kasvaja riski võivad seleta-
da ka muutnud kasvaja tekke signalisatsiooni rajad nagu Ras, Wnt ja NOTCH 
Eriti Wnt kasvaja tekke rada on seostatud melanoomiga (Lim and Nusse 2013; 
Gajos-Michniewicz and Czyz 2020). Leitud muutused proinflammatoorsetes 
ainevahetusradades võivad samuti soodustada kartsinogeneesi PT nahas. 
Kokkuvõtvalt leidsime nahas hulgaliselt muutusi, mida võib pidada haigus-
spetsiifiliseks ning mis osaliselt põhjendavad epidemioloogiliselt leitud sagedasi 
nahakaebusi ning melanoomi ja teiste nahavähkide sagedasemat esinemist PT 
patsientide seas.  
 
Metaanalüüs varem avaldatud transkriptoomika töödest 
Seda toetab järgnenud metaanalüüs (artikkel II), mille läbiviimine oli tingitud 
üllatuslikust avastusest, et läbiviidud uuringutes (artiklid I ja II) ei leitud kahest 
eri koest samas populatsioonis ja sama meetodit kasutades mingisugust kattu-
vust. Metanalüüsi RRA meetodil kaasasime seega närvikoest tehtud uuringuid, 
et leida kesknärvisüsteemi ja perifeersete kudede vahelisi seoseid. Lisaks 
huvitas meid varem avaldatud vere transkriptoomika tööde võrdlus. Ajukoorest 
leidsime kolme töö võrdluses 43 oluliselt muutunud ekspressiooniga geeni. 
Ainevahetusradadest oli oluline legionelloosi rada, mille üks komponentidest, 
TLR/MYD88 signaalrada, on eelnevalt seostatud neurodegeneratiivsusega 
(Xiang, Chao, and Feng 2015). Mustaines RRA nimekirjas olid viie töö võrd-
luses olulised kaks geeni: LMO3 ja RIMS3. LMO3 mõjutab neurogeenesi ning 
RIMS3 on oluline neurotransmitterite vabanemisel; mõlemaid on eelnevalt seos-
tatud PT-ga. Mõlemad geenid osalevad mikro-RNA regulatoorses võrgustikus. 
Mustaine RRAs osutusid oluliseks neli funktsionaalset ainevahetusrada: kalt-
siumi signaalrada, sünaptilise vesiikli tsükli, proteoglükaanide ja dopaminergi-
lise sünapsi ainevahetusrada, mille kõikide puhul on eelnevaid assotsiatsioone 
PT-ga. Vere RRA nimekirjas jäi kuue töö (kaasarvatud käesolev töö) meta-
analüüsis oluliseks ainult üks geeniekspressioooni muutus – IL18R1, mis on 
interleukiini retseptor ja vahendab proinflammatoorseid vastuseid ning mille 
robustne muutus veres näitlikustab immuunprotsesside olulisust neurodegene-
ratiivse haiguse nagu PT korral. Vere RRA tulemuste ainevahetusradade ana-
lüüsil jäid oluliseks kaks ainevahetusrada: hematopoeetiliste rakkude loomega 
seotud protsessid ning prioonhaigustega seotud ainevahetusrada. Mõlemat prot-
sessi on eelnevalt seostatud PT-ga (Schlachetzki et al. 2018; Soreq et al. 2008; 
Brundin and Melki 2017). Huvitaval kombel kui võrrelda erinevad PT kudesid, 
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siis ei kattu ei ainevahetusradade ega geeniekspressioonide tasemel eriti palju. 
Märkimisväärsed erandid on G0S2 ja C6, mis kattuvad ajukoore ja käesoleva 
naha transkriptoomi tööga. G0/G1 switch geen 2 (G0S2) mõjutab lipiidide 
ainevahetust adipotsüütides (Heckmann et al. 2013). Komplementsüsteemi 
komponent 6 geeni (C6) toode on valk lüütilises makromolekulis – membraani 
ründekompleksis, mille kõrgenenud esinemist on näidatud neurodegeneratii-
vetes ajukudedes (McGeer and McGeer 2004) ja taaskord viitab see inflammat-
siooni olulisusele neurodegeneratsiooni protsessides. Väga väheste geenieksp-
ressioonide ja ainevahetusradade kattumine eri kudede vahel otses võrdluses ja 
RRA meetodit kasutades võib viidata mitmele asjaolule. Esiteks, võib olla, et 
eri kudede transkriptoomiline profiil on niivõrd erinev, et neid ei saa võrreleda. 
Kõik uuritavad koed on pigem heterogeensed, koosnedes mitmest eri rakupopu-
latsioonist, mis võib tingida uuringutevahelisi erisusi ja raskenda praeguste 
uuringute arvu juures oluliste muutuste avastamist. On oluline märkida, et eri-
nevate metoodikate kasutamine preanalüütilises, analüütilises ja statistilise 
andmetöötluse faasis põhjustab palju erisusi, mida on raske arvesse võtta ja 
normaliseerida. Kasutades RRAd vältisime algandmete analüüsi vajadust. See 
on lihtne uus meetod, mis võimaldab RNA sekveneerimise ja mikrokiipide and-
mete võrdlust. Samas võib-olla nii, et selle meetodi kasutamisel lisandus müra, 
mis varjutas olulisi muutusi. Samuti võib olla, et PT patognoomilised muutused 
(mitokondrite düsfunktsioon, valkude ainevahetuse defitsiidid) on mitmete aine-
vahetusradade ja üksikute geeniekspressioonide konvergeeruvate muutuste 
tulem.  
 
SAA kui huvipakkuv geen PT patoloogias 
Lisaks uurisime süvendatult SAA-d kui potentsiaalset biomarkerit (Artikkel III) 
ja kaardistasime püsiva allareguleerituse RNA ja valgu tasandil nii PT veres kui 
nahas. SAA on akuutse faasi valk ning tal on α-sünukleiiniga sarnaseid oma-
dusi, olles ebastabiilse tertsiaarse struktuuriga valk. See võib olla põhjus, miks 
ta on haavatav rakusisese redoks-stressi tõusule ning võib kergesti kaotada oma 
funktsionaalse struktuuri. Varasemates uuringutes on leitud, et SAA on ajus 
neuroinflammatsiooni puhul kõrgenenud tasemega. See võib viidata, et käes-
olevas uuringus leitud allareguleeritus veres on reaktiivne. Selleks, et SAA olu-
lisust PT patogeneesis uurida, on vaja lisakatseid.  
 
 

Järeldused 

1) Naha RNA sekveneerimise tulemused näitavad paljude geenide ekspres-
siooni allareguleeritust nahas, mis seonduvad  
a)  rakuprotsessidega, mis on PT puhul tsentraalse tähtsusega nagu mito-

kondri funktsioneerimine ja valgu ainevahetus,  
b)  epidermise ja dermise homöostaasi, diferentseerumise, immuunvastuse ja 

kasvaja tekke protsessidega.  
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• Naha haavatavus mutageensete riskide suhtes selgitab melanoomi ja 
teiste nahavähkide ning muude PT-spetsiifiliste nahahädade sagedast 
esinemist.  

• Haigus-spetsiifilised transkriptsioonimustrid nahas on võrreldavad 
ajust leitud muutustega ja viitavad, et PT on multisüsteemne häire. 

 
2) Vere RNA sekveneerimise tulemused näitavad väga väheste geenide diferent-

siaalset ekspressiooni, kuid nimetatud geenid on eelnevalt seondatud PT-ga.  
• Differentsiaalselt on mõjutatud kolesterooli ainevahetusrada.  
• Madal oluliselt muutunud geenide arv veres võib olla põhjustatud 

vere kui koe heterogeensusest ja dünaamilistest omadustest, kuid 
kattuvus varem avaldatud PT transkriptoomika töödega toetab 
multisüsteemse häire hüpoteesi.  

• Nahas ja veres ei olnud kattuvaid geeniekspressiooni ega 
ainevahetusraja muutusi.  
 

3) Kahte huvipakkuvad geeniekspressiooni nahast – SAA1 ja SAA2 uuriti 
süvitsi. Geeniekspressiooni allareguleeritus nahas peegeldus verest mõõde-
tud madala valgukoguses, kui SAA valgu visualiseerimine nahas ebaõnnes-
tus valgu madala koguse tõttu. 

 
4) Eelnevaid uuringuid võrreldi metaanalüüsis, mis kasutas uudset RRA meeto-

did, mis võimaldab võrrelda mikrokiipe ja RNA sekveneerimist omavahel 
sõltumata kasutatud statistilistest meetoditest. Kolmest eri koes – ajukoorest, 
SN ja verest – oli piisavalt tõid, et kaasata nad analüüsi. Tulemused näitasid 
üllatavalt vähe veenvaid geeniekspressiooni ja ainevahetusradade muutusi, 
mis  
a)  rõhutavad koespetsiifilise geeniekspressiooni erinevusi;  
b)  näitavad, et on vaja rohkem geeniekspresiooni uuringuid ja metaanalüüse, 

et leida korratavaid tulemusi.  
4.1) Huvipakkuvad diferentsiaalselt muutunud ekspressiooniga geenid on 

nahas PGC-1α ja SAA1/2,  
veres UBE2J1 ja IL18R1,  
mustaines LMO3 ja RIMS3,  
ajukoores PENK ning  
ajukoore ja naha võrdlusel G0S2 ja C6.  

Need geeniekspresioonid näitasid käesolevas uuringus kõige selgemaid/ 
veenvamaid muutusi ning eelnimetatud geene tasuks edasi uurida, et hinnata 
nende kasutatavust PT biomarkeritena.  

4.2) Märkimisväärsed KEGG ainevahetusrajad on  
hematopoeetilise raku ja priionhaiguste ainevahetusrajad verest;  
kaltsiumi signaliseerimise, sünaptiliste vesiiklite tsükli, 
proteoglükaanide vähi puhul ja dopaminergilise sünapsi 
ainevahetusrajad SN-st;  
ning legionelloosi ainevahetusrada verest. 
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• Kokkuvõtvalt leiti, et perifeersetest kudedest on mõttekas koguda 

proove transkriptoomika uuringuteks PT puhul, et leida biomarkereid 
ning transkripte, mis mõjutavad PT patoloogilisi mehhanisme, sest  

a)  neid kudesid saab uurida eluspuhuselt ja  
b)  tulemused kattuvad PT-spetsiifiliste muutustega kesknärvisüsteemis. 
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