
UNIVERSITY OF TARTU

Institute of Computer Science

Computer Science Curriculum

Sergio Andrés Figueroa Santos

A Cost-E�ective Approach to Key

Management in Online Voting Scenarios

Master's Thesis (30 ECTS)

Supervisors: Sven Heiberg, MSc, Cybernetica AS

Helger Lipmaa, PhD, University of Tartu

Tuomas Aura, PhD, Aalto University

Tartu 2016

A Cost-E�ective Approach to Key Management in Online Voting
Scenarios

Abstract:
The problem of key management is an information security issue at the core of any
cryptographic protocol where identity is involved (e.g. encryption, digital signature). In
particular for the case of online voting, it is critical to ensure that no single actor (or small
group of colluding actors) can impact the result of the election nor break the secrecy of
the ballot.

The concept of threshold encryption is present at the core of many Multi-Party Com-
putation (MPC) protocols, even more so in the scenario of online voting protocols. On
the other hand, the generic key management problem has led to the design of certi�-
ably secure hardware for cryptographic purposes. There are three families of these kind
of designed for security devices: Hardware Security Modules (HSMs), Trusted Platform
Modules (TPMs) and smart cards.

Since smart cards both o�er reasonable prices and expose an API for development,
this document evaluates di�erent approaches to implement threshold encryption over
smart cards to support an electoral process.

Keywords: online voting, key management, threshold cryptography, smart cards, un-
trusted dealer

CERCS Code: P170 (Computer science, numerical analysis, systems, control)

Kuluefektiivne võtmehaldus elektroonilise hääletamise jaoks

Lühikokkuvõte:
Võtmehaldus on infoturbes tuntud üldine probleem, mis mängib olulist rolli elektroonilise
hääletamise turvalisuse tagamisel. Oluline on tagada, et häälte salajasus ei oleks rikutav
ühe osapoole või väikese rühma koos tegutsevate osapoolte poolt.

Lävikrüptograa�a kitsamalt ning mitme osapoolega arvutused laiemalt on olulised
komponendid paljudes elektroonilise hääletamise protokollides. Samal ajal kasutatakse
võtmehalduse probleemi praktiliseks lahendamiseks sageli vastavaks otstarbeks serti�tsee-
ritud ühe osapoolega lahendusi � riistvaralised turvamoodulid, kiipkaardid, TPM-kiibid.

Töös hindame kiipkaartide kui kuluefektiivsete ja laiendatavate komponentide kasuta-
mise võimalikkust võtmehaldusprobleemi lahendamiseks elektroonilise hääletamise jaoks
lävikrüptograa�a meetodite abil.

Võtmesõnad: elektrooniline hääletamine, võtmehaldus, lävikrüptograa�a, kiipkaardid

CERCS: P170

2

Contents

1 Introduction 6

2 Overview 7
2.1 Importance of Cryptographic Keys . 7
2.2 Attacks Vectors for Key Retrieval . 8

2.2.1 No Randomness . 8
2.2.2 Poor Randomness . 8
2.2.3 Access Control . 9
2.2.4 Application Vulnerabilities . 9
2.2.5 Poor Protection of Multiple Copies 10
2.2.6 Malpractice . 10
2.2.7 Side Channel Attacks . 11

2.3 Key Storage Solutions . 11
2.3.1 Cleartext . 11
2.3.2 PKCS#12 . 11
2.3.3 Trusted Platform Modules (TPM) 12
2.3.4 Smart Cards . 13
2.3.5 Hardware Security Modules (HSM) 13

2.4 Secret Sharing and Threshold Encryption 13
2.4.1 Shamir's Secret Sharing . 14
2.4.2 Veri�able Secret Sharing . 15
2.4.3 Distributed Key Generation . 16

2.5 Cryptography and E-Voting . 16
2.5.1 Availability of Technology . 17

3 Key Management in the Estonian Internet Voting Process 18
3.1 Internet Voting in Estonia . 18

3.1.1 Current Status of Internet Voting 18
3.1.2 Need for Stronger Controls . 19

3.2 Current Approach to Key Management 19
3.3 Scale in Estonian Internet Voting . 19

4 Solution Design 21
4.1 Key Management Quality Assessment . 21

4.1.1 Trusted Computing Base . 22
4.1.2 Lifecycle of the Key . 22

4.2 Design Option 1: Replacing the HSM with Smart Cards 23
4.3 Design option 2: Smart Cards with Homomorphic Tallying 24
4.4 Design Option 3: Veri�able Secret Sharing in Smart Cards 26

4.4.1 DKG in Java Card: the CRISES' Report 27
4.4.2 Untrusted Dealer . 28
4.4.3 Architecture . 31
4.4.4 Performance . 32
4.4.5 Solution Analysis . 33

4.5 Result Comparison . 34
4.5.1 Unchanged Features . 34
4.5.2 New Features . 34

3

4.5.3 Impacted Features . 35

5 Conclusion and Future Work 36
5.1 Non-standard cryptography and smart card development 36
5.2 Threshold decryption in online voting scenarios 36
5.3 The general key management problem 37

A Notation Summary 41
A.1 Basic Notation . 41
A.2 Basic Cryptographic Functions . 41
A.3 Secret Sharing . 42
A.4 Online Voting . 42
A.5 Others . 42

B Acronyms 43

C Basic Building Blocks 44
C.1 Public Key Encryption . 44
C.2 Digital Signature . 44
C.3 ElGamal Cryptosystem . 44
C.4 Commitments . 45

4

Acknowledgements

I would like to extend my appreciation words to Mr. Sven Heiberg and Prof. Helger
Lipmaa for stepping out of their comfort zone in my pursue for a project that would
have both academical and practical value. I want to thank Arnis Par²ovs and Ivo
Kubjas for their sel�ess and timely advise. Their knowledge of academic research and
Java Card led the way for my e�orts.
I must put also a word of recognition on behalf of a group of online users. We did not
know each other beforehand and I had nothing to o�er them. And, however, they were
always willing to engage in lengthy conversations about topics that are otherwise poorly
documented, seldom updated or would have in any other manner a lengthy learning
curve. Thanks to Maarten Bodewes, Geo�roy Couteau, thotheolh and so many other
helpful and skilled contributors to the StackExchange network. Your feedback helped
me to �nd the right way in this maze.
And �nally, to Kerstin. She always had the right word to fuel my mood, my thought
process and my English grammar. She listened, inquired and suggested. She gave a
second opinion that enriched my whole approach, and showed me the way whenever I
felt stuck. Enthusiastic and clever, she gave a soul to this work. Thanks.

1 Introduction

This thesis describes the design process of a solution to enable key storage that can be
used to hold legally binding electoral processes.
The use of information technologies to support elections enables voting processes to
provide proofs of transparency to voters that are more reliable than any traditional
system, at the expense of clarity: the level of previous knowledge required to
understand the nature and reliability of a cryptographic model is higher and more
speci�c than it would be for paper ballot, to name an example.
As it is to be expected, the implementation of cryptographic protocols for the speci�c
scenario of electronic voting inherits all the concerns that need to be addressed for any
cryptographic implementation: e.g. the selection of suitable parameters and the speci�c
algorithms, the decision of using well-proven libraries against implementing the
algorithms from scratch, identifying a suitable randomness generator and extracting
randomness from it adequately, or protecting the secret key used in the algorithm.
The latter will be the major problem addressed during this work. The present
document will explore the problem of key storage in general, and its particularities
within the online voting scenario. It analyzes the viability of introducing threshold
encryption schemes using smart cards as a platform for security critical operations. As
a mechanism to validate the approach proposed, this document evaluates its suitability
within the Estonian Internet Voting scheme, which has been used for legally binding
elections throughout more than a decade.
This document presents an overview of the general problem of key management on
chapter 2. Chapter 3 presents the speci�c key management requirements within an
online voting scenario, using the experience of the Estonian Internet Voting scheme as a
use case. A qualitative framework for comparing key management strategies and a
viability analysis of alternatives comprise the chapter 4. Finally, chapter 5 summarizes
the results obtained and introduces a wide range of questions that can lead future
research in related areas.
Although this document is directed to an audience familiar with cryptography and/or
voting systems, it does not assume any prior knowledge in terms of speci�c notation or
concepts. In that regard, the annexes provide a guide about speci�c terminology used in
the document. Annex A lists mathematical symbols and variable names, annex B
expands all the acronyms of technologies, techniques and institutions, whereas annex C
contains a short introduction to essential cryptographic primitives.

6

2 Overview

The de�nition of a cryptographic primitive is typically represented as a network
protocol, where the communication channel is hostile and the parties, conventionally
labeled as Alice and Bob, are trustworthy. In some cases, the idea that the other actors
can deliberately attempt to deviate from the protocol is acknowledged and modeled.
For simplicity in some cases, and for necessity in others, these models rely upon certain
assumptions. Ignoring their existence leads to some of the least evident and most
harmful bugs and vulnerabilities in cryptographic implementations.
There are two major assumptions that support the majority of the functionality in
cryptographic primitives:

1. It is possible to choose an element from an arbitrary set at random with uniform
probability (true randomness).

2. Any actor in a cryptographic protocol is a deterministic black box that can keep a
secret and only discloses the information determined by the protocol.

In particular, the second assumption implies veiled requirements that cannot be met by
any implementation. What is Alice? Is it the user making use of the system, or is it the
computer, or the program running on top? How can �Alice� be trusted to follow the
protocol? What happens when several copies of secret data (key, password, etc.) are
made? How can a secret key be kept secret?
As a key is a kind of secret that is critical for several cryptographic primitives, these
questions lead to the concept of key management. It consists of following the lifecycle of
a key in order to enable its availability while protecting its secrecy and integrity. The
objective of this section is to describe the importance of key management, the threats
that it must overcome and the existing approaches to the problem.

2.1 Importance of Cryptographic Keys

A cryptographic scheme in the malicious model can o�er meaningful guarantees of
security to Alice if Alice is honest. The honesty of Alice is typically described as her
adherence to the protocol. However, modern cryptographic protocols with non-trivial
security parameters cannot be executed correctly and e�ciently by a human mind.
Alice does not execute the protocol directly, but through a proxy, an information
system. In that scenario, the �moral� requirement of honesty becomes a technical one.
If Alice is technically honest, she will follow the protocol rigorously up to every
constraint: correct ordering of the messages will be observed, the variables will be
chosen within the given range, the calculations will be performed accurately and every
nondeterministic action will be as nondeterministic as possible. From the functional
point of view, correctness is enough.
However, from the information security point of view, correctness is not su�cient. Since
the main objective of cryptographic protocols is to enforce speci�c restrictions (e.g.
�only Alice can read the content�, �the tally can be generated only by the electoral
committee�), it is also important for any statement to ensure that no information is
leaked beyond the intended functionality.
In particular, the identity of Alice is usually represented by a secret piece of data: a key.
In cryptographic protocols, the security of the key can determine the security

7

boundaries of the system. However, said importance is seldom accounted for within the
design of the protocol. In the context of most cryptographic de�nitions, the key is
generated according to certain constraints (e.g. a random element in Zp) and then
stored in a �secure void�, where it can be accessed when it is required by the protocol.
There is, nevertheless, no secure void within an information system. A key is a string of
bits that needs to be stored and retrieved to working memory and needs to be backed
up to withstand physical failure. A key is a physical entity that can exist in di�erent
places at the same time. It is also intended to be the only obstacle for an adversary
attempting an attack within an otherwise secure protocol. In short: a cryptographic
protocol implementation is only as strong as the protection around its key material.
The security of a strong cryptographic protocol is bounded by the weakest path to any
copy of the secret key. The repertoire of attack vectors that aim to recover the secret
key within an encryption system is rich and diverse.

2.2 Attacks Vectors for Key Retrieval

There is active research about how to break keys whose security relies on mathematical
assumptions. For instance, since a private RSA key can be obtained by factoring the
public key, improving factoring can be a way to break the system. However, there are
no e�cient algorithms for factoring so far, and therefore RSA is still secure as a scheme
(given the right choice of parameters).
On the other hand, the implementations of cryptographic functions are seldom as
careful and isolated as their mathematical models. Bugs, malpractice and unexpected
variables reduce the di�culty of guessing a key. This section describes di�erent attack
vectors that leverage this fact.

2.2.1 No Randomness

The di�erence between encoding and encryption may be subtle, but essential. An
encoded message can be decoded by anyone who knows (or can derive) the rules. There
is no secret key. An encrypted message, on the other hand, can only be decrypted
(theoretically) by the holder of the key. A similar logic applies for other keyed
primitives, such as MAC integrity checks.
It is a common anti-pattern to hard-code a default constant value within the code of an
application in order to use it as a secret key. If the key used within an encryption
scheme is not random and cannot be changed easily, the encryption scheme is being
used for encoding. If a software product uses it as a key, its retrieval is, at best, as hard
as reverse engineering the application.

2.2.2 Poor Randomness

Any keyed algorithm relies at least once on the random generation of a value k
extracted from the universe of values K with nearly uniform probability. In other

words, that
(
∀k∗ ∈ K : Pr[k = k∗] ≈ 1

|K|

)
.

The de�nition of what is random is elusive, although there are tests to assess the
randomness of a string. For this reason, the di�erence between randomness that is good
enough for a simulation or the decisions in a game and randomness suitable for

8

cryptographic use is often subtle and not properly analyzed. The use of poor random
generators for cryptographic purposes has been repeatedly documented.
From the deliberate construction of backdoors [1] to API misuse [2], the usage of
random number generators that are not random enough is a major problem in present
day cryptographic implementations [3].
Furthermore, without access to a true randomness source, a good randomness function,
i.e. a Cryptographically Secure Pseudo Random Number Generator (CSPRNG) a seed
is required: a value that initializes the CSPRNG. The CSPRNG is, after initialization,
deterministic: given a seed, the string of random values produced will always be the
same. Examples of bad seeds are a constant integer or a function of the system time,
and yet the most remarkable mistake regarding seeds is repetition: to use the same seed
in two instances of the CSPRNG. One scenario is the non-random presetting of a key:
choosing an arbitrary but �xed seed defeats its purpose. Another, more subtle
alternative appears when the seed is derived from network, physical and software
parameters, since these parameters do not have enough variance/randomness to act as
an acceptable seed.
In both cases, the choice of a weak seed will lead to di�erent independent systems
inadvertently sharing keys and the possibility for attackers to calculate it themselves.

2.2.3 Access Control

Access control is, after cryptography, the most e�cient family of controls to ensure
con�dentiality and integrity requirements. It is possible to de�ne a �exible set of actors,
actions, assets and permissions to model �ne grained policies.
Unlike cryptography, access control is not applied directly on the protected asset, but on
its containers: e.g. operating systems, physical facilities, application servers or network
infrastructure. As a result, if access control is overridden, the protected asset is exposed.
Even under the assumption of a �awless implementation of access control mechanisms,
its con�guration is neither static nor trivial. As a result, its maintenance becomes a
highly demanding operational task that is likely to be neglected when it interrupts the
execution of more productive ones. In other words: business continuity is likely to
antagonize access control, deteriorating over time the accuracy with which access
control rules re�ect the business rules, diminishing its e�ectiveness as a control.
Another security limitation of access control schemes is that they can fail silently. For
example, a �rewall that is not �ltering packages will work as well as one that only
accepts authorized requests as long as only authorized requests are sent.
As a result, relying on access control mechanisms to protect a private key can be
considered a good practice, albeit insu�cient. The key can be leaked inadvertently and
the policies might even allow access to another existent but unauthorized user (i.e.
escalation of privileges).

2.2.4 Application Vulnerabilities

Even when a cryptographic algorithm is secure according to a mathematical model, its
implementation requires interaction with existing technologies and their limitations:
response times, APIs, data types, abstractions, frameworks and legacy applications. As
a result, the vulnerabilities of the underlying technology are inherited by the
implementation and need to be addressed or accepted. For example, a cryptographic

9

library in C needs to acknowledge the possibility of bu�er over�ow attacks and prevent
information leakage by exploitation of the same.
One of the biggest recent examples of the extent to which application dependencies can
lead to major security incidents is the vulnerability CVE-2014-0160, publicly known as
Heartbleed. The vulnerability a�ected OpenSSL, a major open source library for SSL
support. Under certain conditions, the bug enabled the remote recovery of server side
information, including in some scenarios the secret key of the server. The number of
vulnerable Internet servers varies according to the measurement criteria, but the
vulnerability existed for years before being revealed and a�ected a vast amount of the
most visited websites on the Internet [4].
Heartbleed is not the only internet-wide major vulnerability disclosed in the last years,
and the fact that it remained undiscovered for so long reveals how subtle and critical
the security assessment of an application can be.

2.2.5 Poor Protection of Multiple Copies

It is not realistic to assume that there is one single instance of a cryptographic key that
can be used arbitrarily and safely without moving it or copying it. In a real computer,
the key can be stored in secondary storage. When it is needed, a copy is generated in
main memory. Furthermore, the requirements of availability may lead to store backups
of the key in di�erent information systems (either cold or hot backup). Finally, for
practical or economical reasons, the same key can be used for di�erent solutions that
implement a variety of protocols.
Since each copy of the key is identical, each of them has exactly the same value. For
instance, a digital document can be signed with any of the copies of the key with
exactly the same validity. The main impact of this remark is the fact that the key is
only as secure as the most vulnerable of its containers.
If the key is stored in an encrypted hard drive, but it is not deleted from RAM once it
is used, it may be easier for an attacker to dump the RAM than to decrypt the content
of the disk. Likewise, if the cold backup is stored in a warehouse that is only secured
with a lock, it will be easier for an attacker to steal that copy and leave no digital trace
of the theft.

2.2.6 Malpractice

One of the least obvious consequences of implementing a cryptographic protocol in a
computer is that other processes, unrelated to the protocol itself, can jeopardize the key
to the point of making the whole solution super�uous.
The security malpractices that can leak the key are diverse in nature, propensity and
exploitability. Failure to erase the key from a hard drive that is being disposed of
enables a dumpster diver to access the key.
Additional examples of poor security practices include negligent access control
con�guration (e.g. chmod 777 in Unix systems, used as a way to debug errors related to
system permissions), unsafe transmission of the key material or inadvertent publication
in a public repository.

10

2.2.7 Side Channel Attacks

The �eld of side channel attacks is the result of the realization that every cryptographic
primitive is executed within a physical machine that may be used for more than a single
purpose. As a result, it assesses the implications of that observation in terms of the
security of that primitive. The possibility of retrieving a cryptographic key from the
analysis of the temperature, power consumption or environmental noise de�es the
validity of the abstraction in which computer scientists work. When security is involved,
a black box that follows a protocol deliberately omits details that can falsify any
security assertion.
Furthermore, the analysis of the e�ects of concurrency, processing scheduling, latency
and shared memory, among other characteristics of modern computational
environments, provides additional information to adversaries that cannot be fully
predicted by mathematical models.
The possibility of attacking the underlying system that implements a cryptographic
primitive to break its security is a latent and inherently chaotic threat that needs to be
addressed as part of a cryptographic implementation.

2.3 Key Storage Solutions

The variety and subtlety of attack vectors on a key do not imply that the key is
inexorably exposed and that all keyed cryptographic primitives are insecure. It does
imply, however, that key management is a critical issue and the decisions made around
it may impact the security claims made about the whole system.
This section explores solutions to the problem of key storage and the guarantees that
can be o�ered by each of them.

2.3.1 Cleartext

A cryptographic key can be represented in a �le. One of the most commonly used
representations for that is the ASN.1 notation. ASN.1 is typically used to encode the
attributes of a cryptographic key in a multiplatform, standardized way. A �le that is
encoded correctly can be copied, transmitted and read like any other �le within the �le
system.
This representation is, however, insu�cient for the storage of secret data. A cleartext
key can be leaked or tampered with trivially, and the detection of any compromise is
unlikely, even in the long term. Although the implementation of �le system access
control measures can reduce the attack surface, this representation is still too
vulnerable against experienced attackers.

2.3.2 PKCS#12

The Public Key Cryptography Standards (PKCS) de�ne the parameters for encoding
cryptographic material used for public key schemes, including certi�cates, revocation
lists, certi�cate signing requests and private keys. In particular, the standard PKCS#12
de�nes the concept of a keystore. The standard is also described in RFC 7292 [5]. A
single keystore may contain di�erent entries, identi�ed by a string knows as alias.
One of the features that di�erentiate a keystore as the container of sensitive material
from a normal binary �le is the de�nition of �several privacy and integrity modes� [5].

11

As a result, the transmission and storage of personal identity information (i.e.
cryptographic keys and associated information) can be protected with a password
derived key or another key pair.
Although it is theoretically the most powerful option, the use of another key pair just
transfers the problem, since the new key will also need protection. As a result, the
popular implementations of the protocol (in particular, it is the default mechanism for
the retrieval of a private key from the major Internet browsers and operating systems)
favor the use of password protected keystores.
As a general idea, a password is used in the PKCS#12 standard to derive a symmetric
encryption key. However, the standard o�ers di�erent levels of granularity, which may
or may not use the same password. The �rst separation occurs between privacy and
integrity: the encryption and MAC algorithms might use the same password, or require
two di�erent. Furthermore, in addition to global level passwords, it is possible to
establish passwords speci�c for each entry in the keystore.
Although the use of key derivation functions reduces the viability of password guessing
attacks, the use of passwords enables usability malpractices that can lead to a leak of
the private key. Some of the pitfalls, enunciated by [6] more than a decade ago and still
present in the industry, lead to the conclusion that no security critical decision should
be left to the discretion of the �nal user, if it can be avoided. Some examples were the
reuse of the same key in di�erent environments or sending the password along with the
keystore.
Another speci�c scenario involves access to the key material by an automated process.
Be it a server that supports SSL communication, or an application compatible with
PGP, the problem appears when asking the user every time for the password is not
feasible or makes no sense for the speci�c process. The storage of the password becomes
necessary but problematic. As a result, the password is stored in locations that are not
designed to store sensitive information, such as a shell script that calls the encryption
process, or an unprotected text �le. In general, a password has the same limitations and
privacy requirements as a cryptographic key, with the additional issue of being human
readable, and could therefore be leaked in unexpected ways. Section 6 of RFC 7292
states just that limitation and suggests guidelines to maximize the e�ectiveness of
password based protection.
It must also be noted that the PKCS family focuses on containers and de�nitions for
public key encryption material, and thus could be unsuitable for the storage of other
kinds of cryptographic material.

2.3.3 Trusted Platform Modules (TPM)

A Trusted Platform Module (TPM) is a purpose-speci�c processor designed to support
cryptographic operations in general purpose computers, standardized by ISO-11889 [7].
Along with security controls against unauthorized use and cryptographic support, its
architecture supports random number generation and key storage.
The TPM is designed to isolate the storage and usage of cryptographic material, as well
as the randomness generation, from the data and instructions, reducing the possibility
of key leakage due to API misuse. Given its increasing presence in consumer products,
it is used to support cryptographic functionality such as BitLocker, the application for
Full Disk Encryption available in recent Windows versions.
The most recent version of TPM, 2.0, enables support for the most common

12

cryptographic algorithms, such as RSA, SHA-1, SHA-256 and elliptic curve. However,
no speci�c algorithm is mandatory. In terms of physical portability, a TPM is as
portable as the computing system that contains it.

2.3.4 Smart Cards

Smart cards are very limited computing devices that rely on a card reader as a power
and communication source. Although they are not designed to enable intensive
operations (neither in terms of time nor space), they often include built-in support of
standard cryptographic primitives. As a result, they are a popular, portable and
isolated environment for the storage and usage of cryptographic keys.
The standard ISO/IEC 7816 [8] de�nes the features of contact, contactless and hybrid
smart cards, and their cryptographic capabilities are often certi�ed to some level of the
FIPS 140-2 standard [9]. As a consequence, smart cards are used as a strong
authentication mechanism. On the other hand, their functionality is neither scalable
nor very �exible, and their portability enables non-conventional attack vectors, mainly
within the realm of side channel attacks.
A popular development platform for smart cards is Java Card, which is designed as a
subset of the Java language for resource constrained devices. Although it shares its
syntax with Java, Java Card su�ers from a limited API and extremely limited storage
and processing power. It is designed to support classical cryptographic algorithms, such
as AES, RSA and the SHA hash family. However, it does not o�er support for
homomorphic encryption schemes, including ElGamal. An application developed for
Java Card is known as an applet.

2.3.5 Hardware Security Modules (HSM)

A stronger instance of the separation between cryptographic and business operations is
known as a Hardware Security Module (HSM). An HSM is an appliance that
implements tamper-evident and tamper-resistant mechanisms around an
application-speci�c cryptographic computer.
HSMs are considered one of the most e�cient mechanisms for the secure storage and
usage of cryptographic material, supporting the operation of critical processes such as
online banking, military communications or the operation of a certi�cation authority.
They are subject to strict security certi�cations, of which FIPS 140-2 [9] is the most
prevalent. The modules include mechanisms that enable high availability, secure key
backup and e�cient encryption.
Despite being recognized in the industry as the most powerful option, HSMs are not
cost e�cient for every critical process, even when the information being protected is
highly sensitive. Furthermore, very few HSMs enable customized functionality, and the
ones that do are even more expensive. As a result, the search for cheaper ways to
obtain similar levels of assurance and greater levels of customization becomes an
important research �eld.

2.4 Secret Sharing and Threshold Encryption

The approach for key protection described up to this point is to treat a key as a single
point of failure. If there are several copies of the key, each of them is critical, since the
leak of any of them compromises the security of the system as a whole, regardless of the

13

controls implemented around the other copies. In this section, the aim is to distribute
the risk so that, if the controls around one copy are compromised, the security of the
system remains resilient.
The most popular approach in this direction is Shamir's Secret Sharing Scheme [10],
remarkable as a cryptographic scheme that is both practical and
information-theoretically secure. In this approach, the key is split into shares that can
be used to reconstruct the key later on.
This approach introduces two concepts: secret sharing and threshold.
A secret sharing scheme involves two phases: the generation of the shares and the
reconstruction phase. For the generation of the shares, two parameters are de�ned: the
number of shares n and the threshold t. The shares are generated from a secret s and
distributed among di�erent trustees. The reconstruction phase allows the calculation of
s if and only if at least t shares are available. After the reconstruction phase, the secret
is no longer shared.
The selection of the values t and n depends on each speci�c scenario, strongly
determined by its practical constraints. How many trustees will receive a share? Should
one trustee receive more shares than another? Which is the minimum amount of
trustees required to perform the threshold reconstruction? It is essential to note that
di�erent choices for these values will result in di�erent implications.
A high threshold will reduce liability in the case where few shares are compromised or a
group of the trustees collude. If more shares are required (i.e. if t is bigger), a collusion
or an attack will need to compromise a wider attack surface. On the other hand, if the
threshold is too close to the total number of shares, the integrity and availability of the
key is jeopardized. In the extreme case, if n = t, it would su�ce to lose or corrupt one
share to make the system unusable.
Threshold schemes, thus, o�er resilience or security, but for most reasonable values,
these features constitute a trade-o�.

2.4.1 Shamir's Secret Sharing

As mentioned earlier, Shamir's Secret Sharing scheme is one of the �rst and most
popular secret sharing schemes [10]. Given a secret value s ∈ Zp, it produces a set

14

S = {S1, ..., Sn} as follows:
Algorithm 1: Shamir.SecretSharing

input : s, t, n
output: a, S

1 a0 ← s;
2 for i← 1 to t− 1 do

3 ai
$←− Zp ; // Create [t] random coefficients

4 for i← 1 to n do
5 xi ← getX(i) ; // Creates a value of [x] for the [i]-th share

// Polynomial evaluation:

6 yi ← a0;
7 for j ← 1 to t− 1 do

8 yi ← si + aj · xj
i

9 si ← (xi, yi)

10 a← a0, ..., at−1;
11 S ← s1, ..., sn

The only requirement for the function getX(i) is to produce di�erent values in Zp for
di�erent inputs of i. In particular, de�ning getX(i) = i is acceptable. As a result, the
indexes can be public.
A set S ′ = {S ′1, ..., S ′t} such that S ′ ⊆ S can be used to reconstruct the secret s using
Lagrange interpolation as follows:

Shamir.SecretReconstruction(S ′ = (X ′, Y ′)) = s = L(0) =
k∑

j=0

Y ′j

k∏
m=0,m 6=j

X ′m
X ′m −X ′j

(1)

2.4.2 Veri�able Secret Sharing

In the basic Shamir's secret sharing scheme, the trust in the dealer is absolute: the
trusted parties receive values in Zp that are indiscernible from random. The de�nition
of the scheme ensures that a group of at least k parties will be able to produce a secret
s∗, but there is no way to prove to the shareholders that s = s∗.
This is particularly critical when the secret is to be used as the private key of an
encryption scheme. If the dealer creates a key pair (sk, pk), publishes pk and then
distributes n random values in Zp instead of correctly calculated shares, all the
messages encrypted using pk will be lost, since (with overwhelming probability) those
shares will not produce the value sk. In the case of a voting process, the error could
only be detected after the election is over and all the votes would be lost.
The approach to reduce the impact of this observation is known as Veri�able Secret
Sharing (VSS)[11]. The aim of VSS is to ensure consistency by verifying that the shares
are not randomly chosen values. In the case of the key pair, the objective is to prove
that an arbitrary share si is a valid share for the secret key sk. In particular, this
validation should be possible without requiring access to the other shares, disclosure the
value sk nor initiation of the reconstruction process.

15

The models for VSS vary depending upon the nature of the secret. For instance, in the
case of a key pair (sk, pk), the relationship between the secret sk and the public value
pk can be used to prove properties of sk without revealing its value. The scope of VSS
is de�ned in [12] in two points:

1. Prevent a malicious dealer from distributing incorrect shares to the participants
(i.e. send s∗ 6∈ S, where S =SecretSharing(s) for an arbitrary secret s).

2. Prevent a malicious trusted party from contributing with an incorrect share to
SecretReconstruction (i.e. for a user i, to send s∗ 6= si).

2.4.3 Distributed Key Generation

VSS is an important building block in threshold cryptography, but its functional
purpose is unclear until it is looked at in the context of Distributed Key Generation
(DKG). The goal of DKG is to securely distribute shares of a secret key among
authorized users. The exact extent of the term securely depends on the di�erent
scenarios considered. Speci�cally, the security model depends on the existence or
absence of a trusted dealer.
If there is a trusted dealer, its function is to create the secret value and distribute its
shares using a VSS scheme. If there is no trusted dealer, each of the trusted parties
contributes to the calculation of a shared secret. An example of a DKG protocol
without a trusted dealer is discussed in section 4.4.2.

2.5 Cryptography and E-Voting

This section shifts the perspective from key management to the other end of the
problem of this thesis: online voting. The description of voting as an information
security problem shares so many elements with the description of a Multi-Party
Computation (MPC) protocol that both research areas are intricately entangled and the
results of one often are a generalization (or an instance) of the other.
A voting process involves a simple objective, the aggregation of the points of view of a
group of valid voters into a measurable result (the tally). Given a set of previously
de�ned rules, the functional side of the solution is not likely to pose a hard engineering
challenge. The security of the process, however, is complicated by a diverse set of actors
who, guided by a wide range of motivations, may collude to in�uence the value of the
tally.
Each of the entities involved in a voting process has the right or the duty of ful�lling a
particular role in the process. For example, the voters may cast a vote, the registration
authority must issue identities and the tallying authority has to aggregate the values of
the votes cast. However, each of the parties might be willing to exceed their in�uence in
the process, and therefore each of them has reason to mistrust the others.
When the dynamics of the process lead to requirements that seem to be contradictory
(such as ballot secrecy and veri�ability), the attempts to satisfy them call for the use of
specialized cryptographic approaches. The techniques, thoroughly documented in [13],
include homomorphic encryption, mix-nets, blind signatures, Zero Knowledge Proofs
and commitments.

16

2.5.1 Availability of Technology

It is important to remark that while there is broad support of cryptographic
functionality, both in the form of APIs and end user products, said support is focused
on the protection of the world driven by content and multimedia that represents the
majority of all Internet tra�c.
A survey on encryption products was published in February 2016 by a team led by the
researcher Bruce Schneier [14]. Although the researchers themselves acknowledge that
the content might be incomplete or inaccurate (the research relied on crowdsourcing as
one of the sources for the data), the survey aims to re�ect the main trends in terms of
cryptography implementations. The survey identi�es 865 solutions that range from
incipient projects to mature corporate solutions, enabling encryption in di�erent
categories, including �le encryption, secure �le transfer, email and IM encryption,
cryptographic libraries, secure calling and decentralized Internet tools (anonymizers,
cryptocurrencies, onion browsing, proxies, etc.). None of them involves explicitly
Multi-Party Computation or Zero Knowledge Proofs 1. There are two open source C++
projects that claim to support homomorphic operations. One of them is labeled by its
authors as �mostly meant for researchers�[15].
In particular, there are no broadly accepted and tested implementations. While modern
programming languages have native API to support cryptographic operations (e.g. Java
Cryptography Architecture) and libraries like BouncyCastle [16] and OpenSSL [17] are
widely used, tested and maintained, implementations related to MPC functionality are
scarce and mostly proofs of concept, which means that they are not designed to be used
securely in production environments.
There are implementations of MPC across the world, but the fact that they are not
identi�ed under the spotlight of such a broad survey suggests that the knowledge is very
centralized and inaccessible.

1Three of the products use the term zero knowledge while describing what is commonly known as
end-to-end encryption. There is no reference to Zero Knowledge Proofs associated with them.

17

3 Key Management in the Estonian Internet Voting

Process

The objective of this document is to present a key management scheme suitable for
electronic voting. As a study case, it examines the case of Estonian Internet Voting,
which has been used as a valid channel for casting legally binding votes since 2005 [18].

3.1 Internet Voting in Estonia

Since its introduction in 2005 the adoption of online voting in Estonia has been slow,
but is steadily increasing. During the European Parliament Elections of 2014 and the
National Parliamentary Elections of 2015, more than 30% of the votes were cast via this
channel.
The main characteristic of the Estonian model is that elections are held over the
Internet, as opposed to an event held within controlled venues2. That design choice
implies the need of a carefully de�ned security model, comprising both strong
mathematical tools and security procedures. In fact, given that the reliability of the
model depends on the right selection and interaction of complex tools, as opposed to
simple concepts such as ballot recounting, there have been evaluators who are not
satis�ed with the Estonian model [19].
One of the measures that can be taken to address the criticisms is to ensure that the
technical implementation is as faithful to the proven security models as possible. Within
this approach, the protection of the secret key material becomes a critical aspect.

3.1.1 Current Status of Internet Voting

The Estonian identi�cation card gives every citizen two certi�ed key pairs for
authentication and document signature. This mechanism enables the creation of a
secure channel with bidirectional strong authentication between organizations and
individuals, in order to enable security controls for important services such as online
banking or Internet voting.
The existing implementation of Internet voting in Estonia uses pure public key
encryption and digital signatures in a double envelope scheme. Since 2013, a mechanism
for out of band cast-as-intended and recorded-as-cast vote veri�cation has been
implemented on top of the existing system, introducing a mobile application for
veri�cation, independent of the core voting system by design Heiberg and Willemson
[18].
The vote is protected by a scheme known as double envelope. The scheme de�nes two
independent layers of encapsulation for the vote. For the Estonian implementation, the
inner layer is the the value of the vote encrypted with RSA-OAEP using the public key
of the voting authority. The outer layer is the signature of the encrypted message, using
the signature key of the identi�cation card of the voter. The two layers are processed
sequentially by di�erent components of the system. Once all the votes are cast, one
server veri�es the signature of the votes, removes it from the message and sends the
votes, now merely encrypted, to the device in charge of the decryption of the messages.
Currently, the decryption device is a Safenet Luna SA HSM.

2The possibility of paper voting at a precinct is also available in Estonia, but is considered as an
entirely di�erent voting channel.

18

3.1.2 Need for Stronger Controls

The Estonian Internet Voting system is simple by design. It can be explained to
non-technical voters by analogy to voting by physical mail and there are no black box
procedures that would generate suspicion. Although it requires a strong technical
background, the implementation details, including the source code, are publicly
available for audit. However, there are still attack vectors that can be exploited.
One remarkable example is the removal of the two envelopes. In principle, there are two
servers srv1, srv2. srv1 receives a batch of votes, each of them of the form
Sigvoter(Encauthority(vote)). It veri�es and stripes the signature from the votes.
Afterwards, it sends to srv2 the encrypted votes as a set of elements of the form
Encauthority(vote).
If only srv2 has the secret key skauthority, srv1 can only verify the signatures without
learning the value of vote. If srv2 receives only encrypted votes without a signature, it
cannot track a speci�c vote back to a voter.
However, if there is a channel between srv1 and srv2, the cooperation between the two
servers can break the secrecy of the ballot. A mix network can be implemented to
mediate the communication between srv1 and srv2 while hindering this attack vector.
In a broader sense, a voting scheme needs to employ non-conventional cryptographic
techniques to defend against certain attack vectors that cannot be ruled out within a
voting scenario. This document focuses on the impact of that fact in the problem of key
management.

3.2 Current Approach to Key Management

The current infrastructure of the Estonian Internet Voting system relies on an HSM for
decryption, in the role of srv2. Before the election, the election o�cials are given
hardware tokens. After all the votes are cast, the o�cials connect the tokens to the
HSM and, employing a threshold secret sharing scheme, the votes are decrypted using
traditional RSA-OAEP. The secret key is only used during the tallying phase of the
process, but the secrecy of the ballot (speci�cally, the link between the identity of a
voter and their vote) must be guaranteed for a long term.
The functionality of the HSM is very well de�ned, and subject to rigorous certi�cation
processes [20, 21]. However, the security guarantees for the key come at the cost of
�exibility. As a result, the functionality that can be implemented is very restricted.
On the other hand, for several security critical processes the cost of acquisition and
maintenance of an HSM can be hard to justify. Even more so when the process
produces no income to cover its operational costs.
The search of more cost e�ective alternatives to protect cryptographic keys for online
voting schemes is the main motivation for the present work.

3.3 Scale in Estonian Internet Voting

The size of a nation-wide election is an important factor, even though Estonian
population is relatively small. In particular, the number of candidates and voters may
vary signi�cantly between elections. Local elections often feature more candidates,
whereas at a country level the amount of voters is the predominant value.
8 elections have been held in Estonia supporting Internet Voting as a voting channel.
The last 5 have registered at least 100.000 Internet votes each. The elections for

19

European Parliament in 2015 in Estonia listed 88 candidates. There were almost
900.000 eligible voters, of which nearly 177.000 cast their votes online [22]. During the
local elections of 2013, for the Tartu City Council election alone the number of
candidates went up as high as 437 [23].

20

4 Solution Design

The scenario of online voting introduces a series of trade-o�s. Between security and
enfranchisement, between di�erent security requirements, between security and
e�ciency, and so on. Since security is often one of the most critical and ubiquitous
requirements in dispute, this section aims to de�ne parameters to enable a comparison
between key management strategies. After de�ning these parameters, three solutions for
key management in online voting scenarios are proposed.
As described in section 3.1.1, the Estonian Internet Voting system relies on a double
envelope model, where the innermost envelope, which contains the encrypted-only vote,
is decrypted by an HSM. The following table presents the main security features of the
current HSM-based approach to key management in the Estonian Internet Voting
System, as well as additional features that can strengthen the security o�ered by the
system:

Parameter Description

HSM functionality3

Asymmetric algorithms Batch decryption of votes, currently using
RSA. Support for standard ElGamal

Random Number Generation FIPS 140-2 approved DRBG (SP 800-90
CTR mode)

Level of tamper controls Tamper evident, tamper resistant
Security certi�cations FIPS 140-2 Level 3 [20], Common Criteria

EAL 4 (augmented) [21]
MTBF4 66561 hours
Access control Threshold USB tokens
Scalability The scheme is able to support a nation-wide

voting process for the Estonian system, ac-
counting for its consistently growing adop-
tion (see section 3.3)

Desired additional functionality

Homomorphic encryption support Additive homomorphic encryption protocols
relying on standard security assumptions
(e.g. Lifted ElGamal, Paillier, Damgård-
Jurik)

Zero Knowledge Proofs Sigma protocols

4.1 Key Management Quality Assessment

The con�dentiality of a cryptographic key is harder to formalize than the con�dentiality
of raw data because it is at the end of the chain of assumptions. An encryption

3According to the o�cial functionality described in [24]
4Mean Time Between Failures. Standard availability measure

21

algorithm, for instance, is secure under a particular de�nition if a set of conditions hold.
One of them is the con�dentiality of the key. If the key was treated as raw data and
encrypted, then there would be another key that would need protection itself, just
propagating the problem.
As a result, the comparison between key management strategies requires the de�nition
of its potentially relevant properties. There are good practices de�ned for certain
scenarios, but there is no mature framework to compare di�erent features. This section
will propose a de�nition of such a framework, at least within the scope of cryptographic
protocols for online voting.

4.1.1 Trusted Computing Base

In information security the term Trusted Computing Base (TCB) refers to a set of
components of a system that need to be assumed as �awless, both in terms of
functionality and security, in order to be able to build a security model on top of it. It
is inherent to the problem: if not even the basic operations of a processor can be
trusted, it is impossible to verify that the system implemented actually behaves as it
was designed.
For the purpose of this document, the hardware designed speci�cally for cryptographic
functionality (i.e. TPMs, HSMs, smart cards) will be assumed to be within the scope of
the TCB. The operations supported by these devices are assumed to work exactly as
described and the storage space can only be accessed by an authorized party.
The scope within which the trustworthiness of said devices can actually be held depends
on the speci�c device, and can only be supported by means of a thorough evaluation.
For example, the standard FIPS 140-2 de�nes requirements for cryptographic modules
with extensive coverage of tamper protections: evidence, resistance and reaction. There
is an extensive o�er of cryptographic devices certi�ed at some level de�ned by FIPS
140-2.
In particular, the implementation of cryptographic functionality within said
cryptographic hardware is expected to be designed to resist against known side channel
attacks.

4.1.2 Lifecycle of the Key

The attack surface around the key is determined by its lifecycle. By characterizing the
generation, transmission, storage, usage and destruction of the key, it is possible to
describe more accurately the ways in which the key can be retrieved, and therefore
identify how it could be exploited by an adversary. The following criteria are proposed
to de�ne the lifecycle of a cryptographic key:

Phase Feature Description Attribute

Key generation Random number
generation

The key is generated us-
ing as a parameter the ran-
domness generated by a
CSPRNG or a true random
number generator.

Con�dentiality

22

Key generation Veri�able
correctness
of generator

The key is generated ac-
cording to the parameters of
the algorithm and the cor-
rect generation can be at-
tested.

Con�dentiality

Transport Encrypted
transport

Any communication of sens-
itive material (i.e. key
or randomness) beyond the
boundaries of the TCB.

Con�dentiality,
Integrity

Usage Access control It is possible to de�ne
roles and authorized actions
around the key. The rules
can be provably enforced.

Con�dentiality

Usage The key cannot
be used by an
unauthorized
actor or group

No operation (e.g. encryp-
tion, decryption) can use
the key if it is triggered
by an unauthorized actor or
group.

Con�dentiality

Storage Tampering pro-
tection

The key cannot be modi�ed
(i.e. replaced by another
key or destroyed) by an un-
authorized actor or group.

Integrity

Storage Resilience The key can be used
after the failure or non-
availability of parts of the
TCB.

Integrity

Key destruction The key can
be destroyed
irreversibly

It must not be possible to
use or retrieve any copy of
the key.

Con�dentiality

The main idea of these criteria is to remark that obtaining the key is not the only way
to break its security. Any aspect of the scheme that leads to calculate the key,
non-negligibly reduce the key space or produce a valid encryption is equally critical to
the security of the system and needs to be prevented.
Within the scope of this document, this framework is qualitative. The security of the
key management strategy can be described in terms of the parameters presented, but no
quantitative measure of security is produced from it.

4.2 Design Option 1: Replacing the HSM with Smart Cards

Summary: While the process remains unchanged, the decryption of the votes is
supported by smart cards instead of an HSM. A threshold decryption scheme would
enhance the decentralization of the model.
Smart card model: Feitian JavaCOS A22
Technology: Java Card 2.2.2

23

Description: there is a breach between the models for usage and security of an HSM
and the ones of a smart card. HSMs are mechanisms designed to be a centralized
system that can be accessed by di�erent users with di�erent clearance levels. As a
result, they support strong access control techniques, such as threshold secret sharing.
On the other hand, smart cards are intended for personal usage and possession is
already assumed to be a proof of authorization. In some cases additional controls such
as PIN codes are in place, but they do not support any kind threshold schemes natively.
Threshold schemes are paramount to certify that no single individual has too much
power within an election.
In particular, there are threshold decryption schemes (based on VSS with untrusted
dealer) for public key encryption systems such as RSA[25], ElGamal[26] and Paillier[27].
One of the simplest schemes involves ElGamal.
As it has been stated previously, cryptographic hardware is very limited with regard to
the algorithms supported, and traditional ElGamal is not supported. However,
ElGamal relies heavily on the same operation as RSA: ab mod c.
This fact enabled objective of building a prototype for that functionality, but hindered
its performance. It was possible to implement support for ElGamal as a Java Card
Applet, but the performance of this software-based implementation was very low. The
time was very stable, but very high. Each exponentiation would require between 615
and 625 ms. A single card performed on average 500 operations in 309 seconds. Given
its stable behavior, it is estimated that it can perform nearly 5800 operations within an
hour.
In other words, just for the most basic implementation of ElGamal, without enabling
any threshold feature, considering the transmission time of the ciphertext, analyzing
vulnerability against timing or other side channel attacks, and assuming a very
conservative voter turnover rate, 20 cards running in parallel for one hour would be
required to decrypt the votes for a single country-wide Estonian election.
Even for the execution of built-in operations, smart cards (and Java Cards in
particular) are too slow to support the decryption of a big number of ciphertexts.
Result: It is not scalable enough to ful�ll the requirements of a nation-wide election.

4.3 Design option 2: Smart Cards with Homomorphic Tallying

Summary: Preprocess the ciphertexts in a more powerful system using homomorphic
tallying techniques. Use smart cards to decrypt only the tally.
Smart card model: Feitian JavaCOS A22
Technology: Java Card 2.2.2, preprocessing server
Description: The main obstacle identi�ed during the design of a solution involving
smart cards is the amount of decryption operations that are required. Homomorphic
encryption schemes enable certain operations (addition, for instance) on ciphertexts
without decryption, and, speci�cally, homomorphic tallying is a common example of
how homomorphic addition can be leveraged to produce more complex functionality.
In an additively homomorphic encryption system, there exists an operation ⊗ such that
E(m1)⊗E(m2) = E(m1⊕m2). The addition can be performed repeatedly to obtain the
sum of a set of encrypted values: given a set m of size n, ⊗1≤i≤nE(mi) = E(⊕1≤i≤nmi).
The operation of tallying is not far from the addition of a set. Given a list of candidates
l = {1..L}, a list of votes will be represented by a set v s.t. vi ∈ l. The outcome of the
voting process, T = tally(v) = {T1, ..., TL} is a vector of size L s.t.

24

Ti = |{j|1 ≤ j ≤ |v| : vj = li}|. In plain words, the tally is a vector with the count of the
amount of votes for each candidate.
Given an arbitrary vote vi and a partial tally T ′ = {T ′1, ..., T ′L}, the e�ect of counting vi
into T ′ is to increase the value of T ′vi by 1. However, ballot secrecy demands that the
value of vi remains secret. In other words, the vote must be correctly counted without
disclosing how it was counted.
Homomorphic tallying, �rst proposed by [28], consists of leveraging the homomorphic
properties of an encryption system to enable tallying without compromising ballot
secrecy. A popular approach for achieving this objective is to encode the tally as a
single integer and de�ne the vote to modify only a speci�c portion of that integer. As
an example, let L = 3 and the maximum amount of votes for a candidate be
M = 11112 = 15. The tally will be a 4 · 3 = 12-bit long integer initialized in 0:

T= 0000 0000 0000

A vote v will be a bit string as long as T with only one bit on, corresponding to the
LSB of the region of the tally that represents a speci�c candidate. For instance, a vote
for the candidate 2 will be encoded as:

v = 0000 0001 0000 =16

The addition of both bit arrays will increase the tally by 1:

T= 0000 0000 0000
v = 0000 0001 0000

T + v = 0000 0001 0000

The encoding of the vote can be done e�ciently, thus reducing the tallying problem to
the homomorphic addition problem, under the assumption of an honest voter. For most
realistic voting scenarios, however, that assumption does not hold. As a result, a zero
knowledge proof of validity must be calculated for every vote.
As can be seen in the example, there are two variables that determine the size of the
tally representation: the amount of candidates (L) and the maximum amount of votes
(M) that can be cast. In order to prevent integer over�ow incidents which would
jeopardize the reliability of the election, the size of T in bits must be:

|T | = L ∗ log2M (2)

These are the bit lengths for di�erent values of L and M .

M
PPPPPPPPPlog2M

L
2 10 16 128 1024

4 2 4 20 32 256 2048
64 6 12 60 96 768 6144
1024 10 20 100 160 1280 10240
16384 14 28 140 224 1792 14336
262144 18 36 180 288 2304 18432
4194304 22 44 220 352 2816 22528
67108864 26 52 260 416 3328 26624

25

Considering a reasonable growth margin on top of the numbers in section 3.3, for the
Estonian scenario M = 218 voters and L = 210 = 1024 are sensible dimensions. To
support those magnitudes, each vote would need to be encoded as a 18432-bit integer.
The performance overhead induced by this encoding cannot be disregarded, but could
be accepted if the operations were performed in plaintext in a powerful device.
However, the scheme as a whole is not scalable for several reasons:

1. Homomorphic addition is possible, but not e�cient.

2. Common alternatives of homomorphic encryption with high values, such as the
Paillier cryptosystem, need to perform operations modulo ns where n is the
maximum size of the plaintext and s ≥ 2 (note that the s within the exponent is
an arbitrary constant, not to be associated with a secret value). Arithmetic
operations modulo a 184322 =339738624-bits long number are not supported by
any readily available cryptographic hardware, and are slow in software.

3. The kind of zero knowledge proofs required to attest the validity of the vote
encoding, known as range ZKP, are possible [29], but ine�cient within a smart
card environment. In particular, they become the kind of bulk operation that
needs to be avoided for a smart card based system.

Result: the scalability of the scheme is severely limited by the number of candidates L
and, to a lesser extent, by the maximum number of votes, specially when veri�ability
and smart cards are involved.
Disclaimer: during the later stages of this project we learned about an alternative
approach to homomorphic tallying named vector tallying. Although it still demands
heavily computation-intensive correctness proofs, it is intended to be more e�cient than
the basic homomorphic tallying approach and might be re�ned into a feasible solution
for this problem in the future. The idea is presented in [30] and a recent publication
suggests a performance improvement by generating zero knowledge proofs of correct
mixing of a prede�ned vector, as opposed to proofs of correct encryption [31].

4.4 Design Option 3: Veri�able Secret Sharing in Smart Cards

Summary: the private key is generated in a veri�able distributed manner. It is only
reconstructed at the time of decryption.
Smart card model: Feitian JavaCOS A22
Technology: Java Card 2.2.2, preprocessing server
Description: the options 1 and 2 suggest that threshold decryption cannot be
performed e�ciently for the input sizes of the Estonian Internet Voting scenario. A
possible result is to reduce the security demands of the smart cards within the general
scenario: to implement only a Distributed Key Generation approach.
This scheme considers the possibility of weakening the security de�nition of the system
in order to enable its implementation. Speci�cally, the secret key is built in a
distributed manner, but it needs to be calculated in a centralized manner in order to
perform the decryption. At that point, the key is stored in a new trusted container, and
its security is limited by the security of the container. This container, in practical
terms, could be the computer that reads the smart cards.
A prototype for this functionality was built on the grounds of two previous works that
enable two di�erent aspects of DKG: the �rst one enables an e�cient implementation in

26

Java Card with a trusted dealer and the latter discusses how to remove the trusted
dealer.

4.4.1 DKG in Java Card: the CRISES' Report

A report published in 2013 by a Spanish research group known as CRISES [32],
describes the implementation of a threshold variant of ElGamal �designed in order to
implement all sensitive operations securely into the JavaCard�. The result requires the
existence of a trusted dealer, which is chosen at random amongst the smart cards, but
addresses both at a theoretical and at a practical level some of the most recurrent and
demanding challenges of implementing threshold cryptography on smart cards.
One of the main elements missing in the Java Card API in order to implement custom
cryptographic algorithms is an equivalent to the Java class BigInteger, which enables
support for arbitrary length integers and e�cient modular operations. This class is used
extensively in Java cryptographic implementations such as BouncyCastle [16]. As an
essential building block, the CRISES group built a Java Card class called
MutableBigInteger (inspired by a homonymic class in the Java API), which
implements most of the arithmetic operations. The support for modular operations is
enabled by leveraging the support for RSA operations o�ered by Java Card.
On top of that implementation, the group introduced the functionality required for
their protocol: ElGamal key generation, commitments, secret sharing and ElGamal
encryption/decryption. The group published the code of their prototype on GitHub [33].
Protocol overview
The DKG is documented in detail in the chapter 3 of their report and involves seven
tasks (the VSS task is divided as each part of it needs to produce commitments). The
following description remains informal as a di�erent version of the protocol will be
proposed at the end of this chapter:

1. Election and certi�cation of the electoral board: de�nes the trustees that
will form the voting authority (i.e. the n shareholders) and the initialization of
the smart cards.

2. Creation of the electoral board: the information about the other parties is
shared. Particularly, the threshold con�guration and the digital certi�cates of the
other smart cards are stored in each of the cards.

3. ElGamal key generation: all the cards get the public ElGamal parameters.
One card is selected randomly as the dealer. The dealer generates an ElGamal key
pair (sk, pk).

4. Veri�able Secret Sharing: The dealer generates the shares of the secret value,
distributes the shares and destroys the value sk.

(a) Phase 1 - Coe�cients: generates the coe�cients of the Shamir
polynomial. Commits to them.

(b) Phase 2 - Values of x: builds the polynomial and de�nes the output of the
function getX(i) for 1 ≤ i ≤ n. Commits to the values produced.

(c) Phase 3 - Shares: evaluates the polynomial, producing S. Securely
eliminates sk. Commits to the shares.

27

5. Share distribution: creates secret authenticated channels between the card of
the dealer and each of the other cards using their digital certi�cates. Sends one
share to each of the smart cards. Securely eliminates the shares that were
transmitted.

6. Share veri�cation: each smart card decrypts its share and veri�es the
commitments associated.

7. Share signing: each smart card signs a commitment to its share and makes the
commitment public.

The expectation of �secure deletion� of the secret and the shares is the single point of
failure that is not acceptable for this scenario. Since there is no way to prove that the
deletion occurred, it is possible for the dealer smart card to keep the secret
inadvertently, either accidentally (e.g. the card is removed before the deletion is
invoked) or intentionally (e.g. the code is tampered to not remove the secret).
E�ciency results
The CRISES' report includes a benchmark of their protocol, covering the operations
performed on the smart card. Individually, the operations are slow but considered
acceptable: the share generation and distribution is performed within minutes, whereas
the decryption is performed in a matter of seconds.
This result is consistent with the one of the design option 1 presented in section 4.2, in
the sense that decryption is not scalable to the level of a batch operation. The report,
accordingly, remarks that this system needs to be used in the context of homomorphic
or hybrid voting systems, but is not realistic in the scenario of mixnet based e-voting
protocols.

4.4.2 Untrusted Dealer

An approach to remove the need of the trusted dealer is presented in [34]. It is based on
the ElGamal cryptosystem [35] and a VSS variant of Shamir's Secret Sharing. Once the
share generation is �nished, the encryption, reconstruction and decryption phases are
essentially unchanged.
The key distribution process requires that each authorized party executes the protocol,
and uses the data published by the other parties in order to complete it. The protocol
de�nition here is adapted to re�ect its execution in a concurrent, potentially distributed
environment. Let A be the list of authorized shareholders and Ai denote a unique
identi�er of the i-th shareholder. The function broadcast(m) shares a message m with
all the other parties, whereas send(i,m) shares the message m via a secret
authenticated channel with the shareholder Ai.
The de�nition takes the parameters p, q, g from the underlying ElGamal scheme and the

28

threshold values t, n. The �rst step in the process is the key generation:

Algorithm 2: PedersenDKG.LocalKeyGeneration

input : p, q, g
output : xi, hi

executed by: every Ai ∈ A

1 xi
$←− Zq;

2 hi ← gxi ;
3 r ← R ; // Set R not specified in the source

4 Ci ←Commitment.Commit(hi, ri);
5 broadcast(Ci)

The key pair generated by Ai must not be in�uenced by any other value hj(i 6= j). To
ensure that property, each shareholder commits to its own hi before getting access to
hj. Once each shareholder has generated its commitment, the commitments are open
and a shared public key is calculated:

Algorithm 3: PedersenDKG.SharedPublicKeyGeneration

input : hi, C
output : h
executed by: every Ai ∈ A

1 broadcast(hi, ri);
2 for Aj ∈ A \ Ai do
3 wait(hj, rj) ; // Wait for the other parties to publish their public

key values

4 if Commitment.Open(hj, Cj, rj)=0 then
5 stopAndReport(hj, Cj, rj)

6 h←
∏n

j=1 hj;

Since all the public shares hi were broadcast, each actor in A obtains the same public
key, which is to be made public also for the voters. The rest of the key generation
protocol is focused on the cooperation necessary to calculate shares for the value of
x =

∑n
i=1 xi such that h = gx while preserving the (t, n)−threshold properties.

For the next step, each authorized party must execute an independent instance of
Shamir.SecretSharing. The resulting coe�cients and shares will be identi�ed by two
indexes: aj,i will describe the j-th coe�cient of Ai (with the wildcard a∗,i to identify the
whole set of coe�cients of Ai). Likewise, sj,i will describe the j-th share of si. Each

29

authorized party continues its procedure by generating shares of their values xi:

Algorithm 4: PedersenDKG.SharedSecretKeyGenerationInit

input : xi, g, t, n
output : sj,∗ (the shares received from the other parties)
executed by: every Ai ∈ A

1 a∗,i, Si ←Shamir.SecretSharing(xi, t, n);
2 for j ← 1 to t− 1 do
3 Fi,j ← gaj,i ;
4 broadcast(Fi,j);

5 for j ← 1 to n do
6 send(j,sj,i) ; // Note that for the step i=j, the share is send to

itself.

The �rst cycle commits to the coe�cients of the secret sharing polynomial. The second
cycle sends a share of the secret xi to each member of A. In other words, Ai has a share
of each of the secrets created for the protocol. If t members of A agree, they can
reconstruct all of the secrets xi. The last part of the protocol adds the last layer of
veri�ability and aggregates the shares in order to require one single secret
reconstruction process:

Algorithm 5: PedersenDKG.SharedSecretKeyGenerationFinish

input : g, n, si,∗, F, h
output : si. Additionally signs the computed private key h if the key shares

are consistent.
executed by: every Ai ∈ A

1 for j ← 1 to n do

2 if !verify(gsi,j =
∏t−1

l=0 F
il

j,l) ; // Verify share consistency

3 then
4 reportFailureAndStop();

5 si ←
∑n

j=1 sj,i;

6 publish(SigAi
(h))

As originally intended, the result of the process is an ElGamal key pair for which the
secret key is (t, n)−shared. The reconstruction process of the key is the default
Shamir.SecretReconstruction scheme, and the encryption and decryption processes
are the standard ElGamal algorithms.
The PedersenDKG algorithm can be summarized as follows:

Algorithm 6: PedersenDKG

input : p, q, g, t, n
output : s. Additionally signs the computed private key h if the key shares

are consistent.
executed by: every Ai ∈ A

1 xi, hi ←PerdersenDKG.LocalKeyGeneration(p, q, g);
2 h← PerdersenDKG.SharedPublicKeyGeneration(hi);
3 si,∗, F ←PerdersenDKG.SharedSecretKeyGenerationInit(xi, g, t, n);
4 s←PerdersenDKG.SharedSecretKeyGenerationFinish(g, n, si,∗, F, h)

Another useful visualization of the algorithm focuses on the use of commitments as

30

synchronization points, as the algorithm requires that the commitments of the other
parties are generated (and subsequently correctly open) before continuing its �ow:

A1
... An

C1 Cn Each node creates an independent key pair

Open C∗ commitments

F1,∗ Fn,∗ Each node created a set of t coe�cients

Open F∗,∗ commitments

It is important to remark that the de�nition of PedersenDKG.LocalKeyGeneration
uses a generic de�nition of commitment, whereas the coe�cient commitments are
explicitly de�ned as part of the protocol.

4.4.3 Architecture

Although the notation, the entities and the terminology of the CRISES report and the
Pedersen's DKG scheme di�er vastly, it was possible to modify the CRISES source code
to remove the trusted dealer.
A review of the CRISES protocol revealed that the main di�erence between their
implementation and the scheme proposed by Pedersen was the number of users
performing the key generation process.
Java Card debugging is a slow low level process. The deployment of a minor change
takes minutes and the results are often two byte codes, which might be standardized,
application-dependent or both. It is unsuitable to test by itself cryptographic
functionality. The resulting decision was the design of a brand new Java application
that would communicate with the Java Card only when it was strictly necessary.
The interface Broker was designed to represent a party in a threshold protocol. The
class BasicElGamalJavaBroker extends from it in a simple implementation of
traditional ElGamal.
The second implementation, ThresholdElGamalJavaBroker, implemented the behavior
of an actor Ai within Pedersen's protocol. For the communication between di�erent
brokers, a bulletin board was implemented. A bulletin board B is an abstract concept
present in online voting protocols that contains all the messages exchanged between the
parties. A bulletin board supports the abstract functions append and search, but not
delete or edit.

31

Since the nature of the messages in the bulletin board is so diverse, the bulletin board
was divided into a set of subjects, de�ned in the Enumeration BBT. That way, the
functionality of the bulletin board was de�ned:

Algorithm 7: BulletinBoard.addMessage

input : BBT tag, Message newMessage

output : none. The message newMessage is now attached to the subject
identi�ed by tag

1 B[tag]← B[tag] ∪ {newMessage}

Algorithm 8: BulletinBoard.getSubject

input : BBT tag

output : subject

1 subject← B[tag]

The reading functionality in B was designed to return all the messages associated with
one tag (e.g. all the messages with the tag PUBLIC_KEY_SHARE_TAG are to be used
together to calculate the public key).
The creation of the bulletin board made it possible to keep track of the communication
between the brokers, since no message can be exchanged between them in any other
way. Di�erent instances of Message were created, out of which SimpleMessage and
SecretMessage are the most important. SimpleMessage contains a byte array and
SecretMessage contains another Message that can only be read by an intended broker.
Whereas for a real scenario SecretMessage would encrypt-and-sign the message, this
implementation focused on functionality and o�ers no real security to the message.
The �nal phase of the development involved the creation of the class ThresholdEl-
GamalJavaCardBroker, which ported the key generation part of the
ThresholdElGamal- JavaBroker to the Java Card.
The implementation was tested with a (3, 5)−threshold where one of the Brokers was a
ThresholdElGamalJavaCardBroker and the other 4 ThresholdElGamalJavaBroker.
The implementation succeeded both when the Java Card broker was used to reconstruct
the key and when it contributed only to the creation of the secret.

4.4.4 Performance

As described in the previous sections, the key generation protocol implemented is
essentially similar to the version developed by the CRISES group. The main di�erence
lies on the amount of cards used to calculate the secret, and since that task can be
performed in parallel in a system designed to provide almost constant time
performance, the total time of the key generation is not likely to increase. The time for
veri�cation of commitments, however, should increase by a factor of n.
Thus, the results provided by the CRISES group for their approach are not likely to
increase by several orders of magnitude. Their results for the trusted dealer approach,
aggregating the result for di�erent key sizes, were:

32

Operation Performance range (minutes)

Generation of 5 shares 5.56 to 20.10
Veri�cation of a share 1.14 to 4.26

Encryption of 1 message 0.42 to 1.25
Decryption of 1 message 0.27 to 0.70

Since the performance overhead will occur during the key generation phase and will not
increase by several orders of magnitude, the viability of the process remains intact. The
performance-intensive operations can be performed in advance and will not have
repercussions during the election process.
The current implementation of the system contains a non-veri�able version of the
process. In other words, it does neither calculate nor verify commitments. The
non-veri�able share generation process takes in average 95 seconds to generate 5
3-threshold shares, with an error margin of at most 10 seconds.

4.4.5 Solution Analysis

The solutions 1 and 2 were identi�ed as inviable or insu�cient before they were
evaluated in terms of the framework de�ned in section 4.1. However, this last solution
was implemented and is feasible as long as a non-decryption-intensive voting scheme is
introduced. The next step is to analyze the solution from the security point of view.

- Random number generation: depends on the smart card. Java Card supports two
algorithms, ALG_PSEUDO_RANDOM and ALG_SECURE_RANDOM. The Feitian Java Card
supports both, and the implementation makes use of ALG_SECURE_RANDOM.

- Veri�able correctness of the generator: the key generation can be certi�ed in some
Java Cards for standard algorithms. There are no known certi�cations for smart
card environments that certify ElGamal implementations, or threshold
implementations in particular.

- Encrypted transport: the protocol establishes a secure authenticated channel
between TCBs to exchange the secret shares that can be used to decrypt the
secret.

- Access control: the right to calculate and use a secret share is given in this scheme
by the physical possession of the smart card. A PIN code can be used as a second
factor of authentication.

- The key cannot be used by an unauthorized actor or group: t cards are required to
perform a decryption, reducing the impact of the loss of one card.

- Tampering protection: a share must be consistent with the published
commitments in order to be used, and there are n− t cards that can be used as a
replacement if the secret in one of them is tampered with. After the
reconstruction, the key is exposed.

- Resilience: The system can tolerate up to n− t failures (accidental or intentional)
and resist the collusion of groups of at most t− 1 authorized users. For a �xed
value n of authorized users, the selection of t constitutes a trade-o� between

33

con�dentiality and resiliency. After the key is reconstructed, if the key is
tampered with or destroyed, it can be reconstructed again. However, it can no
longer be considered a shared secret, as it existed in its reconstructed state in a
less secure container.

The protocol does not contemplate the creation of additional shares (in case of
loss or failure, for instance), but it is possible to design it.

- The key can be destroyed irreversibly: the key disposal procedure is not de�ned by
the protocol. The shares should be deleted from the smart cards and the
reconstructed copy securely deleted from its trusted container.

Result: assuming a correct implementation and the selection of a reliable Java Card
provider with the right supported features, the scheme can resist the collusion of up to
t− 1 authorized parties and the loss of up to n− t shares. After the key reconstruction,
however, the security of the scheme is limited to the security of the trusted container
used to calculate the secret key.
Additional security controls should be added to harden access control, resilience and the
secure deletion of the key.

4.5 Result Comparison

As the design options 1 and 2 were found to be inviable under the conditions
established, it is only worthwhile to compare the design option 3 against the current
HSM approach. The o�cial characteristics of the HSM were summarized at the
beginning of this chapter, whereas the security analysis of the design option 3 was the
subject of section 4.4.5. Since the HSM results are described in terms of the
functionality of the hardware and the suggested option in terms of the key management
framework de�ned in section 4.1, the following section will summarize the e�ects of
migrating from an HSM to a smart card based approach.

4.5.1 Unchanged Features

HSMs and smart cards are both hardware implementations designed to execute
cryptographic operations within a hardened environment. It is possible to acquire
hardware with similar FIPS 140-2 and Common Criteria security certi�cations for both
systems, and both are used to support security-critical processes. Likewise, although
the set of speci�c algorithms is vendor-dependent, the standardization and
compatibility of cryptographic algorithms is high.

4.5.2 New Features

The Java Card scheme introduces a stronger variant of secret sharing that reduces the
reliance on a single point of failure, although it does not remove it entirely. The
technology enables the generation of zero knowledge proofs as well as the
implementation of homomorphic encryption algorithms.
The overall cost of the process is reduced and the resilience of the process is preserved,
if not strengthened, due to the nature of the threshold protocol. Nevertheless, the most
signi�cant feature achieved is �exibility: the possibility of implementing and executing
arbitrary (if limited) protocols is of utmost importance in an environment where the
majority of the most powerful protocols are not readily available.

34

4.5.3 Impacted Features

The main feature a�ected by the Java Card alternative is the performance of
cryptographic operations. As a result, the variety of voting schemes that can be
supported at a nation-wide scale is severely limited.
Other features that can be impacted are tamper evidence and availability, as HSMs are
designed to be heavy duty hardware and smart cards are not.

35

5 Conclusion and Future Work

This document described the analysis of alternative key management strategies suitable
for the scenario of nation-wide legally binding online voting. The alternatives evaluated
aimed at the use of smart cards as a low cost secure provider of cryptographic
functionalities and key storage. A qualitative framework to evaluate key storage
strategies was de�ned.
While early results already revealed that cryptographic batch operations are not
feasible on the existent smart card hardware, the work of the CRISES group in 2013
had proven that an implementation of threshold decryption in smart cards is possible.
This document described how that work was extended to remove the �gure of the
trusted dealer, although it still needs a trusted party to calculate the secret.
Despite the promising result from the functionality point of view, there is a wide range
of open questions that need to be addressed before their results can be considered for a
practical usage. Some of them build upon the results of the present document, whereas
some constitute orthogonal directions towards the �nal objective. The �nal paragraphs
of this document will attempt to identify and classify them.

5.1 Non-standard cryptography and smart card development

Security certi�cations can be misleading. A smart card certi�ed on FIPS 140-2 may be
designed to be resistant against side channel attacks, but only for the supported
algorithms. The software implementation of unsupported cryptographic primitives may
be ignoring the assumptions on which the security of the smart card is built, and
therefore enabling subtle and dangerous vulnerabilities.
Furthermore, cryptography is a �eld where peer review is essential to prevent minor
bugs from becoming catastrophic vulnerabilities. However, there are no standardization
attempts or even notation agreements when it comes to functionality for zero knowledge
proofs, commitments and other primitives essential to MPC. This is true even for major
programming languages (where there are a few unmaintained projects), and specially
critical for low level implementations. If every implementation of these protocols must
begin by designing how to encode a share, the applicability of the research in this �eld
will progress at a very slow rate.
This call for building blocks is even more urgent in the case of Java Card, where even
arithmetic operations must be rede�ned before implementing any actual functionality.
In fact, the suitability of Java Card as a development platform for cryptographic
functionality should be evaluated. Should the cost in terms of low level thinking, slow
coding rate, learning curve, cryptic debugging and uncertain security expectations be
considered unacceptable for productive scenarios? If that is the case, what would be the
alternative? Is the design of a smart card with native support for these operations a
viable alternative?

5.2 Threshold decryption in online voting scenarios

The security assumption of the voting protocol was weakened in this project to the
point where the key is decentralized until it needs to be calculated for decryption. Since
a scheme with no trusted dealer was implemented, the hardening of that assumption

36

can be attempted, for instance by introducing the idea of threshold decryption. Is it
possible to design a voting scheme that satis�es the following requirements?

1. Distributed Key Generation with untrusted dealer

2. Threshold decryption (i.e. without key reconstruction)

3. Execution of critical operations directly on smart cards (or equivalently secure
hardware)

4. Practical for a nation-wide election process (from the results of this document,
this implies that it must not be decryption-intensive)

5. E�ciently veri�able

5.3 The general key management problem

Since key management is mostly a qualitative information security concern at the core
of the eminently mathematical discipline of cryptography, is it possible to quantify the
quality of an information security approach? Can the parameters introduced in the
qualitative framework in this document be weighed to bear di�erent relevance under
di�erent cryptographic scenarios?

37

References

[1] Dan Goodin. Neutered random number generator let man rig million dollar
lotteries. 2016. url: http://arstechnica.com/security/2016/04/neutered-
random-number-generator-let-man-rig-million-dollar-lotteries/ (visited
on 11/05/2016).

[2] Thomas Hühn. Myths about /dev/urandom. 2015. url:
http://www.2uo.de/myths-about-urandom/ (visited on 11/05/2016).

[3] Arjen Lenstra et al. Ron was wrong, Whit is right. Tech. rep. IACR, 2012.

[4] Zakir Durumeric et al. `The matter of heartbleed'. In: Proceedings of the 2014
Conference on Internet Measurement Conference. ACM. 2014, pp. 475�488.

[5] K. Ed. Moriarty et al. PKCS 12: Personal Information Exchange Syntax v1.1.
RFC 7292. July 2014, pp. 1�29. url: https://tools.ietf.org/html/rfc7292.

[6] Peter Gutmann. `Lessons Learned in Implementing and Deploying Crypto
Software'. In: The USENIX Association (Aug. 2002).

[7] ISO/IEC. Trusted Platform Module. ISO/IEC ISO/IEC 11889:2009. 2009.

[8] ISO/IEC. Identi�cation cards - Integrated circuit cards. ISO/IEC ISO/IEC 7816.
2003.

[9] PUB FIPS. `140-2'. In: Security Requirements for Cryptographic Modules 25
(2001).

[10] Adi Shamir. `How to share a secret'. In: Communications of the ACM 22 (11)
(1979).

[11] Benny Chor et al. `Veri�able secret sharing and achieving simultaneity in the
presence of faults'. In: Foundations of Computer Science, 1985., 26th Annual
Symposium on. IEEE. 1985, pp. 383�395.

[12] Berry Schoenmakers. `A Simple Publicly Veri�able Secret Sharing Scheme and its
Application to Electronic Voting'. In: Advances in Cryptology-CRYPTO '99, Vol.
1666 (1999).

[13] Stephan Neumann, Jurlind Budurushi and Melanie Volkamer. `Analysis of
Security and Cryptographic Approaches to Provide Secret and Veri�able
Electronic Voting'. In: Design, Development, and Use of Secure Electronic Voting
Systems. Ed. by Dimitrios Zissis and Dimitrios Lekkas. IGI Global, 2014. Chap. 2,
pp. 27�61.

[14] Bruce Schneier, Kathleen Seidel and Saranya Vijayakumar. `A Worldwide Survey
of Encryption Products'. In: Berkman Center Research Publication 2016-2 (2016).

[15] shai. HElib. Version unknown. 25th Sept. 2015. url:
https://github.com/shaih/HElib.

[16] The Legion of the Bouncy Castle. The Legion of the Bouncy Castle -
Speci�cations. 2016. url: https://bouncycastle.org/specifications.html
(visited on 11/02/2016).

[17] OpenSSL Software Foundation. OpenSSL - ciphers. 2015. url:
https://www.openssl.org/docs/manmaster/apps/ciphers.html (visited on
11/02/2016).

38

http://arstechnica.com/security/2016/04/neutered-random-number-generator-let-man-rig-million-dollar-lotteries/
http://arstechnica.com/security/2016/04/neutered-random-number-generator-let-man-rig-million-dollar-lotteries/
http://www.2uo.de/myths-about-urandom/
https://tools.ietf.org/html/rfc7292
https://github.com/shaih/HElib
https://bouncycastle.org/specifications.html
https://www.openssl.org/docs/manmaster/apps/ciphers.html

[18] Sven Heiberg and Jan Willemson. `Veri�able internet voting in Estonia'. In:
Electronic Voting: Verifying the Vote (EVOTE), 2014 6th International
Conference on (Oct. 2014).

[19] Drew Springall et al. `Security Analysis of the Estonian Internet Voting System'.
In: CCS'14: 21st ACM Conference on Computer and Communications Security
(Nov. 2014).

[20] SafeNet. Level 2 Non-proprietary Security Policy for Luna R©PCI-E Cryptographic
Module and Luna R©PCI-E Cryptographic Module for Luna R© SA. Brochure. 2015.
url: http://csrc.nist.gov/groups/STM/cmvp/documents/140-
1/140sp/140sp2427.pdf.

[21] TUV Rheinland Nederland B.V. SafeNet Luna R©PCI con�gured for use in
Luna R©SA 4.5.1 (RF) with Backup. Brochure. 2013-07-26. url:
https://www.commoncriteriaportal.org/files/epfiles/%5BCR%5D%20NSCIB-

CC-12-36718-CR.pdf.

[22] Vabariigi Valimiskomisjon (Estonian National Electoral Committee). Statistics
about Internet Voting in Estonia. 2015. url:
http://www.vvk.ee/voting-methods-in-estonia/engindex/statistics/

(visited on 17/05/2016).

[23] Vabariigi Valimiskomisjon (Estonian National Electoral Committee). (In
Estonian) Kohaliku omavalitsuse volikogu valimised 2013. 2013. url:
http://info.kov2013.vvk.ee/kandidaadid/?code=0795 (visited on
17/05/2016).

[24] Gemalto. Gemalto SafeNet Luna SA - Hardware Security Module - Product Brief.
Brochure. 2015. url: http://www.safenet-
inc.com/WorkArea/linkit.aspx?LinkIdentifier=id&ItemID=8589949133.

[25] Ivan Damgård and Maciej Koprowski. Practical threshold RSA signatures without
a trusted dealer. Springer, 2001.

[26] Yvo Desmedt and Yair Frankel. `Threshold cryptosystems'. In: Advances in
Cryptology-CRYPTO'89 Proceedings. Springer. 1989, pp. 307�315.

[27] Takashi Nishide and Kouichi Sakurai. `Distributed paillier cryptosystem without
trusted dealer'. In: Information Security Applications. Springer, 2010, pp. 44�60.

[28] Josh D Cohen and Michael J Fischer. A robust and veri�able cryptographically
secure election scheme. Yale University. Department of Computer Science, 1985.

[29] Jan Camenisch, Ra�k Chaabouni et al. `E�cient protocols for set membership
and range proofs'. In: Advances in Cryptology-ASIACRYPT 2008. Springer, 2008,
pp. 234�252.

[30] Aggelos Kiayias and Moti Yung. `The Vector-Ballot E-Voting Approach'. In:
Lecture Notes in Computer Science. Ed. by Ari Juels. Springer, 2004.
Chap. Financial Cryptography, pp. 72�89.

[31] Víctor Mateu, Josep M. Miret and Francesc Sebé. `A hybrid approach to
vector-based homomorphic tallying remote voting'. In: International Journal of
Information Security (Apr. 2016).

[32] Jordi Pujol-Ahulló et al. TTP SmartCard-based ElGamal Cryptosystem using
Threshold Scheme for Electronic Elections (Extended). Tech. rep. 2013.

39

http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp2427.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp2427.pdf
https://www.commoncriteriaportal.org/files/epfiles/%5BCR%5D%20NSCIB-CC-12-36718-CR.pdf
https://www.commoncriteriaportal.org/files/epfiles/%5BCR%5D%20NSCIB-CC-12-36718-CR.pdf
http://www.vvk.ee/voting-methods-in-estonia/engindex/statistics/
http://info.kov2013.vvk.ee/kandidaadid/?code=0795
http://www.safenet-inc.com/WorkArea/linkit.aspx?LinkIdentifier=id&ItemID=8589949133
http://www.safenet-inc.com/WorkArea/linkit.aspx?LinkIdentifier=id&ItemID=8589949133

[33] Jordi Pujol-Ahulló et al. eVeri�cation2. Version unknown. 29th Jan. 2013. url:
https://github.com/CRISES-URV/eVerification-2.

[34] Torben Pryds Pedersen. `A Threshold Cryptosystem without a Trusted Party'. In:
Advances in Cryptology-EUROCRYPT '91 (1991), pp. 522�526.

[35] Taher ElGamal. `A public key cryptosystem and a signature scheme based on
discrete logarithms'. In: Advances in cryptology. Springer. 1984, pp. 10�18.

40

https://github.com/CRISES-URV/eVerification-2

A Notation Summary

A.1 Basic Notation

Symbol Meaning
⊕ Group addition
⊗ Group multiplication
∀ For all
g Group generator
p, q Arbitrary prime numbers
Pr[x] Probability of event x
Zp Modular group of size p
x← y Assign the value y to the variable x

x
$←− X Assign a random value from the set X to the variable x

X \ Y The set X without the elements in Y
x ∈ X The element x is in the set X
x 6∈ X The element x is NOT in the set X
X ⊂ Y The set X is a proper subset of the set Y
X ⊆ Y The set X is a subset of the set Y

A.2 Basic Cryptographic Functions

Symbol Meaning
c Encrypted message
EncA(m) The encryption of the message m with the public key of the user A
h ElGamal public key
k Generic cryptographic key
K Key space. Set of possible values of a key
m Plaintext message
pk Public key
pkA Public key associated to the user A
r Random value
SigA(m) The signature of the message m with the private key of the user A
sk Secret key
skA Secret key associated to the user A
x ElGamal private key

41

A.3 Secret Sharing

Symbol Meaning
A Authorized shareholders
Ai i-th authorized shareholder
ai i-th polynomial coe�cient
a∗,i Set of polynomial coe�cients of Ai

aj,i j-th polynomial coe�cient of Ai

C Commitment or set of related commitments
n Total amount of shares generated
t Threshold. Amount of shares required to perform an operation
s Secret value
S Set of n shares of a secret
Si Set of shares of a secret generated by Ai

si i-th share, expressed as a point (xi, yi)
sj,i j-th share generated by Ai, expressed as a point (xj,i, yj,i)
xi x component of si
yi y component of si

A.4 Online Voting

Symbol Meaning
B Bulletin board
Bi Part of the bulletin board corresponding to Vi

l Set of candidates
L Amount of candidates
M Maximum amount of votes possible for a single candidate
T Tally
V Ordered set of voters that voted
Vi Unique id of the i-th voter
v Ordered set of votes
vi Vote of Vi

A.5 Others

Symbol Meaning
srvi i-th server in a set of servers

42

B Acronyms

Acronym Meaning
AES Advanced Encryption Standard
API Application Programming Interface
CAST Carlisle Adams Sta�ord Tavares
CSPRNG Cryptographically Secure PRNG
CTR CounTeR [encryption operation mode]
CVE Common Vulnerabilities and Exposures
DKG Distributed Key Generation
DRBG Deterministic Random Bit Generator
EC Elliptic Curve
ECDH EC Di�e-Hellman
ECDSA EC Digital Signature Algorithm
ECIES EC Integrated Encryption Scheme
FIPS Federal Information Processing Standards
HSM Hardware Security Module
IDEA International Data Encryption Algorithm
IEC International Electrotechnical Commission
ISO International Organization for Standardization
MAC Message Authentication Code
MD5 Message Digest [Algorithm] 5
MPC Multi-Party Computation
MTBF Mean Time Between Failures
OAEP Optimal Asymmetric Encryption Padding
PKCS Public Key Cryptography Standards
PRNG Pseudo-Random Number Generator
RAM Random Access Memory
RC2/RC4/RC5 Rivest Cipher 2/4/5
RFC Request For Comments
RSA Rivest, Shamir, Adleman [cryptosystem]
SHA Secure Hash Algorithm
SSL Secure Socket Layer
TCB Trusted Computing Base
TPM Trusted Platform Module
VSS Veri�able Secret Sharing
ZKP Zero Knowledge Proof

43

C Basic Building Blocks

This document contains references to several basic cryptographic primitives, such as
encryption, digital signature and commitments. Although they are not the focus of this
work, their de�nitions are provided for completeness. The security parameters and
security de�nitions for each of them are unspeci�ed, as they may change for di�erent
scenarios in which they are applied.

C.1 Public Key Encryption

A public key encryption scheme PK is de�ned by three algorithms, PK.KeyGeneration,
PK.Encryption, PK.Decryption. Speci�cally:

PK.KeyGeneration produces a key pair (sk, pk), where sk is secret and pk is
public.

Given a message m, PK.Encryption(pk,m) returns c, an encryption of m that can
only be decrypted by the holder of sk.

Conversely, PK.Decryption(sk, c) = m.

Encryption ensures mainly that only the authorized recipient will read the message.
Speci�c encryption schemes are designed to support additional security properties. In
this document, PK.Encryption and PK.Decryption are abbreviated as Encpk(m) and
Decsk(c).

C.2 Digital Signature

PK can be extended to support integrity by de�ning two additional algorithms: PK.Sign
and PK.Verify:

PK.Sign(sk,m) produces the signature sig of the hash value of m.

PK.Verify(pk,m, sig) returns 1 i� sig is a valid signature of the message m by
the owner of sk.

A digital signature is produced to certify the authenticity and integrity of m.

C.3 ElGamal Cryptosystem

ElGamal is a public key cryptosystem based on the discrete logarithm assumption,
often used as the basic scheme for more complex schemes (including homomorphic and
threshold schemes). It is de�ned for both prime integer and elliptic curve groups. The

44

integer version is de�ned as follows (only key generation, encryption and decryption are
relevant for the current document. Signature generation and veri�cation is out of scope):

Algorithm 9: ElGamal.KeyGeneration

input : q, g
output: sk, pk

1 x
$←− Zq;

2 h← gx;
3 sk, pk ← x, h;

Algorithm 10: ElGamal.Encryption

input : q, g, pk,m ∈ Zq

output: c

1 r
$←− Zq;

2 c1 ← gr;
3 c2 ← m · pkr;
4 c← (c1, c2)

Algorithm 11: ElGamal.Decryption

input : q, g, sk, c
output: m

1 m← c2 · c−sk1

C.4 Commitments

In MPC protocols, a threat model known as the malicious model assumes that all
parties can misbehave by deviating from a protocol. One of these malicious behaviors
consists of changing their output according to the output of the other parties. In
scenarios where that situation is not desirable, each party must commit to a value
before they are revealed.
A Commitment then has three phases: Commitment.KeyGeneration generates a public
key pk. Commitment.Commitpk(m, r) produces a value C that commits to a message m
and takes a random value r. Commitment.Openpk takes a tuple (m,C, r) and returns 1
i� C =Commitment.Commitpk(m, r) and 0 otherwise. In other words, it veri�es if the
commitment is valid for the claimed value of m.
There are three security properties for a commitment:

- Completeness: it is well de�ned for every possible input.

- [Computationally] Hiding: the commitment C does not leak information about
the value m to a [polynomial] adversary.

- Binding: A commitment cannot be opened for a value m′ 6= m.

45

Non-exclusive licence to reproduce thesis and make thesis public

I, Sergio Andrés Figueroa Santos (date of birth: 14th of April 1992),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term of
validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

A Cost-E�ective Approach to Key Management in Online Voting Scenarios

supervised by Sven Heiberg, Helger Lipmaa and Tuomas Aura.

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 19.05.2016

46

	Introduction
	Overview
	Importance of Cryptographic Keys
	Attacks Vectors for Key Retrieval
	No Randomness
	Poor Randomness
	Access Control
	Application Vulnerabilities
	Poor Protection of Multiple Copies
	Malpractice
	Side Channel Attacks

	Key Storage Solutions
	Cleartext
	PKCS#12
	Trusted Platform Modules (TPM)
	Smart Cards
	Hardware Security Modules (HSM)

	Secret Sharing and Threshold Encryption
	Shamir's Secret Sharing
	Verifiable Secret Sharing
	Distributed Key Generation

	Cryptography and E-Voting
	Availability of Technology

	Key Management in the Estonian Internet Voting Process
	Internet Voting in Estonia
	Current Status of Internet Voting
	Need for Stronger Controls

	Current Approach to Key Management
	Scale in Estonian Internet Voting

	Solution Design
	Key Management Quality Assessment
	Trusted Computing Base
	Lifecycle of the Key

	Design Option 1: Replacing the HSM with Smart Cards
	Design option 2: Smart Cards with Homomorphic Tallying
	Design Option 3: Verifiable Secret Sharing in Smart Cards
	DKG in Java Card: the CRISES' Report
	Untrusted Dealer
	Architecture
	Performance
	Solution Analysis

	Result Comparison
	Unchanged Features
	New Features
	Impacted Features

	Conclusion and Future Work
	Non-standard cryptography and smart card development
	Threshold decryption in online voting scenarios
	The general key management problem

	Notation Summary
	Basic Notation
	Basic Cryptographic Functions
	Secret Sharing
	Online Voting
	Others

	Acronyms
	Basic Building Blocks
	Public Key Encryption
	Digital Signature
	ElGamal Cryptosystem
	Commitments

