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INTRODUCTION 
 

The discovery of fullerene by Kroto et al.1 and of the carbon nanotubes (CNT) 
by Iijima et al.,2, 3 extended the number of known forms of carbon allotropes. 
The shapes of some of these new compounds resemble geodesic domes, which 
were made popular by the well known architect Richard Buckminster Fuller and 
the naming of these new allotropic forms of carbon after the architect’s name 
was a tribute to his visionary view.   

Further experimental and theoretical studies revealed more or less stable 
forms of spherical fullerenes,4,5,6 carbon structures doped with B, N,7,8 spherical 
fullerenes including metallic atoms9 or structures similar to fullerenes and 
carbon nanotubes made entirely of B and N.10,11  

All the above mentioned carbon structures have at least one dimension less 
than 100 nm and thus can be classified as nano compounds. The interest in 
nanomaterials is due to the fact that the properties stemming from the nano 
dimension can be quite different in comparison to those of the same material as 
bulk.  

Nanomaterials have special mechanical, magnetical, electrical, optical and 
chemical properties and due to these properties are increasingly used as 
semiconductors, microelectronic devices, catalysts, cosmetic agents and medical 
substances for diagnosis, imaging and drug carrier.  

The drawback of carbon nanostructures is that they can have adverse effects 
on human and animal health and are a matter of concern regarding environ-
mental protection. Some nanostructures like C60 proved to be rather harmless,12 
while others like carbon nanotubes have an effect similar with asbestos on 
human health.13 The Polyaromatic Hydrocarbons (PAH) which are the pre-
cursors of many larger carbon nanostructures are very toxic substances.14 The 
toxicity and environmental pollution associated with carbon nanostructures are 
related to their solubility in water15 and in solvents similar to body fluids,16 a 
fact that makes the study of carbon nanostructure solvation a field of major 
interest.   

As in the case of other substances the production, manipulation and use of 
carbon nanostructures should follow the EU legislation concerning: Safety at 
Workplace Directives,17 The Directive on the Integrated Pollution Prevention 
and Control,18 Waste Management Directives19 and The European Regulation 
on the Registration, Authorization and Restriction of Chemicals(REACH) .20 

Precise determination of the properties of carbon nanostructures may be 
difficult because some of these compounds are obtained in rather low quantity 
and the measurement of their properties can be carried out only by sophisticated 
experimental techniques.21,22 An alternative method to determine the property 
values for nanostructures is to use computational methods.23  

One of the computational techniques extensively used nowadays for ob-
taining the properties of different compounds is Quantitative Structure Property/ 
Activity Relationship (QSPR/QSAR) approach. This computational technique 
enables the building of theoretical models that relate the property of compounds 
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to their structural characteristics. Based on the models developed, the unknown 
properties of the compounds can be deduced from their molecular structure. 
Numerous computational programs for predicting properties that are missing for 
different substances have been developed based on QSPR/QSAR.  

The purpose of the present thesis is to explore the applicability of 
QSPR/QSAR methodology for predicting properties of some carbon nano-
structures, specifically the fullerene and its derivatives. Within this aim, 
computational models for predicting different physico-chemical and biological 
properties have been developed. These models enable the interpretation of the 
dependence of the particular properties on the structure of compounds through 
specific theoretical molecular descriptors. In Chapter I, the modeled properties 
and the methodology employed for modeling are overviewed. Chapter II 
presents the results obtained in modeling specific properties: solubility of PAH 
and fullerene in n-heptane and 1-octanol, polarizability of PAH and fullerenes, 
inhibition of HIV protease by different substituted fullerenes and the inhibition 
of amyloid fibril formation. 
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1. LITERATURE OVERVIEW 
 

1.1. Properties of interest for carbon nanostructures 
 

The discovery of new allotropic forms of C triggered an increased interest in 
their physical, chemical, biological properties and in possible practical appli-
cations based on these new compounds.  

The special mechanical, electrical, optical and reactivity properties of the 
carbon nanostructures are due to the presence of the extended π electrons sys-
tems. This particular structure involving multiple π electrons induces the sphe-
rical aromaticity in the case of fullerenes24 and is the source of the aromaticity 
induced special electronic properties of carbon nanotubes.25 

Carbon nanotubes show high stiffness and axial strength as reflected by a 
high Young’s modulus (~1 TPa),26 and at the same time they have low density, 
which makes them suitable for the fabrication of strong, lightweight composite 
materials.27   

According to the diameter and the helicity of carbon nanotubes these can be 
semiconducting or metallic,28,29 which make them interesting compounds for 
nanosize electronic devices like transistors.30 Another exceptional electronic 
property of carbon nanotubes is their ability to support ballistic electron 
transport.31,32 Studies of fullerene C60 doped with K atoms revealed super-
conductivity at a temperature of 18K, which is among the highest observed for a 
molecular superconductor.33  

Due to their extended π electron systems carbon nanostructures also find 
applications as materials for Nonlinear Optical Devices (NLO). The pheno-
menon behind NLO devices is the photorefractive effect described by the spatial 
modulation of the refractive index. The behavior of refractive index is 
controlled by the polarizability (σ) and the second-order hyperpolarizability (γ) 
which renders these properties important to be measured in the case of carbon 
nanostructures used as compounds for NLO devices.34,35  

The discovery of the Bingel reaction36 allowed the introduction of pendant 
arms to the sphere of fullerene thus modifying many of the fullerene properties 
and inducing new potential technological and biological applications.37As in the 
case of fullerenes, CNT can also be side-wall derivatized by different reactions6 
rendering them thus more appropriate for different applications.38  

One of the most studied biological applications of fullerene is their ability to 
inhibit different types of enzymes. Enzymes have a crucial role in organisms 
from viruses to mammals and their inhibition can cure a wide range of diseases 
from viral infections to cancers. Substituted fullerenes proved effective 
inhibitors of enzymes like: HIV protease,39,40 HIV reverse transcriptase and 
Hepatitis C RNA polymerase,41 carbon anhydrase,42 acetyl cholinesterase,43 and 
neuronal nitric oxide synthase.44 

When exposed to light, fullerenic compounds produce singlet O species 45 
with cytotoxic effect on cells.46,47 This reactive O induced cytotoxicity could 
have practical applications in treating different forms of cancers by destroying 
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abnormal cells. However O reactive species can also have undesirable side 
effects on healthy cells like: DNA cleavage,48 mutagenicity,49 genotoxicity50 or 
hemolytic effects.51 On the other hand, the fullerols that are polyhydroxylated 
fullerens have been shown to be effective as free radical scavengers52 and can 
be used to treat ischemic, neuronal and rheumatoid degenerative diseases which 
are due to overproduction of free radicals in the tissue.  

Fullerene derivatives also have bactericidal effects53–59 because of their 
capacity to intercalate in the biological membrane of different sorts of bacteria 
and to disrupt the bacteria cell’s wall thus causing the microorganism’s death. 

The 1,2-(dimethoxymethano)fullerene proved to be an efficient compound 
for preventing the aggregation of β-amyloid peptide thus being a potential drug 
for Alzheimers’ disease treatment.60  

Endohedral fullerenes61 which are the fullerenes with metal ions trapped 
inside the fullerene cage proved to be effective tools in medical diagnosis as 
MRI agents.62 Highly-iodinated C60 molecules are good contrast agents for X-
ray imaging63 having a lower toxicity than other commercially available X-ray 
agents.  

 
 

1.2. Properties studied in the present thesis 
 

Solubility of carbon nanostructures 
Solubility is a fundamental property for all chemical compounds mainly 
because most reactions and biological processes take place in solution. For 
carbon nanostructures solubility is important in fields like: separation of carbon 
nanostructures after synthesis, synthesis of substituted carbon nanostructures, 
environmental protection and bioavailability of compounds.  

In comparison with other allotropic forms of carbon, like diamond and 
graphite, which are not soluble in any solvents, fullerenes can be dissolved at 
room temperature mostly in aromatic solvents.  Further studies of C60 dissolved 
in a variety of solvents confirmed the fact that “like dissolves like” and that the 
most important parameters in evaluating the capacity of a solvent to dissolve 
C60 are: the solvent’s polarity, polarizability, molecular size and Hildebrand 
solubility parameter.64  

The unsubstituted fullerene is insoluble in water, the maximum con-
centration that can be achieved as a hydrated fullerene is 4mg/mL.65 The 
hydrated fullerene C60(H2O)24 consists of the C60 cage surrounded by 24 water 
molecules, which act for the fullerene cage as electron donors through the O 
atoms, and constitute the first hydration shell.  

Carbon nanostructures have many potential applications in medicine which 
are conditioned by their solubility in body fluids. Thus one field of major 
interest is the functionalization of carbon nanostructures with pendant arms that 
will render them soluble in different solvents. The functionalization of C60, 
resulting in a dendrimeric fullerene derivative bearing 18 carboxylic groups can 
significantly improve its solubility in water up to 34mg/mL at pH=7.4.66  



 15

The Single Wall Carbon Nanotubes (SWCNT) also have potential applica-
tions in medicine but the major problem is their insolubility in all solvents. The 
covalent functionalization of SWCNT6 is not always as successful as in the case 
of fullerenes, sometimes the band electronic structure is disrupted by these 
modifications or even the full structure of SWCNT is damaged.67 The disso-
lution in water of the SWCNT is achieved by using polymers and surfactants.68 

The solubility of PAH with a small number of cycles is well studied due to 
the importance of these compounds in many industrial processes like the 
production of dyes and drugs. On the other hand the PAH with a large number 
of cycles are not readily available for analysis, these compounds being obtained 
mostly in small quantities in combustion processes. The PAH are very toxic 
compounds and their solubility in water has been studied69,70 as mostly related 
to issues like human health and environmental protection. 

In the present thesis, the QSPR approach has been applied for modeling the 
solubility of C60 and carbon nanostructures’ precursors, the polyaromatic 
hydrocarbons (PAH), in two solvents – the n-heptane and 1-octanol. 

 
Polarizability 
The increasing number of applications based on nonlinear optical (NLO) effects 
in fields like telecommunications, computer storage devices and optical devices 
triggered the necessity to measure and compute as precisely as possible the 
properties on which the NLO effects depend, the refractive index and implicitly 
the polarizability and hyperpolarizability of different compounds used in NLO 
devices.  

The electric polarizability reflects the ease of distortion of the electron cloud 
of a molecular entity by an electric field (such as that due to the proximity of a 
charged reagent). As defined in the dictionary, the electrical polarizability is 
“the electrical dipole moment induced in a system such as an atom or molecule, 
by the electric field of unit strength”.71  

Richard Feyman72 modified the Clausius-Mosotti equation to adapt it for 
bulk materials thus establishing the relationship between polarizability and the 
refraction index: 

2

1
3

2

2





n

n
N                            (1) 

 
where N is the number of particle per unit volume, α is the atomic polarizability 
and n is the refractive index. 

Polarizability consists on isotropic and anisotropic components.73 The 
isotropic part of the molecular polarizability is mostly an additive quantity that 
can be calculated by summation of individual polarizability of atoms or bonds 
of a certain molecule. The anisotropic polarizability is mostly due to the fact 
that atoms are not isolated in molecules and their electronic distribution is 
influenced by the chemical neighborhood. The polarizability, especially its 
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anisotropy is important in many ligand-receptor, enzyme-substrate and other 
biological interactions.74–76  

Encompassed in the thesis is a QSPR model for polarizability of a set of 
fullerene and PAH compounds. 
 
HIV protease inhibition 

Acquired Immune Deficiency Syndrome (AIDS) is a disease caused by the 
human immunodeficiency virus (HIV) and it has as effect the collapsing of the 
human immune system. The failure of the immune system leaves the organism 
pray to the opportunistic infections which otherwise wouldn’t have been 
dangerous.  

The most important step in the cure of AIDS is preventing the HIV virus 
from reproducing itself and also to inhibit the viruses already present in the 
infected organisms. Up to now a large number of compounds have been tested 
to inhibit the virus in different stages of its development.77 There are inhibitors 
for practically every phase of virus’ life cycle: adsorption, fusion, uncoating, 
reverse transcription, integration, replication, transcription, translocation, 
maturation and budding. 78  

One successful method of reducing the amount of HIV viruses in infected 
organisms is to inhibit the respective aspartyl protease, which has the role of 
producing the HIV structural proteins called gag and implicitly determines the 
production of HIV mature virions. The HIV protease inhibitors bind specifically 
to the active catalytic site where they remain stuck thus blocking the enzyme. 
There are several protease inhibitors approved as drugs: Saquinavir, Indinavir, 
Amprenavir, Fosamprenavir, Tipranavir, Darunavir.  

Fullerene C60 is an interesting molecule for blocking the HIV protease79 due 
to its size of around 10 Å which is similar to the inside diameter of the protease 
channel. Another reason for the C60 efficacy against HIV protease is its 
hydrophobicity which makes it compatible with the hydrophobic amino acids 
that line the protease channel. To increase the efficiency of the C60 fullerene in 
inhibiting the protease all sort of pendant arms, which react with the catalytic 
site, have been added.80,81 Actually such a substituted fullerene named Fulevir, 
which is the sodium salt of fullerene-polyhydropolyamino-caproic acid is 
currently used clinically for the treatment of HIV infection.82 

Included in the present work is a QSAR approach for predicting the activity 
of substituted fullerenes in inhibiting the HIV protease. 

 
Β-Amyloid peptides aggregation inhibition 
Alzheimer’s disease that mostly affects the elderly population is characterized 
by dementia and at the physiological level by cerebral atrophy and loss of 
synapses and neurons.83 One of the main causes of Alzheimer’s disease is the 
overproduction of β-amyloid peptides (Aβs) and their deposition in the brain as 
amyloid extracellular plaque84 thus damaging the neuronal cells.  

The main Aβs that result from cleaving the amyloid protein precursor (APP) 
are Aβ(1–40) and Aβ(1–42).85  The two Aβs have almost identical amino acid 
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sequence but differ in which concerns the aggregation behavior, with Aβ(1–42) 
deposing faster and thus having increased neurotoxicity.86 

The potential strategies for the treatment for Alzheimer’s diseases include 
blocking the enzymes that cleave the APP87 or anti aggregation agents against 
amyloid fibril (fAβ) formation.88,89 Many different types of molecules have been 
experimentally tested as anti amyloid aggregation agents.60,90–100 

Included in the present thesis is a QSAR approach for evaluating the 
inhibition power of different compounds against Aβs aggregation. 

 
 
1.3. Computational approaches used for predicting  

the properties of carbon nanostructures  
 

The techniques mostly used to compute the properties of carbon nanostructures 
include: quantum chemistry, force field methods and molecular dynamic 
simulations. The preferred technique depends on the size of carbon nano-
structure: for compounds with up to several hundred atoms, simplified quantum 
mechanical based techniques like Density Functional Theory (DFT) are used, 
while in the case of nanostructures with thousands of atoms, statistical mecha-
nics based methods are applied. Most computations in the field of carbon 
nanostructures are made for the prediction of the physical properties (mecha-
nical, optical, electrical and magnetic) while calculations of biological activities 
and toxicities are less numerous.   

The mechanical and electronic properties of carbon nanotubes have proved 
important from the technological point of view. That raised the interest in 
developing a variety of techniques for predicting the properties of these 
structures. The thermo-mechanical and transport properties of carbon nanotubes 
have been modeled by computational techniques like molecular dynamics 
(MD), Monte Carlo (MC) simulation and ab initio quantum chemical 
methods.101,102  Before it was proved experimentally by Scanning Tunneling 
Microscopy (STM) that CNT can be metallic or semiconductors,103 their 
electrical properties were predicted by using first-principle, self-consistent, all-
electron Gaussian-orbital based local-density-functional approach104,105 and 
tight-binding band-structure calculations.106 Also the ballistic conductance in 
carbon nanotubes was anticipated by using a tight-binding model.107  

Different computational techniques like the finite field approach with PM-3 
parametrization,108 atom monopole-dipole interaction models,109,110 time-depen-
dent density-functional theory,111 point-dipole interaction model112 have been 
used to compute polarizability and hyperpolarizability. These computational 
methods proved to be a good alternative to the experimental techniques in 
determining polarizability and hyperpolarizability, properties that indicate how 
suitable different carbon nanostructures are for NLO devices.   

Computational tools proved also useful in evaluating and predicting the 
biological properties of substituted fullerenes. Docking is a valuable technique 
showing its utility in evaluating the potential of substituted fullerenes to inhibit 
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enzymes like HIV protease79 and mammalian carbon anhydrase.42 3D QSAR 
techniques like Comparative Molecular Field Analysis (CoMFA) and Compa-
rative Molecular Similarity Index Analysis (CoMSIA) have also been employed 
for proposing a series of C60 fullerene-based inhibitors of HIV protease.113,114 
Theoretical studies revealed the relationship between cytotoxic and hemolytic 
properties of water-soluble fullerene C60 derivatives and the hydrophilic and 
hydrophobic areas of these compounds.51 A structure-activity study on six 
different carboxyfullerene superoxide dismutase (SOD) mimetics also showed 
that the neuroprotection efficacy  depends on the number and the symmetry of 
distribution of the carboxylic groups attached to the fullerenic cage.115  

The modeling of the solubility of carbon nanostructures in different solvents 
has been made by QSPR modelling,116 Thomas and Eckert dilution model,117 
least-squares support vector machine (LSSVM),118 multivariate stepwise linear 
regression applied as a linear solvation energy approach119 and solvent-depen-
dent conformational analysis program (SCAP).120  

In the present thesis, two computational techniques have been used for 
modeling the properties of carbon nanostructures: QSPR/QSAR approach and 
ab initio quantum chemistry. The ab initio technique was used to generate the 
database on the polarizability for the fullerenes and PAHs used further for 
QSPR modeling. The QSPR/QSAR modeling was employed to generate useful 
models for the solubility of PAH and C60 in two solvents: n-heptane and 1-
octanol, for the polarizability of PAH and fullerenes, for the HIV protease 
inhibition by a series of substituted fullerenes and for the β-amyloid peptides 
aggregation inhibition.  

 
 

1.3.1. Ab initio calculations 
 

Many carbon nanostructures are rather large compounds, containing sometimes 
even thousands of atoms, which make the use of ab initio calculation for these 
structures a computationally highly expensive technique.  

An alternative to ab initio Hartree-Fock theory with many-electron wave-
functions is the use of Density Functional Theory (DFT)121 which is a simplified 
quantum chemistry method based on functionals of spatially dependent electron 
density.  In the article (II) DFT techniques with B3LYP functional,122  6–31G* 
123 and 6–311G(d)124 basis sets were used to calculate the polarizabilities of 
PAH and fullerenes included in the training and test sets of compounds. The 
calculations were carried out with the Gaussian03125 program and consisted of 
the optimization of molecular geometries using 6–31G* basis set and calcu-
lation of polarizabilities with 6–311G(d) basis set. 

 
 

1.3.2. QSAR Methodology 
 

The basic idea behind the QSPR/QSAR is that there is a relationship between 
the chemical structure of an organic compound and its bio-physical-chemical 
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properties. In what follows we will make a short overview of the QSPR/QSAR 
flow, with emphasis on the special problems encountered when modeling the 
properties of carbon nanostructures by this computational technique.  

The QSPR/QSAR methodology has three well defined steps, irrespective of 
the property that is being modeled: data preparation, data analysis and model 
validation. Each of these main steps can be further subdivided as can be seen in 
the table bellow: 

   
 

Main step Sub steps
 
 

Data preparation 

Collection of the property data to be modeled 
Preparation of the molecular structures for 

QSPR/QSAR studies
Collection of experimental descriptors 
Calculation of theoretical descriptors 

 
Data analysis 

Selection of the QSPR/QSAR statistical analysis and 
correlation method

Development of QSPR/QSAR model 
Interpretation of the model

Model validation Model validation
Prediction of the property of interest 

 
The physical, chemical or biological property that is modeled should have a 
suitable database of experimentally measured values of good quality. The 
quality of experimental data is crucial for obtaining reliable and robust models. 
For this reason, compounds with known large experimental errors in property 
values should be discarded from the set of data. Ideally, the experiments for 
determining the property values should be made by standardized methods in the 
same laboratory. Often, the property values are logarithmically transformed for 
QSPR/QSAR modeling purposes. In the case of carbon nanostructures, the 
experimental data are rather scarce and the property values from different 
laboratories that used similar experimental methods need to be collected. Thus, 
a special attention has to be paid to experimental protocols to avoid pitfalls due 
to poor data.126 

The 2D or 3D structures of the compounds needed for the calculation of 
molecular descriptors and in QSAR/QSPR model development can be drawn 
using software like MDL ISIS Draw,127 Chem Draw,128 or in the case of more 
complicated compounds like fullerenes and carbon nanotubes, structures can be 
downloaded from internet sites129 or generated using special programs.130 For 
obtaining the values of 3D theoretical descriptors, the structures should be 
prepared by energy minimization using quantum-chemical programs (e.g. 
MOPAC131). A commonly used molecular geometry optimization methods in 
QSPR/QSAR are the semi-empirical quantum chemistry methods with different 
parameterization like AM1132 and PM3.133 Based on the molecular structures with 
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optimized geometrical parameters, the descriptors can be calculated using many 
different programs (e.g. CODESSA,134 CODESSA Pro,135 QSARModel,136 and 
DRAGON137).  

The computational methodologies developed for building the QSPR/QSAR 
models that relate the theoretical descriptors to the experimental properties, can be 
classified as linear and nonlinear. Among the linear computational techniques, 
Multilinear Regression,138 Partial Least Squares (PLS)139 and Principal Compo-
nent Analysis (PCA)140 are the most widespread. The nonlinear relationship 
between property and descriptors can be built using techniques such as Artificial 
Neuronal Networks (ANN)141 and the Support Vector Machine (SVM).142 In the 
present thesis, multilinear regression techniques the Best Multiple Linear Regres-
sion (BMLR)138 and Heuristic143 implemented in CODESSA134 and QSAR-
Model136 were used.  

A good QSPR/QSAR model is interpretable and includes optimal number of 
descriptors that provide satisfactory explanation for the variance of the experi-
mental data, accompanied with good quality statistical parameters.144 Another 
necessary characteristic of a good model is the ability of the descriptors of the 
model to reflect adequately the mechanism that governs the physical, chemical 
or biological property that has been modeled. 

The usefulness of the model is related to its reliability and predictive power. 
The reliability of a model is estimated by internal or external validation 
procedures. The validation with an external test set is more reliable than the 
internal validation, but is not always applicable. For instance, in the case of 
carbon nanostructures, it is limited due to the small datasets available for these 
compounds. The model developed should also have good predictive power,145 
which means that the values of the property obtained with the model based on 
the structure of the molecule, should be as close as possible to the experi-
mentally measured property of that compound. The QSPR/QSAR models 
should be associated with a defined domain of applicability which means that 
they are generally applicable to congeneric compounds and are able to make 
reliable predictions only within the structural and physicochemical domain that 
is known from the training set. 

 
1.3.2.1. Descriptors used to calculate the properties of carbon 
nanostructures 
Molecular descriptors are numerical values that characterize properties of 
molecules and they are used as independent variables in QSPR/QSAR models. 
The descriptors can be empirical or theoretical. Empirical descriptors are 
various experimentally measured properties while theoretical descriptors are 
calculated by some algorithm.  

The experimentally measurable properties of carbon nanostructures that can 
be used as descriptors include: the nanoparticle’s size and size distribution, sur-
face area, shape, surface functionalization and surface charge, redox potential, 
porosity, water solubility and lipophilicity. The water solubility and lipophili-
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city are properties that are rather difficult to measure experimentally and often 
the theoretically calculated water/octanol partition coefficient logP146 is used as 
a more accessible alternative.  

For the calculation of theoretical descriptors, the only prerequisite is the 
chemical structure of the compound. The CODESSA134 and QSARModel136 
programs have been used to calculate the theoretical descriptors used in the 
present thesis. When a certain part of the molecules is invariable in the data set, 
which is the case of the substituted fullerenes, theoretical descriptors for 
variable fragments of the compound can be calculated and used to build 
QSAR/QSPR models. For the fullerenes, their PAH precursors and the 
substituted fullerenes the following theoretical descriptors have been calculated: 
constitutional, topological, geometrical, electrostatic, quantum chemical and 
thermodynamic.147 The calculation of constitutional descriptors is based on 
molecular formula and they describe features like the number of specific atoms 
and atomic groups in molecule and molecular weight. Topological descriptors 
are calculated using graph theory and reflect the connectivity and the branching 
of a molecule. Geometrical descriptors describe characteristics related to the 
size, volume, surface and shape of a molecule. The electrostatic descriptors 
reflect the charge distribution in a molecule and include the properties like 
polarity and polarizability. The quantum chemical descriptors give information 
about the energy of a molecule and the molecule’s ability to participate in 
chemical reactions, polar or hydrogen bonding interactions. The thermodynamic 
descriptors are calculated based on the total partition function of the molecule 
and its electronic, translational, rotational and vibrational components. 

Many topological descriptors like the distance matrix, the resistance-distance 
matrix, the corresponding distance-related and resistance-distance-related 
descriptors (Wiener index, Balaban indices, Kirchhoff index, Wiener-sum 
index, Kirchhoff-sum index)148 and the Cahn-Ingold-Prelog configurational 
descriptors149 have been previously calculated for fullerenes. A problem that 
could appear in calculating topological descriptors for fullerenes is their 
degeneracy.150 The quantum chemical descriptors like local softness and hard-
ness have also been previously calculated and served as descriptors determining 
the regioselectivity of fullerenes towards the nucleophilic attack.151 The 
geometrical descriptors calculated for substituted fullerenes like the hydrophilic 
and hydrophobic areas51 have been used to evaluate the cytotoxic and hemolytic 
properties of the water-soluble fullerene C60 derivatives. For large structures like 
carbon nanotubes the computation of descriptors requires extended calculations, 
even for topological descriptors like the Wiener index.152,153  

 
1.3.2.2. Multivariate linear regression models 
In building QSPR/QSAR models, the multiparameter linear regression method 
establishes a correlation between the dependent variable which is the property 
of a series of compounds and the independent variables which are the 
theoretical or experimental descriptors. The quality of the regression is reflected 
by the numerical values of several statistical parameters including the correla-
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tion coefficient of the regression (R), the coefficient of determination (R2), the 
standard error of the multiple linear regression (s), the normalized standard error 
(s0), Fisher criterion (F), Student’s test (t), cross validation coefficient of the 
determination (R2

cv), prediction sum of squares (PRESS) and root-mean-square 
prediction error (RMSPE)147. In the present thesis, the Heuristic and BMLR 
regression techniques have been used in building models for the properties of 
carbon nanostructures.  

The Heuristic method consists of several steps: i) selection of the descrip-
tors with available values and good variability of the values; ii) building of one-
descriptor equations with previously selected descriptors and selection of the 
best equations accordingly to F, R2

min, t and descriptor intercorrelation criteria; 
iii) arranging of the selected one-descriptor equations in increasing order of the 
correlation coefficient and building of two-descriptor equations by adding 
descriptors that are not already in the equation, meanwhile taking into account 
that the descriptors in the model should have a low inter- correlation; iv) 
selection of the best two-descriptors models and further addition of descriptors 
that have low correlation with descriptors already present in the equation until 
the resulting correlation has a F value above the F value of previous equation 
and the number of the descriptors in the equation is under an acceptable 
established limit.  

The BMLR method includes the following steps: i) finding all orthogonal 
pairs of descriptors in a given dataset; ii) building two-descriptor models with 
the orthogonal pairs of descriptors previously found and selecting those equa-
tions that have high correlation coefficient; iii) to the previously developed two-
descriptors equations non-colinear descriptors are added, as long as it leads to 
an improvement of F otherwise the procedure is stopped and the best equations 
according to the coefficient of determination are obtained; iv) additional 
descriptors are added to the previously obtained three-descriptor equations until 
the additional descriptors cease to bring an improvement of F. Thereafter the 
procedure is stopped and the best equations according to R2, R2

cv and F are 
obtained. 

 
1.3.2.3. Model validation for nanostructures 
The reliability and statistical relevance of the QSPR/QSAR models developed 
should be examined by validation procedures. The QSPR/QSAR methodology 
makes use of two validation methods, called external and internal valida-
tion.154,155 

The external validation can be applied as an assessment of the quality of the 
QSPR/QSAR models when the dataset of the property is large enough to be 
divided into training and test sets. The QSPR/QSAR model is built based on the 
training set, while the test set is used to compare the results predicted with the 
developed QSPR/QSAR model and the experimental values. Unfortunately, in 
the case of carbon nanostructures the datasets have relatively few experimental 
values and thus it is not always possible to apply the external validation method. 
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In the case of smaller datasets, dividing the compounds in training and test 
datasets reduces the structural diversity of compounds in the training set and 
makes the model more biased and with lower predictive power. 

The internal validation is more suitable for validating the datasets with a 
small number of experimental values. For maximizing the structural motifs of 
such small datasets all the molecules can be used to build the model and the 
validation can be made by procedures like Leave One Out (LOO) and Leave 
Many Out (LMO). In the case of LMO the training set is divided into equal-
sized groups containing m elements.  Each group is omitted in turn from the 
data and the model is fitted with the remaining groups that together contain n 

elements. The omitted property values
^

iy  are calculated with the fitted model 

and the quality of the model is given by the R2 of the correlation between the 

initial property values yi and those predicted with the model
^

iy . The predicted 

property values 
^

iy  can also be used for calculating two other validation 

criteria, the prediction sum of squares (PRESS) and the standardized prediction 
sum of squares (sPRESS)(see eq. (2) and (3)).156 
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LOO is a special case of LMO in which each of the training subsets contain all 
the available values but one. However even if LOO is one of the most popular 
internal validation criteria, a high value for R2

LOO is not always a proof of the 
high predictive ability of the model,157 and additional statistical criteria like 
PRESS, sPRESS should be used for assessing the quality of the model. 
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2. SUMMARY OF ORIGINAL PUBLICATIONS 
 

2.1. QSPR Modeling of Solubility of Polyaromatic 
Hydrocarbons and Fullerene in 1-Octanol and n-Heptane 

 
Many polyaromatic hydrocarbons (PAH) are useful technical compounds and 
precursors in the fabrication of carbon nanostructures (fullerenes and carbon 
nanotubes); as a side effect, they also appear as byproducts in combustion 
processes. Most chemical syntheses and separation processes involving PAH 
and nanostructures take place in liquid media, rendering the solubility of these 
compounds in different solvents a very important technical problem. Both PAH 
and nanostructures have significant toxicity and carcinogenic potential, which 
makes their impact upon the environment and health  a reason of concern, thus 
justifying studies of solubility in water and solvents similar to  tissue fluids. 
Most of the PAH and carbon nanostructures solubility studies express the 
solubility of a single solute in a series of solvents as being correlated to the 
structural properties of the solvents. To our knowledge, to the date of publi-
cation of the present article there were no models made for a series of PAH and 
carbon nanostructures in the same solvent, maybe because of the difficulties of 
finding solubility data for many PAH and carbon nanostructures made at the 
same temperature in the same solvent. The present study aims to define the 
solubility of a series of PAH and carbon nanostructure in the same solvent, as a 
(multi)linear relationship between the solubility and the structural descriptors of 
the solutes.  

Two QSPR models are reported in article (I) that describe the solubility of 
PAHs and carbon nanostructures (C60) in two different condensed media (n-
heptane and 1-octanol).  

The experimental solubility data for PAH and fullerene were collected from 
the IUPAC-NIST database. The 2D-QSAR models were obtained with 
Heuristic and best multiple linear regression (BMLR) descriptor selection 
modules implemented in the CODESSA program134. For both the solubility in 
n-heptane (eq. 4) and 1-octanol (eq. 5) three descriptor models were generated: 

 
(4) 
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The model describing the solubility in n-heptane (eq. (4)) involves three 
descriptors: Relative negative charge (Zefirov’s PC) (RNCG), Average 
structural information content (order 2) (2ASIC) and Min exchange energy for a 
C-C bond ( )(min CCEee  ). The descriptor RNCG is defined as the charge of the 
most negative atom divided by the sum of negative charges and its presence in 
eq. (4) indicates that compounds with higher localization of the negative partial 
charges have better solubility in n-heptane. The descriptor 2ASIC is a topo-
logical descriptor and shows the influence of the size and compactness of a 
molecule on its solubility in n-heptane. The descriptor )(min CCEee  can be 
related to the short-range contribution to the interaction energy between solute 
and solvent molecules and reflects the rather trivial observation that compounds 
with nonaromatic carbon-carbon bonds in molecule have better solubility in n-
heptane.  

The descriptors that appear in eq.(5) are: Information content of order 1(1IC), 
Min exchange energy for a C-C bond ( )(min CCEee  ) and Relative positive 
charged surface area (RPCS). The solubility in 1-octanol decreases with the 
increasing of the dimension of the molecule and its extension along one axis; 
this size effect is described by the descriptor 1IC. The descriptor RPCS is 
defined as the most positive surface area in a molecule. Compounds that have 
higher values for RPCS descriptor have higher density of positive partial 
charges interacting more efficiently with the  partial negative charge of the   –
OH group of the solvent thus making the compound more soluble in 1-octanol. 
The descriptor )(min CCEee     features the same solute solvent interaction as in 
equation (4).  

The models made for PAH and fullerene in n-heptane and 1-octanol indicate 
that the solubility depends on the compound’s spatial structure, of the electron 
distribution in the compounds and the interaction energy between the solute and 
solvent molecules. Importantly, the solubility of fullerenes in both n-heptane 
and 1-octanol was robustly predicted by the QSPR models developed for 
simpler organics.  

 
 

2.2. QSPR Modeling of the Polarizability  
of Polyaromatic Hydrocarbons and Fullerenes 

 

Carbon nanostructures like fullerenes, carbon nanotubes (CNT) and their 
precursors – the polyaromatic hydrocarbons (PAH), exhibit extended π electron 
systems that make them suitable compounds for nonlinear optical (NLO) 
applications.  The linear polarizability αij controls the refraction index (n) and 
the spatial modulation of the refractive index, which is responsible for the 
photorefractive effect, phenomenon on which NLO devices are based.  

The experimental polarizability of fullerenes can be measured for bulk fulle-
renes by indirect optical and conductivity measurements or for isolated mole-
cules using beam deflection techniques. The techniques used for polarizability 
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measurements in the case of CNT involve laser beams and optical Kerr effect. 
The polarizability of PAHs is measured by dielectric measurements, optical 
Kerr effect and NMR studies in solution. 

A quick tool for assessing the NLO behavior of compounds is the theoretical 
calculation of the polarizability. Ab initio methods give good results for pola-
rizability calculations but are rather slow for the case of large molecular systems 
like carbon nanostructures. A more time efficient method for polarizability 
calculation is based on the finite field approach with PM3 parametrization and 
MNDO Hamiltonian. Other methods used for the estimation of polarizabilities 
in the case of fullerenes and PAH are: the ”bond polarizability” model, the 
“charge dipole” model, the “point dipole interaction” model, the “dipole inter-
action” model and the linear correlation of polarizability with the surface area, 
effective molecular radius or number of C atoms. 

 In publication (II), a QSPR model describing the polarizability of PAH and 
fullerenes is presented. The polarizability of 18 PAH and 30 fullerenes 
molecules was calculated at ab initio DFT level using the B3LYP functional 
and the 6–311G(d) basis set. The compounds were separated into training and 
test set. The training set contained compounds for which only theoretical ab 
initio calculated polarizability was available and the test set contained com-
pounds for which the experimental determined polarizability was also available. 
The 2D-QSPR model for the ab initio calculated polarizability was obtained 
with the Heuristic descriptor selection module implemented in the CODESSA 
program. The high power predictive model contains only one descriptor ‘total 
molecular two-center exchange energy’ (Eexc(tot)).  
 

1,40,67.2797,2579.16,9845.0,9863.0
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222 
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The good predictive power of the model with only one descriptor indicates that 
the Eexc(tot) descriptor accounts for both the isotropic and anisotropic factors 
that influence the molecular polarizability. While the isotropic factor in-
fluencing the polarizability is an additive property and depends on the mole-
cular size, the anisotropic part is largely determined by intramolecular 
interatomic interactions. 

The QSPR model thus obtained was used to predict the polarizability values 
for the test set. The predicted polarizability values for the test set, with the 
above model, are in good agreement with the experimental values (R2=0.985). 
The developed QSAR model is a quick tool for estimating the polarizability of 
PAHs and fullerenes.  
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2.3. QSAR for Predicting HIV Protease Inhibition  
by Substituted Fullerenes 

 

The inhibition of the HIV virus by different drugs in different stages of virus 
development is part of the antiviral treatment that is the main anti HIV therapy 
nowadays. The HIV aspartyl protease is one of the main targets of this treatment 
being inhibited by both peptidic and non peptidic drugs. QSAR and 3D QSAR 
have proved useful tools in developing models for the prediction of the activity 
of numerous HIV protease inhibition drugs.  

Both C60 and the inside channel of HIV protease have similar dimensions. 
This observation induced the idea that substituted fullerenes could be useful 
drugs in inhibiting HIV protease. The activity of substituted fullerenes against 
HIV protease has been measured experimentally and estimated by compu-
tational techniques like docking, CoMFA and CoMSIA.  

The article (III) reports QSAR models to predict the inhibitory power against 
HIV protease of substituted fullerenes. The models were developed using 
experimental data EC50 (half maximum effective concentration) and Ki (bin-
ding affinity) of 20 substituted fullerenes tested for PBMC cells infected with 
the HIV-1(LAI) strain. Two approaches were employed in QSAR model 
development. First the descriptors were calculated for the whole molecule of the 
substituted fullerenes and BMLR descriptor selection module implemented in 
the QSARModel136 was applied to obtain the best QSAR equations. Within 
another approach, the descriptors were calculated for fragments of the sub-
stituted fullerenes (like fullerene core or substituent arms) and the BMLR and 
Heuristic descriptors selection modules implemented in CODESSA were used 
to get the best models. 

The best QSAR model (eq. 7) made with descriptors calculated for the full 
molecule of the substituted fullerenes has good statistical quality.   
 

min23.31)/2(55.52)(44.1107.7850 qSQRTHDCApEC LIUMOHOMO    (7) 
 

33.0,3,20,50.23,20.0,75.0,82.0 222  sPRESSnNFsRR cv  

 
The positive sign of the term involving descriptor HOMO-LUMO energy 
gap(AM1)(εHOMO – εLUMO)  in this model (7) indicates that the inhibitory power of 
the substituted fullerenes towards the HIV protease increases with the increased 
stability of the molecules. The descriptor HA dependent HDCA-2/SQRT(TMSA) 
(Zefirov) (HDCA-2/SQRT) can be related to the ability of the substituted fulle-
renes to form hydrogen bonds and to participate in polar interactions. The 
descriptor Min net atomic charge (Zefirov) for any atom type (qmin) represents 
the charge, calculated based on electron density allocated to atoms. Both 
descriptors HDCA-2/SQRT and qmin appear in the QSAR model with the nega-
tive sign which indicates that the potency of the substituted fullerenes to inhibit 
the HIV protease increases with the decreasing ability to form polar interactions 
and with the increased hydrophobicity of the compound.  For assessing how 
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much the hydrophobicity of the substituted fullerenes influences their activity, 
logP was calculated and introduced as an additional descriptor for compounds. 
The inclusion of this descriptor slightly improved the statistical quality of the 
model (eq. 8).  
 

PRNCGMaxpEC log38.088.465.913.1250             (8) 

22.0,3,20,77.28,17.0,79.0,84.0 222  sPRESSnNFsRR cv   

 
In addition to the descriptor logP, this QSAR model contains two additional 
descriptors, i.e. Relative negative charge (Zefirov’s PC) (RNCG) and Max 
sigma-sigma bond order (AM1) (Max σ-σ). The potency of the substituted fulle-
renes increases with the increasing in values of both descriptors RNCG and Max 
σ-σ. The low values for the descriptor RNCG correspond to multiple centers 
with negative charge which render the compound incompatible with the hydro-
phobic channel of the protease. The descriptor Max σ-σ is related to the stability 
of the molecule.  

The models obtained with descriptors calculated for fragments of the substi-
tuted fullerenes like the C60 core or substituent arms are significantly poorer. 
These results imply the conclusion that both fullerene core and substituent 
fragments are important for the antiviral activity of the fullerenes.  
 
 

2.4. QSAR for Describing the Inhibition  
of β Amyloid Fibril Formation 

 

Alzhaimer’s disease that mostly appears in the old age population, is an in-
curable, degenerative disease characterized by brain damage often due to the 
deposition of β amyloid neuritic extracelular plaque and to the formation of Tau 
protein intraneuronal filamentous inclusions. The amyloid plaque appears due to 
overproduction of amyloid peptides (Aβs) and is formed in several stages that 
include the conformational change of Aβ monomer from α helical to β structure 
and aggregation in oligomers, the oligomers aggregation in protofibrils and 
finally protofibril maturation into fibrils.  

A potential treatment for Alzheimer’s disease is to block the enzymes that 
cleave the amyloid precursor protein (APP) thus preventing the over flooding of 
the brain with Aβs. Another strategy of treatment is to disrupt amyloid plaque 
formation by preventing the aggregation of Aβs with different compounds such 
as Zn/Cu chelating molecules, surfactants, dyes, phenothiazines, polyphenols, 
porphyrines, antiinflamatory drugs, small peptides, dendrimers and nano-
structures. 

Two QSAR models are presented in article (IV) for the inhibition of amyloid 
fibrils (fAβ(1-40) and fAβ(1-42))  formation, based on EC50 for 24 compounds. 
The QSAR models were obtained with BMLR descriptor selection module 
implemented in CODESSA and are presented in eq. (9) and (10). 
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The two models contain three identical descriptors: Minimum nucleophilic 

reactivity index for a C atom ( min
CN ), Fractional Charge Negative Surface Area 

(FNSA-1) and Structural Information Content (order 2) (2SIC) and one descrip-
tor that is slightly different in the two models, that is the Hydrogen Acceptor 
Surface Area (HASA-1) in eq. (9) or Hydrogen Acceptor Charged Area (HACA-
1) in eq. (10). 

The presence of the HASA-1 and HACA-1 descriptors in the models with 
positive sign indicates that the capacity of the molecules to inhibit fAβs 
formation increases with their increasing H bonding ability. The importance of 
H bonding in preventing Aβs aggregation was also confirmed by the experi-
mental observations which showed that small peptides that interact with Aβs by 
both hydrogen bonding and side chain interactions are better inhibitors and that 
the replacement in peptides of the amide bonds, which is a H bonding site, with 
ester bonds, cancel their Aβs inhibition activity. Experimental tests also showed 
that the compounds which contain more hydroxyl groups in the molecule are 
more able to inhibit fAβs formation.  

The FNSA-1 descriptor is calculated based on partial negative surface area 
and its presence in the models with negative sign indicates that the polar 
interactions between Aβs and inhibitors are not favorable in preventing fAβs 
formation. The favoring of rather aromatic, hydrophobic, nonpolar interaction 
between Aβs and inhibitors is mostly due to the presence of hydrophobic 
regions in the Aβs peptides and it was experimentally confirmed by observa-
tions as the interaction between Aβs and cyclodextrins or between the Aβs  and 
rifampicin lipophilic ansa chains. The experimental tests also confirmed the fact 
that hydrophobic molecules like curcumin, retinol and retinal are better inhibi-
tors than polar molecules like retinoic acid. 

The topological descriptor 2SIC is related to the size and compactness of a 
molecule, and its presence with a negative sign in the models shows that 
molecules with rather compact shape are better inhibitors of Aβs. This increased 
activity with decreasing in molecular size was also experimentally observed in 
the case of the interaction of gangliosite with Aβs and is due to the fact that 
large gangliosides do not accommodate well between the hydrophobic regions 
of Aβs.  
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The min
CN  descriptor is a measure of the reactivity of the atoms in the mole-

cule. Its appearance with a positive sign in both models indicates that molecules 
with higher reactivity interact better with Aβs preventing thus their aggregation.  

The EC50 for inhibiting fAβ(1-40) formation with 1,2-dimethoxymethano)-
fullerene  was calculated using the model described by eq. (9). The three order 
of magnitude difference between the calculated and experimental property 
appear because the compounds that were used to develop the model (9) have a 
different mechanism of inhibiting  fAβ(1-40) formation and different structures 
comparing with the substituted fullerene.   
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3. CONCLUSIONS 
 

The QSPR/QSAR methodology was successfully applied for predicting the 
physico-chemical and biological properties of carbon nanostructures. The 
results have been presented in the articles included in the present thesis. The 
first article presents QSPR models for predicting the solubility of PAH and C60 
fullerene in n-heptane and 1-octanol. The second article describes a QSPR 
model for making predictions of the polarizability of PAH and fullerenes. In the 
third article, a model for the inhibition of HIV protease by substituted fullerenes 
is reported. The fourth article involves QSAR models for the inhibition of β-
amyloid fibril formation. 
 

(1) The solubility of PAH and C60 fullerene in two condensed media i.e. n-
heptane and 1-octanol was successfully described with two models, each 
having three descriptors. The models show that the solubility of PAH and 
C60 depends on descriptors which give information about the size and the 
shape of the molecule, the charges that appear in molecules and the 
interactions between the solute and solvent molecules.  

(2) A QSPR model was developed for the prediction of polarizability of PAHs 
and fullerenes. The ab initio  calculated polarizabilities served as a training 
dataset for developing a QSPR model with only one descriptor the ‘total 
molecular two-center exchange energy’ (Eexc(tot)). This one descriptor mo-
del has a good predictive power due to the capacity of the descriptor to 
account for both the isotropic and anisotropic part of the polarizability. The 
QSAR model was externally validated with a test set containing PAHs and 
fullerenes for which experimental polarizabily was also available. The pre-
dicted polarizability values were within the range of the experimental errors.  

(3) Experimental EC50 and Ki for 20 substituted fullerenes were used to 
develop models for HIV protease inhibition by these structures. The 
models were developed with descriptors calculated for the full molecule of 
the substituted fullerenes or for fragments of the molecule (fullerene core 
and substituent arms). The best model with good statistical quality and 
predictive power was obtained with descriptors calculated for the full 
molecules that account for the hydrophobicity and stability of the sub-
stituted fullerenes.  

(4) Two models for the inhibition of amyloid fibril formation (fAβ(1–40) and 
fAβ(1–42)) were developed starting from the EC50 of 24 compounds. Both 
models include almost identical descriptor which suggests a very similar 
mechanism of inhibition. The descriptors involved in the models reflect the 
importance of hydrogen bonding, hydrophobic interaction, steric effects 
and nucleophilic reactivity in the process of inhibiting fAβ formation by 
different compounds. The model for inhibiting fAβ(1–40) formation is not 
able to reproduce experimental EC50 for a substituted fullerene because 
this compound has different inhibition mechanism and structure comparing 
with the compounds that were used to develop the model. 
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SUMMARY IN ESTONIAN 
 

QSPR/QSAR lähenemine süsiniknanoosakeste  
omaduste ennustamiseks 

 

Peale süsiniknanoosakeste avastamist on selgunud, et nende süntees, analüüs ja 
omaduste määramine on päris keeruline. Selleks, et vähendada eksperimentaalse 
töö mahtu, on kasutatud mitmeid arvutustehnikaid nende ühendite omaduste en-
nustamiseks. Käesolevas doktoritöös on testitud QSPR/QSAR meetodite raken-
datavust süsiniknanoosakeste füüsikaliste ja keemiliste omaduste ja bioloogilis-
te aktiivsuste ennustamiseks. 

Sissejuhatus ja kirjanduse ülevaade annavad lühikese kokkuvõtte süsinik-
nanoosakestest, nende olulisematest ja huvitavamatest tehnilistest ja bioloogilis-
test omadustest, arvutustehnikatest ja molekulaardeskriptoritest nende omaduste 
modelleerimiseks ning nende mõjust keskkonnale ja inimeste tervisele. 

Doktoritöö kirjeldab järgmiste omaduste modelleerimist: polüaromaatsete 
süsivesinike ja C60 fullereeni lahustuvus n-heptaanis ja 1-oktanoolis, polüaro-
maatsete süsivesinike ja fullereenide polariseeritavus, HIV-1 proteaasi inhibee-
rimine asendatud C60 fullereeni derivaatide poolt, ning fibrillaarse amüloidi 
tekkimise inhibeerimine. Kõikide nende omaduste jaoks loodi hea ennustus-
võimega mudelid. Need mudelid võivad olla kasulikud tuntud ühendite oma-
duste ennustamiseks, mille kohta puuduvad veel eksperimentaalsed andmed või 
isegi rakendada ühenditele mida pole kunagi sünteesitud, kuid mis võivad 
omada kasulike ja huvipakkuvaid omadusi või aktiivsusi. 
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