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INTRODUCTION 

Bacteria are the most abundant living organisms on Earth. Through billions of 
years of evolution they developed numerous adaptation mechanisms that allow 
them to survive in constantly changing environmental conditions. Bacteria pro-
tect themselves from various environmental challenges by entering a dormant 
state, by acquiring resistance to antibiotics, forming biofilms etc. All these 
varied adaptation mechanisms rely on the enzymatic activity of specific proteins 
that sense and response to stress – and that renders these proteins promising 
targets for the development of novel antibacterial agents. 

The current work elucidates one of bacterial adaptive mechanisms called the 
stringent response that is orchestrated by RelA SpoT Homologue (RSH) en-
zymes in nutritionally poor environment, upon heat shock or cell wall damage. 
The varying level of effector-molecule of the stringent response – a highly 
charged nucleotide alarmone (p)ppGpp – is the key mediator of the survival 
program launched by bacteria during stringent response. In order to turn off the 
stringent response and increase the susceptibility of bacteria towards antibiotics, 
one can either target the RSH enzymes themselves or compromise the signaling 
nucleotide (p)ppGpp direclty. This dissertation discusses the possibilities of in-
hibiting the activity of Escherichia coli stringent factor RelA by re-examining 
the mechanism of action for the classical antibiotics and characterizing newly 
developed molecular tools based on a (p)ppGpp scaffold.   
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REVIEW OF LITERATURE 

1. The stringent response, a core bacterial  
adaptation mechanism 

1.1. Bacterial stress responses 
Bacteria can be found everywhere across the planet including such extreme 
places as underwater volcanoes and ice-covered plains of Arctic. Their ability to 
adapt to almost every possible change in environmental conditions is the key for 
bacterial successful survival, proliferation and evolution. To adapt to changes, 
bacteria first have to sense it and therefore, they have numerous stress response 
mechanisms that can be differentiated by the types of stresses they are respon-
sible of (Poole, 2012). Starting from nutrient limitation like the deprivation of 
Mg2+ ions (Groisman et al., 1997) to the oxidative stress, caused by reactive 
oxygen species (Gu and Imlay, 2011; Touati, 2000) and SOS response that is 
known to be activated as one of the last preventive measures upon DNA da-
mage and exposure to drugs (Baharoglu and Mazel, 2014), the strategies for 
bacterial survival are highly diversified. 
 
 

1.2. Discovery of the stringent response, SR 
RNA synthesis in bacteria is regulated in different ways. A classical example is 
repression of stable RNA (i.e. ribosomal, rRNA, and transfer, tRNA, RNA) 
synthesis during amino acid deprivation (Neidhardt, 1964, 1966; Pardee and 
Prestidge, 1955). Such control was termed as “stringent” since RNA synthesis 
was stringently repressed in the case of WT (wild-type) bacteria (Neidhardt, 
1964). Later it was shown that RNA synthesis cessation takes place in response 
to other cues, not just amino acid limitation (Cashel and Gallant, 1969; Hasel-
tine and Block, 1973), i.e. limitation for other nutrients like iron (Vinella et al., 
2005), phosphorus (Spira et al., 1995), carbon (Flärdh et al., 1994) and fatty 
acids (Battesti and Bouveret, 2006). In addition to nutritional deprivation heat 
shock also induces the stringent control response (Gallant et al., 1977). 

As the “stringent control” is not a constitutive but is, rather, activated in 
response to certain stimuli, the term “stringent response” (SR) was coined as an 
alternative and quickly become the most commonly used one. Bacterial physio-
logy changes dramatically upon the activation of the SR (Gallant and Harada, 
1969). While the most pronounced consequence of SR induction is inhibition of 
synthesis of stable RNA (Cashel and Gallant, 1969), the SR also results in 
inhibition of carbohydrate synthesis (Sokawa et al., 1970), lipid (Sokawa et al., 
1968) and phospholipid synthesis (Golden and Powell, 1972; Merlie and Pizer, 
1973; Sokawa et al., 1972; Sokawa et al., 1970), membrane transport of nucleo-
bases (Hochstadt-Ozer, 1972) and glycosides (Sokawa and Kaziro, 1969), 
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phosphate incorporation into glycolytic intermediates (Irr and Gallant, 1969), de 
novo nucleotide synthesis (Gallant, 1971) and synthesis of polyamines (Hölttä 
et al., 1974), increased rate of proteolysis (Sussman and Gilvarg, 1969). The 
activation of SR results not only in inhibition of cellular processes. Certain 
pathways conducting the survival of the cell are activated when bacteria are 
starving. These include the activation of transcription from certain promoters, 
biosynthesis of amino acids with consecutive synthesis of proteins necessary for 
survival etc (Hauryliuk et al., 2015; Potrykus and Cashel, 2008).  
 
 

1.3. Pleotropic effects of the SR on bacterial physiology 
Small secondary messenger molecules are the key chemicals mediating signa-
ling in bacterial cells. One of the messenger classes is cyclic nucleotides. Chan-
ges in c-di-GMP (cyclic diguanosine monophosphate) cellular levels drive the 
switch between motile form and stable biofilm (Pesavento and Hengge, 2009; 
Romling and Simm, 2009; Ross et al., 1987). The universal alarmone cAMP 
(cyclic adenosine monophosphate) (Makman and Sutherland, 1965) is necessary 
for electrolyte homeostasis via modulating the activity of protein kinases and 
ion channels (Francis and Corbin, 1999). It also controls the activity of bacterial 
transcription regulator Crp (cAMP-receptor protein) responsible for the expres-
sion of genes under more than 100 different promoters (Busby and Ebright, 
1999). Another cyclic nucleotide messenger, c-di-AMP, is important for sporu-
lation delay upon DNA damage in Bacillus subtilis (Romling, 2008; Witte et al., 
2008) and maintaining cell wall homeostasis (Luo and Helmann, 2012).  The 
SR is also modulated by secondary messengers, alarmone molecules guanosine 
5’-diphosphate 3’-diphosphate and guanosine 5’-triphosphate 3’-diphosphate, 
together termed as (p)ppGpp (Cashel and Gallant, 1969).   
 

 
2. (p)ppGpp: ‘Magic Spot’ as a modulator of  

bacterial stringent response 

2.1. Evolutionary distribution of  
(p)ppGpp-mediated signaling 

Upon starvation of E. coli Cashel and Gallant have detected unusual nucleotides 
they called the “Magic Spots”, MS, appearing on a thin layer chromatography 
plate (Cashel and Gallant, 1969). Analysis of the chemical structure of MSs 
have shown that the alarmones are guanosine 5’-diphosphate 3’-diphosphate 
(MSI, ppGpp) and guanosine 5’-triphosphate 3’-diphosphate (MSII, pppGpp); 
collectively reffered to as (p)ppGpp (Cashel and Gallant, 1969; Cashel and Kal-
bacher, 1970). In addition to (p)ppGpp, there are several other related nucleoti-
des: ppApp was detected in B. subtilis, though the function of the nucleotide is 
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unclear (Rhaese and Groscurth, 1974). Later MSs were found in B. subtilis 
(Swanton and Edlin, 1972) and photosynthesizing Rhodopseudomonas sphe-
roides (Eccleston and Gray, 1973) suggesting universal distribution of MS 
nucleotides among bacteria. The search for (p)ppGpp in eukaryotes was 
mounted. (p)ppGpp was discovered in mice (Irr et al., 1974), but that was soon 
proved to be an artifact (Martini et al., 1977). Plastids, however, have functional 
SR system and (p)ppGpp (van der Biezen et al., 2000). 
 
 

2.2. The (p)ppGpp cycle 
Mutational analysis in Escherichia coli showed that bacteria can have two 
distinct phenotypes related to the SR. The one that is characterized by the arrest 
of stable RNA production in response to amino acid starvation is defined as 
“stringent” phenotype while the other one is defined as “relaxed” with stable 
RNAs being produced regardless in the decrease in nutritient levels (Alfoldi et 
al., 1962; Fiil and Friesen, 1968; Neidhardt, 1966). Detailed examination of “re-
laxed” mutants resulted in the discovery of relA (from “relaxed”) gene the pro-
duct of which is active in WT cells but either inactive or absent in the “relaxed” 
cells (Alfoldi et al., 1962; Stent and Brenner, 1961). Further studies revealed 
“relaxed” E. coli strains being deficient in (p)ppGpp, meaning relA gene pro-
duct, stringent factor RelA in other words, is responsible for the SR activation 
and (p)ppGpp synthesis in E. coli (Cashel and Gallant, 1969). Another key 
player in the E. coli SR, SpoT, is known to have both the functions for 
(p)ppGpp hydrolysis and synthesis with the first being preferred (Laffler, 1974; 
Murray and Bremer, 1996). Both genes do not seem to be essential as their 
deletions result only in “relaxed” phenotype (Cashel, 1996; Laffler, 1974). 

Upon amino acid starvation (p)ppGpp is synthesized in E. coli by stringent 
factor RelA (Potrykus and Cashel, 2008). The enzyme uses GTP or GDP and 
ATP as substrates (Cochran and Byrne, 1974; Haseltine et al., 1972b). Guano-
sine pentaphosphate or pppGpp is produced first by the transfer of β-γ-pyro-
phosphoryl group of ATP to the 3’-hydroxyl of GTP  (Fig. 1) (Hogg et al., 
2004a; Sy, 1973) but then mostly being dephosphorylated to ppGpp by the pro-
duct of gppA gene, GppA exopolyphosphatase (Keasling, 1993; Somerville and 
Ahmed, 1979). Therefore, ppGpp can be produced in two ways – either by 
direct synthesis using GDP and ATP as substrates (Hogg et al., 2004a) or as 
degradation product of pppGpp (Weyer et al., 1976). It results in much higher 
levels of ppGpp as compared to pppGpp during stringent response (Cashel, 
1996). Moreover, compared to guanosine penthaphosphate, ppGpp has much 
stronger regulatory effect on transcription (Mechold et al., 2013; Potrykus and 
Cashel, 2008).  

During normal growth the basal intercellular concentration of (p)ppGpp is 
estimated to be around 50 M (Kajitani and Ishihama, 1984) while it was esti-
mated to reach up to 1 mM in starved bacteria (Cashel, 1974). The discoverer of 
(p)ppGpp, Mike Cashel defines micromolar variations in basal level as “growth 
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rate control” necessary to implement housekeeping functions. The changes on 
millimolar level refer to “stringent regulation” needed for the survival through 
harsh environmental conditions (Cashel, 1996). When nutritional stress is over-
come and bacteria can return to normal growth i.e. upon addition of amino 
acids, (p)ppGpp levels should be decreased back to basis (Laffler and Gallant, 
1974). SpoT degrades pppGpp to GTP and ppGpp top GDP  (Fig. 1) with the 
half-life of pppGpp equal to 20 sec (Lund and Kjeldgaard, 1972b; Murray and 
Bremer, 1996).  

 
 

 
 

Figure 1. The lifecycle of (p)ppGpp in E. coli. Guanosine tetraphosphate, ppGpp, is 
synthesized from ATP and GDP. Guanosine pentaphosphate, pppGpp, is formed from 
ATP and GTP respectively. The synthesis step is performed by RelA (green arrow) 
while SpoT is responsible for degradation (red arrow). Dotted blue arrow indicates 
nucleophilic attack. 
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2.3. The molecular targets of (p)ppGpp 
(p)ppGpp affects bacterial physiology on all the three levels of central dogma in 
molecular biology: DNA, RNA and protein synthesis (Fig. 2). Regulation of 
replication can occur either by modulating activity of IMP dehydrogenase that 
is crucial for the synthesis of GTP precursors (Gallant et al., 1971), mediating 
the transport of nucleotides (Hochstadt-Ozer, 1972) or modulating the activity 
of DnaG primase (Maciag et al., 2010; Wang et al., 2007). In B. subtilis inhibi-
tion of DnaG primase leads to the depletion of RNA primers needed for DNA 
polymerase activity followed by the arrest of replication fork (Maciag et al., 
2010; Wang et al., 2007). ppGpp was co-crystalized with small GTPase Obg of 
B. subtilis (Buglino et al., 2002) implicated in interactions with several acti-
vators of stress transcription factor σB (Scott, 1999). In E. coli, ObgE (CgtA) is 
important for the stabilization of arrested replication forks (Foti et al., 2005) and 
cgtA gene deletion leads to disruption of cell cycle events (Foti et al., 2007). 
ObgE association with ribosomes and SpoT also supports putative ppGpp-ObgE 
interaction (Jiang et al., 2007).  

As the major feature of active SR is ceased RNA synthesis (Cashel and Gal-
lant, 1969), the main target for (p)ppGpp is transcription (Potrykus and Cashel, 
2008). Interaction of the alarmone and RNAP will be discussed in the next 
section. Besides RNAP, (p)ppGpp interacts with other enzymes having a certain 
role in transcription or mRNA (messenger RNA) balance in the cell. In actino-
mycetes (p)ppGpp directly binds polynucleotide phosphorylase (crucial for 
RNA turnover (Siculella et al., 2010)) thus increasing the stability of mRNA 
(Siculella et al., 2010). Stabilization of mRNA by (p)ppGpp is also reported in 
E. coli, where (p)ppGpp inhibits transcription of pcnB gene necessary for 
poly(A) polymerase synthesis. In result, polyadenylation of mRNA that acts as 
a signal for degradation is limited (Dalebroux and Swanson, 2012).  

Protein synthesis is as well regulated by (p)ppGpp as elevated levels of alar-
mone can inhibit translation up to 90 % in vivo (Svitil et al., 1993) while 
absence of (p)ppGpp (Cozzone, 1980) leads to increased rate of missense errors 
and frameshifting in relaxed cells (Edelmann and Gallant, 1977; Foley et al., 
1981). Different steps in translation are affected by (p)ppGpp: it inhibits GDP 
binding by translational factors IF2 (Milon et al., 2006), EF-Tu (Arai et al., 
1972; Legault et al., 1972) and EF-G (Mitkevich et al., 2010) therefore regu-
lating the initiation and elongation of translation. Decreasing the number of 
ribosomes per cell by inhibiting rRNA and r-protein (ribosomal protein) synthe-
sis (Dennis and Nomura, 1975; Lindahl et al., 1976) can also be considered as a 
way to regulate translation and growth rate.  
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Figure 2. (p)ppGpp targets major steps of cellular activity including replication, 
transcription and translation. Enzymes and pathways downregulated by (p)ppGpp are 
marked with red and upregulated with green respectively. 

 
 

Not only protein synthesis is under (p)ppGpp regulation; indirect control of 
protein degradation has also been reported (Kuroda et al., 2001). Polyphosphate 
(polyP) induces degradation of r-proteins by Lon protease (Kuroda et al., 2001; 
Maisonneuve et al., 2013). By inhibiting the activity of exopolyphosphatase 
enzymes, (p)ppGpp increases the level of polyP in the cell thus promoting r-
protein degradation (Kuroda et al., 1997; Maisonneuve et al., 2013). Being 
major regulator, (p)ppGpp has pleiotropic, mostly inhibitory, effect on many 
other key enzymes during SR in order to spare as many cellular resources by 
preventing proliferation and growth and survive the environmental twist. Such 
synthesis pathways as fatty acid (Battesti and Bouveret, 2006; Polakis et al., 
1973; Stein and Bloch, 1976), phospholipid (Lueking and Goldfine, 1975; Mer-
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lie and Pizer, 1973), glycogen (Dietzler and Leckie, 1977), peptidoglycan (Ishi-
guro and Ramey, 1976), polyamine (Hölttä et al., 1974), certain amino acids 
(Kleeman and Parsons, 1977) are inhibited in the same way as glycolysis (Ta-
guchi et al., 1978). On the contrary, physiological changes crucial for cell 
survival are upregulated by (p)ppGpp (Fig. 2). Amongst them are stress respon-
ses and signaling pathways: in E. coli (p)ppGpp regulates acid stress response 
through the modulation of LdcI (lysine decarboxylase, inducible) enzyme 
activity (Kanjee et al., 2011). The enzyme consumes protons during carbo-
xylation of L-lysine to cadaverine and CO2 thus increasing the cytoplasmic pH 
(Kanjee et al., 2011). Several studies indicate the role for (p)ppGpp in regu-
lating the expression of genes important for quorum sensing in different bacteria 
species (Harris et al., 1998; van Delden et al., 2001; Zhang et al., 2004) and 
other signal nucleotides, namely c-di-AMP and c-di-GMP, dependent signaling 
pathways (Dalebroux and Swanson, 2012). Furthermore, E. coli and Strepto-
coccus mutans relA spoT double knock out mutants were shown to be defective 
in biofilm formation (Balzer and McLean, 2002; Lemos et al., 2004) while the 
sporulation (development of fruiting bodies) in Myxococcus xanthus is regu-
lated by (p)ppGpp on transcriptional level (Harris et al., 1998; Singer and 
Kaiser, 1995). Elevated levels of (p)ppGpp inhibit the processes of proliferation 
and growth bacteria cannot afford itself in given environmental conditions and 
activate stress defense genes and genes, responsible for minimal maintenance of 
cellular activity. It is done mainly through the modulation of RNA polymerase 
activity (Potrykus and Cashel, 2008). 
 
 

3. RNA polymerase as a main target for (p)ppGpp 

3.1. Molecular architecture of bacterial RNAP 
RNA polymerase is the enzyme that conducts RNA synthesis. Although there 
are several types of RNA polymerases in eukaryotes, bacteria have only one 
being responsible for the transcription of all the RNA species. The RNAP core 
enzyme consists of 5 subunits; 2 α subunits, responsible for core enzyme 
assembly and interaction with transcription factors, β and β’ subunits, con-
taining the active center of the enzyme and ω subunit, important for the stability 
of the core enzyme (Fig. 3A) (Ebright, 2000; Gross et al., 1992). In order to 
become active, E. coli RNAP needs to bind one of 7 σ-factors that help RNAP 
choose which genes to transcribe in given environmental conditions. During 
normal exponential growth the housekeeping σ70 takes its place in RNAP holo-
enzyme (Hengge-Aronis, 2002) while stress σ-factors have higher affinity 
towards RNAP apoenzyme under starvation, heat-shock (Hengge-Aronis, 2002; 
Merrick, 1993) etc.; in other words, when (p)ppGpp levels are high. Two ways 
of transcription regulation by (p)ppGpp were proposed – indirect and direct 
respectively (Krasny and Gourse, 2004). The direct regulation implies (p)ppGpp 



 19

binding to RNAP and is typical for most proteobacteria (Krasny and Gourse, 
2004; Ross et al., 2016). In the case of indirect regulation the alarmone exerts 
its influence through mediating GTP levels (Krasny and Gourse, 2004). Ex-
cluding proteobacteria, most other bacteria adhere to this way of regulation 
(Krasny and Gourse, 2004). 
 
 

3.2.  (p)ppGpp directly interacts with E. coli RNAP 
It was said in the late 70’s that (p)ppGpp can possibly act via RNA polymerase 
(Lindahl et al., 1976; Travers, 1976). More of that, several years later, RNAP 
was claimed to be the main target for (p)ppGpp (Little et al., 1983; Tedin and 
Bremer, 1992). Considering the structure of the molecule, the following model 
for RNAP inhibition by (p)ppGpp was proposed: ppGpp binds into the RNAP 
secondary channel, necessary for substrate entry, where it competes with NTPs 
(Jores and Wagner, 2003; Wagner, 2002). Numerous studies based on mutatio-
nal analysis (Hernandez and Cashel, 1995; Reddy et al., 1995) and crosslinking 
experiments (Chatterji et al., 1998; Toulokhonov et al., 2001) gave controversial 
results on ppGpp binding pocket. X-ray structural study of Thermus thermo-
philus RNAP-ppGpp complex suggested ppGpp binding between β and β’ 
subunits in close proximity to the active center (Artsimovitch et al., 2004). The 
proposed binding site was, however, disproved and claimed to be an artefact 
(Vrentas et al., 2008). Recent Cryo-EM study on RNAP-ppGpp complex, this 
time with E. coli RNAP, suggests absolutely different location for ppGpp 
binding on RNAP. According to Zuo and colleagues, the putative binding site is 
28 Å away from the polymerase active center, in a cavity between α, β’ and ω 
subunits with both pyrophosphate moieties interacting mostly with ω and 
guanosine base with β’ subunit (Fig. 3B) (Zuo et al., 2013). In another study, 
MAR sequence (Met, Ala, Arg) at the N-terminus of ω subunit was proposed to 
be a marker for the possibility of ppGpp-RNAP interaction (Mechold et al., 
2013; Ross et al., 2013). Mutations in the MAR sequence and residues involved 
in RNAP-ppGpp interaction (Zuo et al., 2013) significantly decrease ppGpp 
ability to affect RNAP activity confirming the suggested positioning of ppGpp 
on RNA polymerase (Ross et al., 2013). The MAR sequence is found to be con-
served in α-, β-, γ- and δ-proteobacteria but not in other bacterial phyla (Ross et 
al., 2013), leaving a possibility for alternative (p)ppGpp binding sites like it was 
shown for Thermus thermophilus (Artsimovitch et al., 2004). Recently additio-
nal (p)ppGpp binding site was identified at the interface of β’ subunit of RNAP 
and transcription factor DksA (Ross et al., 2016). It is proposed that at low 
concentration (p)ppGpp primarily binds into the binding pocket described in 
(Zuo et al., 2013) whereas upon stringent response both sites get filled with 
(p)ppGpp (Ross et al., 2016).  
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Figure 3. Bacterial RNA polymerase constitution (A) and its interaction with 
ppGpp (B). RNAP subunit is in blue, ’ in beige,  in green and in grey. 
Nucleobase of ppGpp contacts ’ and phosphate moieties subunits of RNAP respec-
tively. Adapted from (Zuo et al., 2013), PDB accession code 4JKR. 

 
 

Considering the tremendous influence of changes in cellular ppGpp levels onto 
activity of σ-factors and the choice of promoters to be transcribed, the following 
model of RNAP activity inhibition by (p)ppGpp was suggested (Potrykus and 
Cashel, 2008). The model is based on discoveries that (p)ppGpp: a) mostly 
negatively regulates σ70-dependent promoters (Bernardo et al., 2006; Chang et 
al., 2002; Kvint et al., 2000b), b) affects RNAP-promoter DNA open-complex 
(necessary for translocation step) formation during transcription initiation (Ohl-
sen and Gralla, 1992; Raghavan et al., 1998). (p)ppGpp directly inhibits 
transcription from various promoters (Barker et al., 2001; Cashel et al., 1996a; 
Kajitani and Ishihama, 1984; Potrykus et al., 2002) what results in an impaired 
transcription initiation, thus causing breakage of already very unstable open-
complexes (Barker et al., 2001; Choy, 2000; Paul et al., 2004; Paul et al., 2005).  
The open-complex breakage, in turn, results in the increased concentration of 
free RNAP enzyme that can again bind either σ70-dependent promoters (Kvint et 
al., 2000b; Xiao et al., 1991a) or, what is more possible, positively regulated 
promoters that depend on alternative σ-factors (Bernardo et al., 2006; Hernan-
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dez and Cashel, 1995; Jishage et al., 2002; Laurie et al., 2003; Magnusson et al., 
2003).  

Another model of RNAP activity regulation represents the mechanism 
completely opposite to the one described previously (Potrykus and Cashel, 
2008). It states that (p)ppGpp can possibly increase the pausing during tran-
scriptional elongation causing the decreased availability of free RNAPs (Bremer 
et al., 2003; Jensen and Pedersen, 1990; Jores and Wagner, 2003; Krohn and 
Wagner, 1996; Wagner, 2002). This model is called the “trapping mechanism” 
suggesting that RNAP, modified by (p)ppGpp binding, is trapped in RNAP-
DNA closed-complex (Heinemann and Wagner, 1997a) compromising further 
formation of open-complex (Maitra et al., 2005; Potrykus et al., 2006).  

Recent structural study considers the possibility that both models are true. 
Based on a cryo-EM structure of E. coli RNAP-ppGpp complex, Zuo and 
coallegues divide RNAP enzyme onto modules and propose that core and shelf 
modules of RNA polymerase undergo cyclic ratcheting movements to switch 
between open (translocation) and closed (catalysis) states (Zuo et al., 2013). 
Subsequently, ppGpp, when bound, can stabilize one of the states thereby 
slowing down transcription (Zuo et al., 2013).  

The stabilization of RNAP:DNA complexes by (p)ppGpp is to some extent 
dependent on transcription factors. Although (p)ppGpp is a major regulator of 
RNAP activity by itself, its ability to conduct the transcription is usually tightly 
coupled with the activity of transcription factor DksA (Paul et al., 2005) that is 
said to strengthen the effect of (p)ppGpp independently of either the effect is 
positive or negative (Krasny and Gourse, 2004; Paul et al., 2004). 

 
 

3.3. Cooperation between DksA and (p)ppGpp in  
regulation of RNAP 

Numerous studies report the importance of DksA for stringent regulation of 
transcription (Hauryliuk et al., 2015). Thus, the rise of (p)ppGpp level had no 
effect on rRNA transcription in DksA deficient strain (Paul et al., 2004). And 
on opposite, addition of DksA increases (p)ppGpp inhibitory impact on σ70-
dependent promoters (Paul et al., 2004) as well as positive effect on transcrip-
tion of amino acid biosynthetic promoters (Paul et al., 2005) and (p)ppGpp-
dependent production of σ-factors in DksA knock-out E. coli strain (Bernardo et 
al., 2006; Brown et al., 2002; Laurie et al., 2003) .  

At the same time DksA is important not only during stringent regulation; 
the deletion of the respective dksA gene, the homologs of which are widely 
distributed among bacteria (Perron et al., 2005; Sharma and Payne, 2006; Vidu-
cic et al., 2006), resulted in pleiotropic effect on numerous processes including 
chaperon function, quorum sensing (Branny et al., 2001; Kang and Craig, 1990; 
Webb et al., 1999) etc. The essentiality of DksA for expression of virulence 
genes in Shigella flexneri (Sharma and Payne, 2006) and Salmonella typhimu-
rium (Webb et al., 1999) has also been confirmed.  
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Although there is an evidence for Pseudomonas aeruginosa DksA binding 
to DNA (Perron et al., 2005); as a transcription factor, DksA directly interacts 
with RNA polymerase, binding into the secondary channel where NTP enters 
the complex to become a part of a new RNA molecule (Perederina et al., 2004).  
Structurally DksA is quite similar to transcription elongation factors GreA and 
GreB; they also bind at the same positions on RNAP (Perederina et al., 2004; 
Potrykus et al., 2006). Both GreA and GreB act by inserting their N-terminal 
coiled-coil finger domain into RNAP secondary channel (Borukhov et al., 2005) 
suggesting DksA may do the same (Perederina et al., 2004). Functionally, while 
GreB may have the same effect on certain promoters as DksA (Rutherford et al., 
2007), GreA usually acts in opposite manner (Potrykus et al., 2006). Overall 
structural and functional similarity of DksA with the better studied GreA/B 
gives good opportunity for prediction of DksA role on RNAP. 

It is nowadays suggested that the main role for DksA is the stabilization of 
ppGpp binding to RNAP (Paul et al., 2004; Vrentas et al., 2005). It is strongly 
supported by the fact that together with RNAP DksA comprises a binding 
pocket for (p)ppGpp (Ross et al., 2016). Similarly to GreA/B, the N-terminal 
domain of DksA resembles a long helical hairpin structure that, by protruding 
into RNAP active center (Perederina et al., 2004; Zuo et al., 2013), modifies the 
transcription initiation complex so that certain promoters become responsive 
towards changes in (p)ppGpp level (Rutherford et al., 2009). What is inte-
resting, there is a negative feedback loop between DksA and its promoter which 
is also regulated by (p)ppGpp (Chandrangsu et al., 2011) meaning (p)ppGpp is 
able to regulate its own effect on RNAP. 

As opposed to the proteobacterium E.coli, deletion of most homologous 
to DksA ORFs in firmicute B. subtilis had no effect on rRNA transcription 
(Krasny and Gourse, 2004). Moreover, increase in (p)ppGpp levels also re-
mained uninfluential (Krasny and Gourse, 2004) suggesting other ways for 
rRNA transcription regulation than direct contact between (p)ppGpp, DksA and 
RNA polymerase (Krasny and Gourse, 2004).  

 
 
3.4. rRNA transcription in Bacillus subtilis is regulated 

through the modulation of GTP level by (p)ppGpp 
In the beginning of 1980s it was stated that GTP/ATP ratio is the main effector 
of the stringent response in B. subtilis (Lopez et al.), which is logical, con-
sidering that GTP and ATP are the substrates for (p)ppGpp production. Taking 
together previously written, the fast decrease in GTP levels during stringent 
response (Gallant and Harada, 1969), the importance of GTP for rRNA tran-
scription activation (Krasny and Gourse, 2004) and inability of (p)ppGpp to 
directly affect RNA polymerase activity in B. subtilis (Krasny and Gourse, 
2004) it ends up with the possibility that RNA polymerase activity is mainly 
regulated through the modulation of GTP levels.  
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(p)ppGpp synthetase of B. subtilis, RelBsu, can regulate GTP levels (Inaoka 
and Ochi, 2002; Inaoka et al., 2003). (p)ppGpp, produced by the enzyme, dimi-
nishes GTP levels directly since the more product ((p)ppGpp) is produced, the 
less substrate (GTP) is left. In B.subtilis (p)ppGpp is reported to reduce the 
activity of IMP dehydrogenase GuaB that converts IMP into XMP, the pre-
cursor of GMP (Krasny and Gourse, 2004; Kriel et al., 2012; Liu et al., 2015). 
HprT, hypoxanthine phosphoribosyltransferase, that makes GMP out of guanine 
and xanthine (Jensen et al., 2008) and Gmk or GMP kinase that catalyzes GMP 
to GDP conversion were also shown to be inhibited by (p)ppGpp in different 
bacterial species (Gaca et al., 2013; Kriel et al., 2012; Liu et al., 2015). This 
leads to suppression of GTP synthesis and thereby contributes to GTP deple-
tion. GTP depletion, in turn, leads to decrease in rRNA production in B. subtilis, 
where all the rRNA promoters were suggested to initiate with GTP (Krasny and 
Gourse, 2004), and T. thermophilus (Kasai et al., 2006). On the other hand, 
expression of genes necessary for adaptation is induced; transcriptional regu-
lator CodY represses them in GTP-bound state (Handke et al., 2008; Ratnayake-
Lecamwasam et al., 2001) but when GTP levels are low CodY target genes 
become eligible for transcription (Handke et al., 2008; Lemos et al., 2008; 
Ratnayake-Lecamwasam et al., 2001).    

3.5. Cross-talk between (p)ppGpp and  
transcriptional σ-factors 

Structural studies did not show any possible direct interactions between 
(p)ppGpp and σ-factors. However, influence of the alarmone on σ-factor 
synthesis and activity was reported decades ago. The product of rpoS gene, σS 
factor, is most common to replace σ70 on RNAP to direct the enzyme in stress 
conditions (Hengge-Aronis, 2002). Not unexpectedly, both the synthesis and 
activity of σS are strictly regulated by (p)ppGpp (Gentry DR, 1993; Klauck et 
al., 2007; Kvint et al., 2000a; Lange et al., 1995). One of the indirect pathways 
for σS activity regulation by (p)ppGpp includes adaptor protein RssB that in 
normal conditions directs σS to the ClpXP proteasome for degradation 
(Bougdour et al., 2006; Hengge-Aronis, 2002). In starved bacteria high 
(p)ppGpp levels induce the synthesis of anti-adaptor proteins IraP and IraD with 
the task to block the activity of RssB. This ensures the increase in the con-
centration of σS within the cell (Bougdour and Gottesman, 2007; Merrikh et al., 
2009). Other alternative sigma factors, heat-shock σ32 (Grossman et al., 1985; 
VanBogelen and Neidhardt, 1990) and nitrogen-limitation sensitive σ54 (Car-
mona et al., 2000; Sze and Shingler, 1999) are also regulated by (p)ppGpp, as 
well as extracytoplasmic stress factor σE (Costanzo and Ades, 2006; Costanzo et 
al., 2008). σE activity is under negative control of regulatory protein RseA. 
RseA degradation, in turn, is mediated by (p)ppGpp meaning the higher level of 
(p)ppGpp the more active is σE (Ades et al., 2003).  
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(p)ppGpp directly and indirectly regulates the production and activity of σ-
factors, the main role for whom is to navigate RNAP on what genes under 
which promoters to transcribe (Ebright, 2000). Subsequently, (p)ppGpp is as 
well able to regulate the expression of genes being under promoters with certain 
structural features; several research groups have stated that GCGC discriminator 
motif (around -10 promoter element) downstream to TATA box (Riggs et al., 
1986; Shand et al., 1989; Travers, 1980) is important for negative stringent 
regulation. Later this importance, however not absolute necessity, has been con-
firmed for certain promoters (Davies and Drabble, 1996; Mizushima-Sugano 
and Kaziro, 1985; Travers, 1984; Zacharias et al., 1989). Another study, still 
confirming the negative effect of GCGC discriminator, at the same time detracts 
its significance by mutational analysis. Thus modified upstream promoter se-
quences or even promoters lacking them give similar response to the ones with 
the intact discriminator (Josaitis et al., 1995). Nevertheless, the significance of 
the discriminator sequence is also reported to be dependent on the length and 
the sequence of the linker between -35 and -10 upstream positions (Park et al., 
2002). Negatively regulated promoters have 16 bp linker and GC-rich discrimi-
nator while positively regulated promoters have longer linkers and AT-rich 
discriminator (Park et al., 2002). 
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4. Stringent factor RelA and RSH superfamily 

4.1. The evolutionary distribution of RSH superfamily 
The enzymes responsible for the rise or drop in (p)ppGpp levels within the cell 
comprise a superfamily of RSH proteins. The abbreviation comes from RelA/ 
SpoT Homologue based on the sequence similarity between the representatives 
of the superfamily with E. coli RelA and SpoT proteins (Atkinson et al., 2011), 
the original stringent factor (Cashel and Gallant, 1969) and its opposing hydro-
lase (Sy, 1977) respectively. RSH enzymes are absent in archaea (Mittenhuber, 
2001) but widely present in bacteria; the only exclusions are parasitic bacteria 
with reduced genome like Treponema pallidum, Rickettsia prowazekii, repre-
sentatives of PVC (Planctomycetes, Verrucomicrobia, Chlamydiae) superphy-
lum and obligate intracellular endosymbionts (Fig. 4) (Atkinson et al., 2011; 
Mittenhuber, 2001). The enzymes of the superfamily are mainly divided onto 
long – RelA, SpoT, Rel, and small RHSs – SAS or small alarmone synthetases 
and SAH or small alarmone hydrolases (Atkinson et al., 2011).  

 

 
 

Figure 4. The distribution of long RSHs in bacteria. Monofunctional (p)ppGpp 
synthetase is indicated with red arrow, bifunctional enzymes with blue arrows. Dashed 
arrow indicates the gene duplication event. Adapted from (Atkinson et al., 2011). 
 
 
While Gram-negative bacteria of β- and γ-subdivisions (including the best studied 
E. coli) of proteobacteria usually have 2 distinct enzymes for (p)ppGpp turnover, 
namely RelA and SpoT (Atkinson et al., 2011; Mittenhuber, 2001), single 
bifunctional enzyme Rel is typical for most of bacteria with studied examples 
from B. subtilis (Wendrich and Marahiel, 1997), Streptococcus equismilis 
(Mechold et al., 1996) and Mycobacterium tuberculosis (Avarbock et al., 1999).  

In addition to long RSH proteins many bacteria have one or several small 
RSHs, mainly SASs (Atkinson et al., 2011; Gaca et al., 2013; Steinchen et al., 
2015). SASs or SAHs have only one, either synthetase or hydrolase domain. 
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Long RSH are canonically divided onto 6 domains arranged in the following 
order starting from N-terminus: (p)ppGpp hydrolysis domain (HD), (p)ppGpp 
synthesis domain (SYNTH), TGS (Threonyl-tRNA synthetase, GTPase, SpoT 
(Wolf et al., 1999)), Helical, Conserved Cysteins (Eccleston and Gray, 1973) 
and ACT (Fig. 5) (Aspartokinase, Chorismate mutase, TyrA (Chipman and 
Shaanan, 2001)) where four last are thought to regulate the catalytic activity of 
the enzyme (Atkinson et al., 2011). Through the phylogenetic analysis four 
more paralogous groups of enzymes, Rsh A-D, have been distinguished (Atkin-
son et al., 2011).  

 

  
Figure 5. Domain structure of most studied RSH enzymes. In 2016 Brown with 
colleagues suggested to call the domains of long RSHs in a different way than they were 
used previously (Brown et al., 2016; Hauryliuk et al., 2015).  
  

4.2. Domain organization and regulation in RSH enzymes 
The best studied representative of RSH enzymes, RelA has 6 domains (Atkin-
son et al., 2011). Looking at the protein sequence it can be suggested that the 
enzyme is bifunctional, both SYNTH and HD domains are present; RelA, 
however, has very strong synthetic activity while hydrolytic activity is absent 
(Hauryliuk et al., 2015; Hogg et al., 2004b; Potrykus and Cashel, 2008). Con-
served EXDD/RXKD motif in SYNTH domain of RSH enzymes is said to be of 
importance for the choice between mono- and bifunctionality of the protein 
where the EXDD sequence is typical for monofunctional RelA and RXKD for 
bifunctional Rel proteins respectively (Sajish et al., 2007). Another region 
crucial for activity regulation in RSH proteins is C-terminal region uniting TGS, 
Helical, CC and ACT domains (Hauryliuk et al., 2015). Recent cryo-EM study, 
however, suggests domain organization that differs in CTD; while TGS remains 
intact, zinc-finger domain (ZFD) and RNA recognition motif (RRM), pre-
viously defined as ACT, were revealed (Fig. 5) (Brown et al., 2016). Long RSH 
enzymes have two activity states: hydrolase OFF/synthetase ON, specific for 
RelA and other long RSHs (Potrykus and Cashel, 2008), and hydrolase ON/ 
synthetase OFF, specific for bifunctional Rel enzymes and SpoT, where binding 
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of respective substrates may trigger the switch between conformations (Hogg et 
al., 2004b). Loss of putative C-terminal regulatory domains activates synthetase 
and completely abolishes hydrolytic activity of bifunctional Rel of S. equismilis 
(Mechold et al., 2002) and impedes the regulation of Rel’s activity in M. tuber-
culosis (Avarbock et al., 2005). CTD was suggested to form intramolecular 
interaction with SYNTH domain thus blocking synthetic activity; binding of 
deacylated tRNA, in turn, disturbs the “intra-domain crosstalk” and triggers 
SYNTH domain activity (Jain et al., 2007; Mechold et al., 2002). Deletion of 
CTD in M. tuberculosis also resulted in inability of RelMtb to form homooligo-
mers (trimers in this case) as it was observed with full enzyme (Avarbock et al., 
2005). Several more studies reported on RelA’s ability to form oligomers 
through CTDs (Gropp et al., 2001; Yang and Ishiguro, 2001a) leading to a sug-
gestion that RelA is inactive in a dimer state and the monomeric state is needed 
for binding to the ribosome (Gropp et al., 2001; Yang and Ishiguro, 2001a). 

 
 

4.3. E. coli RelA and activation of stringent response 
Shortly after the discovery of (p)ppGpp and its importance the studies to reveal 
the mechanism of its production started. First of all it was confirmed that RNA 
is involved in activation of stringent response (Wong and Nazar, 1970) 
followed by the evidences that only uncharged (Haseltine et al., 1972a) cognate 
tRNA is able to activate it (Haseltine and Block, 1973; Pedersen et al., 1973). 
Another crucial player in stringent response activation was confirmed to be the 
ribosome (Haseltine and Block, 1973; Heinemann and Wagner, 1997b; Krohn 
and Wagner, 1995; Pedersen et al., 1973). In 1973 Block and Haseltine showed 
that the stringent factor responsible for (p)ppGpp production in E. coli, RelA, 
precipitates with ribosome during centrifugation (Block and Haseltine, 1973) 
and year later it was first purified together with the ribosome (Cochran and 
Byrne, 1974). The molecular machinery called a ribosome is responsible for 
protein synthesis. It consists of two subunits; in bacteria these are 50S and 30S, 
named so according to their sedimentation coefficients. Each subunit is com-
posed of ribosomal r-proteins, 21 in 30S and 31 in 50S subunit respectively, and 
ribosomal rRNA, 23S and 5S rRNA in 50S and 16S rRNA in 30S subunit. 
mRNA molecule binds onto 30S subunit with consecutive binding of the large 
subunit. On the surface of the subunits of associated, 70S, ribosome three tRNA 
binding sites are formed: A-site that stands for aminoacylated tRNA and can be 
transformed into A/T-site upon binding of ternary complex of aa-tRNA;GTP: 
EF-Tu (Connell et al., 2008), P-site for peptidyl tRNA and E-site for deacylated 
tRNA. Nevertheless, in terms of the SR the most interesting is r-protein L11 of 
50S subunit that was shown to be crucial for the activation of (p)ppGpp 
synthesis (Parker et al., 1976; Ramagopal and Davis, 1974; Stark and Cundliffe, 
1979; Wendrich et al., 2002).  

But how exactly the activation of stringent response occurs? Amino acid 
deprivation leads to increased levels of deacylated tRNAs which stall the 
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ribosome by binding into ribosomal A-site. The exact mechanism of the SR 
activation is unknown but, according to one of the hypotheses, RelA, sitting on 
a ribosome in an inactive mode (Wendrich et al., 2002), is suggested to directly 
inspect the CCA end of A-site tRNA and intact –OH group on terminal adeno-
sine is what promotes the activation of stringent response (Fig. 6) (Sprinzl and 
Richter, 1976). As immunoprecipitation assay showed that there is only one 
molecule of RelA per 200 ribosomes (Pedersen and Kjeldgaard, 1977), one 
molecule of RelA should somehow interact with many ribosomes to ensure the 
appropriate response to the stress i.e. synthesize enough (p)ppGpp. Therefore, 
according to “hopping” model (Wendrich et al., 2002) activated RelA hops off 
the ribosome and produces one molecule of (p)ppGpp followed by binding to 
next stalled ribosome, thus triggering next synthesis event. In a recent single-
molecule tracking study the model was transformed into “extended hopping” 
model suggesting RelA remains active off the ribosome for several rounds of 
(p)ppGpp production without binding to ribosome after every synthesis event 
(English et al., 2011; Hauryliuk et al., 2015).  

 
 

 
 
Figure 6. Schematic view of the stringent response mechanism in E. coli. Key steps 
in stringent response activation and regulation are shown as solid black arrows. Dashed 
line represents the basal level of (p)ppGpp in unstressed cells. The major effect of the 
elevated (p)ppGpp level is underlined either in red (negative regulation) or green 
(positive regulation).  
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4.4. Structural features of RelA-ribosome interactions 
The importance of ribosomal protein L11, especially its N-terminus (Yang and 
Ishiguro, 2001b), for RelA activation have been proven biochemically (Cashel 
et al., 1996b; Potrykus and Cashel, 2008) suggesting that RelA can bind in the 
vicinity of L11. Later the RelA interaction with L11 was confirmed by cryo-EM 
studies where contact with sarcin-ricin loop (SRL) and direct interaction with 
A-site tRNA were also unveiled (Agirrezabala et al., 2013). Later study, how-
ever, reports on observing no direct contacts between RelA and L11 protein 
(Brown et al., 2016). Upon binding of RelA A-site tRNA was shown to acquire 
unusual A/T-like (A site/EF-Tu) conformation (Agirrezabala et al., 2013). More 
recent cryo-EM study enables to look into RelA-70S-tRNA interactions with 
more details; it supports the unusual conformation of deacylated tRNA in the A-
site and claims highly extended conformation of RelA that lets it wrap around 
tRNA, positioning TGS domain right at the CCA end of tRNA thus examining 
the acylation state of tRNA (Fig. 7) (Brown et al., 2016). While HD and 
SYNTH domains are on the surface of the ribosome, ZFD and RRM of RelA lie 
along the anticodon arm of tRNA and all domains are connected via flexible 
helical elements (Brown et al., 2016).  

Besides RelA there is one more RSH in E. coli; compared to RelA SpoT 
has poor synthetic activity and does not need to cooperate with ribosome to 
perform one of its main tasks, (p)ppGpp hydrolysis (Gentry and Cashel, 1995; 
Raue and Cashel, 1975).    

4.5 Hydrolytic activity of SpoT balances  
the synthetic activity of RelA in E. coli 

A decade after rel gene discovery another gene’s product has been implemented 
in being important for stringent response regulation (Laffler, 1974). The enzyme 
termed SpoT (as spoT locus) was shown to be able to degrade (p)ppGpp with 
GDP (GTP) and pyrophosphate as products (Heinemeyer and Richter, 1977; 
Laffler, 1974; Sy, 1977; Xiao et al., 1991b). Although spoT gene is well-charac-
terized (Sarubbi et al., 1989), SpoT, the E. coli (p)ppGpp hydrolase, remains to 
be studied due to difficulties with its purification. In fifty years after its disco-
very a lot of aspects concerning the protein remain elusive. Moreover, to our 
knowledge, no successful attempts of getting pure and active SpoT have been 
documented.  

Unlike RelA, SpoT is extremely sensitive towards cellular concentration of 
certain divalent metallic ions. It was noticed that (p)ppGpp degradation depends 
on concentration of Mn2+ ions (Raue and Cashel, 1975). Later this dependence 
was explained by the presence of conserved His-Asp (HD) motif in SpoT 
protein sequence (Aravind and Koonin, 1998). Through the presence of HD 
motif Aravind and Koonin suggested to distinguish a superfamily of metal-
dependent phosphohydrolases with SpoT being one of the most striking repre-
sentatives (Aravind and Koonin, 1998). 



 30

 
 

 
 

Figure 7. On a starved 70S ribosome RelA wraps around A/T-site tRNA and 
directly investigates its CCA-end. Ribosomal 30S subunit is shown in green, 50S 
subunit in cyan, E-site tRNA in light blue, P-site tRNA in dark blue, A/T-site tRNA in 
purple, mRNA in dark red and RelA in red. A/T-site tRNA residues C74, C75 and A76 
are in purple, cyan and yellow respectively. Adapted from (Brown et al., 2016), PDB 
accession code 5IQR. 
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SpoT is also involved in activation of stringent response. While RelA is respon-
sible to react on limitation of aminoacids, SpoT starts (p)ppGpp production 
upon different challenges, independently of RelA (Gentry and Cashel, 1995; 
Hernandez and Bremer, 1991; Xiao et al., 1991b). Deprivation in iron (Vinella 
et al., 2005), phosphorus (Spira et al., 1995), carbon (Murray and Bremer, 1996) 
and fatty acid sources (Battesti and Bouveret, 2006) leads to SpoT-dependent 
activation of stress response. Here acyl carrier protein (ACP) that plays a central 
role in fatty acid biosynthesis (Byers and Gong, 2007) and binds SpoT TGS 
domain was shown to be important (Battesti and Bouveret, 2006). With limited 
access to fatty acid sources ACP adopts a certain conformation that may act as a 
mediator allowing SpoT to sense the fatty acid starvation (like deacylated tRNA 
does for RelA) and switch onto the synthesis mode (Battesti and Bouveret, 
2006). The fact that ACP cannot bind RelA, despite high similarity in sequence 
with SpoT, supports ACP role in regulation of SpoT activity (Battesti and 
Bouveret, 2006). This theory has been confirmed only for the bacteria that have 
two distinct long RSHs the same way E. coli does (Battesti and Bouveret, 2009; 
Dalebroux et al., 2009).  

The data on SpoT positioning within the cell is controversial. There are 
reports stating the protein does not bind the ribosome or any intracellular memb-
ranes and is considered to be a cytosolic protein (Gentry and Cashel, 1995) as 
well as the ones claiming SpoT is associated with ribosomal 50S subunit (Jiang et 
al., 2007). It is also well documented that 50S ribosomal subunit assembly factor, 
GTPase CgtA (ObgE) (Sato et al., 2005), directly binds SpoT (Wout et al., 2004) 
and can control its activity during exponential phase helping to maintain the basal 
levels of (p)ppGpp (Jiang et al., 2007). Thus, mutations in CgtA result in highly 
increased intracellular (p)ppGpp levels (Jiang et al., 2007).  

The control over basal levels of (p)ppGpp in bacteria that instead of two 
long RelA and SpoT RSHs have one bifunctional Rel enzyme and one or 
several SASs is possibly carried out in a different way where the main role 
belongs to SASs.  
 
 

 4.6. Biological functions of SAS enzymes 
In addition to bifunctional Rel enzymes many bacteria, including most patho-
genic Firmicutes, encode one or several small alarmone synthetases (SAS) (Le-
mos et al., 2004; Nanamiya et al., 2008). The presence of these small (p)ppGpp 
synthetases, often termed RelQ/RelP (Lemos et al., 2007) or RelV (Das et al., 
2009), was reported in B. subtilis (Nanamiya et al., 2008), Listeria monocyto-
genes (Okada et al., 2002b), Streptococcus mutans (Lemos et al., 2007), Vibrio 
cholerae (Das et al., 2009) etc. SASs and SAHs (stands for small alarmone 
hydrolase) are united by the complete lack of CTD domain and putative regu-
lation by different factors such as ribosome, tRNA and others (Atkinson et al., 
2011). Depending on the function of the protein they also miss either SYNTH 
or HD domain (Atkinson et al., 2011). A structure of SAS YjbM (RelQ) from B. 
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subtilis was recently obtained with X-ray crystallography method (Steinchen et 
al., 2015). In its active form RelQ comprises a homotetramer with allosteric 
regulation by (p)ppGpp (Steinchen et al., 2015).  

The role of SASs remains unclear; it is possible that SASs respond to stres-
ses that bifunctional long RSHs do not sense, such as alkaline shock (Nanamiya 
et al., 2008). The other possibilities are the supportive role in rapid stringent 
response induction (Gaca et al., 2012; Lemos et al., 2007) and maintenance of 
the basal (p)ppGpp levels (Gaca et al., 2013). RelQ of Enterococcus faecalis is 
also implemented in the synthesis of alarmone molecule pGpp, which role, 
however, is obscure (Gaca et al., 2015).  

While SASs are being extensively studied, not much is known about SAH 
enzymes. One of the SAH representatives is reported to be Ndx8 - a member of 
Nudix pyrophosphatase family in T. thermophilus (Ooga et al., 2009). The 
putative function of Ndx8 is in modulating the transition between the growth 
phases via (p)ppGpp degradation (Ooga et al., 2009). SpoT ortholog was also 
identified in such eukaryotes as Drozhophila melanogaster, Caenorhabditis 
elegans and even human (Sun et al., 2010). The name of this protein is Mesh1 
(metazoan SpoT homolog 1) and it possesses both HD domain and His-Asp 
motif crucial for Mn-ion binding (Sun et al., 2010). Mesh1 is able to hydrolyze 
(p)ppGpp both in vitro and vivo while the deletion of the corresponding gene 
results in retarded body growth and reduced starvation resistance in D. 
melanogaster. The role of the enzyme in vivo remains, however, elusive (Sun et 
al., 2010).  
 
 

4.7. Stringent response in phototrophs 
For a long time stringent response regulatory pathway has been considered 
unique for bacteria. In early 2000s this hypothesis was proved to be wrong as 
RSHs were found in plants (van der Biezen et al., 2000). The confirmations of 
all photosynthetic bacteria having RSHs (Atkinson et al., 2011; Braeken et al., 
2006; Masuda and Bauer, 2004) and discovery of high (p)ppGpp concentrations 
in pea chloroplasts (Takahashi et al., 2004) supported the possibility of 
(p)ppGpp signaling pathway presence in plants. Although the presence of RSH 
enzymes and (p)ppGpp in plants is restricted to plastids, stringent response 
system is very important for plant physiology (Givens et al., 2004; Masuda et 
al., 2008a; Masuda et al., 2008b). The most popular model organism in plant 
biology, Arabidopsis thaliana, was shown to have four RSH enzymes: RSH1, 
RSH2, RSH3 (van der Biezen et al., 2000) and CRSH (Tozawa et al., 2007). 
The domain conservation in RSH1 suggests lack of synthetase activity (Atkin-
son et al., 2011) positioning RSH1 as (p)ppGpp hydrolase (Takahashi et al., 
2004). In A. thaliana RSH1 is as well reported to interact with R-protein RPP5 
that is encoded by plant disease resistance genes and is involved in pathogen 
detection (van der Biezen et al., 2000). Whereas RSH2 and RSH3 are possibly 
bifunctional long RSH enzymes (Atkinson et al., 2011; Masuda et al., 2008a), 
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CRSH seems to be the most interesting of A. thaliana RSHs. CRSH is a Ca-
dependent enzyme that possesses Ca-binding EF-hand domain. The (p)ppGpp 
synthetase activity of the enzyme can be activated by Ca ions and, similarly to 
E. coli RelA, CRSH does not have hydrolase activity (Tozawa et al., 2007). 
Similar RSH distribution was also documented in Nicotiana tabacum, Oryza 
sativa and Physcomitrella patens suggesting it can be universal amongst plants 
(Givens et al., 2004; Masuda, 2012; Tozawa et al., 2007).  

In plants stringent response is involved in protection from pathogens (van 
der Biezen et al., 2000), reaction on physiological changes (Braeken et al., 
2006) and even photosynthesis (Takahashi et al., 2004). Putative control of 
photosynthesis by (p)ppGpp is based on combined actions of RSH2/3 that 
maintain high (p)ppGpp levels during the light phase and RSH1 that degrades it 
during the night (Takahashi et al., 2004). CRSH may as well respond to change 
of Ca ion levels in response to changes in light intensity (Sai and Johnson, 
2002) triggering (p)ppGpp synthesis in response to increased Ca (Masuda, 
2012). Plants tend to form symbiotic relationships with such organisms as fungi 
and bacteria. Rhizobium etli and Sinorhizobium meliloti are two bacteria species 
known to form symbiosis with plant roots. They are also known to survive 
stress conditions with the help of bifunctional RSH enzymes (Braeken et al., 
2008; Calderon-Flores et al., 2005; Wei et al., 2004). More of that, in these 
bacteria the symbiosis with plants depends on (p)ppGpp as it modulates 
nodulation and nitrogen fixation – processes that are crucial for the establish-
ment of bacteria-plant symbiosis (Calderon-Flores et al., 2005; Moris et al., 
2005).    

4.8. The feedback between RSH proteins and  
their product, (p)ppGpp 

A remarkable role is assigned to (p)ppGpp in the theory of “intra-domain 
crosstalk” in RSH proteins. Reaching high intracellular levels (p)ppGpp can 
possibly bind to CTD of RSH, supporting the inhibitory interaction of CTD 
with SYNTH domain and giving the permission for HD domain to act (Jain et 
al., 2007). On the contrary, we recently discovered that at relatively low con-
centrations (p)ppGpp is able to speed up its own production through allosteric 
regulation of RelA activity (Shyp et al., 2012). Allosteric binding of pppGpp 
was also observed in the X-ray structure of B. subtilis SAS RelQ (Steinchen et 
al., 2015).  
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5. Stringent response and bacterial pathogenicity 

5.1. The role of (p)ppGpp in bacterial virulence 
As stringent response mechanism is common amongst bacteria, the pathogenic 
representatives of the kingdom use it in their favor. The first indirect evidence 
of possible (p)ppGpp role in bacterial virulence appeared when decreased bio-
film formation was observed in E. coli relA spoT double mutants (Balzer and 
McLean, 2002). The reports on direct regulation of virulence genes by 
(p)ppGpp in pathogenic bacteria followed (Godfrey et al., 2002; Lemos et al., 
2004; Nakanishi et al., 2006). Thus in enterohemorragic (EHEC) (Nakanishi et 
al., 2006) and uropathogenic (UPEC) (Aberg et al., 2006, 2008; Kau et al., 
2005) E. coli (p)ppGpp controls the expression of the genes necessary for host 
cell invasion and biofilm formation. Similar purposes are being achieved with 
the help of (p)ppGpp in many other pathogens including P. aeruginosa (Shrout 
et al., 2006), S. typhimurium (Thompson et al., 2006), L. monocytogenes (Tay-
lor et al., 2002) etc. The stirrers of plague and cholera, Yersinia pestis and V. 
cholerae respectively, rely on (p)ppGpp in mediating the activity of virulence 
regulator proteins (Haralalka et al., 2003; Silva and Benitez, 2006; Sun et al., 
2009). In P. aeruginosa ppGpp0 strain the rpoS levels and virulence are heavily 
reduced (Erickson et al., 2004) while (p)ppGpp deficient Salmonella strain is 
weakly infectious and shows strong attenuation (Pizarro-Cerda and Tedin, 
2004; Thompson et al., 2006).  

Besides controlling the expression of virulence genes and biofilm formation, 
(p)ppGpp also plays its canonical role – promotes the survival of the cell in harsh 
conditions. In the case of pathogens it can be exposure to acid or aerobic shock 
during host uptake like with Helicobacter pylori (Mouery et al., 2006; Wells and 
Gaynor, 2006), sanitizer exposure and antibiotic treatment like with E. faecalis 
(Abranches et al., 2009; Yan et al., 2009) or cold of refrigerated food like with L. 
monocytogenes (Liu et al., 2006; Okada et al., 2002a).  The survival in host macro-
phages and avoidance of degradative lysosomes are as well dependent on activated 
stringent response (Dalebroux et al., 2010) as was shown on the examples of 
Campylobacter jejuni (Gaynor et al., 2005; Stintzl et al., 2005), Francisella tula-
rensis (Charity et al., 2009) and Brucella species (Dozot et al., 2006). Sporulation 
is also a method of survival for bacteria and the differentiation into spores is often 
controlled by (p)ppGpp. A good example is anthrax agent Bacillus anthracis 
where formation of spores occurs depending on Rel protein activity and whose 
spores can easily survive through decades (van Schaik et al., 2007).  
 
 

5.2. (p)ppGpp is important for bacterial persistence 
Bacterial infections are treated with antibiotics. Sometimes a small population 
remains alive in an isogenic bacterial culture exposed to certain antibiotic. After 
the removal of the drug the survived bacteria resume growth. Those bacteria are 
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not resistant and can be killed if exposed to the drug again. And also during the 
second treatment a small population survives. That ability of bacteria to survive 
the drug treatment is termed “persistence” and is of high scientific importance 
due to causing the recurrent bacterial infections (Fig. 8) (Kaldalu et al., 2016). 
While studying persistence, the question if it has specific genetic traits occurred. 
The first gene proven to be involved in persistence was called hipA where “hip” 
stands for “high persister” (Korch et al., 2003; Lewis, 2010; Maisonneuve and 
Gerdes, 2014; Moyed and Bertrand, 1983). Overexpression of HipA leads to 
suppression of the cell growth on all the levels and increase in antibiotic 
tolerance (Lewis, 2010; Maisonneuve and Gerdes, 2014). hipB is situated 
upstream of hipA and hipB gene product binds HipA protein thus  inhibiting its 
activity during normal growth conditions. Together genes hipB and hipA 
(hipBA) represent a toxin-antitoxin locus (TA) (Lewis, 2010; Maisonneuve and 
Gerdes, 2014). Other TA loci like relEB or mazEF are also implemented in 
persistence suggesting a strong link between the persistence phenomenon and 
TA modules (Gerdes and Maisonneuve, 2012).  
 
 

 
 

Figure 8. Antibiotic killing kinetics of bacterial cultures showing a rapidly steri-
lized culture, tolerance and resistance. The slower killing phase or plateau is de-
fined as persisters. Adapted from (Kaldalu et al., 2016). 

 
The third player, (p)ppGpp, stepped on the scene when the function of hipA 
gene product was discovered. HipA turned out to be a kinase able to inhibit the 
activity of Glu-tRNA synthetase (Germain et al., 2013; Kaspy et al., 2013). 
Accordingly, overproduction of HipA leads to increase in deacylated tRNA 
levels followed by the activation of stringent response (Germain et al., 2013; 
Kaspy et al., 2013). Increased (p)ppGpp levels are, on the other hand, beneficial 
for the translation of toxins from TA loci (Aizenman et al., 1996; Dahl et al., 
2003; Gerdes et al., 2005; Hazan et al., 2004) as (p)ppGpp regulates the activity 
of Lon protease (Maisonneuve et al., 2013) which, in turn, is able to degrade 
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antitoxins (Gerdes and Maisonneuve, 2012; Maisonneuve et al., 2011). There-
fore, a possible positive feedback loop exists between the activation of stringent 
response and toxin-antitoxin activity resulting in elevated drug tolerance 
(Hauryliuk et al., 2015).  

The importance of stringent response for persistence is also supported in 
numerous studies dedicated to bacteria other than E. coli. For example, in M. 
tuberculosis, where stringent response is activated through the carbon source 
limitation (Sureka et al., 2007), Rel protein was in vivo shown to be of absolute 
necessity for chronic persistence (Dahl et al., 2003; Primm et al., 2000). Another 
famous pathogen, S. typhimurium, produces considerably fewer persisters in 
macrophages when lacking either spoT, relA or lon genes (Helaine et al., 2014).  

Bacterial persistence is relatively poorly understood phenomenon and the 
exact mechanisms that allow persistent bacteria to tolerate high antibiotic 
concentrations remain elusive (Kaldalu et al., 2016). Nevertheless, for certain 
antibiotics the direct or indirect but crucial influence on stringent response has 
been documented.   

5.3. Drug resistance acquired through  
the stringent response 

Considering how the physiology of the bacterial cell is being reprogrammed 
upon the activation of stringent response, there can be a huge variety of path-
ways to the drug tolerance. The absolute majority of these pathways is depen-
dent on the indirect effect of rising in (p)ppGpp levels.  

One of the first antibiotics, penicillin, belongs to the family of β-lactam 
antibiotics and literally made a revolution in medicine upon the discovery. 
Nowadays there are dozens of β-lactam antibiotics but their target is still the 
same – the cell wall synthesis. During the stringent response the synthesis of 
peptidoglycan, the main component of the cell wall, is inhibited, consequently, 
the target of β-lactam antibiotics is absent (Hesketh et al., 2007). Rodionov and 
Ishiguro studying the effects of β-lactam amdinocillin showed that overexpres-
sion of cell division protein FtsZ triggered by (p)ppGpp promotes cell division 
without additional synthesis of peptidoglycan therefore diminishing the effect of 
the antibiotic (Rodionov and Ishiguro, 1995). Suchlike solution is also applied 
against the glycopeptide antibiotic vancomycin that as well targets cell wall 
synthesis (Abranches et al., 2009). Another strategy takes into advantage the 
fact that (p)ppGpp binds to RNAP; polypeptide antibiotic microcin J25 (Solbiati 
et al., 1999) acts through binding into RNAP secondary channel and blocking 
the access for NTP substrates (Mukhopadhyay et al., 2004) – (p)ppGpp binding 
site on RNAP is located in a close proximity and with the assistance of DksA 
(p)ppGpp can neutralize the inhibitory effect of microcin J25 (Pomares et al., 
2008). Other RNAP-targeting antibiotics like rifamycin, streptolydigin, myxo-
pyronin and ripostatin are counteracted by (p)ppGpp in a more or less similar 
manner (Mukhopadhyay et al., 2008).  
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6. Inhibition of bacterial stringent response 

6.1. Antibiotics targeting protein synthesis  
as modulators of the SR 

Shortly after the discovery of the stringent response the attempts to modulate 
the mechanism of SR with drugs began (Table 1). Considering that (p)ppGpp 
production in E. coli is activated upon starvation (Cashel and Gallant, 1969), a 
shortage in amino acids source can lead towards the activation of the stringent 
response. Therefore, the drugs that can ensure or mimic the shortage in nutrients 
can possible be the inducer for the stringent response. Accordingly, serine 
hydroxamate (SHX), that inhibits the activity of Ser-tRNA synthetase, has 
shown itself as a very prominent SR inducer. Antibiotic mupirocin or pseudo-
monic acid works in the same manner, though it limits access to isoleucine 
through inhibiting Ile-tRNA synthetase activity (Hughes and Mellows, 1978). 
Another antibiotic, trimethoprim, is also able to elicit (p)ppGpp production 
(Khan and Yamazaki, 1972; Lund and Kjeldgaard, 1972a) via the very strategy 
of mimicking amino acid deprivation (Roche et al., 1976). Trimethoprim is 
known DNA synthesis inhibitor that inhibits the activity of the enzyme dihydro-
folate reductase resulting in a drop of tetrahydrofolate (THF) production 
(Gleckman et al., 1981). THF is crucial for thymidine synthesis but is also very 
important for the production of such amino acids as Met and Gly and lack of it 
leads to the starvation for methionine and glycine.  

The measurements of cellular nucleotide pools, including (p)ppGpp, show 
the strong decrease in (p)ppGpp level upon exposure to certain antibiotics. For 
example, rifampicin binds RNAP and blocks transcription. As a result, no 
mRNA is synthesized, consequently decreasing the level of translation. Follo-
wing the same logic, slow translation means less protein and more amino-
acilated tRNAs what acts as a signal for RSH enzymes to turn off the stringent 
response and start (p)ppGpp degradation (Wong and Nazar, 1970).  

The studies on several translational antibiotics are controversial; transloca-
tion inhibitor Fus (fusidic acid, blocks EF-G on the ribosome) and Cam 
(chloramphenicol, binds into the ribosomal P-site and prevents peptide bond 
formation) were shown to have moderate effect on stringent response (Lund and 
Kjeldgaard, 1972a). In the presence of these antibiotics (p)ppGpp is being 
degraded or not produced at all if pre-treated with them while RNA synthesis is 
being restored (Lund and Kjeldgaard, 1972a). In another study, however, the 
results are opposite with none of the antibiotics able to affect the stringent 
response (Kaplan et al., 1973). Anyways, possible inhibition by either Cam or 
Fus seems to be indirect – the same mechanism as with rifampicin comes into 
play – arrested translation causes drop in amino acid consumption subsequently 
increasing the rate of tRNA aminoacylation (Kaplan et al., 1973; Kurland and 
Maaloe, 1962; Midgley and Gray, 1971). The data on the other putative strin-
gent response inhibitor, tetracycline, are more consistent. Tet-initiated inhibition 
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of translation is based on the blockage of the ribosomal A-site by the antibiotic 
(Nguyen et al., 2014). Deacylated tRNA cannot bind into the A-site therefore 
eliminating the possibility for the stringent response to be activated. Tet was 
confirmed to be very effective against the SR in bacteria (Kaplan et al., 1973; 
Lund and Kjeldgaard, 1972a) and also in chloroplasts of the plants (Kasai et al., 
2004).  
 
 

6.2. Direct inhibition of RelA by thiostrepton 
The best-known representative of thiopeptide antibiotics, thiostrepton or Ts, in-
hibits translation by preventing the correct positioning of translational GTPases 
IF2 (Brandi et al., 2004) and EF-G (Modolell et al., 1971; Thompson et al., 
1988; Walter et al., 2012) on the ribosome during initiation and elongation steps 
respectively. Thiostrepton binds into the cleft between r-protein L11 and helices 
H43 and H44 of 23S rRNA subunit making four contacts with the 50S subunit: 
two with Pro22 and Pro26 of L11 and two with 23S rRNA residues A1095 and 
A1067 (Harms et al., 2008). Although RelA and Ts binding sites on the ribo-
some (Brown et al., 2016; Harms et al., 2008) do not seem to overlap, the fact 
that RelA-bound A/T-tRNA makes a stacking interaction with A1067 of 23S 
rRNA (Brown et al., 2016) and L11 r-protein was shown to be of importance 
for the activation of the SR (Yang and Ishiguro, 2001b) leaves a possibility that 
the conformational changes upon Ts binding can prevent the activation of the 
stringent response. As a proof, decades ago it was discovered that thiostrepton 
completely inhibits (p)ppGpp formation in vitro (Haseltine et al., 1972c; 
Knutsson Jenvert and Holmberg Schiavone, 2005; Sy, 1974) but only in a 
ribosome-dependent manner (Sy et al., 1973). Being the most specific antibiotic 
towards the SR so far discovered, Ts has one major minus – it is insoluble in 
water and has no effect on E. coli in vivo due to the lack of cellular uptake 
(Pestka, 1970). But having the base for the further development, thiostrepton 
can certainly be improved in terms of inhibiting the SR. One of the ways is to 
make it more soluble, either by chemically modifying or using surfactants to 
help the drug get into the cell.  
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6.3. New generation of the SR inhibitors 
While one of the approaches to inhibit the stringent response includes the re-
assessment and upgrade of the classical antibiotics, another suggests dis-
covering new molecules that can be effective against RSH proteins. Some 
efforts along this way have already been taken, resulting in a number of 
(p)ppGpp-based chemical compounds (Wexselblatt et al., 2010). Several 
(p)ppGpp-analogues, especially Relacin, were shown to inhibit Rel activity 
almost completely, however only in millimolar range (Wexselblatt et al., 2012). 
The specificity of Rel activity inhibition by Relacin was also questioned 
(Andresen et al., 2016b). Nevertheless, the approach of making RSH inhibitors 
based on (p)ppGpp structure looks promising.  

A completely different strategy to inhibit the SR was recently presented 
with a discovery of antibiofilm peptide 1018 by the group of R. Hancock (de la 
Fuente-Nunez et al., 2014). According to the authors, the peptide eradicates 
mature biofilms and prevents the formation of new ones by blocking the signa-
ling pathway involving (p)ppGpp (de la Fuente-Nunez et al., 2014). Sub-
sequently, the authors claim that 1018 peptide specifically binds (p)ppGpp and 
initiates its degradation (de la Fuente-Nunez et al., 2014). In recent studies, 
however, the specificity of the SR inhibition by 1018 peptide was put under 
question (Andresen et al., 2016a; Andresen et al., 2016b). 
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AIM OF THE STUDY 

The general aim of the study is to characterize the relationships between E. coli 
RelA, its product (p)ppGpp and its activators 70S ribosome and deacylated tRNA 
by studying the inhibitory effects of different antibacterial agents on the SR. 

 
Specific objectives of the study: 

 
 To reveal the effect of product on (p)ppGpp synthetases E. coli stringent 

factor RelA and E. faecalis SAS RelQ during the early steps of the SR 
activation (Papers I and II) 

 
 To evaluate the possibilities of developing novel antibacterial agents 

based on a (p)ppGpp scaffold (Paper III)  
 
 To test the effect of existing translational antibiotics on the stringent 

response and reveal the mechanisms of their action if inhibitory effect is 
present (Paper IV) 

 
 To characterize the effects of combined antibiotic treatment onto the 

stringent response and bacterial persistence in living bacterial cultures 
(Paper IV)             
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RESULTS AND DISCUSSION 

1. The activities of the E. coli stringent response factor 
RelA and E. faecalis small alarmone synthetase RelQ 
are regulated by their product, (p)ppGpp (Papers I, II) 

1.1. ppGpp positively controls the activity of E. coli RelA 
The activation of the stringent response is not a spontaneous process and needs 
certain circumstances and factors to get started. As it was previously discussed, 
lack of nutritional sources leads to increase in the levels of deacylated tRNAs 
which, in turn, when bound to the 70S ribosome represents the major condition 
for the activation of the SR. The change in alarmone molecule (p)ppGpp levels 
is what regulates the SR and, therefore, measuring (p)ppGpp synthetic activity 
can reflect the possibility for the SR induction. In in vitro (p)ppGpp synthesis 
system consistent of 70S, mRNA, deacylated tRNA and substrates for (p)ppGpp 
production the stalled ribosomal complex indeed fulfills the conditions for the 
induction of (p)ppGpp synthesis by activating RelA, however the kinetics of 
(p)ppGpp production does not seem to be linear, representing sigmoid-like 
curve with a pronounced lag-effect (Payoe and Fahlman, 2011). One of the pos-
sible explanation for the occurrence of the lag-effect can be the lack of crucial 
components for the rapid activation of the (p)ppGpp synthesis in the experi-
mental system used.  

 

 
Figure 9. Synthetic activities of E. coli RelA (A) and E. faecalis RelQ (B) in the 
presence (red empty circles) and absence (black empty circles) of 100 μM ppGpp. 
Axis OY=1 means all the substrate (GDP) has been converted into ppGpp. Filled circles 
on a panel A represent an assay with ppGpp addition at certain timepoint, black before 
the addition of 100 μM ppGpp, red after it.  
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The regulation of enzyme activity by its product is a widely distributed pheno-
menon; in our case we observed that upon the addition of ppGpp to our in vitro 
system the lag-effect has been removed suggesting ppGpp enhances the activity 
of RelA (Fig. 9A). Considering this, the lag-effect can be explained by progres-
sive stimulation of RelA activity by in situ produced ppGpp. The further in-
vestigation of the phenomenon of RelA activation by its product led to the 
conclusion that the existence of a positive feedback loop between RelA and 
ppGpp is not exclusive amongst RSHs. When studying the small alarmone 
synthetase of E. faecalis, RelQ, in vitro, we observed similar elevation in 
enzyme’s activity upon addition of either ppGpp (Fig. 9B) or pppGpp. Guano-
sine pentaphosphate activation of B. subtilis SAS1 was also reported previously 
(Steinchen et al., 2015).  

The positive feedback loop between (p)ppGpp synthetases and their product 
ensures accelerated response towards stress stimuli. Sped up activation of total 
cellular population of RelA enzymes allows to increase the adaptation that is 
extremely crucial for cell survival.  

 
 

2. ppGpp and molecules structurally related to  
it can negatively affect the activity of E. coli stringent 

response factor RelA (Paper III) 

2.1. ppGpp inhibits RelA activity at higher concentrations 
When knowing that ppGpp can positively regulate the activity of RelA the logi-
cal next step would be to check to what extent ppGpp is able to activate RelA. 
To our surprise, when titrating ppGpp on RelA in vitro, the activity of the en-
zyme starts to drop down with ppGpp higher than ~150 μM and it is almost 
completely gone at the 1 mM concentration of ppGpp (Fig. 10A). One possible 
explanation for this inhibition could be that in an in vitro system saturated with 
ppGpp the alarmone molecule starts to compete with native substrates GDP and 
GTP for the enzyme’s active center. Considering that ppGpp can possibly bind 
into both RelA’s active center and allosteric binding site the molecule can be 
chemically modified into RelA inhibitor that is likely to block the activation of 
stringent response.  
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Figure 10. ppGpp and its derivatives negatively affect the synthetic activity of 
RelA. RelA activity is tested in the presence of 0.5 μM of 70S ribosomes. A) ppGpp 
activates RelA at low and turns into an inhibitor at higher concentrations. B) ppGpp-
analogues DR-4250 (red circles), DR-6331 (black squares) and D) piperidine phospho-
nate DR-M014 efficiently inhibit ppGpp synthesis of RelA, activated by 70S ribosome. 
RelA activity without an inhibitor equals 1 and RelA activity in the presence of the 
inhibitor is normalized to that. C) The structures of compound 10 from (Wexselblatt et 
al., 2010), one of the first inhibitors with ppGpp-like structure, and compounds DR-
4250 and DR-6331 used in this study. Error bars represent standard deviation of the 
turnover estimated by linear regression. Each experiment was performed at least three 
times.  
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2.2. Modifying ppGpp into better RelA inhibitor 
Considering that RelA is of great importance for the stringent response activa-
tion and, therefore, is a very prominent target for the development of new anti-
bacterial agents, one could possibly to try to use ppGpp as a platform for the 
development of anti-RelA drug. There are, however, certain problems to over-
come on the pathway of making ppGpp into efficient RelA inhibitor: a) ppGpp 
is considerably hydrophilic which may cause problems with cellular uptake i.e. 
delivery of the molecule to its target; b) ppGpp is degradation-prone – enzymes 
like SpoT or intracellular chemical conditions can easily degrade it back to 
GDP; c) the flexibility of pyrophosphate moieties of ppGpp should not be 
constrained as it is of importance for correct allosteric binding (Steinchen et al., 2015). First attempts in the direction of modifying ppGpp into an inhibitor were 
undertaken by an Israeli research group and resulted in the development of 
Relacin (Wexselblatt et al., 2010; Wexselblatt et al., 2012). Despite of all modi-
fications (Relacin is less hydrophilic and chemically protected from degra-
dation) it is still not very effective against RSH enzymes with IC50 around  
0.8 mM. Therefore it is not suitable for drug development pipeline.  

To follow up in the development of new ppGpp-based effector molecules we 
tested a library of 69 nucleotide analogues on their ability to inhibit the activity 
of E. coli stringent response factor RelA in vitro. The library was produced in 
collaboration with a group of chemists led by Dominik Rejman from Czech 
Academy of Sciences. Structurally the library of tested compounds can be di-
vided into groups with the first group representing compounds strongly related 
to ppGpp. The “true” ppGpp analogues differ from ppGpp only in minor aspects 
leaving the overall structure intact. 

As a starting point we used previously described compound 10 (Fig. 10C) 
(Wexselblatt et al., 2010) where the oxygen atoms connecting the phosphate 
groups have been replaced with methylene bridges to improve the chemical 
stability of the compound. As the given compound showed considerably weak 
activity against RelA our efforts were directed towards improving the inhibitory 
effect without losing chemical stability. Modifying the nucleobase did not give 
much in this case while changing the pyrophosphate moieties of ppGpp, on the 
contrary, resulted in much more efficient compounds DR-4250 (IC50 = 54 ±  
3 μM) and its derivative with reduced phosphate groups and, therefore, the net 
charge, DR-6331 (IC50 = 76 ± 6 μM) (Fig. 10B).  

Most of the remaining compounds in the library were divided into additional 
groups according to the modifications in the sugar cycle moving from ribose 
towards acyclic compounds. The vast majority of the compounds, unfortunate-
ly, were either poor inhibitors for RelA activity or had no effect at all. The only 
partial success was achieved with the compound DR-M014. DR-M014 belongs 
to the group of piperidine phosphonates and, while most of the group represen-
tatives in the library were hardly effective against RelA, DR-M014 has IC50 of 
121 ± 20 μM (Fig. 10D). Compared to DR-4250 it has simpler structure and of 
smaller size with, however, smaller inhibitory effect. As most promising com-
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pounds both DR-4250 and DR-M014 were further investigated to reveal the 
mechanism of their action. During the first stage all the compounds were tested 
in a simplistic in vitro system where only minimal requirements for RelA 
activity were fulfilled (Fig. 10B,D). In a following experiment RelA was acti-
vated to its maximum by starved ribosomal complex (Fig. 11) and the effects of 
the most promising compounds were analyzed. Both DR-4250 and DR-M014 
showed relatively the same IC50’s as obtained previously, 41 ± 7 μM and 155 ± 
14 μM respectively (Fig. 11). The independence of the inhibitory effect on the 
presence of the major activator of (p)ppGpp synthesis by RelA, the starved ribo-
somal complex, suggests both compounds could potentially be effective in vivo.  

 

 
Figure 11. ppGpp synthesis of RelA, activated with starved ribosomal complex, is 
inhibited by ppGpp derivaives A) DR-4250 and B) DR-M014. RelA activity without 
an inhibitor equals 1 and RelA activity in the presence of the inhibitor is normalized to 
that. Error bars represent standard deviation of the turnover estimated by linear 
regression. Each experiment was performed at least three times. 

 
2.3. RelA inhibition by naturally occurring nucleotides and 

6-thio-ppGpp 
Bacteria have many other signal molecules than ppGpp. Some of them, like 
cAMP, c-di-GMP etc., share structural similarities with the substrates for 
(p)ppGpp synthesis and theoretically can compete with the substrates for 
RelA’s active center and with ppGpp for the allosteric binding site. We tested a 
set of suchlike molecules in our system though with a negative result. Lastly, 
we also tested two more nucleotides that are structurally very close to ppGpp. 
One of them is naturally occurring nucleotide with unknown function, ppApp 
(Oki et al., 1976) and the other is ppGpp derivative 6-thio-ppGpp used for 
mapping ppGpp binding sites on RNAP (Ross et al., 2013). One can assume 
that by being structurally close to ppGpp, ppApp and 6-thio-ppGpp should 
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activate RelA in a manner ppGpp itself does, however this is not the case as 
both nucleotides turned out to be potent RelA activity inhibitors with IC50’s of 
~20 μM for both of them (Fig. 12).  

 
 

 
Figure 12. Substitution of the base in ppGpp for adenine (red triangles) or 6-thio-
guanine (black triangles) increases the inhibitory effect dramatically. RelA activity 
is tested in the presence of 0.5 μM of 70S ribosomes. RelA activity without an inhibitor 
equals 1 and RelA activity in the presence of the inhibitor is normalized to that. Error 
bars represent standard deviation of the turnover estimated by linear regression. Each 
experiment was performed at least three times. 
 
 
In a current state the strategy of modifying ppGpp scaffold to make a ppGpp-
synthesis inhibitor looks promising but definitely needs improvement. We 
demonstrated that ppGpp-derivatives can inhibit RelA’s activity in vitro but the 
problem of making the putative inhibitor suitable for clinical trials remained 
unsolved. We tested the compounds for their in vivo effect in E. coli live culture 
with no inhibition of (p)ppGpp production observed. The most obvious reason 
could be that the compound could not reach its target i.e. enter the bacterial cell. 
One of the possible solutions could be chemically modifying the most pro-
mising compounds into prodrugs to overcome the possible problem of cellular 
uptake. In the way they are now, the compounds of the library described here 
can be beneficial in structural studies by helping to stabilize RelA on the 
ribosome.   
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3. Revising the effect of classical antibiotics (Paper IV) 

3.1. Thiostrepton specifically inhibits RelA activation by 
deacylated A-site tRNA 

With the progress in uncovering the mechanism of the stringent response the 
dependence of the stringent factor RelA on the ribosome and its functions 
became obvious. Consequently the information concerning RelA positioning on 
the ribosome allows to suggest ways to brake the interaction between the 
enzyme and the organelle and therefore inhibit (p)ppGpp synthesis. Certain 
translational antibiotics (Table 1) have previously been shown to inhibit RelA 
activity with, however, no data about the possible mechanism of action (Kaplan 
et al., 1973; Knutsson Jenvert and Holmberg Schiavone, 2005). Here we re-
examined the effect of classical translational antibiotics in the context of latest 
structural data. 

According to structural data (Brown et al., 2016; Harms et al., 2008), the 
antibiotic thiostrepton can possibly block correct positioning of RelA on the 
ribosome the same way as it does with EF-G. Nevertheless, thiostrepton has 
very low solubility in non-organic solvents and that becomes an issue when 
applying it in bacterial systems. Common organic solvents like DMSO 
(dimethyl sulfoxide) and TFE (2,2,2-trifluorethanol) at the concentration of 3% 
(v/v) keep thiostrepton poorly in solution while the addition of 0.1% (w/v) non-
ionic surfactant Pluronic F-127 helps keeping thiostrepton soluble up to the 
concentration of 15 μM that we confirmed using DLS (dynamic light scattering) 
analysis. At the same time, Pluronic F-127 does not affect either ppGpp 
synthesis by RelA or GTPase activity of EF-G. Therefore, in all the following 
experiments Pluronic F-127 was added at the concentration of 0.1% (w/v).  

To test the effect of thiostrepton on RelA activity we titrated it in in vitro 
systems with either weakly active RelA (70S ribosome activation) or fully 
active RelA (activated by 70S loaded with mRNA/polyU and deacylated 
tRNAs). As a positive control we reproduced thiostrepton effect on the GTPase 
activity of EF-G (Walter et al., 2012) with WT and as a negative control with 
A1067U mutant 70S ribosomes. When assaying thiostrepton against RelA we 
demonstrated that the antibiotic has absolutely no effect on RelA activity in the 
simplified in vitro system with just 70S ribosome and substrates (Fig. 13A), 
however, with the addition of mRNA/polyU and tRNAs the picture changes 
dramatically with thiostrepton totally nullifying the activation by additional 
factors already at the concentration of 0.5 μM (Fig. 13B,D). At the same time 
the activation by deacylated A-site tRNA in the case of A1067U mutant 70S 
remains untouched (Fig. 13B,C). The residue 1067A of 23S rRNA is one of the 
four major contacts of 70S ribosome and thiostrepton (Harms et al., 2008) and 
inability of antibiotc to inhibit RelA activity on mutant ribosomes underlines the 
importance of 23S rRNA position 1067A for RelA-thiostrepton relationship. 
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 Figure 13. Thiostrepton prevents RelA activation by deacylated A-site tRNA. 
Thiostrepton titrations were performed in in vitro systems with either 70S ribosome 
only (A), starved ribomal complex (B), ribosomal initiation complex (C) or ribosomal 
initiation complex with the addition of deacylated A-site tRNA (D). Turnovers represent 
ppGpp synthesis activity per Rela per min. Enzymatic activities were normalized to that 
of the corresponding system in the absence of thiostrepton and uninhibited turnover 
values corresponding to 1.0 activity are provided on individual panels. Error bars 
represent standard deviation of the turnover estimated by linear regression. Each 
experiment was performed at least three times. 
 
 
Apparently, the encounter of RelA with deacylated tRNA in the ribosomal A-
site leads to the conformational switch in the enzyme with thiostrepton making 
this switch impossible. One can speculate on the contribution of ribosomal L11 
protein into this conformational change. Structural studies suggest the move-
ment of L11’s NTD upon binding of thiostrepton (Harms et al., 2008) and at the 
same time L11 is implemented in activation of RelA (Yang and Ishiguro, 
2001b). Recent structural studies on RelA and 70S interactions, however, 
reported no contacts between RelA and L11 (Arenz et al., 2016; Brown et al., 
2016; Loveland et al., 2016). According to these studies RelA wraps around A-
site tRNA promoting it into A/T-like conformation (Fig. 7) allowing establish 
the stacking interaction between residues C56 of tRNA and A1067 of 23S 
rRNA. In the absence of A-site tRNA RelA has no indirect contacts with A1067 
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and therefore, thiostrepton, that directly interacts with A1067 has no effect on 
RelA activity. The protection from inhibiton of RelA activity by thiostrepton 
granted by mutation in residue 1067 of 23S rRNA can be interpreted by the 
inability of thiostrepton to correctly bind onto the ribosome (Thompson et al., 
1988). However it is still not clear why the very mutation does not affect RelA 
activity inspite of the possible occurrence of impairment in stacking interaction 
between C56 of A-site tRNA and 1067U of 23S rRNA upon RelA binding to 
the ribosome. 
 

 
3.2. Tetracycline and chloramphenicol do not directly 

inhibit RelA activity  
Apart from thiostrepton two other translational antibiotics were shown to be 
effective (p)ppGpp synthesis inhibitors; these are tetracycline and chloram-
phenicol (Kasai et al., 2004; Lund and Kjeldgaard, 1972b). To their advantage 
over thiostrepton both antibiotics are water-soluble. Both antibiotics were 
assayed against RelA and, while chloramphenicol, that binds into ribosomal P-
site and inhibits peptide bond formation, was unable to cause any direct effect 
on RelA activity (Fig. 14B), tetracycline weakly inhibited ppGpp biosynthesis 
in both systems it was tested (Fig. 14A).  

 
 

 
 

Figure 14. Classical translational antibiotics tetracycline (A) and chloramphenicol 
(B) cause only little or no effect on RelA activity. RelA activity was assayed in the in 
vitro systems with either 70S ribosomes with vacant A-site (black empty circles) or 
starved ribosomal complex (filled red circles). RelA activity without an inhibitor equals 
1 and RelA activity in the presence of the inhibitor is normalized to that. Error bars 
represent standard deviation of the turnover estimated by linear regression. Each 
experiment was performed at least three times. 
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As tetracycline acts through blocking the accommodation of A-site tRNA one 
could expect to observe the tRNA-dependent mechanism of RelA activity 
inhibition in the manner similar to what we described for thiostrepton (Fig. 
13B). With the addition of deacylated tRNA the inhibitory effect of tetracycline, 
however, did not change (Fig. 14A) suggesting other mechanism of RelA 
activity inhibition by tetracycline than through the binding of deacylated A-site 
tRNA.  
 
 

3.3. Inhibition of translation by antibiotics blocks  
the stringent response in vivo 

To support the in vitro data we characterized the effect of thiostrepton, tetra-
cycline and chloramphenicol in vivo. Thiostrepton was assayed in B. subtilis 
culture (Fig. 15B) to solve the cellular uptake problem and two others in E. coli 
culture. First, the stringent response in bacterial cultures was induced through 
the pre-treatment with mupirocin (Fig. 15A) with the following addition of the 
antibiotic of interest. The effect of antibiotics was studied by measuring the 
changes in ppGpp levels using HPLC-based (High Performance Liquid 
Chromatography) approach.  

Pre-treatment of bacterial cultures with 70 μM mupirocin caused Ile 
starvation accompanied by the activation of the stringent response and, there-
fore, increase in ppGpp levels (Fig. 15A). All the antibiotics used here showed 
pronounced inhibitory effect on stringent response in vivo with ppGpp synthesis 
being abrogated in all the cases (Fig. 15). Current experimental system, 
however, does not provide the information about the specificity of antibiotics 
towards the respective stringent factors – RelA in Fig. 15C,D and Rel in Fig. 
15B. The stringent response is indeed, repressed, although we cannot confi-
dently confirm the mechanism of such repression. With tetracycline and 
chloramphenicol that were titrated in E. coli culture remains a possibility of 
their influence on SpoT since both antibiotics were hardly effective against 
RelA in vitro. Thiostrepton, on the other hand, showed high specificity in vitro 
towards RelA but due to the lack of cellular uptake in E. coli we could only 
study its effect in B. subtilis that does not have a cell membrane but has the set 
of RSH enzymes different from that in enterobacteria. Taking into account the 
range of concentrations for antibiotics used in in vivo experimetns and in vitro 
obtained data, of the antibiotics tested thiostrepton represents the highest 
potential towards being a specific inhibitor of the stringent response. Modifying 
thiostrepton structure in a way to improve the solubility and therefore overcome 
cellular uptake problem without losing inhibitory activity looks like a promising 
strategy for the further studies aiming for the stringent response inhibition. 
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Figure 15. Inhibition of bacterial growth by translational antibiotics is in corre-
lation with a drop in ppGpp levels. Red circles represent changing in ppGpp levels 
while black circles reflect the bacterial growth. A) The stringent response was induced 
by the addition of increasing concentrations of mupirocin. B) to D) Cell cultures were 
treated for 30 min with increasing concentrations of thiostrepton (B), tetracycline (C), or 
chloramphenicol (D) combined with 70 μM mupirocin (mup70). Experiments were 
performed with BW25113 E. coli wild-type strain (A, C and D) or BSB1 B. subtilis 
wild-type strain (B). The dashed red trace indicates the level in unstressed cells. Error 
bars indicate the standard errors of the mean (three to five biological replicates). The P 
values were calculated using a two-tailed Welch’s t test either relative to the unstressed 
ppGpp levels or, where indicated by brackets, within the titration series. 
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CONCLUSIONS 

ppGpp synthesis activity of certain RSH enzymes is allosterically regulated at 
considerably low concentration of ppGpp in a positive way and, in the case of 
E. coli RelA, negatively at high concentrations of the alarmone molecule.  
 
Compounds DR-4250 and DR-M014 that are based on ppGpp-scaffold specifi-
cally inhibit E. coli RelA activity in vitro. 
 
ppApp and 6-thio-ppGpp specifically inhibit E. coli RelA activity in vitro. 
 
E. coli RelA activity inhibition by antibiotic thiostrepton is tRNA-dependent. 
A1067U point mutation in 23S rRNA rescues RelA ppGpp synthetase activity 
and EF-G GTPase activity from inhibition by thiostrepton.  
 
Treatment with translational antibiotics thiostrepton, tetracycline and chloram-
phenicol abolishes ppGpp production in vivo. 
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SUMMARY IN ESTONIAN 

Otsides Escherichia coli poomisvastuse  
valgu RelA inhibiitoreid 

Keskkonnatingimuste jälgimiseks ja muutustega kohanemiseks on bakteritel 
mitmeid sensoorseid süsteeme. Seejuures on levinud strateegiaks sekundaarsete 
signaalmolekulite kasutamine: stressisignaali ilmumisega muutub signaalmole-
kulide rakusisene kontsentratsioon ning see omakorda reguleerib sihtensüümide 
aktiivsust. Üks sellistest stressivastuse süsteemidest on poomisvastus (stringent 
response), mis aktiveeritakse sõltuvalt alarmoonmolekuli (p)ppGpp rakusisesest 
kontsentratsioonist. (p)ppGpp on võimeline reguleerima mitmete ensüümide 
aktiivsust, kuid peamiseks märklauaks on RNA polümeraas. (p)ppGpp raku-
sisest taset kontrollivad E. coli RelA-SpoT-ga homoloogsed valgud (RSH), mis 
kas sünteesivad või hüdrolüüsivad (p)ppGpp-d vastavalt keskkonnatingimus-
tele. Eksperimentaalselt on tõestatud, et poomisvastus kontrollib bakterite viru-
lentsust, persisterite moodustamist, antibiootikumide taluvust ning antibiootiku-
mide tootmist, samuti osaleb bakterite hulgatunnetuses (quorum sensing) ja 
bakterite ellujäämises fagotsütoosi jooksul. Seepärast on poomisvastuse mehha-
nismide mõistmine väga oluline ja (p)ppGpp rakusisest taset kontrollivate ühen-
dite loomine võiks viia meditsiini ja biotehnoloogia seisukohalt oluliste raken-
dusteni. Hiljuti avastati, et ppGpp struktuuril põhinev aine Relacin on võimeline 
inhibeerima RelA aktiivsust kuid tõhusa inhibeerimise jaoks on vaja Relacini 
kasutada väga kõrges kontsentratsioonis.  

Käesoleva töö raames iseloomustasin (p)ppGpp struktuuri põhjal disainitud 
uudsete keemiliste ainete efekti E. coli RelA aktiivsusele. Samuti pakun välja 
uusi võimalusi RelA inhibiitorite arendamiseks. Peale uute sünteesitud ainete 
efektide vaatasin üle võimalusi mõjutada poomisvastust  juba tuntud translat-
siooni inhibiitorite abil ning iseloomustasin thiostreptooni tugevat inhibeerimis-
võimet (p)ppGpp sünteesile. 
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