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1. INTRODUCTION 

Among other pressures, forests are subjected to two ecological threats: herbivory, 
i.e. consumption of plant tissues by animals, and climatic stress. Herbivory can 
reach 100% during herbivore population outbreaks (Schowalter et al. 1986). Such 
herbivory pressure has been reported to reduce both the growth of individual trees 
and the entire forests (Schowalter et al. 1986; Dietze & Matthes 2014), and it can 
lead to tree mortality (Wulder et al. 2006; Meddens et al. 2012; Hultine et al. 
2015). Trees are also affected by climatic stress such as chill, heat and drought 
(Bréda et al. 2006; Senf et al. 2020). Climatic stress has a negative impact on the 
physiology and performance of trees. For instance, drought increases the 
hydraulic resistance in the soil and at the soil-root interface, which induces stomatal 
closure resulting in reduced CO2 assimilation, and might reduce tree growth 
(Bréda et al. 2006; McDowell et al. 2008). In case of severe drought, vessel 
embolisms can occur and lead to tree death (Condit et al. 1995; Mayr et al. 2002; 
Bréda et al. 2006; McDowell et al. 2008; Allen et al. 2010). Drought caused an 
excess of 500,000 ha of forest mortality between 1987 to 2016 in Europe (Senf 
et al. 2020).  

Researches have shown that increasing species diversity decreases herbivory 
possibly due to ‘associational resistance’, i.e. the increased resistance of a focal 
tree species due to interactions with neighbouring tree species (Pimentel 1961; 
Jactel & Brockerhoff 2007; Vehviläinen et al. 2007; Barbosa et al. 2009; Abdala-
Roberts et al. 2015). This associational resistance might be explained by the 
resource concentration hypothesis, which states that herbivores have a reduced 
chance to reach and stay in a patch where their host is less likely to be found 
(Root 1973; Hambäck et al. 2000). This reduced chance of herbivores to find 
their host might be due to host dilution (Castagneyrol et al. 2013) or due to the 
disruption of the visual and chemical cues used by herbivores by neighbouring 
trees (Barbosa et al. 2009). Neighbouring trees attacked by herbivores produce 
volatile organic compounds (VOC) that can induce the production of defences in 
a focal tree or attract natural enemies of the herbivores, thus reducing herbivory 
of the focal tree (Farmer 2001; Kessler 2001; Engelberth et al. 2004; Heil & Kost 
2006; Kessler et al. 2006). The production of such VOCs seems to be higher in 
trees growing with heterospecific trees (Kigathi et al. 2013).  

In addition to decreasing herbivory, tree-species diversity can decrease climatic 
stress or its effect on plants. For instance, tree-species diversity can increase 
drought resistance and resilience of trees (Pretzsch et al. 2013a, b; Kotlarz et al. 
2018; Sousa-Silva et al. 2018; Jourdan et al. 2019, 2020; Grossiord 2020; Steckel 
et al. 2020; Vannoppen et al. 2020). This increased drought resistance and 
resilience can be explained by different mechanisms. Firstly, facilitation between 
tree species can occur, such as increased water availability for neighbouring trees 
by hydraulic lift, i.e. the release of water uptake from deep soil into upper soil 
layers (Dawson 1993; Caldwell et al. 1998; Zapater et al. 2011). Secondly, tree-
species diversity might increase functional-trait diversity and thus the differen-
tiation of tree rooting patterns, leading trees to better share the available water 
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(Schmid & Kazda 2001; Grossiord et al. 2015; Bello et al. 2019a). However, high 
tree-species diversity does not always increase resistance to herbivores or climatic 
stress. Specifically, it seems to depend on the identity of the tree species involved 
(Vehviläinen et al. 2007; Grossiord et al. 2014; Forrester et al. 2016; Bello et al. 
2019b; Gillerot et al. 2021).  

In mixed forests, the identity of the neighbouring tree species is important as 
they may be phylogenetically proximate or distant. During the previous 20 years, 
researchers have increasingly characterised communities by their measured the 
phylogenetic structure (Webb et al. 2002). Specifically, two communities of the 
same species richness can differ in phylogenetic structure. A community can be 
phylogenetically clustered, i.e. composed of phylogenetically proximate species; 
or a community can be phylogenetically overdispersed, i.e. composed of phylo-
genetically distant species. Phylogenetically proximate species tend to share 
similar traits and similar niches (Burns & Strauss 2011; Peterson 2011; Violle et 
al. 2011), in particular in undisturbed habitats like forests (Prinzing et al. 2021a).  

Trees coexisting with phylogenetically proximate neighbours might encounter 
multiple problems (we use the term ‘coexistence’ sensu largo, i.e. conspecific 
and heterospecific co-occurring neighbours in direct contact and for decades). 
Firstly, such trees may suffer high herbivory pressure. As phylogenetically 
proximate species tend to have similar traits, they tend to share herbivore species 
(Ødegaard et al. 2005; Brändle & Brandl 2006; Burns & Strauss 2011; Dinnage 
et al. 2012). Therefore, trees coexisting with phylogenetically proximate neigh-
bours experience increased herbivory as neighbouring species can act as a source 
of herbivores (Yguel et al. 2011; Dinnage 2013; Castagneyrol et al. 2014; Moreira 
et al. 2019). This effect of phylogenetic proximity on herbivores is strongest in 
specialised herbivores (Nyman et al. 2006; Vialatte et al. 2010; Grandez-Rios et 
al. 2015; Seifert et al. 2020). Secondly, trees coexisting with phylogenetically 
proximate neighbours may suffer increased climatic stress. The functional 
similarity between phylogenetically proximate neighbours results in that they 
share similar resource needs in space and time (Burns & Strauss 2011; Peterson 
2011; Violle et al. 2011). Therefore they may suffer increased competition and in 
the case of resource limitation, they might experience increased abiotic stress 
(Wilson & Tilman 1991; Violle et al. 2011; Martínez-Vilalta et al. 2012). For 
instance, it has been shown that tree species coexisting with conspecifics, i.e with 
phylogenetically proximate neighbours, suffer more from drought than with 
heterospecifics, i.e. with phylogenetically more distant neighbours (Pretzsch et al. 
2013b). Overall, species coexisting with phylogenetically proximate neighbours 
might suffer increased herbivory and climatic stress. 

The problems that trees coexisting with phylogenetically proximate neigh-
bours encounter might prevent such coexistence and trees might coexist only with 
phylogenetically distant neighbours (Janzen 1970; Liu et al. 2012). Therefore, in 
nature, we should observe communities that are composed mostly of distantly 
related species. However, tree species do coexist with phylogenetically proximate 
neighbours, and surprisingly little is known about possible mechanisms permitting 
this coexistence. Here I argue that populations of trees may not be passively 
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suffering from increased pressure by herbivores in phylogenetically proximate 
neighbourhoods, but rather adapt by evolving increased resistance to herbivory.  

The increased resistance to herbivory might have a cost for climatic stress 
resistance of trees. Coexistence with phylogenetically proximate neighbours might 
indirectly select against traits that are traded off against resistance to herbivory 
such as the resistance to climatic stress. Resistance to herbivory may be costly 
and involve multiple types of costs for trees, such as energy costs, opportunity 
costs and ecological costs (Baldwin & Hamilton 2000; Koricheva 2002; Strauss 
et al. 2006; Siemens et al. 2009). For instance, tree species investing energy in 
resistance against herbivores might have less energy to spend in resistance against 
climatic stress (Siemens et al. 2012; Alsdurf et al. 2013; Siemens & Haugen 2013). 
Hence, if phylogenetically proximate neighbourhoods select for resistances 
against herbivores that are traded off against resistances to climatic stress, trees 
coexisting with phylogenetically proximate neighbours might be more resistant 
against herbivores but less resistant against climatic stress. However, resistances 
against herbivores may not automatically reduce resistances to climatic stress. 
This trade-off may depend on the type of resistances involved. Quantitative 
defences against herbivores, i.e. defences produced in high quantity to reduce the 
digestibility of plant tissues, have been shown to be multifunctional as they also 
increase resistance against climatic stress (Neilson et al. 2013). For instance, 
quantitative-chemical resistances such as tannins, anthocyanins and flavonols, or 
quantitative-morphological resistances like wax, increase the resistance against 
both herbivory and climatic stress (Jetter et al. 2000; Brennan & Weinbaum 2001a, 
b; Treutter 2006; Korn et al. 2008). Hence, if phylogenetically proximate neigh-
bourhoods select for resistance that is multifunctional, species coexisting with 
phylogenetically proximate neighbours might be more resistant against both 
herbivory and climatic stress.  

Tree populations coexisting with phylogenetically proximate neighbours may 
also evolve increased investment into mycorrhizae. Specifically, as a response to 
increased herbivory and climatic stress caused by phylogenetically proximate 
neighbourhoods, trees may invest into mutualists, such as mycorrhiza. Mycor-
rhizae are known to increase resistances against herbivores (Gehring & Whitham 
2003; Gange et al. 2005; Koricheva et al. 2009) and climatic stress (Nelsen & 
Safir 1982; Ruiz-Lozano & Aroca 2010a, b). In addition, mycorrhizae provide 
nutrients and water to trees (van der Heijden et al. 2015; Garcia et al. 2016), 
which may indirectly enhance tree resistance against both herbivores and climatic 
stress. Under strong herbivory and climatic stress, trees investing much into 
mycorrhiza should hence survive better than trees investing little. Therefore, the 
investment into mycorrhizae should be selected under strong herbivory and 
climatic stress pressure, i.e. in phylogenetically proximate neighbourhoods. 
Hence, if phylogenetically proximate neighbourhoods select for increased invest-
ment into mycorrhizae, tree populations exposed to such neighbourhoods might 
be more resistant against both herbivory and climatic stress. 

In the current context of environmental change and the massive species loss, 
it becomes urgent to understand why some plant species persist and some go 
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extinct. Climate change is predicted to increase climatic stress in intensity and 
frequency (Zandalinas et al. 2021; “IPCC – Intergovernmental Panel on Climate 
Change” 2021). Therefore, plant species already under strong herbivory and 
climatic stress might be threatened and go extinct. In this context, species growing 
in phylogenetically proximate neighbourhoods might be of particular concern as 
such neighbourhoods increase both herbivory and climatic stress. However, I 
previously argue that phylogenetically proximate neighbourhoods might select 
for increased resistances against herbivory and climatic stress. Hence, species 
coexisting with phylogenetically proximate neighbours might be less vulnerable 
to environmental change and have a reduced risk of extinction.  

The major aim of this thesis is to address the effect of coexistence with phylo-
genetically proximate neighbours on resistances against herbivory and climatic 
stress (I, II) and its consequences for responses to future environmental change 
(III). In III, data were collected from published papers and combined with data-
bases, whereas in I and II data were collected in a common garden experiment 
originating from provenances of different phylogenetic neighbourhoods and 
climates, enabling us to identify the natural selection occurring in these neigh-
bourhoods. Specifically, this thesis addresses the following questions: 

 
1) Does coexistence with closely related neighbours select for increased morpho-

logical and chemical defences against herbivores? (Paper I) 

2) Does coexistence with closely related neighbours indirectly select against 
resistance to climatic stress? (Paper I) 

3) Does coexistence with closely related neighbours select for increased 
mycorrhiza-mediated resistance against both herbivory and climate stress? 
(Paper II) 

4) Does coexistence with closely related neighbours reduce the risk of extinction 
under environmental change? (Paper III) 
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2. MATERIALS AND METHODS 

2.1 Data collection 

In papers I and II data were collected from a common garden experiment, where 
acorns of sessile oak (Quercus petraea) from different forest provenances across 
Europe were planted by the French National Institute for Agriculture, Food and 
Environment and by “Office National des forêts” in 1990. The common garden 
experiment aims to study the genetic variability of sessile oak across its distri-
butional range. In papers I and II, the sampling was done in the common garden 
located in “La Petite Charnie” forest, in the western part of France (48° 05'12 "N, 
0° 9'40" W).  

Sessile oak is a suitable candidate species to test my hypotheses as it is a 
common tree species in Europe and often growing in both pure or mixed stands 
(Ellenberg 1988). It is known to suffer from an abundant and diverse herbivore 
fauna (Brändle & Brandl 2001), including both specialist and generalist herbivore 
species (Gaston et al. 1992; Giffard et al. 2012). Sessile oak is also known to 
profit from ectomycorrhizae (Courty et al. 2006, 2007; Leski et al. 2010; Yguel 
et al. 2014). In addition, it is predicted to be strongly negatively impacted by future 
climate change, especially by the increasing temperatures (Cheaib et al. 2012).  

Provenances were forest parcels of 25 ha within forest stands. Tree species 
composition and abundance in each provenance have been recorded as Quercus 
petraea, Quercus robur, Fagus sylvatica and non-Fagaceae angiosperms (there 
were no gymnosperms in the provenances). For each provenance, the annual 
minimum and maximum temperature and the summer hydric deficit (potential 
evapotranspiration minus precipitation from June to August) were extracted from 
WORLDCLIM database (Fick & Hijmans 2017). In paper I, 25 provenances were 
selected in the common garden and in paper II, 30 provenances were selected. 
Provenances were selected by maximising the variation in phylogenetic distance 
(as defined below) in provenances and minimising the geographic distance by 
creating pairs of provenances geographically close with contrasting phylogenetic 
distances. In the common garden, two trees were sampled for each provenance. 

In paper III, data were collected from published papers and the Dutch National 
Vegetation Database, focusing on angiosperm species in the Netherlands. Infor-
mation of habitat use was taken from Ozinga et al. (2013). The position of each 
angiosperm species along environmental gradients was determined using Ellen-
berg indicator values (Ellenberg et al. 1992) and averaged across multiple plots. 
For a given gradient, the within-genus environmental variation was determined 
as the standard deviation across its constituent species. Within-genus variation of 
habitat use was calculated from the mean of standard deviation for different 
gradients. Local co-occurrence was taken from Prinzing et al. (2016). For each 
species, the average number of co-occurring congeners per plot was extracted 
from the Dutch National Vegetation Database, and then averaged within genera 
(see Prinzing et al. 2016 for more details).  
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2.2 Measurement of phylogenetic distances 

In papers I and II, phylogenetic distance in each provenance was estimated from 
the mean distance between Quercus petraea and each tree species present in the 
provenance and weighted by its relative abundance. This measure is equivalent 
to abundance weighting in phylogenetic diversity measures. Phylogenetic distances 
were collected from Vialatte et al. (2010) and Xing et al. (2014). Vialatte et al. 
(2010) set the distance between two lineages of equal rank in the classification IV 
by Angiosperm Phylogeny Group to the crown age of the younger of the two 
lineages. This estimated crown-age describes the moment in the history of life 
when the two lineages were present for herbivore lineages. In paper III, the 
phylogenetic age of each genus present in the Netherlands was estimated using 
genus crown-age taken from Bartish et al. (2016) and Hermant et al. (2012). 
 
 

2.3 Plant traits 

2.3.1 Morphological traits 

In paper I, leaf toughness, thickness and leaf dry matter content (LDMC) were 
assessed from leaves sampled in the common garden. Leaf toughness, thickness 
and LDMC are resistance traits used against herbivores and climatic stress. Leaf 
thickness was assessed on four randomly selected leaves per tree using a precision 
calliper (Thickness gauge glorythai, model number: BY01, Shantou, China). For 
each leaf, eight measurements were done avoiding the main veins. Then, the 
measurements were averaged per leaf, per tree and per provenance. Leaf tough-
ness was assessed from randomly selected five leaves per tree using a durometer 
to measure the resistance to punching (ATG-50 Dial Tension Gauge Gram Force 
Meter Dual point 50g, Wenzhou, China). For each leaf, eight measurements were 
done avoiding the main veins. Again, the measurements were averaged per leaf, 
per tree and per provenance. LDMC was assessed using the five leaves used for 
leaf toughness measures. Per tree, the leaves were rehydrated and weighted 
together to obtain the wet weight. Then, the leaves were dried for 48 hours in an 
oven at 65 °C and reweighted to obtain the dry weight. LDMC was then calcu-
lated by dividing the dry weight by the wet weight. LDMC was then averaged 
across trees within provenances. 
 
 

2.3.2 Chemical traits 

In papers I and II, leaf chemical traits were measured right after the sampling of 
the leaves in the common garden. In both papers I and II, leaf chemical traits 
were measured on three undamaged leaves. In paper I, an index of anthocyanins, 
flavonols and nitrogen status was measured in October 2015 using an optical 
sensor based on leaf transmittance (Dualex 4 Force A; Louis et al. 2009; Cerovic 
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et al. 2012). Anthocyanins and flavonols are leaf chemicals used for the resistance 
against herbivores and climatic stress. The nitrogen status was measured to take 
into account the nutritional status of the trees in the later analyses as the nutri-
tional status might influence the resistance to herbivory or climatic stress. In 
paper II, the leaf chlorophyll content (in µg cm–2) was measured in September 
2018 using the optical sensor based on leaf transmittance (Dualex 4 Force A). 
Measures of leaf chlorophyll by Dualex 4 Force A are strongly correlated with 
extracted leaf chlorophyll (Cerovic et al. 2012). Leaf chlorophyll content might 
be destroyed by the production of reactive oxygen species induced by drought 
(Smirnoff 1993, 1995). Hence, measuring leaf chlorophyll content in September 
permits to estimate overall chlorophyll degradation induced in particular by 
drought period during summer.  
 
 

2.3.3 Investment into mycorrhizae and mycorrhization rank 

In paper II, the investment of trees into mycorrhizae was inferred from the pro-
portion of root tips with mycorrhizae and from the enzymatic activity of 
mycorrhizal root-tips.  

The proportion of ectomycorrhizal root-tips and density of root tips were 
assessed using ground core taken in May 2018. Each ground core was homo-
genized by hand and 40 mL of the sample were then gently washed in tap water for 
2 hours. Each washed sample was passed by two sieves of 4 mm and 1 mm mesh 
sizes, the first to retain big detritus and the second to retain fine roots and separate 
them from fine particles such as clay. Fine roots were collected manually from 
the 1 mm sieve, stored in a petri dish and photographed. In order to get manage-
able sub-sample and capture a sufficient amount of root tips, the photos of fine 
roots were analysed by applying a regular grid of 70 circles of 0.15 cm of radius, 
separated by 0.75 cm, on them, using ImageJ software (https://imagej.net/ImageJ). 
The number of circles containing root tips was recorded as “density of root tips”. 
The proportion of these root tips that have ectomycorrhizae was then recorded.  

The ectomycorrhizal enzymatic activity was assessed from ground cores taken 
in September 2018. For each sample, 10 root tips with ectomycorrhizae were 
selected to measure their enzymatic activity using high-throughput microplate 
assays described in Courty et al. (2005). Enzymatic activities were expressed per 
unit of time and per unit of area to take into account root-tip size (projected area 
of the ECM root-tip, in µmol min–1 mm–2) as described in Courty et al. (2005) 
and were log-transformed to obtain an approximate Gaussian distribution. The 
enzymatic activity was measured for laccase (in µmol min–1 mm–2) as it plays an 
important role in the mobilisation of nutrients by ectomycorrhizae due to its 
capacity to break down lignin (Criquet et al. 1999; Courty et al. 2006). Enzymatic 
activity, proportion of ectomycorrhizal root-tips and root-tip density were then 
averaged for each tree and averaged across trees within provenances. 

In paper III, the mycorrhization rank was extracted for each species present 
in the Netherlands from Hempel et al. (2013). Mycorrhization rank was defined 
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as 0 for non-mycorrhized species, 1 for species with mandatory mycorrhizal 
association, and 0.5 for species with facultative mycorrhizal association. The 
mycorrhization rank was then averaged across species within genera.  

 
 

2.4 Resistance to herbivores and climatic stress 

2.4.1 Resistance to herbivores 

Resistance of trees to herbivores was inferred from low herbivory.  
In papers I and II, three types of herbivory were discriminated based on 

feeding guilds: (1) galls that are growth deformities on leaf surface and produced 
by insect larva; (2) leaf mines that are galleries formed between leaf epidermis 
by insect larva; and (3) ectophagy that is the partial or complete loss of leaf in-
cluding epidermis.  

In paper I, herbivory was assessed from 15 to 30 leaves per tree and in paper 
II from 10 to 15 leaves per tree. Quantifying herbivory required the recon-
struction of the initial leaf surface prior to the damages. The initial leaf surface 
was reconstructed by drawing on a grid of dots of 1 × 1 cm². Then, the areas 
damaged by ectophages or leaf miners were assessed by counting the number of 
dots covering the damaged parts.  

The number of galls and leaf mines was also counted. For each leaf, the 
density of galls and the density of leaf mines per cm² was calculated as well as 
the proportion of area damaged by leaf miners and the proportion of area damaged 
by ectophages. Each measure of herbivory was then averaged per tree and per 
provenance.  

 
 

2.4.2 Resistance to climatic stress or  
risk of extinction under environmental change 

In paper I, the resistance of trees to climatic stress was inferred from budburst 
advancement, low coefficient of variation of budburst and low coefficient of 
variation of growth. Specifically, the climate is considered to control the budburst 
and growth of trees (Menzel 2000; Thomas et al. 2002; Morin et al. 2010). 
Therefore, trees that are particularly resistant to cold winters should bud burst 
early. In addition, tree genotypes that are resistant to climatic stress should show 
a budburst and growth that is independent of local climate; hence, such genotypes 
should show low variation of budburst and growth across common gardens. 
Budburst was assessed on a 0–5 ordinal scale where 0 is a dormant bud and 5 is 
a fully open bud (Sinclair et al. 2015). Growth was recorded in 2001 as the height 
of the trees after 10 years in each of the four common gardens. The coefficients 
of variation of budburst and growth were calculated as the standard deviation 
among the four common gardens divided by the mean. 
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In paper II, resistance to climatic stress was inferred from the capacity of trees 
to maintain leaf chlorophyll during drought. Drought stress of the trees in the 
common garden was inferred from the air temperature at the surface of the crown 
at 1 p.m., i.e. the warmest period of the day, on the 1st of September, 2018. Air 
temperature at the surface of plants can be used as a proxy of drought stress 
(Courault et al. 1996; Holzman et al. 2021). Air temperature at the surface drives 
drought stress by increasing saturation water-vapour pressure and thereby 
saturation deficit of the atmosphere which increases water loss of plants by tran-
spiration. Crown temperatures of trees within the common garden were extracted 
from remotely sensed data (Prinzing et al. 2021b) and detailed in Appendix S9 in 
II. From the same data set, the height and altitude of the trees in the common 
garden were extracted for later analyses.  

In paper III, we considered the risk of extinction under environmental change, 
and we described species in the Netherlands rather than descendants from popu-
lations of Q. petraea across Europe. We inferred risk of extinction from a low 
population decline under environmental change during the 20th century. Popu-
lation trends were extracted from Ozinga et al. (2009). These authors used the 
species occurrence in the Netherlands across a 1-km² grid during 1902–1949 and 
1975–1998. A binary classification of the data was done so that species were con-
sidered as declining only if the number of grid-cell presences had declined by 
>25%.  

 
 

2.5 Data analysis 

To test whether the phylogenetic distance of provenance neighbourhoods selects 
for increased resistance to herbivores (I), multiple regressions were performed 
studying the effect of the phylogenetic distance of provenance neighbourhoods 
on the resistance to herbivores of trees in the common garden. For resistance to 
herbivores, proportion of ectophagy, proportion of leaf mines, gall density, leaf 
toughness, leaf thickness, LDMC, anthocyanins and flavonols were used. Co-
variables potentially related to the phylogenetic distance of provenance neigh-
bourhoods and the nutritional status of the trees in the common garden were taken 
into account (annual minimum and maximum temperatures, summer hydric deficit 
in provenances, budburst and leaf nitrogen status of trees in the common garden). 

To test whether resistance to herbivores is traded off against resistance to 
climatic stress (I), multiple regressions were conducted studying the effect of 
resistance to herbivores on climatic stress resistance. High resistance to herbivores, 
was inferred from low herbivory (proportion of ectophagy, proportion of leaf 
mines, gall density) or high leaf toughness, leaf thickness, LDMC, anthocyanins 
and flavonols. High resistance to climatic stress were inferred from high advance-
ment of budburst, or low the coefficient of variation of budburst and growth. The 
leaf nitrogen status of the trees in the common garden was used as a co-variable.  

To test whether the phylogenetic distance of provenance neighbourhoods 
selects against resistance to climatic stress (I), multiple regressions were conducted 
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studying the effect of phylogenetic distance of provenance neighbourhoods on 
climatic stress resistance of trees in the common garden. Resistance to climatic 
stress was inferred from a high advancement of budburst, and a low coefficient 
of variation of budburst and growth. The annual minimum and maximum tem-
peratures, summer hydric deficit in provenances and leaf nitrogen status of the 
trees in the common garden were taken into account as co-variables.  

To test whether the phylogenetic distance of provenance neighbourhoods 
changes the selection by climate on traits (I), multiple regressions were conducted 
studying the effect of phylogenetic distance of provenance neighbourhoods and 
climate in provenances and their interaction on traits. For traits, we considered 
leaf toughness, leaf thickness, LDMC, anthocyanins and flavonols. The advance-
ment of budburst and leaf nitrogen status of trees in the common garden were 
used as co-variables. All climatic variables (annual minimum and maximum tem-
peratures, and summer hydric deficit) and their corresponding interaction with 
phylogenetic distance in provenances were included in the models. In order to not 
overload the models, a selection of the variables has been done using the R 
function ‘step()’. This function uses a stepwise selection procedure, based on 
Akaike Information Criterion (Burnham & Anderson 2002). 

To test whether the investment into mycorrhizae of trees in the common garden 
changes with the phylogenetic distance of provenance neighbourhoods (II), 
multiple regressions were conducted studying the effect of phylogenetic distance 
of provenance neighbourhoods on the investment into mycorrhiza. High invest-
ment into mycorrhizae was inferred from a high proportion of ectomycorrhizal 
root-tips and of laccase activity. The annual minimum and maximum tempera-
tures, and summer hydric deficit in provenances were used as co-variables. A 
selection of the explanatory variables was conducted using the R function ‘step()’. 

To test whether the herbivory of trees in the common garden changes with 
their investment into mycorrhizae (II), multiple regressions were conducted 
studying the effect of mycorrhizae or root characteristics on herbivory. Herbivory 
was quantified as the proportion of leaf mines, density of galls or proportion of 
ectophagy. A high investment into mycorrhizae was inferred from a high pro-
portion of ectomycorrhizal root-tips or a high laccase activity. Roots were 
characterized by their root-tip density. Tree height, altitude, crown temperature 
and budburst of trees in the common garden were taken into account as co-vari-
ables. Again, the explanatory variables were selected using the R function ‘step()’. 

To test whether the phylogenetic distance of the provenance neighbourhoods 
selects for increased resistance against herbivores (II), multiple regressions were 
conducted studying the effect of phylogenetic distance of provenance neigh-
bourhoods on herbivory of trees in the common garden. For herbivory, was 
quantified as the per-leaf proportion of leaf mines or of ectophagy, or the density 
of galls. The annual minimum and maximum temperatures, and summer hydric 
deficit in provenances were used as co-variables. The explanatory variables were 
selected using the R function ‘step()’.  

To test whether trees with particularly high investment into mycorrhizae were 
more resistant to climatic stress (II), multiple regressions were conducted testing 
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whether the relationship between leaf chlorophyll content and crown temperature 
becomes less negative with high investment into mycorrhizae. Therefore, the 
interaction between crown temperature and mycorrhizae was included in the 
model. The models were performed separately for each mycorrhiza variable 
(mycorrhizal enzymatic activity and proportion of mycorrhizal root-tips) and the 
density of root-tips. For each regression, the height and the altitude of trees in the 
common garden were taken into account as co-variables. The explanatory vari-
ables were selected using the R function ‘step()’. 

To test whether the phylogenetic distance of the provenance neighbourhoods 
selects for increased resistance to climatic stress (II), one regression was con-
ducted testing whether the relationship between leaf chlorophyll content and 
crown temperature becomes less negative with increasing phylogenetic proximity 
of the provenance neighbourhood. Therefore, the interaction between crown tem-
perature and phylogenetic distance in provenance neighbourhoods was included 
into the model. The height and the altitude of trees in the common garden were 
taken into account as co-variables. The explanatory variables were selected using 
the R function ‘step()’. 

To test whether genera of species with a particularly high mycorrhizal 
association, have reduced risk of extinction (III), a regression was conducted 
testing whether the relationship between the within-genus proportion of species 
declining during the 20th century and the degree of intra-genus co-occurrence 
becomes more negative with increasing mycorrhizal association within genus. 
Therefore, the interaction term between within-genus co-occurrence and the 
mycorrhizal association was included in a model explaining the proportion of 
declining species. For mycorrhizal association, the mean mycorrhiza-ranking 
within genus was used. 

To test whether genera in which species use the same habitat and co-occur 
with congeners have reduced risk of extinction (III), a regression was conducted 
texting whether the relationship between the proportion of declining species 
within genus during the 20th century and the similarity in habitat-use becomes 
more positive when the similarity in habitat use corresponds to high coexistence. 
Similarity in habitat use was inferred from a low variation (SD) in Ellenberg 
values of species within genera. Correspondence between similarity in habitat use 
and within-genus co-occurrence was quantified as small absolute residuals of the 
regression of within-genus co-occurrence on similarity in habitat use. The inter-
action between similarity in habitat-use and these absolute residuals was included 
in the model. Genus crown age and species richness were used as co-variables.  

All analyses in papers I and II were done using the software R while the 
analyses in paper III were done using the software Statistica.  
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3. RESULTS 

3.1 Coexistence with closely related neighbours selects  
for increased morphological resistance against herbivores 

The proportion of leaf mines was lowest in trees descending from provenances 
of phylogenetically proximate neighbourhoods (Fig. 1A). The density of galls 
and the proportion of ectophagy of trees in the common garden were not related 
to the phylogenetic distance of the provenance neighbourhoods (Table 1 in I).  
In terms of morphological resistances, trees descending from phylogenetically 
proximate neighbourhoods had tougher leaves but had not thicker leaves or were 
not richer in dry matter content (Fig. 1B; Table 1 in I). Consistently, trees with 
tough leaves experienced low proportion of leaf mines (T = –2.146, P = 0.0466, 
adjusted R² = 0.20, d.f = 17).  

In terms of chemical resistances, anthocyanins and flavonols of trees in the 
common garden were not related to the phylogenetic distance of the provenance 
neighbourhoods (Table 1 in I).  
 

 
Figure 1. Statistical effect of phylogenetic distance of provenance neigh-
bourhoods on (A) the proportion of leaf surface covered by leaf mines, and 
(B) the leaf toughness of the trees in the common garden. Y-values give partial 
residuals, accounting for co-variables (annual minimum and maximum tem-
peratures and summer hydric deficit in the provenances, advancement of budburst 
and leaf nitrogen status of the trees in the common garden), as explained in 
Table 1 in I. Data points are means across trees within provenances. See publi-
cation I. 
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3.2 Coexistence with closely related neighbours  
does not indirectly select against resistance  

to climatic stress: no trade-off between resistances  
to herbivores and climatic stress 

No relationships were found between climatic stress resistances and the pro-
portion of leaf mines (Table 1). Trees with particularly advanced budburst or with 
constant budburst experienced low gall density (Table 1; Fig. S7A, B in I). Trees 
with advanced budburst experienced a high proportion of ectophagy (Table 1; 
Fig. S7C in I), albeit this relationship disappeared after correction for false 
discovery rate. No relationships were found between climatic stress resistance 
and chemical or morphological resistances to herbivory (Table 1). Overall, the 
phylogenetic distance of the provenance neighbourhoods had no effect on 
climatic stress resistance (third paragraph in the result section of I).  

Phylogenetically proximate neighbourhoods reinforce the selection by harsh 
climates on traits conferring climatic stress resistances. In particular, there were 
significant interactions between the phylogenetic distance of the provenance 
neighbourhoods and provenance climate on anthocyanins, flavonols and leaf 
thickness (Fig. 2; Table 3 in I). Specifically, traits of trees descending from phylo-
genetically proximate neighbourhoods reflected more the climatic stress in the 
provenance compared to trees descending from phylogenetically distant neigh-
bourhoods (Fig. 2; Table 3 in I).  
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Figure 2. Interaction between the phylogenetic distance of the provenance neigh-
bourhoods and the provenance climate on traits conferring resistance against climatic 
stress. Presented are significant (full lines) or marginally significant (dashed lines) 
interactions after correction for false discovery rate from Table 3 in I: phylogenetic 
distance (below vs above median) x (a) summer hydric deficit affecting anthocyanins, (b) 
minimum annual temperature affecting flavonols, (c) summer hydric deficit affecting leaf 
thickness and (d) minimum annual temperature affecting leaf thickness. Binary grouping 
for illustrative purposes, statistical tests treat phylogenetic distance, summer hydric 
deficit and minimum annual temperature as continuous variables. The values on Y-axis 
are the partial residuals, that is, accounting for the advancement of budburst and leaf 
nitrogen status of the trees in the common garden, as explained in Table 3 in I. Data points 
are means across trees within provenances. See publication I.
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3.3 Coexistence with closely related neighbours selects  
for increased mycorrhiza-mediated resistance against  

both herbivory and climatic stress 

Multiple steps were needed to test whether coexistence among closely related 
species selects for increased mycorrhiza-mediated resistances against herbivores 
and climatic stress. Firstly, the statistical effect of the phylogenetic distance of 
provenance neighbourhoods on the investment of trees in the common garden 
into mycorrhiza was tested. The mycorrhizal enzymatic activity significantly 
decreases with the phylogenetic distance of the provenance neighbourhoods (Fig. 
3A; Table S1 in II). In other words, trees descending from phylogenetically proxi-
mate neighbourhoods had significantly higher mycorrhizal enzymatic activity than 
trees descending from phylogenetically distant neighbourhoods. No relationships 
were found between the phylogenetic distance of provenance neighbourhoods 
and neither the proportion of mycorrhizal root-tips, nor the density of root tips 
(Table S1 in II).  

Secondly, the statistical effect of investment of trees in the common garden 
into mycorrhizae on herbivory was tested. Trees with particularly high mycorrhizal 
enzymatic activity experienced a low proportion of leaf mines (Fig. 3B; Table 1 
in II). No relationships were found between either the proportion of mycorrhizal 
root-tips or the density of root tips and either the herbivory variables (Table 1 in 
II).  

Thirdly, the statistical effect of the phylogenetic distance of provenance neigh-
bourhoods on the herbivory of trees in the common garden was tested. Consistent 
with the previous results, trees descending from phylogenetically proximate 
neighbourhoods experienced a low proportion of leaf mines (Fig. 3C; Table 2 in 
II). No relationships were found between the phylogenetic distance of the 
provenance neighbourhoods and the gall density or the proportion of ectophagy 
of the trees in the common garden (Table 2 in II).  

Fourthly, the statistical effect of the investment of trees in the common garden 
into mycorrhizae on their resistance to climatic stress was tested. There were 
significant positive interactions between mycorrhizae and the crown temperature 
of the trees on their leaf chlorophyll content (Fig. 4A; Table 3 in II). Trees with 
high mycorrhizal enzymatic activity, proportion of mycorrhizal root-tips or 
density of root tips experienced low chlorophyll reduction under increased crown 
temperature (Fig. 4A; Table 3 in II).  

Finally, the effect of the phylogenetic distance of provenance neighbourhoods 
on the resistance to climatic stress of trees in the common garden was tested. There 
was a significant negative interaction between the phylogenetic distance of the 
provenance neighbourhoods and the crown temperature of the descendant trees 
on their leaf chlorophyll content (Fig. 4B; Table S5 in II). In other words, trees 
descending from phylogenetically proximate neighbourhoods experienced a low 
chlorophyll reduction under increased crown temperature (Fig. 4B; Table S5 
in II).
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Figure 4. The relationship between crown temperature and leaf chlorophyll content of 
oak descendants in the common garden changes (A) with laccase enzymatic activity, and 
(B) with the phylogenetic distance of the provenance neighbourhood. Y-values are partial 
residuals, accounting for co-variables (crown temperature, tree height, altitude and 
block), as explained in Tables 4 and S4 in II. Data points are means across descendants 
within provenances. Binary grouping for illustrative purposes, statistical tests treat 
phylogenetic distance, laccase activity and their respective interaction with the crown 
temperature as continuous variables. Note that laccase activity is higher in descendants 
from provenances with phylogenetically proximate neighbourhoods. In the illustrated 
case, the median of the laccase enzymatic activity = 1.18 and the median of the phylo-
genetic distance = 4. See publication II. 
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3.4 Coexistence with closely related neighbours reduces 
the risk to go extinct under environmental change 

The effect of mycorrhizal association on the relationship between the proportion 
of declining species and the degree of coexistence with closely related neighbours 
was tested. The mycorrhizal association was inferred from the mean mycorrhiza 
ranking within genus as explained in the Materials and Methods section. The 
degree of coexistence with closely related neighbours was inferred from the 
degree of co-occurrence with congeners. There was a significant negative inter-
action between coexistence with congeners and the mycorrhizal association rank 
on the proportion of declining species (Fig. 5). Specifically, genera whose species 
are coexisting with closely related neighbours have a reduced proportion of 
declining species only in genera with particularly high mycorrhizal association.  

The effect of coexistence between closely related neighbours on the relation-
ship between the proportion of declining species and the similarity in habitat use 
among close relatives was tested. There was a significant interaction between 
similarity in habitat-use among congeners and how this similarity increases 
coexistence with congeners on the proportion of declining species (Fig. 6). 
Specifically, the similarity in habitat-use within genus reduces the proportion of 
declining species only when increased similarity among congeners relates to 
increased co-occurrence among congeners.  
 

 
Figure 5. A high degree of intra-genus coexistence corresponds to a low proportion of 
declining species within a genus, provided that its species are colonized by mycorrhizas 
(above median mycorrhization rank, right graph, versus left graph). Median of mean 
mycorrhiza ranking = 0.8. Data points are angiosperm genera studied in the Netherlands. 
The intra-genus coexistence was inferred from the number of fellow congeners with 
which an average species will co-occur on an average plot (from Prinzing et al., 2016). 
See publication III. 
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Figure 6. Genera in which species use similar habitats have a low proportion of 
declining species during the 20th century provided that similarity in habitat use 
among corresponds to high coexisting of congeners. Data points are angiosperm 
genera studied in the Netherlands. See publication III. 
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4. DISCUSSION 

This thesis has shown that trees descending from phylogenetically proximate 
neighbourhoods had increased resistance against one type of herbivore, the leaf 
miners, and this resistance seems to be due to higher leaf toughness. Trees 
descending from phylogenetically proximate neighbourhoods were no less 
resistant against climatic stress and there was no trade-off between resistances to 
herbivores and climatic stress compared to trees from phylogenetically distant 
neighbourhoods. Trees descending from phylogenetically proximate neigh-
bourhoods reflected most strongly the climatic stress in the provenance (I). Trees 
descending from phylogenetically proximate neighbourhoods had high mycor-
rhizal enzymatic activity. Trees with particularly high mycorrhizal enzymatic 
activity were more resistant to leaf miners. Consistently, trees descending from 
phylogenetically proximate neighbourhoods experienced less attacks by leaf 
miners. Trees with a particularly high mycorrhizal enzymatic activity, or a high 
proportion of ectomycorrhizal root-tips, had increased maintenance of chloro-
phyll under heat. Consistently, trees descending from phylogenetically proximate 
neighbourhoods had increased maintenance of chlorophyll under heat (II). Co-
occurrence of species within a genus is high when species within genera use 
similar habitats. Angiosperm species co-occurring with congeners had a reduced 
risk of extinction only in genera with a high degree of association with 
mycorrhizae. Finally, genera in which species use similar habitats had reduced 
risk of extinction, only when similarity in habitat use corresponds to high co-
occurrence of species within genera (III).  
 
 

4.1 Coexistence with closely related neighbours selects  
for increased resistance against herbivores 

This thesis hypothesized that coexistence with closely related neighbours selects 
for increased resistance against herbivores, in particular against specialist 
herbivores. Confirming this hypothesis, this thesis has shown that trees descending 
from phylogenetically proximate neighbourhoods were more resistant against one 
type of herbivore, the leaf miners, due to increased leaf toughness. Cornelissen 
(2006) has already shown that tougher leaves experienced a low density of leaf 
miners, but has not related this pattern to selection pressures. Leaf miners are 
mostly specialist herbivores and as internal feeders they must be adapted to leaf 
morphology and chemistry (Cornell 1989; Gaston et al. 1992). As specialist 
herbivores, they may be able to use closely related tree species only. Therefore, 
leaf miners should be concentrated in forest patches rich in closely related hosts, 
i.e. in phylogenetically proximate neighbourhoods, leading to strong selection 
pressure and explaining why trees from such neighbourhoods are more defended 
against leaf miners.  
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Trees descending from phylogenetically proximate neighbourhoods were not 
particularly resistant against ectophageous insects. Ectophageous insects are 
usually less specialised than leaf miners because they are external feeders (Gaston 
et al. 1992). As ectophageous insects are less specialised, they can use relatively 
more distantly related neighbouring trees. Ectophageous insects seem not to be 
affected by the phylogenetic distance of the neighbourhood (Grandez-Rios et al. 
2015; but see Yguel et al. 2011 working on a much larger range of distances than 
we did). Hence, there should be no difference in the herbivory pressure caused 
by ectophageous insects in phylogenetically proximate or distant neighbour-
hoods. Therefore, tree resistance against ectophageous insects should be the same 
among phylogenetic neighbourhoods, which justifies the absence of increased 
resistance against ectophageous insects in trees descending from phylogenetically 
proximate neighbourhoods.  

Inconsistent with my hypothesis, trees descending from phylogenetically 
proximate neighbourhoods were not particularly resistant against gall insects, 
which are specialist herbivores. Gall insects are so specialised that they can create 
their own environment within leaves and counter leaf resistance (Gaston et al. 
1992) which possibly explains the absence of increased resistance in trees 
descending from phylogenetically proximate neighbourhoods. Moreover, Yguel 
et al. (2014) show that the phylogenetic distance of the neighbourhoods does not 
decrease gall abundance suggesting that gall insects are able to track their host 
even in phylogenetically distant neighbourhoods so that the selection by galls on 
oaks does not differ between phylogenetically distant and proximate neigh-
bourhoods. Also, inconsistent with my hypothesis, trees descending from phylo-
genetically proximate neighbourhoods had no increased chemical resistance. 
Chemical compounds such as tannins, anthocyanins or flavonols can be multi-
functional and can be used to respond to other pressures than herbivory (Treutter 
2006; Korn et al. 2008; Neilson et al. 2013). Hence, increased herbivory in phylo-
genetically proximate neighbourhoods might not select for increased chemical 
resistance.  
 
 

4.2 Coexistence with closely related neighbours does not 
indirectly select against resistance to climatic stress:  
no trade-off between resistances to herbivores and 

climatic stress 

This thesis hypothesized that coexistence with closely related neighbours indirectly 
selects against resistance to climatic stress that is traded off against resistance to 
herbivory. Descendants from closely related neighbourhoods indeed showed 
increased resistance against leaf miners due to increased leaf toughness. How-
ever, inconsistent with the trade-off hypothesis, no negative relationships were 
found between resistance against leaf miners or leaf toughness and resistance 
against climatic stress. This absence of trade-off might result from the time gap 



30 

between resistance against leaf miners and climatic stress. Leaf miners are 
attacking trees in spring and summer therefore leaf toughness is important during 
this period. Climatic stress resistance was inferred from the advancement of 
budburst, and climatic stress limiting budburst occurs in late winter. Therefore, 
trees can invest in both resistances without any direct trade-off between them. 
Absence of trade-off might also result from the multifunctionality of morpho-
logical resistances (Jetter et al. 2000; Brennan & Weinbaum 2001a, b). In 
addition, there was no trade-off between chemical compounds and climatic stress 
resistances. Again, the lack of this trade-off might be explained by the multi-
functionality of chemical compounds (Treutter 2006; Korn et al. 2008; Neilson 
et al. 2013). Also, inconsistent with the trade-off hypothesis, this thesis has even 
shown a positive relationship between resistance against galls and climatic stress 
as inferred from the advancement of budburst. Specifically, trees with particularly 
high resistance against late frost bud burst early and experience few gall attacks. 
This result is compatible with Crawley & Akhteruzzaman (1988) showing that 
galls prefer trees with late budburst. Overall, there was no trade-off between 
resistance against herbivores and climatic stress and therefore no indirect 
selection against resistance to climatic stress in phylogenetically proximate 
neighbourhoods.  

Finally, trees descending from particularly cold winters or dry summers had 
increased flavonols, anthocyanins and leaf thickness only when in the provenance 
the tree neighbourhood was phylogenetically proximate. As explained above, these 
chemical and morphological resistances are suggested to be multifunctional. 
Hence, coexistence with closely related neighbours seems to reinforce the selec-
tion by climatic stress for multifunctional resistances due to increased herbivory 
in such neighbourhoods. This reinforcement of selection by climatic stress might 
be possible due to the double benefits of multifunctional resistances that might 
reduce the costs of adaptation to climatic stress in environments increasing 
herbivory, i.e. phylogenetically proximate neighbourhoods. In addition, climatic 
stress might in turn reinforce the selection pressure by herbivores. White (1984) 
has suggested that climatic stress can increase the availability of nitrogen in the 
leaves of stressed plants, which may increase herbivory and hence reinforce 
herbivory selection pressure. Overall, multifunctional resistances against both 
herbivory and climatic stress might be high in trees coexisting with closely related 
neighbours. 

In addition, as phylogenetically proximate neighbourhoods seem to increase 
the selection for resistances that are multifunctional due to increased herbivory, 
the tree-genotypes selected in such neighbourhoods might be resistant to both 
herbivores and climatic stress even in absence of the latter. In other words, 
climatic stress might not be needed for the evolution of multifunctional resistance 
to climatic stress. If so, the coexistence with closely related neighbours, by 
increasing herbivory, might select for tree genotypes resistant to climatic stress 
even in non-stressful climate. Therefore, monospecific forests or composed of 
closely related species might be able to cope with future climate stress. 
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4.3 Coexistence with closely related neighbours selects  
for increased mycorrhiza-mediated resistances against 

both herbivory and climatic stress 

This thesis hypothesized that coexistence with closely related neighbours selects 
for increased mycorrhiza-mediated resistances against both herbivory and climatic 
stress. Consistently, this thesis has shown that trees descending from phylogeneti-
cally proximate neighbourhoods had increased investment into mycorrhizae and 
were particularly resistant against leaf miners and heat-induced drought. Specifi-
cally, trees with particularly high investment into mycorrhizae were more resistant 
against leaf miners but no more resistant against galls or ectophageous insects.  

This result is consistent with Koricheva et al. (2009) showing that mycorrhizae 
do not affect galls because galls can counter tree resistance (Gaston et al. 1992). 
Koricheva et al. (2009) also show that mycorrhizae had a negative effect on 
generalist ectophageous insects and a positive effect on specialist ectophageous 
insects. Hence, the observed absence of the effect of mycorrhizae on ectophageous 
insects suggests that the measure of ectophagy used in this thesis regroups both 
generalist and specialist ectophageous insects. In addition, the observed increased 
tree resistance against leaf miners is consistent with Koricheva et al. (2009) 
showing that mycorrhizae have a negative effect on leaf miners. Mycorrhizae are 
known to increase induced resistance against herbivores (Pozo & Azcón-Aguilar 
2007; Wang et al. 2015; Meier & Hunter 2018). In addition, mycorrhizae are 
known to provide nutrients to trees which might help trees to produce costly 
resistances that are known to impede specialist herbivores – the quantitative 
resistances (Ali & Agrawal 2012; van der Heijden et al. 2015; Garcia et al. 2016). 
Therefore, coexistence with closely related neighbours seems to select for 
increased investment into mycorrhizae, which in turn increases resistance against 
leaf miners, potentially by increasing induced quantitative resistances. 

Trees descending from phylogenetically proximate neighbourhoods had 
increased investment into mycorrhizae, leading to increased maintenance of 
chlorophyll during heat. The common garden of “La Petite Charnie” is charac-
terized by temperate, oceanic climate, therefore high temperatures are unlikely to 
exceed the thermal tolerance of chlorophyll and damage it directly. Instead, a 
high temperature increases leaf desiccation by increasing the water saturation 
deficit of the air (Anderson 1936), which in turn leads to the production of 
reactive oxygen species able to destroy leaf chlorophyll (Smirnoff 1993, 1995). 
Mycorrhiza might increase resistance to desiccation, firstly, by increasing water 
uptake (Marulanda et al. 2003), which might enable trees to avoid leaf desic-
cation. Secondly, mycorrhizae can provide nitrogen to trees (Courty et al. 2010), 
which might help trees to compensate for the destruction of chlorophyll by 
producing new chlorophyll as chlorophyll is nitrogen-based. Finally, mycorrhizae 
can increase antioxidant resistances (Wu et al. 2014), which might counteract the 
production of reactive oxygen species and avoid chlorophyll destruction. There-
fore, coexistence with closely related neighbours, by increasing climatic stress, 
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seems to select for increased investment into mycorrhizae leading to increased 
resistance against drought. 

Mycorrhizae seem to be multifunctional as they increase the resistance to both 
herbivores and climatic stress. This multifunctionality of mycorrhizae might 
explain the fact that mycorrhizae are selected and conserved across evolution and 
contribute to the fact that more than 80% of the plants have mycorrhizae. Despite 
this positive side, the investment of trees into mycorrhizae might be costly. Trees 
are allocating a part of their carbon into mycorrhizae in exchange for the supply 
of other nutrients by mycorrhizae (Nehls et al. 2001). Yet, this allocated carbon 
to mycorrhizae will not be used for tree metabolism (Nehls et al. 2001), which 
might limit tree growth. Therefore, having a high mycorrhization or high 
mycorrhizal activity, selected for in a phylogenetically proximate neighbourhood, 
might be hard to bear for trees in terms of carbon allocation. 

 
 

4.4 Coexistence with closely related neighbours reduces 
the risk of extinction under environmental change 

This thesis hypothesized that species coexisting with closely related neighbours 
have reduced risk of extinction. According to the hypothesis, angiosperm species 
coexisting with closely related neighbours have a reduced risk of extinction but 
only when such species have a strong mycorrhizal association. As seen in the 
previous section mycorrhizae increase the resistance to climatic stress. Closely 
related neighbours might share similar mycorrhizae (Ishida et al. 2007) and thus 
act as a source of mycorrhizae. In such a case, species coexisting with closely 
related neighbours might have increased mycorrhizal association. As seen 
previously, mycorrhizae may help their host to better resist climatic stress. 
Climate change is predicted to increase climate stress in intensity and frequency 
(Zandalinas et al. 2021; IPCC 2021). Therefore, species coexisting with closely 
related neighbours may have a reduced risk of extinction under climate change 
due to increased access to mycorrhizal association, which may increase resistance 
to climate stress.  

In addition, this thesis has shown that the use of similar habitats within genera 
reduces the proportion of declining species only when the use of similar habitats 
corresponds to high local co-occurrence. This result suggests that the evolutionary 
conservation of habitat use within genera reduces the risk of population decline 
by increasing local co-occurrence with congeners. Again, this increased co-
occurrence of species with congeners, i.e. closely related neighbours, may 
facilitate the exchange of mycorrhizae between congeners which may increase 
their resistance to climatic stress. Mycorrhizae may also facilitate the exchange 
of resources between neighbouring congeners via the common mycorrhizal net-
work (Selosse et al. 2006; Walder et al. 2015), which might increase tree resistance 
to climatic stress. Therefore, species using similar habitats and co-occurring with 
closely related neighbours might have a reduced risk of extinction under climate 
change due to increased mycorrhiza-mediated resistance to climate stress. 
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5. CONCLUSION 

This thesis suggests that trees coexisting with closely related neighbours are 
evolving increased resistance against herbivores and without cost for resistance 
to climatic stress. Trees coexisting with closely related neighbours are also 
evolving increased mycorrhiza-mediated resistances against both herbivory and 
climatic stress. Species coexisting with closely related neighbours have a reduced 
risk of extinction under climate change.  

These results suggest that under strong selection pressure trees are able to 
adapt rapidly increased resistances. Contrary to common belief, trees may not 
require several generations to adapt. Specifically, trees have long generation 
times, rendering adaptation to rapid environmental change impossible if adaptation 
requires multiple generations. However, adaptation may occur within less than 
entire generation time. Ersoz et al. (2010) has shown that selection pressures in 
trees are particularly powerful and can shift trait frequencies within populations 
within less than a generation. This rapid adaptation is possible due to large 
population sizes, an extremely high mortality based on heritable resistances and 
a very high genetic variability among trees but also among seeds of the same tree 
(Shaw 1968; Zanetto & Kremer 1995; Klaper et al. 2001; Petit & Hampe 2006). 
This within-generation adaptation might have implications for forest responses to 
future climate. Even if tree species adaptation is not sufficiently fast to entirely 
track climate change (Rellstab et al. 2016), this adaptation might still enable tree 
populations to partly respond to the ongoing climate change. 

These results may also have implications for understanding the coexistence of 
closely related species. Coexistence of closely related species is suggested to be 
difficult among others due to increased herbivory and climatic stress (Janzen 
1970; Webb et al. 2002; Liu et al. 2012). This thesis shows that coexistence with 
closely related species may be possible as species can adapt to increased 
herbivory and climatic stress. Species adaptations to increased herbivory and 
climate stress might hence facilitate their coexistence with close relatives and 
possibly explain the existence of naturally monospecific forests or such domi-
nated by a single lineage (Gromtsev 2002).  

These results may also have implications for management of forests under 
climate change. Climate change is predicted to increase climatic stress in intensity 
and frequency (Zandalinas et al. 2021; IPCC 2021). The increased multi-
functional resistances such as mycorrhiza-mediated resistances to climatic stress 
might enable trees to persist under climate change. If so, foresters may find tree 
genotypes adapted to future climatic stress in monospecific forests or such 
composed of closely related species. In addition, tree genotypes resistant to 
herbivores may be found in such forests. Therefore, planted monospecific forests 
might be less attacked by herbivores if tree genotypes have been selected from 
forests composed of closely related species.  
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Overall, this thesis shows that coexistence with closely related neighbours 
might be facilitated through an eco-evolutionary feedback, i.e. changes in eco-
logical interactions of trees induce evolutionary change in trees, which in turn 
changes the ecological interactions of trees. This thesis may help to understand 
forest responses to climate change and suggests ways to maintain the use of native 
tree species in forestry rather than replace them by exotics.  
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SUMMARY 

Herbivory and climatic stress are known to negatively impact trees and forests. 
Researches have shown that increasing tree-species diversity by creating mixed 
forests seems to decrease herbivory via associational resistance and decrease 
climatic-stress effects via facilitation. However, these effects are species dependent 
and no clear general pattern was established. In mixed forests, the identity of the 
neighbouring tree-species is important, as they may be phylogenetically closely 
related or distantly related to the focal tree. It has been shown that closely related 
species tend to share similar traits and are therefore used by the same herbivores 
and exploit resources like water at similar depths and times. Species coexisting 
with closely related neighbours may hence suffer particularly high herbivory and 
competition for limited resources. Therefore, coexistence with closely related 
neighbours has been suggested to be difficult and species may coexist rather with 
distantly related neighbours. Yet, in nature we observe forests composed mostly 
of closely related species and we do not understand the mechanisms.  

In this thesis, I argue that firstly, trees can adapt to increased herbivory by 
evolving increased morphological or chemical resistances. Hence, phylogeneti-
cally proximate neighbourhoods might select for increased resistance against 
herbivores. Secondly, this selection for increased resistances against herbivores 
might be traded-off against resistances to climatic stress. Therefore, phylo-
genetically proximate neighbourhoods might indirectly select against climatic 
stress resistance. Thirdly, trees may also adapt to increased herbivory and climatic 
stress by evolving increased investment into mycorrhizae, as mycorrhizae are 
known to increase resistances to both herbivory and climatic stress. Therefore, 
phylogenetically proximate neighbourhoods might select for increased investment 
into mycorrhizae. Fourthly, I argue that species already under high herbivory and 
climatic stress may have an increased risk of extinction under environmental 
change. Hence, phylogenetically proximate neighbourhoods might increase the 
risk of extinction under environmental change. Alternatively, evolved resistances 
to herbivory and climate stress in species growing in phylogenetically proximate 
neighbourhoods may render these species more resistant against environmental 
change in general. Specifically, this thesis addresses the following questions: 

 
1) Does coexistence with closely related neighbours select for increased morpho-

logical and chemical defences against herbivores? 

2) Does coexistence with closely related neighbours indirectly select against 
resistance to climatic stress? 

3) Does coexistence with closely related neighbours select for increased 
mycorrhiza-mediated resistance against both herbivory and climate stress? 

4) Does coexistence with closely related neighbours increase or decrease the risk 
of extinction under environmental change? 
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To study questions 1–3, I used a common garden experiment of 30-years-old 
sessile oak (Quercus petraea) descending from provenances of contrasting 
phylogenetic neighbourhoods and climates. This common garden experiment 
permits to identify the natural selection for resistances to herbivory and climate 
stress by phylogenetic neighbourhoods. To study the question 4, I used data from 
published papers and from the Dutch National Vegetation Database of hundreds 
of plant genera across the Netherlands to identify the effect of coexistence with 
close relatives on the risk of extinction of plant genera under environmental 
change. 

This thesis shows that trees descending from phylogenetically proximate 
neighbourhoods experienced lower attacks by leaf miners due to increased leaf 
toughness, but not chemical resistance. This result suggests that coexistence with 
closely related neighbours selects for increased resistance against specialist 
herbivores via increased morphological resistance. 

This thesis shows that there was no evidence for a trade-off between resistance 
to herbivores and climatic stress. Trees descending from phylogenetically proxi-
mate neighbourhoods were no less resistant to climatic stress. Trees descending 
from cold and dry climates had increased resistances against climatic stress 
provided the neighbourhood was phylogenetically proximate. These results suggest 
that coexistence with closely related neighbours does not indirectly select against 
resistance to climatic stress. Instead, coexistence with closely related neighbours 
seems to reinforce the selection by climatic stress for resistances having multiple 
functions. 

This thesis shows that trees descending from phylogenetically proximate 
neighbourhoods had increased mycorrhizal enzymatic activity and such trees 
experienced lower attacks by leaf miners. Trees with particularly high mycorrhizal 
enzymatic activity or proportion of mycorrhizal root-tips had better maintenance 
of chlorophyll under heat. Also, trees descending from phylogenetically proximate 
neighbourhoods had better maintenance of chlorophyll under heat. These results 
suggest that coexistence with closely related neighbours selects for increased 
investment into mycorrhizae, which increases the resistance against both 
specialist herbivores and climatic stress. Again, this selection seems to favour 
resistances that are multifunctional, i.e. mycorrhiza-mediated resistance against 
both herbivores and climatic stress. 

Finally, this thesis shows that plant genera in which species co-occur had lower 
proportions of species declining under environmental change in the Netherlands 
during the 20th century – provided that their constituent species have high 
mycorrhizal association. Moreover, the use of similar habitats within genera 
reduces the proportion of declining species in the Netherlands, provided that the 
use of similar habitats corresponds to high local co-occurrence with congeners. 
These results suggest that the evolutionary conservation of habitat use within 
genera reduces the risk of population decline by increasing co-occurrence with 
congeners. This increased co-occurrence with congeners might increase the 
access to mycorrhizae, which may increase the resistance to climatic stress.  
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Overall, this thesis adds insights to the mainstream of community ecology by 
suggesting that tree species can rapidly adapt to increased herbivory and climatic 
stress in phylogenetically proximate neighbourhoods by evolving increased 
resistances. These adaptations might facilitate the coexistence with closely related 
neighbours. These adaptations of trees in phylogenetically proximate neigh-
bourhoods might facilitate responses to future environmental changes. 
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SUMMARY IN ESTONIAN 

Puude fülogeneetilise naabruse evolutsiooniline mõju 
vastupanuvõimes herbivooridele ja kliimamuutustele 

Herbivooria ja kliimamuutused mõjutavad negatiivselt nii üksikuid puid kui ka 
terveid metsi. On leitud, et suurema liigirikkusega segametsades on vähem herbi-
vooriat puude suurema vastupanuvõime tõttu herbivooridele ja nõrgem kliima-
muutuste mõju tänu kasulikele biootilistele interaktsioonidele. Herbivooria ja 
kliimamuutuste mõju on aga liigispetsiifiline, mistõttu üldist mustrit ei ole siiani 
leitud. Segametsades tuleks herbivooria ja kliimamuutuste uurimisel arvesse 
võtta fülogeneetiline naabrus ehk uuritava puuisendi naabruses kasvavate teiste 
puuisendite liigiline identiteet, sest need võivad olla uuritava puuga kas lähedalt 
või kaugelt suguluses. Lähisugulastel on üldiselt sarnased tunnused, mistõttu 
lähisugulased võivad olla toidutaimeks samadele herbivooridele ning konku-
reerida samade limiteerivate ressursside pärast. Seetõttu võivad lähisugulastest 
koosnevas naabruses kasvavad puud herbivooria ja kliimamuutuste läbi rohkem 
kannatada. Lähisugulastest naabruses kasvamist peetakse seepärast keeruliseks 
ning arvatakse, et liigid eelistavad kasvada pigem kaugelt suguluses olevate 
liikide naabruses. Looduses leidub aga palju lähisugulasliikidest koosnevaid 
metsi, kusjuures selliste metsade tekkimise mehhanismid on ebaselged.  

Käesolevas töös püstitati esiteks hüpotees, et puud kohanevad suurenenud 
herbivooria ja kliimamuutustega morfoloogiliste ja keemiliste kaitsemehhanismide 
abil. Seega võiks lähisugulasliikidest naabrus selekteerida herbivooriavastaste 
kaitsemehhanismidega genotüüpe. Teiseks arvati, et herbivooria vastane kaitse 
võiks olla lõivsuhtes kliimamuutuste vastase kaitsega. Sellepärast võiks lähi-
sugulastest koosnev naabrus kaudselt selekteerida nõrgema kliimamuutuste 
vastase kaitsega genotüüpe. Kolmandaks eeldati, et puud kohanevad suurenenud 
herbivooria ja kliimamuutustega mükoriisa abil, sest mükoriisa tugevdab 
taimedel nii herbivooria kui ka kliimamuutuste vastast kaitset. Seega võiks lähi-
sugulastest koosnev naabrus selekteerida genotüüpe, mis investeerivad rohkem 
mükoriisasse. Neljandaks püstitati hüpotees, et tugeva herbivooria ja kliima-
muutuste all kannatavatel taimedel on suurem tõenäosus keskkonnamuutuste 
korral välja surra. Sellisel juhul oleks lähisugulasliikidest koosnevas naabruses 
suurem väljasuremise oht. On aga ka võimalik, et herbivooria ja kliimamuutuste 
vastased kaitsemehhanismid muudavad lähisugulasliikidest naabruses kasvavad 
taimed keskkonnamuutustele vastupidavamaks. 

 
Täpsemalt uuritakse käesolevas töös: 

1) Kas lähisugulasliikidest koosnev naabrus selekteerib tugevamate morfo-
loogiliste ja keemiliste herbivooriavastaste kaitsemehhanismidega genotüüpe?  

2) Kas lähisugulasliikidest koosnev naabrus selekteerib kaudselt nõrgema 
kliimamuutuste vastase kaitsega genotüüpe? 
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3) Kas lähisugulasliikidest koosnev naabrus selekteerib genotüüpe, mille suurem 
mükoriissus suurendab vastupanuvõimet herbivooriale ja kliimamuutustele? 

4) Kas lähisugulasliikidest koosnev naabrus vähendab liigi väljasuremise riski 
keskkonnamuutuste korral? 

 
1–3 hüpoteesi testimiseks koguti andmeid 30 aasta vanusest välieksperimendist 
kivitammega (Quercus petraea). Eksperimendi rajamiseks kasutati erineva 
fülogeneetilise naabruse ja kliimaga metsadest pärit tammetõrusid üle Euroopa. 
Välieksperiment võimaldab uurida erinevate kaitsemehhanismidega genotüüpide 
looduslikku valikut erineva fülogeneetilise naabruse puhul. 4. hüpoteesi testi-
miseks kasutati andmebaasi Dutch National Vegetation Database, et uurida fülo-
geneetilise naabruse mõju keskkonnamuutuste poolt tingitud liikide välja-
suremisele. 

Käesoleva töö tulemusena selgus, et lähisugulasliikide naabrusest pärinevatel 
puudel olid paksemad lehted ja vähem lehtedes kaevandavaid putuk-herbivoore, 
kuid erinevust keemilises kaitses ei õnnestunud tõestada. Sellest järeldub, et lähi-
sugulasliikidest koosnev naabrus selekteerib genotüüpe, mis suurendavad 
spetsialistidest herbivooride vastast morfoloogilist kaitset.  

Selgus ka, et herbivooriavastase kaitse ja kliimamuutuste vastase kaitse vahel 
puudub lõivsuhe. Lähisugulasliikide naabrusest pärinevatel puudel polnud nõrgem 
kliimamuutuste vastane kaitse. Külmast ja kuivast kliimast pärinevatel puudel oli 
tugevam kaitse juhul, kui nad pärinesid lähisugulasliikide naabrusest. Sellest 
järeldub, et lähisugulasliikidest koosnev naabrus ei selekteeri kaudselt nõrgema 
kliimamuutuste vastase kaitsega genotüüpe. Lähisugulasliikidest koosnev naabrus 
pigem tugevdab kliimamuutuste vastast kaitset juhul, kui kaitse on multi-
funktsionaalne.  

Lähisugulasliikide naabrusest pärinevatel puudel oli suurem mükoriisa ensü-
maatiline aktiivsus ja neil oli vähem lehtedes kaevandavaid putuk-herbivoore. 
Suurema mükoriisa ensümaatilise aktiivsusega või suurema hulga mükoriissete 
juuretippudega puud suutsid kõrgetel temperatuuridel paremini klorofülli säili-
tada. Klorofülli säilitamise võime oli suurem ka lähisugulasliikide naabrusest 
pärinevatel puudel. Sellest järeldub, et lähisugulastest koosnev naabrus selekteerib 
genotüüpe, mis investeerivad rohkem mükoriisasse, mis omakorda suurendab 
nende genotüüpide vastupanuvõimet spetsialistidest herbivooridele ja kliima-
muutustele. Selles selektsioonis eelistatakse multifunktsionaalseid kaitsemehha-
nisme, st. mükoriisast tingitud kaitsemehhanisme nii herbivooride kui ka kliima-
muutuste vastu. 

Käesolevas töös selgus ka, et 20. sajandil esines Madalmaades nendes taime-
perekondades, mis kasvasid lähisugulasliikidest koosnevas naabruses, vähem 
keskkonnamuutuste poolt tingitud liikide väljasuremist juhul, kui liigid olid 
mükoriissed. Lisaks selgus, et sama kasvukohta eelistavate taimeperekondade 
liikidel oli väiksem väljasuremise risk juhul, kui kasvukohas kasvati koos lähi-
sugulasliikidega. Sellest järeldub, et kasvukoha evolutsiooniline konservatiivsus 
taimeperekondades vähendab populatsioonide kahanemise riski. Lähisugulaste 
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koos esinemine suurendab samas mükoriissust, mille abil tugevneb kliima-
muutuste vastane kaitse. Sellepärast on sama kasvukohta eelistavatel ja lähi-
sugulaste naabruses kasvavatel liikidel kliimamuutuste korral tõenäoliselt väiksem 
risk väljasuremiseks. 

Käesoleva töö põhjal võib järeldada, et lähisugulasliikidest koosnevas naab-
ruses suudavad puud kiiresti arendada välja suurema herbivooria ja kliima-
muutuste vastase kaitse. Nende kaitsemehhanismide olemasolu soosib lähi-
sugulaste naabruses kasvamist. Sellepärast on võimalik, et lähisugulasliikide 
naabrusest pärinevad puud suudavad tuleviku keskkonnamuutustega paremini 
toime tulla. 
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