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Optimization of the ROCA (CVE-2017-15361) Attack

Abstract:
In 2017, Czech researchers found the vulnerability CVE-2017-15361 (the ROCA
attack) in Infineon’s proprietary RSA key generation algorithm. The researchers
found that 2048-bit RSA key can be factored in only 140.8 CPU-years in the
worst case scenario. The algorithm turned out to be used by 750 000 Estonian
ID-cards. In this thesis, we implemented the ROCA attack and, based on the
properties observed from the keys generated by the affected smartcards, found
further optimizations which allow to improve the original attack from 140.8 CPU-
years to 35.2 CPU-years for 90% of the keys and 70.4 CPU-years for the remaining
10% of the keys. As additional contribution, we provide a parallelized version of
the attack that can be executed on an HPC.
Keywords: Cryptography, smartcard, ROCA, RSA, Coppersmith, Factoring,
Entropy, Cyber-security, High-performance computing
CERCS: P170, Computer science, numerical analysis, systems, control

ROCA rünnaku optimiseerimine (CVE-2017-15361)

Lühikokkuvõte:
2017. aastal avastasid Tšehhi teadlased Infineoni loodud RSA võtmete genereer-
imis algoritmist haavatavuse CVE-2017-15361 (ROCA rünnak). Leiti, et Infineoni
algoritmiga genereeritud 2048-bitiseid võtmeid on võimalik faktoriseerida halvimal
juhul kõigest 140.8 CPU aastaga. Antud algortimi kasutades olid genereeritud
võtmed 750 000 Eesti ID-kaardi jaoks. Selle magistritöö raames implementeeriti
ROCA rünnak ning genereeritud võtmeid ja haavatavaid kiipkaarte analüüsides
loodi rünnakust uus, optimiseeritud versioon, mille abil on võimalik sooritada rün-
nak 140.8 aasta asemel 35.2 CPU aastaga 90% võtmete puhul ning 70.4 aastaga
ülejäänud võtmetel. Lisaks loodi paralleliseeritud versioon rünnakust kasutades
teadusarvutuste klastrit (HPC).
Võtmesõnad: Krüptograafia, kiipkaart, ROCA, RSA, Coppersmith, Faktoriseer-
imine, Entroopia, Küberturvalisus, Kõrgemahulised arvutused
CERCS: P170, Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuh-
timisteooria)
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1 Introduction
In October 2017, Czech researchers Matus Nemec, Marek Sys, Petr Svenda, Dusan
Klinec, and Vashek Matyas published the paper “The return of Coppersmith’s
attack: Practical factorization of widely used rsa moduli” [1], where they described
the vulnerability CVE-2017-15361 (the ROCA attack) in Infineon’s proprietary
RSA key generation algorithm. The researchers found that 2048-bit RSA keys can
be factored in only 140.8 CPU-years. A number of widely used products, such as
BitLocker TPM, YubiKey 4 and Chrome OS (many Chromebooks (Lenovo, Acer,
HP, etc.)), were affected and had to find their own solution for mitigation. All of
these products relied on the vulnerable Infineon RSA firmware ≤ 1.02.013 [2]. In
response to this vulnerability, Infineon updated the library.

The flaw affected 750 000 Estonian ID cards, which used 2048-bit RSA keys
generated by Infineon’s vulnerable key generation algorithm. All Estonian citizens
are given an official ID card containing a security chip with a RSA private key,
which can be used in a variety of public services ranging from e-voting to medical
prescriptions. As the cards are central to the information systems in Estonia, of-
fering official services to their citizens and considering electronic signatures legally
binding, the vulnerability had a consequential impact on Estonia. The Estonian
ID cards were updated to abandon the RSA algorithm and use elliptic curve cryp-
tography, also offered by the library on these smartcards.

The main contribution of this thesis is the implementation of the ROCA at-
tack, which has has not been publicly available up to now. The second main
contribution of this thesis is the optimization of the attack, based on the prop-
erties observed from the keys generated by Infineon’s vulnerable algorithm. The
analysis focused on the keys generated by the specific smartcard Infineon JavaC-
ard SLJ52GCA150 [3], which is from the same family of security chips as used
by the affected Estonian ID card platform. The optimizations found in this work
are likely to apply also for other affected products from Infineon, but this has not
been verified. As additional contribution, a parallelized version of the attack that
can be executed on an HPC is provided.

4



2 Background and Prerequisites
This section introduces the RSA cryptosystem [4], as well as the prime generation
algorithm, whose insecure implementation by Infineon led to the ROCA vulnera-
bility. The LLL algorithm [5] and Coppersmith’s attack [6], needed to implement
the ROCA attack, are also presented.

2.1 Rivest-Shamir-Adleman (RSA) cryptosystem
Rivest-Shamir-Adleman (RSA) [4] is a public-key cryptosystem. The idea is to
separate the encryption and decryption process by differentiating the key for en-
cryption and decryption. The encryption key is called the public key and is known
by everyone and the decryption key is called the private key and is only known to
the key owner. The system works as follows:

Algorithm 1: RSA Key Generation
Input: keysize
Result: private key: (e, d,N, p, q), public key: (e,N)

1 p,q
$←− {Prime numbers > keysize

2
}

2 N ← p · q
3 φ(N)← (p− 1) · (q − 1)

4 e
$←− Z : e < φ(N), gcd(e, φ(N)) == 1

5 d← e−1(mod φ(N))
6 return (e, d,N, p, q), (e,N)

Algorithm 2: RSA Encryption
Input: public key: (e,N), message: m
Result: ciphertext: c

1 c = me(mod N)
2 return c

Algorithm 3: RSA Decryption
Input: private key: (e, d,N, p, q), ciphertext: c
Result: message: m

1 m = cd(mod N)
2 return m

Note that this system is the pure mathematical version of RSA, and does not
include padding schemes, or further constructions. In practice, padding schemes,
such as PKCSv1.5 [7], are used. There is also the possibility to use the Chinese
Remainder Theorem (CRT) [8] to speedup the decryption process.
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This cryptosystem was used in the Estonian ID cards, where private keys were
generated on the smartcards. The key generation algorithm is the center of atten-
tion, as it is there that the ROCA vulnerability lies. The key generation algorithm
needs two prime numbers p and q. These prime numbers are supposed to be
around half the key size, so that the size of their product is equal to the key size.
In the key generation process above, they have an entropy of half the key size. The
security assumption of RSA relies on the fact that p and q are selected randomly to
have this entropy and on the fact that factoring big numbers is considered hard.
If the prime has a lower entropy than expected, the security level of RSA will
decrease, which is the case in the ROCA attack.

2.2 Joye and Paillier’s Algorithm for Fast Prime Genera-
tion

In the original ROCA paper, it has been suggested that Infineon used a modified
version of Joye and Paillier’s algorithm for key generation on their security chip.
This algorithm was introduced in the paper “Efficient generation of primes” [9], and
its revision “Fast generation of prime numbers on portable devices: An update”
[10]. The algorithm is proven secure in the context of RSA key generation and is
intended for use in portables devices, such as smartcards, as the output entropy
loss is negligible at practical key sizes. As explained in section 2.1, the generation of
primes has to keep the security assumption strong. The problem is that generating
large prime numbers is a slow process, since simply picking random odd numbers
has a low probability of yielding a prime number. A secure algorithm to produce
large prime numbers efficiently (high probability to be prime) is thus of high value,
specifically for constricted environments. The algorithm is described below.

Algorithm 4: Fastprime; (based on: [10])
Input: t, v, w, a ∈ { Z

mZ}
∗\{1}

Result: random prime q
1 Π =

∏
i pi,with pi as first i primes

2 l← vΠ
3 m← wΠ

4 k
$←− { Z

mZ}
∗

5 q ← ((k − t) mod m) + t+ l
6 while q is not prime do
7 k ← a · k (mod m)
8 q ← ((k − t) mod m) + t+ l
9 return q

Infineon’s modification to this algorithm is the cause of the vulnerability ex-
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ploited by the ROCA attack, since the primes are not picked randomly, therefore
a bias was introduced and the RSA security assumption is weakened. Infineon’s
modification is calculated by taking Π = M , v picked randomly (corresponds to
k in the ROCA paper), a = w = 1, t = 0. Instead of picking k (the one from
Joye and Paillier, not ROCA) randomly, it is defined to be 65537 to the power
of a smaller random number, modulo M , which is called a in the ROCA paper.
Since this k is a random power of 65537 (mod M) and not a random number, the
entropy is lower than it should be.

2.3 Lenstra–Lenstra–Lovász (LLL) Lattice Basis Reduction
Algorithm

The Lenstra–Lenstra–Lovász (LLL) algorithm [5] is an algorithm for lattice base
reduction. It gives the possibility to reduce a lattice base to a short and usable base
in polynomial time. This algorithm is used in the Coppersmith attack explained
in the next section, which constitutes a key role in the construction of the ROCA
attack. LLL is widely used for factorization in different contexts, and, in this case,
for breaking the security assumption of RSA. This algorithm is important in the
attack, since it consumes the majority of the computing spent in the attack.

LLL is used as follows: given a basis B = {{b0, ..., bn}, bi ∈ PolynomialsZ}, a
lattice is defined by taking all integer combinations of this basis: L = {

∑m
i=1 zibi :

zi ∈ Z, bi ∈ B}. Given a lattice basis B = {{b0, ..., bn}, bi ∈ PolynomialsZ}, the
LLL algorithm yields a new basis B′ = {{b′0, ..., b′n}, b′i ∈ PolynomialsZ} which
is shorter (first polynomial b′0 close to shortest vector) for the same lattice. The
shortening is exponentially dependent on the number of vectors in the base. The
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definition of the algorithm is:
Algorithm 5: Lenstra-Lenstra-Lovász (based on: [11])

Input: Basis: B = {{b0, ..., bn}, bi ∈ PolynomialsZ}
Result: Shorter basis: B′ = {{b′0, ..., b′n}, b′i ∈ PolynomialsZ}

1 # Normalization is not necessary, just orthogonalization
2 B′ = Gram_Schmidt(B)
3 i← 1
4 while i < n do
5 # Reduce
6 for k ← 0 to i do
7 j = (i− 1)− k

8 bi ← bi −
b′ij+1

2
· bj

9 B′ = Gram_Schmidt(B)

10 if ||bi||2 < 2 · ||bi−1||2 then
11 # Swap
12 bi, bi+1 ← bi+1, bi B

′ = Gram_Schmidt(B)
13 i← i− 1

14 else
15 i← i+ 1

16 return B′

Internally, LLL uses the Gram-Schmidt transformation to construct orthogonal
vectors for the new base, which is described below.

2.3.1 Gram-Schmidt Orthonormalization Process

Gram-Schmidt [12] is an algorithm used to transform a basis of a set to an or-
thonormal basis of the same set. Gram-Schmidt yields a basis which is normalized
by dividing the resulting vectors by their own size, and orthogonal by recursively
applying projectors from each vector on to the next one. This is always possible
as all vectors in the basis are by definition linearly independent. The algorithm
works as follows:
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Algorithm 6: Gram-Schmidt
Input: Basis: B = {b0, ..., bn}
Result: Orthonormal basis: BGS = {b′0, ..., b′n}

1 Orthogonalize:
2 b′0 = b0
3 b′1 = b0 − projb0(b1)
4 b′2 = b0 − projb0(b2)− projb1(b2)
5 ...
6 b′n = b0 − projb0(bn)− ...− projbn−1(bn)
7 Normalize:
8 return { b′0

||b′0||
, ..., b′n

||b′n||
}

The algorithm defines projectors from each vector on the next one so that the
resulting vectors b′i will be orthogonal to all other vectors in the new basis. As
an example, in a two dimensional space the basis B = {b0, b1}, Gram-Schmidt
constructs a right-angled triangle with the vector b0 and an orthogonal vector b⊥0
to construct b1. Thus, b′0 = b0 and b′1 = b0 − projb′0(b1)︸ ︷︷ ︸

b⊥0

. The new basis can then

be constructed with BGS = { b′0
||b′0||

,
b′1

||b′1||
}.

2.4 Coppersmith’s Attack
Don Coppersmith, in [6], presented an attack on the RSA cryptosystem. The
attack allows to decrypt a message encrypted with RSA, if enough bits from the
original message are known. The attack is done in seven steps, where the cipher-
text to be decrypted is transformed. There have been other optimizations for
other purposes, such as the extension by Boneh and Durfee [13], who found an
improvement where the secret key can be revealed (in contrast to just decrypting
one message), which is a complete break of the cryptosystem with partially known
plaintext. The particular form of Coppersmith’s used in the ROCA attack is the
Howgrave-Graham extension [14]. This extension is used in each iteration of the
main attack and is used to factor a potential candidate of p or q. The attack is
described below.
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Coppersmith

1 c = (m0 + x︸ ︷︷ ︸
m

)e(mod N) RSA ciphertext with known
bits

2 f(x) = c− (m0 + x)e(mod N)
Convert ciphertext into poly-
nomial

3 M =


f0(x) = xjN ifm−i(x)

...
fm(x) = xifm(x)

...
fn(x)

 Construct Matrix as basis for
lattice

4 M ′ = LLL(M)
Reduce basis M of lattice us-
ing LLL algorithm

5 M ′ =

 b0(x)
′

...
bn(x)

′

 Take first line (polynomial) of
new basis M ′

6 g(x) = b′0
Define first line of basis as
new polynomial g(x)

7 x = roots(g(x)) Find roots of polynomial g(x)
over Z

Figure 1: Overview of the Coppersmith attack
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2.4.1 Transform Ciphertext into a Polynomial

The first step of Coppersmith’s attack requires to know some bits of the ciphertext
to be decrypted. The second step in this attack is to transform the known cipher-
text into a polynomial. In the case of ROCA, the polynomial is not taken from
the ciphertext, but constructed from the structure of the key. In this example, the
partially known plaintext will be used. As some bits of the encrypted message are
known the message can be separated into two parts, namely the known bits and
the unknown bits. The encryption key is not important, as it does not take any
part in the attack. A RSA encrypted message m is of the form c = me(mod N).
Since part of the message m is known, it is possible to cut m = m0︸︷︷︸

known

+ x︸︷︷︸
unknown

,

which would look something like

“The password is:︸ ︷︷ ︸
known

mysecretpass123︸ ︷︷ ︸
unknown

”

or
“AAAAAAAAAAA...︸ ︷︷ ︸

known padding

mysecretpass123︸ ︷︷ ︸
unknown

”

The minimal condition for Coppersmith to work is |x| < N
1
e . The form of the

polynomial does not matter for Howgrave-Graham as long as it is univariate (one
unknown variable). This is the case in the ROCA attack, where the polynomial
is different, but also univariate. Note that there exists a multivariate version of
Howgrave-Graham which is not used in ROCA. It is possible to transform the
ciphertext into a polynomial of the form:
f(x) = c− (m0 + x)e(mod N), by just passing c to the other side of the equation
and substituting m by m0 + x. The idea is to find the roots of this polynomial,
as they describe the value of the unknown x, which is the unknown part of the
ciphertext. Since this is not a trivial problem, other steps are needed to transform
this polynomial.

2.4.2 Find Equivalent Polynomial in Z

Since the polynomial which is transformed from the ciphertext is modulo N , it is
necessary to find an equivalent polynomial in Z, with the same roots. Finding the
roots of a polynomial over Z is easy, in contrast to finding roots of polynomial
over a ring. Howgrave-Graham shows in his paper that under certain conditions,
another polynomial g(x), over Z, which has the same roots as our polynomial f(x),
can be found with the following theorem:
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Theorem 1
Let g(x0) ≡ 0 mod Nm with degree d−1 and |x0| < X ||g(xX)|| < Nm

√
δ
⇒ ∃g(x0) =

0 over Z
Source: [14]

2.4.3 Lattice Reduction

Finding an equivalent polynomial over Z is not enough as it also has to be small
enough to be factored (its roots being found). It is needed to construct a set of
polynomials used to construct the final polynomial g(x0), which can be factored.
This construction (step 3 in Figure 1) will be used to find the suitable polynomial
to be factored. The polynomials are fed into a lattice, so that the reduction (step
4 in Figure 1) of the lattice yields smaller polynomials which are suitable. The
polynomial g(x0) < pm is constructed by using a set of polynomials fi of the form:

From 0 to m− 1: fi(x) = xjN ifm−i(x) i = 0, ...,m− 1 j = 0, ..., δ − 1

from m to t− 1: fi+m(x) = xifm(x) i = 0, ..., t− 1,

where δ is the degree of f(x). The t andm parameters are given as optimization
parameters depending on the specific polynomial f(x). This is used to construct
a basis matrix of a lattice. When reduced, the first polynomial b′0 of this lattice
is defined as being our polynomial: g(x0) (step 5 and 6 in Figure 1), which is
evaluated with g(xX) with X = ⌈Nβd−ϵ⌉. In order to reduce the lattice, the LLL
algorithm is used (see Section 2.3). When the new polynomial g(x0) is known, its
root are taken with standard methods in Z (step 7 in Figure 1). Finally, one of the
found roots is the secret message x. The variables c,m0, e, N are known ((e,N) is
the public key of RSA) and x is the variable to be found. As x is known, the full
ciphertext is decrypted and RSA is broken in this context.

3 The ROCA Attack
This section explains the original attack by the Czech researchers. The ROCA at-
tack takes advantage of the Coppersmith attack, or more precisely, the Howgrave-
Graham extension of it. It takes advantage of a found polynomial form of the
primes to introduce a Coppersmith-based bruteforce on a reasonably-sized param-
eter range. As stated in the ROCA paper, it was found that in Infineon’s version
of the RSA key generation, the primes used for the private key were constructed
using a specific polynomial form. This polynomial form is a variant of Joye and
Paillier’s algorithm (see Section 2.2), which, in itself, is a secure prime generation
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algorithm, contrary to the version in the vulnerable implementation by Infineon.
In Infineon’s key generation algorithm, the primes p and q are generated using the
polynomial [1]:

p = k ∗M + (65537a mod M) (1)
where M is known, but a and k are random integers. This form reduces the
searching space from a random prime half the key size, to the size of the unknown
k and a. In the case of k and a, the search space for a still is too big for a reasonable
bruteforce. The parameter M is a known primoral constant, meaning that M is
the product of all primes up to n: M =

∏n
1 primes, where n depends on the key

size see parameter n in Table 2). The form is chosen specifically so that p will
not contain the divisors in M and thus have more chance of being a prime. For
example a key of 512 bits results in an effective entropy of 99 bits, as the size of a
and k together is 99 bits: 99 = 62 + 37 = log2(a) + log2(k). Since M is a product
of primes, it is possible to move some entropy from a to k, by increasing the size
of k with some divisors of M . This will make the order of k smaller, therefore a
will also be smaller. As the range of a becomes smaller, bruteforcing will become
possible. For example, 262 is considered too big to bruteforce, since each iteration
is time consuming because of the LLL reduction. It is thus important to find a
small enough range for a to be bruteforcable and a small enough k to be calculable
by the LLL reduction and root finding of the polynomial. The transformation is
made by transferring divisors (primes) of M to k. The idea of the ROCA paper
is thus to find a new M ′, k′, a′ which are reasonable parameters for the bruteforce.
Since both primes are of this form, the public key is of the form

N =

p︷ ︸︸ ︷
(k ∗M + (65537a mod M)) ∗

q︷ ︸︸ ︷
(l ∗M + (65537b mod M)) (2)

Source: [1]
The ROCA attack is depicted in Figure 2.
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ROCA

a′0 ... a′n1

2

3

4

5

6

f(x) = x+M ′ + (65537a
′ mod M ′)

k′ = Howgrave−Graham(f(x))

p = k′ +M ′ + (65537a
′ mod M ′)

N (mod p) == 0

return p, (q = N//p)

Loop over all possible a′

Construct polynomial with this
iteration’s a′

Calculate roots of polynomial with
Howgrave-Graham method (see 2.4)

Construct prime with given a′

and calculated k′

Test if constructed p is a factor of N

Return factors

False

True

Figure 2: Overview of the ROCA attack
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Algorithm 7: ROCA
Input: N
Result: p,q: factors of N

1 foreach a′ do
2 f(x) = x ·M ′ + (65537a

′ mod M ′)
3 k′ = coppersmith(f(x))
4 p = k′ ·M ′ + (65537a

′ mod M ′)
5 if (N mod p) == 0 then
6 return p, N

p

This attack is possible as the primes are in this polynomial form (see equa-
tion (1)). The Czech researchers reverse-engineered the form by taking small
primes as modulo of the public key and plotting them to see if the occurrence is
the same for all of them or if some moduli are more common than others. It was
found that in Infineon smartcards, certain moduli show a strong bias.

4 Optimization Based on Properties Observed
from Real Keys

This section focuses on finding further improvements for the ROCA attack, based
on properties observed from real keys. In the original paper, as a potential improve-
ment, the authors suggested looking into the polynomial choices for constructing
the lattice to be factored. If it is possible to find a more suitable polynomial for
the lattice construction, the attack could greatly benefit from it. As the original
construction could not be optimized further, the variables in the construction of
the polynomial (1) were analyzed. If the entropy of the parameters used to con-
struct the primes is lower than expected, the bias can be used as an advantage
in the attack. The original paper considers integers a and k, used to construct
primes, to be random, however, from actual keys, generated by the vulnerable key
generation algorithm by Infineon, it can be seen that they have biases which can
be exploited to optimize the attack further.

In order to confirm the findings and be fully compatible with the original pa-
per, as well as confirm that the Estonian ID cards are affected, the private key
harvesting has been done with the Infineon JavaCard SLJ52GCA150 [3]. Gen-
erating private keys from real cards can give unique insight to make multiple
discoveries. First of all, confirm the findings of the ROCA paper by testing the
polynomial form of the primes. Secondly, confirming that the implementation of
the attack works on real keys (see section 5). Finally, finding potential new flaws
by analyzing the entropy of these keys. For extracting the keys, the JavaCard
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private key extracting tool and its client from the Czech researchers in [15] has
been used to ensure compatibility and correctness. A custom python script has
been written to parse the output of this tool and to analyze the private keys. An
array of 9 cards has been used to harvest 1 250 000 private keys (i.e, 2 500 000
primes). The focus of this work is on 2048-bit RSA keys, since they are widely
used, including by the Estonian ID cards before migration to ECC. The same
properties have also been observed on RSA 512-bit and 1024-bit keys extracted
form the Infineon JavaCard SLJ52GCA150. The parameters a and k were recov-
ered from the primes p and q using the formula a = discrete_log65537(p mod M),
k = p−(p mod M)

M
(to compute a′ and k′ the same formula is used by substituting

M with M ′). Since the order of the group is small, the discrete logarithm can be
computed. The parameter c (or c′) can be calculated from the public key, using
the formula c = discrete_log65537(N mod M).

4.1 Fixed Bits in Exponent a and k

In the original paper integers a and k, as well as a′ and k′, were considered to be
uniformly random. The entropy of the parameters a′ and k′ of the modified prime
generation polynomial p = k′ ∗M ′ + (65537a

′ mod M ′) has been analyzed. The
parameters a′ and k′ are similar to a and k, but using M ′ instead of M . In Figure
3, the probability distribution of each bit in a′ and k′ is shown. The expected
result would be the same probability between 1 and 0, represented by the dotted
blue line. The integers a and k are of the same form as a′ and k′, since M ′ and
k′ are calculated by transferring some divisors of M to k (see [1]). Therefore, any
bias in a and k will also be in a′ and k′.
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Figure 3: Entropy of each bit in a′ and k′, MSB to LSB (2048-bit keys)

As can be seen in Figure 3, some bits are strongly biased or even fixed at a
particular value. For example, the parameter a′ has its most significant bit (MSB)
fixed to 1. This means that all values below a′ = 2bitlen(a’)−1 never occur and
can be excluded from the bruteforce range of a′. The new value of the optimized
bruteforce range is defined by ca = 2bitlen(a’)−1, as shown in Figure 4.

The optimization gained by bruteforcing from ca can be calculated by the
difference between [ c′

2
, c

′+ord′

2
] and [ca, c

′+ord′

2
]. Since ord′ >> c′, the speedup of

the optimization will have a small variance. Since ca is the half of the theoretical
maximum, the worst-case speedup is twice faster. To summarize, the optimization
will cut the range by two plus the trivial variance. Theoretically, this cuts down
the worst case time required to factor 2048-bit RSA key from 140.8 CPU-years of
the original attack to 70.4 CPU-years.
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c′

2
ca c′+ord′

2

range

range′

Figure 4: Comparison of the original and the new bruteforce range

The second observation is that the parameter k′ is fixed at the 3 MSBs. This
can be used to transform the polynomial to the form

p =

k′︷ ︸︸ ︷
ck + r ∗M ′ + (65537a

′mod M ′) (3)

where ck is known. This transformation can be used by passing ck to the side of p
and reconstructing p− ck instead. As this does not speedup the attack in practice,
it is currently not used. However, it is possible that another transformation could
speedup the root-finding algorithm, since some bits of the root are already known,
namely ck (3 MSBs of k′).

4.2 Biases in Exponent a′

In addition to the fixed MSB in a′, there are other bits in a′ which are biased.
When looking at the LSB, one can notice that it is biased towards 0. It means
that a′ is statistically biased towards being even and this can be used to speedup
the attack. The optimized attack thus iterates first over even a′ and then over
odd a′. For 2048-bit RSA keys, the LSB of a′ is even 90.98% of the time (for
1024-bit: 95.7%, 512-bit: 97.2%). The average gain of iterating over even a′ first,
is a speedup of range

2
· 0.9098. Theoretically, this cuts down the worst case time

required to factor 2048-bit RSA key from the previously improved 70.4 CPU-years
to 38.7 CPU-years for a random key.

4.3 Cherry-picking Weaker Public Keys
Since the range of the bruteforce depends from c′ which can be extracted from
the public key, a key with a small c′ can be cherry-picked for a smaller bruteforce
range. The RSA public keys from the Estonian ID cards certificates, affected by
the ROCA vulnerability, have been searched for the smallest c′. In total 1 758
745 affected Estonian ID cards certificates were analyzed (this number includes
renewed certificates). The smallest c′ found was c′ = 20619. Since the range goes
from c′

2
to c′+ord′

2
, a smaller c′ will have a smaller range to iterate over, and will thus

take less time. This speedup does not make a big difference, because ord′ >> c′
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(order is much bigger than c′). On a 2048-bit key, it speeds up the attack by
around 2%.

Another possibility is to cherry-pick an odd c′, as the only possibility to have
an odd c′ is having an even a′ and odd b′ or the opposite (since the sum of any
even and odd number is odd). Thus by iterating only over the even numbers, a′
will always be found. This represents an average speedup of 90.98% in general,
as now the range is cut in half again, and 100% if c′ is odd. In comparison to
the original attack, the range now is four times smaller with a cherry-picked key
and the previous optimizations. This cherry-picking is thus guaranteed on 90.98%
of the keys. Theoretically, this cuts down the worst case time required to factor
2048-bit RSA key from the previous 70.4 CPU-years to 35.2 CPU-years.

4.4 Efficiency of the Optimized Attack
The theoretical efficiency of the optimized algorithm using the previously described
optimizations, is now in the worst case, using only the biased bits in a′,
efficiencyworstcase =

|{rangea′}|
2

.

In the worst case using a random key and exploiting the biased bits in a′,
efficiencyworstcase,random key =

|{rangea′}|
4

· 0.9098(bias)

and cherry-picked and using the biased bits
efficiencyworstcase,cherry−picked key =

|{rangea′}|
4

.

The Table 1 shows the worst case cost of the attack using the ROCA imple-
mentation developed in this work, executed on the university cluster. The HPC
of the University of Tartu uses a slightly slower CPU than the researchers used in
the original paper. The HPC uses the CPU “Intel(R) Xeon(R) CPU E5-2660 v2
@ 2.20GHz” with an Intel Thermal Design Power (TDP) of 95W for 20 cores.

The table is divided by key size and by the type of the attack used. The num-
bers marked with a “*” are actual running times, the other values are extrapolated
from the duration of one Coppersmith iteration and calculated using the worst case
efficiency range.

The price of the calculation is provided based on the energy consumption spec-
ification of the CPU used by the HPC and the energy price of 0.2$/kWh (the same
as used in the original paper).
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Key size Non-optimized Optimized Optimized Optimized
Random key Cherry-picked

512-bit 2.0333 CPU-hours* 2.2 CPU-hours 0.73 CPU-hours* 0.51 CPU-hours*
1024-bit 102.4 CPU-days 51.2 CPU-days 36.5 CPU-days 25.6 CPU-days
2048-bit 161.2 CPU-years 80.6 CPU-years 57.5 CPU-years 40.3 CPU-years (336$)

Table 1: Efficiency of the ROCA attack using HPC

5 Implementing the ROCA Attack
The attack has been implemented using the description provided in the ROCA
paper. In the original paper, an example for the M to M ′ transformation is
given, but includes an error, which created difficulties for the implementation and
validation, since the parameters were not publicly available. The example 2.1 in
Section 2.7.2 of the original paper, missed the factor 53 in its power prime divisors.
In the best candidates for pej , the value 33 should be used instead of the value
32 as provided in the paper. An discussion with the authors of the original paper
solved the issue and confirmed the obtained parameters.

As a further contribution, some of the parameters, needing a lot of computing,
have been pre-calculated and are shown in Table 2. The parameter n is the number
of consecutive primes to be multiplied to get M . Parameters amax and kmax are
the number of bits of a and k. M is the product of n primes. M ′ is the optimal
parameter for the attack, derived fromM by transferring divisors to k. Parameters
m and t are optimal parameters for the underlying Coppersmith’s method given in
the ROCA paper. Finally, ca is the optimization parameter defined in Section 4.1.
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512 1024 2048
n 39 71 126
amax 62 134 434
kmax 37 37 53
M(Hex) 09 24 cb a6 ae 99 df a0 84 53 7f

ac c5 49 48 df 0c 23 da 04 4d 8c
ab e0 ed d7 5b c6

07 92 3b a2 5d 12 63 23 28 12 ac
93 0e 96 83 ac 0b 02 18 0c 32 ba
e1 d7 7a a9 50 c4 a1 8a 4e 66 0d
b8 cc 90 38 4a 39 49 40 59 34 08
f1 92 de 1a 05 e1 b6 16 73 ac 49
94 16 08 83 82

07 cd a7 9f 57 f6 0a 9b 65 47 80
52 f3 83 ad 7d ad b7 14 b4 f4 ac
06 99 97 c7 ff 23 d3 4d 07 5f ca
08 fd f2 0f 95 fb c5 f0 a9 81 d6 5c
3a 3e e7 ff 74 d7 69 da 52 e9 48
d6 b0 27 0d d7 36 ef 61 fa 99 a5
4f 80 fb 22 09 1b 05 58 85 dc 22
b9 f1 75 62 77 8d fb 2a ea c8 7f
51 de 33 9f 71 73 1d 20 7c 0a f3
24 4d 35 12 9f eb a0 28 a4 84 02
24 7f 4b a1 d2 b6 d0 75 5b af f6

M ′(Hex) 1b 3e 6c 94 33 a7 73 5f a5 fc 47
9f fe 40 27 e1 3b ea

24 68 31 44 f4 11 88 c2 b1 d6 a2
17 f8 1f 12 88 8e 4e 65 13 c4 3f 3f
60 e7 2a f8 bd 97 28 80 74 83 42
5d 1e

01 69 28 dc 3e 47 b4 4d af 28 9a
60 e8 0e 1f c6 bd 76 48 d7 ef 60
d1 89 0f 3e 0a 94 55 ef e0 ab db
7a 74 81 31 41 3c eb d2 e3 6a 76
a3 55 c1 b6 64 be 46 2e 11 5a c3
30 f9 c1 33 44 f8 f3 d1 03 4a 02
c2 33 96 e6

m 5 4 7
t 6 5 8
ca(Hex) 08 00 00 40 00 00 00 04 00 00 00 00

Table 2: Optimal parameters for the ROCA attack

The attack code is written in python 2.7 using SageMath library [16]. For Cop-
persmith’s attack, the already existing SageMath implementation of Howgrave-
Graham [17] was used (the same as used by the Czech researchers). For the LLL
implementation, SageMath uses the fpyLLL wrapper from the fpLLL library [18].
The code has been separated in multiple modules. The code which calculates
the parameters given in Table 2, can be found in the “param.py” file. The at-
tack is implemented in “roca.py”. A pure SageMath version is also included in
“roca.sage”. In order to confirm that the attack works, a test case can be found
in the “test” folder. The test case runs the attack by calculating k′ with known
a′ and finds p by reconstructing the polynomial. The “data” folder contains mul-
tiple vulnerable keys with different sizes, which can be used for testing purposes.
The code takes as an input the public keys accepted in the format supported by
pycrypto [19], namely X.509 [20] in binary or PEM, PKCS#1 in binary or PEM
and OpenSSH [21] public key.

To run the original attack (without the optimizations found in this work), the
number of cores to be used (default: 1) can be passed to the implementation and
used with the following command:

$ python2 roca.py <path to key> -j <number of cores>
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The attack prints out the primes and exports the private key to “priv.pem” file.
The Listing 1 shows the output from the execution of the attack against a vulner-
able 512-bit RSA key.

$ python2 roca . py data /512 .pem
[+] Import ing key
[+] Key i s vu l n e r ab l e !
[+ ] RSA−512 key
[+] N = 80474497870208039394761476993787283293147334261
64267535316072793294233587337682475529099270039635820
022607073710171609979448215488148758894001678423611389
[+] c ' = 588970
[+] Time f o r 1 coppersmith i t e r a t i o n : 0 . 04 seconds
[+] Estimated ( worst ca s e ) t ime needed f o r the a t tack :
4 hours , 30 minutes and 3 . 46 seconds
[+] Found f a c t o r s o f N:
[+ ] p = 893165853412392001031647986291682301859833465485
58222489515734210664382833579
[+] q = 901002849165701396384390284897352814133860742044
03670730318637933879173958391
[+] Took 7742 .3 s
[+ ] Export ing key to p r i v . pem

Listing 1: Execution of the attack against vulnerable key

The optimized version of the attack (see Section 4) is used with the same
parameters and can be found in “optimization.py”. This implementation of the
attack applies all the optimizations presented in this thesis. It will iterate only
from ca and first over even numbers. If the key is cherry-picked, namely that c′ is
odd, this will be detected and the time estimate will be updated.

To the best of our knowledge, this implementation is the only complete imple-
mentation of the attack, which is publicly available. The code has been published
on GitHub [22]. Until now, the only available code for the attack was done by
Bernstein & Lange [23], and requires the knowledge of two parameters u and v
for the key (corresponds to a and k). The project CheckResearch reproduced the
paper [24] using the script from Bernstein & Lange to confirm the findings.

5.1 Parallelizing the Attack Code for HPC
Factoring a real key (bigger than 512 bits) cannot be done on a simple laptop,
as it requires a lot of computing resources. Thus, it is necessary to implement a
parallelized version of the attack, which can be run on a High Performance Cluster
(HPC). The available HPC at the University of Tartu is based on SLURM (Simple
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Linux Utility for Resource Management) [25]. A wrapping script for SLURM is
included in the code base. The parallelized version is formatted to be runnable
by the script or with GNU “parallel”. To run the attack on SLURM the following
command is used:

$ sbatch slurm.sh <path to key>

For the “roca.py” and “optimization.py” to be also usable in parallel, the non-
SLURM attack is coded in a master-slave worker pool. To avoid the python Global
Interpreter Lock (GIL) and have true parallelization, the code uses multiprocess-
ing [26] instead of threading [27].

6 Conclusion
In the original paper, the real world factorization of vulnerable 2048-bit RSA
keys was already feasible in a reasonable time and cost. With the optimizations
provided in this work, the time and cost are reduced even further. The worst case
time for the attack was cut down from 140.8 CPU-years to 35.2 CPU-years for
90% of the keys and 70.4 CPU-years for the remaining 10% of the keys.

Further improvements are still possible, since, as can be seen in Figure 3,
some bits of k′ are biased. The entropy is lower than expected, thus it could be
used to speed up the root finding. Another improvement could be to use other
biases in a′ and change the iteration order again. Optimizing the LLL parameters
and finding other polynomial constructions for the lattice basis still are the best
candidates for further optimization. As for the total time spent on the attack, an
implementation of LLL on FPGA in languages such as VHDL or Verilog would
make a significant improvement. If implemented, they could speedup each iteration
time and could be used by cloud services such as Amazon’s F1. Other heuristics
for the implementation could also help the code get faster, as the code is based
on python. Usage of other languages than python could also help, although the
dependency for SageMath has to be removed for this purpose.
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