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Introduction 

Bioinformatics is a field that joins biology and computer science. It mainly deals with 

providing and using suitable tools to analyze and work with biological data. One part of 

bioinformatics is analyzing biological material gathered from an individual. This is done to 

get some specific information about the individual. For example, there are techniques to 

sequence the human genome to get all genetic information about the person. This can help 

in developing better treatments and improve personalized health care. There are also a lot 

of other techniques and methods to get information about the person. They all consist of 

two main parts. First, it is necessary to actually do the experiment in order to get the 

biological data. Then, after the experiment, there are data, which are somehow stored in the 

computer - for example nucleic or amino acid sequences presented as strings. Since the 

amount of data is almost always very big, it is not humanly possible to analyze it without 

the help of computers. Computational methods are used to analyze the data in order to 

extract the necessary information. 

In this thesis, a workflow is assembled to extract important information from one 

individual’s data that have been acquired by doing a certain experiment. The interest in 

doing that comes from an actual project, where the goal is to find similarities between 

individuals with the same disease. To achieve that goal, biological experiments had been 

done with many individuals who have different diseases. As a result, there are a lot of data 

about every individual. One way to achieve the goal of the project is to analyze the data 

one individual at a time and extract the most important information from it. Then, 

individuals with the same disease can be compared to see, if they have similarities. 

In the first chapter of this thesis the most important definitions alongside the clear 

definition of the goal of this thesis are provided. In the second chapter, a literature 

overview is given about similar methods that have been developed in the past. In the third 

chapter, data that are analyzed in this thesis are explained in detail. In the fourth chapter, 

commonly known methods that are used to develop the workflow are introduced. In the 

fifth chapter, the developed workflow is explained in detail. In the sixth chapter, the results 

of running the workflow are shown. Finally, in the seventh chapter, conclusions about the 

developed workflow are made. All the peptide sequences and motifs that are presented in 

this thesis have been modified in order not to reveal any confidential information. The 
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exact content of the biological experiment done with the individuals is also confidential 

information and is not explained in this thesis. 
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1 Preliminaries 

1.1 Peptide 

In this thesis, data of one individual are represented as peptides. Peptides are short 

sequences that usually consist of 50 or less amino acids. In the dataset that is being 

analyzed, all peptides have an equal length of 12 as shown in Figure 1.1. The number of 

different peptides that one individual has is around 100 000. 

C I M P R I L Y W F E D  

G K I H F M N R M H F W  

I E A G P V D R K T S L  

 
Figure 1.1: Example of peptides. 

 

All peptides in this dataset also have a count representing the number of times this 

peptide occurs, or in other words, how many duplicates of this peptide exist in the dataset. 

This means that the data are represented as shown in Figure 1.2. If all peptides are counted 

with their duplicates, the size of the dataset of one individual can increase 2 to 3 times. 

G K I H F M N R M H F W  10 

C I M P R I L Y W F E D   1 

I E A G P V D R K T S L  84 

 
Figure 1.2: Example of peptides with the numbers representing their duplicates. 

1.2 Motif 

The information that has to be extracted from the peptides of one individual is 

represented as motifs. Motif is a pattern that exists in peptide sequences. Motifs can be 

represented in various ways. There are two representations used in this thesis: position 

weight matrices and regular expressions. The latter is from now on referred to as simple 

motif. 

1.2.1 Simple motif 

Simple motif is a representation of the motif in a regular expression like format. Not all 

possible components of regular expression format are used to generate simple motifs. In 

every position of the motif can be one of the three following components: a certain amino 

acid, a group of amino acids (between square brackets) or a dot representing any amino 

acid. There is also a restriction that dots can only be in the middle of the sequences, a 

simple motif cannot start or end with a dot. It is said that a peptide matches to the motif 
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when the motif fits somewhere on the peptide. Example of a simple motif and two peptides 

that match to it are shown in Figure 1.3. 

[IFV]M.R...W 

C I M P R I L Y W F E D  

G K I H F M N R M H F W  

Figure 1.3: Example of a simple motif and two peptides that match to that motif. 

1.2.2 Position weight matrix 

A position weight matrix is one of the most precise ways to represent a motif. This is a 

matrix that shows the weight of every element from an alphabet in every position of the 

motif. Since this work is being conducted with peptides, the alphabet consists of one letter 

abbreviations of the 20 amino acids. The weight can be interpreted as importance of the 

amino acid in a certain position and it can be calculated in various ways.  

 
 
 

1 2 3 4 5 6 7 8 9 10 11 12 

A -2.45 0.00 0.86 -2.39 -2.45 -2.45 0.00 -2.45 -2.45 -2.45 -2.36 -2.32 

C -2.45 -2.45 -2.45 -2.39 -2.45 -2.45 -2.45 -2.45 -2.45 -2.45 1.06 -2.32 

D 0.00 -2.45 -2.45 0.12 -2.45 -2.45 -2.45 0.00 -2.45 -2.45 1.06 -2.32 

E 0.00 -2.45 0.00 -2.39 -2.45 -2.45 -2.45 -2.45 -2.45 0.86 1.06 -2.32 

F -2.45 -2.45 0.86 0.12 3.06 0.00 -2.45 -2.45 0.86 -2.45 1.06 -2.32 

G 0.86 -2.45 0.00 -2.39 -2.45 0.00 -2.45 -2.45 -2.45 -2.45 -2.36 0.26 

H -2.45 -2.45 -2.45 0.12 0.86 -2.45 -2.45 -2.45 -2.45 3.06 -2.36 2.38 

I -2.45 -2.45 -2.45 -2.39 -2.45 2.35 -2.45 -2.45 -2.45 -2.45 -2.36 1.68 

K 1.40 3.90 -2.45 0.12 -2.45 -2.45 -2.45 -2.45 -2.45 -2.45 -2.36 -2.32 

L 2.35 -2.45 0.86 1.92 -2.45 -2.45 0.00 -2.45 2.75 -2.45 -2.36 -2.32 

M -2.45 -2.45 0.00 0.12 -2.45 1.40 -2.45 -2.45 2.91 2.09 -2.36 -2.32 

N -2.45 -2.45 1.40 0.99 1.40 -2.45 3.90 -2.45 -2.45 -2.45 -2.36 -2.32 

P -2.45 -2.45 2.35 1.53 -2.45 -2.45 -2.45 -2.45 -2.45 -2.45 -2.36 -2.32 

Q 0.86 -2.45 -2.45 -2.39 -2.45 2.35 -2.45 -2.45 -2.45 -2.45 -2.36 -2.32 

R 1.40 -2.45 -2.45 -2.39 0.00 -2.45 -2.45 -2.45 -2.45 1.40 1.06 -2.32 

S 0.86 -2.45 0.00 1.92 0.00 0.00 -2.45 3.97 -2.45 -2.45 1.99 -2.32 

T -2.45 0.00 0.00 -2.39 0.00 -2.45 -2.45 -2.45 -2.45 -2.45 1.60 -2.32 

V -2.45 -2.45 -2.45 -2.39 -2.45 0.00 -2.45 -2.45 -2.45 -2.45 -2.36 -2.32 

W -2.45 -2.45 -2.45 -2.39 0.00 -2.45 -2.45 -2.45 -2.45 -2.45 -2.36 2.63 

Y -2.45 -2.45 -2.45 -2.39 0.00 0.00 -2.45 -2.45 0.00 -2.45 -2.36 0.26 

 

C I M P R I L Y W F E D  = -9.63  G K I H F M N R M H F W  = 18.00 

Figure 1.4: Position weight matrix and peptides that are matched to it.  

 Cells of the matrix are colored accordingly to the peptide’s amino acids. 
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To evaluate how well a peptide matches to a position weight matrix, a score is 

calculated. This is done by placing the peptide on the position weight matrix and adding 

the weights of the peptide’s amino acids in the positions they are placed. The higher the 

score, the better the peptide matches to the motif. Since sometimes the peptide is shorter 

than the motif, the peptide is placed in all possible positions and all scores are calculated. 

The final score is then the biggest one. In Figure 1.4 is an example of a position weight 

matrix and two peptides with scores saying how well they match to the matrix. 

The matrix itself is not very easy for humans to interpret, so a visualization of the 

matrix has to be generated. This visualization is called a sequence logo. To generate 

sequence logos, a tool called WebLogo [1] is used. Example of a sequence logo generated 

with WebLogo is shown in Figure 1.5. The x-axis represents the positions of the motif and 

the y-axis represents the amount of information present in every position, measured in bits. 

If a position would only consist of one amino acid, the amount of information would be the 

maximum amount of bits, which is log2(20) ≈ 4.32. If a position would contain all the 

possible 20 amino acids equally, the amount of information would be 0 bits, because there 

is no information about which amino acid is preferred. So the higher a stack of amino acids 

is, the more important that position is. Amino acids in one position are ordered so, that the 

most important amino acid is on the top and the least important in the bottom. Sizes of 

amino acids in the stack represent their relative frequency among all the amino acids in 

that position. The colors of the amino acids are based on the chemical properties of the 

amino acids. Amino acids with similar properties have the same color. From that 

representation, it is possible to see, that K in the second position, N in the ninth position 

and S in the eight are describing the motif in Figure 1.5 very well. 

 

Figure 1.5: Example of a sequence logo. The x-axis represents positions of the motif.  

               The size of each letter represents the importance of the amino acid in that position.  
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1.3 Goal 

The goal of this thesis is to develop a method that finds motifs from a set of peptides 

and represents these motifs as simple motifs and sequence logos. This is the last step of the 

workflow of describing an individual as shown in Figure 1.6.  

 
Figure 1.6: Workflow of describing an individual. The goal of this thesis  

                          is to develop a workflow for doing the third step. 

All assumptions about the data analyzed and conclusions about the results generated in 

this thesis are done in collaboration with biologists. It is already known that the peptides of 

an individual are not random but can be divided into groups that share a common motif. 

These groups and the motifs that they contain are not known. The challenge is to not define 

these motifs too narrowly or too widely. This means that if the motif were defined in too 

much detail, it would not cover the group of all the similar peptides. If the motif were 

described too generally, it would cover peptides from different groups. The workflow that 

is developed should be able to identify the motifs that have a clear and strong signal. This 

means that motifs that are found should be present in a reasonably high amount of 

peptides. Motifs that are just in a few peptides are not the ones to look for. In conclusion, 

the main idea is to represent the peptides as a set of motifs that describe the main clusters 

that the peptides of an individual have. 
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2 Literature overview 

The task of finding motifs from a set of peptides is not novel and there already are 

some existing tools that are able to do that. There are tools like MUSI [2], MEME [3] and 

SPEXS [4] that can find motifs from a set of sequences. These tools are all a little different 

and they all have slightly different goals. None of these goals exactly match the goal of this 

thesis and therefore these tools cannot be used.  

MUSI is a tool that finds position weight matrices from a set of short sequences. It does 

it by aligning all the sequences and extracting different parts from the alignment which are 

then represented as sequence logos. It can consider duplicate sequences and it is very fast. 

MUSI can analyze datasets with hundreds of thousands of sequences within a reasonable 

time. The downside of MUSI is that it is best suitable for finding sub-motifs from already 

similar sequences. The peptides in this analysis can be very dissimilar because there are 

quite many different motif groups. MUSI treats these distant peptides as noise and groups 

them in one cluster. Therefore, MUSI is not capable of finding the actual motifs and cannot 

be used. 

MEME is also a tool for finding position weight matrices from a set of sequences. 

MEME should work very well on this dataset because it assumes that the sequences are 

ungapped, which is true in this case. MEME can also work well with distant peptides that 

this set contains. MEME’s downside is the high time complexity which means that it is too 

slow for large datasets. If there were a need to analyze only one individual, it would be 

acceptable, but since this analysis is eventually going to be run on hundreds of individuals, 

it would be too time consuming. This is the reason why MEME is not suitable for the 

analysis. 

SPEXS is a tool that finds motifs from a set of sequences. It has to be provided with 

two sets of sequences – the query sequences, which contain the motifs of interest, and 

reference sequences, which should not contain these motifs. SPEXS exhaustively scans 

through the space of all the motifs generated from the query sequences to find the ones that 

satisfy the search criteria set by the user. It outputs the motifs that are significantly more 

represented in the query sequences than in the reference sequences or fit some other user 

criteria. This tool can handle the size of this dataset in a reasonable amount of time but 

there are also downsides. Firstly, SPEXS requires a reference set. Composing this set is 

quite difficult because this set can influence the results (motifs to find) quite a bit. 
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Secondly, SPEXS gives out a large number of motifs. These motifs can be overlapping and 

very similar. There has to be some post-processing of the motifs in order to really get the 

right ones. Another disadvantage of SPEXS is that it is difficult to get groups of amino 

acids (for example [AFT]) as part of the simple motifs. It is possible, but not very 

convenient and when these groups are added, the performance time increases significantly.  

Because of all these reasons these tools are not suitable for this analysis and another 

approach has to be found. 
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3 Data from experiments 

From every individual, a blood sample was taken and a biological experiment was done 

on that as can be seen from Figure 1.6. The output from each experiment was a set of short 

nucleotide sequences which were translated to peptides. The peptides of one individual are 

the input data for this analysis. 

The input data consists of 12mer peptides. The potential size of all the 12mer peptides 

is 4.096 × 10
15

 and however the experiment conducted with the blood samples can find 

around 1 × 10
9
 12mers, we can imagine each peptide of one individual’s data to situate 

somewhere in this space. There is a hypothesis that there are clusters or groups of peptides 

in the data that are closer to each other – clustered, see Figure 3.1. As said in section 1.3, 

the goal is to find these clusters of similar peptides that describe one individual and 

represent them as motifs. There should be a way to represent these clusters as motifs 

because a cluster is formed when similar peptides group together, so they should have 

something in common.  

 

Figure 3.1: Artistic representation of the peptide space. Peptides that are closer together have something 

similar and should be grouped together. The figure is illustrative and does not correspond to real peptides. 

There is also noise in the data. This noise should be interpreted as peptides that are 

randomly there and do not belong to any of the clusters, like dots that are outside the 

cluster borders in Figure 3.1. The percentage of noise is thought to be bigger among 

peptides that have just a few duplicates. Another assumption is that in the center of these 

clusters should be peptides with high numbers of duplicates. More towards the border of 

the cluster are peptides with smaller counts. Peptides that are assumed to be the noise 

should have very small counts. The aim is to find these clusters, draw a line to separate the 
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clusters from the noise and present each cluster with the motif that the peptides in this 

cluster have in common. 

The size of the peptide set that one individual has is around 100 000 peptides without 

considering duplicates and about 2 or 3 times more with them. From Figure 3.2 it is 

possible to see, that most of these peptides have only 1 or 2 duplicates. The percentage of 

noise should be quite high among these peptides. Peptides that have a really high number 

of duplicates are quite rare. The example individual has only 15 peptides that have more 

than 300 duplicates as can be seen from Figure 3.2. These peptides are very important in 

describing these clusters and should be positioned in the middle of the clusters. 

 
Figure 3.2: Example of peptide distribution of an individual. Figure shows how 

                    many different peptides are there considering different number of duplicates.  
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4 Methods used in the workflow 

As a solution for finding motifs from peptides, a workflow based on hierarchical 

clustering is composed. Hierarchical clustering is selected because this method generates a 

tree that resembles to the assumed structure of actual clusters. There should be big clusters 

with more general motif and sub-clusters that have some minor differences in the motif. 

Hierarchical clustering looks through the peptide space and calculates all distances 

between all peptides and then joins the peptides into clusters. When the clusters are 

extracted from the output of hierarchical clustering, each cluster is represented with a 

motif. That is the main idea of how to find motifs from the peptides of one individual. 

Since this solution is based on combining several commonly known methods, these 

methods, hierarchical clustering and multiple sequence alignment, will be described first. 

A description about how to combine these methods into a workflow will be provided in 

chapter 5. 

4.1 Hierarchical clustering 

The method that is used for clustering is called agglomerative hierarchical clustering 

[5]. This method starts combining peptides together until there is one big cluster. The 

algorithm is explained with an example in Figure 4.1. The left part of the figure represents 

the space of all peptides. Similar peptides are closer to each other. The right part of the 

figure represents the hierarchical tree that this algorithm generates. First, all peptides form 

a cluster on their own (peptides A-F). Two closest peptides are found (E and F) and they 

are joined in a new cluster (cluster 1). Then the next closest clusters are found (A and B) 

and joined (cluster 2).  Next, cluster 1 is joined with peptide D and they form cluster 3. 

This process is repeated until finally clusters 2 and 4 are joined in cluster 5, which contains 

all the peptides. The result of this clustering is a hierarchical tree of clusters. From this tree 

it is possible to see, which peptides are closer to each other and form a cluster. It is also 

possible to see how one cluster can be divided into sub-clusters. As can be seen from 

Figure 4.1, the algorithm does not automatically generate clusters, but it generates a tree, 

where these clusters can be extracted from. Extracting clusters from the tree is another step 

that is going to be described in section 5.3.  
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Figure 4.1: Agglomerative hierarchical clustering. 

In the algorithm of hierarchical clustering, the distances between peptides and clusters 

are the basis of joining them. In the left part of Figure 4.1 the closest clusters and their 

distance can be visually seen. This distance can be calculated in different ways. First, a 

measure how to calculate the distance between two peptides has to be set. Then, a measure 

how to calculate the distance between clusters that have many peptides has to be set. 

Methods chosen for calculating those distances are explained in sections 4.1.1 and 4.1.2. 

4.1.1 Levenshtein distance 

The distance between two peptides should be interpreted as the difference between two 

peptides. Since peptides are represented with a 20 letter amino acid alphabet, they are 

basically just strings. There are two main ways to calculate a distance between strings. 

First of them, that only works for equal length words, is Hamming distance [6]. It gives the 

number of places where two strings differ. Since in this case, the similar part of the 

peptides can be in different positions in the peptides, this method is not suitable. A more 

flexible method is Levenshtein distance [6]. Given two strings, Levenshtein distance gives 

the number of edits necessary to turn one string into another. There are three possible edits: 

deletion, insertion and substitution, which mean that it is possible to delete a character 

from a string, insert a new character in the string or replace one character of the string with 

another. An example of calculating Levenshtein distance between two strings (ASMKR 

and SDKRL) is shown in Figure 4.2. The first step is the deletion of A from the first 

position. The second step is the substitution of M with D in the third position. The third 
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step is the insertion of L after the last position. With a minimum of three steps it was 

possible to convert ASMKR to SDKRL. This means that the distance between these two 

strings is 3. 

 
Figure 4.2: Steps to turn one string into another. 

One reason why Levenshtein distance is not ideal for these peptides is that it allows 

insertions and deletions in the middle of the peptide. This should not be allowed because of 

the nature of these peptides. Insertions and deletions should only occur in the beginning or 

in the end of the peptide. The reason why this method was still chosen will be explained in 

the section 5.2. 

4.1.2 Linkage criterion 

Levenshtein distance covered the problem of how to calculate the distance between two 

peptides. When calculating the distance between clusters, that contain more than one 

peptide, it is necessary to use another distance measure. This is called the linkage criterion. 

There are several ways to calculate the distance between clusters and the three main 

criteria are shown in Figure 4.3. The first of them is single linkage [5]. With single linkage, 

the distance between two clusters is calculated by first finding all distances between 

peptide pairs across the clusters. Then the distance is taken as the minimum distance 

among those calculated distances. The downside of this criterion is that some clusters may 

be forced together when they only have a few very similar peptides but most of them are 

distant. So clusters may be too eagerly joined. Another possible method is complete 

linkage [5]. This is similar to single linkage but has a difference in that not the minimum 

but the maximum of all distances between the peptides of two clusters is selected as the 

distance. This is not ideal as well because a single peptide can again affect the joining too 

much. The third option is average linkage [5]. This means that all pairwise distances 

between two clusters are calculated and the mean of these distances is taken. This is more 
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suitable for these data because this compromises between single and complete linkage by 

minimizing the effect of a single peptide.   

 

Figure 4.3: Example of different linkage criteria. 

4.2 Multiple sequence alignment 

Multiple sequence alignment is a method for placing a set of sequences so, that similar 

parts of them would be in the same positions. This is done in order to see the similarities 

between some sequences, in this case, to see the similar parts of the peptides that are in one 

cluster. Most multiple sequence alignment methods and tools generate gapped alignments. 

Gapped alignment means that there can be insertions or deletions done in the middle of the 

alignment. Ungapped alignment does not allow these gaps. An example between gapped 

and ungapped alignment is in Figure 4.4. 

  
- - G I V K R E T D P L A S     - - G I V K R E T D P L A S  

L P G I - - R K V D S K E A     L P G I R K V D S K E A - -  

 

Figure 4.4: Gapped and ungapped alignments. 

When generating multiple sequence alignment, scores between sequences are 

calculated. The main idea of alignment is to set the sequences so that the scores between 

them would be as small as possible. The score is smaller when the sequences are placed so, 

that there are as many similar parts as possible. This is done with insertions and deletions 

in the beginning, end and middle of the sequence. To generate ungapped alignment with a 

tool that usually allows gaps, a parameter called gap penalty can be used. When gap 

penalty is set to very high, an additional penalty is added to the score when a gap is 

introduced in the middle of some sequence. By setting this penalty to very high, these gaps 
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in the middle of the sequences can be avoided because ungapped alignment would always 

have a better score. There are also methods that do not require setting the gap penalty, but 

only allow shifting the sequences to align them, but tools that implement these methods are 

not very common. 
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5 Workflow 

The main idea of the thesis, as mentioned in section 1.3, is to develop a method that 

would divide a set of peptides into clusters that each represent one motif and then extract 

these motifs from the clusters. This way a large set of peptides will be described by a much 

smaller set of motifs. To reach that goal, a workflow is assembled. This workflow consists 

of many different bioinformatics tools, algorithms and additional scripts that in 

combination should give the expected result. The main steps of the workflow are shown in 

Figure 5.1. 

 

Figure 5.1: Workflow for finding motifs from a set of peptides. 

5.1 Filtering the peptides 

The first step of the workflow, before doing hierarchical clustering, is to reduce the 

amount of peptides. This has to be done because the algorithm of hierarchical clustering 

requires calculating all pairwise distances between given peptides. This means that lots of 

memory is required to cluster a large number of peptides. Since the size of the peptide set 

can be up to a few hundred thousand peptides, it is necessary to throw out some of the 

peptides to be able to do the clustering in a reasonable time. Most of the peptides, that one 

individual has, have only a small number of duplicates, so eliminating them will decrease 

the peptide set size multiple times. This elimination can be done because peptides with just 

a few duplicates are not so important in describing this individual. Also a large percentage 

of them are thought to be noise and can therefore be excluded without loss of the most 

important information. For the threshold of eliminating peptides, a value of 3 was selected. 

This means that peptides that had only 1 or 2 duplicates were thrown out. These peptides 

are represented by the first two columns in Figure 3.2. The value of 3 was selected because 

it was the smallest threshold that generated a peptide set small enough for doing 

hierarchical clustering. Eliminating these peptides removed about 90% of the unique 
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peptides but only 50% of the peptides when considering duplicates as can be seen from 

Table 5.1. 

Table 5.1: Average sizes of peptide sets of 40 different individuals before and after filtering.  

 Before filtering After filtering 
Percentage of 

remaining peptides 

Unique peptides 110 428 11 503 10,42% 

Duplicate peptides 231 367 119 039 51,45% 

 

The ideal way of doing the clustering would be to include the duplicates. This cannot 

be done due to the fact that after filtering, the peptide set is still too big when considering 

the duplicates. Because of this, the clustering is done without the duplicates and duplicates 

are taken into use again after the clustering. 

5.2 Clustering the peptides 

The next step of the workflow is hierarchical clustering. This will generate a tree of 

peptides based on their similarity. From that tree it is possible to extract the clusters. After 

the filtering, the size of the peptide set is small enough to apply hierarchical clustering on 

it. To do the clustering, a tool called HappieClust [7] was chosen. This tool was chosen 

firstly because of its fitness to purpose. It calculates the hierarchical tree from the input 

peptides. There is no need to combine many different tools to achieve that goal. One 

limitation of this tool is that it provides only two measures for calculating the distance 

between peptides: Hamming distance and Levenshtein distance. As said before, 

Levenshtein distance is quite suitable but not completely ideal because it allows gaps in the 

middle of the sequences. Regardless, this measure was still used because generated clusters 

seemed reasonable and since HappieClust was otherwise suitable, this shortcoming was 

compromised on. 

5.3 Cutting the tree 

Hierarchical clustering does not automatically generate clusters of peptides. This 

method generates a tree that represents the hierarchy of clusters. Every node of this tree has 

a value representing the distance between its two child nodes (sub-clusters). The tree has a 

root, which represents a cluster of all the peptides. Since it is necessary to get just the right 

clusters out, the tree has to be cut from the right distance. This is one of the most 

complicated steps because there is no knowledge about which distance is the right one or 
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how many clusters should one individual have. From Figure 5.2 it is possible to see how 

the cutting value can affect generated clusters. Since this is a crucial step, the tree has to be 

analyzed carefully to get an idea where to cut it. To do that, a test individual was analyzed 

in depth. The hierarchical tree generated from this individual’s peptides was cut from 

different distances to see how the clusters change. 

 

Figure 5.2: Cutting the tree from different distances can result in very different clusters. 

Since the maximum possible distance between two strings is the length of the longest 

one, tree nodes have values between 0 and 12. The tree has to be cut somewhere in 

between this range. To find the right cutting value, tree of the test individual was cut from 

different distances between 6 and 11. The generated clusters were aligned and visualized as 

sequence logos to have some information about the generated clusters and the motifs that 

they contain. Generating alignments and visualizations will be described in detail in 

sections 5.5 and 5.7.2.  

The results of the cutting were reviewed in collaboration with biologists. From the 

lower distances it was clearly visible that there were very small clusters and one motif was 

present in many different clusters, as shown in example in Figure 5.3.  

 

Figure 5.3: Example of sequence logos of two clusters that should be clustered together but are not. 
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With larger distances, the clusters were very big. There were clusters that were formed 

from many clusters that should not have clustered together. An example of this kind of 

clusters is shown in Figure 5.4. At the same time there were still some clusters that had too 

similar motifs that should have been clustered together as shown in example in Figure 5.3.  

 

 

Figure 5.4: Example of sequence logos of two clusters that are clustered together when they should not. 

 This analysis made it clear that it is not possible to select the perfect cut value. Instead, 

the tree has to be cut somewhere, where different motifs have not clustered together and 

later, these clusters should be merged with other methods. The distance of 9 was finally 

selected as the cutting value because with this distance there were no clusters in the test 

individual that contained multiple motifs. 

5.4 Filtering the clusters 

After cutting the tree, there were clusters with different sizes varying from just 1 unique 

peptide to about 1000 unique peptides. To take duplicates back into use, the peptides in 

every cluster were multiplied by the number of their duplicates in the original set. This 

resulted in clusters varying from 3 peptides to about 20 000 peptides. Since these clusters 

are not ideal and the same motif can exist in many different clusters, similar clusters have 

to be merged together. But in order to do the merging correctly, some clusters have to be 

thrown out. This has to be done because the tree was cut from a quite low distance, and 

because of that, there were some clusters that did not contain very many peptides. When a 

cluster consists of only a few peptides, the real motif group it belongs to cannot be very 

well identified. This is because these few peptides could be very similar to many different 

bigger motif groups which could result in the cluster being merged with the wrong cluster. 

Also this cluster could not be similar to any of the bigger groups, so it forms a separate 
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cluster when it should not. Because of that, small clusters are hard to merge with other 

clusters and have to be eliminated to be able to do the merging correctly. There are two 

parameters set to filter out the small clusters. Firstly, a cluster has to have at least 100 

duplicate peptides in it. This is required because when there would be fewer peptides, then 

the motif would not be clear enough. Secondly, a cluster has to have at least 15 unique 

peptides. This prevents from having clusters with just a few very similar peptides that have 

many duplicates. This would be bad because then the motif would consist of the whole 

peptide sequence and it would be hard to cluster. After this filtering, only bigger clusters 

with clearer motifs are left. 

5.5 Aligning the clusters 

The peptides that are in the same cluster have to have something in common so that 

they were clustered together. This common motif can be in different positions in different 

peptides. In order to see that motif, the peptides should be placed so, that those similar 

parts would be in the same positions among the peptides. This will be done with multiple 

sequence alignment.  

There are many different tools for doing multiple sequence alignment, but there are two 

big limitations when selecting the tool. Firstly, the tool has to allow ungapped alignment 

because of the nature of the peptides. There are not many good and available ungapped 

alignment tools. This means that other tools, that generate gapped alignments, have to be 

used in a way that results in ungapped alignment. This could be achieved by setting the gap 

penalty to very high as explained in section 4.2. Since not all tools allow setting this 

parameter, it limits the selection of finding the right alignment tool. Another criterion for 

finding the tool is the speed of aligning large sets of sequences. There is a need to align 

tens of thousands of peptides, and not many tools can do it in a reasonable amount of time.  

One of the free and available tools that matched all these requirements was MAFFT 

[8]. This tool was therefore chosen for doing multiple sequence alignment. MAFFT is a 

tool that as one function can do multiple sequence alignment. It uses progressive method 

for aligning the sequences. It takes a set of sequences as input and outputs an alignment of 

these peptides which can among other things be used to generate position weight matrices. 

5.6 Merging the clusters 

Cutting the hierarchical tree generated some clusters that share a common motif. To 

repair that so, that there would be only one cluster per one motif, these clusters with similar 
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motifs have to be merged. In order to do that, there should be some measure saying how 

similar two clusters are. This similarity could be measured in different ways. One 

possibility would be to extract simple motifs or position weight matrices from the 

alignments and compare them. Comparing simple motifs is not selected because it is not 

sensitive enough. There is no information about the importance of the amino acids. 

Comparing position weight matrices would be better but would still require additional 

effort of building the matrices. Another option is to compare the alignments. Since the 

alignments are already present and there are tools to compare them, this option was 

selected. A tool called Compass [9] was chosen for comparing the alignments.  

Compass is a tool that is able to compare two alignments at a time. It builds profiles 

from alignments and then calculates an e-value saying how similar the two profiles are. 

The smaller the value, the more similar the two alignments are. A profile is a similar data 

structure to the position weight matrix. It contains information about every position of the 

alignment. Compass is used to find the similarity between two clusters.  

 

Figure 5.5: Example of three clusters that are merged together. 

The entire merging process is conducted as follows. First, clusters are ordered by their 

size considering duplicate peptides. Then the biggest cluster is taken and all other clusters 

similar enough to this cluster are merged and they form a new cluster. An example of three 

clusters that were merged together is shown in Figure 5.5. Those clusters that were merged 

are removed so they cannot be in any other cluster. Then the next biggest cluster is taken 

and the same process is repeated. Since the similarity is evaluated with the e-value, there 
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has to be some threshold set saying when clusters are similar enough to join them. A value 

of 1 × 10
-4

 was selected as this threshold after experimenting with different thresholds on 

the test individual. 

5.7 Extracting the motifs 

After the merging, there are groups of clusters, from now on called as super-clusters, 

that should each contain one motif that is only present in that super-cluster. Now it is 

necessary to analyze the super-clusters and extract the motifs from them. Steps of this 

analysis are described in Figure 5.6. Two results are extracted from every super-cluster’s 

peptides: a sequence logo and a simple motif with scores saying how well this simple motif 

describes specifically that cluster. 

 

Figure 5.6: Workflow of extracting sequence logo and simple motif from a cluster. 

5.7.1 Aligning the super-clusters 

The merging resulted in super-clusters that consist of a set of aligned clusters from now 

on called as sub-clusters. To extract the motif from the super-cluster, peptides of all the 

sub-clusters have to be aligned together. This is also done with MAFFT. The requirement, 

that the alignment tool should be able to align very large sets of peptides is especially 

important in this stage, because the super-clusters are bigger than the sub-clusters and their 

size can be up to tens of thousands of peptides. 

5.7.2 Building position weight matrices 

Information about the amino acids present in every position can be read from the 

alignments of the super-clusters. This information should be now presented as sequence 

logos and simple motifs. In order to extract them, position weight matrices have to be 
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calculated from the alignments. A tool called WebLogo is used for that. This tool is able to 

do two things. Firstly, it generates a visualization of a position weight matrix, a sequence 

logo. This sequence logo is generated for every super-cluster to give an overview of the 

cluster. By generating these logos, one representation of the clusters is provided. Secondly, 

it generates a position frequency matrix that is used to extract the simple motifs. Simple 

motifs will be the second representation of every cluster. 

5.7.3 Extracting simple motifs 

The visualization of the position weight matrix is good for humans to interpret but not 

for computers. That is why there is a need to represent a motif in another way. Since in the 

future motifs of different individuals have to be compared, they could be represented just 

as alignments or position weight matrices, because there are tools available for comparing 

them. These options are all good but due to the nature of experiments that are done with 

the found motifs, they have to be represented as simple motifs. This means that each motif 

should be read from the position frequency matrix as follows. If only one amino acid is 

important in some position, this amino acid is added to the motif. If a group of amino acids 

is important, this group is added to the motif. If no amino acid is important enough, a dot 

representing any amino acid is added to the motif. In this way a motif like the one shown 

in Figure 5.7 is generated. 

.[IFV]M.R...W.. 

Figure 5.7: Motif with dots in the beginning and end. 

Since it is not important where in the peptide this motif is positioned, the dots can be 

eliminated from the beginning and end as shown in Figure 5.8. A motif that is generated 

after eliminating the dots is called the simple motif. 

[IFV]M.R...W 

Figure 5.8: Motif without dots in the beginning and end – a simple motif. 

As said, WebLogo generates a visualization of the position weight matrix and a simple 

motif cannot be read out from that. WebLogo also generates position frequency matrices. 

A position frequency matrix is like a position weight matrix only that in every position is a 

number representing the frequency of the amino acid in that position. For extracting the 

simple motifs, this frequency matrix is used. 



 

 

26 

 

To extract information from the position frequency matrix about one position, these 

frequencies should be converted into percentages to be able to tell which amino acids are 

more probable in different positions. This is done by first adding the value of 1 to every 

matrix element for smoothing the values. That is especially important when there are just a 

few peptides present. Then, every frequency is calculated into a percentage using formula 

(5.1). 

           
                                           

                                      
 

    ( 5.1 ) 

With this formula, the matrix of frequencies is translated into a matrix of percentages. 

Every position in the motif is then represented as a vector like the one shown in Figure 5.9. 

This vector shows the percentages of amino acids in one position.  

 

A  C  D  E  F  G  H  I  K  L  

0.07 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.12 0.00 

          M  N  P  Q  R  S  T  V  W  Y  

0.07 0.02 0.00 0.20 0.00 0.26 0.07 0.01 0.00 0.13 

 

Figure 5.9: Example of amino acid percentages in one position. 

In order to represent a position in a simple motif format, the workflow shown in Figure 

5.10 has to be run. This workflow will take one vector of percentages as one input. A 

weight representing the percentage of information present in that position is given as the 

second input. This weight is generated by WebLogo and it can be interpreted as the 

percentage of amino acids in that position, or in other words, number elements that are not 

dashes (“-“) in that position of the alignment. If the number is small, then there are a lot of 

dashes in that position. This weight also reflects in the sequence logos as the width of a 

column. Firstly, the value of this weight is checked. If it is too low, under 90%, there is a 

weak signal in that position and a dot is added to the motif. If the weight is high enough, 

the maximum percentage of amino acids in the vector is found. If some single amino acid 

already covers 80% of the sequences in that position, only that amino acid is added to the 

motif. If there is not a strong single amino acid signal, the top three are taken and their 

percentages are summed. If this sum is over 80%, then a new group is going to be formed. 

The amino acids are added to the group as follows. The amino acid with the maximum 
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percentage is taken. If its percentage is higher than 10%, it is added to the group. Then the 

next biggest amino acid is taken. If the group size is smaller than three, the same process is 

done with that amino acid. If some of these conditions are not true anymore, the formed 

group is added to the motif. If even the three top amino acids combined did not give a 

percentage over 80%, a dot is added to the motif. This workflow is run on all of the 

position vectors to find the simple motif. 

 

Figure 5.10: Flowchart of finding one position of simple motif. 

When applying this workflow on the position vector shown in Figure 5.9 and taking the 

weight of the position higher than 0.9, the result would be a dot. This is because no amino 

acid has a percentage higher or equal to 0.8, the biggest one is S with 0.26. The sum of the 

three best percentages is 0.59 (S + Q + Y), so there is not a good group present as well. 

Because of that, a dot is added to the motif in that example. 

5.7.4 Calculating scores 

The simple motifs that are generated in the previous step are the final outcome of the 

workflow. To make sure the generated super-clusters are good clusters, they should be 

evaluated. This evaluation should show how well the found simple motif describes the 

specific peptide cluster. This evaluation is necessary in order to see how well some 

individual was described with the simple motifs found with this workflow. To do that, two 

percentages are calculated. One for saying how well this found motif covers peptides from 
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that cluster. The other is for saying how well that motif covers all other peptides that do not 

belong to this cluster. A good motif would be the one that covers a large percentage of the 

cluster’s peptides and a small percentage of the rest of the peptides. Since the simple motif 

can sometimes be very precise, the motif does not have to match the peptide exactly to 

count as a match. One mistake is allowed. This mistake means that one of the motif’s fixed 

parts (positions that have a certain amino acid or a group of amino acids) could be 

substituted with any other amino acid. An example of two peptides matching a motif with 

one mistake is in Figure 5.11. 

[IFV]M.R...W 

T T F M S S R N K W L P  

A M S R I F V W L K K R  

Figure 5.11: Example of peptides that match to the motif with one mistake. 

This mistake is allowed only for motifs that have more than three fixed positions. This 

is because when a motif has only three fixed parts, allowing one mistake would result in a 

motif with only two fixed parts. This would be so general that there would be too many 

random matches. 

The two scores of every cluster are calculated using formulas (5.2) and (5.3). 

                               

      (
                                                             

                                                        
) 

( 5.2 ) 

                                          

      (
                                                                        

                                                               
) 

( 5.3 ) 

 After these scores have been calculated for every simple motif, the workflow is 

finished. With this workflow a set of peptides is represented as a set of motifs where every 

motif is represented in two ways: as a sequence logo and as a simple motif. 
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6 Results 

This workflow was developed and run on one test individual who had 138680 (10206) 

unique and 277166 (133149) duplicate peptides. The numbers in parentheses represent the 

size of this individual’s peptide set after filtering out peptides with 2 or less duplicates. The 

results of running the workflow on the test individual will be described in this chapter. 

Table 6.1: Changes in test individual’s peptide set in in different stages of the workflow. 

 
Original 

count 
Peptides >= 3 Clustered peptides 

Unique peptides 138680 10206 (7.36%) 5102 (3.68%; 49.99%) 

Duplicate peptides 277166 133149 (48.04%) 94790 (34.20%; 71.19%) 

 

 From Table 6.1, it is possible to see that 7.36% of the original unique peptides and 

48.04% of the duplicate peptides had more than 2 duplicates and remained in analysis after 

the filtering of the peptides. After clustering, there were some very small clusters that were 

thrown out because they were hard to merge with other clusters. The percentage of the 

original peptides that were actually clustered was 3.68% considering unique peptides and 

34.20% considering duplicates. When compared to all the peptides that were taken into 

clustering (3 or more duplicates), these percentages were 49.99% and 71.19%. Since 

duplicate peptides are the ones that are most important, these percentages are quite 

satisfying. Especially considering that from the peptides that were actually clustered, 

71.19% were eventually divided into clusters. 

Cutting the hierarchical tree of the test individual from distance 9 resulted in 1221 

clusters. During the filtering of the clusters, only 99 of them had more than 15 unique or 

100 duplicate peptides and remained in the analysis. The sizes of these 99 clusters are 

shown in Figure 6.1. From the peptides that were inserted into hierarchical clustering, 

94790 duplicate and 5102 unique peptides were covered by these 99 clusters. 
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Figure 6.1: Cluster sizes of test individual after filtering of bigger  

                               clusters and before merging them into super-clusters. 

These 99 clusters were then merged to make sure that there is exactly one cluster per 

one motif. This merging resulted in 46 super-clusters. The sizes of those super-clusters are 

shown in Figure 6.2. 

Figure 6.2: Super-cluster sizes of test individual after merging the sub-clusters. 

The generated super-clusters had different numbers of sub-clusters. Most of the bigger 

clusters had a larger number of sub-clusters. The biggest super-cluster, considering the 

number of sub-clusters, consisted of 13 sub-clusters. Most of the super-clusters, especially 

the smaller ones, only consisted of one sub-cluster. From Figure 6.3 it is possible to see the 

number of sub-clusters that each super-cluster contained. 
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Figure 6.3: Number of sub-clusters in every super-cluster of the test individual. 

Every super-cluster was then represented as a sequence logo and simple motif. The 

simple motifs were also scored for saying how well they describe the specific clusters. 

Examples of some super-clusters generated from the test individual are shown in Figure 

6.4. 

 

Figure 6.4: Example of some super-clusters of the test individual. 
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From Figure 6.4 it is possible to see the variety of motifs found from one individual. 

The scores that were given to simple motifs are giving a good indication of how clear these 

generated clusters were and also how well these simple motifs described the peptides of 

specifically those clusters. Scores of all super-clusters of the test individual are shown in 

Figure 6.5. 

 

Figure 6.5: Scores of the simple motifs of the test individual. 

Almost all of the simple motifs showed very good scores. The second lowest coverage 

percentage of a super-cluster was 71.13%, but most of them were over 80%. The highest 

coverage percentage a motif had according to other clusters was 8.29%, but most of them 

were under 3%. There is one exception, where the signal from the super-cluster was so 

weak, that the simple motif that was extracted from that consisted of only dots. Since these 

were eliminated from the beginning and end, there was no simple motif representation of 

that cluster. Therefore this motif had only zeros as scores. The fact, that only one cluster 

was so unclear, that it did not show any motif, is another indicator that the generated 

clusters were quite good. Overall good scores show that the requirement that there is one 

motif per one cluster is very nicely followed and that the extracted simple motifs are good 

enough to describe precisely those clusters.    
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7 Summary 

In this thesis, a workflow was developed to extract motifs from one individual’s 

peptides by combining different bioinformatics tools and additional scripts. This workflow 

was based on hierarchical clustering, which generated clusters that were then post-

processed to extract the motifs that they contained. Those motifs were then represented as 

sequence logos and simple motifs with scores saying how well the motifs represent 

precisely those clusters. 

The workflow was developed on one individual’s peptides. The results of applying the 

workflow on the test individual were satisfying. There were 46 motifs found from the test 

individual and these motifs described 34.20% of the original peptides and 71.19% of the 

peptides that were submitted to hierarchical clustering. The latter percentage is especially 

important because it shows that a high percentage of peptides that were actually the input 

of the hierarchical clustering ended up in super-clusters. 

With the developed workflow, it is possible to extract motifs from one individual’s 

peptides. In the future, this workflow can be applied to different individuals who have 

different diseases. Then, motifs of individuals with the same disease can be compared to 

see if there are some similarities. These similarities could be used to learn more about the 

disease or give some other biological meaning to the results.  
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Motiivide otsimine lühikestest peptiididest 

Bakalaureusetöö (6 EAP) 

Mari-Liis Kruup 

Resümee 

Käesoleva töö eesmärgiks on arendada töövoog, mis leiaks etteantud lühikestest 

peptiididest sarnaste peptiidide grupid ning esitaks need grupid motiividena. Sellist 

töövoogu oleks hiljem võimalik kasutada motiivide avastamiseks erinevate indiviidide 

peptiididest, et leida sarnasusi sama diagnoosiga haigete vahel. Peptiididest motiivide 

leidmise töövoo koostamiseks kombineeritakse erinevaid üldtuntud meetodeid, 

bioinformaatika tööriistu ning lisaskripte. 

Koostatud töövoog põhineb hierarhilisel klasterdamisel, mille abil jagatakse etteantud 

peptiidid sarnasuse alusel gruppidesse. Leitud gruppe modifitseeritakse, et koostada just 

sellised grupid, millest igaüks sisaldaks ühte unikaalset motiivi. Lõplikest gruppidest 

leitakse motiivid, mis visualiseeritakse logodena ning esitatakse ka regulaaravaldise kujul. 

Leitud motiividele lisatakse skoorid, mis annaksid infot selle kohta, kui hästi iga motiiv 

just oma peptiidigruppi kirjeldab. 

Valminud töövoog koostati ning rakendati ühe testindiviidi peal. Töövoo rakendamine 

oli edukas ning etteantud 277166 peptiidist suudeti 71.19% jagada 46 motiivigruppi, 

millest 43 said ka väga head skoorid. Selle töövoo abil on võimalik edaspidi analüüsida 

erinevaid indiviide, et leida sama diagnoosiga haigetel ühiseid motiive.  
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