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1 Introduction

In many areas the following problem have been arisen. Each object in popu-

lation belongs to some class, but the total number of classes s is unknown.

We want to identify all the classes in population. In order to do this, we start

to take objects into the sample. We should stop when all s classes are repre-

sented in the sample by at least one element. But since s itself is unknown,

this stopping rule can not be applied.

In many cases the identification of membership of objects is costly. This is

true, for example, when the researcher identifies all genotypes of a population.

In this case we may limit ourselves to discovering only those classes, which

represent the overwhelming part of the population, e. g. 99%. In this case the

sample is said to have the coverage of 0.99. The following example explains

why such limitation may be useful.

Consider two biological communities, both including 100 individuals be-

longing to 4 species. The frequencies of species in both communities are

shown on Figure 1.

It is clear, that to disclose all the 4 species, in the first community it is

sufficient to draw a smaller sample than in the second community. The reason

is that in the second community, the probability of drawing the species D,

which is represented by only one individual, is relatively small. It is quite

probable, that we need to draw the most of individuals into the sample

in order to disclose all the 4 species. Thus, it may be reasonable to draw

individuals until the species A, B and C are represented in the sample. In

this case, the coverage of the sample would be 99%. At the same time, the

required sample size will be considerably smaller.

Thus, we may formulate the two main problems, which will be discussed in
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Figure 1: Frequencies of species in two communities

the present work:

(a) What is the coverage C of a given sample? In other words: what is the

total percentage of the classes which are represented in the sample? If

C ≥ 1 − η, where η is small (say, 0 < η < 0.01), then we should stop

the sampling. Otherwise, the sample should be extended and the further

question is:

(b) How many additional objects must we draw in order to achieve the

sample coverage of 1− η?

The estimating of the sample coverage is first discussed by Good [7], who pro-

posed the nonparametric estimator for the sample coverage. Another estima-

tor has been derived by Engen [2], using parametric approach. Both estima-

tors are discussed in the current work. The problem of estimating the sample

size has not been discussed in the literature, but in article by Good and

Toulmin [8], authors have discussed the close theme, estimating the increase

of coverage if the sample is increased.

5



The thesis is organized as follows. In the Chapter 2 the terms of sample

colority and coverage are defined. Also mean and variance of the sample

colority and the coverage are evaluated in the case of known probabilities of

classes. In the Chapter 3 there are proposed two ways of defining a set of color

probabilities by a little number of parameters. The purpose of such defining

is the further estimation of these parameters. The connection between the

two ways of defining the probabilities of classes is also discussed. In the

Chapter 4 we will discuss the Engen’s Negative Binomial model (ENB). In

this model the probabilities of classes are defined by the Gamma distribution,

which has two parameters. The approximate distribution of size indices is also

derived. Using this approximate distribution, the ML estimate of parameters

of Gamma distribution is obtained. In the Chapter 5 there is proposed the

review of the literature on the problem of the coverage estimation. Then the

simulation experiment is conducted in order to inspect the reliability and

validity of the Engen’s ENB model in coverage estimation. In the Chapter 6

we discuss the estimation of the sample size, required for achieving the given

coverage. We consider a simple case when the probabilities of classes are

equal, and two more general cases when the sequence of probabilities of

classes is either linearly or exponentially decreasing sequence.
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2 Sample colority and coverage

2.1 Multinomial and Poisson sampling scheme

Consider the following urn model. From an urn containing balls of s different

colors, n balls are drawn at random with replacement. Denote the number of

balls of color i in the sample by Ni, i = 1, . . . , s. Let the relative frequency

of balls of color i in urn be equal to pi, i = 1, . . . , s. Under this model the

joint distribution of Ni’s is the multinomial distribution:

P(
s⋂

i=1

(Ni = ni)) = n!
s∏

i=1

pni
i

ni!
. (1)

Further in the present work this sampling scheme will be referred to as

multinomial scheme. Note that under the multinomial scheme the sample

size is fixed (nonrandom).

Besides the multinomial model, we will consider the following Poisson model.

Suppose that the number of balls of ith color in the sample follows a homo-

geneous Poisson process ζi with intensity λi, i = 1, . . . , s and that processes

ζ1, . . . , ζs are independent. We will assume that observations have been made

up to a fixed time ν. Then the counts Ni are independent Poisson random

variables with expectations λiν, i = 1, . . . , s. Hence, the joint distribution of

Ni’s is

P(
s⋂

i=1

(Ni = ni)) =
s∏

i=1

(λiν)nie−λiν

ni!
.

Further this sampling scheme will be called the Poisson scheme. The

probability of drawing the ball of color i is λi/λ, where λ =
∑s

i=1 λi. Note

that in the case of Poisson sampling scheme, the sample size is a Poisson

random variable with mean λν. The Poisson scheme is natural sampling

model in ecology when the biologist counts species that he meets during

fixed time interval [0, ν].
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Considering the conditional joint distribution of Ni given
∑s

i=1 Ni = n in the

case of Poisson scheme, we get

P(
s⋂

i=1

(Ni = ni)|N = n) =

∏s
i=1

(λiν)nie−λiν

ni!

(λν)ne−λν

n!

= n!
s∏

i=1

(
λi

λ

)ni

ni!
.

After substitution pi = λi/λ, we obtain a multinomial distribution. There-

fore, conditionally on the sample size, the color counts Ni are multinomially

distributed.

The difference between two schemes is that in the Poisson scheme counts Ni

are independent. However, in the multinomial scheme, the covariance between

Ni and Nj (i 6= j) is negative, since the sum
∑

Ni is constrained to n. This

covariance equals

cov(Ni, Nj) = −npipj. (2)

Provided pi’s are small, the covariances (2) are close to zero and both schemes

are approximately equivalent.

Both the multinomial and the Poisson schemes are discussed in articles deal-

ing with coverage problems. The Poisson scheme is sometimes preferred for

its mathematical simplicity.

2.2 Definitions

Let us define some terms that will be used further.

The set {pi}s
i=1 (or simply {pi}) of relative frequencies of the classes in the

population is called the color probabilities or the color distribution.

The number of colors, which are represented in the sample by at least one

ball, is called the sample colority. In the case of multinomial sampling

scheme the sample colority is denoted by Vn, where n is the sample size.
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The sequence {Vn|n ∈ {1, 2, . . .}} of successive colorities may be regarded as

the discrete-time random process (more precisely, a counting process). The

colority of a sample may be written down as the sum of random indicators

Vn =
s∑

i=1

In
i , (3)

where

In
i =

 1 if the color i is represented in the sample of size n,

0 otherwise.

In the case of Poisson scheme the sample colority at the fixed time ν is

denoted by Vν . Hence, we may consider a continuous-time counting process

{Vν |ν ∈ (0,∞)}. For the case of Poisson scheme the colority can be expressed

in a similar way

Vν =
s∑

i=1

Iν
i , (4)

where

Iν
i =

 1 if color i is represented in the sample up to time ν,

0 otherwise.

When adding an object to the sample, the sample colority either increases

by 1 or stays the same. Therefore, every realization of the processes Vn and

Vν is a nondecreasing step-function, with step heights 1. These functions are

called the colority curves.

By the coverage of a sample we mean the sum of probabilities of colors,

which are represented in the sample. Notation of the sample coverage depends

on the sampling scheme available. In the case of multinomial scheme the

coverage is denoted by Cn, and in the case of Poisson scheme by Cν . According

to the definition, the sample coverage can be expressed as
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Cn =
s∑

i=1

piI
n
i (the multinomial scheme), (5)

Cν =
s∑

i=1

piI
ν
i (the Poisson scheme). (6)

In the following section we will derive the means and the variances of the

sample colority and the coverage.

2.3 Mean and variance of sample colority and coverage

in the case of known color probabilities

2.3.1 Mean of sample colority and coverage

As it was seen in (3), (4), (5) and (6), both the colority and coverage are

linear combinations of random indicators, either In
i or Iν

i (i = 1, . . . , s). To

find the mean of the colority and the coverage, we must first find the means

of these indicators. The indicator In
i equals to 1 if there is at least one ball

of color i in the sample. Thus,

P(In
i = 0) = P(no balls of color i in the sample) = (1− pi)

n,

E(In
i ) = P(In

i = 1) = 1− (1− pi)
n. (7)

The expression (1 − pi)
n is the probability that in n independent trials an

event “the ball of color i is drawn” does not occur at any trial. If the proba-

bility pi is close to zero and the number of trials n is large, then we may

apply approximation by the Poisson distribution

P(0 out of n events occur) = (1− pi)
n ≈ np0

i

0!
e−npi = e−npi (8)
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and, hence

E(In
i ) ≈ 1− e−npi . (9)

In the Poisson scheme, the indicator Iν
i equals to 1 if there is at least one

occurrence of a Poisson process ζi up to the time ν. It follows that

P(Iν
i = 0) = P(no balls of color i up to the time ν) =

(λiν)0

0!
e−λiν = e−λiν ,

E(Iν
i ) = P(Iν

i = 1) = 1− e−λiν . (10)

Now, based on (7) and (10), we find the mean of sample colority:

(a) in the multinomial scheme

E(Vn) =
s∑

i=1

[1− (1− pi)
n], (11)

(b) in the Poisson scheme

E(Vν) =
s∑

i=1

(1− e−λiν). (12)

Applying approximation (9) to (11), we get

E(Vn) ≈
s∑

i=1

(1− e−npi). (13)

Similarly, we find the expectation of the sample coverage

(a) in the multinomial scheme

E(Cn) =
s∑

i=1

pi[1− (1− pi)
n], (14)

(b) in the Poisson scheme

E(Cν) =
s∑

i=1

pi(1− e−λiν). (15)

If pi’s are small, then approximation (9) may be applied to (14), giving us

E(Cn) ≈
s∑

i=1

pi(1− e−npi). (16)
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2.3.2 Variance of sample colority and coverage

In this paragraph we will find the variances of sample colority and coverage.

Both the colority and the coverage are linear combinations of indicators In
i

or Iν
i . The variance of a linear combination of some random variables Xi

(i = 1, . . . , s) expresses as

D

(
s∑

i=1

aiXi

)
=

s∑
i=1

a2
i DXi + 2

s−1∑
i=1

s∑
j=i+1

aiajcov(Xi, Xj).

In order to find variances of colority and coverage, we need to obtain

1. the variances D(In
i ) and D(Iν

i ),

2. the covariances cov(In
i , In

j ) and cov(Iν
i , Iν

j ), i 6= j.

Multinomial scheme. First we find the variance DIn
i :

D(In
i ) = E((In

i )2)− (E(In
i ))2 = E(In

i )− (E(In
i ))2

= E(In
i )(1− E(In

i )) = (1− (1− pi)
n)(1− pi)

n.

Next we find the covariance cov(In
i , In

j )

cov(In
i , In

j ) = E(In
i In

j )− (E(In
i ))(E(In

j )) (17)

= P(In
i = 1 ∩ In

j = 1)− (1− (1− pi)
n)(1− (1− pj)

n).

We expand the probability P(In
i = 1 ∩ In

j = 1) using the rule

P(A ∩B) = 1−P(Ā ∪ B̄) = 1−P(Ā)−P(B̄) + P(Ā ∩ B̄)

getting

P(In
i = 1 ∩ In

j = 1) =

1−P(In
i = 0)−P(In

j = 0) + P(In
i = 0 ∩ In

j = 0). (18)
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The P(In
i = 0 ∩ In

j = 0) is the probability that none of the n individuals of

the sample belong to classes i or j. Therefore

P(In
i = 0 ∩ In

j = 0) = (1− pi − pj)
n.

Finally, we obtain the expression of the covariance (17):

cov(In
i , In

j ) = 1−P(In
i = 0)−P(In

j = 0) + P(In
i = 0 ∩ In

j = 0)

− (1− (1− pi)
n)(1− (1− pj)

n)

= 1− (1− pi)
n − (1− pj)

n + (1− pi − pj)
n

− (1− (1− pi)
n)(1− (1− pj)

n),

which simplifies to

cov(In
i , In

j ) = (1− pi − pj)
n − (1− pi)

n(1− pj)
n. (19)

Note that the covariance (19) is always negative, because

(1− pi − pj) < (1− pi)(1− pj)

and both pi and pj are nonzero.

From (17) and (19) we can derive the variances D(Vn) and D(Cn):

D(Vn) =
s∑

i=1

((1− pi)
n − (1− pi)

2n) (20)

+ 2
s−1∑
i=1

s∑
j=i+1

((1− pi − pj)
n − (1− pi)

n(1− pj)
n),

D(Cn) =
s∑

i=1

p2
i ((1− pi)

n − (1− pi)
2n) (21)

+ 2
s−1∑
i=1

s∑
j=i+1

pipj((1− pi − pj)
n − (1− pi)

n(1− pj)
n).
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Poisson scheme. Analogously to (17) we find the variance of indicator Iν
i :

D(Iν
i ) = E(Iν

i )(1− E(Iν
i )) = (1− e−λiν)e−λiν .

In the Poisson scheme, the sample frequencies Ni of colors are independent.

The indicators In
i = INi>0 are also independent as functions of independent

random variables. This means that the covariances cov(In
i , In

j ) are equal to

0 and so the variances D(Vν) and D(Cν) take a simpler form as compared to

the multinomial scheme:

D(Vν) =
s∑

i=1

e−λiν(1− e−λiν),

D(Cν) =
s∑

i=1

p2
i e
−λiν(1− e−λiν).

Approximated multinomial scheme. If the probabilities pi are small

and the sample size is large then the binomial distribution is approximated

well by the Poisson distribution and the formula (8) is accurate. When ap-

plying this formula to the expression (20), the variance of the sample colority

becomes approximately

D(Vn) ≈
s∑

i=1

e−npi(1− e−npi) + 2
s−1∑
i=1

s∑
j=i+1

(e−n(pi+pj) − e−npie−npj)

=
s∑

i=1

e−npi(1− e−npi), (22)

since the approximated covariances vanish to zero. Similarly, with the ap-

proximation (8), the variance (21) of the sample coverage is

D(Cn) ≈
s∑

i=1

p2
i e
−npi(1− e−npi) + 2

s−1∑
i=1

s∑
j=i+1

pipj(e
−n(pi+pj) − e−npie−npj)

=
s∑

i=1

p2
i e
−npi(1− e−npi). (23)
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The approximative expressions of E(Vn), E(Cn), D(Vn) and D(Cn) for the

multinomial scheme are very similar to the corresponding expressions for the

Poisson scheme. Based on this similarities, we conclude that the multino-

mial scheme can be approximated by the Poisson scheme with intensities λpi

where the sample is drawn until the time n/λ (here λ is an arbitrary positive

number).

Example 1. (Case of equiprobable colors). Here we find expressions of

mean and variance of sample colority and coverage in the case of one simple

color distribution. This is the distribution, where all the colors are equiprob-

able, i. e. have equal probabilities (pi = 1/s, i = 1, . . . , s). We will assume

the multinomial sampling scheme. According to (11), the mean colority in

this case is

E(Vn) = s(1− (1− 1/s)n).

According to (13), the approximated mean colority equals

E(Vn) ≈ s(1− e−n/s). (24)

By (14), the mean sample coverage equals

E(Cn) = (1− (1− 1/s)n),

and the approximated value is

E(Cn) ≈ 1− e−n/s. (25)

By (20), the variance of the colority expresses as

D(νn) = s

(
(1− 1

s
)n − (1− 1

s
)2n

)
+ s(s− 1)

(
(1− 2

s
)n − (1− 1

s
)2n

)
This is an exact result. From the other side, the approximative formula (22)

gives us

D(Vn) ≈ se−n/s(1− e−n/s). (26)
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By (21), the variance of coverage then equals

D(Cn) = D(νn/s) = D(νn)/s2

=
1

s

(
(1− 1

s
)n − (1− 1

s
)2n

)
+ (1− 1

s
)

(
(1− 2

s
)n − (1− 1

s
)2n

)
or using the approximation (23):

D(Cn) ≈ 1

s
e−n/s(1− e−n/s).
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3 Two ways of defining distribution of color

probabilities

We have seen in the previous chapter that in order to estimate the sample

colority and coverage we need to know the probabilities of all colors in popu-

lation. In the most of cases, however, the color distribution is unknown. The

basic idea to overcome this difficulty is to assume that the set {pi} is defined

by a small number of parameters and then to estimate these parameters.

Two different approaches of defining the color probabilities are discussed in

this chapter. One approach is to define the set {pi} by some function of i

and the other is to define {pi} by some parametric density function.

3.1 Direct definition of color probabilities

Probabilities pi of colors i = 1, . . . , s can be given by some function π(i) of

color number i, so that

pi = π(i). (27)

Function π(·) may also depend on some vector ~θ of parameters. Between

such parameters, one compulsory parameter is the number s of colors in the

population. Without any loss of generality we will further assume that π(·) is

a nondecreasing function. Next we provide some simple examples of different

functions π(·).

Example 2. Uniform color probabilities is the simplest case of color

probabilities:

π(i) = 1/s, i = 1, . . . , s.

On the Figure 2 this type of color probabilities is referred to as CONST.
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Example 3. Piecewise constant probabilities. Suppose that the set of

color numbers {1, . . . , s} can be divided into m classes C1, . . . , Cm, so that

in each class π(i) has constant value vj, j = 1, . . . ,m:

π(i) = vj, i ∈ Cj, j = 1, . . . ,m.

This is extremely wide class of functions. Many other function may be ap-

proximated by a piecewise constant function. On the Figure 2 one function

of this type is referred to as PIECE.

Example 4. Linearly decreasing color probabilities are defined by the

function

π(i) = p0 − ai, a > 0, i = 1, . . . , s.

It suffices, when we fix only one parameter of p0 and a, because the other

is obtainable, when we account for constraint
∑s

i=1 π(i) = 1. One example

of linearly decreasing function of probabilities is shown on the Figure 2 and

referred to as LINEAR.

Example 5. Exponentially decreasing color probabilities are defined

by the function

π(i, q) = p0(q)q
i, q < 1, i = 1, . . . , s.

Thus, the color probabilities compose a truncated geometric series with com-

mon ratio q and p0(q) = 1/
∑s

i=1 qi is the coefficient, required to standardize

18



pi’s to add up to unity. Two special cases (q = 0.95 and 0.98) of this type of

color probabilities are shown on the Figure 2. These functions are referred to

as EXP95 and EXP98.

Example 6. Inverse color probabilities are defined by the function

π(i) = p0/i, i = 1, . . . , s.

Here, p0 = 1/
∑s

i=1 i−1 is the standardizing coefficient. This type of color

probabilities is shown on the Figure 2, where it is referred to as INV.

Example 7. Quadratically decreasing probabilities are defined by

π(i) = p0(s− i + 1)2, i = 1, . . . , s,

where p0(s) = 1/
∑s

i=1 i2. The base number is s− i + 1 instead of i because

we want the function to be monotonely decreasing. On the Figure 2 the plot

of probabilities, defined by this function is referred to as SQR.

All the functions described in the examples above, are plotted on the Figure

2, provided that number of colors in population equals s = 200.
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Figure 2: Plots of different types of color probabilities

3.2 Defining color probabilities by density function

Here we provide an alternative method of defining the color probabilities first

described in [2]. In this method, the set of color probabilities is given by some

density function f(p) that satisfies the two following conditions:

(i) s1 :=
∫∞
−∞

f(p)
p

dp < ∞,

(ii)
∫ a

−∞ f(p)dp > 0, where a satisfies the equation

∫ a

−∞

f(p)

p
dp =

 1, s̃ = s1

s̃− s1, s̃ > s1

, (28)

where s̃ is the smallest integer for which s̃ ≥ s1.

The condition (i) guarantees that we get the finite number of probabili-

ties. The condition (ii) ensures that all obtained probabilities are positive.
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The set {pi} of color probabilities is obtained from f(p) using the following

Procedure 1.

Procedure 1. The procedure for defining a unique set of color

probabilities by a density function

1. Start by giving a density function f(p) satisfying conditions (i) and (ii).

2. Define the function g(p) = f(p)/p. By agreement, the value of g(p) at

the point p = 0 is replaced by the limit

lim
p→0

f(p)

p
.

Let s̃ be the smallest integer satisfying s̃ ≥ s1, where

s1 :=

∫ ∞

−∞
g(p)dp.

Due to condition (i), s1 is finite and, consequently, s̃ is also finite.

3. Let m = inf {p|f(p) > 0} and M = sup {p|f(p) > 0} Define the parti-

tion

m = ξs̃ < ξs̃−1 < . . . < ξ0 = M

of the interval (−∞,∞) so that∫ ξi−1

ξi

g(p)dp = 1 (i = 1, . . . , s̃− 1). (29)

It means that the area under the curve g(p) is divided into s̃ regions

of area 1 (except for maybe region bounded by interval [ξs̃, ξs̃−1]). The

integral over the leftmost interval [ξs̃, ξs̃−1] equals to 1 when s1 is integer

and equals to s̃− s1 (satisfying 0 < s̃− s1 < 1) otherwise. Hence,

0 <

∫ ξs̃−1

ξs̃

g(p)dp ≤ 1.

Here g(p) can be considered as a conditional density of p inside the

intervals [ξi, ξi−1] (i = 1, . . . , s̃− 1).
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4. Define the color probabilities pi (i = 1, . . . , s̃) by the integral

pi :=

∫ ξi−1

ξi

pg(p)dp =

∫ ξi−1

ξi

f(p)dp. (30)

The pi can be considered a conditional expectation of p on the interval

[ξi, ξi−1] (except for maybe interval [ξs̃, ξs̃−1], since the integral of g(p)

over this interval may be less than 1).

Obtained probabilities pi form a decreasing sequence

p1 > p2 > . . . > ps̃.

Let us show that the condition (ii) guarantees that ps̃ > 0. Number ξs̃−1

satisfies the equation (28), since∫ ξs̃−1

−∞
g(p)dp =

∫ ξs̃−1

ξs̃

g(p)dp =

 1, s̃ = s1

s̃− s1, s̃ > s1

,

this means that the condition (ii) is equivalent to∫ ξs̃−1

ξs̃

f(p)dp = ps̃ > 0.

The condition (ii) is not needed to be checked if f(p) = 0 on the interval

(−∞, 0), because in this case ξs̃ = m = inf {p|f(p) > 0} is non-negative and

ps̃ is positive, being a conditional expectation of some random variable X

given X ∈ [ξs̃, ξs̃−1].

Furthermore, we see that p1 + p2 + . . . + ps̃ = 1, since

s̃∑
i=1

pi =
s̃∑

i=1

∫ ξi−1

ξi

f(p)dp =

∫ ∞

−∞
pg(p)dp =

∫ ∞

−∞
f(p)dp = 1,

and hence the color distribution of the population is uniquely given by the

density function f(p).
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3.3 How to select density f that produces a given set

of color probabilities

It was shown that the set {pi} of color probabilities can be defined either by

a function of color number i, or by a density function. Suppose that we have

defined the set {pi} directly by the function π(i). Then the question is: “can

we find a density f that produces the same set of color probabilities?”. One

form of such density f , which is simple from the computational point of view,

is proposed in the following procedure. This type of density function, however,

cannot be evaluated for all the sets of color probabilities. Furthermore, it will

be seen, that such a function f is not unique.

3.3.1 The case of approximately linearly decreasing color proba-

bilities

Procedure 2. The procedure for obtaining a density function that

produces a given color distribution

1. The set {pi}s
i=1 of probabilities is given, where

p1 > p2 > . . . > ps.

2. Find the partition (assuming its existence at the moment)

ξs < ξs−1 < . . . < ξ0 (31)

of real axis, such that pi = ξi+ξi−1

2
, i = 1, . . . , s, i.e. pi is the midpoint

of the interval [ξi, ξi−1].
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3. The density function, that generates the set {pi}s
i=1 is then

f(p) =



p/(ξ0 − ξ1), p ∈ [ξ1, ξ0)

p/(ξ1 − ξ2), p ∈ [ξ2, ξ1)
...

...

p/(ξs−1 − ξs), p ∈ [ξs, ξs−1]

0, p ∈ (−∞, ξs) ∪ (ξ0,∞)

.

When applying the Procedure 1 to the function f(p), we obtain exactly the

same set {pi}s
i=1 of color probabilities, since∫ ξi−1

ξi

f(p)dp =

∫ ξi−1

ξi

p

ξi−1 − ξi

dp =
ξ2
i−1 − ξ2

i

2(ξi−1 − ξi)
=

ξi−1 + ξi

2
= pi

for i = 1, . . . , s.

The necessary condition for Procedure 2 to work is that the partition (31) in

step 2 of the procedure exists. Necessary and sufficient condition for Proce-

dure 2 to work is that the partition (31) in step 2 of the procedure exists, i.

e. the system of equations and inequalities

x0 + x1 = 2p1

x1 + x2 = 2p2

...

xs−1 + xs = 2ps

xi−1 < xi, i = 1, . . . , s

(32)

has at least one solution. In the following example the procedure works suc-

cessfully.

Example 8. Let us find the function f that produces the exponentially

decreasing set of probabilities where q = 0.5 and s = 5. In this case color
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probabilities express as

pi =
0.5i∑5
i=1 0.5i

=
0.5i

1− 0.55
, i = 1, . . . , 5.

Numerically these probabilities equal

p1 =
31

64
, p2 =

31

128
, p3 =

31

256
, p4 =

31

512
, p5 =

31

1024
.

First we solve the system (32) for general pi’s. The system then takes the

following form  xi−1 + xi = 2pi i = 1, . . . , 5

xi−1 < xi i = 1, . . . , 5
(33)

The system xi−1 + xi = 2pi (i = 1, . . . , 5) of linear equations has infinitely

many solutions, since the number of unknowns exceeds the number of equa-

tions by one. It means that four unknowns can be expressed through the

remaining one. Express for example x0, . . . , x4 through x5:

x4 = −x5 + 2p5

x3 = x5 + 2(p4 − p5)

x2 = −x5 + 2(p3 − p4 + p5)

x1 = x5 + 2(p2 − p3 + p4 − p5)

x0 = −x5 + 2(p1 − p2 + p3 − p4 + p5)

.

After substitution of pi’s we get

x4 = −x5 + 31
512

x3 = x5 + 31
512

x2 = −x5 + 93
512

x1 = x5 + 155
512

x0 = −x5 + 341
512

. (34)
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Besides that inequalities in system (33) must be satisfied. If we account for

equations (34) then inequalities transform to the following system

−2x5 + 31
512

> 0

2x5 > 0

−2x5 + 62
512

> 0

2x5 + 62
512

> 0

−2x5 + 186
512

> 0

, (35)

which has the solution x5 ∈ (0, 31
1024

). Hence the system (33) is equivalent to

x4 = −x5 + 31
512

x3 = x5 + 31
512

x2 = −x5 + 93
512

x1 = x5 + 155
512

x0 = −x5 + 341
512

0 < x5 < 31
1024

. (36)

The system (36) has infinitely many solutions. One of the solutions is, for

example (all fractions are rounded up to 3 decimal places),

x5 = 0.025, x4 = 0.036, x3 = 0.086, x2 = 0.157, x1 = 0.328, x0 = 0.641.

Now we can construct the density function f , that produces the set {pi}.

Required f expresses as

f(p) =



3.19p, p ∈ [0.328, 0.641]

5.84p, p ∈ [0.157, 0.328)

14.1p, p ∈ [0.086, 0.157)

20.0p, p ∈ [0.036, 0.086)

95.2p, p ∈ [0.025, 0.036)

0, p ∈ (−∞, 0.025) ∪ (0.641,∞)

(37)

The plot of the function f is presented in Figure 3.
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Figure 3: The function f(p) that generates the given set of color probabilities

In the following lemma we provide the condition that guarantees a successful

work of Procedure 2. Before the formulating the lemma we will introduce the

notation

∆j := pj − pj+1, j = 1, . . . , s− 1.

In the lemma we will also use the following definition.

Definition 1. The set of color probabilities, that satisfies the condition

2l∑
i=0

(−1)i∆k+i > 0, k, l ∈ {1, 2, . . .} , 2l + k ≤ s− 1 (38)

is called an nearly linearly decreasing set of color probabilities.
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The intuitive meaning of the condition (38) is that the sequence {∆j}s−1
j=1 is

not allowed to increase or decrease “too quickly”. The “ideal” sequence in

this sense, is the constant sequence

∆j ≡ ∆, j = 1, . . . , s− 1.

In this case, the sequence {pi}s
i=1 is a linearly decreasing sequence.

Lemma 1. Suppose we are given the set {pi}s
i=1 of probabilities. Then Pro-

cedure 2, applied to the set {pi}s
i=1, produces a density function f if and only

if the set {pi}s
i=1 is nearly linearly decreasing.

Proof: The Procedure 2 produces some density function if and only if the

system (32) has a solution. If we express x0, . . . , xs−1 through xs from the

system (32) then we get

xs−1 = 2ps − xs

xs−2 = 2ps−1 − 2ps + xs

xs−3 = 2ps−2 − 2ps−1 + 2ps − xs

...

xi−1 = 2
∑s

j=i(−1)j−ipj − (−1)s−i+1xs

...

x0 = 2
∑s

j=1(−1)j−1pj − (−1)sxs

. (39)
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Hence the difference xi−1 − xi expresses as follows

xi−1 − xi = 2
s∑

j=i

(−1)j−ipj − (−1)s−i+1xs − 2
s∑

j=i+1

(−1)j−i−1pj+i+1 + (−1)s−ixs

= 2(
s−1∑
j=i

(−1)j−i(pi − pi+1) + (−1)s−i(ps − xs))

= 2(
s−1∑
j=i

(−1)j−i∆j + (−1)s−i(ps − xs)), i = 1, . . . , s− 1,

xs−1 − xs = 2(ps − xs).

For further convenience we introduce the notation

S(i1, i2) :=

i2∑
j=i1

(−1)j−i1∆j

Therefore, the system (32) has a solution if and only if the following system

of inequalities has a solution S(i, s− 1) + (−1)s−i(ps − xs) > 0, i = 1, . . . , s− 1

ps − xs > 0
. (40)

Further we will consider two cases: where s is odd or even.

(a) If s is odd (s = 2r − 1, r = 1, 2, . . .), the system (40) transforms to

xs < ps

xs > ps − S(s− 1, s− 1)

xs < ps + S(s− 2, s− 1)

xs > ps − S(s− 3, s− 1)
...

xs < ps + S(3, s− 1)

xs > ps − S(2, s− 1)

xs < ps + S(1, s− 1)

. (41)
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Denote

M0 := ps, Mx := ps + S(s− 2x, s− 1), x = 1, . . . , r − 1

and

my := ps − S(s− 2y + 1, s− 1), y = 1, . . . , r − 1.

The system (41) is equivalent to xs < Mx, x = 0, 1, . . . , r − 1

xs > my, y = 1, 2, . . . , r − 1
. (42)

The system (42) has a solution if and only if

max {my|y = 1, . . . , r − 1} ≤ min {Mx|x = 0, . . . , r − 1} . (43)

It is clear, that (43) is equivalent to the condition

Mx −my > 0, x = 0, . . . , r − 1, y = 1, . . . , r − 1. (44)

The difference Mx −my expresses as follows

Mx −my =

 S(s− 2x, s− 2y), x ≥ y

S(s− (2y − 1), s− (2x + 1)), x < y
. (45)

Hence, (44) is equivalent to the system
∑s−2y

j=s−2x(−1)j−(s−2x)∆j > 0, x ≥ y,∑s−(2x+1)
j=s−(2y−1)(−1)j−(s−2y+1)∆j > 0, x < y

, (46)

which is equivalent, in turn, to
∑2(x−y)

j=0 (−1)j∆j+s−2x > 0, x ≥ y,∑2(y−x−1)
j=0 (−1)j∆j+s−2y+1 > 0, x < y

. (47)
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Substitute the upper limit of summation in each sum of (47) by 2l and the

first summand by ∆k. Then the system of inequalities (47) is equivalent

to the following system
∑2l

j=0(−1)j∆j+k > 0, l ∈ {0, 1, . . .} , k ∈ {1, 3, 5, . . .} , 2l + k ≤ s− 2∑2l
j=0(−1)j∆j+k > 0, l ∈ {0, 1, . . .} , k ∈ {2, 4, 6, . . .} , 2l + k ≤ s− 1

.

(48)

The system (48) can be summarized like follows

2l∑
j=0

(−1)j∆j+k > 0, l ∈ {0, 1, . . .} , k ∈ {1, 2, 3, . . .} , 2l+k ≤ s−1. (49)

Inequalities ∆k > 0 of the system (49), which correspond to the case

l = 0 are always satisfied and may be left out from the system. Hence,

the (49) is equivalent to the condition (38).

(b) if s is even (s = 2r, r = 1, 2, . . .), the system (40) transforms to



xs < ps

xs > ps − S(s− 1, s− 1)

xs < ps + S(s− 2, s− 1)

xs > ps − S(s− 3, s− 1)
...

xs > ps − S(3, s− 1)

xs < ps + S(2, s− 1)

xs > ps − S(1, s− 1)

. (50)

Denote

M0 := ps, Mx := ps + S(s− 2x, s− 1), x = 1, . . . , r − 1

and

my := ps − S(s− 2y + 1, s− 1), y = 1, . . . , r.
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The system (50) is equivalent to xs < Mx, x = 0, 1, . . . , r − 1

xs > my, y = 1, 2, . . . , r
. (51)

The latter system has a solution if and only if

Mx −my > 0, x = 0, . . . , r − 1, y = 1, . . . , r. (52)

The difference Mx − my expresses as (45). As in the case of odd s, we

conclude, that (52) is equivalent to the system (47). After making the

same substitution in (47), like in the case of odd s we see that the system

of inequalities (47) is equivalent to the following system
∑2l

j=0(−1)j∆j+k > 0, l ∈ {0, 1, . . .} , k ∈ {1, 3, 5, . . .} , 2l + k ≤ s− 1∑2l
j=0(−1)j∆j+k > 0, l ∈ {0, 1, . . .} , k ∈ {2, 4, 6, . . .} , 2l + k ≤ s− 2

.

(53)

The system (53) can be summarized as follows

2l∑
j=0

(−1)j∆j+k > 0, l ∈ {0, 1, . . .} , k ∈ {1, 2, 3, . . .} , 2l+k ≤ s−1. (54)

Inequalities ∆k > 0 of the system (54), which correspond to the case

l = 0 are always satisfied and may be left out from the system. Hence,

the (54) is equivalent to the condition (38).

Now we have shown that in the case of both even and odd s the system

(40) has a solution if and only if the condition (38) is fulfilled. So we have

proved that (38) is the necessary and sufficient condition for the Procedure 2

to produces a density function.

32



3.3.2 Finding approximate density for arbitrary set of color proba-

bilities

In this paragraph we propose another form f̃ of density function, that pro-

duces a given set of color probabilities. However, this type of density is ap-

proximative, since it produces only approximately the same set of probabili-

ties. In Definition 2 we will specify what is meant by “approximately equal

sets of probabilities”. The advantage of the density f̃ , as compared to the

density described by the Procedure 2, is that f̃ can be calculated for arbitrary

set {pi}s
i=1 of probabilities, whenever all the color probabilities are distinct,

i.e.

p1 > p2 > . . . > ps−1 > ps. (55)

Definition 2. Consider two sets {p′i}s
i=1 and {p′′i }s

i=1 of color probabilities.

Define the functions

G
′
(x) = #{p′i ≤ x} and G

′′
(x) = #{p′′i ≤ x}.

Then the sets {p′i} and {p′′i } are called approximately equal sets of color

probabilities if

max
0≤x≤1

|G′
(x)−G

′′
(x)|

is small as compared to s.

Lemma 2. Suppose that the set {pi}s
i=1 of color probabilities is given and that

(55) is satisfied. Then the density function that produces (via Procedure 1)

approximately the color distribution {pi} is given by

f̃(p) =

 p/(ξi−1 − ξi), p ∈ [ξi, ξi−1), i = 1, . . . , s

0, p ∈ (−∞, ξs) ∪ [ξ0,∞)
,
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where

ξi =
1

2
(pi + pi+1), i = 1, . . . , s− 1, ξs = 0, ξ0 = p1 + ps.

Proof: First we show that f̃(p) is a density function:∫ ∞

0

f̃(p)dp =
s∑

i=1

∫ ξi−1

ξi

f̃(p)dp =
s∑

i=1

[
1

ξi−1 − ξi

∫ ξi−1

ξi

pdp

]

=
1

2

s∑
i=1

ξ2
i−1 − ξ2

i

ξi−1 − ξi

=
1

2

s∑
i=1

(ξi−1 + ξi) =
ξ0 + ξs

2
+

s−1∑
i=1

ξi

=
p1 + ps

2
+

s−1∑
i=1

pi + pi+1

2
= 1.

Therefore, the function f̃(p) is indeed a density function.

Next we have to check the conditions (i) and (ii), that must be satisfied

before applying the Procedure 1. Condition (i) is satisfied because integral

of piecewise constant function

g̃(p) = f̃(p)/p =

 1/(ξi−1 − ξi), p ∈ [ξi, ξi−1), i = 1, . . . , s

0, p ∈ (−∞, ξs) ∪ [ξ0,∞)
,

is finite. The condition (ii) is also satisfied, since all the probabilities produced

are greater than ξs = 0.

Suppose that after applying the Procedure 1 to the function f̃(p) we get the

new set {p̃i}s̃
i=1. Integral of function g̃(p) equals∫ ∞

0

g̃(p)dp =
s∑

i=1

∫ ξi−1

ξi

g̃(p)dp =
s∑

i=1

[
1

(ξi−1 − ξi)

∫ ξi−1

ξi

dp

]
=

s∑
i=1

1 = s,

which means that s̃ = s and, hence, there are s elements in the set {p̃i}, as

much as in the set {pi}. Elements of the set {p̃i} equal

p̃i =

∫ ξi−1

ξi

f̃(p)dp = (ξi−1+ξi)/2 =


1
4
pi−1 + 1

2
pi + 1

4
pi+1, i = 2, . . . , s− 1

1
2
ps + 3

4
p1 + 1

4
p2, i = 1

1
4
ps−1 + 1

4
ps, i = s

.
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Let us show that the new set {p̃i} is approximately the same as the set {pi}.

Define the functions

G(x) = #{pi ≤ x}, G̃(x) = #{p̃i ≤ x} and ∆G(x) = |G(x)− G̃(x)|.

Our purpose is to find the maximum

max
0≤x≤1

∆G(x)

and to show that this maximum is small compared to s.

Let us find the value of ∆G(x) in some point x0 ∈ [0, 1]. If x0 > ξ0 then

∆G(x0) = s− s = 0, which is of course small compared to s. If x0 ≤ ξ0 then

there exists such r that x0 ∈ [ξr, ξr−1]. Introduce the following notations

pmin = min {pr, p̃r} , pmax = max {pr, p̃r} .

Let us find all the possible values of the ∆G(x0) depending on the mutual

location of points x0, pmin and pmax inside the interval [ξr, ξr−1].

1. If pmin = pmax then ∆G(x0) = 0 independently of location of x0.

2. If pmin < pmax then

(a) If x0 ∈ [ξr, pmin) then ∆G = |(s− r)− (s− r)| = 0.

(b) If x0 ∈ [pmin, pmax) then ∆G = |(s− r + 1)− (s− r)| = 1.

(c) If x0 ∈ [pmax, ξr−1] then ∆G = |(s− r + 1)− (s− r + 1)| = 0.

Therefore

max
0≤x≤1

∆G(x) = 1,

which is small relative to s, given that s is large. Moreover, in the process

s →∞ the maximum value of |∆G| is infinitely small. This may be written

as follows

max
x

∆G(x) = o(s).
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3.4 Density functions used to define color distribution

In the section 3.2 we have seen that the set {pi} of color probabilities can be

defined by some density function f . This allows us to deal with the density

f instead of the set {pi}. Suppose that we want to estimate the coverage

of a sample from formulae (3) or (4). Then it can be assumed that the

density f is a member of some well-known family f(~θ) of distributions, where

~θ = (θ1, . . . , θm) is a vector of parameters. So the problem reduces to the

estimating of a small number of parameters. In the Chapter 5 it will be

shown how to estimate the coverage when the parameters of the density

function f are already estimated. Now we introduce some types of densities

used elsewhere in the literature for defining distribution of color probabilities.

1. In 1943 R. Fisher [6] proposed the Gamma distribution

f(p) =
αk+1

Γ(k + 1)
pke−αp, (k > −1, α > 0), (56)

with k = 0 as a density of color probabilities. The author asserted

that the parameter k measures the variability, or heterogenity, of color

probabilities. If the population is very heterogenous, then k must be

close to zero, which corresponds to the exponential distribution.

Later, Engen [2] used the Gamma distribution where the possible values

of k were in the interval (−1,∞).

2. MacArthur [13] suggested, that, if there are s species in the popula-

tion, then their relative frequencies pi might be proportional to the

lengths of the segments of a line (or stick) broken at random into s
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pieces. This model is equivalent to supposing that pi are independent

and identically distributed variates having approximately exponential

distribution. The exponential distribution is the special case of Gamma

distribution with k = 0 and thus, has density

f(p) = αe−αp, (α > 0).

3. Bulmer [1] extended MacArthur’s “broken stick” model by supposing

that the stick is not broken into s pieces simultaneously, but the break-

age occurs sequentially in a series of stages. If, at each stage, the law of

breakage is independent of the size of the stick, then the distribution

of lengths pi of s pieces is lognormal with density

f(p) =
1

pd
√

2π
exp

(
−(ln(p)− µ)2

2d2

)
, (d > 0).

Still, the models, using Gamma distribution for defining the color probabi-

lities, are mathematically more simple than lognormal model. At the same

time, Gamma models are general enough to cover the most patterns of popu-

lation structures. Therefore, in the next chapters we will consider the Gamma

model of color probabilities.
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4 Modelling color probabilities by Gamma

distribution

In the previous section we have discussed how population probabilities of

colors can be defined by a density function f(p). Now we will consider a par-

ticular density, namely, the Gamma density as a model of color probabilities.

4.1 Derivation of Engen’s Extended Negative Bino-

mial (ENB) model

4.1.1 Parametric Poisson-Gamma model definition

Here we will demonstrate how the set of color probabilities {pi}, i = 1, 2, . . . , s

(s may be infinite) can be defined by a Gamma density. We use the following

notation for Gamma density

f(x) =
αγ

Γ(γ)
xγ−1e−αx, (x > 0, γ > 0, α > 0). (57)

In the previous chapter we have used the Procedure 1 for the defining of

color probabilities. However, before applying the procedure, we must check

if the conditions (i) and (ii) are satisfied. The condition (ii) is satisfied, since

f(x) > 0 if x ≥ 0, and, hence, the non-positive probabilities cannot be

produced.

If we define the function g(x) = f(x)/x, which is (up to the constant multi-

plier α/k) another Gamma-density, we have

∫ ∞

0

g(x)dx =
αk+1

Γ(k + 1)

∫ ∞

0

xk−1e−αxdx =

 α/k if k > 0,

∞ if k ≤ 0.
(58)
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If k > 0 then the condition (i) is satisfied and the function g(x) may be used

for defining color probabilities as in Procedure 1. If k ≤ 0 then we use the

procedure similar to the Procedure 1:

1. Divide area under the curve g(x) into infinitely many regions by points

0 < . . . < ξ2 < ξ1 < ξ0 = ∞, (59)

so that the area of each region is 1 (except for maybe the region in the

interval, i.e. ∫ ξi−1

ξi

g(x)dx = 1, i ≥ 1. (60)

2. Find the mean of the density g(x) in each interval [ξi, ξi−1]:

pi =

∫ ξi−1

ξi

xg(x)dx. (61)

Then ∑
i

pi =

∫ ∞

0

xg(p)dx =

∫ ∞

0

f(x)dx = 1 (62)

and hence we have obtained the necessary set {pi}.

To avoid infinite number of colors in the case of k ≤ 0, we can consider the

set of color probabilities {
p1, p2, . . . , pj−1,

∞∑
i=j

pi

}

with a suitable choice of j. In this case all colors with indices j, j+1, . . . (these

colors have the smallest probabilities) are considered as one single color.

Together with the Gamma density of color probabilities, Engen considered

the Poisson sampling scheme. This means, that the balls of color i are drawn

during time ν according to independent Poisson processes having standard-

ized intensities pi,
∑

i pi = 1. Then the mean number of balls of color i in
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the sample is νpi and the mean size of the total sample is ν. Since we have

Gamma distribution of color probabilities and Poisson sampling scheme, the

population model is called the Poisson-Gamma model .

4.1.2 Mean number of colors with x representatives

Let Tx denote the number of colors which are represented by exactly x balls in

the sample. Quantities Tx are called size indices or, alternatively, frequen-

cies of frequencies (Good [7]). In this section we will find the expectation

of Tx, x ∈ {0, 1, 2, . . .}.

Let the random variables Fi denote the sample frequency of color i, i. e.

number of balls of color i in the sample. Then Tx can be expressed as

Tx =
s∑

i=1

I(Fi = x), (63)

where

I(Fi = x) =

 1, Fi = x,

0, Fi 6= x.
(64)

Note that the sum
s∑

x=1

Tx = s− T0

equals to the number of colors represented in the sample. Next we are inter-

ested in finding the mean value of Tx

E(Tx) = E(
s∑

i=1

I(Fi = x)) =
s∑

i=1

P(Fi = x).

Since the frequency Fi of color i have Poisson distribution with mean νpi,

i = 1, . . . , s, then

E(Tx) =
s∑

i=1

(νpi)
x

x!
e−νpi . (65)
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Next we use approximation in each interval [ξi, ξi−1]

(νpi)
x

x!
e−νpi ≈

∫ ξi−1

ξi

(νp)x

x!
e−νpg(p)dp. (66)

Comment 1. The approximation (66) is a special case of the approximation

E[h(X)] ≈ h(EX),

where the random variable X has density g(p) in the interval [ξi, ξi−1] and

mean pi. The function h(·) is given by

h(p) =
(νp)x

x!
e−νp.

The shorter is the interval [ξi, ξi−1], the more accurate is the approximation.

Thus, the mean size index E(Tx) may be approximated by

E(Tx) ≈
∫ ∞

0

(νp)x

x!
e−νpg(p)dp. (67)

Substituting Gamma distribution function (57) divided by p into the place

of g(p) we get

E(Tx) ≈
∫ ∞

0

(νp)x

x!
e−νp

[
αk+1

Γ(k + 1)
pk−1e−αp

]
dp

=
νxαk+1

x!Γ(k + 1)

∫ ∞

0

px+k−1e−(α+ν)pdp. (68)

Using the definition of gamma function

Γ(t) =

∫ ∞

0

pt−1e−pdp (69)

(68) simplifies to

E(Tx) ≈
νxαk+1Γ(x + k)

x!Γ(k + 1)(ν + α)x+k
= α

Γ(x + k)

x!Γ(k + 1)
ωk(1− ω)x, (70)
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where

ω =
α

ν + α
.

Let us show that the right side of (70) is proportional to the probability of

negative binomial distribution. Recall that the probability mass function of

the negative binomial distribution is

Pr(x|k, ω) =

(
k + x− 1

k − 1

)
ωk(1− ω)x, x = 0, 1, 2, . . . , 0 < ω < 1. (71)

Usually the negative binomial distribution is defined only for non-negative

integer values of k. In this case the probability Pr(x|k, ω) has a simple inter-

pretation. Namely, Pr(x|k, ω) is the probability of getting x failures before

kth success occurs in series of x + k independent identical trials with proba-

bility of success ω.

If we recall that

(x− 1)! = Γ(x), x /∈ {0,−1,−2, . . .}

and

Γ(x + 1) = xΓ(x), x /∈ {0,−1,−2, . . .}

then probability (71) becomes

Pr(x|k, ω) =
Γ(k + x)

Γ(k)x!
ωk(1− ω)x, x = 0, 1, 2, . . . , 0 < ω < 1. (72)

The latter expression is defined for arbitrary k > 0. It can be shown that

(72) gives a valid probability mass function for all k > 0. The expression (72)

is defined also for k ∈ (−1, 0) and

∞∑
x=0

Pr(x|k, ω) = 1,

but in this case we cannot talk about the probability distribution, since in

the case k ∈ (−1, 0)

Pr(0|k, ω) > 1
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and

Pr(i|k, ω) < 0, i ∈ {1, 2, . . .}.

In the case k = 0, the probabilities (72) are not defined, since the Γ func-

tion has no value at the point 0. But in the process k → 0 the probability

Pr(0|k, ω) approaches value 1 and the other probabilities tend to 0.

It follows that

E(Tx) ≈
α

k
Pr(x|k, ω). (73)

We now see that the total number of colors s in population approximately

equals to α/k, since

s =
∞∑

x=0

E(Tx) ≈
α

k

∞∑
x=0

Pr(x|k, ω) =
α

k
. (74)

The mean value of number S of colors represented in the sample is then

E(S) =
α

k
− E(T0) =

α

k
(1− Pr(0|k, ω)) =

α

k
(1− ωk). (75)

Note 1. Note that if −1 < k < 0, then E(T0) cannot be approximated from

(70), because the estimate becomes negative. However, estimates of other size

indices E(Tx) x = 1, 2, . . . are available.

Because of the property that size indices E(Tx) are approximately propor-

tional to the probabilities Pr(x|k, ω), the Gamma-Poisson model is called

Engen’s Extended Negative Binomial (ENB) model . The “exten-

sion” of this model implies the new region −1 < k < 0, that was introduced

by Engen. Before that, only values k ≥ 0 have been used. Because of this

extension Engen’s ENB model describes populations of very different struc-

tures.

We have seen that in the case of the Gamma-Poisson model the sample size N

is a random variable with Poisson distribution with mean ν. But in practice,
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the sample size n is usually given. Due to (70),

E(N) =
∞∑

x=1

xE(Tx) ≈ α

∞∑
x=1

Γ(x + k)

(x− 1)!Γ(k + 1)
ωk(1− ω)x

=
α(1− ω)

ω

∞∑
x=1

Pr(x− 1|k + 1, ω) =
α(1− ω)

ω
.

If we approximate the expectation E(N) of sample size by its realization n

then we get
α(1− ω)

ω
≈ n. (76)

Thus, the expectation of size indice E(Tx) can be reformulated as

E(Tx) ≈ n
Γ(x + k)

x!Γ(k + 1)
ωk+1(1− ω)x−1. (77)

The latter formula is simpler to use for estimation purpose than approxima-

tive formula (70).

4.1.3 Joint distribution of size indices Tx

Consider a Gamma-Poisson model with parameters α and k. Recall that α

and k approximately define s by s ≈ α/k, where 0 ≤ s − α/k < 1. Hoshino

[10] has shown, that in the process

s →∞ and k → 0 with sk = α fixed (78)

the joint distribution of size indices T1, T2, . . . converges to the logarithmic

series model. This model is given by

P (T1 = t1, T2 = t2, . . .) =
∞∏

x=1

µtx
x e−µx

tx!
, (79)

where

µx = E(Tx).
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Note that number T0 of undiscovered colors is not included into the model

(79). The model (79) is equivalent to the assumption that the size indices

Tx are independent random variables having Poisson distribution with mean

µx. Further, the model (79) will be used to derive the maximum likelihood

estimate of parameters of Gamma distribution.

4.2 Estimation of ENB model

4.2.1 Derivation of maximum likelihood function

In this section we derive a log-likelihood function required to estimate popu-

lation parameters ω and k based on the distribution (79).

If we substitute expression (77) of E(Tx) into joint distribution of size indices

(79) then we obtain the maximum likelihood (ML) function L(ω, k) in terms

of parameters ω and k. To avoid working with products, we simplify the

ML function L(ω, k) by taking logarithm of it and finding the log likelihood

function l(ω, k) = ln L(ω, k)

l(ω, k) =
∞∑

x=1

tx ln E(Tx)−
∞∑

x=1

E(Tx)−
∞∑

x=1

ln(tx!) (80)

We omit ln(tx!), since it doesn’t depend on parameters ω and k and thus

doesn’t affect the maximum of l(ω, k). Let us find the first sum of (80)

∞∑
x=1

tx ln E(Tx) =
∞∑

x=1

tx ln

[
n

Γ(x + k)

x!Γ(k + 1)
ωk+1(1− ω)x−1

]
(81)

=
∞∑

x=1

tx((k + 1) ln ω + (x− 1) ln(1− ω) + ln Γ(x + k)− ln Γ(k + 1)) + c1

= S(k + 1) ln ω + (n− S) ln(1− ω) +
∞∑

x=1

tx(ln Γ(x + k)− ln Γ(k + 1)) + c1,
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since
∞∑

x=1

tx = s,

∞∑
x=1

xtx = n,

where c1 denotes an expression which doesn’t depend on ω and k. The second

sum of (80) simplifies to

∞∑
x=1

E(Tx) = n

∞∑
x=1

[
Γ(x + k)

x!Γ(k + 1)
ωk+1(1− ω)x−1

]
(82)

=
nω

k(1− ω)

∞∑
x=1

Pr(x|k, ω) =
nω

k(1− ω)
(1− Pr(0|k, ω))

=
nω

k(1− ω)
(1− ωk).

Hence, the log likelihood is expressed as

l(ω, k) = − nω

k(1− ω)
(1− ωk) + S(k + 1) ln ω + (n− S) ln(1− ω)

+
∞∑

x=1

tx(ln Γ(x + k)− ln Γ(k + 1)) + c2 (83)

where c2 does not depend on ω and k. Log likelihood function (83) was

proposed by Hoshino in [9], our role is its detailed derivation based on joint

distribution of size indices (79).

4.2.2 Fitting the model by the ML estimation

In this section we will apply log likelihood function (83) to estimating pa-

rameters of population model. For this purpose we will use data, which are

obtained by simulation of n = 500 observations from multinomial distrib-

ution with the number of classes s = 100. The population probabilities of

classes were the members of a geometric sequence

pi = p0q
i, i = 1, . . . , 100 (84)
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Table 1: Fitting of ENB model to simulated data

x tx MLE x tx MLE x tx MLE x tx MLE

1 9 8, 13 11 0 0, 91 21 1 0, 39 · · · · · · · · ·

2 5 4, 68 12 0 0, 82 22 1 0, 37 34 2 0, 18

3 3 3, 31 13 0 0, 75 23 0 0, 34 · · · · · · · · ·

4 3 2, 55 14 0 0, 68 24 0 0, 32 48 1 0, 09

5 0 2, 07 15 0 0, 62 25 0 0, 30 · · · · · · · · ·

6 2 1, 73 16 0 0, 57 26 0 0, 28 50 1 0, 08

7 0 1, 49 17 1 0, 53 27 0 0, 27 · · · · · · · · ·

8 2 1, 29 18 2 0, 49 28 0 0, 25 62 1 0, 04

9 1 1, 14 19 1 0, 45 29 0 0, 24 · · ·

10 3 1, 01 20 1 0, 42 30 1 0, 22
∑

41 41,00

where the common ratio q = 0.9 and p0 is the scale parameter. Empirical

size indices tx are given in the Table 1.

To find estimates ω̂ and k̂ we have to maximize log likelihood function (83).

One way to do it is to find partial derivatives ∂l/∂ω and ∂l/∂k and solve the

system of equations  ∂l(ω, k)/∂ω = 0

∂l(ω, k)/∂k = 0
. (85)

Hoshino [9] proposed the Newton-Rhapson algorithm for solving system (85).

However, unconstrained Newton-Rhapson algorithm has a problem that if

bad approximation is given, then iterations may drive us outside of region de-

fined by constraints k > −1 and 0 < ω < 1. To account for these constraints

we have used constrained Newton-Rhapson optimization method available

for example in module IML of SAS software. Besides the Newton-Rhapson

method, there are several methods available in SAS/IML module. The SAS
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code required to solve the optimization problem discussed can be found in

Appendix 1.

The ML-estimates of the parameters are ω̂ = 0.0312 and k̂ = 0.188. Ac-

cording to the fitted model, estimated values of E(Tx), found by (77), are

exhibited in Table 1 in column named MLE. The same data are plotted in

Figure 4.

Figure 4: Plot of empirical and estimated size indices
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5 Estimation of sample coverage

5.1 Review of literature on estimation of sample cove-

rage

The problem of estimating the coverage was first discussed in Good [7] with

application in studies of the literary vocabulary and accident proneness.

The estimator that is proposed in the article, was suggested to Good by

D. M. Turing and thus is called the Turing estimator. This estimator is given

by

ĈTur = 1− t1
n

, (86)

where, as before, t1 is the number of colors in the sample, which are repre-

sented by one ball and n is the sample size. The Turing estimator is derived

using the Bayes’ theorem (see Appendix 2 for the derivation).

The Turing estimator has been discussed by many authors. Esty [4] has

proved a normal limit law for the Turing estimator in the case of multinomial

sampling scheme. It means that there exists such σ > 0, so that

Cn − ĈTur

σ

√
n → N(0, 1) (87)

in distribution in process n → ∞. This allows to calculate an assymptotic

confidence interval for the sample coverage. Mao and Lindsay [14] proved the

similar normal limit law for the Poisson sampling scheme

Cν − ĈTur

δ

√
s → N(0, 1) for some δ > 0. (88)

The difference between limit laws (87) and (88) is that in the first case the

sample size n goes to infinity, while in the second case the number s of colors

becomes infinite.
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In [5] Esty has shown that the Turing estimator is assymptotically the same

efficient as the best coverage estimator developed under the strong hypothesis

that all colors have equal probabilities

p1 = p2 = . . . = ps = 1/s,

even when the hypothesis is true. It is worth noting that in the case of

equiprobable colors the ML estimate of the number s of colors in population

was obtained by Lewontin and Prout [12]. This estimate is given by the

equation

n

ŝ
=

ŝ∑
j=ŝ−vn+1

1

j
,

where vn is the number of colors in the sample or, equivalently, the sample

colority. In the case when all colors are equiprobable, the sample coverage

Cn equals to the sample colority Vn divided by the number of classes s. Thus

it is natural to estimate the sample coverage by vn/ŝ.

In contrast to the nonparametric Turing estimator, Engen [3] used a paramet-

ric Poisson-Gamma model to estimate the sample coverage. This parametric

model was introduced in Chapter 4 and the estimator of the sample coverage

is derived in the following section. The Engen’s estimator of sample coverage

performs well for different kinds of population structures.

5.2 Estimation of sample coverage in the case of ENB

model

Next we will estimate the sample coverage under ENB model, defined by (77).

In the case of Poisson sampling scheme the mean of the sample coverage can

be expressed as

E(Cν) =
s∑

i=1

pi(1− e−λiν) (89)
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(see paragraph 2.3.1). Each summand of the sum in the right side of (89) can

be approximated (see Comment 1) by

pi(1− e−νpi) ≈
∫ ξi−1

ξi

p(1− e−νp)g(p)dp.

The coverage is then approximated as follows

E(Cν) ≈
s∑

i=1

∫ ξi−1

ξi

p(1− e−νp)g(p)dp

=

∫ ∞

0

p(1− e−νp)g(p)dp = 1−
∫ ∞

0

e−νpf(p)dp

= 1− αk+1

(ν + α)k+1

∫ ∞

0

f(p)dp = 1− ωk+1, (90)

where

ω =
α

ν + α
.

Hence, we have

E(Cν) ≈ 1− ωk+1. (91)

Formula (91) is proposed by Engen [3], we have only derived it here in full

details. The coverage of the sample can be estimated by

Ĉν = 1− ω̂k̂+1, (92)

where the parameters ω and k are replaced by their ML estimates ω̂ and k̂,

given by the log likelihood function (83).

Due to (70)

ET1 ≈ α(1− ω)ωk =
αν

α + ν
ωk = νωk+1.

It means that

ωk+1 ≈ ET1

ν
.

Therefore the expectation (91) may be written as

E(Cν) ≈ 1− ET1

ν
. (93)
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The expression in the right side of (93) does not depend on the parameters

ω and k of Gamma distribution. After replacing the expectation ET1 by the

realization t1 of size index T1 and replacing the mean sample size ν by the

actual sample size n, then we obtain the Turing estimator (86) of the sample

coverage. This implies that both the Turing estimator (86) and the estimator

(92) derived by Engen, are approximately the same.

Example 9. Estimation of sample coverage. Here we will continue work-

ing with simulated dataset described in paragraph 4.2.2. We calculate the

Engen’s coverage estimate (92)

Ĉν = 1− ω̂k̂+1 = 1− 0.03121+0.188 = 0.984

and the Turing estimate (86)

ĈTur = 1− t1
n

= 1− 9

500
= 0.982.

We see that the estimates are very close. For comparison, the actual sample

coverage of our sample was

100∑
i=1

piI(Fi > 0) = 0.971,

thus, the relative error of coverage estimate is

0.982− 0.971

0.971
= 1.1%.

The estimate of the total number s of colors according to (74) is

ŝ =
α̂

k̂
=

nω̂

k̂(1− ω̂)
=

500 · 0.0312

0.188(1− 0.0312)
= 86,

which is not a precise estimate, since the actual number of colors in the

population was s = 100.
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5.3 Inspection of goodness of ENB model: a Monte-

Carlo experiment

In this subsection an experiment will be conducted to investigate the good-

ness of the coverage estimator (91), which was obtained under assumptions of

the ENB model. Different kinds of populations structures will be inspected.

In order to check the performance of the ENB model for the estimation of

the sample coverage, multinomial samples were simulated from populations

having following structures.

1. Uniform color probabilities described in Example 2.

2. Two different exponentially decreasing color distributions described in

Example 5 with common ratio q = 0.95 and q = 0.98.

3. Inverse color probabilities described in Example 6.

4. Quadratically decreasing probabilities described in Example 7.

In each of five color distributions the number of colors was s = 200. With

each distribution 25 multinomial samples of four different sizes (n = 200,

300, 500 and 1000) were generated. Maximum likelihood estimates of the

parameters ω and k (given by the log likelihood (83)) of the ENB model

were obtained. Next the sample coverage was estimated using the formula

(92)

Ĉν = 1− ω̂k̂+1.

Since the color distributions are known, the actual sample coverage Cn can

be calculated directly, using the definition (5). The averages of actual Cn and
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the averages of estimates Ĉn for each sample size and each color distribution

are presented in Table 2.

Table 2: Actual coverages and estimated coverages of simulated samples (ave-

raged over 25 samples)

C200 Ĉ200 C300 Ĉ300 C500 Ĉ500 C1000 Ĉ1000

EXP95 0.904 0.908 0.934 0.941 0.959 0.968 0.982 0.983

EXP98 0.778 0.779 0.857 0.855 0.918 0.920 0.965 0.968

CONST 0.628 0.635 0.780 0.769 0.924 0.914 0.995 0.993

INV 0.771 0.772 0.825 0.819 0.885 0.875 0.951 0.939

SQR 0.772 0.773 0.860 0.873 0.930 0.943 0.979 0.981

From the table Table 2 we see, that the estimates are precise (in average)

enough even for small sample sizes. To have a better look at the quality

of coverage estimation, averages and standard deviation of relative errors

ρ = |Ĉ − C|/C were also computed. Calculated characteristics of relative

errors are presented in the Table 3. From Table 3 we see that the cover-

age estimates have small relative errors for all population distributions, the

biggest error being 6.1%. Hence we have demonstrated that the ENB model

fits well different kinds of population structures.
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Table 3: Characteristics of relative errors of coverage estimates

n = 200 n = 300 n = 500 n = 1000

ρ̄ sd(ρ) ρ̄ sd(ρ) ρ̄ sd(ρ) ρ̄ sd(ρ)

EXP95 0.029 0.017 0.018 0.015 0.010 0.007 0.004 0.003

EXP98 0.043 0.042 0.033 0.023 0.018 0.011 0.006 0.003

CONST 0.052 0.043 0.039 0.026 0.020 0.013 0.005 0.003

INV 0.039 0.033 0.024 0.016 0.020 0.015 0.015 0.009

SQR 0.061 0.043 0.025 0.019 0.021 0.019 0.006 0.003
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6 Estimation of sample size required for achiev-

ing given coverage

In the previous sections we have estimated the sample coverage. The purpose

of estimating the sample coverage is to answer the question “is it worthwhile

to extend the sample?”. If the coverage of the sample is large enough (99.9%,

for example), then we can stop drawing objects into the sample, since the

structure of the population is well established already. But if the coverage is

not sufficient yet, then we wish to know how many additional objects must

be drawn to achieve the given coverage. Thus, the problem is to estimate the

sample size n1−η, required for achieving the given coverage 1− η 1.

With this problem we started already in the thesis [11] where estimation

of required sample size in the special case of uniform color distribution was

discussed. We bring some results from [11] and provide improvements of the

methods introduced there for estimating the required sample size.

It should be emphasized that in all the methods of this section the estimates

of required sample size are calculated using only the points

V1 ≤ V2 ≤ . . . ≤ Vn

of the sample colority curve. No other additional information about the

sample is used. Thus, the information about sample frequencies of colors

is not used during estimation.

1Note that in this section n1−η denotes the total sample size, i.e. it includes objects

that have been already drawn. Thus, if n0 objects are already drawn then we have to draw

n1−η − n0 additional objects to achieve the coverage 1− η.
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6.1 Uniform color distribution

Our main results in [11] were two methods for estimating the sample size

n1−η, required for achieving the given coverage 1 − η in the case of uniform

color distribution. These methods are Method 1 and Method 2 below. In

addition we propose a new Method 3.

6.1.1 Method 1: Estimating of required sample size by the “two-

point” method of moments

In the case of uniform color distribution the color probabilities are pi = 1/s,

i = 1, . . . , s. The expectations of sample colority Vn and coverage Cn can be

approximately expressed as

E(Vn) ≈ s
(
1− e−

n
s

)
, E(Cn) ≈ 1− e−

n
s ,

(see formulae (24) and (25)). Recall that the approximation is good, provided

that pi = 1/s is small, and hence, provided that s is large. Suppose that the

colority curve

V1 ≤ V2 ≤ . . . ≤ Vn

is known. If we choose two points of colority curve, say Vt and V2t, then the

mean sample colorities at this points are approximately

E(Vt) ≈ s(1− e−
t
s )

E(V2t) ≈ s(1− e−
2t
s )

. (94)

Thus
E(V2t)

E(Vt)
≈ 1− e−

2t
s

1− e−
t
s

= 1 + e−
t
s . (95)

Next we express s from (95):

s ≈ − t

ln
(

E(V2t)
E(Vt)

− 1
) . (96)
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In order to estimate s, we substitute the sample values of Vt and V2t in the

place of their expectations, and get an estimate for the number s of classes

in population

ŝ ≈ − t

ln
(

V2t

Vt
− 1
) . (97)

Then we estimate the required sample size n1−η needed to achieve coverage

1 − η. For this purpose, we substitute in the expression of mean sample

coverage

E(Cn1−η) ≈ 1− e−
n1−η

s

the required coverage 1− η into the place of its expectation to obtain

1− η ≈ 1− e−
n1−η

s ⇒ n1−η ≈ −s ln η.

Finally, by substituting the estimate ŝ (97) into the latter approximate equa-

tion, we get

n̂1−η ≈
t ln η

ln
(

V2t

Vt
− 1
) . (98)

We call the latter estimate of the required sample size the “two-point” esti-

mate, since two points of colority curve are used.

6.1.2 Method 2: Estimating of required sample size by nonlinear

regression

In this method we estimate the regression model, where the required sample

size (or its appropriate transformation) is the response variable and color-

ity values Vt1 , . . . , Vtk (maybe appropriately transformed) are the explana-

tory variables. In the thesis [11] two regression models were evaluated: one

model for n0.99 and other model for n0.999. This method gives estimates with

smaller biases and standard errors, compared to the method of the moments
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(Method 1). However, the method of regression is of very limited use, because

each regression equation is usable only for certain value of required coverage

and for certain interval of sample sizes.

6.1.3 Method 3: “One-point” method of moments

Here we demonstrate that the Method 1 can be improved by using only one

point of a colority curve instead of two points (Vt and V2t). The “one-point”

method of moments that we will next propose, gives a smaller relative error

of additional sample size, compared to the “two-point” method. Consider the

approximate expression of the mean of the sample colority

E(Vt) ≈ s(1− e−
t
s ). (99)

If we substitute the realization of colority in place of the colority expectation,

then we get

Vt ≈ s(1− e−
t
s ). (100)

To estimate number of colors s, the equation (100) can be solved (for s) nu-

merically, for example by Newton’s method. When an estimate s̃ is obtained,

then the required sample size is obtained by

ñ1−η = −s̃ ln η.

6.1.4 Monte-Carlo comparison of Method1 and Method 3

The comparison of Method 1 and Method 2 in one particular case is provided

in Table 4. The data in the table were obtained by simulating 50 samples

of size n = 250 from population with s = 500 and uniform distribution of

colors. From simulated values of colority curve, the required sample size n0.99

59



Table 4: Comparison of Method 1 and Method 3 for estimating the sample

size n0.99 required to reach 99%-coverage

Method 1 Method 3

Average relative error ρ̄ 0.366 0.196

Standard deviation sd(ρ) 0.438 0.160

Average estimated n0.99 2598 2353

Actual value of n0.99 2294

Average estimated s 564.1 510.9

to achieve 99% coverage was estimated using both Method 1 and Method 3.

In Method 3 the only the last point V250 of colority curve was used to obtain

the estimate of n0.99. In Method 1, the points V250 and V125 were used to

calculate the estimate of n0.99. The actual value of sample size n0.99, when

the coverage achieves 99%, was also evaluated for each sample.

In the table, there are shown characteristics of estimates for both methods,

averaged over 50 samples:

(a) averages ρ̄ of relative errors of estimated sample sizes n0.99,

(b) standard deviations sd(ρ),

(c) averages of estimated sample sizes,

(d) average of actual sample size,

(e) the averages of estimated number s of colors (these averages can be

obtained by dividing averages in (c) by a constant − ln η).

From the Table 4 we conclude that the Method 3 outperforms the Method 1

by all presented characteristics. In the Method 3 both the average and the
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standard deviation of relative errors are about two times smaller than in the

Method 1.

Though the computation of estimates is simpler in the case of Method 1,

we recommend to use the Method 3, which provides more precise estimates.

Furthermore, the optimization problem required in the Method 3 can easily

be solved by most of statistical or mathematical software packages.

The case of uniform color distribution discussed in this subsection is quite

unusual in practice. More usual is the situation where we have a small number

of dominating classes and a large number of rare classes, which are repre-

sented by a small number of objects. In two following subsections we will

model such populations by two types of color distributions: linearly decreas-

ing color distribution and exponentially decreasing color distribution.

6.2 Linearly decreasing color distribution

In the case of linearly decreasing color distribution the color probabilities are

given by formula

pi = p0 − ai, a > 0, i = 1, . . . , s.

The constant p0 is uniquely defined from the constraint
∑

i(p0− ai) = 1. We

will express the color probabilities by introducing the parameter r, which

equals to the relation of the biggest and the smallest color probability, i.e.

r =
π(1)

π(s)
=

p0 − a

p0 − as
.
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If the value of the parameter r is given, the coefficients p0 and a can be

calculated as follows

p0 =
2(rs− 1)

s(s− 1)(r + 1)
, (101)

a =
2(r − 1)

s(s− 1)(r + 1)
. (102)

Hence, the color probabilities are given by equation

pi =
2

s(s− 1)(r + 1)
((rs− 1)− (r − 1)i), r ≥ 1, i = 1, . . . , s. (103)

Note that the value r = 1 corresponds to the uniform color distribution. Next

we will find an estimate n̂1−η of the sample size n1−η required for achieving

the coverage 1−η based on the sequence Vt1 , . . . , Vtk of sample colorities. We

will use the estimation method that consists of two steps: (1) estimation of

population parameters s and r and (2) estimation of the required sample size

n1−η based on estimates found in (1).

6.2.1 Method 4 for estimation of required sample size

(1) Consider the approximate expression of the mean colority (13)

E(Vn) ≈
s∑

i=1

(1− e−npi). (104)

We then simplify the sum in (104), by substituting the expression p0−ai

of color probabilities in the place of pi and using the formula of the sum

of geometric sequence:

s∑
i=1

(1− e−npi) = s−
s∑

i=1

e−n(p0−ai) = s− e−np0

s∑
i=1

enai

= s− e−n(p0+a) e
−nas − 1

e−na − 1
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Now we have

E(Vn) ≈ s− e−n(p0+a) e
−nas − 1

e−na − 1
. (105)

We can express the right side of (105) only in terms of s, n and r using

equalities (101) and (102). Hence, we consider the right side of (105) as

a function hn(s, r), of s and r, getting

E(Vn) ≈ hn(s, r).

Substitution of the mean colority E(Vn) by corresponding sample colority

Vn gives us the equation in s and r

Vn ≈ hn(s, r).

Using all given points Vt1 , . . . , Vtk of colority curve we obtain k equations

Vtj ≈ htj(s, r), j = 1, . . . , k. (106)

Generally, the system (106) of equations have no exact solution. To es-

timate the parameters s and r we can solve corresponding least-squares

optimization problem, i.e. we find values ŝ and r̂ that minimize the fol-

lowing function

Θ(s, r) =
k∑

j=1

(Vtj − htj(s, r))
2. (107)

We use estimates ŝ and r̂ in the following step to estimate required sample

size.

(2) Consider the approximate expression of the mean coverage (16)

E(Cn) ≈
s∑

i=1

pi(1− e−npi), (108)

and substitute the mean coverage E(Cn) by the sample coverage Cn to

obtain

Cn ≈
s∑

i=1

pi(1− e−npi). (109)
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Consider (109) in the case n = n1−η:

Cn1−η ≈
s∑

i=1

pi(1− e−n1−ηpi). (110)

The coverage Cn1−η approximately equals to 1−η. We also replace proba-

bilities pi by their estimates p̂i, which are calculated from (103) using the

estimates ŝ and r̂, found at the step (1). Thus, we obtain

1− η ≈
ŝ∑

i=1

p̂i(1− e−n1−η p̂i). (111)

Since
ŝ∑

i=1

p̂i = 1,

the (111) simplifies to

η ≈
ŝ∑

i=1

p̂ie
−n1−η p̂i . (112)

The only unknown in equation (112) is the required sample size n1−η. By

solving the equation (112) for n1−η, using some numerical algorithm, we

obtain the estimate n̂1−η.

6.2.2 Monte-Carlo experiment: evaluation of Method 4

For evaluation of the Method 4 the following Monte-Carlo experiment was

conducted. One hundred samples of size n = 250 were simulated for 19

different populations with linearly decreasing distribution of colors with s =

500 colors and with 19 different values of parameter r.

From simulated colority curves, sample sizes n0.99 required to achieve 99%

coverage were estimated by the Method 4, using points (V50, V100, V150, V200

and V250) of colority curves. The actual value of sample size n0.99, when the

coverage achieves 99%, was also registered for each sample.
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In order to understand, which subset of points V50, V100, V150, V200, V250 we

have to take as input information for estimation, we have compared the good-

ness of estimates for all possible subsets. The result was that the estimates

based on only the last colority point V250 had the smallest relative errors.

Further we propose only the estimates based on this one point V250.

In Table 5, characteristics of estimates for 19 used values of r, averaged over

100 samples, are given:

(a) averages ρ̄ of relative errors of estimated sample sizes n0.99,

(b) standard deviations of relative errors sd(ρ),

(c) averages of estimated sample sizes,

(d) averages of actual sample sizes.

In Figures 5 and 6, there are shown the estimated and the actual sample size

for r < 20 and r ≥ 20, accordingly.

From Table 5 we observe that the estimated and the actual sample size

become closer as the value of the population parameter r increases. For values

r ≥ 20 the relative error of estimate stabilizes at the value of about 0.12. For

small values of r (r < 10) the relative error is very large. The reason is that

the parameter r is strongly overestimated. Since the case r = 1 corresponds

to the uniform color distribution, we can use the Method 3 for estimation of

required sample size if r is close to 1. Note that the estimate of the sample

size by the Method 3 in Table 4 is very close to the actual sample size in

Table 5 in the case r = 1.1.

The conclusion is that the Method 4 gives acceptable estimates of required

sample size for populations with values of parameter r ≥ 10. For r < 10 it is

recommended to use Method 3 to get more precise estimate.

65



Table 5: Comparison of sample size estimates obtained by Method 4 with

simulated sample size

r Estimated Actual value Average relative sd(ρ)

n0.99 of n0.99 error ρ̄

1.1 4764.7 2298.6 1.088 0.292

1.5 4669.3 2333.7 1.018 0.321

2 4630.7 2416.2 0.934 0.328

5 4190.3 2884 0.466 0.249

10 3903.2 3187.4 0.249 0.181

15 3807.3 3339.2 0.186 0.141

20 3675.9 3427.3 0.134 0.123

25 3708.9 3460.9 0.145 0.136

50 3637.6 3513.9 0.135 0.096

100 3616.6 3539.9 0.121 0.109

200 3512.4 3467.9 0.129 0.094

300 3559.8 3568.7 0.141 0.102

400 3594.9 3572.1 0.108 0.088

500 3543.5 3598.5 0.106 0.084

600 3567 3605.8 0.131 0.097

700 3503.1 3487.3 0.121 0.098

800 3592.3 3594.3 0.114 0.084

900 3512.2 3559.2 0.123 0.087

1000 3591.8 3483.1 0.113 0.090

6.3 Exponentially decreasing color distribution

In the case of exponentially decreasing color distribution the color probabi-

lities are given by formula

pi = p0q
i, 0 < q ≤ 1, i = 1, . . . , s.
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Figure 5: Comparison of required sample size, estimated by Method 4 and

the actual sample size for values of r ≤ 20

Figure 6: Comparison of required sample size, estimated by Method 4 and

the actual sample size for values of r > 20
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The constant p0 is uniquely defined by q and s from the constraint
∑

i p0q
i = 1.

Note that the value q = 1 corresponds to the uniform color distribution. Next

we will find an estimate n̂1−η of the sample size n1−η required for achieving

the coverage 1−η based only on the sequence Vt1 , . . . , Vtk of sample colorities.

We will use the estimation method that consists of two steps: (1) estimation

of number of colors s and the population parameter q, and (2) estimation of

the required sample size n1−η based on estimates found in (1).

6.3.1 Method 5 for estimation of required sample size

(1) Consider the approximate expression of the mean colority (13)

E(Vn) ≈
s∑

i=1

(1− e−npi). (113)

By substituting pi by p0q
i into the (113) we get

E(Vn) ≈ s−
s∑

i=1

e−np0qi

(114)

The right side of (114) depends only on s, n and q. Hence, we consider

the right side of (114) as a function hn(s, q), of s and q, getting

E(Vn) ≈ hn(s, q).

Substitution of the mean colority E(Vn) by corresponding sample colority

Vn gives us the equation in s and q

Vn ≈ hn(s, q).

Using all given points Vt1 , . . . , Vtk of colority curve we obtain k equations

Vtj ≈ htj(s, q), j = 1, . . . , k. (115)
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To obtain estimates ŝ and q̂ of the parameters s and q, we find the values

of s and q that minimize the following least-squares function

Θ(s, q) =
k∑

j=1

(Vtj − htj(s, q))
2. (116)

We use ŝ and q̂ in the following step to estimate the required sample size.

(2) Consider the approximate expression of the mean coverage (16)

E(Cn) ≈
s∑

i=1

pi(1− e−npi). (117)

Substitute the mean coverage E(Cn) by the sample coverage Cn to obtain

Cn ≈
s∑

i=1

pi(1− e−npi). (118)

Consider the (118) in the case n = n1−η:

Cn1−η ≈
s∑

i=1

pi(1− e−n1−ηpi). (119)

The coverage Cn1−η approximately equals to 1 − η. We also replace the

probabilities pi by their estimates p̂i, using the estimates ŝ and q̂, found

at the step (1). After this, we obtain

1− η ≈
ŝ∑

i=1

p̂i(1− e−n1−η p̂i). (120)

Knowing that
ŝ∑

i=1

p̂i = 1,

the (120) simplifies to

η ≈
ŝ∑

i=1

p̂ie
−n1−η p̂i . (121)

By solving the equation (121) numerically for n1−η we obtain the estimate

n̂1−η of the required sample size.

69



6.3.2 Monte-Carlo experiment: evaluation of Method 5

For evaluation of Method 5 the following Monte-Carlo experiment was con-

ducted. One hundred samples of size n = 250 were simulated for 22 different

populations with exponentially decreasing distribution of colors with s = 500

colors and with 22 different values of parameter q in interval [0.95, 0.999].

From values V50, V100, V150, V200, V250 of simulated colority curves, the sample

size n0.99, required to achieve 99% coverage was estimated using Method 5.

The actual value of sample size n0.99, when the coverage achieves 99%, was

also registered for each sample.

Like in the Method 4, the estimates based on only the last colority point V250

had the smallest relative errors. Further we propose only the estimates based

on this one point V250.

In Table 6, characteristics of estimates for, averaged over 100 samples, are

given:

(a) averages ρ̄ of relative errors of estimated sample sizes n0.99,

(b) standard deviations of relative errors sd(ρ),

(c) averages of estimated sample sizes,

(d) averages of actual sample sizes.

Note that in Table 6 there are shown estimates only for the 16 first values

of q in interval [0.95, 0.993], since relative errors become extremely large for

greater values of q and so the estimates have no practical meaning.

The Figure 7 illustrates the Table 6.
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From Table 6 and Figure 7 we observe that the estimated and the actual

sample size are very close for values of q in [0.95, 0.98]. The closer is q to 1,

the bigger is the difference between estimated and actual sample sizes. For

values of q greater than 0.99 the estimates become useless. We also observe

that the actual sample size increases for values of q in [0.95, 0.987], achieves

the maximum somewhere around the point q = 0.987 and then starts to

decrease. This property of the actual sample size is understandable, since

exponentially decreasing color distribution converges to the uniform color

distribution in the process q → 1. Therefore, for fixed number of colors

nexp
1−η(q)

q→1−→ nconst
1−η ,

where nexp
1−η(q) is the required sample size in the case of exponentially decreas-

ing color distribution with parameter q and nconst
1−η is the required sample size

in the case of uniform color distribution. In our case we see that the ave-

rage value of actual sample size for q = 0.999, which equals to 2433 is very

close to the corresponding average value 2294 in the case of uniform color

distribution (see Table 4).

We conclude that the Method 5 gives good estimates for values of q less

than 0.985 and it is not recommended to use this method if the value of

the population parameter q is greater than 0.99. If q is 0.997 and greater

then the Method 3 can be used. For intermediate values (q ∈ (0.99, 0.997))

the Method 5 overestimates and the Method 3 underestimates the required

smple size.
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Table 6: Comparison of sample size estimates obtained by Method 5 with

simulated sample size

q Estimated Actual value Average relative sd(ρ)

n0.99 of n0.99 error ρ̄

0.95 1954 1853.4 0.189 0.189

0.955 2244 2122.4 0.219 0.200

0.96 2446 2437.8 0.158 0.137

0.965 2838 2791 0.151 0.109

0.97 3323 3236.4 0.136 0.130

0.975 3948 3990.4 0.120 0.101

0.98 4954 4999.2 0.132 0.118

0.985 6749 6208.6 0.147 0.143

0.986 7043 6616.4 0.124 0.086

0.987 7518 6832.4 0.143 0.137

0.988 8285 6746.2 0.243 0.151

0.989 9077 6733 0.364 0.211

0.99 10099 6519.4 0.570 0.235

0.991 10730 6125.8 0.768 0.254

0.992 11973 5492.8 1.198 0.317

0.993 13578 4888.8 1.800 0.386

0.994 4342.8

0.995 3817.4

0.996 3283.6

0.997 2877.6

0.998 2582.6

0.999 2433
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Figure 7: Comparison of required sample size, estimated by Method 5 and

the actual sample size
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7 Summary

In this work we provided several methods for estimation of the sample cove-

rage and estimation of the sample size, required to achieve given coverage.

For estimation of the sample coverage we have used Engen’s ENB (Extended

Negative Binomial) method. This method is based on describing the color

distribution by a Gamma-density. We have shown that this method provides

precise estimates of the sample coverage for very different color distributions.

For estimation of the required sample size we have proposed methods for 3

types of color distributions. All the proposed methods use only the points

colority curve as input data. These distributions are the following: (1) uniform

color distribution, (2) linearly decreasing color distribution, (3) exponentially

decreasing color distribution.

Evaluation of estimation methods for these 3 distributions gave the following

results.

In the Method 3, provided for the case of uniform color distribution, the

relative error of the sample size was 20%, which is acceptable.

The relative error of estimate in the Method 4 for the case of linearly de-

creasing color distribution depends on the value of parameter r of the color

distribution. Error is small for values of r > 20 and it increases when r closes

to 1 (this corresponds to the uniform color distribution). For r < 10 it is not

recommended to use the proposed method.

The relative error of estimate in the Method 5 for the case of exponentially

decreasing color distribution the relative error is acceptable for values of

parameter q < 0.988. For the greater values of q the relative error is so big,

that the estimates have no use. The case q = 1 corresponds to uniform color
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distribution. If q > 0.996 then we can use the method for uniform distribution

(Method 3) instead.

The conclusion is that if linearly or exponentially decreasing distribution is

sufficiently different from the uniform distribution, then methods proposed

for these distributions provide precise estimates of the required sample size.
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Üldkogumid suure arvu klassidega: mudelid

ning valimi katvuse ja valimimahu hindamine

Mihhail Juhkam

Resümee

Kaasaaegse loodusteaduse mitmed ülesanded tingivad selliste üldkogumite

matemaatilist käsitlemist, kus klasside arv on väga suur, nätieks sajad või

isegi tuhanded klassid. Sellises situatsioonis on üheks tähtsaks ülesandeks

teada saada, kui suurt osa (tõenäosuse mõttes) esindab üldkogumist võetud

juhuslik valim ehk kui suur on juhusliku valimi katvus.

Käesolevas töös on esmalt vaadeldud mudeleid klassi tõenäosuste jaotuste kir-

jeldamiseks. Tähtsaim nendest on Gamma-jaotusel põhinev Gamma-Poisson

mudel.

Seejärel on välja pakutud mitmeid meetodeid valimi katvuse hindamiseks

suure klasside arvuga üldkogumi korral ning meetodid vajaliku valimimahu

hindamiseks etteantud katvuse saavutamiseks.

Läbiviidud Monte-Carlo katsete põhjal selgus, et Engeni poolt [3] väljapakutud

ENB (Extended Negative Binomial) mudel annab piisavalt täpseid valimi

katvuse hinnanguid erinevate üldkogumi värvijaotuste korral. Piisavalt head

katvuse hinnangud on saadud nii suurte kui ka väikeste valimimahtude korral.

Katvuse hinnangu keskmine suhteline viga ei ületanud 6.1% ning suhtelise

vea standardhälve ei ületanud 4.3%.

Etteantud katvuse saavutamiseks vajaliku valimimahu hindamiseks on paku-

tud välja mitmed meetodid kolme erineva värvijaotuse jaoks: (1) ühtlane
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värvijaotus, (2) lineaarselt kahanev värvijaotus, (3) eksponentsiaalselt ka-

hanev värvijaotus.

Meetodite täpsuse hindamise eesmärgil läbiviidud simuleerimiskatse näitas,

et

(1) ühtlase värvijaotuse korral on hinnangu keskmine suhteline viga 20%,

(2) lineaarselt kahaneva värvijaotuse korral sõltub hinnangu suhteline viga

värvijaotuse parameetrist r ning r > 20 korral ei ületa keskmine suhte-

line viga 14.5% (ühele lähedaste r väärtuste korral on parem kasutada

meetodit ühtlase jaotuse jaoks),

(3) eksponentsiaalselt kahaneva värvijaotuse korral sõltub hinnangu suhte-

line viga värvijaotuse parameetrist q ning q < 0.985 korral ei ületa

keskmine suhteline viga 14.7% (q > 0.997 korral on parem kasutada

meetodit, mis on välja töötatud ühtlase jaotuse jaoks).
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Appendix

A1. SAS/IML functions for solving nonlinear optimiza-

tion problems (NLP)

Suppose we wish to maximize the log likelihood function given by (83) where

the constraints

k > −1, 0 < ω < 1

are satisfied. We are given the array

t = (t1, t2, . . . , t62)

of size indices and the sample size n = 500. Next we propose the SAS program

code that solves the optimization task. Program consists of two main blocks:

definition of log likelihood function Loglik(x) and the call of the optimization

algorithm.

proc iml;

/* Giving input parameters */

n=500;

t={9 5 3 3 0 2 0 2 1 3 0 0 0 0 0 0 1 2 1 1

1 1 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1};

/* Definition of the log likelihood function */

/* Function has two parameters: */

/* x[1]=OMEGA, x[2]=K */

start Loglik(x) global(n,t);

nu=sum(t);
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y = j(1,2,0.);

s=0;

do i=1 to ncol(t);

s=s+t[i]*(Lgamma(i+x[2])-Lgamma(1+x[2]));

end;

f =-n*(x[1])##(x[2]+1)*(((x[1])##(-x[2])-1)/((1-x[1])*x[2]))

+(n-nu)*log(1-x[1])+nu*(x[2]+1)*log(x[1])+s;

return(f);

finish Loglik;

/* Giving initial values to parameters OMEGA and K */

x = {0.99 -0.5};

/* Giving options for optimization task */

/* The meaning of options: */

/* opt[1]=1 shows that this is the maximization task */

/* opt[2]=2 specifies the amount of printed output */

optn = {1 2};

/* Defining constraints for parameters OMEGA and K */

/* Constraint 1: 1e-6<=OMEGA<=0.999999 */

/* Constraint 2: -0.999999<=K */

con={1e-6 -0.999999,

0.999999 .};

/* Running the nonlinear optimization by Newton-Raphson method */

/* Description of parameters: */

/* rc - variable, that indicates the reason for the termination */

/* of the optimization process */

/* xr - contains the optimal point if termination was successful */
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/* "Loglik" - specifies an IML module that defines the */

/* objective function */

/* x - represents a starting point for the iterative */

/* optimization process */

/* optn - indicates an options vector that specifies details */

/* of the optimization process */

/* con - specifies a constraint matrix that defines lower */

/* and upper bounds for the n parameters */

call nlpnra(rc,xr,"Loglik",x,optn,con);

quit;

run;

After running the program code with SAS we get the solution of optimization

task ω̂ = 0.0312 and k̂ = 0.188.

A2. Derivation of Turing estimator of sample coverage

We are interested in finding the distribution of the probability qr of a color

that is represented r times in a sample. Suppose that all color probabilities

p1, p2, . . . , ps

have different values (if some of pi’s are equal, then these probabilities can

be adjusted microscopically so as to be made unequal). The possible set of

values of qr is a set {pi}.

Let the prior probability function of qr be

P{qr = pi} = 1/s, i = 1, . . . , s.
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If we introduce the following notations

A = {color is represented r times in the sample} ,

Bi = {probability of given color is pi} , i = 1, . . . , s,

then the probability P{qr = pi} expresses as P(Bi|A) and is obtainable by

the Bayes’ formula:

P{qr = pi} = P(Bi|A) =
P(A|Bi)P(Bi)∑s

j=1 P(A|Bj)P(Bj)
.

Here, P(A|Bi) is the probability of that the color i is represented r times in

the sample. This probability equals

P(A|Bi) =

(
n

r

)
pr

i (1− pi)
n−r.

If the probabilities of choosing the color for consideration are equal, then

P(Bi) = 1/s, i = 1, . . . , s.

Therefore, we can find the probability P{qr = pi} of interest

P{qr = pi} = P(Bi|A) =
1
s

(
n
r

)
pr

i (1− pi)
n−r

1
s

∑s
j=1

(
n
r

)
pr

j(1− pj)n−r
=

pr
i (1− pi)

n−r∑s
j=1 pr

j(1− pj)n−r
.

The mean value of qr is then

E(qr) =
s∑

i=1

piP{qr = pi} =

∑s
i=1 pr+1

i (1− pi)
n−r∑s

j=1 pr
j(1− pj)n−r

. (122)

If we denote, as before, the number of colors, which are represented by exactly

r colors in the sample by Tr (r = 0, 1, 2, . . .) and the sample frequency of the

ith color by Fi then

E(Tr) = E

[
s∑

i=1

I(Fi = r)

]
=

s∑
i=1

P(Fi = r) =
s∑

i=1

pr
i (1− pi)

n−r.
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The expectation (122) may be expressed through expectations of size indices

Tr as follows

E(qr) =

∑s
i=1 pr+1

i (1− pi)
n−r∑s

j=1 pr
j(1− pj)n−r

=
r + 1

n + 1

∑s
i=1

(
n+1
r+1

)
pr+1

i (1− pi)
n−r∑s

j=1

(
n
r

)
pr

j(1− pj)n−r

=
r + 1

n + 1

En+1(Tr+1)

En(Tr)
,

where the subscript near the mean operator shows the size of the sample. If

we replace the expectations En+1(Tr+1) and En(Tr) by observed values tr+1

and tr then we obtain an approximation

E(qr) ≈
r + 1

n + 1

tr+1

tr
.

The product E(qr)tr approximately equals to the total probability of colors,

that are represented by r balls in the sample

E(qr)tr ≈
r + 1

n + 1
tr+1.

Since the colority of a sample equals to the total probability of colors, that

are represented by at least 1 ball in the sample, we obtain the following

estimator for the sample coverage

Ĉ = 1− 1

n + 1
t1,

When the sample size is large then n + 1 can be replaced by n:

ĈTur = 1− t1
n

,

The latter estimator is the Turing estimator of the sample coverage.
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