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INTRODUCTION

High-throughput gene expression data has been generated across the globe for
almost two decades. A wealth of publicly available data has been gathered into
large database such as ArrayExpress or GEO. Although once analysed, the data
still contain answers to questions unexplored by others. As new methods of data
analysis are developed and innovative visualisations become possible, a system-
atic approach to revisit and reanalyse existing data might reveal new knowledge.

In the first part of this thesis we have a short overview of high-throughput
gene expression data, introduce common analysis and visualisation methods for
single datasets and cover relevant meta-analysis pipelines. Beside public gene
expression databases, we also provide overview of pathway databases KEGG and
Reactome, which are extensively used within publications that are part of this
thesis.

In the practical part of this thesis, we first demonstrate how it is possible to
visualise and animate high-throughput expression data using KEGG pathways.
Visualisation of expression data in the context of KEGG pathway and observing
the expression dynamics across samples enables more detailed interpretation of
experimental results. To make it accessible to wider audience we have imple-
mented KEGGanim web tool.

KEGG, nor any other public, pathway database does not cover entire genome.
Only roughly one third of all genes are annotated to biological pathways. We
present a study where we measured the predictive power of high-throughput gene
expression data to reconstruct Reactome pathways and to propose potential new
candidates. A high-throughput public data-collection with more than 6000 sam-
ples was used to perform cross-validation on 35 Reactome pathways. We give
overview of the results and discuss observed benefit of using only a subset of
pathway genes in the analysis as they might be more tightly co-regulated than
entire pathway.

Similarly can be argued about gene expression data, that only subset of ex-
pression data should be used to study condition-specific co-expression patterns of
related genes. It is proposed that only approximately one fifth of all genes are at
once expressed in any biological condition. We describe a framework where co-
expression queries can be performed across hundreds of publicly available high-
throughput gene expression datasets. Relevant datasets are first selected based
on standard deviation of the query gene. In each dataset co-expression values
are calculated and all genes are ranked based on found distances. Finally, novel
statistical rank aggregation approach is used to create a unified prioritised list of
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globally co-expressed genes. Method has been implemented in Multi Experiment
Matrix (MEM) web tool.

Described rank aggregation method is suitable to solve problems also outside
MEM framework and has been published as R package. We provide an overview
of some of the other experimental settings with real and simulated data to highlight
the features of the presented robust rank aggregation method.

12



I. REVIEW OF LITERATURE

In eukaryotic cells the hereditary information is stored as long sequences of de-
oxyribonucleic acid (DNA) molecules. The long DNA molecules are also referred
as polynucleotides as they contain single nucleotides in repetition. The order of
nucleotide molecules in these long chains defines the information they contain.
Regions within DNA, that are used to encode other types of functional molecular
polymers are referred as genes. Hence, the overall sum of DNA molecules is also
called genome. In human genome the total length of DNA molecules is approxi-
mately three billion bases. It is organised into individual molecules, 22 autosomal
chromosomes, which are represented by 2 copies — one copy from mother and
the other from father, and two sex chromosomes. All together there are 46 DNA
molecules per cell.

There are approximately 22000 genes defined in human genome. Genetic in-
formation is read from the DNA through process called transcription. The tran-
scription process yields messenger ribonucleic acid (messenger RNA or mRNA)
which is another type of polynucleotide. It is similar to DNA, but instead of de-
oxyribose it has ribose and instead of thymine is has uracil. Messenger RNA
is used to transport genetic code out of the nucleus. In cell cytoplasm there are
molecular machineries called ribosomes that process mRNA to produce proteins
through translation. Proteins are the main building blocks of the cells. They par-
ticipate in reactions as enzymes and signalling agents and also take part in tran-
scriptional regulation of genes. Each protein can have very specific task or several
depending on its configuration and post-processing. Compared to 21855 protein
coding genes there are 86434 proteins defined for human in Ensembl database
version 80 (Cunningham et al., 2015). For each gene there is a number of options
how the mRNA can be alternatively spliced (Modrek and Lee, 2002).

Although only 1.5% of the entire genome is covered by protein-coding genes,
a recent study states that more than 75% of the genome is covered by other tran-
scriptional activity (Kellis et al., 2014), most of it is very rare. This percentage
might still be an underestimate as only a selection of cell types was covered.

In human body there are hundreds of different types of tissues and cells. Al-
though each cell contains the same DNA, the way how information is read and
processed will lead to different cell types and different stages in cell lifecycle.
Malfunctions in DNA reading or gene regulation can lead to various diseases in-
cluding cancer. Gene regulation is a complicated process and consists of many
steps. One of the more straightforward steps is the regulation through transcrip-
tion. The existence and quantity of mRNA molecules are the first prerequisites
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for protein production. There are no cost effective high-throughput methods to
quantify protein levels in cells, but there are high-throughput methods to quantify
mRNA levels.

In this thesis we focus on characterisation of gene expression on transcriptional
level as this can be performed in high-throughput manner and has been done so
for the last two decades (DeRisi et al., 1997; Lashkari et al., 1997).

1.1. High-throughput expression data

The advances in biotechnology have given rise to microarrays. Microarrays are
glass slides, or other hard surface slides, that are covered by small oligonucleotide
molecules (probes). The oligonucleotide molecules are attached to the microarray
surface by one end. Their sequence is complementary to a sequence of a spe-
cific gene (Lockhart et al., 1996). Microarrays allow to quantify mRNA levels for
many thousands of genes simultaneously from a biological sample. First mRNA
is extracted from the biological sample and converted into complementary DNA
(cDNA) by reverse transcriptase. Probes catch cDNA molecules from the sample
solution in sequence specific manner. Each microarray can contain hundreds of
thousands different probes corresponding to different genes, covering vast major-
ity of genes for an organism. This kind of technology allows to take transcrip-
tional still images of cellular activity. More images lead to better understanding
of underlying processes and help us to decipher cellular functions.

The microarrays discussed within this thesis are gene expression microarrays.
There are also other types of microarrays, for example, genotyping or next gener-
ation sequencing that are also performed in a microarray format, but these are not
the focus of the current thesis.

1.1.1. Normalisation

Generating the data is only the first step in the whole experiment. Methods to pro-
cess, normalise and analyse are essential to interpret the gene expression microar-
ray data. Raw microarray data is considered to be noisy (Bolstad et al., 2003).
There are two principal sources of noise: biological and technical. Both type
of noise can be controlled or tested by generating more biological and technical
replicate samples (Klebanov and Yakovlev, 2007). Still, in the raw format the data
is rarely suitable for interpretation. Statistical methods are used to transform the
data so, that it would meet the requirements of the analysis methods, while still
retaining its biological signal. This process is called normalisation. The objec-
tive of normalisation is to make separate samples comparable to each other within
the experiment. Many normalisation applications also transform the data so, that
signal value distribution would look normally distributed.

Different microarray technologies have different standards. Several normalisa-
tion methods have been developed to meet the design of Affymetrix GeneChips,
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for example. Robust multi-array average (RMA) (Irizarry et al., 2003), MAS5.0
(Hubbell et al., 2002), FARMS (Hochreiter et al., 2006) to name a few.

On Affymetrix GeneChip platforms a probe set is small collection of probes
that represent the same transcript. There can be more than one probe set repre-
senting a single gene. The result of preprocessing of gene expression microarray
data is a numeric matrix — expression matrix, where columns represent different
samples and each row represents expression values summarised on a probe set or
a gene level. A row in this matrix and a column are referred as probe set and
sample expression profile, respectively.

Most widely used normalisation method, to date, is RMA. It uses log transfor-
mation and quantile normalisation between samples. Distribution quantile values
are made equal between signals across all samples and signals from individual
samples. That ensures that all individual samples follow the same signal value
distribution and therefore are more comparable to each other.

For strong biological signal the choice of normalisation method does not mat-
ter, but for weaker signals different approaches may give slightly different re-
sults as shown by Millenaar et al. (2006). They compared different normalisation
pipelines on differential expression outcome. While all methods found similar
number of differentially expressed genes in given experimental setup, roughly
only one third of the genes was common for all methods compared. From the
methods used, RMA was highlighted as the one showing the highest correlation
coefficient with Real Time RT-PCR results, which were used as “gold standard”
(Millenaar et al., 2006).

Probe sets of the most popular Affymetrix GeneChip platforms were developed
before human genome was fully sequenced. Due to that, some of the probe sets
are not useful and many of them have been reannotated. Some research groups
have gone further and disregarded the initial Affymetrix defined probe sets all
together. Instead, probes are individually remapped to human transcriptome and
new custom probe sets on various specificity level are designed. BrainArray cus-
tomCDFs' provide annotations on gene or transcript level, which in many cases
allow to overcome the problem of ambiguous probe set annotations (Dai et al.,
2005). It has also shown that the downstream analysis benefits from improved
probe set definitions (Sandberg and Larsson, 2007).

1.1.2. Quality assessment

Assessment of data quality is essential for microarray data analysis (Kauffmann
et al., 2009). Analysis methods make an assumption that samples are comparable.
Outliers or failed samples in the data can lead to severe bias in analysis results.
Microarray experiments have many aspects and comprehensive single value
quality assessment would not be feasible. Defects, such as saturation or lack of
signal, spacial defects on microarrays (such as fingerprints, scraping marks), RNA
degradation rate are quantified and evaluated separately. Spacial defects are best

'CDF - .CEL definition file, .CEL is Affymetrix specific data format
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Figure 1. R and pheatmap package applied to visualise five yeast probe sets across several
yeast strains. Rows and columns of the heat map are hierarchically clustered based on
gene and sample expression profile similarity. Image has only illustrative purpose.

interpreted visually. There are several R (R Core Team, 2014) packages that pro-
vide summarised report across number of quality criteria measured (Kauffmann
et al., 2009; Parman et al., 2005). However batch effects may be more difficult to
discover. One option is to use principal component analysis (PCA), as done by
arrayQualityMetrics (Kauffmann et al., 2009), to summarise the variation of high
dimensional data into fewer dimensions. PCA components are linear combina-
tions of original data. They describe directions in which the data shows highest
variance. Each following component is fitted on the data from which previous
components have been subtracted. First few principal components can then be
plotted on two-dimensional scatterplots. Batch effect may arise from different
time of day when the microarrays were processed or slight alterations in sample
preparation kits. Once detected they can be removed using dedicated software as
for example ComBat (Johnson et al., 2007).

1.1.3. Visualisation

Human vision is not adapted to read large numeric matrices. Therefore, for visu-
alisation purposes, it is more reasonable to display expression matrices as either
heat maps (Figure 1) or line graphs (Figure 2). Heat map conveys numerical in-
formation via colours. Human eyes can separate coloured spots only few pixels
wide, so expression data can be presented in much more compact manner. Usage
of hierarchical clustering and functional cluster detection algorithms can increase
the compactness effect even more (Krushevskaya et al., 2009). In expression heat
maps different colour codes are used to indicate down and up regulation, negative
and positive expression respectively (Figure 1).

Line graphs are suitable to visualise vectors. Line graph is a two dimensional
plot where one axis indicates individual samples (usually x axis), the other axis
indicates expression signal values (y axis). Individual lines depict expression dy-
namics for one probe set across samples (Figure 2).
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Figure 2. R and ggplot2 package applied to visualise five yeast probe sets across several
yeast strains. Here, individual probe sets are indicated with different colours. Individ-
ual yeast strains are separated into panels. Lines are coupled with points to highlight
individual sample values. Image has only illustrative purpose.

Alternatively, scatterplots can be used to compare two probe sets or two sam-
ples against each other. In that case both axes would indicate expression signal

values and points on the plot depict individual samples or probe sets respectively
(see Figure 3).

1.1.4. Public data

Tens of thousands of microarray experiments have been conducted across the
globe. The implications and value of the data generated mostly exceeds the exper-
iment in question. After researchers have received the answers they were seeking
for from the data and published their article(s), they also release the data into pub-
lic domain for two principal reasons. First, that others could validate their results.
And secondly, so that others could reuse their data to answer new questions. Over
the years there have formed several specific and general databases to store high-
throughput gene expression data. Such databases are for example GEO (Edgar
et al., 2002) and ArrayExpress (Brazma et al., 2003) for general purposes or more
specifically themed databases such as “The Cancer Genome Atlas” (Collins and
Barker, 2007), “Connectivity map” (Lamb et al., 2006), “Cancer Cell Line Ency-
clopedia” (Barretina et al., 2012).

To ensure data reusability after initial publication the data needs to be anno-
tated with at least minimal information about experimental setup and sample de-
scriptions (Brazma et al., 2001). Minimum Information About a Microarray Ex-
periment (MIAME) framework does provide such standards and is enforced while
publishing data to any public database. The better the experiments and samples
are described, the easier it is to be reused by an external researcher. However,
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demanding too rigorous data upload standards diminishes the overall data sub-
mission rates (Rung and Brazma, 2013).

ArrayExpress and GEO are the two oldest and most widely used general pur-
pose high-throughput data collecting databases. Besides array based data they also
accept sequencing data. During the time period from 2010 to 2012 ArrayExpress
data volume grew three times, from 370000 assays and 13000 experiments to over
million assays and 30000 experiments (Rustici et al., 2013). In recent years the
proportion of high-throughput sequencing data has grown. Although the methods
published within this thesis are built mostly for the microarray technology, they
are not limited to it. Expression matrix can be extracted from sequencing data
with similar properties as for microarrays (Guo et al., 2013). RNA sequencing
allows to measure and detect gene expression in greater detail. It has been shown
to correlate with existing Affymetrix GeneChip measurements very well (Marioni
et al., 2008).

1.2. Data analysis

Broadly we can divide high-throughput data analysis into two categories. Firstly,
differential expression analysis where two or more groups of samples are com-
pared. Mean expression value of a gene is estimated based on the samples in each
group and then compared. Genes that expression levels are statistically different
are usually sought. The other type of analysis is a co-expression analysis where
genes or samples are grouped based on their expression profile similarity. Ex-
pression profile is a vector of numbers that represent expression values across all
samples for a gene or across all genes for a sample.

1.2.1. Differential gene expression analysis

Microarrays provide invaluable resource to study gene expression in different bi-
ological conditions. Response to drug treatment, healthy vs. disease, comparison
of tissues or different time points — these are only small number of examples that
high-throughput expression analysis helps us to analyse. Differential expression
analysis determines which genes have altered expression level between sample
groups. In case of, for example, cancer we look for genes that are up-regulated or
down-regulated to study about the potential cause or mechanism of the condition
and to identify potential drug targets. To understand the effects of the drug we
want to identify the genes that have been affected by the treatment.

Mean expression value for a gene is calculated within both groups and the
difference is often presented as a fold change (FC). Fold change “2” means that the
measured mean expression value in target sample group is twice as high compared
to the reference sample group in original signal scale. Alternatively logFC can
be used to express log transformed expression difference in linear scale for both
positive and negative direction.
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Comparing the mean expression level alone does not suffice to conclude that
a gene was differentially expressed. The assumption is that gene expression lev-
els or values across all samples are normally distributed or rather sampled from
normal distribution. Normal distribution can be described by its mean value and
standard deviation. For each sample group we try to estimate the mean value of
underlying distribution. How confidently we can estimate the mean value depends
on the variance of the data and number of samples within the group. The fewer
samples and higher standard deviation, the less confidently we can estimate the
mean value. Slightly different mean values for groups do not mean that they can
not be sampled from the same normal distribution. The statistical significance of
the difference is typically determined with the t-test or moderated t-test (Smyth,
2004).

High-throughput gene expression experiments contain thousands of individual
genes. The differential expression statistic is calculated for each gene. As t-test
assumes normal distribution and treats observed data as sampled from larger un-
derlying population, the intrinsic variation of this kind of sampling should be con-
sidered. When performing thousand #-tests on two vectors sampled from the same
underlying normal distribution, by average 50 individual #-test p-values would
still be smaller than standard 0.05 significance threshold. The p-value is a mea-
sure of probability that null hypothesis is true, in this case that all values in these
two vectors come from the same underlying distribution. By using significance
threshold 0.05 we accept that there is 5% probability that the observed results are
false positives, as they are in this example.

In statistics multiple testing correction is used to alleviate the discovery of
false positive results. Popular methods for multiple testing correction are Bonfer-
roni correction and false discovery rate (FDR) (Benjamini and Hochberg, 1995).
Out of the two Bonferroni is more conservative. Each individual p-value need to
satisfy following criteria: p < a/n, where « is significance threshold (standard
0.05) and n is the number of related tests performed. The FDR correction is less
conservative. In increasingly ordered p-values vector, individual values need to

k
satisfy pr < —a, where k is the index of p-value being corrected, n and « are the

same as in case of Bonferroni correction.

Very popular statistical computing platform R has many packages to work with
high-throughput microarray data, one of the more popular ones is limma that uses
linear models and empirical Bayes (referred as the moderated t-test) to assess
differential expression (Smyth, 2005). The limma packages is available though
Bioconductor initiative (Gentleman et al., 2004).

A classical differential expression experiment setup is perturbation experiment
that allows to infer direct and indirect targets of a transcription factor. In pertur-
bation experiments the expression of a transcription factor is altered in controlled
conditions. For example a transcription factor or gene of interest (or its exon) is
deleted from the genome (knockout) (Hu et al., 2007) or over-expressed (Butcher
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et al., 2006). Other genes that are affected by the absence or over-expression of the
transcription factor are identified by comparing samples where it is not perturbed.

The result of differential expression analysis is a list of genes that are differ-
entially expressed. They can be ordered based on statistical significance or fold
change. First inquiry would be to learn any prior knowledge about the genes in
the list. What are their known functions and whether they can, and if yes, then
how, explain the results of the current experiment. It is reasonable to look for
up-regulated and down-regulated genes separately.

Over the years knowledge learned about the genes have been gathered into
database called Gene Ontology (Ashburner et al., 2000). Gene Ontology (GO)
has become invaluable tool to analyse and interpret gene set enrichment analysis.
Gene Ontology has a tree like structure — a directed acyclic graph. Terms, that
group together functionally related genes, start out to describe the generic func-
tionality and with depth grow to more specific. All genes related to a term are also
part of the parent term. A gene can belong to many terms. The Gene Ontology
is divided into three trees: molecular function, cellular component and biological
process.

There are two principal ways to conduct such functional enrichment analysis.
First is by the use of hypergeometric overlap statistic as done in g:Profiler toolset
(Reimand et al., 2011). The other option is to use the weighted Kolmogorov-
Smirnov-like statistic as showed by Subramanian et al. (2005). Either case mul-
tiple testing correction should be applied to reduce the discovery of spurious
terms. Gene set ontologies in g:Profiler include GO, biological pathways (KEGG
(Kanehisa and Goto, 2000), Reactome (Joshi-Tope et al., 2005)), regulatory motif
annotations (TRANSFAC (Matys et al., 2006), miRBase (Griffiths-Jones et al.,
2006)), CORUM protein complexes (Ruepp et al., 2008), Human phenotype on-
tology (HPO) (Kohler et al., 2014) and BioGRID protein-protein interactions
(Stark et al., 2006).

g:Profiler toolset includes also g:Convert tool, that enables seamless conver-
sion from any popular gene namespace to specified target namespace (Reimand
etal., 2011). That is essential to incorporate resources that originally use different
namespaces for gene identification. In g:Profiler the centric namespace is Ensembl
gene ID. For namespace conversions g:Convert uses Ensembl BioMart (Cunning-
ham et al., 2015; Kinsella et al., 2011) database and cross-references therein. As
g:Profiler has been developed within our work group, we have extensively used it
in our research and it is also incorporated into tools presented in this thesis.

1.2.2. Gene co-expression analysis

Co-expression measures similarity between genes. Genes are compared to each
other by their expression profiles across samples. Genes that share similar profiles
are indicated to be co-expressed. This has been exploited to infer function to a
novel gene by its expressional similarity to a known or a group of known genes.
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Figure 3. Example of different correlation interpretation between Pearson correlation and
Spearman rank correlation coefficients. A) Scatterplot of vector P, that is sampled from
normal distribution, against itself. Both correlation coefficients recognise it as perfect
correlation. B) Scatterplot of vector P against vector O, here Spearman rank correlation
coefficient shows perfect correlation, while Pearson correlation coefficient does not.

One of the first experiments that used high-throughput expression data and co-
expression analysis was published by Spellman et al. (1998). They used Fourier
transformation and Pearson correlation coefficient values between candidates and
known cell cycle genes to identify periodically regulated genes during cell cycle.

Wolfe et al. (2005) used five co-expression networks and the Gene Ontology
to validate the general principle of “Guilt by association”. They found strong
tendency for transcriptional co-expression in well over 900 Gene Ontology terms.

Clustering is often used to group together genes that behave similarly. Most
common clustering methods are hierarchical clustering and K-means clustering.

Hierarchical clustering creates a cluster for each object — either gene or sample.
Correlations or distances are calculated for all against all clusters. Two clusters
that are the closest or most correlated are merged. These steps are iterated until
only one cluster remains. This not only assigns all genes (or samples) to a cluster,
but shows hierarchical relations between all clusters. It is often presented with a
dendrogram as shown in, for example, VisHiC tool (Krushevskaya et al., 2009).

While merging clusters in hierarchical clustering there are three principal op-
tions: complete, average and single linkage. They translate to comparing the most
distant members in both clusters, comparing average of all against all distances
between clusters and comparing closest members between two clusters respec-
tively.

K-means clustering requires a priori number of clusters it tries to fit on the
data. Given the number of clusters, K-means randomly assigns objects as cen-
troids (initial cluster centres) and then all the rest of the objects are assigned to
the closest cluster. Then new cluster centres are calculated as the mean across all
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the objects in the cluster. These steps are iterated either number of user specified
times or until the clustering converges.

One alternative to standard K-means clustering is fuzzy K-means clustering,
where objects are not assigned strictly to one cluster, but rather given a score of
their probability to belong to any given cluster (Gasch and Eisen, 2002).

Hierarchical and K-means clustering can also be used in combination to al-
leviate the shortcomings of both methods, as shown by Chen et al. (2005) for
example.

1.2.3. Distance metrics

When comparing genes or samples to each other it is very important to understand
what is expected out of the comparison. The resulting clusters and interpretation
of the results depends heavily on distance metrics used to compare expression
profiles. There are number of metrics to calculate either distance or correlation
coefficient between numeric vectors. Distance is non-negative real number, the
value 0 indicates identical vectors. Correlation values range between —1 and 1,
where 1 depicts perfect correlation, —1 perfect anti-correlation and O shows no
correlation between the two vectors. Correlation can always be transformed into
distance measure by subtracting it from 1 (i.e. d = 1 — r, where d is distance, and
r is correlation coefficient).

The simplest distance between two vectors with equal length is Euclidean dis-
tance. For vectors P = (p1,p2,...,pn) and Q = (q1,42, --..,q,) Euclidean is calcu-
lated by following formula:

dpg = (1.1)

For microarray data where expression levels of individual genes depend on
many technical and normalisation artefacts, Euclidean distance may produce large
distances between genes that are still similar in terms of correlation. For correla-
tion two most popular metrics are Pearson correlation and Spearman rank correla-
tion coefficients. Pearson correlation coefficient measures correlation or dynamics
of two vectors — do they go up and down synchronously. Pearson correlation coef-
ficient measures linear dependence between two variables. Spearman rank corre-
lation coefficient measures monotonic dependence between two variables which
does not have to be linear, see Figure 3. In other words, Pearson correlation coef-
ficient assumes normal distribution, while Spearman does not. Both metrics use
the same core formula to calculate correlation:

i=1(Pi —P)\qi —q

o= Tl D=9 _ W2
\/Zz 1(Pi— P Eii(qi—q)

The difference is that while Pearson correlation coefficient is calculated on origi-

nal values, Spearman rank correlation coefficient first assigns ranks to the values

and then the formula is applied on rank values. See Figure 3 for different interpre-
tation between Pearson correlation and Spearman rank correlation coefficients.
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A special case of correlation is absolute correlation, where only the strength of
linear (or monotonic) dependence is measured, regardless its direction — absolute
value of the correlation coefficient.

Yona et al. (2006) compared most popular distance measure for microarray
data. They showed that Euclidean distance is indeed consistently outperformed
by correlation based measures. Spearman rank correlation coefficient was high-
lighted as consistently performing better than other classical metrics. However,
in one out of four datasets tested, Spearman was outperformed by all others and
Euclidean showed very good results. It shows that the choice of distance metrics
should be highly data oriented — how data is generated, normalised and scaled,
whether it is mean or median centred, etc — all these factors should be considered.

There is also a number of modern distance and correlation measures, for exam-
ple Mutual information distance (Priness et al., 2007) and Maximal information
coefficient (Reshef et al., 2011). In addition to linear dependence or simple dis-
tance between vectors, these measures are capable finding other types of depen-
dencies or patterns in the data. However, they are computationally more expensive
to calculate and have yet to gain their popularity within bioinformatic community.

1.3. Data analysis across datasets

There has been several studies that explore how much and to which extent indi-
vidual gene expression datasets and different platforms can be combined. Here
we highlight only few.

Irizarry et al. (2005) have in addition to platform design taken into account
the laboratory effect. They demonstrate using experimental data from 10 different
laboratories and 3 different platform technologies that while the analysis results
generally agree, there are still relatively large differences in laboratory to labora-
tory correlations. In this study, the results from the best laboratory agree better
across different platforms that to other laboratories. This highlights the impor-
tance of laboratory installation, equipment quality and technician experience and
skills.

The general concurrence of results between datasets has been also shown on
data provided by MicroArray Quality Control (MAQC) consortium (Shi et al.,
2006). They note that reproducibility of differentially expressed gene lists across
datasets can be improved when ranked fold change with non-stringent p-value
cutoff is used instead of ranked z-test p-value (Shi et al., 2006).

1.3.1. Meta-analysis

Analyses performed across multiple independent datasets with integrated results
are referred as meta-analysis. In the examples here we review only meta-analyses
performed on high-throughput gene expression datasets.

Chen et al. (2013) showed that differential expression analysis across many re-
lated datasets can also be performed using one unifying Bayesian integrated mod-
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elling. The constraint here, and in any method that analyses differential expression
across datasets, is that sample class labels need to be provided and only studies
comparing relatively similar biological conditions can be integrated in such man-
ner (Chen et al., 2013).

Most genes are active only in very specific stage of organismal development,
cell cycle phase or environmental condition. In case of microarrays we can always
observe expression profile of any gene in all datasets, regardless whether it is truly
expressed or not. We can use this gene profile to find other genes that behave
similarly, but this similarity might not be very consistent from dataset to dataset.
The observed similarity in single or few datasets can occur by random chance
or be caused by very specific experimental condition. While observing gene to
gene similarity across larger collection of datasets we can be increasingly more
confident of found similarity.

Lukk et al. (2010) combined data from 206 public microarray gene expres-
sion datasets into single large scale expression matrix. All datasets were from
Affymetrix GeneChip Human Genome HG-U133A platform that was the most
popular gene expression platform at the time. All data was quality controlled and
normalised using RMA normalisation method. Almost half of the samples were
excluded after quality control and duplicate sample removal. Still, it is one of the
largest gene expression datasets to date. The samples in final dataset were manu-
ally curated and annotated to specified meta-groups with various degree of detail.
They used mainly principal component analysis to show how different biological
and experimental conditions are related to each other. In the article they show
how the first two principal components can be viewed as hematopoietic and ma-
lignancy components respectively and how different cell line expression profiles
are from normal and diseased samples expression profiles (Lukk et al., 2010).

Raw data normalisation across many experiments allows better sample to sam-
ple comparison and augmentation of weak signals by combining class labels from
different labs. Yet, while doing so, one needs to keep in mind that such raw data
normalisation is unable to remove undesired features from the signal such as labo-
ratory or batch effects (Rung and Brazma, 2013). Depending on analysis it might
be safer to leave independent experiments intact to have better control of between-
laboratory heterogeneity and use summary-level meta-analysis instead (Rung and
Brazma, 2013).

Another issue is data sample annotations. Poor sample characterisation within
public data makes large scale differential expression meta-analysis infeasible. In
such cases co-expression analysis between genes can be used instead. As it does
not set any demands on sample labels it makes incorporating large collection of
data into single analysis easier. There are three principal methods to apply co-
expression in meta-analysis across datasets.

First option is to calculate all against all distances and use statistical heuris-
tics to identify significant correlations within the data. Data randomisation or
simulation analysis can be used to derive such heuristics. This option was first
introduced by Lee et al. (2004) and later applied in web-based tool GEMMA pub-
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lished by Zoubarev et al. (2012). The meta-analysis part here is to count in how
many datasets the observed connection between gene pair is deemed significant.
It was also concluded that a connection can be considered trustworthy if it appears
at least in three independent datasets (Lee et al., 2004).

Second option is to normalise within dataset distances so, that they would be-
come comparable across datasets. Huttenhower et al. (2006) calculated all against
all distances within each dataset and used Fisher’s Z-transformation. After sub-
tracting the mean and dividing with dataset standard deviation the resulted Z-
scores are normally distributed and suitable for across dataset analysis. Hibbs
et al. (2007) applied this methodology on yeast expression datasets and developed
web tool SPELL. SPELL allows multiple genes in the query and assigns weights
to individual datasets based on average co-expression values between individual
query genes. The final order of similar genes is decided by their weighted average
correlation across all datasets for all query genes. This has been further developed
and applied to human data by Zhu et al. (2015). In addition to dataset weighting
as used in SPELL they introduce hubbiness correction. From each query to target
gene co-expression Z-score they subtract average co-expression Z-score between
target gene and the rest of the genome. This then shows relative similarity between
the query gene and the target gene (Zhu et al., 2015).

Third option is to calculate co-expression values between query and all the
other genes, order them based on the observed co-expression value, assign ranks
and use a rank aggregation approach to obtain a global similarity metrics. We
demonstrate this approach in Sections 3.3 and 3.4. Rank aggregation avoids deal-
ing with individualities of the datasets by dealing only with the final product —
ordered gene lists (Pihur et al., 2009).

1.4. Pathway databases

Over the years many protein-protein, gene-gene or metabolite-enzyme relations
have been characterised. This gathered knowledge is systemised in pathway data-
bases. Pathway databases provide excellent framework to interpret and propose
hypothesis for new biological high-throughput experiments. Pathways consist of a
group of related genes and chemical compounds (metabolites for example), based
on common task or process. Typical layout is a graph, where pathway members
are shown as nodes and specific interactions are depicted by edges between cor-
responding nodes.

1.4.1. KEGG

Kyoto Encyclopedia of Genes and Genomes (KEGG) contains mainly text min-
ing based interactions built into pathways (Kanehisa and Goto, 2000). Pathway
entity is global across all organisms. Referring to evolutionary aspect — centric
function has evolved in some point of time and for most organisms the backbone
will remain the same across evolution with slight variation in participants. Path-
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Figure 4. Example of KEGG Glycolysis / Gluconeogenesis pathway map. Metabolites
are indicated with circles, enzymes with rectangles, arrows and lines between pathway
members indicate reactions. Enzymes are identified by their nomenclature name (NC-
IUBMB, for example EC 2.4.2 — Pentosyltransferases). KEGG pathway maps cover many
organisms, in this example human specific enzymes are highlighted using colour codes:
light-green — present in human, pink — present in human and associated with a disease
and light blue — present in human and target of a drug. Hyperlinks to related pathways or
additionzal information about pathway entities are provided when viewed online on KEGG
website”.

2http ://www.genome. jp/kegg-bin/show_pathway?org_name=hsadd&
mapno=00010
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way images are hand curated graphical pictures. Organism specific pathways are
highlighted using organism specific image annotation files and colour codes. For
a long time KEGG has been the largest publicly available pathway database. They
provide good coverage of core metabolism and signalling pathways. In addition,
they have a variety of disease and drug related pathways. They have well docu-
mented technical information regarding the pathways which makes them compu-
tationally easy to use. KEGG is also known for its compound database, which are
also integrated into pathways. An example of KEGG Glycolysis / Gluconeogene-
sis pathway is shown on Figure 4. In our tool KEGGanim, we provide a possibility
to visualise the quantity of compounds along side with expression levels of genes
or proteins, see Section 3.1.

1.4.2. Reactome

Reactome is a database where experimentally validated interactions are built into
hierarchical pathways (Joshi-Tope et al., 2005). All interactions in Reactome
pathway database are reviewed by experts in the field. In addition to literature
evidence, reactions are also linked to experimental data. Interactions in the path-
ways are viewed as chemical reactions. Updates in the pathways are done in
close collaboration between experts in biology and Reactome curators (Milacic
et al., 2012). The hierarchical structure allows to have a general overview of bio-
chemical process as well have more detailed view of individual sub processes.
Crosslinks are provided to other bioinformatic databases that provide additional
annotations and information about reaction components.

Reactome has very good high-quality coverage of the core metabolism and
signalling pathways. Recently they have put more effort to characterise disease
and cancer related signalling pathways. The emphasis is to show how disease
state and wild type state diverge (Milacic et al., 2012).

All pathways can also be viewed as ontology terms and have been used as
such in gene set enrichment analysis methods and tools, for example in g:Pofiler
(Reimand et al., 2011).
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Il. AIMS OF THE PRESENT STUDY

The aim of current thesis is to develop methods for public high-throughput data
analysis and visualisation. The specific aims of this thesis are the following:

Ref. I To develop high-throughput expression data visualisation framework for
KEGG pathways and package it as a web tool for public usage.

Ref. II To study the extent that public high-throughput gene expression data can be
applied to biological pathway reconstruction and augmentation.

Ref. IIT To develop statistical method for data driven query based co-expression anal-
ysis across hundreds of public gene expression datasets and provide meth-
ods of visualisation.

Ref. IV To study further properties of the proposed rank aggregation method, high-
light its features and its applicability to various biological experimental
setups.
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lll. RESULTS AND DISCUSSION
3.1. Pathway animations of high-throughput data (Ref /)

We have developed KEGGanim (biit.cs.ut.ee/kegganim) web tool to
combine previous knowledge on cellular mechanisms and high-throughput exper-
imental data. KEGGanim makes possible to visually observe gene and protein ac-
tivity within KEGG pathways (Kanehisa et al., 2014). High-throughput gene ex-
pression experiments allow to take snapshots of living organisms transcriptional
state, a cell profile. Pathways represent our best understanding of genetic and
metabolic interactions and enable us to have a focused view to a specific group of
interactions within larger data.

At the time of the initial development of KEGGanim web tool, KEGG was the
largest database with most genes and organisms annotated to its pathways. KEGG
pathway database has intuitive pathway images and corresponding configuration
files. Textual description of pathway image layout — the position of proteins, in-
teractions and links are provided in tab separated text file format. This is consider-
able asset as most pathway databases do not provide portable annotated graphical
images of pathways. Presently KEGG database has approximately seven thou-
sand genes annotated to pathways. That is still less than one third of all genes
annotated to human genome so far. By combining high-throughput expression
data and KEGG pathways we can understand better depicted cellular processes
and also spot gaps in our knowledge about genetic networks.

Our examples are concentrated on high-throughput gene expression platforms
(microarrays) as these are most widely used to study gene expression and provide
information simultaneously for many genes (up to entire genome).

Implementation

KEGG provides its source data via File Transfer Protocol (FTP). Database is up-
dated on daily basis, as new knowledge comes available the relevant pathways are
updated. For each pathway in each supported organism, there are two files: an
image file with graphical layout and annotation file binding gene (rectangle) and
metabolite (circle) annotations with respective shape coordinates on the image.
We use Perl script to parse the annotation files and retrieve relevant information.
Perl has also good web application support via Common Gateway Interface
(CGI) module. For graphics we use Simple Web Object Graphics (SWOG) lan-
guage and its Perl module that has been developed by Jaanus Hansen (Hansen,
2005). Its seamless compatibility with Perl allows it to be integrated into compu-
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Cadd45b, Cadd45g, Ccnd2, Ccnd3, Cdc16, Apaf1, Bad, Birc3, Capn2, Casp6, Casp7,

Day10 Cdkn1a, Cdkn1e, Cdkn1b, Cdkn2b, Cdkn2d, Casp8, Casp12, Cflar, Csf2rb1, Csf2rb2,
Rb1, Rbl1 Endog, Fas, Il1b, 1I1r1, 113ra, Irak2, Map3k14,

Myd88, Nfkbia, Nkfb1, Nkfb2, Rela, Ripk1,
Tnfrsf1a, Tnfrsf10b, Tradd

Figure 5. Image depicts Cell Cycle and Apoptosis KEGG pathway dynamics during
mouse embryonic development, adapted from Schulz et al. (2009). Gene lists in the
bottom of the image represent pathway members that are either up regulated (orange) or
down regulated (blue). On the pathway image, down and up regulated genes are indicated
with green to red colour scale, respectively. KEGGanim “Cinefilm” tool was used for
composing this image. The image was compiled by Raivo Kolde.
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tational analysis and visualisation pipelines (Adler et al., 2009a; Reimand et al.,
2011). SWOG allows to read in an image and to modify and add layers to existing
and new images. We apply SWOG to combine KEGG pathway images and high-
throughput expression data. Expression values are converted into colour codes
and plotted over relevant pathway components on KEGG pathway image.

KEGGanim output is an animated Graphics Interchange Format (. GIF) image.
Animation is achieved by looping images depicting individual samples. Each
image becomes a frame in the animation. User can download the animation and
display it inside slide presentations or in a web report. As the animated .GIF
image would not be a suitable illustration for publication, we also provide an
alternative static output method called “Cinefilm”. This creates a single image
where user selected frames are stitched together side by side. Annotated and
graphically appealing visual aids can help to make intricate biological network
relations and concepts easier to follow and to understand.

Users can upload their own data. The interpretation of the numeric values de-
pends on the intent of the user. For example, it might be preferable to display
relative fold change for a genes across sample groups instead of individual ex-
pression levels.

User uploaded private data is stored in password protected folders. File and
user management is organised by g:Pedam function. g:Pedam is compatible with
native GEO Simple Omnibus Format in Text (SOFT) to encourage public data
re-usage. g:Pedam was implemented by Jiiri Reimand.

The data upload to KEGGanim itself is not limited to any specific data type.
The format of the data is a straightforward numeric matrix, where columns cor-
respond to samples and rows to genomic features. For example tab separated file
(.TSV) with a header row to describe sample annotations and first column contain-
ing common gene or protein names is a frequently used format. Any new dataset
can be easily converted to such a format and visualised in KEGGanim framework.

In addition to user own uploaded data we provide 36 example public datasets
to be visualised with KEGGanim tool. This serves as a showcase for new users.

Over the years there have been developed many different namespaces for rep-
resenting gene IDs. KEGG database mostly uses Entrez Gene IDs, however there
are exceptions. To make the general mapping as robust as possible we use En-
sembl namespace as the common ground. Genomic feature IDs from data and
from KEGG database are mapped to Ensembl gene IDs using g:Convert frame-
work (Reimand et al., 2011), many to many mappings are allowed and visualised
accordingly. Genes sharing the same enzyme annotation divide corresponding
rectangle horizontally. In case the same gene is represented by multiple features,
for example microarray probe sets, the rectangle is divided vertically. Any combi-
nation of above is allowed, each sub-rectangle displays then the expression level
of a single feature from the data.

Unfortunately for metabolites there are no unambiguous way to map IDs from
different sources, thus we leave it up to the user to map their metabolite IDs to
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KEGG namespace. Metabolites also have their own, per metabolite, colour scale
and is comparable only to itself between samples.

Use cases

One of the examples of KEGGanim usage is motivated by the question of what
biological processes are affected in a specific study. Usually first part of an anal-
ysis is gene expression comparison measured in two conditions. Differential ex-
pression analysis enables to identify more interestingly behaving genes within the
experiment. Enrichment analysis can be used to identify biological processes that
are most perturbed in the experiment. Although enrichment analysis can identify
relevant KEGG pathways that are more interesting, it does not provide insight
into how specified enriched genes are related to each other within the pathway.
Proper visualisation helps to understand pathway layout and positional effect of
the enriched genes. KEGGanim enables such visualisation to illustrate expression
dynamics within pathways between the various conditions.

KEGGanim is suitable to visualise time series experiments. For example,
FunGenES project expression data analysis of mouse embryonic development re-
vealed symmetric expression changes in cell cycle and apoptosis pathways (Schulz
et al., 2009, Figure 5). While in early development cell cycle is active, it will be
down regulated during later phases of embryonic development as the organism
gets closer to birth. On the opposite side apoptosis will be up regulated during
later phases of embryonic development as tissues mature and organism moves
toward balance in cell recycling.

Mashanov et al. (2014) used KEGGanim tool to show transcriptional changes
during organ regeneration in sea cucumber. The visualisations of Pathways in
cancer and Focal Adhesion pathways in three time points (days 2, 12 and 20 post-
injury) are provided as Tagged Image File Format .TIFF images in publication
supplementary material.

Another example is by Altmie et al. (2012), where they have uploaded differ-
ential expression analysis results into KEGGanim tool and share the folder name
and password with the readers. They compared day 3 vs. day 5 embryos and pro-
liferative vs. midsecretory endometrial tissues to identify transcriptional changes
that occur during embryo implantation.

Summary

Here, we demonstrated KEGGanim tool, that combines high-throughput expres-
sion data and KEGG pathway images. KEGGanim generates interactive anima-
tions across individual samples of the high-throughput data. Animations are suit-
able to be used in slide presentations or on the web. Individual frames of the
animation can be stitched together using “Cinefilm” function. Such still images
are suitable for publications.
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3.2. Ranking genes by their co-expression to subset of
pathway members (Ref Il)

Pathway databases contain collected knowledge about genetic and metabolic path-
ways. Although vast, this knowledge is still far from complete. Out of approxi-
mately 22000 coding genes in human genome only one third is described in either
KEGG (Kanehisa et al., 2014) or Reactome (Croft et al., 2014) databases. At the
time of the publication Reactome database described the connections for 1804
protein coding genes and KEGG database for 4220 genes.

High-throughput experiments provide a lot of potential to identify interactions
between genes. The principle of “Guilt by association” (Wolfe et al., 2005) has
been repeatedly applied to infer functional annotations to poorly annotated genes
as well to validate existing interactions between genes or proteins.

In our analysis we look whether and to what extent the principle is applicable
in Reactome pathways and how using subset of pathway genes (sub-pathway)
might improve the results. Reactome was chosen as a benchmark database as its
networks were thoroughly validated.

Experimental setup

Many thousands of high-throughput gene expression experiments have been per-
formed worldwide. Each such experiment contains information of many genes
(up to entire annotated genome) across variation of biological conditions. In this
study we used compilation of public gene expression data (Lukk et al., 2010).
This is a vast collection of biological samples from Affymetrix GeneChip Human
Genome HG-U133A platform. All data is gathered as raw .CEL files, which are
quality checked and then normalised using RMA algorithm. The dataset is a col-
lection of 206 studies generated in 163 separate laboratories. Out of initial 9004
samples 5372 remained after quality control and sample duplication removal. At
the time of our analysis the dataset was still work in progress and also included
736 duplicate samples.

Affymetrix GeneChip Human Genome HG-U133A platform consists of 22283
unique probe sets which at the time of the study represented 12580 Ensembl
genes. Some of the genes may have multiple probe sets mapped to its coordinates
on the genome. However, these may or may not represent the same or overlapping
transcript(s). In our study we used the most favourable probe set for such cases.
For a gene pair we chose the probe sets that showed highest correlation. Ambigu-
ous probe sets that mapped to multiple Ensemble gene IDs were omitted from the
study.

The aim of our analysis was to study the predictive power of gene co-expression
to infer connections between genes and biological pathways. For 35 selected Re-
actome pathways we performed exhaustive leave-one-out analysis. Iteratively
leaving one gene out of the pathway we used remaining pathway members to
predict the association between the rest of the genes on the platform and the path-
way. For that we calculated average correlation coefficient between the pathway
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genes and each gene not in the pathway, including the left-out gene. Genes not in
the pathway were then ordered based on observed average correlation coefficient
and the rank of the left-out gene was determined. Rank 1 would indicate that the
left-out gene is the closest gene to the rest of the pathway.

We were also interested whether there exists a sub-pathway that is more re-
lated to the left-out gene than entire pathway. Sub-pathway is here purely co-
expression based measurement without taking into account interactions defined in
Reactome database. We used correlation based threshold to define the active sub-
pathway. Only those pathway members which correlation coefficient was higher
than threshold ¢ were used to calculate average correlation coefficient score be-
tween a gene and the pathway. As it was exploratory study, we tested different
thresholds. For each leave-one-out iteration we optimised the threshold ¢ so that
the left out gene would get the highest rank possible.

In this study we used Pearson correlation coefficient, which is the most fre-
quently used correlation metrics in biological studies. In biological data Pearson
correlation coefficient measures expression dynamics similarity between gene ex-
pression profiles as discussed in Section 1.2.3. This would allow to identify gene
groups and connections where the regulation of several genes are guided by the
same factors. As an alternative we also tested absolute Pearson correlation coeffi-
cient.

Results

We evaluated the results for a pathway based on number of left-out genes that
were retrieved within top n genes across individual iterations. We tested four n
values: 1, 10, 100 and 1000, denoted by T1, T10, T100 and T1000. While using
entire pathway to calculate average correlation, no pathway had more than 8% in
T1 group. However while using sub-pathway we observed 3 pathways with more
than 20% of left-out genes in T1 group: Translation, Pyruvate metabolism and
TCA cycle and Metabolism of noncoding RNA.

For T100 group Translation, Pyruvate metabolism and TCA cycle and Electron
transport chain pathways retrieved the left-out member close to 70% of the cases.

Interestingly we found that for some of the pathways absolute Pearson corre-
lation coefficient performed comparatively better. For example the overall highest
performance was shown in Translation pathway with 31% and 58% of pathway
members seen in T1 and T10 groups while using absolute Pearson correlation
coefficient. Although in general the difference between Pearson correlation coef-
ficient and absolute Pearson correlation coefficient was not consistent enough to
be significant.

The least performing pathways were all Reactome signalling pathways. We
conclude that the regulation of signalling pathways is fairly independent of the
transcriptional regulation. There may be pathway components where transcrip-
tional regulation is involved, but more widely the signalling is conducted by pro-
tein modifications and enzymatic activities. Molecular protein complexes on the
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other hand have more straightforward transcriptional regulation. Mostly the parts
required to build a protein complex are needed simultaneously. Nevertheless, our
understanding of transcriptional co-expression landscape is still vague. Almost
two thirds of all known genes are not placed into any pathway. This leaves am-
ple room to study further the genes that are not annotated to any pathway, but
expression wise are consistently more similar to the pathway than its members.

Our analysis revealed several candidate genes that were consistently very sim-
ilar to Translation pathway genes. Upon closer look we could identify literature
evidence between several candidates and pathway genes.

Summary

Biological pathways are an attempt to map cellular interactions into intelligible
system. As new knowledge is gathered about the underlying reactions, the topol-
ogy of pathways may change and evolve. One contributor to this change will
also be high-throughput transcription analysis, that helps to characterise exiting
interactions inside pathways and propose new ones.

In this study we did not consider pathways as undivided entities, but as largest
allowed gene set. While performing exhaustive leave-one-out cross-validation we
proved that using more tightly co-regulated sub-pathways shows more promise,
than using the entire pathway. Also we used single gene expression matrix, al-
though a large one with 6108 biological samples. Not all genes in all condi-
tions are similarly regulated. It is possible, that two genes in one condition are
co-regulated, in another are anti-regulated (in opposite directions) and in most
conditions are not regulated at all. To describe and understand this selective co-
regulation is the objective of the next publication in this thesis.
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3.3. Mining co-expression across many experiments (Ref lll)

The microarray gene expression data in public domain grows constantly. In this
section we introduce Multi Experiment Matrix (MEM, biit.cs.ut.ee/mem)
tool and show how to utilise this increasing resource to perform gene co-expression
queries across thousands of datasets simultaneously.

There are different ways to combine data from different sources and it depends
on the questions asked and the technical possibilities. Data from the same or very
similar experimental platforms can be viewed together after proper normalisation
(Lukk et al., 2010; Rung and Brazma, 2013). Laboratory specific batch effect
should be considered as discussed in Section 1.1.2, but otherwise concatenated
data can be viewed as single dataset and analysed as such. Wider spectrum of
repeated experimental conditions can produce more stable results.

If data concatenation is not possible or not desired then normalisation and data
analysis is performed independently in each data source and the results are com-
bined (Hibbs et al., 2007; Huttenhower et al., 2006; Lee et al., 2004; Zhu et al.,
2015; Zoubarev et al., 2012). These examples are more explained in Section 1.3.1.

To have a global overview of gene co-expression is a rather difficult task. Each
individual dataset addresses defined experimental setup and is designed to mea-
sure genes’ response to given stimuli or profile their expression across specified
conditions. Using more datasets together would allow to study wider spectrum
of conditions and gain more statistical power for the analysis. In previous pub-
lication (Adler et al., 2009b, Ref II) we used compilation of public data sets, a
collection of 206 independent studies (Lukk et al., 2010).

In this section we explore an alternative option where co-expression is evalu-
ated in many individual datasets and then combined into a single result by rank
aggregation method. There are several advantages of rank aggregation over the
concatenation approach. Direct comparison of individual datasets allows for bet-
ter evaluation of co-expression stability across datasets. Most genes are not always
expressed, there are some that are more widely expressed (often referred as house-
keeping genes) (Thellin et al., 1999) and there are genes that are expressed rarely
or in fewer conditions (Wang et al., 2009). When comparing the co-expression re-
sults from individual datasets we can observe in how many and in which datasets
the genes are co-expressed. In addition combining more data together will make
the whole analysis more robust against the potential noise in individual datasets.

Implementation

Lets denote the query gene g* and the rest of the genes in the datasets as g;, where
i is their respective index. In each individual dataset MEM algorithm calculates
pair-wise co-expression values between the g* and all g;. The final co-expression
score between the g* and g; is achieved using rank aggregation method.

In every dataset included into the analysis all genes are sorted and ranked based
on their co-expression value to the g*. The most similar gene to the g* will be as-
signed rank 2, second most similar rank 3 and so on for all genes in the dataset.
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For each gene we get a rank vector containing a rank value from each correspond-
ing dataset, denoted by (g%, g;) = [, ..., 7’,], where m is total number of datasets.
We can state a null hypothesis that assumes no connection between the the g* and
a g;. In such case the ranks in the rank vector observed would appear uniformly
distributed. Alternatively, when the ranks appear not to follow uniform distribu-
tion, we have to reject the null hypothesis and can state with observed probably
that there is a connection between the g* and a g;.

After sorting the normalised ranks in r(g*, g;) € (0,1) to get order statistic we
can model the probability of observing a given rank value in any position in the
vector using beta distribution. The beta distribution is described by two shape
parameters o and 3. Here o denotes the modelled position in sorted rank vector
and o+ 3 — 1 is the length of the vector. We use beta one sided test to inquire how
probable it is that observed rank value belongs to uniform distribution. Values that
are smaller than significance threshold are of interest as they indicate that given g*
and g; are consistently more similar in a number of datasets, denoted by the value
of a. The lowest p-value in observed rank vector is treated as MEM similarity
score.

The above can be summarised using py = pBeta(ri,k,(m —k+ 1)), where
k € [1,m]. The final score between g* and g; is then sc(g”,g;) = min{pi, ..., pm}.

In the end we get a list of genes ordered by MEM similarity scores. These
scores can be, after proper multiple testing correction, used also as p-values.
Smaller score indicates more datasets where the g* and g; are consistently more
similar to each other than would be expected by the null hypothesis. MEM work-
flow also records the ranks for g; in each dataset. More often than not, after the
appropriate clustering of datasets a pattern may emerge that highlights a group of
genes that are similarly ranked to the the g* in related datasets.

Not all the datasets may be relevant for given query gene g*. In some of the
datasets g* might not be expressed at all or the expression of gene g* is not affected
by the experimental conditions studied. In case of gene expression microarrays
this is typically reflected in lack of variance of expression values. We therefore
have implemented predefined filter to exclude datasets from the analysis where the
g" does not display enough variance. Empirical testing showed that for our largest
collection at the time of the study this threshold was 0.29. All dataset where the
standard deviation value for gene g* is lower than set threshold are omitted from
the analysis. The threshold seems to apply well on all log transformed expres-
sion data, regardless of the collection size or platform (data not shown). This is
reasonable as it excludes datasets with less meaningful correlation values. Other
genes, that are not expressed or not affected by experimental setup, would in this
case score high correlation values, adding potential noise to overall analysis.

As the data collections have grown in size, often a quick first look would be
more engaging for new users. In the initial query we display the results using
only up to 100 datasets where the query gene g* shows highest standard deviation
values. Unless the default standard deviation filter 0.29 is not reached first.
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The validity of such initial restriction is justified by the mini chromosome
maintenance (MCM) subunit correlation analysis. In the experiment we mea-
sured median rank distance between MCM subunits. We demonstrated that rela-
tive stability in median rank distances was already achieved with 75 datasets in the
analysis. Of course, more datasets in the analysis will increase the performance
and the threshold of 100 is foremost considered as a measure for providing quick
glance on initial results.

Gene expression data

MEM co-expression queries are data driven. This means that the quality and quan-
tity of the data are important for the analysis. One of the key issues here is the
initial choice of data to be included into single analysis. All analyses in MEM
tool are currently performed across single Affymetrix platform. This ensures that
all datasets used in a single analysis measure transcriptomic entities in consistent
manner. Some Affymetrix platforms are sufficiently popular and provide thou-
sands of publicly available and variable datasets.

For our data collections we have downloaded all datasets from ArrayExpress
database (Brazma et al., 2003), that met our requirements. We required the data
to be from Affymetrix expression platforms and have raw data available. In the
original collection we had data across 10 organisms, altogether 2467 datasets and
more than 60000 samples. The latest data collection available at the time of writ-
ing this thesis has 30 organisms, 13252 datasets and more than 335000 samples
(01.12.14).

We downloaded and normalised raw data on our own. Doing the preprocess-
ing steps ourselves ensures more consistent quality and compatibility of the data.
Publicly available processed datasets are often derived using independent nor-
malisation and pre-processing pipelines, that are not easily compared (Rung and
Brazma, 2013). We use the same steps and normalisation parameters across pro-
cessed datasets. Normalised expression data and sample meta-data is preserved
in Network Common Data Format (NCDF) files. NCDF is flexible binary data
type, that allows rapid access to the data and thus enables online calculations.
Meta-data can conveniently be stored in the same format and in the same file as
expression data.

We aim to periodically update our collections as new expression data becomes
available, covering more experimental conditions. Lately there has been signifi-
cant shift toward sequencing data. That too, will be incorporated into future MEM
data collections.

User interface

A web-based tool can more easily be used by wider audience. The large database
behind the scenes (latest collection 102 GB, all collections 263 GB, 01.12.14)
makes packaging not reasonable for the entire tool. The front-end web page is im-
plemented as a series of Perl CGI scripts. Computationally heavy co-expression
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Figure 6. Screenshot of MEM web interface and analysis output for embryonic stem
cell regulator POUSF1(OCT4) gene. The top part of the image shows user interface for
query specification. Displayed heat map highlights co-expression rank values between
POUSF1 gene and Reactome Transcriptional regulation of pluripotent stem cells pathway.
Analysis output was filtered using Gene filters option. Textual annotations on the image
(A-D) highlight interactive features of MEM that allow to get additional information about
the genes and experiments. (E) In the bottom of image g:Profiler (Reimand et al., 2011)
enrichment analysis is visualised for outputted genes.
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calculation and scoring is implemented in C++ for speed. Since publication we
have optimised, as well parallelised the C++ backend, to cope with the growing
data size.

Web interface allows, besides hosting the calculation and centralised data col-
lection, interactive visualisation and cross references to related tools and resources.
The emphasis of the MEM tool is to visualise the observed ranks for found glob-
ally similar genes relative to the query gene g* as a heat map. The heat map uses
red-white-blue scale to show which genes in given dataset were similar (red) or
distant (blue). MEM rank aggregation method identifies in which datasets g* and
gi were more similar than expected by chance. For each gene g; in the results it
can be different set of datasets. We have highlighted relevant datasets with a black
frame on the heat map image for respective gene (Figure 6).

Datasets are clustered using the rank matrix and Happieclust (Kull and Vilo,
2008) hierarchical clustering algorithm. It is possible to display enriched key-
words as a tagcloud for a cluster of datasets by hovering on the nodes in the
clustering dendrogram. It provides additional insight into functional characterisa-
tion of experimental conditions studied in selected datasets. For example a group
of genes is consistently co-expressed in datasets describing embryonic stem cells.
Figure 6 provides illustration of MEM web interface and expected results.

We use extensively g:Convert tool for flexible gene ID identification (Reimand
et al., 2011). User queries are converted from any known gene or protein ID into
selected platform ID. In the output we perform the inverse. Often cryptic platform
IDs are converted to common gene name and also gene description is retrieved.

The principal output of the tool, the list of significantly similar genes to the
query gene g*, can be further characterised using g:GOSt tool (Reimand et al.,
2011).

Use cases

MEM tool enables to compare genes co-expression across datasets. Observe
whether genes that are tightly co-expressed in certain experimental condition are
so also in other tissue, clinical diagnose or cell line experiments. Some genes
display co-expression across wide variety of public datasets, others in only few,
biologically related, datasets.

MEM tool has found usage by other researchers to solve their independent
problems or use as comparison while developing similar resource.

For example Altmie et al. (2012) used MEM global co-expression analysis to
evaluate the co-expression significance of physically interacting proteins.

Sircoulomb et al. (2011) used MEM to find co-expressed genes to a gene of
their interest (ZNF703) on popular Affymetrix GeneChip Human Genome U133
Plus 2.0 microarray platform.

Ivanov et al. (2013) used MEM to characterise the co-expression partners for
SOX10 gene in different cancer types.
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Zhu et al. (2015) have developed SEEK tool that similarly to MEM performs
co-expression analyses over large collection of human high-throughput gene ex-
pression datasets and was discussed in section 1.3.1. Noteworthy here is that they
used MEM methodology as a benchmark to evaluate the performance of their own
method. This is a recognition as well as challenge at the same time.

Summary

Here, we demonstrated MEM tool to perform global co-expression queries across
hundreds of public datasets in single analysis. MEM allows to perform convenient
and interactive gene co-expression queries. Co-expression results from individual
datasets are combined into single global prioritised gene list by novel rank aggre-
gation algorithm. We have published the rank aggregation method separately as
R package (Kolde et al., 2012) and discuss if further in the next section of this
thesis.
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3.4. Robust rank aggregation for gene list integration and
meta-analysis (Ref IV)

In previous publication (Adler et al., 2009a, Ref III) we demonstrated web tool
which principal contribution was to make possible gene co-expression queries
across many hundreds of public gene expression datasets. Important component
of this tool was the rank aggregation algorithm used to combine results from in-
dividual datasets. In this paper we explain in greater detail how rank aggregation
works and how it can improve meta-analysis across multiple data sources. Robust
Rank Aggregation (RRA) method is packaged into R library, and thus making it
available and usable in other analysis pipelines beside MEM.

Common conception is that converting similarity or distance measures into
ranks causes loss of information. Indeed, measure density and distribution pa-
rameters are lost when converting values into ranks. However, comparing and
aggregating values with different distribution background may yield even more
problematic results (Obayashi and Kinoshita, 2009). We show here that the loss
of information by using rank aggregation methods is insignificant compared to the
added value one would get by merging information from multiple sources.

In the publication (Kolde et al., 2012, Ref IV) we set out to demonstrate three
principal features of RRA method: it is robust to noise, can handle incomplete
rankings and assigns a significance score to each element in the resulting ranking.
In addition, it is efficient to compute, which is not a trivial issue while performing
large scale analysis.

Study with simulated data

We performed several experiments to stress these features. Simulated data al-
lowed to test different scenarios under controlled conditions. Robustness to noise,
incomplete rankings, as well the significance score were tested comprehensively
this way. We performed comparisons against two other methods. The first method
calculates average rank value across all rankings for each entity. The other method
we called Stuart by the lead author when it was first published by Stuart et al.
(2003). In the analysis we used optimised version of the algorithm published by
Aerts et al. (2006).

Simulated data consisted of ten lists with implanted positive elements. For
noise tolerance analysis different number of randomly shuffled lists were added.
All lists consisted of 1000 elements.

Both order statistics based methods (RRA and Stuart) separated the true posi-
tive and the noise better than average based scoring. Both methods also produce
score that can be interpreted as significance p-value for elements. We used FDR to
correct for multiple testing. Compared to RRA, that did not retrieve any false pos-
itives, Stuart method is statistically less stringent and deemed also large number
of true negatives significant.

In our opinion we consider the robustness to noise one of the key features. In
real life experiments we usually do not know the portion of the noise, nor can
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control that. With 25% of the input lists randomly shuffled, RRA still recovered
more than 50% of the true positives. RRA consistently outperformed average
method in this case, Stuart method could not be compared as it is unable to reliably
separate implanted elements from the noise.

In case of incomplete data, RRA started to show diminishing results only after
95% of low ranking genes in each input were removed. In real life data, it should
never get that extreme, but this feature is welcome while aggregating results from
different biological platforms.

Study with Biological data

Experiments with biological data allowed to study how RRA performs in real life
conditions. We performed two experiments with real life high-throughput data.

Hu et al. (2007) have done extensive yeast transcription factor (TF) knockout
experiment. It was reanalysed by Reimand et al. (2010) to identify target genes
most affected by the knockout of a TF. This kind of experimental setup sheds
light to underlying biological networks allowing to identify putative targets for a
TF. We performed proof of principle experiment where we tried to retrieve Gene
Ontology term members using individual ranked gene lists associated with TFs
belonging to the term. For comparison we also calculated Fisher exact p-value
between individual TF list and GO term. In most cases aggregated results outper-
form individual lists. In case of response to chemical stimulus only 6 individual
TF based gene lists out of 39 showed significant association with the term. Ag-
gregated results however overcame the noise and showed yet stronger enrichment
to the term than any of the individual lists.

In the second experiment we used high-throughput gene expression data avail-
able via MEM tool (Adler et al., 2009a, ref 1Il) and ChIP-seq study performed
by Chen et al. (2008). The study covered 15 embryonic stem (ES) cell related
TFs. In this experiment they identified genes that were regulated by these TFs
using ChIP-seq promoter analysis. We were interested whether we can use gene
co-expression analysis on high-throughput gene expression data to infer the same
connections between regulators and their targeted genes. As the original analysis
was performed on mouse ES cells, we used mouse Affymetrix GeneChip Mouse
Genome 430 2.0 gene expression platform. From the available data we selected
only datasets that mentioned expression profiling from ES cell types. There were
12 such datasets available at the time. For each of the TFs we calculated area
under the curve for predicting gene associations with the regulator in each dataset
separately. We used RRA to predict gene associations with the TF across all 12
datasets and compared to the results from individual datasets.

The results reveal, that while in some datasets few of the queries on individual
datasets outperform aggregated results, the aggregated results show consistently
good approximation to the best performing datasets. Mostly it is difficult to guess
a priory which of the available dataset would be relevant. Questionable might be
the quality of the data or its connection to the biological question at hand.
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Summary

Here we show the benefit of a rank aggregation method that can take many ordered
inputs lists and highlight only the most relevant bit of information contained in
the combined data. The studies with biological data presented here also show
how useful public gene expression data re-usage can be to predict connections or
interactions between genes. We packaged the method as RobustRankAggreg R
library to make possible its integration into custom analysis pipelines by external
researchers.
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CONCLUSIONS

In this thesis I have introduced methods to analyse and visualise high-throughput
datasets as well methods of meta-analysis. The results of the initial analysis are
better interpreted if viewed in the context of prior biological knowledge. Bio-
logical pathway databases and Gene Ontology are typically used to provide such
context. Here, we have developed KEGGanim web tool that allows to visualise
and animate high-throughput expression data on top of KEGG pathway images.
The tool is publicly accessible to anyone who would like to use it. User own ex-
pression data can be uploaded and visualised. Animations can be used in slide
presentations as illustrations or still images can be generated for publications, us-
ing “Cinefilm” function.

There is a wealth of publicly available gene expression data. We used a collec-
tion of human gene expression data across 6108 samples to measure the predic-
tive power of co-expression analysis to reconstruct existing Reactome pathways.
This study had two principal conclusions. First, we observed that co-expression
analysis does not yield good results on pathways that do not need its members
to be present in consistent manner. Such are, for example, signalling pathways,
where the signal is transmitted by protein modifications and not via transcrip-
tional control. On the other hand, pathways that require its components to be
present in close proximity and employ transcriptional regulation to achieve that,
showed more favourable results. Secondly, we observed that using only subset
of genes from the pathway will improve the prediction of closely related pathway
components. Different pathway components may be active in different cellular
states and therefore not related in terms of co-expression.

The most important outcome of this thesis is Multi Experiment Matrix (MEM)
tool. We have collected and processed large collection of publicly available high-
throughput gene expression datasets. MEM allow to perform query based co-
expression analyses across hundreds of datasets together. This makes it possible
to re-use already existing expression data and allows to discover signals that would
otherwise be difficult to find from a single dataset. The main output of the tool
is heat map type rank matrix, from where it is possible to observe the emerged
gene co-expression patterns between genes and datasets. MEM has interactive
web interface to define queries, visualise results and provide crosslinks to further
characterise found gene lists, learn more about individual genes and datasets. We
have developed a novel rank aggregation method to compile the final prioritised
gene list.
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Finally, to better demonstrate the proposed rank aggregation method we per-
formed several experiments with simulated data and compared our method against
two other rank aggregation methods. We showed that our proposed method is
robust to noise, can handle missing data and separates true signal from back-
ground noise better than the compared alternatives. We have packaged the pro-
posed method as RobustRankAggreg (RRA) R library. This enables to incorporate
RRA method into custom meta-analysis pipelines by external researchers.
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SUMMARY IN ESTONIAN

Paljude mikrokiibi andmestike suuremahuline anallitisimine ja
visualiseerimine

Suuremahulised geeniekspressiooni mikrokiibid on olnud viimased kaks aasta-
kiimmet peamiseks vahendiks, et uurida ja analiilisida erinevaid bioloogilisi tingi-
musi. Geeniekspressiooni mikrokiibid voimaldavad korraga kvantifitseerida viga
suure hulga geenide transkriptsioonilist aktiivsust. Aastate jooksul tehtud ekspe-
rimentide andmed on kogutud suurtesse andmebaasidesse nagu niiteks GEO voi
ArrayExpress. Sealt on voimalik andmeid kiitte saada ja taaskasutada sarnaste bio-
loogiliste tingimuste uurimisel vdi suuremates meta-analiitisides iile paljude and-
mestike. Siin esitatud t6ds rohutame just andmete taaskasutamist ja meta-analiiiisi
olulisust tundlikumate ja tipsemate tulemuse saamiseks. Tulemuste tdlgendamisel
on tihti oluline roll ka asjakohase visualiseerimise meetodi valikul.

Esitleme KEGGanim t6oriista, mis voimaldab siduda suuremahulisi ekspres-
siooniandmeid ja KEGG bioloogiliste radade andmebaasi. KEGGanim loob eksp-
ressiooniandmetest rajapdhise animatsiooni, kus on voimalik jilgida raja kompo-
nentide ekpressiooni diinaamikat iile erinevate katsete. Selline konkreetse bioloo-
gilise raja konteksti fokusseeritud vaade vdimaldab paremini eksperimendi tule-
musi interpreteerida ja visualiseerida. KEGGanimi animatsioonid sobivad kasuta-
miseks ettekannete slaididel. “Cinefilm” funktsioon vdimaldab genereerida pilte
iile mitme animatsiooni kaadri. Sellised pildid sobivad kasutamiseks publikatsioo-
nides.

Radade andmebaasid ei kirjelda koiki geenide vahelisi seoseid. Vaid iiks kol-
mandik kdikidest geenidest on annoteeritud KEGGi vdi Reactome’i radade and-
mebaasidesse. Meid huvitas, kui edukalt on vdimalik dra kasutada suuremahulisi
geeniekspressiooni andmeid olemasolevate bioloogiliste radade ja nende liikmete
omavahelise seose kirjeldamisel. Selleks viisime 14bi geenide koos-ekspressiooni
analiilisi Reactome’i andmebaasi radadel kasutades ristvalideerimise meetodit.
Tehtud t66l oli kaks peamist jareldust. Esiteks ei sobi geenide koos-ekspressiooni
analiilis signaaliradade kirjeldamiseks. Signaaliradade komponendid enamasti ei
s0ltu koordineeritud transkriptsiooni regulatsioonist. Rajad, mille komponendid
on vajalikud niiteks kindlal rakutsiikli etapil vdi moodustavad suuremaid valgu-
kogumikke, on palju paremini kirjeldatavad kasutades geeniekspressiooni sarna-
suse analiiiisi. Teiseks, leidsime, et kasutades vaid alamosa raja geenidest, on voi-
malik oluliselt parandada analiiiisi tulemusi. Erinevad raja osad vdivad olla funkt-
sionaalselt kiillalti erinevad, mistdttu peaks neid ka analiilisima eraldi.
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Esitleme Multi Experiment Matrix (MEM) t6oriista, mis voimaldab teha gee-
nide koos-ekpressiooni paringuid iile paljude andmestike korraga. Paljud geenid
on ekspresseerunud vaid kindlates koetiiiipides voi kindlatel tingimustel. Ka koos-
ekspressioon voib ilmneda erinevate geenide vahel erinevates tingimustes. MEM-
tooriist voimaldab hdlpsalt selliseid seoseid tuvastada ja interaktiivne veebilahen-
dus pakub voimalusi leidude tdpsemaks edasiseks analiiiisiks viidates teistele, seo-
tud tooriistadele.

Me oleme laadinud ArrayExpressi andmebaasist alla kdik avalikud Affymet-
rix platvormil olevad geeniekpressiooni andmestike toorandmed. Selliseid and-
mestikke on (seisuga 01.12.14) rohkem kui 13000, sisaldades enam kui 330000
individuaalset mikrokiibi katset. Uute andmestike arv andmebaasis kasvab pide-
valt ja uued andmestikud lisatakse perioodiliselt ka MEM-tooriista.

Igas etteantud andmestikus jdrjestatakse geenid vastavalt nende sarnasusele
piringugeeniga. Kdikidele geenidele omistatakse neile vastav astak-viirtus. In-
dividuaalsetest andmestikest périt astak-viirtused seotakse iihiseks globaalseks
prioritiseeritud geenide jdrjekorraks kasutades statistilist astakute agregeerimise
meetodit.

Viimaks tutvustame arendatud astakute agregeerimese meetodit — Robust Rank
Aggregation (RRA). Me vordlesime RRA meetodit teiste astakute agregreeri-
mise meetoditega, kasutades selleks simuleeritud andmeid. Me néitasime, et RRA
on vGimeline eraldama sisendandmetest olulise informatsiooni isegi kdrge miira
fooni voi osaliselt puuduvate andmete puhul. Samuti demonstreerime, kuidas on
RRA meetodit voimalik kasutada bioloogilistes meta-analiiiisi eksperimentides
viljaspool MEM paradigmat. RRA on pakendatud R paketina (RobustRankAgg-
reg), et seda oleks lihtsam integreerida teistesse analiiiisi tdovoogudesse.
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