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Abstract

Mobile devices market as well as mobile application market is growing

rapidly. When starting mobile application development, often the first ques-

tion is which platform to choose? This consequently leads to limitations in

software usage. Theoretically, this problem can be solved by cross-platform

technology. There are several methods to ”write once run anywhere” appli-

cation; however there are several major drawbacks for each of them.

Flash for mobile devices is no longer supported for Adobe, mobile website

solution requires Internet connection and have no access to native mobile

capabilities.

HTML5 is a new technology that tries to solve cross platform in-compatibility,

supports offline web-applications and allows using some native mobile fea-

tures. Despite the fact it is still under development, the support of the

browsers is really good even on mobile devices. As a result, HTML5 have

a potential to become major tool for cross-platform development.

The goal of this work is to investigate possibilities for converting Android

native application to HTML5 and write prototype application which will

do the conversion. Definitely there are applications that are using Android

specific features which are not supported by HTML5, so the first step will

be defining scope of application that can be converted. Next step will be

investigation and choosing tools which can help to achieve the goal. The

final step of this work will be designing and developing prototype which

performs conversion.
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1

Introduction

1.1 Introduction

Nowadays, the development of mobile applications has increased dramatically, this can

be observed due the amount of applications that exist in mobile application markets

such as Play Store or Apple App Store (mobile market is very volatile. iOs and Android

are leading, Symbian market share is constantly decreasing). This high demand for

mobile software have made the smartphones become a part of everyday life. According

to latest reports (1) smartphones sales worldwide in the fourth quarter of 2011 increased

more than 47% from the fourth quarter of 2010. Smartphones sales depends not only

on hardware capabilities, but mostly on available software.

Generally, when starting the development of a mobile application, often the first

concern is what platform to choose? (e.g. Android, iOs, Windows 7, etc.). The answer

to this question is mainly based on the purpose of the application (e.g. mobile game,

social mobile application, etc. ). However, developing a mobile application for a specific

platform limits its scope, in terms of distribution, commercialization, etc. Thus, making

the application perspective narrow to one single mobile vendor.

Furthermore, a considerable effort and knowledge in low level programming tech-

niques (e.g. different programming languages, SDK, tools, etc. ) is required for porting

the application between platforms, and thus in general most of the application are writ-

ten once targeting an specific platform.

However, with the introduction of cross-platform technologies such as HTML5 for

the development of mobile software, the applications can be written once and run

1



1. INTRODUCTION

in multiple platforms on the top of the mobile browser. Cross-platform development

tools reduce the time and the cost in the mobile development process as it is aim to

provide high portability features and rich tools for managing some (e.g. PhoneGap,

etc.) of the underlying hardware resources from the browser. However, it is necessary an

extensive analysis in this technology as multiple issues can arise such as decreasing the

mobile application performance (e.g. graphical aspects, etc.), unsupported hardware

in the HTML layer (e.g. cameras) , etc. For instance, the functionality of an HTML5

application could be limited by the fixed memory assigned to the browser by the mobile

operating system.

Despite the growing interest in cross-platform development tools, large amount of

applications are still written native. Moreover, many of them are supported only by

Android and iOs or even by one of those platforms. The question about automatic

application conversion from one platform to another, or even to cross-platform solution

is still unanswered.

In order to investigate the possibilities of migrating Android native applications

(written in Java) to HTML5 (based on JavaScript), this thesis studies the semantic

and syntactic transformation of Java code to JavaScript.

1.2 Contributions

To overcome the issues regarding the migration of native application to cross-browser

platforms and to foster the development of portable mobile applications. This thesis

proposes a framework that enables the conversion of Java to JavaScript. The solution is

based on GWT and it uses ANTLR. It consist of two parts. First one is GWT module

that wrapps GWT classes into Android structures to reduce code amount changes

needed for GWT compatibility. Second part is Java to Java converter, which made

code changes that can not be achived by simple class wrapping. The rest of the thesis

is organized as follow.

1.3 Outline

Chapter 2: provides short overview of Android (2) platform and HTML5 technology.

First section of this chapter concentrates on Android application fundamentals like

2



1.3 Outline

Figure 1.1: Worldwide mobile Os marketshare

basic components and application content. Section also gives examples about Android

application resources customization for different device configurations. Second section

briefly describes HTML5 differences from HTML4 and shows those features support by

different browsers.

Chapter 3: discusses the state of art addressed by this thesis. Firstly, it compares

HTML5 and native applications. Secondly, short overview to bridging frameworks is

made. And lastly, chapter gives information about three tools: Java2Script (3) and

GWT (4) - Java to JavaScript compilers and ANTLR (5) - parser generator.

Chapter 4: defines the problem regarding lack of tools for automatic conversion.

Chapter 5: describes the development of the framework created for transforming

native android application to HTML5. It also limits the problem scope and shows

automatic conversion application design and work principle. At the end of this chapter

limitations are described and onversion result for one application is introduced.
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2

Background Information

This chapter provides background information about Android operating system and

HTML5 technology. It also provides Android application fundamentals and HTML5

new features comparing with HTML4.

2.1 Android operating system

Android is Linux based operating system for mobile devices (6). It is developed by Open

Handset Alliance and consists of operating system, middleware and key applications.

Android kernel is based on Linux kernel with several layers on top of that as shown on

figure 2.1.

Application development is done using Java programming language. Android ap-

plication consists of one or more application components. They are Activity, Service,

Content Provider and Broadcast Receiver. Activity is typical entry point of application.

Typically it represents a single screen which user can interact with. Activity is created

by subclassing Activity class and implementing onCreate() method.

Another application component is Service. Its purpose is to perform long-running

tasks in background. Service does not provide user interface. Typically Service does

not require to report result to other component and stop itself after finishing operation.

One of the Service usage is uploading or downloading files over network.

Next component is Content Provider. Its task is to manage access to application

data. Application data can be stored in any persistent storage which is accessed by

5



2. BACKGROUND INFORMATION

application. Moreover, data can be shared to other applications if Content Provider

allows it.

Last component described in this section is Broadcast Receiver. Broadcast Receiver

listens and responds to system-wide broadcast messages. Typically Broadcast Receiver

is used to establish communications between Activities, Services and Android system.

For example, Android system can notify Activity or Service about network status or

Service can notify Activity about finishing task.

In addition to code, Android application requires resources such as images, string

constants, animation descriptions, menus, styles, dimensions, and layout of activity

user interface. Most resources are defined with XML files. Using such approach, it

makes it easy to update application various components without code modification.

It is possible to provide different set of resources for different device configurations.

This includes:

* Device hardware properties such as screen resolution and physical keyboard avail-

ability; this can be used to provide better quality drawables for large screen res-

olution devices.

* Device software properties such as language, region and platform version; this can

be used to provide translated version of string constants for different languages

* Device current state such as portrait or landscape orientation, if it is connected

to dock station; this can be used to change activity layout depending on screen

orientation.

For each resource included in Android project, unique identifier is generated, which

can be used to access this specific resource from application code or other resource

defined in XML.

2.2 HTML5

HTML5 is the fifth revision of the HTML standard. A lot of changes made in elements

(7). Beside changing and enriching old one, it provides plenty of new elements. This

includes new media elements like <audio> and <video>, new structural elements like

<section> and <article>. Another thing is that HTML5 specifies not only markup

6



2.2 HTML5

Figure 2.1: Android architecture
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but also APIs which can be used with JavaScript. Many new APIs are introduced such

as:

* Canvas element, for 2D drawing

* Offline applications for interacting with application event when network connec-

tion is not available

* Native drag and drop - no need to write complex JavaScript code to implement

drag and drop functionality - it will be supported natively

* Web storage - key-value storage framework similar to Cookies, but with larger

storage capacity and improved API

* Databases API - to manipulate client-side databases using SQL

Some related technologies are not included into W3C HTML5 specification, how-

ever they can be used together with HTML5. W3C publishes specification for them

separately. Here is some of them:

* Geolocation - provides access to geographical location information associated with

client

* Web workers - give ability to run background scripts independently form UI

scripts. This will help to keep web page responsible and execute long running

scripts simultaneously

* WebSockets - to enable bidirectional communication between browser and web-

server

Despite the fact that HTML5 specification status on May 2012 is still under devel-

opment, it is partially supported by many browsers (8). It includes Android and iOs

browsers which are based on WebKit (9). For convenience, layout engine names are

used instead of browser names in HTML5 APIs support table 2.3. Table 2.2 shows

example browser names behind each engine.

8



2.2 HTML5

Figure 2.2: Layout engines

Figure 2.3: HTML5 APIs support
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2. BACKGROUND INFORMATION

2.3 Summary

HTML5 provides a lot new features comparing with its predecessor and is still under

development, however its support by browsers is on the good level. Despite the amount

of new features, HTML5 is limited by browser capabilities and can not use all the

features provided by Android platform.

10



3

State of the Art

The state of art in this thesis describes advantages and disadvantages of HTML5 appli-

cations over native applications on mobile platforms. It gives short overview of native

bridging frameworks, describing features they expose to JavaScript. It also shows pos-

sible ways to converting Java code into JavaScript. The last section of this chapter

concentrates on ANTLR - tool for parser generation.

3.1 HTML5 and native applications

Mobile devices market as well as mobile application market is growing rapidly. When

starting mobile application development, often the first question is which platform to

choose? There are several methods to ”write once run anywhere” application; however

there are several major drawbacks for each of them. Flash for mobile devices is no longer

supported for Adobe, mobile website solution requires Internet connection and have no

access to native mobile capabilities. HTML5 is a technology that solves cross platform

in-compatibility, supports offline web-applications and allows using some native mobile

features.

Native application have some advantages over HTML5 application (10), (11). One

of them is that native application can do more. Native application support multi touch,

hardware sensors, can provide access to the device operating system. Native android

application can communicate with each other using intents. This cant be achieved by

using HTML5.

11



3. STATE OF THE ART

From the other hand, web standards are evolving. With HTML5 we already can run

application offline, access local storage, playback multimedia files, create socket connec-

tion (12). There is also possibility to create hybrid application - native application with

embedded web view which provides user interface. This approach gains benefits from

both native and HTML5 applications, however it adds complexity to your application.

Another native application benefits are speed - HTML5 applications have runtime

layer, they can use such hardware acceleration as GPU, they can use multithreading,

they get native look and feel just by using native toolkit. Also HTML5 applications

are limited in local storage and lack of source code protection.

3.2 Bridging frameworks

Despite the fact that HTML5 supports many useful features for mobile application,

the wide range of mobile device features is still uncovered. To enrich pure HTML5

functionality bridging frameworks can be used (13). They give ability to access native

functionalities by exposing them to JavaScript. Bridging frameworks encapsulate all

supported native functionality and provide JavaScript APIs for accessing them, so

developers can concentrate only on writting code using HTML, CSS and JavaScript.

3.2.1 PhoneGap

PhoneGap (14) is open source mobile development framework developed by Nitobi

Software. Framework uses HTML, CSS and JavaScript. Framework creates native

WebView - controller and all application logic is executed inside this controller. Great

thing about this framework is plugin support, so basically any phone function support

can be added. PhoneGap supports all major mobile platforms including iOs, Android,

Blackberry, Windows Phone.

Figure 3.1 shows Android device features, from which Android version they are

supported and if they can be accessed by device WebView. From the table it is seen

that bridging frameworks gain benefits from HTML5 features like geolocation and local

storage, which are supported by layout engine. Some features, mostly hardware related,

still require exposing by bridging framework.

12



3.3 Java to JavaScript compilers

Figure 3.1: Android Os deatures and browser support

3.2.2 Titanium Appcelerator

Titanium Appcelerator (15) was developed by Appcelerator Inc. and released in 2008.

Initially platform provides possibility to create cross-platform desktop applications for

PC, Mac and Linux. Later Android and iOs support were added.

For mobile platforms Titanium application are written using HTML, CSS and

JavaScript. Using Titanium API developers can get access to native phone capabilities

like geolocation and accelerometer. Moreover, Titanium API supports access to native

UI constructions, so application gets native look and feel on every platform.

The output package consist mostly of native code. In addition it contains cus-

tomized WebKit layout engine.

3.3 Java to JavaScript compilers

This section gives short overview of existing Java to JavaScript compilers.

3.3.1 Java2Script

Java2Script is open source tool which translates Java code to JavaScript. Java2Script

allow you to build application using SWT as UI framework, and then compiles it to

JavaScript (16). It is well integrated with Eclipse JDT and allows to reuse SWT (17)

development tools such as SWT Designer.

13



3. STATE OF THE ART

Figure 3.2: ANTLR parser workflow

3.3.2 GWT

Another ready to use software for conversion Java source to JavaScript is GWT - the

open source set of tools by Google. GWT can be used as framework for developing mo-

bile and tablet application. One of the useful GWT features is that Java to JavaScript

compiler performs code optimization. It includes not only removing dead code but

also in-lining methods, to avoid unproductive calls. It also supports several HTML5

features such as Database API, Storage API, Geolocation API (18). Another usefull

thing is that GWT can obfuscate JavaScript code.

From the code point of view, GWT supports almost all core Java language syntax

and semantics. Several core classes have functionality which is too expensive to support

entirely. Lightened version of those classes provided by framework. For example GWT

provides own browser-safe timer class which is simplified for running in single-threaded

environment. For building user interface GWT uses own widgets library. It includes

simple widgets, for example: Button, CheckBox and TextArea as well as compex ones,

for example: TabPanel, PopupPanel, RichTextArea.

3.3.3 ANTLR

ANTLR stands for ANother Tool for Language Recognition (19). It is tool developed by

Terence Parr for parsers generation. ANTLR grammars are based on Extended Backus-

Naur Form (EBNF). Example and explanation of EBNF can be found in Appendix 2.

Based on the grammar file ANTLR generates lexer - which converts stream of characters

to a stream of tokens and parser - which processes a stream of tokens and generates

abstract syntax tree.

14



3.4 Summary

3.4 Summary

There are several tools which can help with conversion to HTML5. Few Java to

JavaScript compilers are among them. To enchance converted HTML5 application

with native capabilities, bridging frameworks can be used.

15
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Problem Statement

As described in the previous chapter, the migration of native mobile to cross-browser

applications, its feasible by adapting the current tools and specialized frameworks (e.g.

GWT, Titanium Appcelerator, etc.) for such task. However, several post-conversion

drawbacks that affect the execution of the application on the top the mobile browser,

must be considered. This chapter highlight those issues and presents our ideas to

address them.

4.1 Problem statement

HTML5 is arising as a prominent technology that has the potential to become primary

tool for cross-platform mobile application development. Several tools for cross-platform

development like PhoneGap already benefit from its features. However, applications

which were already developed for a concrete platform, they have to suffer from several

limitations such as distribution model, platform incompatibility, etc. Moreover, such

kind of application are difficult to port, reuse and maintain.

On the other hand, pure HTML5 applications can hardly challenge native applica-

tions as explained before, however they can be used together with bridging frameworks

for extending the capabilities (e.g. Geolocation, etc) of a browser beyond its normal

features. Despite fragmentation across browsers, their HTML5 support is on the good

level.

Converting native application to HTML5 could be a good start to migrate to cross-

platform solution and later application can be enriched using bridging framework. An-

17



4. PROBLEM STATEMENT

other thing is that not all applications need scope of smartphone features, so browser

capabilities could be enough for them. It is meaningless to convert 3D games, appli-

cations that highly rely on multithreading or frequently use device specific capabilities

like camera or sensors. However simple 2D games, information providing software - can

be converted to HTML5 without loss of its functionality.

The primary goal of this thesis is to investigate possibilities for converting Android

native application to HTML5. After researching existing solutions, which can help in

conversion, next step will be to design and develop application prototype which enables

native Android applications conversion to HTML5. Definitely there are specific features

which are not supported by HTML5, so not all applications can be converted. To limit

the problem scope and define tools which can be reused, preliminary research need to

be performed.

4.2 Summary

Mobile device market is growing rapidly and due its fragmentation cross-platform solu-

tions have a great potential. There are tools for cross-platform development, however

migration from native platform still have to be done by hand.

18



5

Android to HTML5 Converter

This chapter describes prototype, which was developed in this thesis scope. It gives

detailed overview of all major parts, describes reasons behind each of those part design.

5.1 Overview

In the scope of this thesis prototype for conversion Android application to HTML5 was

designed and developed. Because major programming language used for Android ap-

plication development is Java and major technology used to provide interaction to web-

pages is JavaScript, the first thing which required to conversion is Java to JavaScript

translator.

There is not much done in Java to JavaScript conversion. Single solution which

supports some HTML5 APIs and potentially supports more in nearest future is GWT.

It was decided to use GWT as translator. GWT uses its own library for UI components

to generate HTML5 elements, however Java to Java conversion is easier task.

Another benefit of using GWT is that intermediate conversion result - GWT com-

patible source is Java code and it allows to make modification just before translation

to JavaScript.

Beside Java source code, Android project usually have resources defined in XML

files. Those resources can be accessed using resource IDs, that are generated in projects

R class. It is widely used technique in Android application development to access those

resources from Java code. To preserve such resource access possibility it was decided

to convert XML resource files to Java code.

19



5. ANDROID TO HTML5 CONVERTER

Figure 5.1: Conversion basic scheme

Using described above principles GWT module called a2g and conversion tool called

A2GConverter were developed. A2GConverter uses principle is to make as few changes

in Java code as possible - compatibility with GWT achieved by a2g module which wraps

GWT components into Android-like structures.

5.2 Converter working principle

Basically converter consist of two independent parts:

* a2g GWT module - jar library, which needs to be attached to output GWT

project.

* A2GConverter - java program, which makes necessary modifications in Android

source and resource files.

20



5.3 GWT module

Figure 5.2: Android Activity

The conversion requires empty GWT project with included a2g module in project

dependencies. Path to this project, as well as path to input Android project are two re-

quired input parameters for converter. After performing conversion using A2GConverter,

it is possible to make changes in GWT output project before compiling it to JavaScript.

Figure 5.1 illustrates converter basic component and work principle. In next sections

each converter component will be considered in details. A2GConvertor constructs

abstract syntax trees (AST) based on Java code, makes changes in them and writes

new Java files to GWT project. For construction AST used JavaParser and JavaLexer

generated by ANTLR. Java grammar used for constructing parser and lexer is modified

Terence Parr Java 1.5 grammar (20).

5.3 GWT module

The main purpose of a2g GWT module is to reduce code modification amount. It acts

like intermediate layer between GWT core components and Android source. It emulates

Android application behaviour using GWT components or fills missing functionality by

stub methods.

For example, one of the Android application entry points is Activity. Activity is

created by subclassing Activity class and extending onCreate. There is several other

lifecycle important methods in Activity class which developer may override see figure

5.2.

GWT module entry point must implement interface EntryPoint, which have only

one method onModuleLoad(see Figure 5.3)

21



5. ANDROID TO HTML5 CONVERTER

Figure 5.3: GWT EntryPoint

Figure 5.4: a2g library Activity class

To avoid heavy changes in Android project Activity during conversion to GWT a2g

library have Activity class, which implements EntryPoint and defines methods shown

in Figure 5.2 . The a2g Activity class preserves methods call sequence and tries to

emulate Android Activity behaviour. After images loaded (this part will be described

later), Activity calls onCreate, onStart and onResume methods in the same sequence

Android Activity does.The code example see in Figure 5.4.

Another functionality provided by a2g module is static access to resources. It

is achieved by using singletons Strings, Drawables and Layouts. Those classes use

standard singleton pattern - declaring private constructor, to prevent initialization

from other classes and initializing static member of this class type (See Figure 5.5)

The resources providers do not have access to resources, so they should be set
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Figure 5.5: Singleton pattern

externally on application start.

There is one limitation with HTML and correspondingly with GWT concerning

images. Image should be loaded before it can be used on canvas. The solution is to

add invisible Image to document - to initiate loading and using LoadHandler wait till

image is loaded. As shown in Figure 5.4, actual module loading is done after images

are loaded.

5.4 Converter

Converter consist of three parts

* Source preprocessor - its responsibility is to create class dependencies map - class

full name with its package and classes it derived from. Also it finds application

entry point - required for GWT module descriptor.

* XML processor - based on XML resources like strings and layouts generates cor-

responding Java code. This code is written to CoreInitilizer class, which is re-

sponsible for setting those resources mapping to corresponding a2g library classes

* Source processor - makes code changes.

5.4.1 ANTLR grammar

Both source preprocessor and processor work is based on Abstract Syntax Tree. As

mentioned earlier, ANTLR and slightly modified Terence Parr Java grammar(20) used

for this purpose. The original grammar constructs flat AST based on source file i.e.

every tree node have root node as a parent. Grammar modification was aimed to

make some Java constructions accessible by one root node, to simplify processor and

preprocessor work in finding them. For example code ”package com.example;” produces
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Figure 5.6: A2GConvertor object flow diagram

tree shown on Figure 5.7 using unmodified grammar. Change grammar produces tree

show on figure 5.8 for same part of code.

The grammar changes affect only AST construction, not source parsing. Changed

grammar parts used approach shown above and includes following constructions:

* Package keyword

* Import declarations

* Extends and implements keywords

* Class declaration

* Class body

* Constructors

* Type modifiers

* Method declarations
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Figure 5.7: Flat tree

Figure 5.8: Normal tree
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Figure 5.9: CoreInitilizer template

5.4.2 Source preprocessor

The single task of this component is to generate class hierarchy. This information is

later used by both XML and source processors. Preprocessor uses package and class

declaration nodes to obtain full class name. Base class and interfaces info is constructed

using import, implements and extends nodes.

5.4.3 XML processor

To preserve resource access possibility by its identificator defined in R file, Android

resource XML files are converted to Java code. In other words it fills CoreInitilizer

class corresponding sections.

Android layout files may use custom views from the project source. To let XML

processor know about those custom views, class hierarchy, made by source preprocessor

is used.

5.4.4 Source processor

Despite the fact that major work is done in a2g library, there are still cases that require

code changes. First of all a2g library resource wrappers Stings, Drawables and Layouts
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Figure 5.10: Custom view example

Figure 5.11: CoreInitilizer usage

need to be initialized with resources on application start. To get this done, processor

finds entry point and adds code lines shown in figure 5.11

This invokes Drawables and Strings initialization(see also figure 5.11 and figure 5.4)

and after all images are loaded - Layouts initialization.

Second thing is custom view constructor. Android View can have AttributeSet as

parameter. This is collection of attributes, found in XML layout and associated with

this custom view element. Current implementation of XML processor does not support

attributes processing, so this parameter is omitted from constructor.

Third thing is related to multithreading - in browser all JavaScript runs in single

thread. Multithreading can be simulated in browser by using asynchronous timers.

Same thing apply to GWT - it does not support threads, however it has possibility

emulate it using Timer. From the converter point of view, cycle inside Thread run

method should be replaced with scheduled Timer runs. Current implementation of

Source processor supports only thread which run method structure show on figure

5.12. It is converted to code shown on figure 5.13.
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Figure 5.12: run method before conversion

Figure 5.13: run method after conversion

5.4.5 Limitations

Because current software is only prototype, limitations of approach and used tools

will be described and discussed in this section. First of all GWT supports very lim-

ited amount of HTML5 features. They are: web storage canvas element <audio>

and <video> elements There also several HTML5 features which support is added by

external libraries such as: geolocation databases

Secondly, browser capabilities put several restrictions due the fact that native to pure

HTML5 conversion is used. This includes such features as:

* Connectivity detection

* Different sensors usage

* Sending and receiving system notifications

* Camera usage

* Loading different resources for different device configurations
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Third serious limitation is multithreading. Applications that use connection with

server to send and receive data asynchronously, process it locally and then display to

user, often have at least three more threads beside application main thread. Those are

Sender - for sending request to server, Receiver - for receiving data from server and

Worker- for processing the data. Emulating all those threads using Timer is not a right

solution - there is special API in HTML5 called WebSockets to handle such cases.

Another limitation is 3D graphics. Despite the fact that there is 3D graphics support

for canvas element called WebGL and moreover, that there is external library for GWT

that support it, such class of application not worth to convert. They highly rely on GPU

and hardware acceleration, and additional runtime layer - browser will significantly

decrease performance.

5.4.6 Case studies and evaluation analysis

As a basis for conversion it was decided to choose open source application that after

conversion will use at least one of HTML5 features. LunarLander game was chosen as

a candidate. It is simple game available under Android SDK samples. The game is

classical LunarLander implementation for Android and its objective is to land on the

moon. It demonstrates following Android application features:

* Loading and drawing resources on canvas

* Listening key inputs

* Animating using separate thread

* Choosing different resources for different screen orientation

It fits perfectly for conversion, and source code was taken from Android 2.1 samples.

The HTML5 feature converted application should use is canvas element. The different

resource loading feature is not supported by A2GConvertor, so it simply loads default

resources.

Due the fact that only prototype was developed, A2GConvertor convertible pos-

sibilities are limited to described above features. The conversion was successful, and

converted application shows expected result. As described earlier, Threads were re-

placed by Timers during conversion, and animation Timer was scheduled to show 25
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Figure 5.14: Mean option score

Figure 5.15: Visual analisys of the game performance

frames per seconds ( i.e. calls Timer run() method once per 40 milliseconds). It also

makes canvas size constant 320 x 400.

The application was tested with following configurations:

* AMD Turion 64 x 2 (1.6 GHz), Linux Debian, IceWeasel browser

* Core 2 duo ( 2.66 GHz), Firefox 12, Internet Explorer 9 and Google Chrome 18.0

To analyse the game visual performance in different browsers Mean Option Score was

uses 5.14. The game performance was measured using different frames per seconds

settings in animation timer. The higher frames per seconds is, the smoother are ani-

mations but it can decrease user interaction with application.

The analisys was performed wiht three browsers on Core 2 duo platform. The results

are shown in figure 5.15. There are visual performance decrease for low FPS, however

increasing FPS improves situation and does not have influence on user interaction.
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5.5 Summary

Coversion performs as few code changes as possible. This is achieved by wrapping

GWT components in Adroid structures. There are basically three things that require

heavy code changes:

* XML resources conversion to Java code

* Handling and loading images

* Thread conversion to Timer
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Conclusions and Future Research

Directions

Mobile domain rapid evolution and fragmentation across devices have generated need

for cross-platform development tools and technologies. Google and Apple - two leading

mobile operating system providers are competing each other for the first place. It takes

a lot of effort for developer to migrate application from Android to iOs and vice versa.

Vise solution could be migrating to cross-platform base and to gain support of

smaller platforms such as Blackberry OS, Windows Mobile as a free benefit.

Nowadays, cross-platform development tools are mostly using HTML and JavaScript

as a primary development technology, so converting native application to HTML5 could

be a good place to start with cross-platform development.

As mentioned earlier not every application can be converted and moreover, there

is no point in converting several classes of applications. Also automatic conversion

should not always show good result from performance point of view. Converting native

application to intermediate format and tuning it if needed can be a useful feature.

The current thesis compares HTML5 and native applications, defines application

scope which can be converted to HTML5. It introduces several cross-platform devel-

opment tools, such as PhoneGap and Titanium Appcelerator. It also gives suggestion

and shows possibility for intermediate format such as GWT. One of the future research

directions could be integration this tool with Eclipse. Another is to investigate and

improve Thread emulation using Timer.
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7

Resümee

Natiivsete Android rakenduste migratsioon HTML5-ks

Tänapäeval on märgata mobiilseadmete ning mobiilrakenduste turu kiiret kasvu. Mobi-

iltarkvara arenduse protsessi alustamisel tihti kerkib esimesena platvormi valiku küsimus,

mis tavaliselt põhineb kasutajate nõudluse statistikal. See omakorda tekitab piiranguid

rakenduste kasutamisel. Teoreetiliselt antud probleemi lahenduseks sobiks tehnoloogia,

mis võimaldab kirjutada mitmel platvormil funktsioneerivaid rakendusi. Selleks esineb

mitmeid meetodeid, kuid igaühel on tõsiseid puudujääke.

Mobiilseadmetele mõeldud Flash ei arendata enam Adobe poolt, puhas web’i rak-

endus vajab ühendust Internetiga ning seal ei ole võimalik kasutada natiivseid seadme

omadusi.

HTML5 on uus tehnoloogia, mis toetab mitmeplatvormilist lähenemist, vimaldab

töötada võrguväliselt ning kasutada seadme mitmeid natiivseid omadusi.

Selle magistritöö eesmärgiks on uurida võimalust konverteerida Android natiivset

tarkvara HTML5-ks ning arendada rakenduse prototüüpi, mis teeks antud operatsiooni

võimalikuks.

Kindlasti esineb teatud rakenduste hulk, mis kasutavad Android platvormi spet-

siifilisi omadusi, mis ei allu konverteerimiseks, kuna HTML5 neid ei toeta. Sellest

lähtuvalt eimesena tuleks teha kindlaks, millised programmid sobivad konverteerim-

iseks. Järgmine samm oleks uurida vahendeid mida kasutada eesmärgi saavutamiseks.

Viimasena on konverteri prototüüpi disain ja arendus.
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8

Appendices

8.1 Appenidx 1. Worldwide mobile Os marketshare

Table is created based on Gartner Inc quarter reports(21), (22), (23), (24), (25), (26),

(27), (28), (29), (30), (31), (1).

8.2 Appendix 2. Extended Backus-Naur Form

Extended Backus-Naur Form (EBNF) is a family of metasyntax notations. It represents

formal way to describe formal languages including computer programming languages.

EBNF consists of : terminal symbols - literal characters from production rules of formal

grammar that can not be changed using the grammar rules. In other words they are

language elementary symbols defined by the grammar non-terminal production rules -

strings composed of terminal symbols and non-terminal rules

The following simple grammar rules are from Terence Parr Java grammar: Rules

to the right of the colon is non-terminal rules. They get replaced by their definition (

left of the colon) until only terminal symbols remains.

Another good example of EBNF is taken from same grammar that represents re-

cursion:
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Figure 8.1: Mobile Os marketshare

Figure 8.2: EBNF rules
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Figure 8.3: EBNF recursion
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